HomeMy WebLinkAboutDAQ-2024-0050401
DAQC-075-24
Site ID# 10129 (B4)
MEMORANDUM
TO: STACK TEST FILE – WASATCH INTEGRATED WASTE MANAGEMENT
DISTRICT – Landfill
THROUGH: Harold Burge, Major Source Compliance Section Manager
FROM: Paul Morris, Environmental Scientist
DATE: January 25, 2024
SUBJECT: Location: 1997 East 3500 North, Layton, Davis County, Utah 84040
Contact: Nathan Rich – 801-614-5600
Tester: Alliance Technical Group, LLC
Source: Landfill Gas Generator (LFG)
FRS ID #: UT0000004901100033
Permit# 1100033003 Date of Last Revision: November 30, 2022
Action Code: TR
Subject: Review of Stack Test Report received January 12, 2024
On January 12, 2024, (email) the DAQ received a stack test report for the Landfill Gas Generator (LFG)
located at Wasatch Integrated Waste Management District’s Davis landfill located in Layton, Utah.
Initial testing was performed on August 10, 2023, to demonstrate compliance with the emission limits
found in Permit Condition II.B.3.d. During this test the source exceeded their Carbon Monoxide limit of
2.5 g/hp-hr. The source was retested on December 5, 2023. The DAQ-calculated test results are:
Source Test Date Pollutant DAQ Result Test Result Limit
LFG 8/10/2023 NOx 0.3 g/hp-hr 0.3 g/hp-hr 0.5 g/hp-hr
1.4 lb/hr 1.4 lb/hr 2.46 lb/hr
CO 2.7 g/hp-hr 2.7 g/hp-hr 2.5 g/hp-hr
11.5 lb/hr 11.5 lb/hr 12.31 lb/hr
VOC 0.15 g/hp-hr 0.16 g/hp-hr 0.88 g/hp-hr
0.64 lb/hr 0.71 lb/hr 4.33 lb/hr
LFG 12/5/2023 NOx 0.4 g/hp-hr 0.4 g/hp-hr 0.5 g/hp-hr
1.87 lb/hr 1.87 lb/hr 2.46 lb/hr
CO 2.4 g/hp-hr 2.4 g/hp-hr 2.5 g/hp-hr
10.44 lb/hr 10.45 lb/hr 12.31 lb/hr
VOC 0.16 g/hp-hr 0.17 g/hp-hr 0.88 g/hp-hr
0.67 lb/hr 0.76 lb/hr 4.33 lb/hr
6 , 3
2
DEVIATIONS: Wasatch Integrated Waste Management District exceeded their permitted
Carbon Monoxide emissions and failed to submit a Deviation Report
within 7 days. See attached Deviation Reports.
CONCLUSION: The submitted test report appear to be acceptable.
RECOMMENDATION: Emissions appear to have been in compliance with the applicable limits
during the second round of testing. Send an Early Settlement Agreement
for the violations.
HPV: No.
ATTACHMENTS: Stack test report received January 12, 2024, Deviation Reports,
Certification Statement cover letter and DAQ generated Excel test
review spreadsheets.
TEST REPORT SUMMARY
CORPORATE OFFICE
255 Grant St. SE, Suite 600
Decatur, AL 35601
256.351.0121
www.alliancetechnicalgroup.com
Client Information / Test Location Source Information
Nodal Power Engine/Unit ID: LFG Generator
Davis Landfill Engine Make/Model: Caterpillar G3520C
Layton, Utah Engine Serial Number: GZJ00710
Engine Type: Compression/Spark,
Rich/Lean
Engine Date of Manufacture: 7/7/1905
Engine Rating: 2,233 HP
Engine/Unit ID: LFG Generator
Regulatory Applicability Project No.
DAQE-AN101290026-22 AST-2023-4493
Run No. Run 1 Run 2 Run 3 Average
Date 12/5/23 12/5/23 12/5/23
Engine Load, % * 89 90 90 90
Nitrogen Oxides Data
Emission Rate, lb/hr 2.17 1.78 1.66 1.87
Permit Limit, lb/hr -- -- -- 2.46
Percent of Limit, % -- -- -- 76
Emission Factor, g/HP-hr 0.49 0.40 0.37 0.42
Permit Limit, lb/hr -- -- -- 0.5
Percent of Limit, % -- -- -- 85
Carbon Monoxide Data
Emission Rate, lb/hr 11.36 10.11 9.90 10.45
Permit Limit, lb/hr -- -- -- 12.31
Percent of Limit, % -- -- -- 85
Emission Factor, g/HP-hr 2.58 2.28 2.23 2.36
Permit Limit, lb/hr -- -- -- 2.5
Percent of Limit, % -- -- -- 95
Non- Methane HC Data
Emission Rate, lb/hr 0.72 0.76 0.80 0.76
Permit Limit, lb/hr -- -- -- 4.33
Percent of Limit, % -- -- -- 18
Emission Factor, g/HP-hr 0.16 0.17 0.18 0.17
Permit Limit, lb/hr -- -- -- 0.88
Percent of Limit, % -- -- -- 20
*Performance testing was conducted while the engine was operating at the highest achievable load at current site conditions.
Source Test Report
Nodal Power
250 E. 200 S., Suite 310
Salt Lake City, UT 84111
Davis Landfill
Layton, Utah
Source Tested: New Landfill Gas (LFG) Generator
Engine
Test Date: December 5, 2023
Project No. AST-2023-4493
Prepared By
Alliance Technical Group, LLC
3683 W 2270 S, Suite E
West Valley City, UT 84120
.
Source Test Report
Source & Contact Information
AST-2023-4493 Nodal Power – Layton, UT Page i
Regulatory Information
Permit No. DAQE-AN101290026-22
Source Information
Source Name Target Parameters
New Landfill Gas (LFG) Generator Engine NOx, CO, VOC
Contact Information
Test Location Test Company
Nodal Power
Davis Landfill
1997 East 3500 North
Layton, Utah 84040
Bryan Black
bryan@nodalpower.com
(801) 301-8151
Alliance Technical Group, LLC
3683 W 2270 S, Suite E
West Valley City, UT 84120
Project Manager
Charles Horton
charles.horton@alliancetg.com
(352) 663-7568
Field Team Leader
Tobias Hubbard
tobias.hubbard@alliancetg.com
(605) 645-8562
(subject to change)
QA/QC Manager
Kathleen Shonk
katie.shonk@alliancetg.com
(812) 452-4785
Report Coordinator
Delaine Spangler
delaine.spangler@alliancetg.com
2 of 63
Source Test Report
Certification Statement
AST-2023-4493 Nodal Power – Layton, UT Page ii
Alliance Technical Group, LLC (Alliance) has completed the source testing as described in this report. Results
apply only to the source(s) tested and operating condition(s) for the specific test date(s) and time(s) identified within
this report. All results are intended to be considered in their entirety, and Alliance is not responsible for use of less
than the complete test report without written consent. This report shall not be reproduced in full or in part without
written approval from the customer.
To the best of my knowledge and abilities, all information, facts and test data are correct. Data presented in this
report has been checked for completeness and is accurate, error-free and legible. Onsite testing was conducted in
accordance with approved internal Standard Operating Procedures. Any deviations or test program notes are
detailed in the relevant sections on the test report.
This report is only considered valid once an authorized representative of Alliance has signed in the space provided
below; any other version is considered draft. This document was prepared in portable document format (.pdf) and
contains pages as identified in the bottom footer of this document.
Charles Horton, QSTI
Alliance Technical Group, LLC
Date
1/11/2024
3 of 63
Source Test Report
Table of Contents
AST-2023-4493 Nodal Power – Layton, UT Page iii
TABLE OF CONTENTS
1.0 Introduction .................................................................................................................................................. 1-1
1.1 Facility and Process Description .............................................................................................................. 1-1
1.2 Project Team ............................................................................................................................................ 1-1
1.3 Instrument Information ............................................................................................................................ 1-1
1.4 Test Protocol and Notification ................................................................................................................. 1-1
2.0 Testing Methodology .................................................................................................................................... 2-1
2.1 U.S. EPA Reference Test Methods 1 and 2 – Sampling/Traverse Points and Volumetric Flow Rate ..... 2-1
2.2 U.S. EPA Reference Test Method 3A – Oxygen/Carbon Dioxide ........................................................... 2-1
2.3 U.S. EPA Reference Test Method 4 – Moisture Content ......................................................................... 2-1
2.4 U.S. EPA Reference Test Method 7E – Nitrogen Oxides ........................................................................ 2-2
2.5 U.S. EPA Reference Test Method 10 – Carbon Monoxide ...................................................................... 2-2
2.6 U.S. EPA Alternative Test Method ALT-096 – Non Methane Hydrocarbons ......................................... 2-2
2.7 U.S. EPA Reference Test Method 205 – Gas Dilution System Certification ........................................... 2-2
2.8 Quality Assurance/Quality Control – U.S. EPA Reference Methods 3A, 7E and 10 ............................... 2-2
2.9 Quality Assurance/Quality Control – U.S. EPA Reference Method ALT-096 ........................................ 2-3
LIST OF TABLES
Table 1-1: Project Team ........................................................................................................................................... 1-1
Table 1-2: Instrument Information ........................................................................................................................... 1-1
Table 2-1: Source Testing Methodology .................................................................................................................. 2-1
APPENDICES
Appendix A Sample Calculations
Appendix B Field Data
Appendix C Quality Assurance/Quality Control Data
Appendix D Engine Operating Data
Appendix E Site Specific Test Plan & Associated Documentation
4 of 63
Introduction
5 of 63
Source Test Report
Introduction
AST-2023-4493 Nodal Power – Layton, UT Page 1-1
1.0 Introduction
Alliance Technical Group, LLC (Alliance) was retained by Nodal Power to conduct initial compliance testing at the
Davis Landfill in Layton, Utah. Portions of the facility are subject to provisions of the Utah Department of
Environmental Quality – Division of Air Quality (UDAQ) Permit No. DAQE-AN101290026-22. Testing was
conducted at the exhaust of the new landfill gas (LFG) generator engine.
Compliance testing was conducted to determine the emission rates of nitrogen oxides (NOx), carbon monoxide (CO)
and volatile organic compounds (VOC). Testing consisted of three (3) 60-minute test runs for the source.
Performance testing was conducted while the engine was operating at the highest achievable load at current site
conditions. The Test Report Summary (TRS) provides the results from the compliance testing, including the three
(3) run average, with comparisons to the applicable limits. Any difference between the summary results listed in the
TRS and the detailed results contained in the appendices is due to rounding for presentation.
1.1 Facility and Process Description
Wasatch Integrated Waste Management District operates Davis Landfill, a municipal solid waste (MSW) landfill
located in Davis County, Utah. The facility accepts municipal and commercial waste. The new LFG generator
engine is rated at 2,233 horsepower (HP).
1.2 Project Team
Personnel involved in this project are identified in the following table.
Table 1-1: Project Team
Nodal Power Personnel Bryan Black
Alliance Personnel Tobias Hubbard
Xander Krahn
1.3 Instrument Information
The instruments used to conduct the compliance testing are summarized in the following table.
Table 1-2: Instrument Information
Pollutant Manufacturer Model Serial Number
O2 Servomex 1440 14150/3279 CO2
CO Thermo 48i 208845
NOx Thermo 42C 42CHL-59778-324
VOC Thermo 55i 1209052150
1.4 Test Protocol and Notification
Testing was conducted in accordance with the Site Specific Test Plan (SSTP) submitted to the UDAQ by Nodal
Power.
6 of 63
Testing Methodology
7 of 63
Source Test Report
Testing Methodology
AST-2023-4493 Nodal Power – Layton, UT Page 2-1
2.0 Testing Methodology
The emissions testing program was conducted in accordance with the U.S. EPA Reference Test Methods listed in
Table 2-1. Method descriptions are provided below while quality assurance/quality control data is provided in
Appendix C.
Table 2-1: Source Testing Methodology
Parameter U.S. EPA Reference
Test Methods Notes/Remarks
Volumetric Flow Rate 1 & 2 Full Velocity Traverses
Oxygen/Carbon Dioxide 3A Instrumental Analysis
Moisture Content 4 Gravimetric Analysis
Nitrogen Oxides 7E Instrumental Analysis
Carbon Monoxide 10 Instrumental Analysis
Non-Methane Hydrocarbons ALT-096 Instrumental Analysis
Gas Dilution System Certification 205 --
2.1 U.S. EPA Reference Test Methods 1 and 2 – Sampling/Traverse Points and Volumetric Flow Rate
The sampling location and number of traverse (sampling) points were selected in accordance with U.S. EPA
Reference Test Method 1. To determine the minimum number of traverse points, the upstream and downstream
distances were equated into equivalent diameters and compared to Figure 1-2 in U.S. EPA Reference Test Method 1.
Full velocity traverses were conducted in accordance with U.S. EPA Reference Test Method 2 to determine the
average stack gas velocity pressure, static pressure, and temperature. The velocity and static pressure measurement
system consisted of a pitot tube and inclined manometer. The stack gas temperature was measured with a K-type
thermocouple and pyrometer.
2.2 U.S. EPA Reference Test Method 3A – Oxygen/Carbon Dioxide
The oxygen (O2) and carbon dioxide (CO2) testing were conducted in accordance with U.S. EPA Reference Test
Method 3A. Data was collected online and reported in one-minute averages. The sampling system consisted of a
stainless-steel probe, Teflon sample line(s), gas conditioning system and the identified gas analyzer. The gas
conditioning system was a non-contact condenser used to remove moisture from the stack gas. If an unheated
Teflon sample line was used, then a portable non-contact condenser was placed in the system directly after the
probe. Otherwise, a heated Teflon sample line was used. The quality control measures are described in Section 2.8.
2.3 U.S. EPA Reference Test Method 4 – Moisture Content
The stack gas moisture content (BWS) was determined in accordance with U.S. EPA Reference Test Method 4. The
gas conditioning train consisted of a series of chilled impingers. The impingers were pre and post-measured to
determine the amount of moisture condensed during each test run.
8 of 63
Source Test Report
Testing Methodology
AST-2023-4493 Nodal Power – Layton, UT Page 2-2
2.4 U.S. EPA Reference Test Method 7E – Nitrogen Oxides
The nitrogen oxides (NOx) testing was conducted in accordance with U.S. EPA Reference Test Method 7E. Data
was collected online and reported in one-minute averages. The sampling system consisted of a stainless-steel probe,
Teflon sample line(s), gas conditioning system and the identified gas analyzer. The gas conditioning system was a
non-contact condenser used to remove moisture from the stack gas. If an unheated Teflon sample line was used,
then a portable non-contact condenser was placed in the system directly after the probe. Otherwise, a heated Teflon
sample line was used. The quality control measures are described in Section 2.8.
2.5 U.S. EPA Reference Test Method 10 – Carbon Monoxide
The carbon monoxide (CO) testing was conducted in accordance with U.S. EPA Reference Test Method 10. Data
was collected online and reported in one-minute averages. The sampling system consisted of a stainless-steel probe,
Teflon sample line(s), gas conditioning system, and the identified gas analyzer. The gas conditioning system was a
non-contact condenser used to remove moisture from the gas. If an unheated Teflon sample line was used, then a
portable non-contact condenser was placed in the system directly after the probe. Otherwise, a heated Teflon sample
line was used. The quality control measures are described in Section 2.8.
2.6 U.S. EPA Alternative Test Method ALT-096 – Non Methane Hydrocarbons
The non-methane hydrocarbon (NMHC) testing was conducted in accordance with U.S. EPA Alternate Test Method
ALT-096. EPA Method 25A is incorporated by reference. The sampling system consisted of a stainless steel probe,
heated Teflon sample line(s) and the Thermo 55i analyzer. The quality control measures are described in Section
2.9.
2.7 U.S. EPA Reference Test Method 205 – Gas Dilution System Certification
A calibration gas dilution system field check was conducted in accordance with U.S. EPA Reference Method 205.
Multiple dilution rates and total gas flow rates were utilized to force the dilution system to perform two dilutions on
each mass flow controller. The diluted calibration gases were sent directly to the analyzer, and the analyzer response
recorded in an electronic field data sheet. The analyzer response agreed within 2% of the actual diluted gas
concentration. A second Protocol 1 calibration gas, with a cylinder concentration within 10% of one of the gas
divider settings described above, was introduced directly to the analyzer, and the analyzer response recorded in an
electronic field data sheet. The cylinder concentration and the analyzer response agreed within 2%. These steps
were repeated three (3) times. Copies of the Method 205 data can be found in the Quality Assurance/Quality
Control Appendix.
2.8 Quality Assurance/Quality Control – U.S. EPA Reference Methods 3A, 7E and 10
Cylinder calibration gases used met EPA Protocol 1 (+/- 2%) standards. Copies of all calibration gas certificates can
be found in the Quality Assurance/Quality Control Appendix.
Low Level gas was introduced directly to the analyzer. After adjusting the analyzer to the Low Level gas
concentration and once the analyzer reading was stable, the analyzer value was recorded. This process was repeated
for the Mid Level gas. Next, High Level gas was introduced directly to the analyzer, and the response recorded
when it was stable. All values were within 2.0 percent of the Calibration Span or 0.5 ppmv absolute difference.
High or Mid Level gas (whichever was closer to the stack gas concentration) was introduced at the probe and the
time required for the analyzer reading to reach 95 percent or 0.5 ppm (whichever was less restrictive) of the gas
9 of 63
Source Test Report
Testing Methodology
AST-2023-4493 Nodal Power – Layton, UT Page 2-3
concentration was recorded. The analyzer reading was observed until it reached a stable value, and this value was
recorded. Next, Low Level gas was introduced at the probe and the time required for the analyzer reading to
decrease to a value within 5.0 percent or 0.5 ppm (whichever was less restrictive) was recorded. If the Low Level
gas was zero gas, the response was 0.5 ppm or 5.0 percent of the upscale gas concentration (whichever was less
restrictive). The analyzer reading was observed until it reached a stable value and this value was recorded. The
measurement system response time and initial system bias were determined from these data. The System Bias was
within 5.0 percent of the Calibration Span or 0.5 ppmv absolute difference.
High or Mid Level gas (whichever was closer to the stack gas concentration) was introduced at the probe. After the
analyzer response was stable, the value was recorded. Next, Low Level gas was introduced at the probe, and the
analyzer value recorded once it reached a stable response. The System Bias was within 5.0 percent of the
Calibration Span or 0.5 ppmv absolute difference or the data was invalidated and the Calibration Error Test and
System Bias were repeated.
Drift between pre- and post-run System Bias was within 0.5 ppmv absolute difference or the Calibration Error Test
and System Bias were repeated.
To determine the number of sampling points, a gas stratification check was conducted prior to initiating testing. The
pollutant concentrations were measured at three points (16.7, 50.0 and 83.3 percent of the measurement line). Each
traverse point was sampled for a minimum of twice the system response time.
If the pollutant concentration at each traverse point did not differ more than 5% or 0.5 ppm (whichever was less
restrictive) of the average pollutant concentration, then single point sampling was conducted during the test runs. If
the pollutant concentration did not meet these specifications but differed less than 10% or 1.0 ppm from the average
concentration, then three (3) point sampling was conducted (stacks less than 7.8 feet in diameter - 16.7, 50.0 and
83.3 percent of the measurement line; stacks greater than 7.8 feet in diameter – 0.4, 1.0, and 2.0 meters from the
stack wall). If the pollutant concentration differed by more than 10% or 1.0 ppm from the average concentration,
then sampling was conducted at a minimum of twelve (12) traverse points. Copies of stratification check data can
be found in the Quality Assurance/Quality Control Appendix.
An NO2 – NO converter check was performed on the analyzer prior to initiating testing. An approximately 50 ppm
nitrogen dioxide cylinder gas was introduced directly to the NOx analyzer and the instrument response was recorded
in an electronic data sheet. The instrument response was within +/- 10 percent of the cylinder concentration.
A Data Acquisition System (Dutech Analog Signal Modules) with battery backup was used to record the instrument
response in one (1) minute averages. The data was continuously stored as a *.CSV file in Excel format on the hard
drive of a computer. At the completion of testing, the data was also saved to the Alliance server. All data was
reviewed by the Field Team Leader before leaving the facility. Once arriving at Alliance’s office, all written and
electronic data was relinquished to the report coordinator and then a final review was performed by the Project
Manager.
2.9 Quality Assurance/Quality Control – U.S. EPA Reference Method ALT-096
EPA Protocol 1 Calibration Gases – Cylinder calibration gases used met EPA Protocol 1 (+/- 2%) standards. Copies
of all calibration gas certificates are provided in the Quality Assurance/Quality Control Appendix.
10 of 63
Source Test Report
Testing Methodology
AST-2023-4493 Nodal Power – Layton, UT Page 2-4
Zero gas was introduced through the sampling system to the analyzer. After adjusting the analyzer to the Zero gas
concentration and once the analyzer reading was stable, the analyzer value was recorded. This process was repeated
for the High Level gas, and the time required for the analyzer reading to reach 95 percent of the gas concentration
was recorded to determine the response time. Next, Mid and Low Level gases were introduced through the
sampling system to the analyzer, and the response was recorded when it is stable. All values must be within +/- 5%
of the calibration gas concentrations.
Post Test Drift Checks – Mid Level gas were introduced through the sampling system. After the analyzer response
was stable, the value was recorded. Next, Zero gas was introduced through the sampling system, and the analyzer
value recorded once it reached a stable response. The Analyzer Drift must be less than 3 percent of the Calibration
Span.
Data Collection – A Data Acquisition System with battery backup was used to record the instrument response
(analog 0-10 volt signal) in one (1) minute averages. The data was continuously stored as a *.CSV file in Excel
format on the hard drive of a desktop computer. At the completion of the emissions testing the data was also saved
to disk.
11 of 63
Appendix A
12 of 63
Appendix A
Example Calculations
Location
Source
Project No.
Run No.
Parameter(s)
Meter Pressure (Pm), in. Hg
where,
Pb 25.39 = barometric pressure, in. Hg
ΔH 1.000 = pressure differential of orifice, in H2O
Pm 25.46 = in. Hg
Absolute Stack Gas Pressure (Ps), in. Hg
where,
Pb 25.39 = barometric pressure, in. Hg
Pg 1.30
= static pressure, in. H2O
Ps 25.49 = in. Hg
Standard Meter Volume (Vmstd), dscf
where,
Y 0.970 = meter correction factor
Vm 36.144 = meter volume, cf
Pm 25.46 = absolute meter pressure, in. Hg
Tm 510.5 = absolute meter temperature, °R
Vmstd 30.840 = dscf
Standard Wet Volume (Vwstd), scf
where,
Vlc 94.3 = Volume of H2O collected, ml
Vwstd 4.447 = scf
Moisture Fraction (BWSsat), dimensionless (theoretical at saturated conditions)
where,
Ts 795.0 = stack temperature, °F
Ps 25.5 = absolute stack gas pressure, in. Hg
BWSsat 1.000 = dimensionless
Moisture Fraction (BWS), dimensionless
where,
Vwstd 4.447 = standard wet volume, scf
Vmstd 30.840 = standard meter volume, dscf
BWS 0.126 = dimensionless
Moisture Fraction (BWS), dimensionless
where,
BWSsat 1.000 = moisture fraction (theoretical at saturated conditions)
BWSmsd 0.126 = moisture fraction (measured)
BWS 0.126
Molecular Weight (DRY) (Md), lb/lb-mole
where,
CO2 10.9 = carbon dioxide concentration, %
O2 8.4 = oxygen concentration, %
Md 30.08 = lb/lb mol
Nodal Power - Nodal Power - Davis Landfill, Layton
LFG Generator
AST-2023-4493
1
BWS
Vwstd = 0.04716 x Vlc
Vmstd =17.636 x Vm x Pm x Y
Tm
BWS ൌ Vwstd
ሺVwstd Vmstdሻ
Md ൌ ሺ0.44 ൈ % COଶ ሻ ሺ0.32 ൈ % O2ሻ ሺ0.28 ሺ100 െ % COଶ െ % O2ሻሻ
BWS ൌ BWSmsd unless BWSsat ൏ BWSmsd
BWSsat ൌ 10.ଷି ଶ,଼ଶ
ୱାଷହ
Ps
Ps ൌ Pb Pg
13.6
Pm ൌ Pb Δ H
13.6
13 of 63
Appendix A
Example Calculations
Location
Source
Project No.
Run No.
Parameter(s)
Nodal Power - Nodal Power - Davis Landfill, Layton
LFG Generator
AST-2023-4493
1
BWS
Molecular Weight (WET) (Ms), lb/lb-mole
where,
Md 30.08 = molecular weight (DRY), lb/lb mol
BWS 0.126 = moisture fraction, dimensionless
Ms 28.56 = lb/lb mol
Average Velocity (Vs), ft/sec
where,
Cp 0.84 = pitot tube coefficient
Δ P1/2 1.318 = average pre/post test velocity head of stack gas, (in. H2O)1/2
Ts 1254.7 = average pre/post test absolute stack temperature, °R
Ps 25.49 = absolute stack gas pressure, in. Hg
Ms 28.56 = molecular weight of stack gas, lb/lb mol
Vs 124.2 = ft/sec
Average Stack Gas Flow at Stack Conditions (Qa), acfm
where,
Vs 124.2 = stack gas velocity, ft/sec
As 1.72 = cross-sectional area of stack, ft2
Qa 12,808 = acfm
Average Stack Gas Flow at Standard Conditions (Qs), dscfm
Ps
Ts
where,
Qa 12,808 = average stack gas flow at stack conditions, acfm
BWS 0.126 = moisture fraction, dimensionless
Ps 25.49 = absolute stack gas pressure, in. Hg
Ts 1254.7 = average pre/post test absolute stack temperature, °R
Qs 4,010 = dscfm
Dry Gas Meter Calibration Check (Yqa), percent
where,
Y 0.97 = meter correction factor, dimensionless
Θ 60 = run time, min.
Vm 36.144 = total meter volume, dcf
Tm 510.5 = absolute meter temperature, °R
ΔH@ 1.898 = orifice meter calibration coefficient, in. H2O
Pb 25.39 = barometric pressure, in. Hg
ΔH avg 1.000
= average pressure differential of orifice, in H2O
Md 30.08 = molecular weight (DRY), lb/lb mol
(Δ H)1/2 1.000 = average square root pressure differential of orifice, (in. H2O)1/2
Yqa 2.5 = percent
Qsd = 17.636 x Qa x (1 - BWS) x
Ms ൌ Md ሺ1 െ BWSሻ 18.015 ሺBWSሻ
Vs ൌ 85.49 ൈ Cp ൈ ሺΔ P ଵ/ଶ ሻ avg ൈ Ts
Ps x Ms
Qa ൌ 60 ൈ Vs ൈ As
Yqa ൌ
Y െ Θ
Vm 0.0319 ൈ Tm ൈ 29
ΔH@ ൈ Pb Δ Havg.
13.6 ൈ Md
ΔH avg.
Y ൈ 100
14 of 63
Appendix A
Example Calculations
Location:
Source:
Project No.:
Run No. /Method
O₂ - Outlet Concentration (C O₂), % dry
CMA
( CM - C0 )
where,
Cobs 8.33 = average analyzer value during test, % dry
Co 0.05 = average of pretest & posttest zero responses, % dry
CMA 10.98 = actual concentration of calibration gas, % dry
CM 10.93 = average of pretest & posttest calibration responses, % dry
CO₂8.36 = O₂ Concentration, % dry
CO₂ = ( Cobs - C0 ) x
Nodal Power - Davis Landfill, Layton, UT
LFG Generator
AST-2023-4493
Run 1 / Method 3A
15 of 63
Appendix A
Example Calculations
Location:
Source:
Project No.:
Run No. /Method
CO₂ - Outlet Concentration (C CO₂), % dry
CMA
( CM - C0 )
where,
Cobs 11.14 = average analyzer value during test, % dry
Co 0.07 = average of pretest & posttest zero responses, % dry
CMA 10.90 = actual concentration of calibration gas, % dry
CM 11.13 = average of pretest & posttest calibration responses, % dry
CCO₂10.91 = CO₂ Concentration, % dry
CCO₂ = ( Cobs - C0 ) x
Nodal Power - Davis Landfill, Layton, UT
LFG Generator
AST-2023-4493
Run 1 / Method 3A
16 of 63
Appendix A
Example Calculations
Location:
Source:
Project No.:
Run No. /Method
NOx - Outlet Concentration (C NOx), ppmvd
CMA
( CM - C0 )
where,
Cobs 73.88 = average analyzer value during test, ppmvd
Co 0.38 = average of pretest & posttest zero responses, ppmvd
CMA 50.00 = actual concentration of calibration gas, ppmvd
CM 49.05 = average of pretest & posttest calibration responses, ppmvd
CNOx 75.52 = NOx Concentration, ppmvd
NOx - Outlet Concentration (C NOxc15), ppmvd @ 15% O₂
20.9 - 15
20.9 - O₂
where,
CNOx 75.52 = NOx - Outlet Concentration, ppmvd
CO₂8.36 = oxygen concentration, %
CNOxc15 35.52 = ppmvd @15% O₂
NOx - Outlet Emission Rate (ERNOx), lb/hr
where,
CNOx 75.52 = NOx - Outlet Concentration, ppmvd
MW 46.0055 = NOx molecular weight, g/g-mole
Qs 4,010 = stack gas volumetric flow rate at standard conditions, dscfm
ERNOx 2.17 = lb/hr
NOx - Outlet Emission Rate (ERNOxTPY), ton/yr
ERNOx x 8,760
2,000
where,
ERNOx 2.17 = NOx - Outlet Emission Rate, lb/hr
ERNOxTPY 9.51 = ton/yr
NOx - Outlet Emission Factor (EFNOx), g/hp-hr
ERNOx x 453.592
EBW
where,
ERNOx 2.17 = NOx - Outlet Emission Rate, lb/hr
EBW 1,994 = engine brake work, HP
EFNOx 0.494 = g/hp-hr
ERNOxTPY =
EFNOx =
ERNOx =CNOx x MW x Qs x 60 x 28.32
24.04 x 1.0E06 x 453.592
CNOxc15 = CNOx x
CNOx = ( Cobs - C0 ) x
Nodal Power - Davis Landfill, Layton, UT
LFG Generator
AST-2023-4493
Run 1 / Method 7E
𝑚𝑖𝑛
ℎ𝑟
𝐿
𝑓𝑡ଷ
𝐿
𝑔െ𝑚𝑜𝑙𝑒
𝑔
𝑙𝑏
𝑙𝑏
𝑡𝑜𝑛
ℎ𝑟
𝑦𝑟
𝑔
𝑙𝑏
17 of 63
Appendix A
Example Calculations
Location:
Source:
Project No.:
Run No. /Method
CO - Outlet Concentration (C CO), ppmvd
CMA
( CM - C0 )
where,
Cobs 663.97 = average analyzer value during test, ppmvd
Co -0.11 = average of pretest & posttest zero responses, ppmvd
CMA 500.00 = actual concentration of calibration gas, ppmvd
CM 511.56 = average of pretest & posttest calibration responses, ppmvd
CCO 648.94 = CO Concentration, ppmvd
CO - Outlet Concentration (C COc15), ppmvd @ 15% O₂
20.9 - 15
20.9 - O₂
where,
CCO 648.94 = CO - Outlet Concentration, ppmvd
CO₂8.36 = oxygen concentration, %
CCOc15 305.27 = ppmvd @15% O₂
CO - Outlet Emission Rate (ERCO), lb/hr
where,
CCO 648.94 = CO - Outlet Concentration, ppmvd
MW 28.01 = CO molecular weight, g/g-mole
Qs 4,010 = stack gas volumetric flow rate at standard conditions, dscfm
ERCO 11.36 = lb/hr
CO - Outlet Emission Rate (ERCOTPY), ton/yr
ERCO x 8,760
2,000
where,
ERCO 11.36 = CO - Outlet Emission Rate, lb/hr
ERCOTPY 49.75 = ton/yr
CO - Outlet Emission Factor (EFCO), g/hp-hr
ERCO x 453.592
EBW
where,
ERCO 11.36 = CO - Outlet Emission Rate, lb/hr
EBW 1,994 = engine brake work, HP
EFCO 2.584 = g/hp-hr
ERCOTPY =
EFCO =
ERCO =CCO x MW x Qs x 60 x 28.32
24.04 x 1.0E06 x 453.592
CCOc15 = CCO x
CCO = ( Cobs - C0 ) x
Nodal Power - Davis Landfill, Layton, UT
LFG Generator
AST-2023-4493
Run 1 / Method 10
𝑚𝑖𝑛
ℎ𝑟
𝐿
𝑓𝑡ଷ
𝐿
𝑔െ𝑚𝑜𝑙𝑒
𝑔
𝑙𝑏
𝑙𝑏
𝑡𝑜𝑛
ℎ𝑟
𝑦𝑟
𝑔
𝑙𝑏
18 of 63
Appendix A
Example Calculations
Location:
Source:
Project No.:
Run No. /Method
NMHC - Outlet Concentration (as C3H8) (C NMHC), ppmvd
CNMHCw
1 - BWS
where,
CNMHCw 22.91 = NMHC - Outlet Concentration (as C3H8), ppmvw
BWS 0.126 = moisture fraction, unitless
CNMHC 26.21 = ppmvd
NMHC - Outlet Concentration (as C3H8) (C NMHCc15), ppmvd @ 15% O₂
20.9 - 15
20.9 - O₂
where,
CNMHC 26.21 = NMHC - Outlet Concentration (as C3H8), ppmvd
CO₂8.36 = oxygen concentration, %
CNMHCc15 12.33 = ppmvd @15% O₂
NMHC - Outlet Emission Rate (as C3H8) (ER NMHC), lb/hr
where,
CNMHC 26.21 = NMHC - Outlet Concentration (as C3H8), ppmvd
MW 44.1 = NMHC molecular weight, g/g-mole
Qs 4,010 = stack gas volumetric flow rate at standard conditions, dscfm
ERNMHC 0.72 = lb/hr
NMHC - Outlet Emission Rate (as C3H8) (ER NMHCTPY), ton/yr
ERNMHC x 8,760
2,000
where,
ERNMHC 0.72 = NMHC - Outlet Emission Rate (as C3H8), lb/hr
ERNMHCTPY 3.16 = ton/yr
NMHC - Outlet Emission Factor (as C3H8) (EF NMHC), g/hp-hr
ERNMHC x 454
EBW
where,
ERNMHC 0.72 = NMHC - Outlet Emission Rate (as C3H8), lb/hr
EBW 1,994 = engine brake work, HP
EFNMHC 0.164 = g/hp-hr
Nodal Power - Davis Landfill, Layton, UT
LFG Generator
AST-2023-4493
Run 1 / Method Alt-096
CNMHC =
CNMHCc15 = CNMHC x
ERNMHC =CNMHC x MW x Qs x 60 x 28.32
24.04 x 1.0E06 x 454
ERNMHCTPY =
EFNMHC =
𝑚𝑖𝑛
ℎ𝑟
𝐿
𝑓𝑡ଷ
𝐿
𝑔െ𝑚𝑜𝑙𝑒
𝑔
𝑙𝑏
𝑙𝑏
𝑡𝑜𝑛
ℎ𝑟
𝑦𝑟
𝑔
𝑙𝑏
19 of 63
Appendix B
20 of 63
Emissions Calculations
Location
Source
Project No.
Run Number Run 1 Run 2 Run 3 Average
Date 12/5/23 12/5/23 12/5/23 --
Start Time 11:11 17:35 19:04 --
Stop Time 12:11 18:35 20:04 --
Engine Manufacturer
Engine Model
Engine Serial Number
Engine Type
Engine Date of Manufacturer DOM
Engine Hour Meter Reading EMR
Generator Output, kW Gen OP 1,487 1,502 1,498 1,496
Engine Brake Work, HP EBW 1,994 2,014 2,009 2,006
Maximum Brake Work, HP MaxEBW 2,233 2,233 2,233 2,233
Engine Load, %EL 89% 90% 90% 90%
Ambient Temperature TAmb 52 52 52 52
Relative Humidity, % RH
50 50 50 50
Barometric Pressure, in. Hg Pb
25.39 25.39 25.39 25.39
Moisture Fraction, dimensionless BWS 0.126 0.125 0.126 0.126
Volumetric Flow Rate (M1-4), dscfm Qs 4,010 3,842 3,791 3,881
O₂ Concentration, % dry CO₂8.36 8.61 8.58 8.51
CO₂ Concentration, % dry CCO₂10.91 10.72 10.76 10.80
CO Concentration, ppmvd CCO 648.94 602.92 598.03 616.63
CO Concentration, ppmvd @ 15 % O₂CCOc15 305.27 289.35 286.28 293.63
CO Emission Rate, lb/hr ERCO 11.36 10.11 9.90 10.45
CO Emission Rate, ton/yr ERCOTPY 49.75 44.28 43.34 45.79
CO Emission Factor, g/HP-hr EFCO 2.58 2.28 2.23 2.36
NOx Concentration, ppmvd CNOx 75.52 64.74 60.94 67.07
NOx Concentration, ppmvd @ 15 % O₂CNOxc15 35.52 31.07 29.17 31.92
NOx Emission Rate, lb/hr ERNOx 2.17 1.78 1.66 1.87
NOx Emission Rate, ton/yr ERNOxTPY 9.51 7.81 7.25 8.19
NOx Emission Factor, g/HP-hr EFNOx 0.49 0.40 0.37 0.42
NMHC (as C₃H₈) Concentration, ppmvd CNMHC 26.21 28.76 30.56 28.51
NMHC (as C₃H₈) Concentration, ppmvw CNMHCw 22.91 25.16 26.71 24.93
NMHC (as C₃H₈) Concentration, ppmvd @ 15 % O₂CNMHCc15 12.33 13.80 14.63 13.59
NMHC (as C₃H₈) Emission Rate, lb/hr ERNMHC 0.72 0.76 0.80 0.76
NMHC (as C₃H₈) Emission Rate, ton/yr ERNMHCTPY 3.16 3.33 3.49 3.33
NMHC (as C₃H₈) Emission Factor, g/HP-hr EFNMHC 0.16 0.17 0.18 0.17
Engine Data
6,131
Input Data - Outlet
Calculated Data - Outlet
Nodal Power - Davis Landfill, Layton, UT
LFG Generator
AST-2023-4493
Caterpillar
G3520C
GZJ00710
Spark Ignition - 4SLB
2015
21 of 63
Method 1 Data
Location
Source
Project No.
Date
Vertical
Circular
25.25 in
7.50 in
17.75 in
1.72 ft2
2
1
3.4 ft
2.3 (must be > 0.5)
3.1 ft
2.1 (must be > 2)
16
16
Measurer (Initial and Date):AJE 12/5/23
Reviewer (Initial and Date):TCH 12/5/23
2345 6 789101112
1 14.6 -- 6.7 --4.4 -- 3.2 -- 2.6 -- 2.1 1 3.2 0.57 8.07
2 85.4 -- 25.0 -- 14.6 -- 10.5 -- 8.2 -- 6.7 2 10.51.869.36
3 -- -- 75.0 -- 29.6 -- 19.4 -- 14.6 -- 11.8 3 19.4 3.44 10.94
4 -- -- 93.3 -- 70.4 -- 32.3 -- 22.6 -- 17.7 4 32.3 5.73 13.23
5 -- -- -- -- 85.4 -- 67.7 -- 34.2 -- 25.0 5 67.7 12.02 19.52
6 -- -- -- -- 95.6 -- 80.6 -- 65.8 -- 35.6 6 80.6 14.31 21.81
7 -- -- -- ------ 89.5 -- 77.4 -- 64.4 7 89.5 15.89 23.39
8 -- -- -- ------ 96.8 -- 85.4 -- 75.0 8 96.8 17.18 24.68
9 -- -- -- ------ -- -- 91.8 -- 82.3 9 -- -- --
10 -- -- -- ------ -- -- 97.4 -- 88.2 10 -- -- --
11 -- -- -- ------ -- -- -- -- 93.3 11 -- -- --
12 -- -- -- ------ -- -- -- -- 97.9 12 -- -- --
*Percent of stack diameter from inside wall to traverse point.
A = 3.4 ft.
B = 3.1 ft.
Depth of Duct = 17.75 in.
Cross Sectional Area of Duct:
Nodal Power - Davis Landfill, Layton, UT
LFG Generator
AST-2023-4493
12/05/23
Stack Parameters
Duct Orientation:
Duct Design:
Distance from Far Wall to Outside of Port:
Nipple Length:
Depth of Duct:
No. of Test Ports:
Number of Readings per Point:
Distance A:
Distance A Duct Diameters:
Distance B:
Distance B Duct Diameters:
Minimum Number of Traverse Points:
Actual Number of Traverse Points:
CIRCULAR DUCT
Number of traverse points on a diameter
Stack Diagram
Cross Sectional Area
LOCATION OF TRAVERSE POINTS
Traverse
Point
% of
Diameter
Distance
from inside
wall
Distance
from
outside of
port
Upstream
Disturbance
Downstream
Disturbance
B
A
22 of 63
Cyclonic Flow Check
Location
Source
Project No.
Date
Sample Point Angle (ΔP=0)
1 0
2 2
3 0
4 0
5 2
6 4
7 2
8 0
9 0
10 3
11 3
12 2
13 4
14 2
15 1
16 0
Average 1.6
Nodal Power - Davis Landfill, Layton, UT
LFG Generator
AST-2023-4493
12/5/23
23 of 63
Field Data
Method 2 Data
Location
Source
Project No.
Δ P
(in. WC)
Ts
(°F)
Δ P
(in. WC)
Ts
(°F)
Δ P
(in. WC)
Ts
(°F)
1.10 795 1.10 796 1.00 798
1.30 793 1.20 795 1.20 798
1.70 793 1.50 795 1.40 799
1.60 794 1.60 796 1.60 795
1.80 794 1.70 797 1.80 796
2.00 795 2.00 798 1.90 794
2.10 793 1.90 796 2.00 796
2.10 795 1.80 795 1.60 795
1.30 796 1.10 795 1.10 796
1.50 796 1.30 754 1.10 798
1.80 795 1.60 796 1.50 798
1.80 794 1.60 798 1.60 794
1.90 796 1.70 796 1.80 795
2.00 797 2.00 796 2.00 796
2.00 796 1.80 795 1.90 798
2.00 798 1.70 793 1.60 796
Average
Square Root of ΔP, (in. WC)1/2 (ΔP)1/2 1.274
Average ΔP, in. WC (ΔP)1.64
Pitot Tube Coefficient (Cp)0.840
Barometric Pressure, in. Hg (Pb)25.39
Static Pressure, in. WC (Pg)1.30
Stack Pressure, in. Hg (Ps)25.49
Average Temperature, °F (Ts)794.9
Average Temperature, °R (Ts)1254.5
Measured Moisture Fraction (BWSmsd)0.125
Moisture Fraction @ Saturation (BWSsat)1.000
Moisture Fraction (BWS)0.125
O2 Concentration, % (O2)8.5
CO2 Concentration, % (CO2)10.8
Molecular Weight, lb/lb-mole (dry) (Md)30.07
Molecular Weight, lb/lb-mole (wet) (Ms)28.56
Velocity, ft/sec (Vs)120.1
VFR at stack conditions, acfm (Qa)12,387
VFR at standard conditions, scfh (Qsw)266,278
VFR at standard conditions, scfm (Qsw)4,438
VFR at standard conditions, dscfm (Qsd)3,881
8
Nodal Power - Davis Landfill, Layton, UT
LFG Generator
AST-2023-4493
Run No. 1 2 3
Status VALID VALID VALID
Date 12/5/23 12/5/23 12/5/23
Stop Time 11:21 17:52 19:23
Start Time 11:15 17:45 19:15
Traverse Point
A1
2
3
4
Leak Check Pass Pass Pass
3
4
5
6
7
5
6
7
8
B1
2
0.840 0.840 0.840
1.75 1.60 1.57
1.318 1.260 1.246
1.30 1.30 1.30
25.39 25.39 25.39
795.0 793.2 796.4
25.49 25.49 25.49
0.126 0.125 0.126
1254.7 1252.9 1256.0
30.08 30.06 30.07
8.4 8.6 8.6
10.9 10.7 10.8
124.2 118.7 117.5
28.56 28.55 28.56
12,808 12,238 12,115
4,588 4,390 4,335
275,298 263,419 260,116
4,010 3,842 3,791
1.0001.0001.000
0.1260.1250.126
24 of 63
Method 4 Data
Location
Source
Project No.
Parameter(s)
Console Units / Method ft3 M4
Run No.
Date
Status
Start Time
End Time
Run Time, min (θ)
Meter ID
Meter Correction Factor (Y)
Orifice Calibration Value (ΔH @)
Max Vacuum, in. Hg
Post Leak Check, ft3/min (at max vac.)
Meter Volume, ft3
Total Meter Volume, ft3 (Vm)
Meter Probe Filter Vacuum Imp. Exit Meter Probe Filter Vacuum Imp. Exit Meter Probe Filter Vacuum Imp. Exit
47 -- -- 2 45 45 -- -- 2 44 46 -- -- 2 43
47 -- -- 2 44 45 -- -- 2 44 46 -- -- 2 43
48 -- -- 2 44 45 -- -- 2 44 46 -- -- 2 43
48 -- -- 2 44 45 -- -- 2 44 46 -- -- 2 44
49 -- -- 2 43 46 -- -- 2 44 46 -- -- 2 44
50 -- -- 2 43 46 -- -- 2 44 47 -- -- 2 44
50 -- -- 2 43 46 -- -- 2 44 47 -- -- 2 44
52 -- -- 2 44 46 -- -- 2 44 47 -- -- 2 45
52 -- -- 2 44 47 -- -- 2 44 47 -- -- 2 44
53 -- -- 2 44 47 -- -- 2 45 47 -- -- 2 45
55 -- -- 2 45 47 -- -- 2 45 47 -- -- 2 44
55 -- -- 2 45 48 -- -- 2 45 46 -- -- 2 45
55 -- -- 2 45 48 -- -- 2 45 46 -- -- 2 45
Average Temperature, °F (Tm)51 -- -- 2 44 46 -- -- 2 44 46 -- -- 2 44
Average Temperature, °R (Tm)511 -- -- -- -- 506 -- -- -- -- 506 -- -- -- --
Minimum Temperature, °F 47 -- -- 2 43 45 -- -- 2 44 46 -- -- 2 43
Maximum Temperature, °F 55 -- -- 2 45 48 -- -- 2 45 47 -- -- 2 45
Barometric Pressure, in. Hg (Pb)
Meter Orifice Pressure , in. WC (ΔH)
Meter Pressure, in. Hg (Pm)
Standard Meter Volume, ft3 (Vmstd)
Analysis Type
Impinger 1, Pre/Post Test, g 796.3 855.7 59.4 773.7 834.9 61.2 782.4 843.2 60.8
Impinger 2, Pre/Post Test, g 730.4 748.7 18.3 734.2 751.8 17.6 751.8 770.3 18.5
Impinger 3, Pre/Post Test, g 638.3 642.5 4.2 642.5 646.5 4.0 646.5 650.8 4.3
Impinger 4, Pre/Post Test, g 938.8 951.2 12.4 951.2 963.2 12.0 963.2 975.0 11.8
Volume Water Collected, mL (Vlc)
Standard Water Volume, ft3 (Vwstd)
Moisture Fraction Measured (BWS)
Gas Molecular Weight, lb/lb-mole (dry) (Md)
DGM Calibration Check Value (Yqa)
Temperature, °F
0
5
30
35
60
Nodal Power - Davis Landfill, Layton, UT
LFG Generator
AST-2023-4493
BWS
1
VALID
12/5/23
11:11
12:11
60
M5-26
0.970
1.898
VALID
19:04
20:04
60
M5-26
0.970
1.898
2
0.001
30.06
3.5
95.4
4.499
0.126
3.6
30.07
H2O
H2O
Empty
H2O
Empty
25.39
1.000
25.39
1.000
2
12/5/23
3
12/5/23
VALID
17:35
18:35
60
M5-26
0.970
1.898
2
0.001
892.173
895.210
898.245
901.280
904.315
907.350
910.385
913.420
916.455
919.490
922.525
925.560
928.591
878.960
881.995
885.025
888.057
851.674
854.705
857.740
860.770
863.800
866.835
869.865
872.900
875.930
36.144 36.383 36.418
H2O
94.8
4.471
0.125
30.08
2.5
25.46
31.327
25.46
31.343
Gravimetric Gravimetric
Silica Silica Silica
25.39
94.3
4.447
0.126
1.000
25.46
30.840
H2O
H2O
Empty
Gravimetric
2
0.001
799.777
802.790
805.800
808.815
811.825
814.840
817.850
820.860
823.875
826.885
829.900
832.910
835.92160
0
5
10
15
20
25
10
15
20
25
40
45
50
55
30
35
40
45
50
55
25 of 63
Run 1 - RM Data
Location:
Source:
Project No.:
Date:
Time O₂ - Outlet CO₂ - Outlet CO - Outlet NOx - Outlet NMHC - Outlet
Unit % dry % dry ppmvd ppmvd ppmvw
Status Valid Valid Valid Valid Valid
Uncorrected Run Average (Cobs)8.33 11.14 663.97 73.88 22.91
Cal Gas Concentration (CMA)10.98 10.90 500.00 50.00 40.00
Pretest System Zero Response 0.04 0.03 -0.03 0.17 0.04
Posttest System Zero Response 0.06 0.10 -0.19 0.59 0.04
Average Zero Response (Co)0.05 0.07 -0.11 0.38 0.04
Pretest System Cal Response 10.93 11.13 512.16 48.66 40.21
Posttest System Cal Response 10.92 11.13 510.95 49.43 40.53
Average Cal Response (CM)10.93 11.13 511.56 49.05 40.37
Corrected Run Average (Corr)8.36 10.91 648.94 75.52 NA
11:11 8.31 11.15 669.52 71.70 21.94
11:12 8.29 11.16 668.43 72.11 21.59
11:13 8.35 11.12 658.70 67.54 22.15
11:14 8.34 11.14 674.82 72.72 22.54
11:15 8.30 11.16 674.13 74.96 22.13
11:16 8.32 11.14 658.95 70.91 21.79
11:17 8.35 11.13 656.21 68.49 22.00
11:18 8.31 11.17 673.56 74.25 22.38
11:19 8.29 11.15 663.42 73.30 22.30
11:20 8.32 11.15 674.89 76.03 22.27
11:21 8.28 11.17 678.61 81.78 21.93
11:22 8.34 11.11 657.68 73.85 21.66
11:23 8.36 11.11 656.39 72.99 22.08
11:24 8.31 11.17 669.33 77.43 22.42
11:25 8.29 11.17 666.73 77.15 22.33
11:26 8.32 11.14 662.10 74.20 21.98
11:27 8.34 11.13 665.32 74.99 22.47
11:28 8.33 11.14 668.12 76.35 22.65
11:29 8.29 11.17 680.90 81.17 22.59
11:30 8.30 11.14 657.85 74.54 22.19
11:31 8.36 11.12 651.11 68.79 22.51
11:32 8.32 11.16 668.57 74.01 23.18
11:33 8.30 11.17 674.46 77.22 22.56
11:34 8.31 11.14 662.58 74.99 22.03
11:35 8.37 11.12 664.50 72.93 22.26
11:36 8.31 11.15 669.98 76.95 23.56
11:37 8.33 11.12 657.91 72.37 22.59
11:38 8.31 11.16 675.17 77.34 23.20
11:39 8.31 11.12 659.29 73.39 22.18
11:40 8.37 11.11 664.07 71.85 22.43
11:41 8.31 11.15 670.58 77.38 22.37
11:42 8.32 11.13 660.85 74.23 22.68
11:43 8.35 11.12 655.64 71.08 23.00
11:44 8.34 11.13 657.24 71.74 23.09
11:45 8.33 11.13 662.74 73.05 23.19
11:46 8.31 11.16 675.95 77.77 23.02
11:47 8.30 11.14 669.79 77.24 22.67
11:48 8.37 11.08 650.36 68.89 22.88
11:49 8.34 11.15 666.77 74.39 23.39
11:50 8.30 11.16 667.24 75.40 23.11
11:51 8.32 11.14 661.39 73.91 23.23
11:52 8.33 11.13 659.55 72.72 23.58
11:53 8.34 11.13 663.47 73.63 23.62
11:54 8.33 11.15 672.11 76.60 23.67
11:55 8.31 11.15 671.93 78.66 23.52
11:56 8.34 11.13 654.55 72.31 23.61
11:57 8.35 11.13 653.74 70.12 23.58
11:58 8.33 11.15 661.07 72.36 23.49
11:59 8.30 11.17 670.75 76.44 23.06
12:00 8.31 11.14 663.31 74.97 23.09
12:01 8.35 11.12 661.03 72.96 23.79
12:02 8.34 11.13 661.78 73.59 23.88
12:03 8.32 11.15 665.58 74.88 23.58
12:04 8.29 11.16 665.43 76.60 23.57
12:05 8.36 11.09 648.80 68.25 23.76
12:06 8.37 11.11 660.66 71.95 24.58
12:07 8.34 11.12 663.93 74.80 24.51
12:08 8.38 11.08 651.30 70.39 23.98
12:09 8.41 11.08 648.88 68.22 24.47
12:10 8.36 11.13 658.44 71.90 24.56
Nodal Power - Davis Landfill, Layton, UT
LFG Generator
AST-2023-4493
12/5/23
26 of 63
Run 2 - RM Data
Location:
Source:
Project No.:
Date:
Time O₂ - Outlet CO₂ - Outlet CO - Outlet NOx - Outlet NMHC - Outlet
Unit % dry % dry ppmvd ppmvd ppmvw
Status Valid Valid Valid Valid Valid
Uncorrected Run Average (Cobs)8.55 10.90 611.62 63.02 25.16
Cal Gas Concentration (CMA)10.98 10.90 500.00 50.00 40.00
Pretest System Zero Response 0.05 0.04 -0.51 0.48 0.04
Posttest System Zero Response 0.05 0.06 -0.52 0.53 0.04
Average Zero Response (Co)0.05 0.05 -0.52 0.51 0.04
Pretest System Cal Response 10.89 11.07 507.29 48.55 39.64
Posttest System Cal Response 10.90 11.08 506.97 49.01 39.37
Average Cal Response (CM)10.90 11.08 507.13 48.78 39.51
Corrected Run Average (Corr)8.61 10.72 602.92 64.74 NA
17:35 8.53 10.88 615.29 62.70 26.48
17:36 8.53 10.88 615.56 63.67 24.05
17:37 8.53 10.88 613.52 65.00 24.93
17:38 8.58 10.82 606.47 60.13 25.03
17:39 8.66 10.81 606.08 57.80 26.19
17:40 8.59 10.87 609.58 62.68 26.00
17:41 8.56 10.89 615.15 65.04 24.90
17:42 8.53 10.89 615.36 66.22 24.60
17:43 8.58 10.86 611.45 62.85 24.88
17:44 8.53 10.93 621.11 68.43 24.89
17:45 8.52 10.90 613.96 66.36 24.67
17:46 8.59 10.85 609.66 61.92 24.87
17:47 8.56 10.90 617.55 66.24 25.18
17:48 8.55 10.88 613.01 64.83 25.06
17:49 8.58 10.87 612.13 63.65 25.22
17:50 8.57 10.88 610.05 63.45 25.13
17:51 8.55 10.90 617.70 65.49 25.11
17:52 8.52 10.93 620.83 67.97 24.77
17:53 8.54 10.87 609.35 62.55 24.19
17:54 8.58 10.88 613.92 63.05 25.29
17:55 8.53 10.91 614.50 65.71 24.89
17:56 8.55 10.88 610.52 63.01 24.61
17:57 8.58 10.86 609.28 61.69 25.00
17:58 8.56 10.90 615.06 65.19 25.00
17:59 8.55 10.91 616.34 65.78 24.96
18:00 8.52 10.93 615.48 65.81 24.67
18:01 8.54 10.91 612.38 63.92 24.51
18:02 8.55 10.90 611.42 62.97 24.77
18:03 8.58 10.87 609.39 61.58 25.20
18:04 8.56 10.90 612.19 63.81 25.48
18:05 8.55 10.91 613.09 64.17 25.16
18:06 8.56 10.88 611.19 62.42 25.30
18:07 8.57 10.89 612.07 63.10 25.56
18:08 8.52 10.93 617.39 66.89 25.03
18:09 8.54 10.89 610.28 62.79 24.77
18:10 8.58 10.89 610.01 61.74 25.47
18:11 8.54 10.92 612.51 64.18 25.46
18:12 8.55 10.89 607.70 61.08 25.20
18:13 8.57 10.89 609.94 61.44 25.49
18:14 8.54 10.92 615.20 64.74 25.47
18:15 8.52 10.92 611.84 63.40 25.24
18:16 8.54 10.91 615.13 64.03 25.28
18:17 8.54 10.92 614.97 65.16 25.48
18:18 8.53 10.91 609.08 62.82 25.43
18:19 8.57 10.88 607.92 60.24 25.43
18:20 8.57 10.89 605.13 59.32 25.68
18:21 8.54 10.91 609.70 61.85 25.46
18:22 8.52 10.93 610.33 62.21 25.40
18:23 8.54 10.89 604.87 59.14 25.14
18:24 8.54 10.93 612.05 61.74 25.64
18:25 8.50 10.92 609.83 61.98 24.57
18:26 8.55 10.90 605.48 59.35 24.96
18:27 8.55 10.92 610.00 61.28 25.26
18:28 8.52 10.92 609.42 61.51 25.17
18:29 8.55 10.89 604.11 59.00 24.99
18:30 8.56 10.91 609.63 61.38 25.29
18:31 8.54 10.92 609.66 61.95 25.55
18:32 8.53 10.92 608.25 60.86 25.44
18:33 8.54 10.91 608.69 61.19 25.50
18:34 8.54 10.92 607.56 60.51 25.50
Nodal Power - Davis Landfill, Layton, UT
LFG Generator
AST-2023-4493
12/5/23
27 of 63
Run 3 - RM Data
Location:
Source:
Project No.:
Date:
Time O₂ - Outlet CO₂ - Outlet CO - Outlet NOx - Outlet NMHC - Outlet
Unit % dry % dry ppmvd ppmvd ppmvw
Status Valid Valid Valid Valid Valid
Uncorrected Run Average (Cobs)8.52 10.93 606.63 59.84 26.71
Cal Gas Concentration (CMA)10.98 10.90 500.00 50.00 40.00
Pretest System Zero Response 0.05 0.06 -0.52 0.53 0.04
Posttest System Zero Response 0.04 0.07 -0.53 0.56 0.04
Average Zero Response (Co)0.05 0.07 -0.53 0.55 0.04
Pretest System Cal Response 10.90 11.08 506.97 49.01 39.37
Posttest System Cal Response 10.89 11.07 507.24 49.38 38.97
Average Cal Response (CM)10.90 11.08 507.11 49.20 39.17
Corrected Run Average (Corr)8.58 10.76 598.03 60.94 NA
19:04 8.54 10.90 609.53 59.83 25.43
19:05 8.51 10.92 611.13 61.74 25.40
19:06 8.55 10.88 602.72 57.29 25.52
19:07 8.55 10.91 609.73 60.31 25.68
19:08 8.51 10.94 612.00 62.20 26.01
19:09 8.51 10.93 609.17 60.94 25.84
19:10 8.52 10.92 607.34 60.58 25.96
19:11 8.53 10.92 606.71 59.98 26.17
19:12 8.54 10.91 603.55 58.53 26.04
19:13 8.54 10.92 606.30 59.39 26.75
19:14 8.54 10.91 602.78 58.18 26.55
19:15 8.54 10.92 607.69 59.78 26.77
19:16 8.54 10.91 604.41 59.03 26.68
19:17 8.53 10.92 608.43 59.94 26.60
19:18 8.50 10.96 617.49 64.92 26.17
19:19 8.49 10.94 606.12 61.23 25.69
19:20 8.57 10.89 600.94 57.75 26.65
19:21 8.55 10.91 603.04 58.74 27.30
19:22 8.53 10.93 605.87 59.73 26.92
19:23 8.52 10.93 604.31 59.29 26.80
19:24 8.55 10.91 602.53 58.02 26.79
19:25 8.54 10.93 608.09 60.14 26.74
19:26 8.51 10.94 608.81 61.04 26.71
19:27 8.50 10.95 609.46 62.04 26.71
19:28 8.52 10.92 603.73 59.95 26.25
19:29 8.54 10.91 602.76 59.11 26.80
19:30 8.55 10.91 603.35 58.83 26.70
19:31 8.51 10.95 607.70 60.38 27.19
19:32 8.51 10.94 604.93 59.99 27.39
19:33 8.52 10.92 602.84 58.45 26.91
19:34 8.53 10.92 602.76 57.81 26.82
19:35 8.53 10.93 606.12 59.91 26.76
19:36 8.52 10.93 606.12 59.81 26.72
19:37 8.51 10.94 607.58 59.89 26.87
19:38 8.48 10.98 616.44 63.75 26.79
19:39 8.49 10.92 601.89 58.08 26.36
19:40 8.53 10.93 606.24 59.25 26.34
19:41 8.50 10.95 609.61 61.08 26.85
19:42 8.51 10.93 603.47 58.89 26.82
19:43 8.53 10.91 603.46 58.25 26.71
19:44 8.53 10.93 605.76 59.59 27.98
19:45 8.50 10.94 607.37 59.66 26.95
19:46 8.51 10.93 605.81 58.87 27.05
19:47 8.52 10.92 608.47 59.04 26.88
19:48 8.47 10.98 614.99 63.72 26.81
19:49 8.49 10.93 604.10 59.43 26.68
19:50 8.54 10.91 602.42 57.48 27.07
19:51 8.53 10.93 607.25 59.64 27.26
19:52 8.50 10.94 608.87 60.66 26.84
19:53 8.51 10.93 605.79 59.92 26.74
19:54 8.51 10.93 606.87 59.25 26.92
19:55 8.51 10.94 608.28 60.97 26.84
19:56 8.51 10.93 604.83 58.84 27.10
19:57 8.50 10.95 611.46 61.16 27.40
19:58 8.45 10.99 612.68 64.21 26.68
19:59 8.52 10.90 598.85 56.16 26.44
20:00 8.52 10.94 606.93 58.85 27.99
20:01 8.49 10.95 609.35 60.49 27.58
20:02 8.50 10.94 606.12 59.76 27.33
20:03 8.52 10.92 604.53 58.52 28.01
Nodal Power - Davis Landfill, Layton, UT
LFG Generator
AST-2023-4493
12/5/23
28 of 63
Appendix C
29 of 63
Location
Source
Project No.
O₂ - Outlet CO₂ - Outlet CO - Outlet NOx - Outlet NMHC - Outlet
Make servomex servomex thermo thermo thermo
Model 4900 4900 48i 42i-HL 55i
S/N 100269 100269 208845 1216453124 1209052150
Operating Range 25 100 1000 100 200
Cylinder ID
Zero NA NA NA NA NA
Low NA NA NA NA EB0065892
Mid RR03686 RR03686 CC729836 CC736761 EB0065892
High RR03384 RR03384 CC729836 CC736761 EB0065892
Cylinder Certifed Values
Zero NA NA NA NA NA
Low NA NA NA NA 509
Mid 10.98 10.9 1099 99.1 509
High 24.0 23.7 1099 99.1 509
Cylinder Expiration Date
Zero NA NA NA NA NA
Low NA NA NA NA 4/18/29
Mid 9/19/31 9/19/31 5/3/29 10/28/31 4/18/29
High 10/19/29 10/19/29 5/3/29 10/28/31 4/18/29
Type of Sample Line Heated Sample Line
Parameter
Nodal Power - Davis Landfill, Layton, UT
LFG Generator
AST-2023-4493
30 of 63
Location:
Source:
Project No.:
O₂ - Outlet CO₂ - Outlet CO - Outlet NOx - Outlet NMHC - Outlet
Zero 30 30 30 30 30
Low NA NA NA NA 30
Mid 30 30 30 30 30
High NA NA NA NA 30
Average 30.0 30.0 30.0 30.0 30.0
Nodal Power - Davis Landfill, Layton, UT
LFG Generator
AST-2023-4493
Parameter
Response Times, seconds
31 of 63
Location:
Source:
Project No.:
Date:
O₂ - Outlet CO₂ - Outlet CO - Outlet NOx - Outlet NMHC - Outlet
Expected Average Concentration 8.50 10.70 650.00 50.00 30.00
Span Between
Low 8.50 10.70 650.00 50.00 45.00
High 42.50 53.50 3250.00 250.00 75.00
Desired Span 24.00 23.70 950.00 99.10 75.00
Low Range Gas
Low NA NA NA NA 18.75
High NA NA NA NA 26.25
Mid Range Gas
Low 9.60 9.48 380.00 39.64 33.75
High 14.40 14.22 570.00 59.46 41.25
High Range Gas
Low NA NA NA NA 60.00
High NA NA NA NA 67.50
Actual Concentration (% or ppm)
Zero 0.00 0.00 0.00 0.00 0.00
Low NA NA NA NA 20.00
Mid 10.98 10.90 500.00 50.00 40.00
High 24.00 23.70 950.00 99.10 60.00
Upscale Calibration Gas (CMA)Mid Mid Mid Mid Mid
Instrument Response (% or ppm)
Zero 0.00 0.03 -0.05 0.05 0.04
Low NA NA NA NA 19.83
Mid 11.01 11.18 514.71 49.53 40.21
High 23.99 23.76 950.73 99.04 60.00
Performance (% of Span or Cal. Gas Conc.)
Zero 0.00 0.13 0.01 0.05 0.00
Low NA NA NA NA -0.98
Mid 0.12 1.18 1.55 0.47 0.49
High 0.04 0.25 0.08 0.06 0.00
Status
Zero PASS PASS PASS PASS PASS
Low NA NA NA NA PASS
Mid PASS PASS PASS PASS PASS
High PASS PASS PASS PASS PASS
LFG Generator
Nodal Power - Davis Landfill, Layton, UT
Parameter
12/5/23
AST-2023-4493
32 of 63
Location:
Source:
Project No.:
O₂ - Outlet CO₂ - Outlet CO - Outlet NOx - Outlet NMHC - Outlet
Run 1 Date 12/5/23
Span Value 24.00 23.70 950.00 99.10 75.00
Initial Instrument Zero Cal Response 0.00 0.03 -0.05 0.05 0.04
Initial Instrument Upscale Cal Response 11.01 11.18 514.71 49.53 40.21
Pretest System Zero Response 0.04 0.03 -0.03 0.17 0.04
Posttest System Zero Response 0.06 0.10 -0.19 0.59 0.04
Pretest System Upscale Response 10.93 11.13 512.16 48.66 40.21
Posttest System Upscale Response 10.92 11.13 510.95 49.43 40.53
Bias (%)
Pretest Zero 0.17 0.00 0.00 0.12 NA
Posttest Zero 0.25 0.30 -0.01 0.54 NA
Pretest Span -0.33 -0.21 -0.27 -0.88 NA
Posttest Span -0.37 -0.21 -0.40 -0.10 NA
Drift (%)
Zero 0.08 0.30 -0.02 0.42 0.00
Mid -0.04 0.00 -0.13 0.78 0.43
Run 2 Date 12/5/23
Span Value 24.00 23.70 950.00 99.10 75.00
Instrument Zero Cal Response 0.00 0.03 -0.05 0.05 0.04
Instrument Upscale Cal Response 11.01 11.18 514.71 49.53 40.21
Pretest System Zero Response 0.05 0.04 -0.51 0.48 0.04
Posttest System Zero Response 0.05 0.06 -0.52 0.53 0.04
Pretest System Upscale Response 10.89 11.07 507.29 48.55 39.64
Posttest System Upscale Response 10.90 11.08 506.97 49.01 39.37
Bias (%)
Pretest Zero 0.21 0.04 -0.05 0.43 NA
Posttest Zero 0.21 0.13 -0.05 0.48 NA
Pretest Span -0.50 -0.46 -0.78 -0.99 NA
Posttest Span -0.46 -0.42 -0.81 -0.52 NA
Drift (%)
Zero 0.00 0.08 0.00 0.05 0.00
Mid 0.04 0.04 -0.03 0.46 -0.36
Run 3 Date 12/5/23
Span Value 24.00 23.70 950.00 99.10 75.00
Instrument Zero Cal Response 0.00 0.03 -0.05 0.05 0.04
Instrument Upscale Cal Response 11.01 11.18 514.71 49.53 40.21
Pretest System Zero Response 0.05 0.06 -0.52 0.53 0.04
Posttest System Zero Response 0.04 0.07 -0.53 0.56 0.04
Pretest System Upscale Response 10.90 11.08 506.97 49.01 39.37
Posttest System Upscale Response 10.89 11.07 507.24 49.38 38.97
Bias (%)
Pretest Zero 0.21 0.13 -0.05 0.48 NA
Posttest Zero 0.17 0.17 -0.05 0.51 NA
Pretest Span -0.46 -0.42 -0.81 -0.52 NA
Posttest Span -0.50 -0.46 -0.79 -0.15 NA
Drift (%)
Zero -0.04 0.04 0.00 0.03 0.00
Mid -0.04 -0.04 0.03 0.37 -0.53
Parameter
Nodal Power - Davis Landfill, Layton, UT
LFG Generator
AST-2023-4493
33 of 63
Balance
Red Ball Technical Gas Service
555 Craig Kennedy Way
Shreveport, LA 71107
800-551-8150
Accreditation #62754 PGVP Vendor ID # G12021
EPA PROTOCOL GAS CERTIFICATE OF ANALYSIS
Cylinder Number:RR03384 Certification Date:10/21/2021
Product ID Number:127907 Expiration Date:10/19/2029
Cylinder Pressure:1900 PSIG MFG Facility: - Shreveport - LA
COA #RR03384.20211012-0 Lot Number:RR03384.20211012
Customer PO. NO.:Tracking Number:103923781
Customer:Previous Certification Dates:
This calibration standard has been certified per the May 2012 EPA Traceability Protocol, Document EPA-600/R-12/531,
using procedure G2.
Do Not Use This Cylinder Below 100 psig (0.7 Megapascal).
Certified Concentration(s)
Component Concentration Uncertainty Analytical Principle Assayed On
Carbon Dioxide 23.7 %±0.18 %NDIR 10/21/2021
Oxygen 24.0 %±0.13 %MPA 10/20/2021
Nitrogen
Analytical Measurement Data Available Online.
Reference Standard(s)
Serial Number Lot Expiration Type Balance Component Concentration Uncertainty(%)NIST Reference
CC727782 CC727782.20201022 04/06/2029 GMIS N2 O2 20.03 %0.115 SRM 2659a
EB0039149 EB0039149.20190610 11/24/2027 GMIS N2 CO2 24.75 %0.274 C1579010.02
EB0078072 EB0078072.20180504 07/21/2026 GMIS N2 O2 24 %0.497 071001
EB0100923 EB0100923.20201022 05/19/2029 GMIS N2 CO2 19.47 %0.171 C1847810.03
Analytical Instrumentation SMART-CERT
Component Principle Make MPC Date
O2 MPA Thermo 10/01/2021
CO2 NDIR Thermo 10/19/2021
Serial
1162980025
1162980025
This is to certify the gases referenced have been calibrated/tested, and verified to meet the defined specifications. This
calibration/test was performed using Gases or Scales that are traceable through National Institute of Standards and
Technology (NIST) to the International System of Units (SI). The basis of compliance stated is a comparison of the
measurement parameters to the specified or required calibration/testing process. The expanded uncertainties use a coverage
factor of k=2 to approximate the 95% confidence level of the measurement, unless otherwise noted. This calibration certificate
applies only to the item described and shall not be reproduced other than in full, without written approval from Red Ball
Technical Gas Services. If not included, the uncertainty of calibrations are available upon request and were taken into account
when determining pass or fail.
Brittany Johnson
Analytical Chemist
Assay Laboratory: Red Ball TGS
Version 02-J, Revised on 2018-09-17
Model
410i
410i
34 of 63
Balance
Red Ball Technical Gas Service
555 Craig Kennedy Way
Shreveport, LA 71107
800-551-8150
Accreditation #62754 PGVP Vendor ID # G12023
EPA PROTOCOL GAS CERTIFICATE OF ANALYSIS
Cylinder Number:RR03686 Certification Date:09/21/2023
Product ID Number:125371 Expiration Date:09/19/2031
Cylinder Pressure:1900 PSIG MFG Facility: - Shreveport - LA
COA #RR03686.20230831-0 Lot Number:RR03686.20230831
Customer PO. NO.:Tracking Number:107553544
Customer:Previous Certification Dates:
This calibration standard has been certified per the May 2012 EPA Traceability Protocol, Document EPA-600/R-12/531,
using procedure G1.
Do Not Use This Cylinder Below 100 psig (0.7 Megapascal).
Certified Concentration(s)
Component Concentration Uncertainty Analytical Principle Assayed On
Carbon Dioxide 10.9 %±0.11 %FTIR 09/21/2023
Oxygen 10.98 %±0.03 %MPA 09/18/2023
Nitrogen
Analytical Measurement Data Available Online.
Reference Standard(s)
Serial Number Lot Expiration Type Balance Component Concentration Uncertainty(%)NIST Reference
CC737012 CC737012.20230228 07/09/2031 GMIS N2 O2 20 %0.112 SRM 2659a
EB0022021 EB0022021.20180323 07/15/2026 GMIS N2 CO2 14.9 %0.777 101001
Analytical Instrumentation SMART-CERT
Component Principle Make MPC Date
O2 MPA Thermo 09/18/2023
CO2 FTIR MKS 09/21/2023
Serial
1162980025
017146467
This is to certify the gases referenced have been calibrated/tested, and verified to meet the defined specifications. This
calibration/test was performed using Gases or Scales that are traceable through National Institute of Standards and
Technology (NIST) to the International System of Units (SI). The basis of compliance stated is a comparison of the
measurement parameters to the specified or required calibration/testing process. The expanded uncertainties use a coverage
factor of k=2 to approximate the 95% confidence level of the measurement, unless otherwise noted. This calibration certificate
applies only to the item described and shall not be reproduced other than in full, without written approval from Red Ball
Technical Gas Services. If not included, the uncertainty of calibrations are available upon request and were taken into account
when determining pass or fail.
Jasmine Godfrey
Analytical Chemist
Assay Laboratory: Red Ball TGS
Version 02-J, Revised on 2018-09-17
Model
410i
MKS 2031DJG2EKVS13T
35 of 63
Balance
Red Ball Technical Gas Service
555 Craig Kennedy Way
Shreveport, LA 71107
800-551-8150
Accreditation #62754 PGVP Vendor ID # G12023
EPA PROTOCOL GAS CERTIFICATE OF ANALYSIS
Cylinder Number:CC736761 Certification Date:10/30/2023
Product ID Number:123812 Expiration Date:10/28/2031
Cylinder Pressure:1900 PSIG MFG Facility: - Shreveport - LA
COA #CC736761.20231011-0 Lot Number:CC736761.20231011
Customer PO. NO.:Tracking Number:101358901
Customer:Previous Certification Dates:
This calibration standard has been certified per the May 2012 EPA Traceability Protocol, Document EPA-600/R-12/531,
using procedure G1.
Do Not Use This Cylinder Below 100 psig (0.7 Megapascal).
Certified Concentration(s)
Component Concentration Uncertainty Analytical Principle Assayed On
Nitric Oxide 99.1 PPM ±0.8 PPM Chemiluminescence 10/16/2023, 10/30/2023
Total Oxides of Nitrogen 99.5 PPM
Nitrogen
Analytical Measurement Data Available Online.
Reference Standard(s)
Serial Number Lot Expiration Type Balance Component Concentration Uncertainty(%)NIST Reference
ALM066143 ALM066143.20230117 08/28/2031 GMIS N2 NO 280 PPM 0.563 SRM 1687b
Analytical Instrumentation SMART-CERT
Component Principle Make MPC Date
NO Chemiluminescence Thermo 10/02/2023
Serial
1152610017
This is to certify the gases referenced have been calibrated/tested, and verified to meet the defined specifications. This
calibration/test was performed using Gases or Scales that are traceable through National Institute of Standards and
Technology (NIST) to the International System of Units (SI). The basis of compliance stated is a comparison of the
measurement parameters to the specified or required calibration/testing process. The expanded uncertainties use a coverage
factor of k=2 to approximate the 95% confidence level of the measurement, unless otherwise noted. This calibration certificate
applies only to the item described and shall not be reproduced other than in full, without written approval from Red Ball
Technical Gas Services. If not included, the uncertainty of calibrations are available upon request and were taken into account
when determining pass or fail.
Aaron Varelas
Analytical Chemist
Assay Laboratory: Red Ball TGS
Version 02-J, Revised on 2018-09-17
Model
42i-HL
36 of 63
Balance
Red Ball Technical Gas Service
555 Craig Kennedy Way
Shreveport, LA 71107
800-551-8150
Accreditation #62754 PGVP Vendor ID # G12021
EPA PROTOCOL GAS CERTIFICATE OF ANALYSIS
Cylinder Number:CC729836 Certification Date:05/05/2021
Product ID Number:122237 Expiration Date:05/03/2029
Cylinder Pressure:1900 PSIG MFG Facility: - Shreveport - LA
COA #CC729836.20210429-0 Lot Number:CC729836.20210429
Customer PO. NO.:Tracking Number:098858653
Customer:Previous Certification Dates:
This calibration standard has been certified per the May 2012 EPA Traceability Protocol, Document EPA-600/R-12/531,
using procedure G1.
Do Not Use This Cylinder Below 100 psig (0.7 Megapascal).
Certified Concentration(s)
Component Concentration Uncertainty Analytical Principle Assayed On
Carbon Monoxide 1099 PPM ±9 PPM FTIR 05/05/2021
Nitrogen
Analytical Measurement Data Available Online.
Reference Standard(s)
Serial Number Lot Expiration Type Balance Component Concentration Uncertainty(%)NIST Reference
CC734577 CC734577.20200508 03/09/2029 GMIS N2 CO 965 PPM 0.36 SRM 1681b
EB0104712 EB0104712.20181130 03/01/2029 GMIS N2 CO 1528 PPM 0.404 SRM 2638a
Analytical Instrumentation SMART-CERT
Component Principle Make MPC Date
CO FTIR MKS 04/15/2021
Serial
017146467
This is to certify the gases referenced have been calibrated/tested, and verified to meet the defined specifications. This
calibration/test was performed using Gases or Scales that are traceable through National Institute of Standards and
Technology (NIST) to the International System of Units (SI). The basis of compliance stated is a comparison of the
measurement parameters to the specified or required calibration/testing process. The expanded uncertainties use a coverage
factor of k=2 to approximate the 95% confidence level of the measurement, unless otherwise noted. This calibration certificate
applies only to the item described and shall not be reproduced other than in full, without written approval from Red Ball
Technical Gas Services. If not included, the uncertainty of calibrations are available upon request and were taken into account
when determining pass or fail.
Brandon Theus
Laboratory Supervisor
Assay Laboratory: Red Ball TGS
Version 02-J, Revised on 2018-09-17
Model
MKS 2031DJG2EKVS13T
37 of 63
Balance
Red Ball Technical Gas Service
555 Craig Kennedy Way
Shreveport, LA 71107
800-551-8150
Accreditation #62754 PGVP Vendor ID # G12021
EPA PROTOCOL GAS CERTIFICATE OF ANALYSIS
Cylinder Number:EB0065892 Certification Date:04/20/2021
Product ID Number:124238 Expiration Date:04/18/2029
Cylinder Pressure:1900 PSIG MFG Facility: - Shreveport - LA
COA #EB0065892.20210405-0 Lot Number:EB0065892.20210405
Customer PO. NO.:Tracking Number:083031845
Customer:Previous Certification Dates:
This calibration standard has been certified per the May 2012 EPA Traceability Protocol, Document EPA-600/R-12/531,
using procedure G1.
Do Not Use This Cylinder Below 100 psig (0.7 Megapascal).
Certified Concentration(s)
Component Concentration Uncertainty Analytical Principle Assayed On
Propane 509 PPM ±4 PPM FTIR 04/20/2021
Nitrogen
Analytical Measurement Data Available Online.
Reference Standard(s)
Serial Number Lot Expiration Type Balance Component Concentration Uncertainty(%)NIST Reference
EB0057206 EB0057206.20160107 05/17/2024 GMIS N2 C3H8 750 PPM 0.634 5647A
Analytical Instrumentation SMART-CERT
Component Principle Make MPC Date
C3H8 FTIR MKS 03/24/2021
Serial
017146467
This is to certify the gases referenced have been calibrated/tested, and verified to meet the defined specifications. This
calibration/test was performed using Gases or Scales that are traceable through National Institute of Standards and
Technology (NIST) to the International System of Units (SI). The basis of compliance stated is a comparison of the
measurement parameters to the specified or required calibration/testing process. The expanded uncertainties use a coverage
factor of k=2 to approximate the 95% confidence level of the measurement, unless otherwise noted. This calibration certificate
applies only to the item described and shall not be reproduced other than in full, without written approval from Red Ball
Technical Gas Services. If not included, the uncertainty of calibrations are available upon request and were taken into account
when determining pass or fail.
Anthony Cyr
Assistant Operations Manager
Assay Laboratory: Red Ball TGS
Version 02-J, Revised on 2018-09-17
Model
MKS 2031DJG2EKVS13T
38 of 63
Location:
Project No.:
Analyzer Make thermo Pre-Test Date Time
Analyzer Model 42i-HL Pre-Test Concentration, ppm
Serial Number 1216453124 Pre-Test Efficiency, %-
Cylinder ID Number EB0033140 Post-Test Date 12/8/23 Time 15:06
Cylinder Exp. Date 9/14/26 Post-Test Concentration, ppm 45.75
Cylinder Concentration, ppm 50.0 Post-Test Efficiency, %92
*Required Efficiency is ≥ 90 %.
Nodal Power - Davis Landfill, Layton, UT
AST-2023-4493
NO2 Converter Check - Outlet
39 of 63
Balance
Red Ball Technical Gas Service
555 Craig Kennedy Way
Shreveport, LA 71107
800-551-8150
Accreditation #62754 PGVP Vendor ID # G12023
EPA PROTOCOL GAS CERTIFICATE OF ANALYSIS
Cylinder Number:EB0033140 Certification Date:09/15/2023
Product ID Number:124731 Expiration Date:09/14/2026
Cylinder Pressure:1900 PSIG MFG Facility: - Shreveport - LA
COA #EB0033140.20230824-0 Lot Number:EB0033140.20230824
Customer PO. NO.:Tracking Number:056760011
Customer:Previous Certification Dates:
This calibration standard has been certified per the May 2012 EPA Traceability Protocol, Document EPA-600/R-12/531,
using procedure G1.
Do Not Use This Cylinder Below 100 psig (0.7 Megapascal).
Certified Concentration(s)
Component Concentration Uncertainty Analytical Principle Assayed On
Nitrogen Dioxide 50.0 PPM ±0.5 PPM FTIR 09/01/2023, 09/15/2023
Air
Analytical Measurement Data Available Online.
Reference Standard(s)
Serial Number Lot Expiration Type Balance Component Concentration Uncertainty(%)NIST Reference
EB0057301 EB0057301.20201020 05/04/2026 GMIS AIR NO2 96.4 PPM 1.028 C2190301.02
Analytical Instrumentation SMART-CERT
Component Principle Make MPC Date
NO2 FTIR MKS 08/31/2023
NO2 FTIR MKS 09/15/2023
Serial
017146467
017146467
This is to certify the gases referenced have been calibrated/tested, and verified to meet the defined specifications. This
calibration/test was performed using Gases or Scales that are traceable through National Institute of Standards and
Technology (NIST) to the International System of Units (SI). The basis of compliance stated is a comparison of the
measurement parameters to the specified or required calibration/testing process. The expanded uncertainties use a coverage
factor of k=2 to approximate the 95% confidence level of the measurement, unless otherwise noted. This calibration certificate
applies only to the item described and shall not be reproduced other than in full, without written approval from Red Ball
Technical Gas Services. If not included, the uncertainty of calibrations are available upon request and were taken into account
when determining pass or fail.
Jasmine Godfrey
Analytical Chemist
Assay Laboratory: Red Ball TGS
Version 02-J, Revised on 2018-09-17
Model
MKS 2031DJG2EKVS13T
MKS 2031DJG2EKVS13T
40 of 63
Location:
Source:
Project No.:
Date
(%) lpm (%)(%)(%)(%)(%)(%)(%)( ± 2 %)
10L/10L 80.0 5.0 19.2 19.2 19.32 19.31 19.28 19.30 0.10 0.5%
10L/10L 50.0 5.0 12.0 12.0 12.11 12.08 12.08 12.09 0.09 0.7%
10L/1L 20.0 4.0 4.8 4.8 4.82 4.73 4.73 4.76 -0.04 -0.8%
10L/1L 10.0 4.0 2.4 2.4 2.37 2.37 2.38 2.37 -0.03 -1.1%
(%)( ± 2 %)( ± 2 %)( ± 2 %)
19.30 0.1%0.0% -0.1%
12.09 0.2% -0.1% -0.1%
4.76 1.3% -0.6% -0.6%
2.37 -0.1% -0.1% 0.3%
Mid-Level Supply Gas Calibration Direct to Analyzer
Calibration Injection 1 Injection 2 Injection 3 Average
Gas Analyzer Analyzer Analyzer Analyzer
Concentration Concentration Concentration Concentration Concentration
(%) (%) (%) (%) (%) (%)( ± 2 %)
10.98 10.98 11.00 11.00 10.99 0.01 0.1%
Analyzer Make:
Nodal Power - Davis Landfill, Layton, UT
LFG Generator
AST-2023-4493
12/8/23
servomex
Analyzer Model:
Analyzer SN:
Environics ID:
Component/Balance Gas: O2/N2
4900
100269
8027
Cylinder Gas ID (Dilution): RR03384
Cylinder Gas Concentration (Dilution), %: 24.0
*Not all AST Environics Units have 2-10L Mass Flow Controllers. For these units the 90% @ 7lpm and 80% @ 7lpm injections will not be conducted.
Cylinder Gas ID (Mid-Level): RR03686
Cylinder Gas Concentration (Mid-Level), %: 10.98
Target Mass Flow
Contollers
Target
Dilution
Target Flow
Rate
Target
Concentration
Actual
Concentration
Injection 1
Analyzer
Concentration
Injection 2
Analyzer
Concentration
Injection 3
Analyzer
Concentration
Average
Analyzer
Concentration Difference Average Error
Average
Analyzer
Concentration
Injection 1
Error
Injection 2
Error
Injection 3
Error
Difference
Average
Error
41 of 63
Issuing Department
Dilution System Make:
Dilution System Model:
Dilution System S/N:
Calibration Equipment Make:
Calibration Equipment Model:
Calibration Equipment S/N:
Flow Cell S/N:
Flow Cell S/N:
Calibration Gas:
Barometric Pressure, mmHg:
Ambient Temperature, °F:
Mass Flow Controller ID
Size, ccm:
Make:
Model:
S/N:
Set Flow True Flow Difference Set Flow True Flow Difference Set Flow True Flow Difference
cc/min cc/min cc/min cc/min cc/min cc/min
5%500 508 1.6%500 504 0.8%50 50 0.6%
10%1,000 1,024 2.4%1,000 1,020 2.0%100 101 0.7%
20%2,000 2,057 2.8%2,000 2,048 2.4%200 203 1.6%
30%3,000 3,079 2.6%3,000 3,073 2.4%300 305 1.8%
40%4,000 4,104 2.6%4,000 4,094 2.4%400 407 1.6%
50%5,000 5,113 2.3%5,000 5,107 2.1%500 507 1.4%
60%6,000 6,129 2.1%6,000 6,120 2.0%600 609 1.5%
70%7,000 7,136 1.9%7,000 7,134 1.9%700 711 1.6%
80%8,000 8,145 1.8%8,000 8,152 1.9%800 813 1.7%
90%9,000 9,162 1.8%9,000 9,171 1.9%900 917 1.9%
100%10,000 10,193 1.9%10,000 10,189 1.9%1,000 1,022 2.2%
Date:
Document ID
Revision
Effective Date
Page
620.009
22.0
12/16/22
1 of 1
Mass Flow Controller Calibration
Tech Services
8027
Alicat Scientific
M-10SLPD/5MM-D/5M, M-1SLPM-D/5M
127208/127206
127208
127206
Nitrogen
Calibration Performed By:RJL
3/31/2023
0455242007
Note: The mass flow controller's calibration values are used by the dilution system's operating software to improve accuracy. These calibrations are not necessarily
indicative of the systems overall performance. Performance is verified by conducting a Method 205 prior to each field use.
0455242008 0455238004
Environics
EFC 202
10,000
# 2 # 3
Environics
1,000
Environics
EFC 202 EFC 202
#1
10,000
Environics
25.76
66
4040
42 of 63
QA Data
Location
Source
Project No.
Parameter(s)
Date Pitot ID
Evidence of
damage?
Evidence of
mis-alignment?
Calibration or
Repair required?
12/5/23 P-103-3 no no no
Date Probe or
Thermocouple ID
Reference
Temp. (°F)
Indicated
Temp. (°F)Difference Criteria
12/5/23 P-103-3 51.0 51.0 0.0%
Date 12/04/23 12/05/23
Balance ID:SCALE-24 SCLAE-24
Test Weight ID:SCL-1 KG-3 SLC-1 KG-3
Certified Weight (g):1000.0 1000.0
Measured Weight (g):1000.0 1000.0
Weight Difference (g):0.0 0.0 -- -- --
Date Barometric
Pressure
Evidence of
damage?
Reading
Verified
Calibration or
Repair required?
12/5/23 Weather Station NA NA NA
12/4/23 M5-26
Reagent Lot#Field Prep
performed Field Lot Date By
DI 231106 No N/A 12/5/2023 Fisher
Nodal Power - Davis Landfill, Layton, UT
LFG Generator
AST-2023-4493
BWS
± 1.5 % (absolute)
Field Balance Check
Pass
Weather Station Location
Salt Lake City, UT
Date Meter Box ID Positive Pressure Leak Check
43 of 63
Document ID 620.004
Revision 23.0
Effective Date 1/25/23
Issuing Department Page 1 of 1
Console ID:
Meter S/N:16621844
Critical Orifice S/N:
(PbI)
(PbF)
(Pb)
(Y)1330-31 1330-31 1330-25 1330-25 1330-19 1330-19
(K')0.8429 0.8429 0.6728 0.673 0.5186 0.519
(VP)14.0 14.0 15.0 15.0 17.0 17.0
Initial DGM Volume, ft3 (VmI)943.576 954.771 968.638 977.523 992.375 999.388
Final DGM Volume, ft3 (VmF)954.771 965.986 977.523 986.413 999.338 1,006.383
Total DGM Volume, ft3 (Vm)11.195 11.215 8.885 8.890 6.963 6.995
Ambient Temperature, °F (Ta)67 67 66 67 68 68
Initial DGM Temperature, °F (TmI)66 66 67 67 68 68
Final DGM Temperature, °F (TmF)66 67 67 67 68 68
Average DGM Temperature, °F ( Tm)66 67 67 67 68 68
Elapsed Time (Θ)10.00 10.00 10.00 10.00 10.00 10.00
Meter Orifice Pressure, in. WC (ΔH)3.50 3.50 2.20 2.20 1.30 1.30
Standard Meter volume, ft3 (Vmstd)9.7342 9.7423 7.6825 7.6868 5.9938 6.0214
Standard Critical Orifice Volume, ft3 (Vcr)9.4226 9.4226 7.5282 7.5211 5.7918 5.7918
Meter Correction Factor (Y)0.968 0.967 0.980 0.978 0.966 0.962
Tolerance --0.002 0.003 0.010 0.008 0.004 0.008
Orifice Calibration Value (ΔH @)1.928 1.926 1.888 1.892 1.876 1.876
Tolerance --0.030 0.028 0.010 0.006 0.021 0.021
Orifice Cal Check --
Meter Correction Factor (Y)
Orifice Calibration Value (ΔH @)
Accuracy Difference
oF oR oF oR %oF
0 460 0 460 0.0 0
68 528 67 527 0.2 1
100 560 100 560 0.0 0
223 683 223 683 0.0 0
248 708 247 707 0.1 1
273 733 272 732 0.1 1
300 760 298 758 0.3 2
400 860 399 859 0.1 1
500 960 498 958 0.2 2
600 1,060 598 1,058 0.2 2
700 1,160 699 1,159 0.1 1
800 1,260 799 1,259 0.1 1
900 1,360 899 1,359 0.1 1
1,000 1,460 1,000 1,460 0.0 0
1,100 1,560 1,101 1,561 -0.1 1
1,200 1,660 1,201 1,661 -0.1 1
Calibration Date:
Stacey CunninghamReviewed By:
RYAN LYONSCalibration By:
11/3/2023
Equipment Detail - Thermocouple Sensor
Reference Temp.Display Temp.
OMEGA
T-197207
Personnel
Reference Calibrator Make:
Reference Calibrator Model:
Reference Calibrator S/N:
Calibration Detail
K' Factor, ft3·R1/2 / in. WC·min
CL23A
Vacuum Pressure, in. Hg
Initial Barometric Pressure, in. Hg
Final Barometric Pressure, in. Hg
Average Barometric Pressure, in. Hg
Critifcal Orifice ID
Calibration Detail
M5-26
1330
Positive Pressure Leak Check
Equipment Detail - Dry Gas Meter
0.970
1.898
Yes
1.18 1.57 1.54
DGM Calibration-Orifices
Tech Services
25.65
25.66
25.66
44 of 63
Appendix D
45 of 63
Nodal Power - Davis Landfill
Run 1 Process Data
compdnc_ndx Mon_Gen01_Totat_stamp O2EU DischargeTempEU DischargeFlowEU SiteKWHEU DischargePresEU G1KW CH4EU
388475 6132.59 12/5/23 12:12 0 98.537 534 6807129 3.00889 1487 49.5214
388474 6132.58 12/5/23 12:11 0 101.393 535 6807103 2.99763 1489 49.5404
388473 6132.56 12/5/23 12:10 0 99.9515 536 6807078 2.97341 1486 49.5995
388472 6132.54 12/5/23 12:09 0 97.7713 540 6807052 3.02033 1488 49.4985
388471 6132.53 12/5/23 12:08 0 95.2273 538 6807027 2.98047 1486 49.4298
388470 6132.51 12/5/23 12:07 0 92.7553 535 6807001 2.9799 1487 49.4432
388469 6132.49 12/5/23 12:06 0 91.1485 534 6806982 3.00164 1489 49.6167
388468 6132.48 12/5/23 12:05 0 91.7803 538 6806957 2.98981 1489 49.5042
388467 6132.46 12/5/23 12:04 0 95.7045 538 6806931 2.97551 1491 49.4355
388466 6132.44 12/5/23 12:03 0 100.37 530 6806906 2.98695 1484 49.4947
388465 6132.43 12/5/23 12:02 0 100.848 534 6806881 2.97513 1484 49.3211
388464 6132.41 12/5/23 12:01 0 98.9696 536 6806855 2.97665 1486 49.3974
388463 6132.39 12/5/23 12:00 0 96.8032 536 6806830 2.99458 1486 49.3021
388462 6132.38 12/5/23 11:59 0 94.3827 532 6806804 3.01308 1488 49.3459
388461 6132.36 12/5/23 11:58 0 92.0343 533 6806779 2.97227 1485 49.2677
388460 6132.34 12/5/23 11:57 0 90.8979 535 6806760 3.01213 1484 49.2525
388459 6132.33 12/5/23 11:56 0 92.2884 537 6806735 2.97742 1486 49.4108
388458 6132.31 12/5/23 11:55 0 96.6555 534 6806709 3.00393 1486 49.2086
388457 6132.29 12/5/23 11:54 0 100.947 530 6806684 3.0024 1485 49.3059
388456 6132.28 12/5/23 11:53 0 100.545 535 6806658 2.99802 1488 49.4279
388455 6132.26 12/5/23 11:52 0 98.5061 537 6806633 3.03483 1487 49.3955
388454 6132.24 12/5/23 11:51 0 96.0375 537 6806608 3.02453 1490 49.4088
388453 6132.23 12/5/23 11:50 0 93.4523 534 6806582 2.96407 1490 49.5004
388452 6132.21 12/5/23 11:49 0 91.4575 534 6806563 3.0148 1485 49.5004
388451 6132.19 12/5/23 11:48 0 91.6086 537 6806538 2.9818 1486 49.4832
388450 6132.18 12/5/23 11:47 0 95.011 533 6806512 3.00965 1483 49.5805
388449 6132.16 12/5/23 11:46 0 99.9515 531 6806487 2.99249 1485 49.6854
388448 6132.14 12/5/23 11:45 0 101.074 535 6806461 2.97932 1488 49.6815
388447 6132.13 12/5/23 11:44 0 99.2786 537 6806436 2.97456 1489 49.5843
388446 6132.11 12/5/23 11:43 0 96.8993 537 6806411 2.97017 1488 49.5748
388445 6132.09 12/5/23 11:42 0 94.3003 537 6806385 3.02281 1488 49.3345
388444 6132.08 12/5/23 11:41 0 92.0618 534 6806360 2.98104 1490 49.5843
388443 6132.06 12/5/23 11:40 0 91.1623 534 6806341 2.9984 1492 49.5233
388442 6132.04 12/5/23 11:39 0 93.2635 539 6806315 3.01423 1488 49.4546
388441 6132.03 12/5/23 11:38 0 98.2039 532 6806290 2.97417 1488 49.4336
388440 6132.01 12/5/23 11:37 0 101.26 537 6806264 3.00641 1489 49.4851
388439 6131.99 12/5/23 11:36 0 100.027 535 6806239 2.99344 1491 49.529
388438 6131.98 12/5/23 11:35 0 97.9979 536 6806213 2.98638 1490 49.5233
388437 6131.96 12/5/23 11:34 0 95.6049 538 6806188 2.99325 1489 49.5023
388436 6131.94 12/5/23 11:33 0 93.1467 536 6806162 3.00298 1487 49.447
388435 6131.93 12/5/23 11:32 0 91.2653 534 6806137 3.04322 1487 49.3955
388434 6131.91 12/5/23 11:31 0 91.2138 537 6806112 3.00698 1488 49.4737
388433 6131.89 12/5/23 11:30 0 94.314 540 6806092 3.00755 1490 49.2487
388432 6131.88 12/5/23 11:29 0 99.2889 527 6806067 2.9902 1487 49.4527
388431 6131.86 12/5/23 11:28 0 101.095 533 6806042 3.00202 1485 49.447
388430 6131.84 12/5/23 11:27 0 99.4949 535 6806016 2.97379 1484 49.5214
388429 6131.83 12/5/23 11:26 0 97.5379 539 6805991 3.02338 1487 49.2792
388428 6131.81 12/5/23 11:25 0 95.2582 537 6805965 3.02167 1487 49.3459
388427 6131.79 12/5/23 11:24 0 92.8549 535 6805940 3.0333 1488 49.3402
388426 6131.78 12/5/23 11:23 0 91.2069 537 6805915 2.98428 1488 49.283
388425 6131.76 12/5/23 11:22 0 91.6807 536 6805895 3.02491 1490 49.3612
388424 6131.74 12/5/23 11:21 0 95.368 533 6805870 3.03006 1489 49.2582
388423 6131.72 12/5/23 11:20 0 100.127 531 6805845 2.98257 1486 49.304
388422 6131.71 12/5/23 11:19 0 100.738 536 6805819 2.98905 1487 49.3593
388421 6131.69 12/5/23 11:18 0 99.0897 533 6805794 2.98314 1486 49.4088
388420 6131.68 12/5/23 11:17 0 97.0023 537 6805768 3.0354 1486 49.3726
388419 6131.66 12/5/23 11:16 0 94.6093 537 6805743 2.96845 1485 49.3555
388418 6131.64 12/5/23 11:15 0 92.2918 535 6805718 3.02262 1489 49.4985
388417 6131.62 12/5/23 11:14 0 90.9529 534 6805692 2.99649 1490 49.4375
388416 6131.61 12/5/23 11:13 0 91.9966 536 6805673 2.99954 1490 49.4203
388415 6131.59 12/5/23 11:12 0 96.2573 538 6805648 2.99077 1488 49.3555
388414 6131.58 12/5/23 11:11 0 100.573 531 6805622 3.03063 1488 49.3078
95.89 535 6806350 3.00 1487 49.43
46 of 63
compdnc_nMon_Gen0 t_stamp O2EU DischargeT DischargeF SiteKWHEUDischargePG1KW CH4EU
388857 6136.08 12/5/23 18:34 0 93.6205 539 6810927 3.13573 1500 50.0839
388856 6136.06 12/5/23 18:33 0 98.8528 537 6810901 3.12104 1499 50.0973
388855 6136.05 12/5/23 18:32 0 101.328 537 6810875 3.11551 1500 50.0801
388854 6136.03 12/5/23 18:31 0 99.8176 540 6810850 3.10349 1499 50.0877
388853 6136.02 12/5/23 18:30 0 97.7027 535 6810824 3.09739 1498 50.1793
388852 6136 12/5/23 18:29 0 95.1449 541 6810805 3.1281 1498 49.9847
388851 6135.98 12/5/23 18:28 0 92.7038 540 6810779 3.10025 1500 49.9447
388850 6135.97 12/5/23 18:27 0 91.1417 539 6810753 3.11685 1500 49.9657
388849 6135.95 12/5/23 18:26 0 92.2472 541 6810727 3.11685 1500 49.9695
388848 6135.93 12/5/23 18:25 0 96.7791 539 6810702 3.11284 1499 49.796
388847 6135.91 12/5/23 18:24 0 101.012 537 6810676 3.10712 1498 49.9657
388846 6135.9 12/5/23 18:23 0 100.645 543 6810650 3.09243 1501 49.7349
388845 6135.88 12/5/23 18:22 0 98.5404 537 6810625 3.09052 1499 49.9733
388844 6135.86 12/5/23 18:21 0 96.0307 538 6810605 3.12848 1499 49.9047
388843 6135.85 12/5/23 18:20 0 93.4008 540 6810580 3.09319 1498 49.8265
388842 6135.83 12/5/23 18:19 0 91.5468 541 6810554 3.07965 1501 50.0286
388841 6135.81 12/5/23 18:18 0 91.9657 539 6810528 3.093 1500 49.8246
388840 6135.8 12/5/23 18:17 0 95.8075 536 6810502 3.08347 1502 49.9561
388839 6135.78 12/5/23 18:16 0 100.552 536 6810477 3.08537 1502 49.9447
388838 6135.77 12/5/23 18:15 0 101.016 539 6810451 3.11837 1499 49.8455
388837 6135.75 12/5/23 18:14 0 98.9867 540 6810425 3.08633 1502 49.9237
388836 6135.73 12/5/23 18:13 0 96.5319 541 6810406 3.11303 1501 50.0439
388835 6135.71 12/5/23 18:12 0 93.8849 542 6810380 3.06573 1499 49.9104
388834 6135.7 12/5/23 18:11 0 91.6704 540 6810354 3.07221 1502 49.9027
388833 6135.68 12/5/23 18:10 0 91.1691 538 6810328 3.09472 1501 50.0896
388832 6135.67 12/5/23 18:09 0 94.1046 541 6810303 3.07603 1501 49.9752
388831 6135.65 12/5/23 18:08 0 99.3129 536 6810277 3.0972 1505 49.9371
388830 6135.63 12/5/23 18:07 0 101.479 539 6810251 3.10903 1504 49.9867
388829 6135.62 12/5/23 18:06 0 99.7008 544 6810225 3.12066 1504 49.9981
388828 6135.6 12/5/23 18:05 0 97.222 539 6810206 3.07355 1504 50.0343
388827 6135.58 12/5/23 18:04 0 94.5475 540 6810180 3.07622 1502 50.0095
388826 6135.57 12/5/23 18:03 0 92.0309 541 6810154 3.07469 1503 49.9275
388825 6135.55 12/5/23 18:02 0 91.049 540 6810128 3.1075 1502 50.0095
388824 6135.53 12/5/23 18:01 0 93.3184 538 6810103 3.07259 1501 50.0229
388823 6135.52 12/5/23 18:00 0 98.458 537 6810077 3.08995 1502 50.0706
388822 6135.5 12/5/23 17:59 0 101.696 539 6810051 3.08194 1504 49.9447
388821 6135.48 12/5/23 17:58 0 100.137 539 6810025 3.12276 1503 49.7121
388820 6135.46 12/5/23 17:57 0 97.6271 541 6810006 3.06668 1500 49.7578
388819 6135.45 12/5/23 17:56 0 94.7054 538 6809980 3.12543 1502 49.6472
388818 6135.43 12/5/23 17:55 0 92.1099 538 6809955 3.11379 1503 49.7635
388817 6135.41 12/5/23 17:54 0 91.2 540 6809929 3.10101 1503 49.7502
388816 6135.4 12/5/23 17:53 0 93.8162 542 6809903 3.09415 1504 49.5748
388815 6135.38 12/5/23 17:52 0 99.0691 539 6809878 3.09606 1502 49.5767
388814 6135.36 12/5/23 17:51 0 102.032 538 6809852 3.10616 1500 49.5843
388813 6135.35 12/5/23 17:50 0 100.137 539 6809826 3.12696 1502 49.6262
388812 6135.33 12/5/23 17:49 0 97.246 542 6809800 3.12181 1502 49.6358
388811 6135.32 12/5/23 17:48 0 94.1183 541 6809781 3.11799 1504 49.6281
388810 6135.3 12/5/23 17:47 0 91.6979 540 6809755 3.1199 1505 49.6529
388809 6135.28 12/5/23 17:46 0 91.6532 543 6809729 3.10922 1501 49.7216
388808 6135.26 12/5/23 17:45 0 95.423 537 6809704 3.089 1503 49.7082
388807 6135.25 12/5/23 17:44 0 100.806 537 6809678 3.09243 1503 49.7349
388806 6135.23 12/5/23 17:43 0 102.303 542 6809652 3.08576 1503 49.714
388805 6135.21 12/5/23 17:42 0 99.4502 539 6809626 3.10636 1502 49.6911
388804 6135.2 12/5/23 17:41 0 96.0238 538 6809601 3.089 1503 49.7407
388803 6135.18 12/5/23 17:40 0 92.8137 539 6809581 3.10044 1502 49.7254
388802 6135.16 12/5/23 17:39 0 91.5983 544 6809556 3.09682 1503 49.6949
388801 6135.15 12/5/23 17:38 0 94.2969 543 6809530 3.08633 1503 49.7979
388800 6135.13 12/5/23 17:37 0 99.8244 538 6809504 3.12066 1506 49.632
388799 6135.12 12/5/23 17:36 0 103.447 538 6809478 3.09339 1502 49.8455
388798 6135.1 12/5/23 17:35 0 101.174 539 6809452 3.08518 1504 49.6281
96.46 539 6810190 3.10 1502 49.86
47 of 63
compdnc_nMon_Gen0 t_stamp O2EU DischargeT DischargeF SiteKWHEUDischargeP G1KW CH4EU
388947 6137.58 12/5/23 20:04 0 97.3525 541 6813168 3.08251 1498 49.5976
388946 6137.57 12/5/23 20:03 0 95.5637 539 6813143 3.07698 1497 50.0706
388945 6137.55 12/5/23 20:02 0 93.5518 539 6813118 3.08385 1496 49.9027
388944 6137.53 12/5/23 20:01 0 91.6807 537 6813092 3.10941 1496 50.0572
388943 6137.52 12/5/23 20:00 0 90.9357 539 6813067 3.10235 1496 49.7635
388942 6137.5 12/5/23 19:59 0 92.9167 541 6813042 3.08194 1496 50.0286
388941 6137.48 12/5/23 19:58 0 97.8022 533 6813016 3.0724 1498 49.958
388940 6137.47 12/5/23 19:57 0 100.727 535 6812991 3.09949 1497 49.8627
388939 6137.45 12/5/23 19:56 0 99.8759 539 6812966 3.10788 1497 49.8951
388938 6137.43 12/5/23 19:55 0 98.5747 538 6812940 3.11646 1495 49.9847
388937 6137.42 12/5/23 19:54 0 96.9886 539 6812915 3.07832 1497 50.0057
388936 6137.4 12/5/23 19:53 0 95.1311 538 6812896 3.08709 1497 49.9008
388935 6137.38 12/5/23 19:52 0 93.0952 539 6812871 3.12161 1499 50.0114
388934 6137.37 12/5/23 19:51 0 91.4919 536 6812846 3.12619 1499 50.0324
388933 6137.35 12/5/23 19:50 0 91.5193 541 6812821 3.10082 1498 50.0496
388932 6137.33 12/5/23 19:49 0 94.6162 537 6812796 3.0869 1497 50.0458
388931 6137.32 12/5/23 19:48 0 99.3713 536 6812771 3.12524 1499 49.9847
388930 6137.3 12/5/23 19:47 0 100.487 538 6812746 3.122 1498 49.9352
388929 6137.28 12/5/23 19:46 0 99.4708 540 6812720 3.11303 1498 49.8894
388928 6137.27 12/5/23 19:45 0 98.2623 541 6812695 3.07851 1498 49.7273
388927 6137.25 12/5/23 19:44 0 96.8135 539 6812670 3.08328 1496 50.0095
388926 6137.23 12/5/23 19:43 0 95.0076 541 6812645 3.09567 1497 50.0534
388925 6137.22 12/5/23 19:42 0 93.0025 538 6812620 3.10559 1497 50.2231
388924 6137.2 12/5/23 19:41 0 91.3236 538 6812595 3.08232 1498 49.9981
388923 6137.18 12/5/23 19:40 0 91.0764 538 6812570 3.11398 1498 50.0801
388922 6137.17 12/5/23 19:39 0 93.7956 539 6812545 3.10636 1498 49.8856
388921 6137.15 12/5/23 19:38 0 98.7155 537 6812520 3.12028 1496 49.939
388920 6137.13 12/5/23 19:37 0 100.648 538 6812495 3.11494 1497 50.0324
388919 6137.11 12/5/23 19:36 0 99.6905 539 6812470 3.12104 1497 50.0782
388918 6137.1 12/5/23 19:35 0 98.4752 539 6812445 3.089 1497 49.7788
388917 6137.08 12/5/23 19:34 0 97.016 540 6812420 3.10864 1498 49.7979
388916 6137.06 12/5/23 19:33 0 95.2651 540 6812395 3.11036 1499 49.8703
388915 6137.05 12/5/23 19:32 0 93.2943 537 6812370 3.11933 1498 49.7674
388914 6137.03 12/5/23 19:31 0 91.6155 542 6812345 3.07126 1497 49.8913
388913 6137.01 12/5/23 19:30 0 91.2893 539 6812320 3.08175 1498 49.8303
388912 6137 12/5/23 19:29 0 93.8231 540 6812295 3.10521 1498 50.0229
388911 6136.98 12/5/23 19:28 0 98.7224 538 6812269 3.08385 1498 49.8379
388910 6136.97 12/5/23 19:27 0 100.563 536 6812244 3.11303 1499 49.979
388909 6136.95 12/5/23 19:26 0 99.6734 540 6812218 3.07794 1499 49.9352
388908 6136.93 12/5/23 19:25 0 98.5061 540 6812199 3.1157 1501 49.7388
388907 6136.91 12/5/23 19:24 0 97.0366 542 6812173 3.10521 1500 49.7483
388906 6136.9 12/5/23 19:23 0 95.1586 539 6812147 3.10807 1500 49.9237
388905 6136.88 12/5/23 19:22 0 93.0574 535 6812122 3.09148 1496 49.897
388904 6136.87 12/5/23 19:21 0 91.3099 538 6812096 3.08919 1497 50.0381
388903 6136.85 12/5/23 19:20 0 91.1588 540 6812070 3.12181 1499 49.9638
388902 6136.83 12/5/23 19:19 0 94.1286 538 6812045 3.10464 1498 50.061
388901 6136.82 12/5/23 19:18 0 99.0863 534 6812025 3.09796 1498 50.2136
388900 6136.8 12/5/23 19:17 0 100.703 541 6812000 3.13802 1497 50.1754
388899 6136.78 12/5/23 19:16 0 99.5601 541 6811974 3.09358 1498 50.0076
388898 6136.77 12/5/23 19:15 0 98.1696 540 6811948 3.093 1497 50.1144
388897 6136.75 12/5/23 19:14 0 96.4598 542 6811923 3.10521 1499 50.1182
388896 6136.73 12/5/23 19:13 0 94.4685 540 6811897 3.11418 1501 50.0667
388895 6136.72 12/5/23 19:12 0 92.3571 539 6811871 3.09777 1497 50.1068
388894 6136.7 12/5/23 19:11 0 90.9082 538 6811845 3.11284 1498 49.939
388893 6136.68 12/5/23 19:10 0 91.6086 537 6811820 3.10349 1500 50.0477
388892 6136.67 12/5/23 19:09 0 95.6599 538 6811800 3.11055 1501 49.9409
388891 6136.65 12/5/23 19:08 0 100.185 537 6811775 3.1075 1502 50.0019
388890 6136.63 12/5/23 19:07 0 100.463 538 6811749 3.09949 1501 49.9256
388889 6136.61 12/5/23 19:06 0 99.0829 541 6811723 3.0705 1501 50.021
388888 6136.6 12/5/23 19:05 0 97.3971 539 6811698 3.09968 1500 49.9466
388887 6136.58 12/5/23 19:04 0 95.3852 541 6811672 3.09625 1501 49.8589
95.90 539 6812408 3.10 1498 49.97
48 of 63
Appendix E
49 of 63
Site Specific Test Plan
Nodal Power
250 E. 200 S., Suite 310
Salt Lake City, UT 84111
Davis Landfill
Layton, Utah
Source to be Tested: New Landfill Gas (LFG) Generator
Engine
Proposed Test Date: December 4, 2023
Project No. AST-2023-4493
Prepared By
Alliance Technical Group, LLC
3683 W 2270 S, Suite E
West Valley City, UT 84120
50 of 63
Site Specific Test Plan
Test Program Summary
AST-2023-4493 Nodal Power – Layton, UT Page i
Regulatory Information
Permit No. DAQE-AN101290026-22
Source Information
Source Name Target Parameters
New Landfill Gas (LFG) Generator Engine NOx, CO, VOC
Contact Information
Test Location Test Company
Nodal Power
Davis Landfill
1997 East 3500 North
Layton, Utah 84040
Bryan Black
bryan@nodalpower.com
(801) 301-8151
Alliance Technical Group, LLC
3683 W 2270 S, Suite E
West Valley City, UT 84120
Project Manager
Charles Horton
charles.horton@alliancetg.com
(352) 663-7568
Field Team Leader
Tobias Hubbard
tobias.hubbard@alliancetg.com
(605) 645-8562
(subject to change)
QA/QC Manager
Kathleen Shonk
katie.shonk@alliancetg.com
(812) 452-4785
Test Plan/Report Coordinator
Hope Bean
hope.bean@alliancetg.com
(904) 651-3373
51 of 63
Site Specific Test Plan
Table of Contents
AST-2023-4493 Nodal Power – Layton, UT Page ii
TABLE OF CONTENTS
1.0 Introduction .................................................................................................................................................. 1-1
1.1 Facility Description .................................................................................................................................. 1-1
1.2 Project Team ............................................................................................................................................ 1-1
1.3 Safety Requirements ................................................................................................................................ 1-1
2.0 Summary of Test Program ............................................................................................................................ 2-1
2.1 General Description ................................................................................................................................. 2-1
2.2 Process/Control System Parameters to be Monitored and Recorded ....................................................... 2-1
2.3 Proposed Test Schedule ........................................................................................................................... 2-1
2.4 Emission Limits ....................................................................................................................................... 2-2
2.5 Test Report ............................................................................................................................................... 2-2
3.0 Testing Methodology .................................................................................................................................... 3-1
3.1 U.S. EPA Reference Test Methods 1 & 2 – Volumetric Flow Rate ......................................................... 3-1
3.2 U.S. EPA Reference Test Method 3A – Oxygen and Carbon Dioxide .................................................... 3-1
3.3 U.S. EPA Reference Test Method 4 – Gas Moisture Content .................................................................. 3-2
3.4 U.S. EPA Reference Test Method 7E – Nitrogen Oxides ........................................................................ 3-2
3.5 U.S. EPA Reference Test Method 10 – Carbon Monoxide ...................................................................... 3-2
3.6 U.S. EPA Reference Test Method 25A – Volatile Organic Compounds ................................................. 3-2
3.7 U.S. EPA Alternative Test Method ALT-096 – Volatile Organic Compounds ....................................... 3-2
3.8 U.S. EPA Reference Test Method 205 – Gas Dilution System Certification ........................................... 3-2
3.9 Quality Assurance/Quality Control – U.S. EPA Reference Test Methods 3A, 7E and 10 ....................... 3-3
3.10 Quality Assurance/Quality Control – U.S. EPA Reference Test Method 25A ........................................ 3-4
3.11 Quality Assurance/Quality Control – U.S. EPA Reference Method ALT-096 ........................................ 3-4
4.0 Quality Assurance Program .......................................................................................................................... 4-1
4.1 Equipment ................................................................................................................................................ 4-1
4.2 Field Sampling ......................................................................................................................................... 4-2
LIST OF TABLES
Table 1-1: Project Team ........................................................................................................................................... 1-1
Table 2-1: Program Outline and Tentative Test Schedule ........................................................................................ 2-1
Table 2-2: Emission Limits ...................................................................................................................................... 2-2
Table 3-1: Source Testing Methodology .................................................................................................................. 3-1
52 of 63
Site Specific Test Plan
Introduction
AST-2023-4493 Nodal Power – Layton, UT Page 1-1
1.0 Introduction
Alliance Technical Group, LLC (Alliance) was retained by Nodal Power to conduct initial compliance testing at the
Davis Landfill located in Layton, Utah. Portions of the facility are subject to provisions of the Utah Department of
Environmental Quality – Division of Air Quality (UDAQ) Permit No. DAQE-AN101290026-22. Testing will be
conducted to determine the emission rates of nitrogen oxides (NOx), carbon monoxide (CO) and volatile organic
compounds (VOC) at the exhaust of the new landfill gas (LFG) generator engine.
This site-specific test plan (SSTP) has been prepared to address the notification and testing requirements of the
UDAQ permit.
1.1 Facility Description
Wasatch Integrated Waste Management District (Wasatch) operates the Davis Landfill, a municipal solid waste
(MSW) landfill located in Davis County, Utah. The facility accepts municipal and commercial waste. The new LFG
generator engine is rated at 2,233 horsepower (HP).
1.2 Project Team
Personnel planned to be involved in this project are identified in the following table.
Table 1-1: Project Team
Nodal Power Personnel Bryan Black
Regulatory Agency UDAQ
Alliance Personnel Tobias Hubbard
other field personnel assigned at time of testing event
1.3 Safety Requirements
Testing personnel will undergo site-specific safety training for all applicable areas upon arrival at the site. Alliance
personnel will have current OSHA or MSHA safety training and be equipped with hard hats, safety glasses with side
shields, steel-toed safety shoes, hearing protection, fire resistant clothing, and fall protection (including shock
corded lanyards and full-body harnesses). Alliance personnel will conduct themselves in a manner consistent with
Client and Alliance’s safety policies.
A Job Safety Analysis (JSA) will be completed daily by the Alliance Field Team Leader.
53 of 63
Site Specific Test Plan
Summary of Test Programs
AST-2023-4493 Nodal Power – Layton, UT Page 2-1
2.0 Summary of Test Program
To satisfy the requirements of the UDAQ permit, the facility will conduct a performance test program to determine
the compliance status of the new LFG generator engine.
2.1 General Description
All testing will be performed in accordance with specifications stipulated in U.S. EPA Reference Test Methods 1, 2,
3A, 4, 7E, 10 and 25A or ALT-096. Table 2-1 presents an outline and tentative schedule for the emissions testing
program. The following is a summary of the test objectives.
Testing will be performed to demonstrate compliance with the UDAQ permit.
Emissions testing will be conducted on the exhaust of the new LFG generator engine.
Performance testing will be conducted at no less than 90 percent of the combustion rate achieved to date.
Each of the three (3) test runs will be approximately 60 minutes in duration.
2.2 Process/Control System Parameters to be Monitored and Recorded
Plant personnel will collect operational and parametric data at least once every 15 minutes during the testing. The
following list identifies the measurements, observations and records that will be collected during the testing
program:
Engine Load
Catalyst Inlet Temperature
Catalyst Pressure Differential
Fuel Consumption
2.3 Proposed Test Schedule
Table 2-1 presents an outline and tentative schedule for the emissions testing program.
Table 2-1: Program Outline and Tentative Test Schedule
Testing Location Parameter US EPA Method No. of Runs Run Duration Est. Onsite
Time
DAY 1 – December 4, 2023
Equipment Setup & Pretest QA/QC Checks
8 hrs New LFG Generator
Engine
VFR 1 & 2
3 60 mins
O2/CO2 3A
BWS 4
NOx 7E
CO 10
VOC 25A or ALT-096
54 of 63
Site Specific Test Plan
Summary of Test Programs
AST-2023-4493 Nodal Power – Layton, UT Page 2-2
2.4 Emission Limits
Emission limits for each pollutant are below.
Table 2-2: Emission Limits
Source Pollutant Citation
New LFG Generator Engine
NOx – 2.46 lb/hr; 0.5 g/hp/hr
Permit CO – 12.31 lb/hr; 2.5 g/hp/hr
VOC 4.33 lb/hr; 0.88 g/hp/hr
2.5 Test Report
The final test report must be submitted within 60 days of the completion of the performance test and will include the
following information.
Introduction – Brief discussion of project scope of work and activities.
Results and Discussion – A summary of test results and process/control system operational data with
comparison to regulatory requirements or vendor guarantees along with a description of process conditions
and/or testing deviations that may have affected the testing results.
Methodology – A description of the sampling and analytical methodologies.
Sample Calculations – Example calculations for each target parameter.
Field Data – Copies of actual handwritten or electronic field data sheets.
Quality Control Data – Copies of all instrument calibration data and/or calibration gas certificates.
Process Operating/Control System Data – Process operating and control system data (as provided by Nodal
Power) to support the test results.
55 of 63
Site Specific Test Plan
Testing Methodology
AST-2023-4493 Nodal Power – Layton, UT Page 3-1
3.0 Testing Methodology
This section provides a description of the sampling and analytical procedures for each test method that will be
employed during the test program. All equipment, procedures and quality assurance measures necessary for the
completion of the test program meet or exceed the specifications of each relevant test method. The emission testing
program will be conducted in accordance with the test methods listed in Table 3-1.
Table 3-1: Source Testing Methodology
Parameter U.S. EPA Reference
Test Methods Notes/Remarks
Volumetric Flow Rate 1 & 2 Volumetric Flow Rate
Oxygen / Carbon Dioxide 3A Oxygen / Carbon Dioxide
Moisture Content 4 Moisture Content
Nitrogen Oxides 7E Nitrogen Oxides
Carbon Monoxide 10 Carbon Monoxide
Volatile Organic Compounds 25A Volatile Organic Compounds
Volatile Organic Compounds ALT-096 Volatile Organic Compounds
Gas Dilution System Certification 205 ---
All stack diameters, depths, widths, upstream and downstream disturbance distances and nipple lengths will be
measured on site with a verification measurement provided by the Field Team Leader.
3.1 U.S. EPA Reference Test Methods 1 & 2 – Volumetric Flow Rate
The sampling location and number of traverse (sampling) points will be selected in accordance with U.S. EPA
Reference Test Method 1. To determine the minimum number of traverse points, the upstream and downstream
distances will be equated into equivalent diameters and compared to Figure 1-2 in U.S. EPA Reference Test Method
1.
Full velocity traverses will be conducted in accordance with U.S. EPA Reference Test Method 2 to determine the
average stack gas velocity pressure, static pressure and temperature. The velocity and static pressure measurement
system will consist of a pitot tube and inclined manometer. The stack gas temperature will be measured with a K-
type thermocouple and pyrometer.
Stack gas velocity pressure and temperature readings will be recorded during each test run. The data collected will
be utilized to calculate the volumetric flow rate in accordance with U.S. EPA Reference Test Method 2.
3.2 U.S. EPA Reference Test Method 3A – Oxygen and Carbon Dioxide
The oxygen (O2) and carbon dioxide (CO2) testing will be conducted in accordance with U.S. EPA Reference Test
Method 3A. Data will be collected online and reported in one-minute averages. The sampling system will consist
of a stainless steel probe, Teflon sample line(s), gas conditioning system and the identified gas analyzer. The gas
conditioning system will be a non-contact condenser used to remove moisture from the stack gas. If an unheated
Teflon sample line will be used, then a portable non-contact condenser will be placed in the system directly after the
56 of 63
Site Specific Test Plan
Testing Methodology
AST-2023-4493 Nodal Power – Layton, UT Page 3-2
probe. Otherwise, a heated Teflon sample line will be used. The quality control measures are described in Section
3.9
3.3 U.S. EPA Reference Test Method 4 – Gas Moisture Content
The stack gas moisture content will be determined in accordance with U.S. EPA Reference Test Method 4. The gas
conditioning train will consist of a series of chilled impingers. Prior to testing, each impinger will be filled with a
known quantity of water or silica gel. Each impinger will be analyzed gravimetrically before and after each test run
on the same analytical balance to determine the amount of moisture condensed.
3.4 U.S. EPA Reference Test Method 7E – Nitrogen Oxides
The nitrogen oxides (NOx) testing will be conducted in accordance with U.S. EPA Reference Test Method 7E. Data
will be collected online and reported in one-minute averages. The sampling system will consist of a stainless steel
probe, Teflon sample line(s), gas conditioning system and the identified gas analyzer. The gas conditioning system
will be a non-contact condenser used to remove moisture from the stack gas. If an unheated Teflon sample line is
used, then a portable non-contact condenser will be placed in the system directly after the probe. Otherwise, a
heated Teflon sample line will be used. The quality control measures are described in Section 3.9.
3.5 U.S. EPA Reference Test Method 10 – Carbon Monoxide
The carbon monoxide (CO) testing will be conducted in accordance with U.S. EPA Reference Test Method 10.
Data will be collected online and reported in one-minute averages. The sampling system will consist of a stainless
steel probe, Teflon sample line(s), gas conditioning system, and the identified gas analyzer. The gas conditioning
system will be a non-contact condenser used to remove moisture from the gas. If an unheated Teflon sample line is
used, then a portable non-contact condenser will be placed in the system directly after the probe. Otherwise, a
heated Teflon sample line will be used. The quality control measures are described in Section 3.9.
3.6 U.S. EPA Reference Test Method 25A – Volatile Organic Compounds
The volatile organic compounds (VOC) testing will be conducted in accordance with U.S. EPA Reference Test Method
25A. Data will be collected online and reported in one-minute averages. The sampling system will consist of a stainless
steel probe, heated Teflon sample line(s) and the identified gas analyzer. The quality control measures are described in
Section 3.10.
3.7 U.S. EPA Alternative Test Method ALT-096 – Volatile Organic Compounds
The volatile organic compounds (VOC) testing will be conducted in accordance with U.S. EPA Alternate Test Method
ALT-096. EPA Method 25A is incorporated by reference. The sampling system will consist of a stainless steel probe,
heated Teflon sample line(s) and a Thermo 55i analyzer. VOC data will be collected in one (1) minute averages. The
quality control measures are described in Section 3.11.
3.8 U.S. EPA Reference Test Method 205 – Gas Dilution System Certification
A calibration gas dilution system field check will be conducted in accordance with U.S. EPA Reference Method
205. An initial three (3) point calibration will be conducted, using individual Protocol 1 gases, on the analyzer used
to complete the dilution system field check. Multiple dilution rates and total gas flow rates will be utilized to force
the dilution system to perform two dilutions on each mass flow controller. The diluted calibration gases will be sent
directly to the analyzer, and the analyzer response recorded in an electronic field data sheet. The analyzer response
must agree within 2% of the actual diluted gas concentration. A second Protocol 1 calibration gas, with a cylinder
concentration within 10% of one of the gas divider settings described above, will be introduced directly to the
57 of 63
Site Specific Test Plan
Testing Methodology
AST-2023-4493 Nodal Power – Layton, UT Page 3-3
analyzer, and the analyzer response recorded in an electronic field data sheet. The cylinder concentration and the
analyzer response must agree within 2%. These steps will be repeated three (3) times.
3.9 Quality Assurance/Quality Control – U.S. EPA Reference Test Methods 3A, 7E and 10
Cylinder calibration gases will meet EPA Protocol 1 (+/- 2%) standards. Copies of all calibration gas certificates
will be included in the Quality Assurance/Quality Control Appendix of the report.
Low Level gas will be introduced directly to the analyzer. After adjusting the analyzer to the Low Level gas
concentration and once the analyzer reading is stable, the analyzer value will be recorded. This process will be
repeated for the High Level gas. For the Calibration Error Test, Low, Mid, and High Level calibration gases will be
sequentially introduced directly to the analyzer. The Calibration Error for each gas must be within 2.0 percent of the
Calibration Span or 0.5 ppmv/% absolute difference.
High or Mid Level gas (whichever is closer to the stack gas concentration) will be introduced at the probe and the
time required for the analyzer reading to reach 95 percent or 0.5 ppm/% (whichever was less restrictive) of the gas
concentration will be recorded. The analyzer reading will be observed until it reaches a stable value, and this value
will be recorded. Next, Low Level gas will be introduced at the probe and the time required for the analyzer reading
to decrease to a value within 5.0 percent or 0.5 ppm/% (whichever was less restrictive) will be recorded. If the Low
Level gas is zero gas, the acceptable response must be 5.0 percent of the upscale gas concentration or 0.5 ppm/%
(whichever was less restrictive). The analyzer reading will be observed until it reaches a stable value and this value
will be recorded. The measurement system response time and initial system bias will be determined from these data.
The System Bias for each gas must be within 5.0 percent of the Calibration Span or 0.5 ppmv/% absolute difference.
High or Mid Level gas (whichever is closer to the stack gas concentration) will be introduced at the probe. After the
analyzer response is stable, the value will be recorded. Next, Low Level gas will be introduced at the probe, and the
analyzer value will be recorded once it reaches a stable response. The System Bias for each gas must be within 5.0
percent of the Calibration Span or 0.5 ppmv/% absolute difference or the data is invalidated and the Calibration
Error Test and System Bias must be repeated.
The Drift between pre- and post-run System Bias must be within 3 percent of the Calibration Span or 0.5 ppmv/%
absolute difference or the Calibration Error Test and System Bias must be repeated.
To determine the number of sampling points, a gas stratification check will be conducted prior to initiating testing.
The pollutant concentrations will be measured at twelve traverse points (as described in Method 1) or three points
(16.7, 50.0 and 83.3 percent of the measurement line). Each traverse point will be sampled for a minimum of twice
the system response time.
If the pollutant concentration at each traverse point do not differ more than 5% or 0.5 ppm/0.3% (whichever is less
restrictive) of the average pollutant concentration, then single point sampling will be conducted during the test runs.
If the pollutant concentration does not meet these specifications but differs less than 10% or 1.0 ppm/0.5% from the
average concentration, then three (3) point sampling will be conducted (stacks less than 7.8 feet in diameter - 16.7,
50.0 and 83.3 percent of the measurement line; stacks greater than 7.8 feet in diameter – 0.4, 1.0, and 2.0 meters
from the stack wall). If the pollutant concentration differs by more than 10% or 1.0 ppm/0.5% from the average
concentration, then sampling will be conducted at a minimum of twelve (12) traverse points. Copies of stratification
check data will be included in the Quality Assurance/Quality Control Appendix of the report.
58 of 63
Site Specific Test Plan
Testing Methodology
AST-2023-4493 Nodal Power – Layton, UT Page 3-4
An NO2 – NO converter check will be performed on the analyzer prior to initiating testing or at the completion of
testing. An approximately 50 ppm nitrogen dioxide cylinder gas will be introduced directly to the NOx analyzer and
the instrument response will be recorded in an electronic data sheet. The instrument response must be within +/- 10
percent of the cylinder concentration.
A Data Acquisition System with battery backup will be used to record the instrument response in one (1) minute
averages. The data will be continuously stored as a *.CSV file in Excel format on the hard drive of a computer. At
the completion of testing, the data will also be saved to the Alliance server. All data will be reviewed by the Field
Team Leader before leaving the facility. Once arriving at Alliance’s office, all written and electronic data will be
relinquished to the report coordinator and then a final review will be performed by the Project Manager.
3.10 Quality Assurance/Quality Control – U.S. EPA Reference Test Method 25A
Cylinder calibration gases will meet EPA Protocol 1 (+/- 2%) standards. Copies of all calibration gas certificates
will be included in the Quality Assurance/Quality Control Appendix of the report.
Within two (2) hours prior to testing, zero gas will be introduced through the sampling system to the analyzer. After
adjusting the analyzer to the Zero gas concentration and once the analyzer reading is stable, the analyzer value will
be recorded. This process will be repeated for the High Level gas, and the time required for the analyzer reading to
reach 95 percent of the gas concentration will be recorded to determine the response time. Next, Low and Mid
Level gases will be introduced through the sampling system to the analyzer, and the response will be recorded when
it is stable. All values must be less than +/- 5 percent of the calibration gas concentrations.
Mid Level gas will be introduced through the sampling system. After the analyzer response is stable, the value will
be recorded. Next, Zero gas will be introduced through the sampling system, and the analyzer value recorded once
it reaches a stable response. The Analyzer Drift must be less than +/- 3 percent of the span value.
A Data Acquisition System with battery backup will be used to record the instrument response in one (1) minute
averages. The data will be continuously stored as a *.CSV file in Excel format on the hard drive of a computer. At
the completion of testing, the data will also be saved to the Alliance server. All data will be reviewed by the Field
Team Leader before leaving the facility. Once arriving at Alliance’s office, all written and electronic data will be
relinquished to the report coordinator and then a final review will be performed by the Project Manager.
3.11 Quality Assurance/Quality Control – U.S. EPA Reference Method ALT-096
EPA Protocol 1 Calibration Gases – Cylinder calibration gases used will meet EPA Protocol 1 (+/- 2%) standards.
Copies of all calibration gas certificates will be provided in the Quality Assurance/Quality Control Appendix.
Zero gas will be introduced through the sampling system to the analyzer. After adjusting the analyzer to the Zero
gas concentration and once the analyzer reading is stable, the analyzer value will be recorded. This process will be
repeated for the High Level gas, and the time required for the analyzer reading to reach 95 percent of the gas
concentration will be recorded to determine the response time. Next, Mid and Low Level gases will be introduced
through the sampling system to the analyzer, and the response will be recorded when it is stable. All values must be
within +/- 5% of the calibration gas concentrations.
Post Test Drift Checks – Mid Level gas will be introduced through the sampling system. After the analyzer
response is stable, the value will be recorded. Next, Zero gas will be introduced through the sampling system, and
59 of 63
Site Specific Test Plan
Testing Methodology
AST-2023-4493 Nodal Power – Layton, UT Page 3-5
the analyzer value recorded once it reaches a stable response. The Analyzer Drift must be less than 3 percent of the
Calibration Span.
Data Collection – A Data Acquisition System with battery backup will be used to record the instrument response
(analog 0-10 volt signal) in one (1) minute averages. The data will be continuously stored as a *.CSV file in Excel
format on the hard drive of a desktop computer. At the completion of the emissions testing the data will be also
saved to the Alliance server. All data will be reviewed by the Field Team Leader before leaving the facility. Once
arriving at Alliance’s office, all written and electronic data will be relinquished to the report coordinator and then a
final review will be performed by the Project Manager.
60 of 63
Site Specific Test Plan
Quality Assurance Program
AST-2023-4493 Nodal Power – Layton, UT Page 4-1
4.0 Quality Assurance Program
Alliance follows the procedures outlined in the Quality Assurance/Quality Control Management Plan to ensure the
continuous production of useful and valid data throughout the course of this test program. The QC checks and
procedures described in this section represent an integral part of the overall sampling and analytical scheme.
Adherence to prescribed procedures is quite often the most applicable QC check.
4.1 Equipment
Field test equipment is assigned a unique, permanent identification number. Prior to mobilizing for the test
program, equipment is inspected before being packed to detect equipment problems prior to arriving on site. This
minimizes lost time on the job site due to equipment failure. Occasional equipment failure in the field is
unavoidable despite the most rigorous inspection and maintenance procedures. Therefore, replacements for critical
equipment or components are brought to the job site. Equipment returning from the field is inspected before it is
returned to storage. During the course of these inspections, items are cleaned, repaired, reconditioned and
recalibrated where necessary.
Calibrations are conducted in a manner, and at a frequency, which meets or exceeds U.S. EPA specifications. The
calibration procedures outlined in the U.S. EPA Methods, and those recommended within the Quality Assurance
Handbook for Air Pollution Measurement Systems: Volume III (EPA-600/R-94/038c, September 1994) are utilized.
When these methods are inapplicable, methods such as those prescribed by the American Society for Testing and
Materials (ASTM) or other nationally recognized agency may be used. Data obtained during calibrations is checked
for completeness and accuracy. Copies of calibration forms are included in the report.
The following sections elaborate on the calibration procedures followed by Alliance for these items of equipment.
Dry Gas Meter and Orifice. A full meter calibration using critical orifices as the calibration standard is
conducted at least semi-annually, more frequently if required. The meter calibration procedure determines
the meter correction factor (Y) and the meter’s orifice pressure differential (ΔH@). Alliance uses approved
Alternative Method 009 as a post-test calibration check to ensure that the correction factor has not changed
more than 5% since the last full meter calibration. This check is performed after each test series.
Pitot Tubes and Manometers. Type-S pitot tubes that meet the geometric criteria required by U.S. EPA
Reference Test Method 2 are assigned a coefficient of 0.84 unless a specific coefficient has been
determined from a wind tunnel calibration. If a specific coefficient from a wind tunnel calibration has been
obtained that coefficient will be used in lieu of 0.84. Standard pitot tubes that meet the geometric criteria
required by U.S. EPA Reference Test Method 2 are assigned a coefficient of 0.99. Any pitot tubes not
meeting the appropriate geometric criteria are discarded and replaced. Manometers are verified to be level
and zeroed prior to each test run and do not require further calibration.
Temperature Measuring Devices. All thermocouple sensors mounted in Dry Gas Meter Consoles are
calibrated semi-annually with a NIST-traceable thermocouple calibrator (temperature simulator) and
verified during field use using a second NIST-traceable meter. NIST-traceable thermocouple calibrators
are calibrated annually by an outside laboratory.
Digital Calipers. Calipers are calibrated annually by Alliance by using gage blocks that are calibrated
annually by an outside laboratory.
Barometer. The barometric pressure is obtained from a nationally recognized agency or a calibrated
barometer. Calibrated barometers are checked prior to each field trip against a mercury barometer. The
61 of 63
Site Specific Test Plan
Quality Assurance Program
AST-2023-4493 Nodal Power – Layton, UT Page 4-2
barometer is acceptable if the values agree within ± 2 percent absolute. Barometers not meeting this
requirement are adjusted or taken out of service.
Balances and Weights. Balances are calibrated annually by an outside laboratory. A functional check is
conducted on the balance each day it is use in the field using a calibration weight. Weights are re-certified
every two (2) years by an outside laboratory or internally. If conducted internally, they are weighed on a
NIST traceable balance. If the weight does not meet the expected criteria, they are replaced.
Other Equipment. A mass flow controller calibration is conducted on each Environics system annually
following the procedures in the Manufacturer’s Operation manual. Other equipment such as probes,
umbilical lines, cold boxes, etc. are routinely maintained and inspected to ensure that they are in good
working order. They are repaired or replaced as needed.
4.2 Field Sampling
Field sampling will be done in accordance with the Standard Operating Procedures (SOP) for the applicable test
method(s). General QC measures for the test program include:
Cleaned glassware and sample train components will be sealed until assembly.
Sample trains will be leak checked before and after each test run.
Appropriate impinger temperatures will be maintained.
The sampling port will be sealed to prevent air from leaking from the port.
Dry gas meter, ΔP, ΔH, temperature and pump vacuum data will be recorded during each sample point.
All raw data will be maintained in organized manner.
All raw data will be reviewed on a daily basis for completeness and acceptability.
62 of 63
Last Page of Report
63 of 63
TEST REPORT SUMMARY
CORPORATE OFFICE
255 Grant St. SE, Suite 600
Decatur, AL 35601
256.351.0121
www.alliancetechnicalgroup.com
Client Information / Test Location Source Information
Nodal Power Engine/Unit ID: LFG Generator
Davis Landfill Engine Make/Model: Caterpillar G3520C
Layton, Utah Engine Serial Number: GZJ00710
Engine Type: Compression/Spark,
Rich/Lean
Engine Date of Manufacture: 7/7/1905
Engine Rating: 2,233 HP
Regulatory Applicability Project No.
DAQE-AN101290026-22 AST-2023-3003
Run No. Run 1 Run 2 Run 3 Average
Date 8/10/23 8/10/23 8/10/23 --
Engine Load, % * 88 87 87 88
Nitrogen Oxides Data
Emission Rate, lb/hr 1.5 1.4 1.4 1.4
Permit Limit, lb/hr -- -- -- 2.46
Percent of Limit, % -- -- -- 57
Emission Factor, g/HP-hr 0.33 0.32 0.32 0.32
Permit Limit, lb/hr -- -- -- 0.5
Percent of Limit, % -- -- -- 65
Carbon Monoxide Data
Emission Rate, lb/hr 11.7 11.2 11.6 11.5
Permit Limit, lb/hr -- -- -- 12.31
Percent of Limit, % -- -- -- 93
Emission Factor, g/HP-hr 2.7 2.6 2.7 2.7
Permit Limit, lb/hr -- -- -- 2.5
Percent of Limit, % -- -- -- > 100
Non- Methane HC Data
Emission Rate, lb/hr 0.70 0.70 0.73 0.71
Permit Limit, lb/hr -- -- -- 4.33
Percent of Limit, % -- -- -- 16
Emission Factor, g/HP-hr 0.16 0.16 0.17 0.16
Permit Limit, lb/hr -- -- -- 0.88
Percent of Limit, % -- -- -- 19
* Performance testing was conducted while the engine was operating at the highest achievable load at current site conditions.
Source Test Report
Nodal Power
250 E. 200 S., Suite 310
Salt Lake City, UT 84111
Davis Landfill
Layton, Utah
Source Tested: New Landfill Gas (LFG) Generator
Engine
Test Date: August 10, 2023
Project No. AST-2023-3003
Prepared By
Alliance Technical Group, LLC
3683 W 2270 S, Suite E
West Valley City, UT 84120
.
Source Test Report
Source & Contact Information
AST-2023-3003 Nodal Power – Layton, UT Page i
Regulatory Information
Permit No. DAQE-AN101290026-22
Source Information
Source Name Target Parameters
New Landfill Gas (LFG) Generator Engine NOx, CO, VOC
Contact Information
Test Location Test Company
Nodal Power
Davis Landfill
1997 East 3500 North
Layton, Utah
Bryan Black
bryan@nodalpower.com
(801) 301-8151
Alliance Technical Group, LLC
3683 W 2270 S, Suite E
West Valley City, UT 84120
Project Manager
Charles Horton
charles.horton@alliancetg.com
(352) 663-7568
Field Team Leader
Tobias Hubbard
tobias.hubbard@alliancetg.com
(605) 645-8562
QA/QC Manager
Kathleen Shonk
katie.shonk@alliancetg.com
(812) 452-4785
Report Coordinator
Colton Basinger
colton.basinger@alliancetg.com
(972) 931-7127
2 of 78
Source Test Report
Certification Statement
AST-2023-3003 Nodal Power – Layton, UT Page ii
Alliance Technical Group, LLC (Alliance) has completed the source testing as described in this report. Results
apply only to the source(s) tested and operating condition(s) for the specific test date(s) and time(s) identified within
this report. All results are intended to be considered in their entirety, and Alliance is not responsible for use of less
than the complete test report without written consent. This report shall not be reproduced in full or in part without
written approval from the customer.
To the best of my knowledge and abilities, all information, facts and test data are correct. Data presented in this
report has been checked for completeness and is accurate, error-free and legible. Onsite testing was conducted in
accordance with approved internal Standard Operating Procedures. Any deviations or test program notes are
detailed in the relevant sections on the test report.
This report is only considered valid once an authorized representative of Alliance has signed in the space provided
below; any other version is considered draft. This document was prepared in portable document format (.pdf) and
contains pages as identified in the bottom footer of this document.
Charles Horton, QSTI
Alliance Technical Group, LLC
Date
3 of 78
Source Test Report
Table of Contents
AST-2023-3003 Nodal Power – Layton, UT Page iii
TABLE OF CONTENTS
1.0 Introduction .................................................................................................................................................. 1-1
1.1 Facility and Process Description .............................................................................................................. 1-1
1.2 Project Team ............................................................................................................................................ 1-1
1.3 Instrument Information ............................................................................................................................ 1-1
1.4 Site Specific Test Plan and Notification................................................................................................... 1-1
2.0 Testing Methodology .................................................................................................................................... 2-1
2.1 U.S. EPA Reference Test Methods 1 & 2 – Volumetric Flow Rate ......................................................... 2-1
2.2 U.S. EPA Reference Test Method 3A – Oxygen/Carbon Dioxide ........................................................... 2-1
2.3 U.S. EPA Reference Test Method 4 – Moisture Content ......................................................................... 2-1
2.4 U.S. EPA Reference Test Method 7E – Nitrogen Oxides ........................................................................ 2-2
2.5 U.S. EPA Reference Test Method 10 – Carbon Monoxide ...................................................................... 2-2
2.6 U.S. EPA Reference Test Method 25A – Non Methane Hydrocarbons ................................................... 2-2
2.7 U.S. EPA Reference Test Method 205 – Gas Dilution System Certification ........................................... 2-2
2.8 Quality Assurance/Quality Control – U.S. EPA Reference Methods 3A, 7E and 10............................... 2-2
2.9 Quality Assurance/Quality Control – U. S. EPA Reference Method 25A ............................................... 2-3
LIST OF TABLES
Table 1-1: Project Team ........................................................................................................................................... 1-1
Table 1-2: Instrument Information ........................................................................................................................... 1-1
Table 2-1: Source Testing Methodology .................................................................................................................. 2-1
APPENDICES
Appendix A Sample Calculations
Appendix B Field Data
Appendix C Quality Assurance/Quality Control Data
Appendix D Engine Operating Data
Appendix E Site Specific Test Plan & Associated Documentation
4 of 78
Introduction
5 of 78
Source Test Report
Introduction
AST-2023-3003 Nodal Power – Layton, UT Page 1-1
1.0 Introduction
Alliance Technical Group, LLC (Alliance) was retained by Nodal Power to conduct initial compliance testing at the
Davis Landfill in Layton, Utah. Portions of the facility are subject to provisions of the Utah Department of
Environmental Quality – Division of Air Quality (UDAQ) Permit No. DAQE-AN101290026-22. Testing was
conducted at the exhaust of the new landfill gas (LFG) generator engine.
Compliance testing was conducted to determine the emission rates of nitrogen oxides (NOx), carbon monoxide (CO)
and volatile organic compounds (VOC). Testing consisted of three (3) 60-minute test runs for the source.
Performance testing was conducted while the engine was operating at the highest achievable load at current site
conditions. The Test Report Summary (TRS) provides the results from the compliance testing, including the three
(3) run average, with comparisons to the applicable limits. Any difference between the summary results listed in the
TRS and the detailed results contained in the appendices is due to rounding for presentation.
1.1 Facility and Process Description
Wasatch Integrated Waste Management District operates Davis Landfill, a municipal solid waste (MSW) landfill
located in Davis County, Utah. The facility accepts municipal and commercial waste. The new LFG generator
engine is rated at 2,233 horsepower (HP).
1.2 Project Team
Personnel involved in this project are identified in the following table.
Table 1-1: Project Team
Nodal Power Personnel Bryan Black
Alliance Personnel
Tobias Hubbard
Alex Lawrence
Supilani Mailei
1.3 Instrument Information
The instruments used to conduct the compliance testing are summarized in the following table.
Table 1-2: Instrument Information
Pollutant Manufacturer Model Serial Number
O2
Servomex 1440 14150/3279
CO2
CO Thermo 48i 208845
NOx Thermo 42C 42CHL-59778-324
VOC Thermo 55i 1209052150
1.4 Site Specific Test Plan and Notification
Testing was conducted in accordance with the Site Specific Test Plan (SSTP) submitted to the UDAQ by Nodal
Power.
6 of 78
Testing Methodology
7 of 78
Source Test Report
Testing Methodology
AST-2023-3003 Nodal Power – Layton, UT Page 2-1
2.0 Testing Methodology
The emissions testing program was conducted in accordance with the U.S. EPA Reference Test Methods listed in
Table 2-1. Method descriptions are provided below while quality assurance/quality control data is provided in
Appendix C.
Table 2-1: Source Testing Methodology
Parameter U.S. EPA Reference
Test Methods Notes/Remarks
Volumetric Flow Rate 1 & 2 Full Velocity Traverses
Oxygen/Carbon Dioxide 3A Instrumental Analysis
Moisture Content 4 Gravimetric Analysis
Nitrogen Oxides 7E Instrumental Analysis
Carbon Monoxide 10 Instrumental Analysis
(Non-Methane) Hydrocarbons 25A Instrumental Analysis
Gas Dilution System Certification 205 --
2.1 U.S. EPA Reference Test Methods 1 & 2 – Volumetric Flow Rate
The sampling location and number of traverse (sampling) points were selected in accordance with U.S. EPA
Reference Test Method 1. To determine the minimum number of traverse points, the upstream and downstream
distances were equated into equivalent diameters and compared to Figure 1-2 in U.S. EPA Reference Test Method 1.
Full velocity traverses were conducted in accordance with U.S. EPA Reference Test Method 2 to determine the
average stack gas velocity pressure, static pressure, and temperature. The velocity and static pressure measurement
system consisted of a pitot tube and inclined manometer. The stack gas temperature was measured with a K-type
thermocouple and pyrometer.
2.2 U.S. EPA Reference Test Method 3A – Oxygen/Carbon Dioxide
The oxygen (O2) and carbon dioxide (CO2) testing were conducted in accordance with U.S. EPA Reference Test
Method 3A. Data was collected online and reported in one-minute averages. The sampling system consisted of a
stainless-steel probe, Teflon sample line(s), gas conditioning system, and the identified gas analyzer. The gas
conditioning system was a non-contact condenser used to remove moisture from the stack gas. If an unheated
Teflon sample line was used, then a portable non-contact condenser was placed in the system directly after the
probe. Otherwise, a heated Teflon sample line was used. Sampling was conducted at three traverse points passing
through the centroidal area of the duct (rake probe for strat). The quality control measures are described in Section
2.8.
2.3 U.S. EPA Reference Test Method 4 – Moisture Content
The stack gas moisture content was determined in accordance with U.S. EPA Reference Test Method 4. The gas
conditioning train consisted of a series of chilled impingers. The impingers were pre and post-measured to
determine the amount of moisture condensed during each test run.
8 of 78
Source Test Report
Testing Methodology
AST-2023-3003 Nodal Power – Layton, UT Page 2-2
2.4 U.S. EPA Reference Test Method 7E – Nitrogen Oxides
The nitrogen oxides (NOx) testing was conducted in accordance with U.S. EPA Reference Test Method 7E. Data
was collected online and reported in one-minute averages. The sampling system consisted of a stainless steel probe,
Teflon sample line(s), gas conditioning system and the identified gas analyzer. The gas conditioning system was a
non-contact condenser used to remove moisture from the stack gas. If an unheated Teflon sample line was used,
then a portable non-contact condenser was placed in the system directly after the probe. Otherwise, a heated Teflon
sample line was used. The quality control measures are described in Section 2.8.
2.5 U.S. EPA Reference Test Method 10 – Carbon Monoxide
The carbon monoxide (CO) testing was conducted in accordance with U.S. EPA Reference Test Method 10. Data
was collected online and reported in one-minute averages. The sampling system consisted of a stainless steel probe,
Teflon sample line(s), gas conditioning system, and the identified gas analyzer. The gas conditioning system was a
non-contact condenser used to remove moisture from the gas. If an unheated Teflon sample line was used, then a
portable non-contact condenser was placed in the system directly after the probe. Otherwise, a heated Teflon sample
line was used. The quality control measures are described in Section 2.8.
2.6 U.S. EPA Reference Test Method 25A – Non Methane Hydrocarbons
The non-methane hydrocarbon (NMHC) testing was conducted in accordance with U.S. EPA Reference Test
Method 25A. Data was collected online and reported in one-minute averages. The sampling system consisted of a
stainless steel probe, heated Teflon sample line(s) and the identified gas analyzer equipped with a non-methane
cutter. The quality control measures are described in Section 2.9.
2.7 U.S. EPA Reference Test Method 205 – Gas Dilution System Certification
A calibration gas dilution system field check was conducted in accordance with U.S. EPA Reference Method 205.
Multiple dilution rates and total gas flow rates were utilized to force the dilution system to perform two dilutions on
each mass flow controller. The diluted calibration gases were sent directly to the analyzer, and the analyzer response
recorded in an electronic field data sheet. The analyzer response agreed within 2% of the actual diluted gas
concentration. A second Protocol 1 calibration gas, with a cylinder concentration within 10% of one of the gas
divider settings described above, was introduced directly to the analyzer, and the analyzer response recorded in an
electronic field data sheet. The cylinder concentration and the analyzer response agreed within 2%. These steps
were repeated three (3) times. Copies of the Method 205 data can be found in the Quality Assurance/Quality
Control Appendix.
2.8 Quality Assurance/Quality Control – U.S. EPA Reference Methods 3A, 7E and 10
Cylinder calibration gases used met EPA Protocol 1 (+/- 2%) standards. Copies of all calibration gas certificates can
be found in the Quality Assurance/Quality Control Appendix.
Low Level gas was introduced directly to the analyzer. After adjusting the analyzer to the Low Level gas
concentration and once the analyzer reading was stable, the analyzer value was recorded. This process was repeated
for the Mid Level gas. Next, High Level gas was introduced directly to the analyzer, and the response recorded
when it was stable. All values were within 2.0 percent of the Calibration Span or 0.5 ppmv absolute difference.
High or Mid Level gas (whichever was closer to the stack gas concentration) was introduced at the probe and the
time required for the analyzer reading to reach 95 percent or 0.5 ppm (whichever was less restrictive) of the gas
9 of 78
Source Test Report
Testing Methodology
AST-2023-3003 Nodal Power – Layton, UT Page 2-3
concentration was recorded. The analyzer reading was observed until it reached a stable value, and this value was
recorded. Next, Low Level gas was introduced at the probe and the time required for the analyzer reading to
decrease to a value within 5.0 percent or 0.5 ppm (whichever was less restrictive) was recorded. If the Low Level
gas was zero gas, the response was 0.5 ppm or 5.0 percent of the upscale gas concentration (whichever was less
restrictive). The analyzer reading was observed until it reached a stable value and this value was recorded. The
measurement system response time and initial system bias were determined from these data. The System Bias was
within 5.0 percent of the Calibration Span or 0.5 ppmv absolute difference
High or Mid Level gas (whichever was closer to the stack gas concentration) was introduced at the probe. After the
analyzer response was stable, the value was recorded. Next, Low Level gas was introduced at the probe, and the
analyzer value recorded once it reached a stable response. The System Bias was within 5.0 percent of the
Calibration Span or 0.5 ppmv absolute difference or the data was invalidated and the Calibration Error Test and
System Bias were repeated.
Drift between pre- and post-run System Bias was within 0.5 ppmv absolute difference or the Calibration Error Test
and System Bias were repeated.
To determine the number of sampling points, a gas stratification check was conducted prior to initiating testing. The
pollutant concentrations were measured at three points (16.7, 50.0 and 83.3 percent of the measurement line). Each
traverse point was sampled for a minimum of twice the system response time.
If the pollutant concentration at each traverse point did not differ more than 5% or 0.5 ppm (whichever was less
restrictive) of the average pollutant concentration, then single point sampling was conducted during the test runs. If
the pollutant concentration did not meet these specifications but differed less than 10% or 1.0 ppm from the average
concentration, then three (3) point sampling was conducted (stacks less than 7.8 feet in diameter - 16.7, 50.0 and
83.3 percent of the measurement line; stacks greater than 7.8 feet in diameter – 0.4, 1.0, and 2.0 meters from the
stack wall). If the pollutant concentration differed by more than 10% or 1.0 ppm from the average concentration,
then sampling was conducted at a minimum of twelve (12) traverse points. Copies of stratification check data can
be found in the Quality Assurance/Quality Control Appendix.
An NO2 – NO converter check was performed on the analyzer prior to initiating testing. An approximately 50 ppm
nitrogen dioxide cylinder gas was introduced directly to the NOx analyzer and the instrument response was recorded
in an electronic data sheet. The instrument response was within +/- 10 percent of the cylinder concentration.
A Data Acquisition System (Dutech Analog Signal Modules) with battery backup was used to record the instrument
response in one (1) minute averages. The data was continuously stored as a *.CSV file in Excel format on the hard
drive of a computer. At the completion of testing, the data was also saved to the Alliance server. All data was
reviewed by the Field Team Leader before leaving the facility. Once arriving at Alliance’s office, all written and
electronic data was relinquished to the report coordinator and then a final review was performed by the Project
Manager.
2.9 Quality Assurance/Quality Control – U. S. EPA Reference Method 25A
Cylinder calibration gases used met EPA Protocol 1 (+/- 2%) standards. Copies of all calibration gas certificates can
be found in the Quality Assurance/Quality Control Appendix.
10 of 78
Source Test Report
Testing Methodology
AST-2023-3003 Nodal Power – Layton, UT Page 2-4
Within two (2) hours prior to testing, zero gas was introduced through the sampling system to the analyzer. After
adjusting the analyzer to the Zero gas concentration and once the analyzer reading was stable, the analyzer value
was recorded. This process was repeated for the High Level gas, and the time required for the analyzer reading to
reach 95 percent of the gas concentration was recorded to determine the response time. Next, Low and Mid Level
gases were introduced through the sampling system to the analyzer, and the response was recorded when it was
stable. All values were less than +/- 5 percent of the calibration gas concentrations.
Mid Level gas was introduced through the sampling system. After the analyzer response was stable, the value was
recorded. Next, Zero gas was introduced through the sampling system, and the analyzer value recorded once it
reached a stable response. The Analyzer Drift was less than +/- 3 percent of the span value.
A Data Acquisition System (Dutech Analog Signal Modules) with battery backup was used to record the instrument
response in one (1) minute averages. The data was continuously stored as a *.CSV file in Excel format on the hard
drive of a computer. At the completion of testing, the data was also saved to the Alliance server. All data was
reviewed by the Field Team Leader before leaving the facility. Once arriving at Alliance’s office, all written and
electronic data was relinquished to the report coordinator and then a final review was performed by the Project
Manager.
11 of 78
Appendix A
12 of 78
Example Calculations
Location
Source
Project No.
Run No.
Parameter(s)
Meter Pressure (Pm), in. Hg
where,
Pb 25.47 = barometric pressure, in. Hg
ΔH 1.100 = pressure differential of orifice, in H2O
Pm 25.55 = in. Hg
Absolute Stack Gas Pressure (Ps), in. Hg
where,
Pb 25.47 = barometric pressure, in. Hg
Pg 1.40 = static pressure, in. H2O
Ps 25.57 = in. Hg
Standard Meter Volume (Vmstd), dscf
where,
Y 0.992 = meter correction factor
Vm 37.782 = meter volume, cf
Pm 25.55 = absolute meter pressure, in. Hg
Tm 547.4 = absolute meter temperature, °R
Vmstd 30.855 = dscf
Standard Wet Volume (Vwstd), scf
where,
Vlc 96.0 = Volume of H2O collected, ml
Vwstd 4.527 = scf
Moisture Fraction (BWSsat), dimensionless (theoretical at saturated conditions)
where,
Ts 773.8 = stack temperature, °F
Ps 25.6 = absolute stack gas pressure, in. Hg
BWSsat 1.000 = dimensionless
Moisture Fraction (BWS), dimensionless
where,
Vwstd 4.527 = standard wet volume, scf
Vmstd 30.855 = standard meter volume, dscf
BWS 0.128 = dimensionless
Moisture Fraction (BWS), dimensionless
where,
BWSsat 1.000 = moisture fraction (theoretical at saturated conditions)
BWSmsd 0.128 = moisture fraction (measured)
BWS 0.128
Molecular Weight (DRY) (Md), lb/lb-mole
where,
CO2 10.67 = carbon dioxide concentration, %
O2 8.64 = oxygen concentration, %
Md 30.05 = lb/lb mol
Molecular Weight (WET) (Ms), lb/lb-mole
where,
Md 30.05 = molecular weight (DRY), lb/lb mol
BWS 0.128 = moisture fraction, dimensionless
Ms 28.51 = lb/lb mol
Nodal Power - Nodal Power - Davis Landfill, Layton
LFG Generator
AST-2023-3003
1
VFR
Vwstd = 0.04716 x Vlc
Vmstd =
17.636 x Vm x Pm x Y
Tm
BWS =
Vwstd
(Vwstd +Vmstd)
Ms = Md (1 − BWS) + 18.015 (BWS)
Md = (0.44 × % CO ) + (0.32 × % O2) + (0.28 (100 − % CO − % O2))
BWS = BWSmsd unless BWSsat <BWSmsd
BWSsat = 10 . ,
Ps
Ps = Pb +
Pg
13 6
Pm = Pb +
Δ H
13 6
13 of 78
Example Calculations
Location
Source
Project No.
Run No.
Parameter(s)
Nodal Power - Nodal Power - Davis Landfill, Layton
LFG Generator
AST-2023-3003
1
VFR
Average Velocity (Vs), ft/sec
where,
Cp 0.81 = pitot tube coefficient
Δ P1/2 1.354 = average pre/post test velocity head of stack gas, (in. H2O)1/2
Ts 1233.5 = average pre/post test absolute stack temperature, °R
Ps 25.57 = absolute stack gas pressure, in. Hg
Ms 28.51 = molecular weight of stack gas, lb/lb mol
Vs 122.1 = ft/sec
Average Stack Gas Flow at Stack Conditions (Qa), acfm
where,
Vs 122.1 = stack gas velocity, ft/sec
As 1.72 = cross-sectional area of stack, ft
2
Qa 12,586 = acfm
Average Stack Gas Flow at Standard Conditions (Qs), dscfm
Ps
Ts
where,
Qa 12,586 = average stack gas flow at stack conditions, acfm
BWS 0.128 = moisture fraction, dimensionless
Ps 25.57 = absolute stack gas pressure, in. Hg
Ts 1233.5 = average pre/post test absolute stack temperature, °R
Qs 4,013 = dscfm
Dry Gas Meter Calibration Check (Yqa), percent
where,
Y 0.992 = meter correction factor, dimensionless
Θ 60 = run time, min.
Vm 37.782 = total meter volume, dcf
Tm 547.4 = absolute meter temperature, °R
ΔH@ 1.86 = orifice meter calibration coefficient, in. H2O
Pb 25.47 = barometric pressure, in. Hg
ΔH avg 1.100 = average pressure differential of orifice, in H2O
Md 30.06 = molecular weight (DRY), lb/lb mol
(Δ H)1/2 1.049 = average square root pressure differential of orifice, (in. H2O)1/2
Yqa 0.0 = percent
Qsd = 17.636 x Qa x (1 - BWS) x
Vs = 85.49 × Cp × (Δ P / ) avg × Ts
Ps x Ms
Qa = 60 × Vs × As
Yqa =
Y −
Θ
Vm 0.0319 × Tm × 29
ΔH@ × Pb + Δ Havg.
13.6 × Md
ΔH avg.
Y × 100
14 of 78
Location:
Source:
Project No.:
Run No. /Method
O₂ - Outlet Concentration (CO₂), % dry
CMA
( CM - C0 )
where,
Cobs 8.59 = average analyzer value during test, % dry
Co 0.07 = average of pretest & posttest zero responses, % dry
CMA 10.95 = actual concentration of calibration gas, % dry
CM 10.86 = average of pretest & posttest calibration responses, % dry
CO₂8.64 = O₂ Concentration, % dry
Nodal Power – Davis Landfill, Layton, UT
LFG Generator
AST-2023-3003
Run 1 / Method 3A
CO₂ = ( Cobs - C0 ) x
15 of 78
Location:
Source:
Project No.:
Run No. /Method
CO₂ - Outlet Concentration (CCO₂), % dry
CMA
( CM - C0 )
where,
Cobs 10.70 = average analyzer value during test, % dry
Co 0.08 = average of pretest & posttest zero responses, % dry
CMA 10.78 = actual concentration of calibration gas, % dry
CM 10.81 = average of pretest & posttest calibration responses, % dry
CCO₂10.67 = CO₂ Concentration, % dry
Nodal Power – Davis Landfill, Layton, UT
LFG Generator
AST-2023-3003
Run 1 / Method 3A
CCO₂ = ( Cobs - C0 ) x
16 of 78
Location:
Source:
Project No.:
Run No. /Method
NOx - Outlet Concentration (CNOx), ppmvd
CMA
( CM - C0 )
where,
Cobs 49.10 = average analyzer value during test, ppmvd
Co 0.44 = average of pretest & posttest zero responses, ppmvd
CMA 200.00 = actual concentration of calibration gas, ppmvd
CM 193.54 = average of pretest & posttest calibration responses, ppmvd
CNOx 50.40 = NOx Concentration, ppmvd
NOx - Outlet Concentration (CNOxc15), ppmvd @ 15% O₂
20.9 - 15
20.9 - O₂
where,
CNOx 50.40 = NOx - Outlet Concentration, ppmvd
CO₂8.64 = oxygen concentration, %
CNOxc15 24.26 = ppmvd @15% O₂
NOx - Outlet Emission Rate (ERNOx), lb/hr
where,
CNOx 50.40 = NOx - Outlet Concentration, ppmvd
MW 46.0055 = NOx molecular weight, g/g-mole
Qs 4,013 = stack gas volumetric flow rate at standard conditions, dscfm
ERNOx 1.5 = lb/hr
NOx - Outlet Emission Rate (ERNOxTPY), ton/yr
ERNOx x 8,760
2,000
where,
ERNOx 1.5 = NOx - Outlet Emission Rate, lb/hr
ERNOxTPY 6.4 = ton/yr
NOx - Outlet Emission Factor (EFNOx), g/hp-hr
ERNOx x 453.592
EBW
where,
ERNOx 1.5 = NOx - Outlet Emission Rate, lb/hr
EBW 1,965 = engine brake work, HP
EFNOx 0.33 = g/hp-hr
Nodal Power – Davis Landfill, Layton, UT
LFG Generator
AST-2023-3003
Run 1 / Method 7E
CNOxc15 = CNOx x
CNOx = ( Cobs - C0 ) x
ERNOx =CNOx x MW x Qs x 60 x 28.32
24.04 x 1.0E06 x 453.592
ERNOxTPY =
EFNOx =
ℎ
−
ℎ
17 of 78
Location:
Source:
Project No.:
Run No. /Method
CO - Outlet Concentration (CCO), ppmvd
CMA
( CM - C0 )
where,
Cobs 630.02 = average analyzer value during test, ppmvd
Co 0.68 = average of pretest & posttest zero responses, ppmvd
CMA 500.00 = actual concentration of calibration gas, ppmvd
CM 470.43 = average of pretest & posttest calibration responses, ppmvd
CCO 669.87 = CO Concentration, ppmvd
CO - Outlet Concentration (CCOc15), ppmvd @ 15% O₂
20.9 - 15
20.9 - O₂
where,
CCO 669.87 = CO - Outlet Concentration, ppmvd
CO₂8.64 = oxygen concentration, %
CCOc15 322.48 = ppmvd @15% O₂
CO - Outlet Emission Rate (ERCO), lb/hr
where,
CCO 669.87 = CO - Outlet Concentration, ppmvd
MW 28.01 = CO molecular weight, g/g-mole
Qs 4,013 = stack gas volumetric flow rate at standard conditions, dscfm
ERCO 11.7 = lb/hr
CO - Outlet Emission Rate (ERCOTPY), ton/yr
ERCO x 8,760
2,000
where,
ERCO 11.7 = CO - Outlet Emission Rate, lb/hr
ERCOTPY 51.4 = ton/yr
CO - Outlet Emission Factor (EFCO), g/hp-hr
ERCO x 453.592
EBW
where,
ERCO 11.7 = CO - Outlet Emission Rate, lb/hr
EBW 1,965 = engine brake work, HP
EFCO 2.7 = g/hp-hr
Nodal Power – Davis Landfill, Layton, UT
LFG Generator
AST-2023-3003
Run 1 / Method 10
CCOc15 = CCO x
CCO = ( Cobs - C0 ) x
ERCO =CCO x MW x Qs x 60 x 28.32
24.04 x 1.0E06 x 453.592
ERCOTPY =
EFCO =
ℎ
−
ℎ
18 of 78
Location:
Source:
Project No.:
Run No. /Method
NMHC - Outlet Concentration (as C3H8) (CNMHC), ppmvd
CNMHCw
1 - BWS
where,
CNMHCw 21.99 = NMHC - Outlet Concentration (as C3H8), ppmvw
BWS 0.128 = moisture fraction, unitless
CNMHC 25.22 = ppmvd
NMHC - Outlet Concentration (as C3H8) (CNMHCc15), ppmvd @ 15% O₂
20.9 - 15
20.9 - O₂
where,
CNMHC 25.22 = NMHC - Outlet Concentration (as C3H8), ppmvd
CO₂8.64 = oxygen concentration, %
CNMHCc15 12.14 = ppmvd @15% O₂
NMHC - Outlet Emission Rate (as C3H8) (ERNMHC), lb/hr
where,
CNMHC 25.22 = NMHC - Outlet Concentration (as C3H8), ppmvd
MW 44.1 = NMHC molecular weight, g/g-mole
Qs 4,013 = stack gas volumetric flow rate at standard conditions, dscfm
ERNMHC 0.70 = lb/hr
NMHC - Outlet Emission Rate (as C3H8) (ERNMHCTPY), ton/yr
ERNMHC x 8,760
2,000
where,
ERNMHC 0.70 = NMHC - Outlet Emission Rate (as C3H8), lb/hr
ERNMHCTPY 3.0 = ton/yr
NMHC - Outlet Emission Factor (as C3H8) (EFNMHC), g/hp-hr
ERNMHC x 454
EBW
where,
ERNMHC 0.70 = NMHC - Outlet Emission Rate (as C3H8), lb/hr
EBW 1,965 = engine brake work, HP
EFNMHC 0.16 = g/hp-hr
ERNMHCTPY =
EFNMHC =
ERNMHC =CNMHC x MW x Qs x 60 x 28.32
24.04 x 1.0E06 x 454
CNMHC =
CNMHCc15 = CNMHC x
Nodal Power – Davis Landfill, Layton, UT
LFG Generator
AST-2023-3003
Run 1 / Method Alt-096
ℎ
−
ℎ
19 of 78
Appendix B
20 of 78
Emissions Calculations
Location
Source
Project No.
Run Number Run 1 Run 2 Run 3 Average
Date 8/10/23 8/10/23 8/10/23 --
Start Time 14:05 15:26 16:50 --
Stop Time 15:05 16:26 17:50 --
Engine Manufacturer
Engine Model
Engine Serial Number
Engine Type
Engine Date of Manufacturer DOM
Engine Hour Meter Reading EMR
Generator Output, kW Gen OP 1,408 1,400 1,398 1,402
Engine Brake Work, HP EBW 1,965 1,954 1,951 1,957
Maximum Brake Work, HP MaxEBW 2,233 2,233 2,233 2,233
Engine Load, % EL 88% 87% 87% 88%
Ambient Temperature TAmb 80 80 80 80
Relative Humidity, % RH
12 12 12 12
Barometric Pressure, in. Hg Pb
25.50 25.50 25.50 25.50
Moisture Fraction, dimensionless BWS 0.128 0.129 0.125 0.127
Volumetric Flow Rate (M1-4), dscfm Qs 4,013 3,854 4,007 3,958
O₂ Concentration, % dry CO₂8.64 8.75 8.75 8.72
CO₂ Concentration, % dry CCO₂10.67 10.59 10.60 10.62
CO Concentration, ppmvd CCO 669.87 666.42 662.24 666.17
CO Concentration, ppmvd @ 15 % O₂CCOc15 322.48 323.63 321.61 322.57
CO Emission Rate, lb/hr ERCO 11.7 11.2 11.6 11.5
CO Emission Rate, ton/yr ERCOTPY 51.4 49.1 50.7 50.4
CO Emission Factor, g/HP-hr EFCO 2.7 2.6 2.7 2.7
NOx Concentration, ppmvd CNOx 50.40 49.27 47.82 49.16
NOx Concentration, ppmvd @ 15 % O₂CNOxc15 24.26 23.93 23.22 23.80
NOx Emission Rate, lb/hr ERNOx 1.5 1.4 1.4 1.4
NOx Emission Rate, ton/yr ERNOxTPY 6.4 6.0 6.0 6.1
NOx Emission Factor, g/HP-hr EFNOx 0.3 0.3 0.3 0.3
NMHC (as C3H8) Concentration, ppmvd CNMHC 25.22 26.37 26.43 26.01
NMHC (as C3H8) Concentration, ppmvw CNMHCw 21.99 22.97 23.13 22.70
NMHC (as C3H8) Concentration, ppmvd @ 15 % O₂CNMHCc15 12.14 12.81 12.84 12.59
NMHC (as C3H8) Emission Rate, lb/hr ERNMHC 0.70 0.70 0.73 0.71
NMHC (as C3H8) Emission Rate, ton/yr ERNMHCTPY 3.0 3.1 3.2 3.1
NMHC (as C3H8) Emission Factor, g/HP-hr EFNMHC 0.16 0.16 0.17 0.16
Nodal Power – Davis Landfill, Layton, UT
LFG Generator
AST-2023-3003
Caterpillar
G3520C
GZJ00710
Compression/Spark, Rich/Lean
7/7/1905
Engine Data
3,581
Input Data - Outlet
Calculated Data - Outlet
21 of 78
Method 1 Data
Location
Source
Project No.
Date
Vertical
Circular
25.25 in
7.50 in
17.75 in
1.72 ft2
2
1
3.4 ft
2.3 (must be > 0.5)
3.1 ft
2.1 (must be > 2)
16
16
Measurer (Initial and Date):AML 8/10
Reviewer (Initial and Date):SPR 8/10
2 3 4 5 6 7 8 9 10 11 12
1 14.6 -- 6.7 -- 4.4 -- 3.2 -- 2.6 -- 2.1 1 3.2 0.57 8.07
2 85.4 -- 25.0 -- 14.6 -- 10.5 -- 8.2 -- 6.7 2 10.5 1.86 9.36
3 -- -- 75.0 -- 29.6 -- 19.4 -- 14.6 -- 11.8 3 19.4 3.44 10.94
4 -- -- 93.3 -- 70.4 -- 32.3 -- 22.6 -- 17.7 4 32.3 5.73 13.23
5 -- -- -- -- 85.4 -- 67.7 -- 34.2 -- 25.0 5 67.7 12.02 19.52
6 -- -- -- -- 95.6 -- 80.6 -- 65.8 -- 35.6 6 80.6 14.31 21.81
7 -- -- -- -- -- -- 89.5 -- 77.4 -- 64.4 7 89.5 15.89 23.39
8 -- -- -- -- -- -- 96.8 -- 85.4 -- 75.0 8 96.8 17.18 24.68
9 -- -- -- -- -- -- -- -- 91.8 -- 82.3 9 -- -- --
10 -- -- -- -- -- -- -- -- 97.4 -- 88.2 10 -- -- --
11 -- -- -- -- -- -- -- -- -- -- 93.3 11 -- -- --
12 -- -- -- -- -- -- -- -- -- -- 97.9 12 -- -- --
*Percent of stack diameter from inside wall to traverse point.
A = 3.42 ft.
B = 3.13 ft.
Depth of Duct = 17.75 in.
Number of traverse points on a diameter
Stack Diagram
Cross Sectional Area
LOCATION OF TRAVERSE POINTS
Traverse
Point
% of
Diameter
Distance
from inside
wall
Distance
from
outside of
port
Number of Readings per Point:
Distance A:
Distance A Duct Diameters:
Distance B:
Distance B Duct Diameters:
Minimum Number of Traverse Points:
Actual Number of Traverse Points:
CIRCULAR DUCT
Cross Sectional Area of Duct:
Nodal Power - Nodal Power - Davis Landfill, Layton
LFG Generator
AST-2023-3003
Stack Parameters
Duct Orientation:
Duct Design:
Distance from Far Wall to Outside of Port:
Nipple Length:
Depth of Duct:
No. of Test Ports:
Upstream
Disturbance
Downstream
Disturbance
B
A
22 of 78
Cyclonic Flow Check
Location
Source
Project No.
Date
Sample Point Angle (ΔP=0)
1 0
2 0
3 5
4 5
5 5
6 0
7 0
8 5
9 0
10 0
11 0
12 5
13 5
14 5
15 5
16 5
Average 2.8
Nodal Power - Nodal Power - Davis Landfill, Layton
LFG Generator
AST-2023-3003
8/10/23
23 of 78
Field Data
Method 2 Data
Location
Source
Project No.
Δ P
(in. WC)
Ts
(°F)
Δ P
(in. WC)
Ts
(°F)
Δ P
(in. WC)
Ts
(°F)
1.20 751 1.30 790 1.40 785
1.50 753 1.40 788 1.50 788
1.70 753 1.50 789 1.70 791
1.70 768 1.60 789 1.70 792
2.00 778 1.80 787 1.90 792
2.10 781 1.90 787 2.10 792
2.20 782 2.10 788 2.20 793
2.20 784 2.40 790 2.30 793
1.50 768 1.40 788 1.60 786
1.60 769 1.50 789 1.50 787
1.80 776 1.60 790 1.70 787
1.90 779 1.70 791 1.80 790
1.90 782 1.80 789 1.90 790
2.10 782 1.80 787 2.00 791
2.00 786 1.90 787 2.10 790
2.10 789 1.90 788 2.20 788
Average
Square Root of ΔP, (in. WC)1/2 (ΔP)1/2 1.340
Average ΔP, in. WC (ΔP)1.81
Pitot Tube Coefficient (Cp)0.811
Barometric Pressure, in. Hg (Pb)25.47
Static Pressure, in. WC (Pg)1.33
Stack Pressure, in. Hg (Ps)25.57
Average Temperature, °F (Ts)784.0
Average Temperature, °R (Ts)1243.7
Measured Moisture Fraction (BWSmsd)0.127
Moisture Fraction @ Saturation (BWSsat)1.000
Moisture Fraction (BWS)0.127
O2 Concentration, % (O2)8.71
CO2 Concentration, % (CO2)10.62
Molecular Weight, lb/lb-mole (dry) (Md)30.05
Molecular Weight, lb/lb-mole (wet) (Ms)28.52
Velocity, ft/sec (Vs)121.3
VFR at stack conditions, acfm (Qa)12,508
VFR at standard conditions, scfh (Qsw)272,120
VFR at standard conditions, scfm (Qsw)4,535
VFR at standard conditions, dscfm (Qsd)3,958
1.0001.0001.000
0.1250.1290.128
4,013 3,854 4,007
4,602 4,425 4,579
276,104 265,529 274,727
12,586 12,252 12,688
122.1 118.8 123.1
28.51 28.49 28.54
30.05 30.04 30.05
8.64 8.75 8.75
10.67 10.59 10.60
0.128 0.129 0.125
1233.5 1248.2 1249.4
773.8 788.6 789.7
25.57 25.57 25.57
1.40 1.30 1.30
25.47 25.47 25.47
0.811 0.811 0.811
1.84 1.73 1.85
1.354 1.309 1.356
3
4
5
6
7
5
6
7
8
B1
2
Traverse Point
1
2
3
4
Leak Check Pass Pass Pass
Stop Time 15:05 16:26 17:50
Start Time 14:05 15:26 16:50
8
Nodal Power - Nodal Power - Davis Landfill, Layton
LFG Generator
AST-2023-3003
Run No. 1 2 3
Status VALID VALID VALID
Date 8/10/23 8/10/23 8/10/23
24 of 78
Method 4 Data
Location
Source
Project No.
Parameter(s)
Console Units / Method ft3 M4
Run No.
Date
Status
Start Time
End Time
Run Time, min (θ)
Meter ID
Meter Correction Factor (Y)
Orifice Calibration Value (ΔH @)
Max Vacuum, in. Hg
Post Leak Check, ft3/min (at max vac.)
Meter Volume, ft3
Total Meter Volume, ft3 (Vm)
Meter Probe Filter Vacuum Imp. Exit Meter Probe Filter Vacuum Imp. Exit Meter Probe Filter Vacuum Imp. Exit
82 -- -- 5 67 85 -- -- 3 66 88 -- -- 3 63
85 -- -- 6 49 86 -- -- 3 53 88 -- -- 3 53
86 -- -- 7 46 86 -- -- 3 51 89 -- -- 3 47
86 -- -- 7 46 86 -- -- 3 51 89 -- -- 3 46
87 -- -- 7 48 87 -- -- 3 52 90 -- -- 3 46
87 -- -- 7 49 87 -- -- 3 52 90 -- -- 3 47
88 -- -- 7 50 87 -- -- 4 52 90 -- -- 3 47
88 -- -- 7 51 89 -- -- 4 53 90 -- -- 3 47
89 -- -- 7 52 89 -- -- 4 54 91 -- -- 3 48
90 -- -- 7 53 89 -- -- 4 54 91 -- -- 3 49
90 -- -- 7 54 89 -- -- 4 54 91 -- -- 3 49
91 -- -- 7 55 90 -- -- 4 55 91 -- -- 3 49
91 -- -- 7 56 90 -- -- 4 55 91 -- -- 3 49
Average Temperature, °F (Tm)88 -- -- 7 52 88 -- -- 4 54 90 -- -- 3 49
Average Temperature, °R (Tm)547 -- -- -- -- 547 -- -- -- -- 550 -- -- -- --
Minimum Temperature, °F 82 -- -- 5 46 85 -- -- 3 51 88 -- -- 3 46
Maximum Temperature, °F 91 -- -- 7 67 90 -- -- 4 66 91 -- -- 3 63
Barometric Pressure, in. Hg (Pb)
Meter Orifice Pressure , in. WC (ΔH)
Meter Pressure, in. Hg (Pm)
Standard Meter Volume, ft3 (Vmstd)
Analysis Type
Impinger 1, Pre/Post Test, g 771.3 846.0 74.7 846.0 922.2 76.2 719.8 798.1 78.3
Impinger 2, Pre/Post Test, g 749.5 758.8 9.3 758.8 768.9 10.1 758.8 767.8 9.0
Impinger 3, Pre/Post Test, g 620.7 622.7 2.0 622.7 625.5 2.8 625.5 627.3 1.8
Impinger 4, Pre/Post Test, g 922.5 932.5 10.0 932.5 940.2 7.7 940.2 944.9 4.7
Volume Water Collected, mL (Vlc)
Standard Water Volume, ft3 (Vwstd)
Moisture Fraction Measured (BWS)
Gas Molecular Weight, lb/lb-mole (dry) (Md)
DGM Calibration Check Value (Yqa)
0
5
10
15
20
25
10
15
20
25
40
45
50
55
30
35
40
45
50
55
60
7
.001 @ 10
20.851
24.055
27.225
30.390
33.525
36.640
39.790
42.940
46.085
49.220
52.330
55.500
58.633
25.47
96.0
4.527
0.128
1.100
25.55
30.855
H2O
H2O
Empty
Gravimetric
30.06
0.0
25.55
30.801
25.55
30.983
Gravimetric Gravimetric
Silica Silica Silica
H2O
96.8
4.565
0.129
37.782 37.716 38.093
59.635
62.820
66.020
69.225
72.395
75.470
78.610
81.745
84.880
87.965
91.075
94.220
97.351
97.502
100.755
103.920
107.170
110.390
113.515
116.700
119.810
122.985
126.155
129.340
132.375
135.595
VALID
15:26
16:26
60
MB-704
0.992
1.860
4
.001 @8
2
8/10/23
3
8/10/23
25.47
1.100
25.47
1.100
H2O
Empty
.001 @ 6
30.05
-0.2
93.8
4.424
0.125
0.6
30.05
H2O
H2O
Empty
16:50
17:50
60
MB-704
0.992
1.860
3
Nodal Power - Nodal Power - Davis Landfill, Layton
LFG Generator
AST-2023-3003
VFR
1
VALID
8/10/23
14:05
15:05
60
MB-704
0.992
1.860
VALID
Temperature, °F
0
5
30
35
60
25 of 78
Run 1 - RM Data
Location:
Source:
Project No.:
Date:
Time O₂ - Outlet CO₂ - Outlet CO - Outlet NOx - Outlet NMHC - Outlet
Unit % dry % dry ppmvd ppmvd ppmvw
Status Valid Valid Valid Valid Valid
14:05 8.52 10.73 641.34 48.75 19.64
14:06 8.54 10.72 642.39 50.07 22.55
14:07 8.57 10.70 639.29 51.32 22.44
14:08 8.56 10.72 639.11 49.42 22.19
14:09 8.59 10.70 640.69 50.02 22.19
14:10 8.58 10.71 636.24 50.52 22.35
14:11 8.58 10.71 634.21 49.38 22.63
14:12 8.58 10.72 635.25 49.03 22.38
14:13 8.56 10.73 635.80 49.01 22.26
14:14 8.56 10.72 636.96 48.62 22.39
14:15 8.57 10.73 638.86 49.19 22.55
14:16 8.58 10.71 636.79 49.54 22.48
14:17 8.57 10.73 637.02 49.48 22.20
14:18 8.57 10.72 635.40 48.26 22.12
14:19 8.58 10.70 637.08 48.94 22.08
14:20 8.59 10.70 634.61 48.16 21.79
14:21 8.58 10.70 638.06 49.04 21.71
14:22 8.62 10.68 633.20 49.86 21.33
14:23 8.61 10.68 633.71 47.93 21.81
14:24 8.63 10.67 630.55 48.64 21.61
14:25 8.62 10.69 629.78 48.12 21.61
14:26 8.59 10.71 629.23 46.85 22.12
14:27 8.58 10.72 631.85 47.54 21.92
14:28 8.59 10.72 634.14 48.42 22.01
14:29 8.61 10.69 632.40 49.75 21.80
14:30 8.60 10.69 629.23 47.56 22.14
14:31 8.59 10.70 630.15 47.38 21.83
14:32 8.58 10.71 627.28 47.92 21.28
14:33 8.57 10.73 627.73 47.54 21.31
14:34 8.58 10.72 633.11 48.28 21.78
14:35 8.60 10.71 634.78 50.19 21.86
14:36 8.62 10.67 631.72 52.12 21.36
14:37 8.61 10.68 629.10 50.09 21.45
14:38 8.61 10.68 627.38 49.68 22.23
14:39 8.61 10.68 627.00 49.41 22.22
14:40 8.60 10.68 624.05 49.49 22.56
14:41 8.59 10.70 626.35 48.45 21.88
14:42 8.59 10.70 625.82 50.44 21.82
14:43 8.61 10.69 622.62 48.44 22.05
14:44 8.59 10.69 622.92 46.74 22.13
14:45 8.58 10.71 624.92 47.35 21.95
14:46 8.55 10.73 629.26 48.19 21.95
14:47 8.57 10.72 627.04 49.52 22.02
14:48 8.58 10.71 627.56 49.66 22.15
14:49 8.60 10.69 625.44 49.63 22.27
14:50 8.58 10.70 623.95 47.57 22.39
14:51 8.57 10.71 624.88 48.57 22.46
14:52 8.56 10.72 627.90 48.82 22.23
14:53 8.59 10.69 626.48 51.08 21.80
14:54 8.59 10.69 624.65 49.46 21.54
14:55 8.58 10.71 624.84 49.25 21.79
14:56 8.59 10.69 626.02 49.90 22.14
14:57 8.61 10.67 623.83 50.46 22.24
14:58 8.59 10.69 625.06 49.77 22.24
14:59 8.61 10.68 623.49 50.87 21.97
15:00 8.62 10.67 620.93 49.48 22.06
15:01 8.61 10.67 621.68 49.36 22.13
15:02 8.61 10.68 620.42 49.00 22.11
15:03 8.59 10.69 619.62 49.11 21.96
15:04 8.61 10.69 620.21 49.58 22.05
Parameter O₂ - Outlet CO₂ - Outlet CO - Outlet NOx - Outlet NMHC - Outlet
Uncorrected Run Average (Cobs)8.59 10.70 630.02 49.10 21.99
Cal Gas Concentration (CMA)10.95 10.78 500.00 200.00 40.00
Pretest System Zero Response 0.12 0.10 0.80 0.15 0.04
Posttest System Zero Response 0.02 0.06 0.55 0.73 0.04
Average Zero Response (Co)0.07 0.08 0.68 0.44 0.04
Pretest System Cal Response 10.94 10.84 479.39 192.76 39.74
Posttest System Cal Response 10.78 10.78 461.47 194.32 39.32
Average Cal Response (CM)10.86 10.81 470.43 193.54 39.53
Corrected Run Average (Corr)8.64 10.67 669.87 50.40 NA
Nodal Power – Davis Landfill, Layton, UT
LFG Generator
AST-2023-3003
8/10/23
26 of 78
Run 2 - RM Data
Location:
Source:
Project No.:
Date:
Time O₂ - Outlet CO₂ - Outlet CO - Outlet NOx - Outlet NMHC - Outlet
Unit % dry % dry ppmvd ppmvd ppmvw
Status Valid Valid Valid Valid Valid
15:26 8.64 10.62 618.77 47.92 22.23
15:27 8.64 10.62 614.55 47.36 22.16
15:28 8.60 10.66 617.26 46.11 22.36
15:29 8.62 10.66 616.25 48.10 22.31
15:30 8.61 10.66 618.92 47.96 22.36
15:31 8.63 10.65 616.06 47.49 21.94
15:32 8.61 10.68 618.31 47.86 22.05
15:33 8.62 10.66 617.72 50.19 22.21
15:34 8.62 10.66 615.43 48.53 22.67
15:35 8.63 10.66 612.97 48.36 22.72
15:36 8.62 10.67 611.86 46.47 22.73
15:37 8.62 10.66 612.51 48.02 22.79
15:38 8.60 10.68 611.38 47.41 22.67
15:39 8.59 10.69 612.47 46.40 22.64
15:40 8.59 10.70 616.58 48.09 22.83
15:41 8.59 10.69 617.21 48.71 22.85
15:42 8.60 10.67 613.16 49.83 22.65
15:43 8.62 10.67 612.47 48.66 23.17
15:44 8.61 10.67 613.71 48.38 23.30
15:45 8.62 10.67 612.87 49.10 22.94
15:46 8.63 10.66 610.99 48.87 22.99
15:47 8.61 10.68 610.08 47.16 23.18
15:48 8.61 10.69 612.87 48.71 23.20
15:49 8.60 10.69 612.95 49.31 23.28
15:50 8.60 10.71 610.53 48.21 23.12
15:51 8.59 10.71 613.24 48.30 22.91
15:52 8.58 10.70 614.53 50.07 22.68
15:53 8.60 10.70 614.66 49.82 22.72
15:54 8.61 10.69 611.78 49.99 22.99
15:55 8.61 10.69 611.51 50.28 23.17
15:56 8.60 10.69 610.91 49.07 23.20
15:57 8.61 10.69 612.96 50.36 23.20
15:58 8.59 10.69 611.12 49.67 23.22
15:59 8.60 10.69 613.67 49.60 23.31
16:00 8.61 10.68 612.83 50.65 23.35
16:01 8.61 10.69 613.56 50.24 23.04
16:02 8.63 10.68 611.20 50.19 23.04
16:03 8.62 10.67 608.84 49.17 23.19
16:04 8.60 10.70 608.42 48.60 23.29
16:05 8.60 10.70 611.27 48.41 23.46
16:06 8.61 10.68 609.99 49.06 23.51
16:07 8.61 10.70 609.31 48.97 23.42
16:08 8.62 10.67 606.89 48.58 23.25
16:09 8.60 10.71 606.86 47.26 23.28
16:10 8.59 10.70 605.56 47.38 23.24
16:11 8.59 10.71 606.38 47.89 22.97
16:12 8.58 10.73 607.67 48.57 22.97
16:13 8.59 10.72 606.99 49.17 23.06
16:14 8.58 10.72 609.06 48.06 23.07
16:15 8.58 10.73 612.24 49.73 22.95
16:16 8.59 10.72 613.78 51.42 22.99
16:17 8.62 10.71 612.49 51.50 23.09
16:18 8.63 10.70 609.04 50.45 23.15
16:19 8.62 10.70 607.85 49.91 23.39
16:20 8.63 10.70 609.51 49.48 23.49
16:21 8.64 10.69 606.56 49.67 23.40
16:22 8.63 10.70 604.31 47.33 23.43
16:23 8.62 10.72 603.83 47.16 23.23
16:24 8.62 10.72 602.55 46.83 23.12
16:25 8.60 10.74 603.02 46.66 23.12
Parameter O₂ - Outlet CO₂ - Outlet CO - Outlet NOx - Outlet NMHC - Outlet
Uncorrected Run Average (Cobs)8.61 10.69 611.54 48.71 22.97
Cal Gas Concentration (CMA)10.95 10.78 500.00 200.00 40.00
Pretest System Zero Response 0.02 0.06 0.55 0.73 0.04
Posttest System Zero Response 0.00 0.03 0.44 0.22 0.05
Average Zero Response (Co)0.01 0.05 0.50 0.48 0.05
Pretest System Cal Response 10.78 10.78 461.47 194.32 39.32
Posttest System Cal Response 10.76 10.98 456.43 198.23 38.38
Average Cal Response (CM)10.77 10.88 458.95 196.28 38.85
Corrected Run Average (Corr)8.75 10.59 666.42 49.27 NA
Nodal Power – Davis Landfill, Layton, UT
LFG Generator
AST-2023-3003
8/10/23
27 of 78
Run 3 - RM Data
Location:
Source:
Project No.:
Date:
Time O₂ - Outlet CO₂ - Outlet CO - Outlet NOx - Outlet NMHC - Outlet
Unit % dry % dry ppmvd ppmvd ppmvw
Status Valid Valid Valid Valid Valid
16:50 8.59 10.81 603.26 43.51 22.75
16:51 8.59 10.76 606.58 46.46 22.87
16:52 8.61 10.74 605.10 48.41 22.88
16:53 8.60 10.73 603.27 46.55 23.24
16:54 8.60 10.72 604.00 47.59 23.13
16:55 8.60 10.72 605.13 46.95 23.17
16:56 8.59 10.71 606.26 47.59 23.25
16:57 8.59 10.69 606.13 48.27 23.00
16:58 8.61 10.69 603.24 47.40 22.91
16:59 8.59 10.69 602.16 46.61 23.20
17:00 8.58 10.71 603.39 46.17 23.22
17:01 8.59 10.69 606.31 48.14 22.99
17:02 8.60 10.68 606.15 50.17 22.95
17:03 8.61 10.67 603.74 48.43 22.84
17:04 8.62 10.67 601.94 48.07 23.56
17:05 8.59 10.70 601.89 47.09 23.41
17:06 8.59 10.69 603.69 47.84 23.26
17:07 8.62 10.67 601.34 48.72 23.16
17:08 8.59 10.69 601.70 46.46 23.10
17:09 8.58 10.69 600.81 47.38 23.21
17:10 8.60 10.67 603.69 48.28 23.18
17:11 8.59 10.68 602.27 48.98 23.11
17:12 8.60 10.67 602.11 48.00 23.09
17:13 8.59 10.68 602.23 48.82 23.37
17:14 8.60 10.66 603.87 47.81 23.55
17:15 8.61 10.66 600.91 49.85 23.34
17:16 8.62 10.65 599.57 47.37 23.30
17:17 8.58 10.67 600.04 47.04 23.61
17:18 8.58 10.66 597.34 47.61 23.68
17:19 8.59 10.67 598.68 47.37 23.16
17:20 8.58 10.68 597.36 46.57 22.78
17:21 8.57 10.69 599.42 46.36 22.99
17:22 8.58 10.68 599.44 46.58 22.58
17:23 8.59 10.67 599.79 48.30 22.94
17:24 8.58 10.68 600.47 47.44 22.86
17:25 8.59 10.67 600.06 48.78 22.83
17:26 8.57 10.68 602.33 47.52 22.97
17:27 8.60 10.65 602.02 49.53 22.98
17:28 8.60 10.66 602.15 49.43 22.99
17:29 8.62 10.63 598.37 49.27 22.89
17:30 8.61 10.63 597.35 46.73 22.97
17:31 8.57 10.67 602.01 47.27 23.25
17:32 8.57 10.67 602.66 49.85 23.10
17:33 8.59 10.66 600.01 49.62 22.99
17:34 8.60 10.64 600.19 48.51 23.05
17:35 8.61 10.63 598.57 48.40 23.40
17:36 8.60 10.64 599.54 48.14 23.30
17:37 8.60 10.65 597.51 48.78 23.04
17:38 8.59 10.66 597.89 48.12 23.30
17:39 8.60 10.65 595.59 48.19 23.30
17:40 8.58 10.66 597.66 46.95 23.05
17:41 8.58 10.67 598.96 48.33 23.34
17:42 8.58 10.65 600.70 48.89 23.06
17:43 8.61 10.64 595.61 49.37 22.82
17:44 8.57 10.66 594.64 46.01 23.07
17:45 8.57 10.67 595.58 47.03 23.33
17:46 8.58 10.66 597.76 47.56 23.18
17:47 8.58 10.66 599.29 49.05 23.03
17:48 8.58 10.65 596.05 48.19 23.26
17:49 8.59 10.65 595.51 47.84 23.38
Parameter O₂ - Outlet CO₂ - Outlet CO - Outlet NOx - Outlet NMHC - Outlet
Uncorrected Run Average (Cobs)8.59 10.68 600.85 47.86 23.13
Cal Gas Concentration (CMA)10.95 10.78 500.00 200.00 40.00
Pretest System Zero Response 0.00 0.03 0.44 0.22 0.05
Posttest System Zero Response 0.01 0.03 0.29 0.49 0.05
Average Zero Response (Co)0.01 0.03 0.37 0.36 0.05
Pretest System Cal Response 10.76 10.98 456.43 198.23 38.38
Posttest System Cal Response 10.74 10.73 451.06 199.85 38.22
Average Cal Response (CM)10.75 10.86 453.75 199.04 38.30
Corrected Run Average (Corr)8.75 10.60 662.24 47.82 NA
Nodal Power – Davis Landfill, Layton, UT
LFG Generator
AST-2023-3003
8/10/23
28 of 78
Appendix C
29 of 78
QA Data
Location
Source
Project No.
O₂ - Outlet CO₂ - Outlet CO - Outlet NOx - Outlet NMHC - Outlet
Make SERVOMEX SERVOMEX THERMO THERMO THERMO
Model 1440 1440 48i 42C 55i
S/N 14200/3279 14150/3279 208845 42CHL-59778-324 1209052150
Operating Range 25 25 1000 500 200
Cylinder ID
Zero NA NA NA NA NA
Low NA NA NA NA EB0098694
Mid EB0078899 EB0078899 CC210350 CC122482 EB0098694
High SG9164824BAL SG9164824BAL CC210350 CC122482 EB0098694
Cylinder Certifed Values
Zero NA NA NA NA NA
Low NA NA NA NA 509
Mid 10.95 10.74 2228 504.1 509
High 24.58 23.78 2228 504.1 509
Cylinder Expiration Date
Zero NA NA NA NA NA
Low NA NA NA NA 04.18.29
Mid 07.13.29 07.13.29 03.25.27 02.20.31 04.18.29
High 02.13.31 02.13.31 03.25.27 02.20.31 04.18.29
Parameter
Nodal Power – Davis Landfill, Layton, UT
LFG Generator
AST-2023-3003
30 of 78
Response Times
Location:
Source:
Project No.:
O₂ - Outlet CO₂ - Outlet CO - Outlet NOx - Outlet NMHC - Outlet
Zero 30 30 30 30 45
Low NA NA NA NA 45
Mid 30 30 30 30 45
High NA NA NA NA 45
Average 30.0 30.0 30.0 30.0 45.0
Nodal Power – Davis Landfill, Layton, UT
LFG Generator
AST-2023-3003
Parameter
Response Times, seconds
31 of 78
Calibration Data
Location:
Source:
Project No.:
Date:
O₂ - Outlet CO₂ - Outlet CO - Outlet NOx - Outlet NMHC - Outlet
Expected Average Concentration 12.00 12.00 650.00 100.00 30.0
Span Between
Low 12.00 12.00 650.00 100.00 45.0
High 60.00 60.00 3,250.00 500.00 75.0
Desired Span 24.58 23.78 950.00 350.00 75.0
Low Range Gas
Low NA NA NA NA 18.8
High NA NA NA NA 26.3
Mid Range Gas
Low 9.83 9.51 380.00 140.00 33.8
High 14.75 14.27 570.00 210.00 41.3
High Range Gas
Low NA NA NA NA 60.0
High NA NA NA NA 67.5
Actual Concentration (% or ppm)
Zero 0.00 0.00 0.00 0.00 0.0
Low NA NA NA NA 20.0
Mid 10.95 10.78 500.00 200.00 40.0
High 24.58 23.78 950.00 350.00 60.0
Upscale Calibration Gas (CMA)Mid Mid Mid Mid Mid
Instrument Response (% or ppm)
Zero 0.10 0.18 0.46 0.11 0.0
Low NA NA NA NA 19.7
Mid 10.98 10.68 482.42 202.76 40.0
High 24.55 23.81 945.35 349.71 60.0
Performance (% of Span or Cal. Gas Conc.)
Zero 0.41 0.76 0.05 0.03 0.0
Low NA NA NA NA -1.6
Mid 0.12 0.42 1.85 0.79 -0.1
High 0.12 0.13 0.49 0.08 0.0
Status
Zero PASS PASS PASS PASS PASS
Low NA NA NA NA PASS
Mid PASS PASS PASS PASS PASS
High PASS PASS PASS PASS PASS
LFG Generator
Nodal Power – Davis Landfill, Layton, UT
Parameter
8/10/23
AST-2023-3003
32 of 78
Bias/Drift Determinations
Location:
Source:
Project No.:
O₂ - Outlet CO₂ - Outlet CO - Outlet NOx - Outlet NMHC - Outlet
Run 1 Date 8/10/23
Span Value 24.6 23.8 950.0 350.0 75.0
Initial Instrument Zero Cal Response 0.1 0.2 0.5 0.1 0.0
Initial Instrument Upscale Cal Response 11.0 10.7 482.4 202.8 40.0
Pretest System Zero Response 0.1 0.1 0.8 0.2 0.0
Posttest System Zero Response 0.0 0.1 0.6 0.7 0.0
Pretest System Upscale Response 10.9 10.8 479.4 192.8 39.7
Posttest System Upscale Response 10.8 10.8 461.5 194.3 39.3
Bias (%)
Pretest Zero 0.1 -0.3 0.0 0.0 NA
Posttest Zero -0.3 -0.5 0.0 0.2 NA
Pretest Span -0.2 0.7 -0.3 -2.9 NA
Posttest Span -0.8 0.4 -2.2 -2.4 NA
Drift (%)
Zero -0.4 -0.2 0.0 0.2 0.0
Mid -0.7 -0.3 -1.9 0.4 -0.6
Run 2 Date 8/10/23
Span Value 24.6 23.8 950.0 350.0 75.0
Instrument Zero Cal Response 0.1 0.2 0.5 0.1 0.0
Instrument Upscale Cal Response 11.0 10.7 482.4 202.8 40.0
Pretest System Zero Response 0.0 0.1 0.6 0.7 0.0
Posttest System Zero Response 0.0 0.0 0.4 0.2 0.1
Pretest System Upscale Response 10.8 10.8 461.5 194.3 39.3
Posttest System Upscale Response 10.8 11.0 456.4 198.2 38.4
Bias (%)
Pretest Zero -0.3 -0.5 0.0 0.2 NA
Posttest Zero -0.4 -0.6 0.0 0.0 NA
Pretest Span -0.8 0.4 -2.2 -2.4 NA
Posttest Span -0.9 1.3 -2.7 -1.3 NA
Drift (%)
Zero -0.1 -0.1 0.0 -0.1 0.0
Mid -0.1 0.8 -0.5 1.1 -1.3
Run 3 Date 8/10/23
Span Value 24.6 23.8 950.0 350.0 75.0
Instrument Zero Cal Response 0.1 0.2 0.5 0.1 0.0
Instrument Upscale Cal Response 11.0 10.7 482.4 202.8 40.0
Pretest System Zero Response 0.0 0.0 0.4 0.2 0.1
Posttest System Zero Response 0.0 0.0 0.3 0.5 0.1
Pretest System Upscale Response 10.8 11.0 456.4 198.2 38.4
Posttest System Upscale Response 10.7 10.7 451.1 199.9 38.2
Bias (%)
Pretest Zero -0.4 -0.6 0.0 0.0 NA
Posttest Zero -0.4 -0.6 0.0 0.1 NA
Pretest Span -0.9 1.3 -2.7 -1.3 NA
Posttest Span -1.0 0.2 -3.3 -0.8 NA
Drift (%)
Zero 0.0 0.0 0.0 0.1 0.0
Mid -0.1 -1.1 -0.6 0.5 -0.2
Parameter
Nodal Power – Davis Landfill, Layton, UT
LFG Generator
AST-2023-3003
33 of 78
34 of 78
35 of 78
36 of 78
37 of 78
Balance
Red Ball Technical Gas Service
555 Craig Kennedy Way
Shreveport, LA 71107
800-551-8150
Accreditation #62754 PGVP Vendor ID # G12021
EPA PROTOCOL GAS CERTIFICATE OF ANALYSIS
Cylinder Number:EB0098694 Certification Date:04/20/2021
Product ID Number:124238 Expiration Date:04/18/2029
Cylinder Pressure:1900 PSIG MFG Facility: - Shreveport - LA
COA #EB0098694.20210405-0 Lot Number:EB0098694.20210405
Customer PO. NO.:Tracking Number:095704193
Customer:Previous Certification Dates:
This calibration standard has been certified per the May 2012 EPA Traceability Protocol, Document EPA-600/R-12/531,
using procedure G1.
Do Not Use This Cylinder Below 100 psig (0.7 Megapascal).
Certified Concentration(s)
Component Concentration Uncertainty Analytical Principle Assayed On
Propane 509 PPM ±4 PPM FTIR 04/20/2021
Nitrogen
Analytical Measurement Data Available Online.
Reference Standard(s)
Serial Number Lot Expiration Type Balance Component Concentration Uncertainty(%)NIST Reference
EB0057206 EB0057206.20160107 05/17/2024 GMIS N2 C3H8 750 PPM 0.634 5647A
Analytical Instrumentation SMART-CERT
Component Principle Make MPC Date
C3H8 FTIR MKS 03/24/2021
Serial
017146467
This is to certify the gases referenced have been calibrated/tested, and verified to meet the defined specifications. This
calibration/test was performed using Gases or Scales that are traceable through National Institute of Standards and
Technology (NIST) to the International System of Units (SI). The basis of compliance stated is a comparison of the
measurement parameters to the specified or required calibration/testing process. The expanded uncertainties use a coverage
factor of k=2 to approximate the 95% confidence level of the measurement, unless otherwise noted. This calibration certificate
applies only to the item described and shall not be reproduced other than in full, without written approval from Red Ball
Technical Gas Services. If not included, the uncertainty of calibrations are available upon request and were taken into account
when determining pass or fail.
Anthony Cyr
Assistant Operations Manager
Assay Laboratory: Red Ball TGS
Version 02-J, Revised on 2018-09-17
Model
MKS 2031DJG2EKVS13T
38 of 78
Location:
Project No.:
Analyzer Make THERMO Pre-Test Date 8.10.23 Time 8:08
Analyzer Model 42C Pre-Test Concentration, ppm 45.65
Serial Number 42CHL-59778-324 Pre-Test Efficiency, %96
Cylinder ID Number CC509482 Post-Test Date Time
Cylinder Exp. Date 03.20.26 Post-Test Concentration, ppm
Cylinder Concentration, ppm 47.8 Post-Test Efficiency, %-
*Required Efficiency is ≥ 90 %.
Nodal Power – Davis Landfill, Layton, UT
AST-2023-3003
NO2 Converter Check - Outlet
39 of 78
Location:
Source:
Project No.:
Date
EPA
O2
SERVOMEX
1440
14200/3279
25.0
Cylinder Number ID
Zero NA
Mid EB0078899
High SG9164824BAL
Cylinder Certified Values
Zero 0.0
Mid 10.95
High 24.58
Instrument Response (% or ppm)
Zero 0.1
Mid 11.0
High 24.6
Calibration Gas Selection (% of Span)
Mid 43.8
High 98.3
Calibration Error Performance (% of Span)
Zero 0.4
Mid 0.0
High 0.0
Linearity (% of Range)
-0.2
SERVOMEX
1440
14200/3279
8027.0
(%)lpm (%)(%)(%)(%)(%)(%)( ± 2 %)
10L/10L*80.0 7.0 18.8 18.8 18.7 18.9 18.8 18.80 0.00 0.0%
10L/5L 50.0 5.0 11.7 11.7 11.8 11.8 11.8 11.76 0.06 0.5%
10L/1L 20.0 4.0 4.9 4.9 5.0 4.9 4.9 4.94 0.04 0.8%
10L/1L 10.0 4.0 2.5 2.5 2.5 2.5 2.5 2.52 0.02 0.8%
(%)( ± 2 %)( ± 2 %)( ± 2 %)
18.80 -0.3%0.3%0.1%
11.76 0.0%0.1%0.0%
4.94 0.4%-0.4%0.0%
2.52 0.0%0.0%0.0%
Mid-Level Supply Gas Calibration Direct to Analyzer
Calibration Injection 1 Injection 2 Injection 3 Average
Gas Analyzer Analyzer Analyzer Analyzer
Concentration Concentration Concentration Concentration Concentration
(%)(%)(%)(%)(%)(%)( ± 2 %)
10.95 10.9 11.0 11.0 10.95 0.00 0.0%
Average
Analyzer
Concentration
Injection 1
Error
Injection 2
Error
Injection 3
Error
Difference
Average
Error
Injection 3
Analyzer
Concentration
Average
Analyzer
Concentration Difference Average Error
Cylinder Gas ID (Dilution): SG9164824BAL
Cylinder Gas Concentration (Dilution), %: 24.6
*Not all AST Environics Units have 2-10L Mass Flow Controllers. For these units the 90% @ 7lpm and 80% @ 7lpm injections will not be conducted.
Cylinder Gas ID (Mid-Level): EB0078899
Cylinder Gas Concentration (Mid-Level), %: 10.95
Target Mass Flow
Contollers
Target
Dilution
Target Flow
Rate
Target
Concentration
Actual
Concentration
Injection 1
Analyzer
Concentration
Injection 2
Analyzer
Concentration
Analyzer Model:
Analyzer SN:
Environics ID:
Component/Balance Gas: O2/N2
Analyzer Make:
Nodal Power – Davis Landfill, Layton, UT
LFG Generator
AST-2023-3003
8/10/23
Parameter
Make
Model
S/N
Span
Method Criteria
40 of 78
Issuing Department
Dilution System Make:
Dilution System Model:
Dilution System S/N:
Calibration Equipment Make:
Calibration Equipment Model:
Calibration Equipment S/N:
Flow Cell S/N:
Flow Cell S/N:
Calibration Gas:
Barometric Pressure, mmHg:
Ambient Temperature, °F:
Mass Flow Controller ID
Size, ccm:
Make:
Model:
S/N:
Set Flow True Flow Difference Set Flow True Flow Difference Set Flow True Flow Difference
cc/min cc/min cc/min cc/min cc/min cc/min
5%500 508 1.6%500 504 0.8%50 50 0.6%
10%1,000 1,024 2.4%1,000 1,020 2.0%100 101 0.7%
20%2,000 2,057 2.8%2,000 2,048 2.4%200 203 1.6%
30%3,000 3,079 2.6%3,000 3,073 2.4%300 305 1.8%
40%4,000 4,104 2.6%4,000 4,094 2.4%400 407 1.6%
50%5,000 5,113 2.3%5,000 5,107 2.1%500 507 1.4%
60%6,000 6,129 2.1%6,000 6,120 2.0%600 609 1.5%
70%7,000 7,136 1.9%7,000 7,134 1.9%700 711 1.6%
80%8,000 8,145 1.8%8,000 8,152 1.9%800 813 1.7%
90%9,000 9,162 1.8%9,000 9,171 1.9%900 917 1.9%
100%10,000 10,193 1.9%10,000 10,189 1.9%1,000 1,022 2.2%
Date:
Document ID
Revision
Effective Date
Page
620.009
22.0
12/16/22
1 of 1
Mass Flow Controller Calibration
Tech Services
8027
Alicat Scientific
M-10SLPD/5MM-D/5M, M-1SLPM-D/5M
127208/127206
127208
127206
Nitrogen
Calibration Performed By:RJL
3/31/2023
0455242007
Note: The mass flow controller's calibration values are used by the dilution system's operating software to improve accuracy. These calibrations are not necessarily
indicative of the systems overall performance. Performance is verified by conducting a Method 205 prior to each field use.
0455242008 0455238004
Environics
EFC 202
10,000
# 2 # 3
Environics
1,000
Environics
EFC 202 EFC 202
#1
10,000
Environics
25.76
66
4040
41 of 78
QA Data
Location
Source
Project No.
Parameter(s)
Date Pitot ID
Evidence of
damage?
Evidence of
mis-alignment?
Calibration or
Repair required?
8/9/23 P-1062 no no no
Date 08/10/23
Balance ID:5A2881026
Test Weight ID:SLC-1KG-3
Certified Weight (g):1000.0
Measured Weight (g):1000.0
Weight Difference (g):0.0 -- -- -- --
Date Barometric
Pressure
Evidence of
damage?
Reading
Verified
Calibration or
Repair required?
8/9/23 Weather Station NA NA NA
8/9/23 MB-704
Field Balance Check
Pass
Weather Station Location
Date Meter Box ID Positive Pressure Leak Check
Nodal Power - Nodal Power - Davis Landfill, Layton
LFG Generator
AST-2023-3003
VFR
42 of 78
43 of 78
Document ID 620.004
Revision 23.0
Effective Date 1/25/23
Issuing Department Page 1 of 1
Console ID:
Meter S/N:
Critical Orifice S/N:
(PbI)
(PbF)
(Pb)
(Y)1330-31 1330-31 1330-25 1330-25 1330-19 1330-19
(K')0.8429 0.8429 0.6728 0.673 0.5186 0.519
(VP)13.0 13.0 15.0 15.0 16.0 16.0
Initial DGM Volume, ft3 (VmI)753.100 769.643 782.800 796.038 806.000 816.783
Final DGM Volume, ft3 (VmF)769.643 780.710 796.038 804.888 816.437 823.493
Total DGM Volume, ft3 (Vm)16.543 11.067 13.238 8.850 10.437 6.710
Ambient Temperature, °F (Ta)72 72 73 73 74 75
Initial DGM Temperature, °F (TmI)73 74 74 74 75 75
Final DGM Temperature, °F (TmF)74 75 74 75 75 75
Average DGM Temperature, °F ( Tm)74 75 74 75 75 75
Elapsed Time (Θ)15.00 10.00 15.00 10.00 15.00 10.00
Meter Orifice Pressure, in. WC (ΔH)3.40 3.40 2.10 2.10 1.30 1.30
Standard Meter volume, ft3 (Vmstd)14.0740 9.3976 11.2099 7.4871 8.8012 5.6584
Standard Critical Orifice Volume, ft3 (Vcr)13.9631 9.3087 11.1348 7.4232 8.5748 5.7112
Meter Correction Factor (Y)0.992 0.991 0.993 0.991 0.974 1.009
Tolerance --0.000 0.001 0.001 0.000 0.018 0.017
Orifice Calibration Value (ΔH @)1.878 1.874 1.815 1.814 1.887 1.891
Tolerance --0.018 0.014 0.044 0.046 0.027 0.031
Orifice Cal Check --
Meter Correction Factor (Y)
Orifice Calibration Value (ΔH @)
Accuracy Difference
oF oR oF oR %oF
0 460 0 460 0.0 0
68 528 66 526 0.4 2
100 560 98 558 0.4 2
223 683 223 683 0.0 0
248 708 248 708 0.0 0
273 733 274 734 -0.1 1
300 760 300 760 0.0 0
400 860 399 859 0.1 1
500 960 498 958 0.2 2
600 1,060 600 1,060 0.0 0
700 1,160 702 1,162 -0.2 2
800 1,260 801 1,261 -0.1 1
900 1,360 901 1,361 -0.1 1
1,000 1,460 1,002 1,462 -0.1 2
1,100 1,560 1,102 1,562 -0.1 2
1,200 1,660 1,202 1,662 -0.1 2
Calibration Date:
Yes
0.11 0.11 0.06
DGM Calibration-Orifices
Tech Services
25.45
25.48
25.47
K' Factor, ft3·R1/2 / in. WC·min
CL23A
Vacuum Pressure, in. Hg
Initial Barometric Pressure, in. Hg
Final Barometric Pressure, in. Hg
Average Barometric Pressure, in. Hg
Critifcal Orifice ID
Calibration Detail
MB-704
18392989
1330
Positive Pressure Leak Check
Equipment Detail - Dry Gas Meter
0.992
1.860
Personnel
Reference Calibrator Make:
Reference Calibrator Model:
Reference Calibrator S/N:
Calibration Detail
Equipment Detail - Thermocouple Sensor
Reference Temp.Display Temp.
OMEGA
T-197207
Stacey CunninghamReviewed By:
RYAN LYONSCalibration By:
6/20/2023
44 of 78
Appendix D
45 of 78
Nodal Power - Davis Landfill
Run 1 Process Data
compdnc_ndx
Total Operating
Hours Timestamp O2EU Temp Flow
Site Pwr
KW/hr Pressure G1KW Methane %
220129 3582.44 8/10/2023 15:03:47 0 103.32 515 3479511 2.9204 1407 47.1854
220128 3582.42 8/10/2023 15:02:47 0 103.35 518 3479487 2.8500 1407 47.2426
220127 3582.40 8/10/2023 15:01:47 0 103.37 513 3479463 2.9412 1403 47.2044
220126 3582.39 8/10/2023 15:00:47 0 103.37 515 3479439 2.9410 1403 47.3322
220125 3582.37 8/10/2023 14:59:47 0 103.45 512 3479416 2.9601 1404 47.3074
220124 3582.35 8/10/2023 14:58:47 0 103.51 515 3479392 2.9429 1401 47.1358
220123 3582.34 8/10/2023 14:57:47 0 103.59 511 3479368 2.9921 1400 47.2864
220122 3582.32 8/10/2023 14:56:47 0 103.61 513 3479344 2.9753 1404 47.1434
220121 3582.30 8/10/2023 14:55:47 0 103.56 515 3479321 2.9484 1405 47.2388
220120 3582.29 8/10/2023 14:54:47 0 103.54 515 3479297 2.9414 1405 47.1434
220119 3582.27 8/10/2023 14:53:47 0 103.57 514 3479279 2.9431 1401 47.3570
220118 3582.25 8/10/2023 14:52:47 0 103.57 511 3479255 2.9233 1405 47.3989
220117 3582.24 8/10/2023 14:51:47 0 103.52 516 3479231 2.9620 1408 47.2597
220116 3582.22 8/10/2023 14:50:47 0 103.48 515 3479208 2.9301 1410 47.2578
220115 3582.20 8/10/2023 14:49:47 0 103.33 519 3479184 2.8897 1403 47.3207
220114 3582.19 8/10/2023 14:48:47 0 103.34 514 3479160 2.9126 1402 47.3017
220113 3582.17 8/10/2023 14:47:47 0 103.32 511 3479136 2.9933 1401 47.4294
220112 3582.16 8/10/2023 14:46:47 0 103.28 513 3479113 2.9416 1407 47.2960
220111 3582.14 8/10/2023 14:45:47 0 103.14 516 3479089 2.9408 1409 47.3360
220110 3582.12 8/10/2023 14:44:47 0 102.94 515 3479065 2.9408 1405 47.2769
220109 3582.11 8/10/2023 14:43:47 0 102.85 516 3479041 2.8880 1405 47.4466
220108 3582.09 8/10/2023 14:42:47 0 102.88 514 3479017 2.9202 1412 47.3093
220107 3582.07 8/10/2023 14:41:47 0 102.95 513 3478993 2.9559 1411 47.4104
220106 3582.05 8/10/2023 14:40:47 0 102.97 515 3478970 2.8788 1405 47.4466
220105 3582.04 8/10/2023 14:39:47 0 103.09 512 3478946 2.9583 1402 47.5114
220104 3582.02 8/10/2023 14:38:47 0 103.17 514 3478928 2.9416 1408 47.4924
220103 3582.00 8/10/2023 14:37:47 0 103.17 516 3478904 2.9402 1408 47.4771
220102 3581.99 8/10/2023 14:36:47 0 103.14 514 3478880 2.9439 1408 47.5191
220101 3581.97 8/10/2023 14:35:47 0 103.14 512 3478857 2.9679 1411 47.5210
220100 3581.95 8/10/2023 14:34:47 0 103.02 514 3478833 2.9507 1414 47.5725
220099 3581.94 8/10/2023 14:33:47 0 102.84 519 3478809 2.9431 1413 47.4504
220098 3581.92 8/10/2023 14:32:47 0 102.73 518 3478785 2.8939 1412 47.4561
220097 3581.90 8/10/2023 14:31:47 0 102.73 514 3478761 2.9336 1406 47.6220
220096 3581.89 8/10/2023 14:30:47 0 102.69 519 3478737 2.8744 1411 47.6754
220095 3581.87 8/10/2023 14:29:47 0 102.69 515 3478713 2.9347 1413 47.6087
220094 3581.85 8/10/2023 14:28:47 0 102.70 516 3478689 2.9305 1418 47.5019
220093 3581.84 8/10/2023 14:27:47 0 102.65 517 3478665 2.8634 1417 47.5953
220092 3581.82 8/10/2023 14:26:47 0 102.62 516 3478642 2.9316 1409 47.6564
220091 3581.80 8/10/2023 14:25:47 0 102.73 518 3478618 2.8929 1409 47.5648
220090 3581.79 8/10/2023 14:24:47 0 102.83 513 3478594 2.9812 1408 47.5133
220089 3581.77 8/10/2023 14:23:47 0 102.83 517 3478570 2.9490 1409 47.5648
220088 3581.75 8/10/2023 14:22:47 0 102.80 518 3478552 2.8853 1408 47.5534
220087 3581.74 8/10/2023 14:21:47 0 102.82 516 3478528 2.8990 1404 47.7555
220086 3581.72 8/10/2023 14:20:47 0 102.79 516 3478504 2.9570 1411 47.6297
220085 3581.70 8/10/2023 14:19:47 0 102.63 519 3478481 2.9126 1414 47.5553
220084 3581.69 8/10/2023 14:18:47 0 102.55 515 3478457 2.9614 1412 47.6621
220083 3581.67 8/10/2023 14:17:47 0 102.48 520 3478433 2.8805 1414 47.4447
220082 3581.65 8/10/2023 14:16:47 0 102.42 519 3478409 2.9084 1420 47.6163
220081 3581.64 8/10/2023 14:15:47 0 102.34 520 3478385 2.8927 1417 47.7079
220080 3581.62 8/10/2023 14:14:47 0 102.27 516 3478361 2.8903 1414 47.5801
220079 3581.60 8/10/2023 14:13:47 0 102.22 513 3478337 2.9730 1408 47.7460
220078 3581.59 8/10/2023 14:12:47 0 102.23 518 3478313 2.9366 1406 47.5362
220077 3581.57 8/10/2023 14:11:47 0 102.30 512 3478289 2.9322 1401 47.7670
220076 3581.55 8/10/2023 14:10:47 0 102.38 514 3478265 2.9898 1396 47.6163
220075 3581.54 8/10/2023 14:09:47 0 102.45 511 3478247 2.9889 1402 47.6259
220074 3581.52 8/10/2023 14:08:47 0 102.46 516 3478223 2.9763 1409 47.6507
220073 3581.50 8/10/2023 14:07:47 0 102.39 516 3478199 2.9444 1410 47.6507
220072 3581.49 8/10/2023 14:06:47 0 102.39 511 3478175 3.0274 1406 47.6983
220071 3581.47 8/10/2023 14:05:47 0 102.38 515 3478152 2.9444 1406 47.8051
1 of 1
46 of 78
Nodal Power - Davis Landfill
Run 2 Process Data
compdnc_ndx
Total Operating
Hours Timestamp O2EU Temp Flow
Site Pwr
KW/hr Pressure G1KW Methane %
220211 3583.80 8/10/2023 16:25:47 0 103.40 508 3481424 3.0255 1389 47.7117
220210 3583.79 8/10/2023 16:24:47 0 103.48 510 3481401 2.9814 1389 47.6316
220209 3583.77 8/10/2023 16:23:47 0 103.53 512 3481377 2.9427 1388 47.8166
220208 3583.75 8/10/2023 16:22:47 0 103.55 511 3481354 3.0104 1393 47.8394
220207 3583.74 8/10/2023 16:21:47 0 103.51 512 3481331 2.9723 1398 47.8490
220206 3583.72 8/10/2023 16:20:47 0 103.49 511 3481307 3.0049 1399 47.8013
220205 3583.70 8/10/2023 16:19:47 0 103.48 513 3481284 2.9664 1399 47.6907
220204 3583.69 8/10/2023 16:18:47 0 103.57 512 3481260 2.9543 1399 47.8108
220203 3583.67 8/10/2023 16:17:47 0 103.68 509 3481237 3.0057 1399 47.8223
220202 3583.65 8/10/2023 16:16:47 0 103.72 514 3481214 2.9730 1406 47.5992
220201 3583.64 8/10/2023 16:15:47 0 103.66 514 3481190 2.9805 1410 47.7479
220200 3583.62 8/10/2023 16:14:47 0 103.55 517 3481167 2.9465 1406 47.7593
220199 3583.60 8/10/2023 16:13:47 0 103.42 517 3481143 2.8994 1404 47.8356
220198 3583.59 8/10/2023 16:12:47 0 103.44 510 3481120 3.0198 1396 47.8108
220197 3583.57 8/10/2023 16:11:47 0 103.48 515 3481096 2.9572 1394 47.7689
220196 3583.56 8/10/2023 16:10:47 0 103.43 512 3481073 3.0020 1398 47.7326
220195 3583.54 8/10/2023 16:09:47 0 103.44 514 3481050 2.9660 1395 47.7059
220194 3583.52 8/10/2023 16:08:47 0 103.41 511 3481032 3.0131 1398 47.6812
220193 3583.50 8/10/2023 16:07:47 0 103.41 513 3481009 2.9624 1392 47.7937
220192 3583.49 8/10/2023 16:06:47 0 103.34 508 3480985 3.0009 1392 47.7231
220191 3583.47 8/10/2023 16:05:47 0 103.25 510 3480962 3.0324 1393 47.8108
220190 3583.45 8/10/2023 16:04:47 0 103.20 513 3480939 2.9810 1404 47.7307
220189 3583.44 8/10/2023 16:03:47 0 103.24 509 3480915 2.9879 1399 47.6983
220188 3583.42 8/10/2023 16:02:47 0 103.35 513 3480892 2.9164 1402 47.7994
220187 3583.41 8/10/2023 16:01:47 0 103.44 513 3480868 2.8920 1407 47.7212
220186 3583.39 8/10/2023 16:00:47 0 103.45 514 3480844 2.9383 1412 47.6487
220185 3583.37 8/10/2023 15:59:47 0 103.39 519 3480820 2.9168 1413 47.8528
220184 3583.35 8/10/2023 15:58:47 0 103.42 514 3480796 2.9368 1406 47.6812
220183 3583.34 8/10/2023 15:57:47 0 103.51 511 3480772 2.9963 1399 47.7193
220182 3583.32 8/10/2023 15:56:47 0 103.51 512 3480748 2.9276 1408 47.7174
220181 3583.30 8/10/2023 15:55:47 0 103.56 513 3480724 2.9372 1401 47.7193
220180 3583.29 8/10/2023 15:54:47 0 103.68 509 3480700 2.9820 1399 47.7574
220179 3583.27 8/10/2023 15:53:47 0 103.77 512 3480677 2.9776 1406 47.7117
220178 3583.25 8/10/2023 15:52:47 0 103.82 519 3480653 2.8334 1410 47.6354
220177 3583.24 8/10/2023 15:51:47 0 103.89 515 3480635 2.9038 1405 47.7593
220176 3583.22 8/10/2023 15:50:47 0 103.94 512 3480611 2.9763 1399 47.7422
220175 3583.20 8/10/2023 15:49:47 0 103.85 513 3480588 2.9686 1399 47.6507
220174 3583.19 8/10/2023 15:48:47 0 103.81 510 3480564 3.0076 1395 47.7136
220173 3583.17 8/10/2023 15:47:47 0 103.72 511 3480540 3.0032 1394 47.6259
220172 3583.15 8/10/2023 15:46:47 0 103.59 512 3480517 2.9810 1394 47.5782
220171 3583.14 8/10/2023 15:45:47 0 103.55 507 3480493 2.9833 1391 47.6487
220170 3583.12 8/10/2023 15:44:47 0 103.62 508 3480470 3.0129 1391 47.6163
220169 3583.10 8/10/2023 15:43:47 0 103.64 511 3480446 2.9892 1397 47.5553
220168 3583.09 8/10/2023 15:42:47 0 103.77 511 3480423 2.9908 1398 47.5782
220167 3583.07 8/10/2023 15:41:47 0 103.89 511 3480399 2.9513 1402 47.7021
220166 3583.05 8/10/2023 15:40:47 0 103.93 514 3480375 2.9522 1407 47.5591
220165 3583.04 8/10/2023 15:39:47 0 103.93 517 3480351 2.9345 1406 47.6926
220164 3583.02 8/10/2023 15:38:47 0 103.90 514 3480328 2.9528 1397 47.5629
220163 3583.00 8/10/2023 15:37:47 0 103.95 511 3480304 2.9812 1396 47.5934
220162 3582.99 8/10/2023 15:36:47 0 103.99 507 3480286 2.9736 1394 47.6754
220161 3582.97 8/10/2023 15:35:47 0 104.01 513 3480263 2.9538 1394 47.5782
220160 3582.95 8/10/2023 15:34:47 0 104.01 512 3480239 2.9702 1399 47.5610
220159 3582.94 8/10/2023 15:33:47 0 104.00 511 3480216 2.9732 1398 47.6621
220158 3582.92 8/10/2023 15:32:47 0 104.05 514 3480192 2.9322 1400 47.5324
220157 3582.90 8/10/2023 15:31:47 0 104.04 514 3480168 2.9553 1402 47.5553
220156 3582.89 8/10/2023 15:30:47 0 103.91 519 3480144 2.8845 1408 47.4390
220155 3582.87 8/10/2023 15:29:47 0 103.81 514 3480121 2.9210 1410 47.6068
220154 3582.85 8/10/2023 15:28:47 0 103.66 516 3480097 2.9383 1408 47.5133
220153 3582.84 8/10/2023 15:27:47 0 103.58 513 3480073 2.9767 1402 47.5553
220152 3582.82 8/10/2023 15:26:47 0 103.54 513 3480049 2.9688 1402 47.5324
1 of 1
47 of 78
Nodal Power - Davis Landfill
Run 3 Process Data
compdnc_ndx
Total Operating
Hours Timestamp O2EU Temp Flow
Site Pwr
KW/hr Pressure G1KW Methane %
220296 3585.22 8/10/2023 17:50:48 0 101.90 511 3483405 3.0745 1402 47.8490
220295 3585.20 8/10/2023 17:49:48 0 101.92 509 3483382 3.0818 1393 47.9024
220294 3585.19 8/10/2023 17:48:48 0 101.90 505 3483358 3.1334 1390 47.8966
220293 3585.17 8/10/2023 17:47:48 0 101.93 512 3483334 3.0604 1389 47.7708
220292 3585.15 8/10/2023 17:46:48 0 101.95 510 3483310 3.0509 1399 47.7689
220291 3585.14 8/10/2023 17:45:48 0 101.92 512 3483287 3.0726 1400 47.7212
220290 3585.12 8/10/2023 17:44:48 0 101.98 507 3483263 3.1317 1394 47.7174
220289 3585.10 8/10/2023 17:43:48 0 102.01 512 3483239 3.0764 1391 47.7574
220288 3585.09 8/10/2023 17:42:48 0 102.14 509 3483216 3.0825 1397 47.6125
220287 3585.07 8/10/2023 17:41:48 0 102.23 513 3483192 3.0779 1406 47.6182
220286 3585.06 8/10/2023 17:40:48 0 102.12 512 3483168 3.0688 1404 47.6468
220285 3585.04 8/10/2023 17:39:48 0 102.01 512 3483145 3.0659 1395 47.4733
220284 3585.02 8/10/2023 17:38:48 0 102.03 508 3483121 3.1125 1396 47.4504
220283 3585.00 8/10/2023 17:37:48 0 102.14 511 3483098 3.0716 1395 47.3246
220282 3584.99 8/10/2023 17:36:48 0 102.26 511 3483080 3.0966 1393 47.3760
220281 3584.97 8/10/2023 17:35:48 0 102.36 513 3483056 3.0367 1397 47.3780
220280 3584.95 8/10/2023 17:34:48 0 102.37 511 3483033 3.0606 1402 47.4523
220279 3584.94 8/10/2023 17:33:48 0 102.34 517 3483009 3.0314 1408 47.3684
220278 3584.92 8/10/2023 17:32:48 0 102.48 510 3482986 3.0858 1406 47.3284
220277 3584.90 8/10/2023 17:31:48 0 102.61 511 3482962 3.0520 1402 47.3932
220276 3584.89 8/10/2023 17:30:48 0 102.60 514 3482939 3.0112 1398 47.2140
220275 3584.87 8/10/2023 17:29:48 0 102.49 511 3482915 3.0968 1394 47.3722
220274 3584.85 8/10/2023 17:28:48 0 102.47 507 3482892 3.0442 1395 47.4867
220273 3584.84 8/10/2023 17:27:48 0 102.41 510 3482868 3.0640 1398 47.3436
220272 3584.82 8/10/2023 17:26:48 0 102.49 508 3482845 3.0621 1397 47.3951
220271 3584.80 8/10/2023 17:25:48 0 102.50 514 3482821 3.0030 1398 47.5324
220270 3584.79 8/10/2023 17:24:48 0 102.50 509 3482798 3.0762 1397 47.6926
220269 3584.77 8/10/2023 17:23:48 0 102.57 513 3482775 3.0175 1393 47.4180
220268 3584.75 8/10/2023 17:22:48 0 102.63 512 3482751 3.0785 1399 47.5381
220267 3584.74 8/10/2023 17:21:48 0 102.66 516 3482728 3.0163 1399 47.7174
220266 3584.72 8/10/2023 17:20:48 0 102.69 510 3482704 3.0501 1397 47.7193
220265 3584.70 8/10/2023 17:19:48 0 102.73 511 3482681 3.0270 1393 47.7174
220264 3584.69 8/10/2023 17:18:48 0 102.74 510 3482658 3.0617 1401 47.7002
220263 3584.67 8/10/2023 17:17:48 0 102.83 510 3482634 3.0533 1394 47.7288
220262 3584.65 8/10/2023 17:16:48 0 102.90 511 3482611 2.9984 1397 47.7727
220261 3584.64 8/10/2023 17:15:48 0 102.90 516 3482587 2.9984 1405 47.7136
220260 3584.62 8/10/2023 17:14:48 0 102.99 507 3482564 3.1037 1402 47.7803
220259 3584.60 8/10/2023 17:13:48 0 103.07 512 3482541 2.9946 1398 47.7670
220258 3584.59 8/10/2023 17:12:48 0 103.16 508 3482517 3.0789 1399 47.6125
220257 3584.57 8/10/2023 17:11:48 0 103.28 509 3482494 3.0089 1396 47.9062
220256 3584.55 8/10/2023 17:10:48 0 103.33 512 3482470 2.9713 1399 47.6201
220255 3584.54 8/10/2023 17:09:48 0 103.31 510 3482447 3.0831 1396 47.8223
220254 3584.52 8/10/2023 17:08:48 0 103.27 509 3482424 3.0942 1392 47.7098
220253 3584.50 8/10/2023 17:07:48 0 103.23 514 3482400 2.9955 1395 47.6545
220252 3584.49 8/10/2023 17:06:48 0 103.28 509 3482377 3.0800 1395 47.8452
220251 3584.47 8/10/2023 17:05:48 0 103.35 512 3482354 3.0446 1399 47.7174
220250 3584.45 8/10/2023 17:04:48 0 103.42 513 3482330 3.0182 1397 47.7021
220249 3584.44 8/10/2023 17:03:48 0 103.52 508 3482307 3.0566 1397 47.7555
220248 3584.42 8/10/2023 17:02:48 0 103.58 510 3482284 3.0537 1400 47.6621
220247 3584.40 8/10/2023 17:01:48 0 103.62 509 3482260 3.0591 1401 47.8375
220246 3584.39 8/10/2023 17:00:48 0 103.60 512 3482237 2.9889 1401 47.7727
220245 3584.37 8/10/2023 16:59:48 0 103.54 513 3482213 2.9664 1401 47.7670
220244 3584.35 8/10/2023 16:58:48 0 103.55 510 3482196 3.0270 1400 47.6240
220243 3584.34 8/10/2023 16:57:48 0 103.55 516 3482172 3.0081 1406 47.7288
220242 3584.32 8/10/2023 16:56:48 0 103.53 514 3482149 2.9917 1413 47.6144
220241 3584.30 8/10/2023 16:55:48 0 103.56 514 3482125 2.9871 1407 47.5953
220240 3584.29 8/10/2023 16:54:48 0 103.58 511 3482101 2.9675 1397 47.6087
220239 3584.27 8/10/2023 16:53:48 0 103.60 509 3482077 3.0348 1396 47.5934
220238 3584.26 8/10/2023 16:52:48 0 103.56 510 3482053 3.0018 1395 47.7460
220237 3584.24 8/10/2023 16:51:48 0 103.58 513 3482029 3.0030 1394 47.6201
220236 3584.22 8/10/2023 16:50:48 0 103.60 512 3482006 3.0261 1398 47.6468
220235 3584.20 8/10/2023 16:49:48 0 103.61 517 3481982 2.9440 1399 47.7212
1 of 1
48 of 78
Appendix E
49 of 78
Site Specific Test Plan
Nodal Power
250 E. 200 S., Suite 310
Salt Lake City, UT 84111
Davis Landfill
Layton, Utah
Source to be Tested: New Landfill Gas (LFG) Generator
Engine
Proposed Test Date: August 9, 2023
Project No. AST-2023-2904
Prepared By
Alliance Technical Group, LLC
3683 W 2270 S, Suite E
West Valley City, UT 84120
50 of 78
Site Specific Test Plan
Test Program Summary
AST-2023-2904 Nodal Power – Layton, UT Page i
Regulatory Information
Permit No. DAQE-AN101290026-22
Source Information
Source Name Target Parameters
New Landfill Gas (LFG) Generator Engine NOx, CO, VOC
Contact Information
Test Location Test Company
Nodal Power
Davis Landfill
1997 East 3500 North
Layton, Utah
Bryan Black
bryan@nodalpower.com
(801) 301-8151
Alliance Technical Group, LLC
3683 W 2270 S, Suite E
West Valley City, UT 84120
Project Manager
Charles Horton
charles.horton@alliancetg.com
(352) 663-7568
Field Team Leader
Tobias Hubbard
tobias.hubbard@alliancetg.com
(605) 645-8562
(subject to change)
QA/QC Manager
Kathleen Shonk
katie.shonk@alliancetg.com
(812) 452-4785
Test Plan/Report Coordinator
Sarah Perry
sarah.perry@alliancetg.com
51 of 78
Site Specific Test Plan
Table of Contents
AST-2023-2904 Nodal Power – Layton, UT Page ii
TABLE OF CONTENTS
1.0 Introduction .................................................................................................................................................. 1-1
1.1 Facility Description .................................................................................................................................. 1-1
1.2 Project Team ............................................................................................................................................ 1-1
1.3 Safety Requirements ................................................................................................................................ 1-1
2.0 Summary of Test Program ............................................................................................................................ 2-1
2.1 General Description ................................................................................................................................. 2-1
2.2 Process/Control System Parameters to be Monitored and Recorded ....................................................... 2-1
2.3 Proposed Test Schedule ........................................................................................................................... 2-1
2.4 Emission Limits ....................................................................................................................................... 2-2
2.5 Test Report ............................................................................................................................................... 2-2
3.0 Testing Methodology .................................................................................................................................... 3-1
3.1 U.S. EPA Reference Test Methods 1 and 2 – Sampling/Traverse Points and Volumetric Flow Rate ..... 3-1
3.2 U.S. EPA Reference Test Method 3A – Oxygen/Carbon Dioxide ........................................................... 3-1
3.3 U.S. EPA Reference Test Method 4 – Moisture Content ......................................................................... 3-2
3.4 U.S. EPA Reference Test Method 7E – Nitrogen Oxides ........................................................................ 3-2
3.5 U.S. EPA Reference Test Method 10 – Carbon Monoxide ...................................................................... 3-2
3.6 U.S. EPA Reference Test Method 25A – Volatile Organic Compounds ................................................. 3-2
3.7 U.S. EPA Alternative Test Method ALT-096 – Volatile Organic Compounds ....................................... 3-2
3.8 U.S. EPA Reference Test Method 205 – Gas Dilution System Certification ........................................... 3-2
3.9 Quality Assurance/Quality Control – U.S. EPA Reference Test Methods 3A, 7E and 10 ....................... 3-3
3.10 Quality Assurance/Quality Control – U.S. EPA Reference Test Method 25A ........................................ 3-4
3.11 Quality Assurance/Quality Control – U.S. EPA Reference Method ALT-096 ........................................ 3-4
4.0 Quality Assurance Program .......................................................................................................................... 4-1
4.1 Equipment ................................................................................................................................................ 4-1
4.2 Field Sampling ......................................................................................................................................... 4-2
LIST OF TABLES
Table 1-1: Project Team ........................................................................................................................................... 1-1
Table 2-1: Program Outline and Tentative Test Schedule ........................................................................................ 2-1
Table 2-2: Emission Limits ...................................................................................................................................... 2-2
Table 3-1: Source Testing Methodology .................................................................................................................. 3-1
LIST OF APPENDICES
Appendix A Method 1 Data
Appendix B Example Field Data Sheets
52 of 78
Site Specific Test Plan
Introduction
AST-2023-2904 Nodal Power – Layton, UT Page 1-1
1.0 Introduction
Alliance Technical Group, LLC (Alliance) was retained by Nodal Power to conduct initial compliance testing at the
Davis Landfill in Layton, Utah. Portions of the facility are subject to provisions of the Utah Department of
Environmental Quality – Division of Air Quality (UDAQ) Permit No. DAQE-AN101290026-22. Testing will be
conducted to determine the emission rates of nitrogen oxides (NOx), carbon monoxide (CO) and volatile organic
compounds (VOC) at the exhaust of the new landfill gas (LFG) generator engine.
This site-specific test plan (SSTP) has been prepared to address the notification and testing requirements of the
UDEQ permit and the NESHAP.
1.1 Facility Description
Wasatch Integrated Waste Management District operates Davis Landfill, a municipal solid waste (MSW) landfill
located in Davis County, Utah. The facility accepts municipal and commercial waste. The new LFG generator
engine is rated at 2,233 horsepower (HP).
1.2 Project Team
Personnel planned to be involved in this project are identified in the following table.
Table 1-1: Project Team
Nodal Power Personnel Bryan Black
Regulatory Agency UDAQ
Alliance Personnel Tobias Hubbard
other field personnel assigned at time of testing event
1.3 Safety Requirements
Testing personnel will undergo site-specific safety training for all applicable areas upon arrival at the site. Alliance
personnel will have current OSHA or MSHA safety training and be equipped with hard hats, safety glasses with side
shields, steel-toed safety shoes, hearing protection, fire resistant clothing, and fall protection (including shock
corded lanyards and full-body harnesses). Alliance personnel will conduct themselves in a manner consistent with
Client and Alliance’s safety policies.
A Job Safety Analysis (JSA) will be completed daily by the Alliance Field Team Leader.
53 of 78
Site Specific Test Plan
Summary of Test Programs
AST-2023-2904 Nodal Power – Layton, UT Page 2-1
2.0 Summary of Test Program
To satisfy the requirements of the UDAQ permit, the facility will conduct a performance test program to determine
the compliance status of the new LFG generator engine.
2.1 General Description
All testing will be performed in accordance with specifications stipulated in U.S. EPA Reference Test Methods 1, 2,
3A, 4, 7E, 10 and 25A or ALT-096. Table 2-1 presents an outline and tentative schedule for the emissions testing
program. The following is a summary of the test objectives.
Testing will be performed to demonstrate compliance with the UDAQ permit.
Emissions testing will be conducted on the exhaust of the new LFG generator engine.
Performance testing will be conducted at the maximum normal operation load for the source.
Each of the three (3) test runs will be approximately 60 minutes in duration.
2.2 Process/Control System Parameters to be Monitored and Recorded
Plant personnel will collect operational and parametric data at least once every 15 minutes during the testing. The
following list identifies the measurements, observations and records that will be collected during the testing
program:
Engine Load
Catalyst Inlet Temperature
Catalyst Pressure Differential
Fuel Consumption
2.3 Proposed Test Schedule
Table 2-1 presents an outline and tentative schedule for the emissions testing program.
Table 2-1: Program Outline and Tentative Test Schedule
Testing Location Parameter US EPA Method No. of Runs Run Duration Est. Onsite
Time
DAY 1 – August 9, 2023
Equipment Setup & Pretest QA/QC Checks
8 hr New LFG Generator
Engine
VFR 1-2
3 60 min
O2/CO2 3/3A
BWS 4
NOx 7E
CO 10
VOC 25A or ALT-096
DAY 2 – August 10, 2023
Contingency Day (if needed)
54 of 78
Site Specific Test Plan
Summary of Test Programs
AST-2023-2904 Nodal Power – Layton, UT Page 2-2
2.4 Emission Limits
Emission limits for each pollutant are below.
Table 2-2: Emission Limits
Source Pollutant Citation
New LFG Generator Engine
NOx – 2.46 lb/hr; 0.5 g/HP-hr
Permit CO – 12.31 lb/hr; 2.5 g/HP-hr
VOC – 4.33 lb/hr; 0.88 g/HP-hr
2.5 Test Report
The final test report must be submitted within 60 days of the completion of the performance test and will include the
following information.
Introduction – Brief discussion of project scope of work and activities.
Results and Discussion – A summary of test results and process/control system operational data with
comparison to regulatory requirements or vendor guarantees along with a description of process conditions
and/or testing deviations that may have affected the testing results.
Methodology – A description of the sampling and analytical methodologies.
Sample Calculations – Example calculations for each target parameter.
Field Data – Copies of actual handwritten or electronic field data sheets.
Quality Control Data – Copies of all instrument calibration data and/or calibration gas certificates.
Process Operating/Control System Data – Process operating and control system data (as provided by Nodal
Power) to support the test results.
55 of 78
Site Specific Test Plan
Testing Methodology
AST-2023-2904 Nodal Power – Layton, UT Page 3-1
3.0 Testing Methodology
This section provides a description of the sampling and analytical procedures for each test method that will be
employed during the test program. All equipment, procedures and quality assurance measures necessary for the
completion of the test program meet or exceed the specifications of each relevant test method. The emission testing
program will be conducted in accordance with the test methods listed in Table 3-1.
Table 3-1: Source Testing Methodology
Parameter U.S. EPA Reference
Test Methods Notes/Remarks
Volumetric Flow Rate 1 & 2 Volumetric Flow Rate
Oxygen / Carbon Dioxide 3A Oxygen / Carbon Dioxide
Moisture Content 4 Moisture Content
Nitrogen Oxides 7E Nitrogen Oxides
Carbon Monoxide 10 Carbon Monoxide
Volatile Organic Compounds 25A Volatile Organic Compounds
Volatile Organic Compounds ALT-096 Volatile Organic Compounds
Gas Dilution System Certification 205 ---
All stack diameters, depths, widths, upstream and downstream disturbance distances and nipple lengths will be
measured on site with a verification measurement provided by the Field Team Leader.
3.1 U.S. EPA Reference Test Methods 1 and 2 – Sampling/Traverse Points and Volumetric Flow Rate
The sampling location and number of traverse (sampling) points will be selected in accordance with U.S. EPA
Reference Test Method 1. To determine the minimum number of traverse points, the upstream and downstream
distances will be equated into equivalent diameters and compared to Figure 1-2 in U.S. EPA Reference Test Method
1.
Full velocity traverses will be conducted in accordance with U.S. EPA Reference Test Method 2 to determine the
average stack gas velocity pressure, static pressure and temperature. The velocity and static pressure measurement
system will consist of a pitot tube and inclined manometer. The stack gas temperature will be measured with a K-
type thermocouple and pyrometer.
Stack gas velocity pressure and temperature readings will be recorded during each test run. The data collected will
be utilized to calculate the volumetric flow rate in accordance with U.S. EPA Reference Test Method 2.
3.2 U.S. EPA Reference Test Method 3A – Oxygen/Carbon Dioxide
The oxygen (O2) and carbon dioxide (CO2) testing will be conducted in accordance with U.S. EPA Reference Test
Method 3A. Data will be collected online and reported in one-minute averages. The sampling system will consist
of a stainless steel probe, Teflon sample line(s), gas conditioning system and the identified gas analyzer. The gas
conditioning system will be a non-contact condenser used to remove moisture from the stack gas. If an unheated
Teflon sample line is used, then a portable non-contact condenser will be placed in the system directly after the
56 of 78
Site Specific Test Plan
Testing Methodology
AST-2023-2904 Nodal Power – Layton, UT Page 3-2
probe. Otherwise, a heated Teflon sample line will be used. The quality control measures are described in Section
3.9.
3.3 U.S. EPA Reference Test Method 4 – Moisture Content
The stack gas moisture content will be determined in accordance with U.S. EPA Reference Test Method 4. The gas
conditioning train will consist of a series of chilled impingers. Prior to testing, each impinger will be filled with a
known quantity of water or silica gel. Each impinger will be analyzed gravimetrically before and after each test run
on the same analytical balance to determine the amount of moisture condensed.
3.4 U.S. EPA Reference Test Method 7E – Nitrogen Oxides
The nitrogen oxides (NOx) testing will be conducted in accordance with U.S. EPA Reference Test Method 7E. Data
will be collected online and reported in one-minute averages. The sampling system will consist of a stainless steel
probe, Teflon sample line(s), gas conditioning system and the identified gas analyzer. The gas conditioning system
will be a non-contact condenser used to remove moisture from the stack gas. If an unheated Teflon sample line is
used, then a portable non-contact condenser will be placed in the system directly after the probe. Otherwise, a
heated Teflon sample line will be used. The quality control measures are described in Section 3.9.
3.5 U.S. EPA Reference Test Method 10 – Carbon Monoxide
The carbon monoxide (CO) testing will be conducted in accordance with U.S. EPA Reference Test Method 10.
Data will be collected online and reported in one-minute averages. The sampling system will consist of a stainless
steel probe, Teflon sample line(s), gas conditioning system, and the identified gas analyzer. The gas conditioning
system will be a non-contact condenser used to remove moisture from the gas. If an unheated Teflon sample line is
used, then a portable non-contact condenser will be placed in the system directly after the probe. Otherwise, a
heated Teflon sample line will be used. The quality control measures are described in Section 3.9.
3.6 U.S. EPA Reference Test Method 25A – Volatile Organic Compounds
The volatile organic compounds (VOC) testing will be conducted in accordance with U.S. EPA Reference Test Method
25A. Data will be collected online and reported in one-minute averages. The sampling system will consist of a stainless
steel probe, heated Teflon sample line(s) and the identified gas analyzer. The quality control measures are described in
Section 3.10.
3.7 U.S. EPA Alternative Test Method ALT-096 – Volatile Organic Compounds
The volatile organic compounds (VOC) testing will be conducted in accordance with U.S. EPA Alternate Test Method
ALT-096. EPA Method 25A is incorporated by reference. The sampling system will consist of a stainless steel probe,
heated Teflon sample line(s) and a Thermo 55i analyzer. VOC data will be collected in one (1) minute averages. The
quality control measures are described in Section 3.11.
3.8 U.S. EPA Reference Test Method 205 – Gas Dilution System Certification
A calibration gas dilution system field check will be conducted in accordance with U.S. EPA Reference Method
205. An initial three (3) point calibration will be conducted, using individual Protocol 1 gases, on the analyzer used
to complete the dilution system field check. Multiple dilution rates and total gas flow rates will be utilized to force
the dilution system to perform two dilutions on each mass flow controller. The diluted calibration gases will be sent
directly to the analyzer, and the analyzer response recorded in an electronic field data sheet. The analyzer response
must agree within 2% of the actual diluted gas concentration. A second Protocol 1 calibration gas, with a cylinder
concentration within 10% of one of the gas divider settings described above, will be introduced directly to the
57 of 78
Site Specific Test Plan
Testing Methodology
AST-2023-2904 Nodal Power – Layton, UT Page 3-3
analyzer, and the analyzer response recorded in an electronic field data sheet. The cylinder concentration and the
analyzer response must agree within 2%. These steps will be repeated three (3) times.
3.9 Quality Assurance/Quality Control – U.S. EPA Reference Test Methods 3A, 7E and 10
Cylinder calibration gases will meet EPA Protocol 1 (+/- 2%) standards. Copies of all calibration gas certificates
will be included in the Quality Assurance/Quality Control Appendix of the report.
Low Level gas will be introduced directly to the analyzer. After adjusting the analyzer to the Low Level gas
concentration and once the analyzer reading is stable, the analyzer value will be recorded. This process will be
repeated for the High Level gas. For the Calibration Error Test, Low, Mid, and High Level calibration gases will be
sequentially introduced directly to the analyzer. The Calibration Error for each gas must be within 2.0 percent of the
Calibration Span or 0.5 ppmv/% absolute difference.
High or Mid Level gas (whichever is closer to the stack gas concentration) will be introduced at the probe and the
time required for the analyzer reading to reach 95 percent or 0.5 ppm/% (whichever was less restrictive) of the gas
concentration will be recorded. The analyzer reading will be observed until it reaches a stable value, and this value
will be recorded. Next, Low Level gas will be introduced at the probe and the time required for the analyzer reading
to decrease to a value within 5.0 percent or 0.5 ppm/% (whichever was less restrictive) will be recorded. If the Low
Level gas is zero gas, the acceptable response must be 5.0 percent of the upscale gas concentration or 0.5 ppm/%
(whichever was less restrictive). The analyzer reading will be observed until it reaches a stable value and this value
will be recorded. The measurement system response time and initial system bias will be determined from these data.
The System Bias for each gas must be within 5.0 percent of the Calibration Span or 0.5 ppmv/% absolute difference.
High or Mid Level gas (whichever is closer to the stack gas concentration) will be introduced at the probe. After the
analyzer response is stable, the value will be recorded. Next, Low Level gas will be introduced at the probe, and the
analyzer value will be recorded once it reaches a stable response. The System Bias for each gas must be within 5.0
percent of the Calibration Span or 0.5 ppmv/% absolute difference or the data is invalidated and the Calibration
Error Test and System Bias must be repeated.
The Drift between pre- and post-run System Bias must be within 3 percent of the Calibration Span or 0.5 ppmv/%
absolute difference or the Calibration Error Test and System Bias must be repeated.
To determine the number of sampling points, a gas stratification check will be conducted prior to initiating testing.
The pollutant concentrations will be measured at twelve traverse points (as described in Method 1) or three points
(16.7, 50.0 and 83.3 percent of the measurement line). Each traverse point will be sampled for a minimum of twice
the system response time.
If the pollutant concentration at each traverse point do not differ more than 5% or 0.5 ppm/0.3% (whichever is less
restrictive) of the average pollutant concentration, then single point sampling will be conducted during the test runs.
If the pollutant concentration does not meet these specifications but differs less than 10% or 1.0 ppm/0.5% from the
average concentration, then three (3) point sampling will be conducted (stacks less than 7.8 feet in diameter - 16.7,
50.0 and 83.3 percent of the measurement line; stacks greater than 7.8 feet in diameter – 0.4, 1.0, and 2.0 meters
from the stack wall). If the pollutant concentration differs by more than 10% or 1.0 ppm/0.5% from the average
concentration, then sampling will be conducted at a minimum of twelve (12) traverse points. Copies of stratification
check data will be included in the Quality Assurance/Quality Control Appendix of the report.
58 of 78
Site Specific Test Plan
Testing Methodology
AST-2023-2904 Nodal Power – Layton, UT Page 3-4
An NO2 – NO converter check will be performed on the analyzer prior to initiating testing or at the completion of
testing. An approximately 50 ppm nitrogen dioxide cylinder gas will be introduced directly to the NOx analyzer and
the instrument response will be recorded in an electronic data sheet. The instrument response must be within +/- 10
percent of the cylinder concentration.
A Data Acquisition System with battery backup will be used to record the instrument response in one (1) minute
averages. The data will be continuously stored as a *.CSV file in Excel format on the hard drive of a computer. At
the completion of testing, the data will also be saved to the Alliance server. All data will be reviewed by the Field
Team Leader before leaving the facility. Once arriving at Alliance’s office, all written and electronic data will be
relinquished to the report coordinator and then a final review will be performed by the Project Manager.
3.10 Quality Assurance/Quality Control – U.S. EPA Reference Test Method 25A
Cylinder calibration gases will meet EPA Protocol 1 (+/- 2%) standards. Copies of all calibration gas certificates
will be included in the Quality Assurance/Quality Control Appendix of the report.
Within two (2) hours prior to testing, zero gas will be introduced through the sampling system to the analyzer. After
adjusting the analyzer to the Zero gas concentration and once the analyzer reading is stable, the analyzer value will
be recorded. This process will be repeated for the High Level gas, and the time required for the analyzer reading to
reach 95 percent of the gas concentration will be recorded to determine the response time. Next, Low and Mid
Level gases will be introduced through the sampling system to the analyzer, and the response will be recorded when
it is stable. All values must be less than +/- 5 percent of the calibration gas concentrations.
Mid Level gas will be introduced through the sampling system. After the analyzer response is stable, the value will
be recorded. Next, Zero gas will be introduced through the sampling system, and the analyzer value recorded once
it reaches a stable response. The Analyzer Drift must be less than +/- 3 percent of the span value.
A Data Acquisition System with battery backup will be used to record the instrument response in one (1) minute
averages. The data will be continuously stored as a *.CSV file in Excel format on the hard drive of a computer. At
the completion of testing, the data will also be saved to the Alliance server. All data will be reviewed by the Field
Team Leader before leaving the facility. Once arriving at Alliance’s office, all written and electronic data will be
relinquished to the report coordinator and then a final review will be performed by the Project Manager.
3.11 Quality Assurance/Quality Control – U.S. EPA Reference Method ALT-096
EPA Protocol 1 Calibration Gases – Cylinder calibration gases used will meet EPA Protocol 1 (+/- 2%) standards.
Copies of all calibration gas certificates will be provided in the Quality Assurance/Quality Control Appendix.
Zero gas will be introduced through the sampling system to the analyzer. After adjusting the analyzer to the Zero
gas concentration and once the analyzer reading is stable, the analyzer value will be recorded. This process will be
repeated for the High Level gas, and the time required for the analyzer reading to reach 95 percent of the gas
concentration will be recorded to determine the response time. Next, Mid and Low Level gases will be introduced
through the sampling system to the analyzer, and the response will be recorded when it is stable. All values must be
within +/- 5% of the calibration gas concentrations.
59 of 78
Site Specific Test Plan
Testing Methodology
AST-2023-2904 Nodal Power – Layton, UT Page 3-5
Post Test Drift Checks – Mid Level gas will be introduced through the sampling system. After the analyzer
response is stable, the value will be recorded. Next, Zero gas will be introduced through the sampling system, and
the analyzer value recorded once it reaches a stable response. The Analyzer Drift must be less than 3 percent of the
Calibration Span.
Data Collection – A Data Acquisition System with battery backup will be used to record the instrument response
(analog 0-10 volt signal) in one (1) minute averages. The data will be continuously stored as a *.CSV file in Excel
format on the hard drive of a desktop computer. At the completion of the emissions testing the data will be also
saved to the Alliance server. All data will be reviewed by the Field Team Leader before leaving the facility. Once
arriving at Alliance’s office, all written and electronic data will be relinquished to the report coordinator and then a
final review will be performed by the Project Manager.
60 of 78
Site Specific Test Plan
Quality Assurance Program
AST-2023-2904 Nodal Power – Layton, UT Page 4-1
4.0 Quality Assurance Program
Alliance follows the procedures outlined in the Quality Assurance/Quality Control Management Plan to ensure the
continuous production of useful and valid data throughout the course of this test program. The QC checks and
procedures described in this section represent an integral part of the overall sampling and analytical scheme.
Adherence to prescribed procedures is quite often the most applicable QC check.
4.1 Equipment
Field test equipment is assigned a unique, permanent identification number. Prior to mobilizing for the test
program, equipment is inspected before being packed to detect equipment problems prior to arriving on site. This
minimizes lost time on the job site due to equipment failure. Occasional equipment failure in the field is
unavoidable despite the most rigorous inspection and maintenance procedures. Therefore, replacements for critical
equipment or components are brought to the job site. Equipment returning from the field is inspected before it is
returned to storage. During the course of these inspections, items are cleaned, repaired, reconditioned and
recalibrated where necessary.
Calibrations are conducted in a manner, and at a frequency, which meets or exceeds U.S. EPA specifications. The
calibration procedures outlined in the U.S. EPA Methods, and those recommended within the Quality Assurance
Handbook for Air Pollution Measurement Systems: Volume III (EPA-600/R-94/038c, September 1994) are utilized.
When these methods are inapplicable, methods such as those prescribed by the American Society for Testing and
Materials (ASTM) or other nationally recognized agency may be used. Data obtained during calibrations is checked
for completeness and accuracy. Copies of calibration forms are included in the report.
The following sections elaborate on the calibration procedures followed by Alliance for these items of equipment.
Dry Gas Meter and Orifice. A full meter calibration using critical orifices as the calibration standard is
conducted at least semi-annually, more frequently if required. The meter calibration procedure determines
the meter correction factor (Y) and the meter’s orifice pressure differential (ΔH@). Alliance uses approved
Alternative Method 009 as a post-test calibration check to ensure that the correction factor has not changed
more than 5% since the last full meter calibration. This check is performed after each test series.
Pitot Tubes and Manometers. Type-S pitot tubes that meet the geometric criteria required by U.S. EPA
Reference Test Method 2 are assigned a coefficient of 0.84 unless a specific coefficient has been
determined from a wind tunnel calibration. If a specific coefficient from a wind tunnel calibration has been
obtained that coefficient will be used in lieu of 0.84. Standard pitot tubes that meet the geometric criteria
required by U.S. EPA Reference Test Method 2 are assigned a coefficient of 0.99. Any pitot tubes not
meeting the appropriate geometric criteria are discarded and replaced. Manometers are verified to be level
and zeroed prior to each test run and do not require further calibration.
Temperature Measuring Devices. All thermocouple sensors mounted in Dry Gas Meter Consoles are
calibrated semi-annually with a NIST-traceable thermocouple calibrator (temperature simulator) and
verified during field use using a second NIST-traceable meter. NIST-traceable thermocouple calibrators
are calibrated annually by an outside laboratory.
Nozzles. Nozzles are measured three (3) times prior to initiating sampling with a caliper. The maximum
difference between any two (2) dimensions is 0.004 in.
Digital Calipers. Calipers are calibrated annually by Alliance by using gage blocks that are calibrated
annually by an outside laboratory.
61 of 78
Site Specific Test Plan
Quality Assurance Program
AST-2023-2904 Nodal Power – Layton, UT Page 4-2
Barometer. The barometric pressure is obtained from a nationally recognized agency or a calibrated
barometer. Calibrated barometers are checked prior to each field trip against a mercury barometer. The
barometer is acceptable if the values agree within ± 2 percent absolute. Barometers not meeting this
requirement are adjusted or taken out of service.
Balances and Weights. Balances are calibrated annually by an outside laboratory. A functional check is
conducted on the balance each day it is use in the field using a calibration weight. Weights are re-certified
every two (2) years by an outside laboratory or internally. If conducted internally, they are weighed on a
NIST traceable balance. If the weight does not meet the expected criteria, they are replaced.
Other Equipment. A mass flow controller calibration is conducted on each Environics system annually
following the procedures in the Manufacturer’s Operation manual. Other equipment such as probes,
umbilical lines, cold boxes, etc. are routinely maintained and inspected to ensure that they are in good
working order. They are repaired or replaced as needed.
4.2 Field Sampling
Field sampling will be done in accordance with the Standard Operating Procedures (SOP) for the applicable test
method(s). General QC measures for the test program include:
Cleaned glassware and sample train components will be sealed until assembly.
Sample trains will be leak checked before and after each test run.
Appropriate probe, filter and impinger temperatures will be maintained.
The sampling port will be sealed to prevent air from leaking from the port.
Dry gas meter, ΔP, ΔH, temperature and pump vacuum data will be recorded during each sample point.
All raw data will be maintained in organized manner.
All raw data will be reviewed on a daily basis for completeness and acceptability.
62 of 78
SSTP-Appendix A
63 of 78
Method 1 Data
Location
Source
Project No.
Date
in
in
0.00 in
--ft2
--
ft
--(must be > 0.5)
ft
--(must be > 2)
0
Measurer (Initial and Date):
Reviewer (Initial and Date):
2 3 4 5 6 7 8 9 10 11 12
1 25.0 16.7 12.5 10.0 8.3 7.1 6.3 5.6 5.0 4.5 4.2 1 -- -- --
2 75.0 50.0 37.5 30.0 25.0 21.4 18.8 16.7 15.0 13.6 12.5 2 -- -- --
3 -- 83.3 62.5 50.0 41.7 35.7 31.3 27.8 25.0 31.8 20.8 3 -- -- --
4 -- -- 87.5 70.0 58.3 50.0 43.8 38.9 35.0 22.7 29.2 4 -- -- --
5 -- -- -- 90.0 75.0 64.3 56.3 50.0 45.0 40.9 37.5 5 -- -- --
6 -- -- -- -- 91.7 78.6 68.8 61.1 55.0 50.0 45.8 6 -- -- --
7 -- -- -- -- -- 92.9 81.3 72.2 65.0 59.1 54.2 7 -- -- --
8 -- -- -- -- -- -- 93.8 83.3 75.0 68.2 62.5 8 -- -- --
9 -- -- -- -- -- -- -- 94.4 85.0 77.3 70.8 9 -- -- --
10 -- -- -- -- -- -- -- -- 95.0 86.4 79.2 10 -- -- --
11 -- -- -- -- -- -- -- -- -- 95.5 87.5 11 -- -- --
12 -- -- -- -- -- -- -- -- -- -- 95.8 12 -- -- --
*Percent of stack diameter from inside wall to traverse point.
A = ft.
B = ft.
Depth of Duct = 0 in.
Cross Sectional Area of Duct:
--
--
--
Stack Parameters
Duct Orientation:
Duct Design:
Distance from Far Wall to Outside of Port:
Nipple Length:
Depth of Duct:
No. of Test Ports:
Number of Readings per Point:
Distance A:
Distance A Duct Diameters:
Distance B:
Distance B Duct Diameters:
Minimum Number of Traverse Points:
Actual Number of Traverse Points:
DUCT
Number of traverse points on a diameter
Stack Diagram
Cross Sectional Area
LOCATION OF TRAVERSE POINTS
Traverse
Point
% of
Diameter
Distance
from inside
wall
Distance
from
outside of
port
Upstream
Disturbance
Downstream
Disturbance
BA
64 of 78
SSTP- Appendix B
65 of 78
QA Data
Location
Source
Project No.
O₂ - Outlet CO₂ - Outlet CO - Outlet NOx - Outlet THC - Outlet
Make -- -- -- -- --
Model -- -- -- -- --
S/N -- -- -- -- --
Operating Range -- -- -- -- --
Cylinder ID
Zero NA NA NA NA NA
Low NA NA NA NA --
Mid -- -- -- -- --
High -- -- -- -- --
Cylinder Certifed Values
Zero NA NA NA NA NA
Low NA NA NA NA --
Mid -- -- -- -- --
High -- -- -- -- --
Cylinder Expiration Date
Zero NA NA NA NA NA
Low NA NA NA NA --
Mid -- -- -- -- --
High -- -- -- -- --
Parameter
-- - --
--
--
66 of 78
Response Times
Location:
Source:
Project No.:
O₂ - Outlet CO₂ - Outlet CO - Outlet NOx - Outlet THC - Outlet
Zero -- -- -- -- --
Low NA NA NA NA --
Mid -- -- -- -- --
High -- -- -- -- --
Average -- -- -- -- --
-- - --
--
--
Parameter
Response Times, seconds
67 of 78
Calibration Data
Location:
Source:
Project No.:
Date:
O₂ - Outlet CO₂ - Outlet CO - Outlet NOx - Outlet THC - Outlet
Expected Average Concentration -- -- -- -- --
Span Between
Low -- -- -- -- --
High -- -- -- -- --
Desired Span -- -- -- -- --
Low Range Gas
Low NA NA NA NA --
High NA NA NA NA --
Mid Range Gas
Low -- -- -- -- --
High -- -- -- -- --
High Range Gas
Low NA NA NA NA --
High NA NA NA NA --
Actual Concentration (% or ppm)
Zero 0.00 0.00 0.00 0.00 0.00
Low NA NA NA NA --
Mid -- -- -- -- --
High -- -- -- -- --
Response Time (seconds)-- -- -- -- --
Upscale Calibration Gas (CMA)-- -- -- -- --
Instrument Response (% or ppm)
Zero -- -- -- -- --
Low NA NA NA NA --
Mid -- -- -- -- --
High -- -- -- -- --
Performance (% of Span or Cal. Gas Conc.)
Zero -- -- -- -- 0.00
Low NA NA NA NA --
Mid -- -- -- -- --
High -- -- -- -- --
Performance Criteria
Zero 2.00 2.00 2.00 2.00 5.00
Low NA NA NA NA 5.00
Mid 2.00 2.00 2.00 2.00 5.00
High 2.00 2.00 2.00 2.00 5.00
Status
Zero -- -- -- -- PASS
Low NA NA NA NA --
Mid -- -- -- -- --
High -- -- -- -- --
--
-- - --
Parameter
--
--
68 of 78
Bias/Drift Determinations
Location:
Source:
Project No.:
O₂ - Outlet CO₂ - Outlet CO - Outlet NOx - Outlet THC - Outlet
Run 1 Date --
Span Value - - - - -
Initial Instrument Zero Cal Response - - - - -
Initial Instrument Upscale Cal Response #N/A #N/A #N/A #N/A #N/A
Pretest System Zero Response - - - - -
Posttest System Zero Response - - - - -
Pretest System Upscale Response - - - - -
Posttest System Upscale Response - - - - -
Bias (%)
Pretest Zero -- -- -- -- NA
Posttest Zero -- -- -- -- NA
Pretest Span -- -- -- -- NA
Posttest Span -- -- -- -- NA
Drift (%)
Zero - - - - -
Mid - - - - -
Run 2 Date --
Span Value - - - - -
Instrument Zero Cal Response - - - - -
Instrument Upscale Cal Response #N/A #N/A #N/A #N/A -
Pretest System Zero Response - - - - -
Posttest System Zero Response - - - - -
Pretest System Upscale Response - - - - -
Posttest System Upscale Response - - - - -
Bias (%)
Pretest Zero -- -- -- -- NA
Posttest Zero -- -- -- -- NA
Pretest Span -- -- -- -- NA
Posttest Span -- -- -- -- NA
Drift (%)
Zero - - - - -
Mid - - - - -
Run 3 Date --
Span Value - - - - -
Instrument Zero Cal Response - - - - -
Instrument Upscale Cal Response #N/A #N/A #N/A #N/A #N/A
Pretest System Zero Response - - - - -
Posttest System Zero Response - - - - -
Pretest System Upscale Response - - - - -
Posttest System Upscale Response - - - - -
Bias (%)
Pretest Zero -- -- -- -- NA
Posttest Zero -- -- -- -- NA
Pretest Span -- -- -- -- NA
Posttest Span -- -- -- -- NA
Drift (%)
Zero - - - - -
Mid - - - - -
Parameter
-- - --
--
--
69 of 78
Run 1 - RM Data
Location:
Source:
Project No.:
Date:
Time O₂ - Outlet CO₂ - Outlet CO - Outlet NOx - Outlet THC - Outlet
Unit % dry % dry ppmvd ppmvd ppmvw
Status Valid Valid Valid Valid Valid
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
Parameter O₂ - Outlet CO₂ - Outlet CO - Outlet NOx - Outlet THC - Outlet
Uncorrected Run Average (Cobs)- - - - -
Cal Gas Concentration (CMA)#N/A #N/A #N/A #N/A #N/A
Pretest System Zero Response
Posttest System Zero Response
Average Zero Response (Co)- - - - -
Pretest System Cal Response
Posttest System Cal Response
Average Cal Response (CM)- - - - -
Corrected Run Average (Corr)- - - - NA
-- - --
--
--
-
70 of 78
Location:
Project No.:
Analyzer Make --Pre-Test Date Time
Analyzer Model --Pre-Test Concentration, ppm
Serial Number --Pre-Test Efficiency, %-
Cylinder ID Number Post-Test Date Time
Cylinder Exp. Date Post-Test Concentration, ppm
Cylinder Concentration, ppm Post-Test Efficiency, %-
*Required Efficiency is ≥ 90 %.
-- - --
--
NO2 Converter Check - Outlet
71 of 78
Location:
Source:
Project No.:
Date
EPA
O2
--
--
--
--
Cylinder Number ID
Zero NA
Mid --
High --
Cylinder Certified Values
Zero 0.0
Mid --
High --
Instrument Response (% or ppm)
Zero --
Mid --
High --
Calibration Gas Selection (% of Span)
Mid --
High --
Calibration Error Performance (% of Span)
Zero --
Mid --
High --
Linearity (% of Range)
--
(%) lpm (%) (%) (%) (%) (%) (%) (%)( ± 2 %)
10L/10L* 90.0 7.0 - - - -
10L/10L* 80.0 7.0 - - - -
10L/5L 80.0 5.0 - - - -
10L/5L 50.0 5.0 - - - -
10L/1L 20.0 4.0 - - - -
10L/1L 10.0 4.0 - - - -
(%)( ± 2 %)( ± 2 %)( ± 2 %)
- - - -
- - - -
- - - -
- - - -
- - - -
- - - -
Mid-Level Supply Gas Calibration Direct to Analyzer
Calibration Injection 1 Injection 2 Injection 3 Average
Gas Analyzer Analyzer Analyzer Analyzer
Concentration Concentration Concentration Concentration Concentration
(%) (%) (%) (%) (%) (%)( ± 2 %)
- - - -
Analyzer Make: --
-- - --
--
--
Parameter
Make
Model
S/N
Span
Method Criteria
Analyzer Model: --
Analyzer SN: --
Environics ID: --
Component/Balance Gas: O2/N2
Cylinder Gas ID (Dilution):
Cylinder Gas Concentration (Dilution), %:
*Not all AST Environics Units have 2-10L Mass Flow Controllers. For these units the 90% @ 7lpm and 80% @ 7lpm injections will not be conducted.
Cylinder Gas ID (Mid-Level):
Cylinder Gas Concentration (Mid-Level), %:
Target Mass Flow
Contollers
Target
Dilution
Target Flow
Rate
Target
Concentration
Actual
Concentration
Injection 1
Analyzer
Concentration
Injection 2
Analyzer
Concentration
Injection 3
Analyzer
Concentration
Average
Analyzer
Concentration Difference Average Error
Average
Analyzer
Concentration
Injection 1
Error
Injection 2
Error
Injection 3
Error
Difference
Average
Error
72 of 78
Location:
Source:
Project No.:
Date:
Time NOx CO O2 CO2
(ppm) (ppm) (%) (%)
A-1
2 0:00
3 0:00
4 0:00
5 0:00
6 0:00
B-1 0:00
2 0:00
3 0:00
4 0:00
5 0:00
6 0:00
-- -- -- --
Single Point Single Point Single Point Single Point
Average
Criteria Met
Traverse Point
-- - --
--
--
73 of 78
Cyclonic Flow Check
Location
Source
Project No.
Date
Sample Point Angle (ΔP=0)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
Average --
--
--
--
74 of 78
Field Data
Method 2 Data
Location
Source
Project No.
Δ P
(in. WC)
Ts
(°F)
Δ P
(in. WC)
Ts
(°F)
Δ P
(in. WC)
Ts
(°F)
Average
Square Root of ΔP, (in. WC)1/2 (ΔP)1/2 --
Average ΔP, in. WC (ΔP)--
Pitot Tube Coefficient (Cp)--
Barometric Pressure, in. Hg (Pb)--
Static Pressure, in. WC (Pg)--
Stack Pressure, in. Hg (Ps)--
Average Temperature, °F (Ts)--
Average Temperature, °R (Ts)--
Measured Moisture Fraction (BWSmsd)--
Moisture Fraction @ Saturation (BWSsat)--
Moisture Fraction (BWS)--
O2 Concentration, % (O2)--
CO2 Concentration, % (CO2)--
Molecular Weight, lb/lb-mole (dry)(Md)--
Molecular Weight, lb/lb-mole (wet)(Ms)--
Velocity, ft/sec (Vs)--
VFR at stack conditions, acfm (Qa)--
VFR at standard conditions, scfh (Qsw)--
VFR at standard conditions, scfm (Qsw)--
VFR at standard conditions, dscfm (Qsd)--
--
--
--
Run No. 1 2 3
Status VALID VALID VALID
Date -- --
Stop Time
Start Time
Traverse Point
Leak Check
-- -- --
-- -- --
-- -- --
-- -- --
-- -- --
-- -- --
-- -- --
-- -- --
-- -- --
-- -- --
-- -- --
-- -- --
-- -- --
-- -- --
-- -- --
-- -- --
-- -- --
-- -- --
------
------
75 of 78
Method 4 Data
Location
Source
Project No.
Parameter(s)
Console Units / Method ft3 M4
Run No.
Date
Status
Start Time
End Time
Run Time, min (θ)
Meter ID
Meter Correction Factor (Y)
Orifice Calibration Value (ΔH @)
Max Vacuum, in. Hg
Post Leak Check, ft3/min (at max vac.)
Meter Volume, ft3
Total Meter Volume, ft3 (Vm)
Meter Probe Filter Vacuum Imp. Exit Meter Probe Filter Vacuum Imp. Exit Meter Probe Filter Vacuum Imp. Exit
-- -- -- -- -- -- -- -- -- -- -- -- -- -- --
-- -- -- -- -- -- -- -- -- -- -- -- -- -- --
-- -- -- -- -- -- -- -- -- -- -- -- -- -- --
-- -- -- -- -- -- -- -- -- -- -- -- -- -- --
-- -- -- -- -- -- -- -- -- -- -- -- -- -- --
-- -- -- -- -- -- -- -- -- -- -- -- -- -- --
-- -- -- -- -- -- -- -- -- -- -- -- -- -- --
-- -- -- -- -- -- -- -- -- -- -- -- -- -- --
-- -- -- -- -- -- -- -- -- -- -- -- -- -- --
-- -- -- -- -- -- -- -- -- -- -- -- -- -- --
-- -- -- -- -- -- -- -- -- -- -- -- -- -- --
-- -- -- -- -- -- -- -- -- -- -- -- -- -- --
-- -- -- -- -- -- -- -- -- -- -- -- -- -- --
Average Temperature, °F (Tm)-- -- -- -- -- -- -- -- -- -- -- -- -- -- --
Average Temperature, °R (Tm)-- -- -- -- -- -- -- -- -- -- -- -- -- -- --
Minimum Temperature, °F -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
Maximum Temperature, °F -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
Barometric Pressure, in. Hg (Pb)
Meter Orifice Pressure , in. WC (ΔH)
Meter Pressure, in. Hg (Pm)
Standard Meter Volume, ft3 (Vmstd)
Analysis Type
Impinger 1, Pre/Post Test, g -- -- -- -- -- -- -- -- --
Impinger 2, Pre/Post Test, g -- -- -- -- -- -- -- -- --
Impinger 3, Pre/Post Test, g -- -- -- -- -- -- -- -- --
Impinger 4, Pre/Post Test, g -- -- -- -- -- -- -- -- --
Volume Water Collected, mL (Vlc)
Standard Water Volume, ft3 (Vwstd)
Moisture Fraction Measured (BWS)
Gas Molecular Weight, lb/lb-mole (dry) (Md)
DGM Calibration Check Value (Yqa)
Temperature, °F
0
5
30
35
60
--
--
--
--
1
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
2
--
3
--
--
-- -- --
--
--
--
--
--
--
--
--
--
--
Gravimetric Gravimetric
-- -- --
--
--
--
--
--
--
--
--
--
--
Gravimetric
--
60
0
5
10
15
20
25
10
15
20
25
40
45
50
55
30
35
40
45
50
55
76 of 78
Location -- - --
Source --
Project No.--
Run 3Run 2Run 1Run Number
------Date
------Start Time
------Stop Time
Pre Catalyst Temperature, °F (PreT)
Time, 0 min
Time, 15 min
Time, 30 min
Time, 45 min
Time, 60 min
------Average
Catalyst Differential Pressure, in WC (ΔP)
Time, 0 min
Time, 15 min
Time, 30 min
Time, 45 min
Time, 60 min
----Average --
Speed, RPM (ES)
Time, 0 min
Time, 15 min
Time, 30 min
Time, 45 min
Time, 60 min
------Average
Suction Pressure, psig (SP)
Time, 0 min
Time, 15 min
Time, 30 min
Time, 45 min
Time, 60 min
------Average
Discharge Pressure, psig (DiT)
Time, 0 min
Time, 15 min
Time, 30 min
Time, 45 min
Time, 60 min
------Average
Brake Work, HP (EBW)
Time, 0 min
Time, 15 min
Time, 30 min
Time, 45 min
Time, 60 min
------Average
Load, % (EL)
Time, 0 min
Time, 15 min
Time, 30 min
Time, 45 min
Time, 60 min
------Average
Fuel Rate, scfh (FR)
Time, 0 min
Time, 15 min
Time, 30 min
Time, 45 min
Time, 60 min
----Average
Operational Data
77 of 78
Last Page of Report
78 of 78
LFG NOx CO VOC retest
Reference Methods 2, 3A, 6C, 7E, 10, & 19
Source Information
Company Name Nodal Power
Company Contact:Bryan Black
Contact Phone No.(801) 301-8151
Stack Designation:LFG Generator
Test & Review Dates
Test Date:12/5/2023 &
Review Date: 1/16/2024
Observer:
Reviewer:Paul Morris
Emission Limits Emission Rates
VOC NOX CO VOC NOX CO
g/hp-hr 0.8800 0.5000 2.5000 0.155 0.432 2.421
lbs./hr. 4.3 2.5 12.3 0.67 1.865 10.444
ppm
Percent
%O2 Correction as a whole #15.00 15.00 15.00
Test Information Heat Input
Stack I.D. inches As ft^2 Y Dl H @ Cp Pbar Pq (static)
fuel flow rate
(Btu/hr.)
Heat Input
(Btu/hr.)
17.75 1.718 0.9700 1.898 0.84 25.39 1.3
Contractor Information
Contact: #N/A
Contracting Company: #N/A
Address: #N/A
Phone No.: #N/A
Project No.:
Division of Air Quality
Instrumental Reference Methods - Gaseous Measurements
Round
Method 19 - F factors for Coal, Oil, and Gas
Fd Fw Fc
scf/MMBtu scf/MMBtu scf/MMBtu
Diluent
F factor used
O2
CO2
Anthrocite 2
Bituminous 2
Lignite
Natural
Propane
Butane
10100
COAL
OIL
GAS
9780
9860
9190
8710
8710
8710
10540
10640
11950
320
10610
10200
10390
1970
1800
1910
1420
1040
1190
1250
Wet CEM
Correct For O2
CO2 Interference w/CO
Yes
Yes
Yes
LFG NOx CO VOC retest
Division of Air Quality
NSPS Relative Accuracy Performance Specification Test - CEMS Certification
Nodal Power
LFG Generator
Average Emission
Dry VOC NOX CO
g/hp-hr 0.155 0.432 2.421 Average % concentration
lbs./hr.0.67 1.87 10.44 CO2 O2
ppm corrected for %O2 11.93 31.82 293.21 10.79 8.51
Run 1 Enter O2 or CO2
Dry VOC
NOX CO CO2 O2 O2
Atomic Weight 44.1 46 28
lbs./MMBtu (O2)E=Cd x Fd x (20.9/(20.9-%O2d))
lbs./MMBtu (CO2)HP 1994 E=Cd x Fc x (100 / % CO2d)
lbs./cu.ft 2.598E-06 9.020E-06 4.718E-05
lbs./hr.0.63 2.17 11.36 10.91 8.36
ppm corrected for %O2 10.67 35.53 305.32 11.14 8.33
Run 2
Dry VOC NOX CO CO2 O2
Atomic Weight 44.1 46 28
lbs./MMBtu (O2)E=Cd x Fd x (20.9/(20.9-%O2d))
lbs./MMBtu (CO2)HP 2014 E=Cd x Fc x (100 / % CO2d)
lbs./cu.ft 2.883E-06 7.666E-06 4.368E-05
lbs./hr.0.66 1.77 10.07 10.70 8.59
ppm corrected for %O2 12.07 30.77 288.01 11.14 8.55 Raw Value
Run 3
Dry VOC NOX CO CO2 O2
Atomic Weight 44.1 46 28
lbs./MMBtu (O2)E=Cd x Fd x (20.9/(20.9-%O2d))
lbs./MMBtu (CO2)HP 2009 E=Cd x Fc x (100 / % CO2d)
lbs./cu.ft 3.122E-06 7.273E-06 4.348E-05
lbs./hr.0.71 1.66 9.90 10.75 8.58
ppm corrected for %O2 13.05 29.15 286.314 10.93 8.52 Raw Value
Run 4
Dry VOC NOX CO CO2 O2
Atomic Weight 44 46 28
lbs./MMBtu (O2)E=Cd x Fd x (20.9/(20.9-%O2d))
lbs./MMBtu (CO2)E=Cd x Fc x (100 / % CO2d)
lbs./cu.ft
lbs./hr.
ppm corrected for %O2 Raw Value
Run 5
Dry VOC NOX CO CO2 O2
Atomic Weight 44 46 28
lbs./MMBtu (O2)E=Cd x Fd x (20.9/(20.9-%O2d))
lbs./MMBtu (CO2)E=Cd x Fc x (100 / % CO2d)
lbs./cu.ft
lbs./hr.
ppm corrected for %O2 Raw Value
C For Cal Drift
Raw Value
C For Cal Drift
C For Cal Drift
C For Cal Drift
C For Cal Drift
O2
CO2
Clear
lbs./MMBTU
LFG NOx CO VOC retest
Calibration Error Test
Test Date December 5, 2023 O2
CS - Cal. Span 24.00
Units %
Cylinder No. Expiration
Date Cal. Gas CV- Certified
Concentration
CDir or CS -
Measured
Concentration
Difference
ACE Eq. 7E-1
Analyzer Cal.
Error
Status
Low-level 0.00 0.00 0.00 0.00% Passed Cal.
RR03686 09/19/31 Mid-level 10.98 11.01 0.03 0.12% Passed Cal.
RR03384 10/19/29 High-level 24.00 23.99 0.01 0.04% Passed Cal.
% of Span Sec. 8.2.1 Cal Gas Verification
0 to 20% of CS - Cal. Span Low-Level 0.00%
40 to 60% of Cal. Span Mid-level 45.75%
100% of Cal. Span High-level 100.00%
Test Date December 5, 2023 CO2
CS - Cal. Span 23.70
Units %
Cylinder
No.
Expiration
Date Cal. Gas CV- Certified
Concentration
CDir or CS -
Measured
Concentration
Difference
ACE Eq. 7E-1
Analyzer Cal.
Error
Status
Low-level 0.00 0.03 0.03 0.127% Passed Cal.
RR03686 09/19/31 Mid-level 10.90 11.18 0.28 1.181% Passed Cal.
RR03384 10/19/29 High-level 23.70 23.76 0.06 0.253% Passed Cal.
% of Span Sec. 8.2.1 Cal Gas Verification
0 to 20% of Cal. Span Low-Level 0.00%
40 to 60% of Cal. Span Mid-level 45.99%
100% of Cal. Span High-level 100.00%
Test Date December 5, 2023 VOC
CS - Cal. Span 60.00
Units ppm
Cylinder
No.
Expiration
Date Cal. Gas CV- Certified
Concentration
CDir or CS -
Measured
Concentration
Difference
ACE Eq. 7E-1
Analyzer Cal.
Error
Status
Low-level 0.00 0.04 0.04 0.067% Passed Cal.
EB0065892 04/18/29 Mid-level 40.00 40.21 0.21 0.350% Passed Cal.
High-level 60.00 60.00 0.00 0.000% Passed Cal.
% of Span Sec. 8.2.1 Cal Gas Verification
0 to 20% of Cal. Span Low-Level 0.00%
40 to 60% of Cal. Span Mid-level 66.67% out of range
100% of Cal. Span High-level 100.00%
Test Date December 5, 2023 NOx
CS - Cal. Span 99.10
Units ppm
Cylinder
No.
Expiration
Date Cal. Gas CV- Certified
Concentration
CDir or CS -
Measured
Concentration
Difference
ACE Eq. 7E-1
Analyzer Cal.
Error
Status
Low-level 0.00 0.05 0.05 0.050% Passed Cal.
EB0033140 09/14/26 Mid-level 50.00 49.53 0.47 0.474% Passed Cal.
CC736761 10/28/31 High-level 99.10 99.04 0.06 0.061% Passed Cal.
% of Span Sec. 8.2.1 Cal Gas Verification
0 to 20% of Cal. Span Low-Level 0.00%
40 to 60% of Cal. Span Mid-level 50.45%
100% of Cal. Span High-level 100.00%
Test Date December 5, 2023 CO
12.31 CS - Cal. Span 950.00
Units ppm
Cylinder
No.
Expiration
Date Cal. Gas CV- Certified
Concentration
CDir or CS -
Measured
Concentration
Difference
ACE Eq. 7E-1
Analyzer Cal.
Error
Status
Low-level 0.00 -0.05 0.05 0.005% Passed Cal.
CC729836 05/03/29 Mid-level 500.00 514.71 14.71 1.548% Passed Cal.
High-level 950.00 950.73 0.73 0.077% Passed Cal.
% of Span Sec. 8.2.1 Cal Gas Verification
0 to 20% of Cal. Span Low-Level 0.00%
40 to 60% of Cal. Span Mid-level 52.63%
100% of Cal. Span High-level 100.00%
Valid Cal Gas
Valid Cal Gas
Valid Cal Gas
Valid Cal Gas
Valid Cal Gas
Valid Cal Gas
Valid Cal Gas
Valid Cal Gas
LFG NOx CO VOC retest
Division of Air Quality Stack Test Review of
Nodal Power
VOC NOX CO CO2 O2 LFG Generator
CS Calibration Span 60.00 99.10 950.00 23.70 24.00
Units ppm ppm ppm % % Unprotected
CV - Cylinder Value: VOC NOX CO CO2 O2
Low-Level 0.00 0.00 0.00 0.00 0.00
Mid-Level 40.00 50.00 500.00 10.90 10.98
High-Level 60.00 99.10 950.00 23.70 24.00
0 to 20% of Cal. Span 0.00% 0.00% 0.00% 0.00% 0.00%
40 to 60% of Cal. Span 66.7% 50.5% 52.6% 46.0% 45.8%
100% of Cal. Span 100.0% 100.0% 100.0% 100.0% 100.0%
Cdir - Enter Actual Up-scale Cylinder Value Used To Correct Emission Concentration.
CDir CMA 40.00 50.00 500.00 10.90 10.98
Calibration Error Test
Cs - Measured Concentration VOC NOX CO CO2 O2
Low-Level 0.04 0.05 -0.05 0.03 0.00
Mid-Level 40.21 49.53 514.71 11.18 11.01
High-Level 60.00 99.04 950.73 23.76 23.99
Enter Up-scale Analyzer Response to be used during testing.
ACE Eq. 7E-1 40.21 49.53 514.71 11.18 11.01
Low-Level 0.07% 0.05% 0.01% 0.13% 0.00%
ppmdv Difference 0.04 0.05 0.05 0.03 0
Status Passed Cal. Passed Cal. Passed Cal. Passed Cal.Passed Cal.
Mid-Level 0.35% 0.47% 1.55% 1.18% 0.12%
ppmdv Difference 0.21 0.47 14.71 0.28 0.03
Status Passed Cal. Passed Cal. Passed Cal. Passed Cal.Passed Cal.
High-Level 0.00% 0.06% 0.08% 0.25% 0.04%
ppmdv Difference 0 0.06 0.73 0.06 0.01
Status Passed Cal. Passed Cal. Passed Cal. Passed Cal.Passed Cal.
Pre-Test Sampling System Bias
Initial Values VOC NOX CO CO2 O2
CO - Low-Level 0.04 0.17 -0.03 0.03 0.04 System Bias.
SBi - Zero Bias 0.00% 0.12% 0.00% 0.00% 0.17%± 5% of Span
Difference 0 0.12 0.02 0 0.04
Pass or Failed Invalid Run Passed Cal. Passed Cal. Passed Cal. Passed Cal. Passed Cal.
CM - Up-scale Gas 40.21 48.66 512.16 11.13 10.93
SBi - Up-Scale Bias 0.00% 0.88% 0.27% 0.21% 0.33%
Difference 0.00 0.87 2.55 0.05 0.08
Pass or Failed Invalid Run Passed Cal. Passed Cal. Passed Cal. Passed Cal. Passed Cal.
Raw Test Data Time Start Stop
Test Date:12/5/2023 SO2
VOC NOX CO CO2 O2 NOX
22.9 73.9 663.97 11.1 8.3 CO
38.2% 74.6% 69.9% 47.0% 34.7% CO2/O2
Post-Test System Bias 7E-2 SB=(Cs - Cdir)/CS x 100
Final Values VOC NOX CO CO2 O2
CO - Low-Level 0.04 0.59 -0.19 0.10 0.06 System Bias.
SBi - Zero Bias 0.00% 0.54% 0.01% 0.30% 0.25%± 5% of Span
Difference 0.0 0.5 0.1 0.1 0.1
Pass or Invalid Run Passed Cal. Passed Cal. Passed Cal. Passed Cal. Passed Cal.
CM - Up-scale Gas 40.53 49.43 510.95 11.13 10.92
SBi - Up-Scale Bias 0.53% 0.10% 0.40% 0.21% 0.37%
Difference 0.3 0.1 3.8 0.0 0.1
Pass or Invalid Run Passed Cal. Passed Cal. Passed Cal. Passed Cal. Passed Cal.
Calibration Drift % of Span - D=ABS(SBf - SBi)
Low-Level Drift 0.00% 0.42% 0.01% 0.30% 0.08% Drift
Difference 0.0 0.4 0.2 0.1 0.0 3% of Span
Pass or Re-Calibrate Pass Pass Pass Pass Pass
Up-scale Gas Drift 0.53% 0.78% 0.13% 0.00% 0.04%
Difference 0.3 0.8 1.2 0.0 0.0
Pass or Re-Calibrate Pass Pass Pass Pass Pass
LFG Generator Flow & Moisture
As ft^2 Pbar Pq (static) Ps Avg Ts F CO2 - FCO2 O2 N2+C Md Ms
1.718 25.39 1.30 25.49 795 10.91 8.36 80.73 30.08 28.57
Y Cp Vm cf Vlc AVG Tm F Vm std Vw std Bws S Bws 430.4055
0.9700 0.84 36.144 94.30 47 30.971 4.439 0.1254 0.9990 0.999
Load - Megawatts
Avg. √∆P's Vs
(ft/sec.)Qsw scfh wet Qa acfm Qsd dscfh
Heat Input
Btu/hr Low Mid High
1.3176 124.230 275,345 12,806 240,829.34 Enert >
#1 - Times
Date
Point No.∆P √∆P ts F tm F (in) tm F (out)
Final
Vf
Initial
Vi
1 1.10 1.049 795 47 45 856 796 59.4
2 1.30 1.140 793 47 44 749 730 18.3
3 1.70 1.304 793 48 44 643 638 4.2
4 1.60 1.265 794 48 44 951 939 12.4
5 1.80 1.342 794 49 43
6 2.00 1.414 795 50 43
7 2.10 1.449 793 50 43
8 2.10 1.449 795 52 44
9 1.30 1.140 796 52 44
10 1.50 1.225 796 53 44
11 1.80 1.342 795 55 45
12 1.80 1.342 794 55 45
13 1.90 1.378 796 55 45
14 2.00 1.414 797
15 2.00 1.414 796
16 2.00 1.414 798
17
18
19
20
21
22
23
24
Failed Bias Dialog
Failed Drift Dialog
Failed Cal Error Dialog
CO Calibration Gas
Failed Bias Dialog
LFG NOx CO VOC retest
Division of Air Quality Stack Test Review of
Nodal Power
VOC NOX CO CO2 O2 LFG Generator
CS Calibration Span 60.00 99.10 950.00 23.70 24.00
Units ppm ppm ppm % %
CV - Cylinder Value: VOC NOX CO CO2 O2
Low-Level 0.00 0.00 0.00 0.00 0.00
Mid-Level 40.00 50.00 500.00 10.90 10.98
High-Level 60.00 99.10 950.00 23.70 24.00
0 to 20% of Cal. Span 0.00% 0.00% 0.00% 0.00% 0.00%
40 to 60% of Cal. Span 66.7% 50.5% 52.6% 46.0% 45.8%
100% of Cal. Span 100.0% 100.0% 100.0% 100.0% 100.0%
Cdir - Enter Actual Up-scale Cylinder Value Used To Correct Emission Concentration.
CMA 40.00 50.00 500.00 10.90 10.98
Calibration Error Test
Measured Concentration VOC NOX CO CO2 O2
Low-Level 0.04 0.05 -0.05 0.03 0.00
Mid-Level 40.21 49.53 514.71 11.18 11.01
High-Level 60.00 99.04 950.73 23.76 23.99
Enter Up-scale Analyzer Response to be used during testing.
ACE Eq. 7E-1 40.21 49.53 514.71 11.18 11.01
Low-Level 0.07% 0.05% 0.01% 0.13% 0.00%
ppmdv Difference 0.04 0.05 0.05 0.03 0
Status Passed Cal. Passed Cal. Passed Cal. Passed Cal.Passed Cal.
Mid-Level 0.35% 0.47% 1.55% 1.18% 0.12%
ppmdv Difference 0.21 0.47 14.71 0.28 0.03
Status Passed Cal. Passed Cal. Passed Cal. Passed Cal.Passed Cal.
High-Level 0.00% 0.06% 0.08% 0.25% 0.04%
ppmdv Difference 0 0.06 0.73 0.06 0.01
Status Passed Cal. Passed Cal. Passed Cal. Passed Cal.Passed Cal.
Pre-Test Sampling System Bias
Initial Values VOC NOX CO CO2 O2
CO - Low-Level 0.04 0.59 -0.19 0.10 0.06 System Bias.
SBi - Zero Bias 0.00% 0.54% 0.01% 0.30% 0.25%± 5% of Span
Difference 0 0.54 0.14 0.07 0.06
Pass or Invalid Run Passed Cal. Passed Cal. Passed Cal. Passed Cal. Passed Cal.
CM - Up-scale Gas 40.53 49.43 510.95 11.13 10.92
SBi - Up-Scale Bias 0.53% 0.10% 0.40% 0.21% 0.37%
Difference 0.32 0.1 3.76 0.05 0.09
Pass or Invalid Run Passed Cal. Passed Cal. Passed Cal. Passed Cal. Passed Cal.
Raw Test Data Time Start Stop
Test Date:12/5/2023 SO2
VOC NOX CO CO2 O2 NOX
25.2 63.0 611.62 10.9 8.6 CO
41.9% 63.6% 64.4% 46.0% 35.6% CO2/O2
Post-Test System Bias 7E-2 SB=(Cs - Cdir)/CS x 100
Final Values VOC NOX CO CO2 O2
CO - Low-Level 0.04 0.53 -0.52 0.06 0.05 System Bias.
SBi - Zero Bias 0.00% 0.48% 0.05% 0.13% 0.21%± 5% of Span
Difference 0.0 0.5 0.5 0.0 0.1
Pass or Invalid Run Passed Cal. Passed Cal. Passed Cal. Passed Cal. Passed Cal.
CM - Up-scale Gas 39.37 49.01 506.97 11.08 10.90
SBi - Up-Scale Bias 1.40% 0.52% 0.81% 0.42% 0.46%
Difference 0.8 0.5 7.7 0.1 0.1
Pass or Invalid Run Passed Cal. Passed Cal. Passed Cal. Passed Cal. Passed Cal.
Calibration Drift % of Span - D=ABS(SBf - SBi)
Low-Level Drift 0.00% 0.06% 0.03% 0.17% 0.04% Response Spec.
Difference 0.0 0.1 0.3 0.0 0.0 3% of Span
Pass or Re-Calibrate Pass Pass Pass Pass Pass
Up-scale Gas Drift 0.87% 0.42% 0.42% 0.21% 0.08%
Difference 1.2 0.4 4.0 0.1 0.0
Pass or Re-Calibrate Pass Pass Pass Pass Pass
LFG Generator Flow & Moisture
As ft^2 Pbar Pq (static) Ps Avg Ts F CO2 - FCO2 O2 N2+C Md Ms
1.72 25.39 1.30 25.49 793 10.70 8.59 80.71 30.06 28.55
Y Cp Vm cf Vlc AVG Tm F Vm std Vw std Bws S Bws 426.4031
0.9700 0.84 36.383 94.80 45 31.283 4.462 0.1248 0.9990 0.999
Load - Megawatts
Avg. √∆P's Vs Qsw scfh wet Qa acfm Qsd dscfh
Heat Input
Btu/hr Low Mid High
1.2597 118.71 263,490 12,237 230,597.79 Enert >
#1 - Times
Date
Point No.∆P √∆P ts F tm F (in) tm F (out)
Final
Vf
Initial
Vi
1 1.10 1.049 796 45 44 835 774 61.2
2 1.20 1.095 795 45 44 752 734 17.6
3 1.50 1.225 795 45 44 647 643 4
4 1.60 1.265 796 45 44 963 951 12
5 1.70 1.304 797 46 44
6 2.00 1.414 798 46 44
7 1.90 1.378 796 46 44
8 1.80 1.342 795 46 44
9 1.10 1.049 795 47 44
10 1.30 1.140 754 47 45
11 1.60 1.265 796 47 45
12 1.60 1.265 798 48 45
13 1.70 1.304 796 48 45
14 2.00 1.414 796
15 1.80 1.342 795
16 1.70 1.304 793
17
18
19
20
21
22
23
24
Failed Bias Dialog
Failed Drift Dialog
Failed Cal Error Dialog
Failed Bias Dialog
LFG NOx CO VOC retest
Division of Air Quality Stack Test Review of
Nodal Power
VOC NOX CO CO2 O2 LFG Generator
CS Calibration Span 60.00 99.10 950.00 23.70 24.00
Units ppm ppm ppm % %
CV - Cylinder Value: VOC NOX CO CO2 O2
Low-Level 0.00 0.00 0.00 0.00 0.00
Mid-Level 40.00 50.00 500.00 10.90 10.98
High-Level 60.00 99.10 950.00 23.70 24.00
0 to 20% of Cal. Span 0.00% 0.00% 0.00% 0.00% 0.00%
40 to 60% of Cal. Span 66.7% 50.5% 52.6% 46.0% 45.8%
100% of Cal. Span 100.0% 100.0% 100.0% 100.0% 100.0%
Cdir - Enter Actual Up-scale Cylinder Value Used To Correct Emission Concentration.
CMA 40.00 50.00 500.00 10.90 10.98
Calibration Error Test
Measured Concentration VOC NOX CO CO2 O2
Low-Level 0.04 0.05 -0.05 0.03 0.00
Mid-Level 40.21 49.53 514.71 11.18 11.01
High-Level 60.00 99.04 950.73 23.76 23.99
Enter Up-scale Analyzer Response to be used during testing.
ACE Eq. 7E-1 40.21 49.53 514.71 11.18 11.01
Low-Level 0.07% 0.05% 0.01% 0.13% 0.00%
ppmv Difference 0.04 0.05 0.05 0.03 0
Status Passed Cal. Passed Cal. Passed Cal. Passed Cal.Passed Cal.
Mid-Level 0.35% 0.47% 1.55% 1.18% 0.12%
ppmv Difference 0.21 0.47 14.71 0.28 0.03
Status Passed Cal. Passed Cal. Passed Cal. Passed Cal.Passed Cal.
High-Level 0.00% 0.06% 0.08% 0.25% 0.04%
ppmv Difference 0 0.06 0.73 0.06 0.01
Status Passed Cal. Passed Cal. Passed Cal. Passed Cal.Passed Cal.
Pre-Test Sampling System Bias
Initial Values VOC NOX CO CO2 O2
CO - Low-Level 0.04 0.53 -0.52 0.06 0.05 System Bias.
SBi - Zero Bias 0.00% 0.48% 0.05% 0.13% 0.21%± 5% of Span
Difference 0 0.48 0.47 0.03 0.05
Pass or Invalid Run Passed Cal. Passed Cal. Passed Cal. Passed Cal. Passed Cal.
CM - Up-scale Gas 39.37 49.01 506.97 11.08 10.90
SBi - Up-Scale Bias 1.40% 0.52% 0.81% 0.42% 0.46%
Difference 0.84 0.52 7.74 0.1 0.11
Pass or Invalid Run Passed Cal. Passed Cal. Passed Cal. Passed Cal. Passed Cal.
Raw Test Data Time Start Stop
Test Date:12/5/2023 SO2
VOC NOX CO CO2 O2 NOX
26.7 59.8 606.63 10.9 8.5 CO
44.5% 60.4% 63.9% 46.1% 35.5% CO2/O2
Post-Test System Bias 7E-2 SB=(Cs - Cdir)/CS x 100
Final Values VOC NOX CO CO2 O2
CO - Low-Level 0.05 0.06 -0.52 0.53 0.04 System Bias.
SBi - Zero Bias 0.02% 0.01% 0.05% 2.11% 0.17%± 5% of Span
Difference 0.0 0.0 0.5 0.5 0.0
Pass or Invalid Run Passed Cal. Passed Cal. Passed Cal. Passed Cal. Passed Cal.
CM - Up-scale Gas 38.97 49.38 507.24 11.07 10.89
SBi - Up-Scale Bias 2.07% 0.15% 0.79% 0.46% 0.50%
Difference 1.2 0.1 7.5 0.1 0.1
Pass or Invalid Run Passed Cal. Passed Cal. Passed Cal. Passed Cal. Passed Cal.
Calibration Drift % of Span - D=ABS(SBf - SBi)
Low-Level Drift 0.02% 0.47% 0.00% 1.98% 0.04% Response Spec.
Difference 0.0 0.5 0.0 0.5 0.0 3% of Span
Pass or Re-Calibrate Pass Pass Pass Pass Pass
Up-scale Gas Drift 0.67% 0.37% 0.03% 0.04% 0.04%
Difference 0.4 0.4 0.3 0.0 0.0
Pass or Re-Calibrate Pass Pass Pass Pass Pass
LFG Generator Flow & Moisture
As ft^2 Pbar Pq (static) Ps Avg Ts F CO2 - FCO2 O2 N2+C Md Ms
1.72 25.39 1.30 25.49 796 10.75 8.58 80.67 30.06 28.55
Y Cp Vm cf Vlc AVG Tm F Vm std Vw std Bws S Bws 433.4586
0.9700 0.84 36.418 95.40 45 31.313 4.490 0.1254 0.9990 0.999
Load - Megawatts
Avg. √∆P's Vs Qsw scfh wet Qa acfm Qsd dscfh
Heat Input
Btu/hr Low Mid High
1.2456 117.54 260,232 12,116 227,593.33 Enert >
#1 - Times
Date
Point No.∆P √∆P ts F tm F (in) tm F (out)
Final
Vf
Initial
Vi
1 1.00 1.000 798 46 43 843 782 60.8
2 1.20 1.095 798 46 43 770 752 18.5
3 1.40 1.183 799 46 43 651 647 4.3
4 1.60 1.265 795 46 44 975 963 11.8
5 1.80 1.342 796 46 44
6 1.90 1.378 794 47 44
7 2.00 1.414 796 47 44
8 1.60 1.265 795 47 45
9 1.10 1.049 796 47 44
10 1.10 1.049 798 47 45
11 1.50 1.225 798 47 44
12 1.60 1.265 794 46 45
13 1.80 1.342 795 46 45
14 2.00 1.414 796
15 1.90 1.378 798
16 1.60 1.265 796
17
18
19
20
21
22
23
24
Failed Bias Dialog
Failed Cal Error Dialog
Failed Drift Dialog
Failed Bias Dialog
LFG NOx CO VOC Failed
Reference Methods 2, 3A, 6C, 7E, 10, & 19
Source Information
Company Name Nodal Power
Company Contact:Bryan Black
Contact Phone No.(801) 301-8151
Stack Designation:LFG Generator
Test & Review Dates
Test Date:8/10/2023 &
Review Date: 10/11/2023
Observer:Paul Morris
Reviewer:Paul Morris
Emission Limits Emission Rates
VOC NOX CO VOC NOX CO
g/hp-hr 0.8800 0.5000 2.5000 0.147 0.324 2.676
lbs./hr. 4.3 2.5 12.3 0.64 1.400 11.544
ppm
Percent
%O2 Correction as a whole #15.00 15.00 15.00
Test Information Heat Input
Stack I.D. inches As ft^2 Y Dl H @ Cp Pbar Pq (static)
fuel flow rate
(Btu/hr.)
Heat Input
(Btu/hr.)
17.75 1.718 0.9920 1.86 0.811 25.47 1.33
Contractor Information
Contact: #N/A
Contracting Company: #N/A
Address: #N/A
Phone No.: #N/A
Project No.:
Division of Air Quality
Instrumental Reference Methods - Gaseous Measurements
Round
Method 19 - F factors for Coal, Oil, and Gas
Fd Fw Fc
scf/MMBtu scf/MMBtu scf/MMBtu
Diluent
F factor used
O2
CO2
Anthrocite 2
Bituminous 2
Lignite
Natural
Propane
Butane
10100
COAL
OIL
GAS
9780
9860
9190
8710
8710
8710
10540
10640
11950
320
10610
10200
10390
1970
1800
1910
1420
1040
1190
1250
Wet CEM
Correct For O2
CO2 Interference w/CO
Yes
Yes
Yes
LFG NOx CO VOC Failed
Division of Air Quality
NSPS Relative Accuracy Performance Specification Test - CEMS Certification
Nodal Power
LFG Generator
Average Emission
Dry VOC NOX CO
g/hp-hr 0.147 0.324 2.676 Average % concentration
lbs./hr.0.64 1.40 11.54 CO2 O2
ppm corrected for %O2 11.32 23.84 323.04 10.58 8.73
Run 1 Enter O2 or CO2
Dry VOC
NOX CO CO2 O2 O2
Atomic Weight 44 46 28
lbs./MMBtu (O2)E=Cd x Fd x (20.9/(20.9-%O2d))
lbs./MMBtu (CO2)HP 1965 E=Cd x Fc x (100 / % CO2d)
lbs./cu.ft 2.544E-06 6.019E-06 4.870E-05
lbs./hr.0.61 1.45 11.77 10.64 8.68
ppm corrected for %O2 10.75 24.33 323.41 10.70 8.59
Run 2
Dry VOC NOX CO CO2 O2
Atomic Weight 44 46 28
lbs./MMBtu (O2)E=Cd x Fd x (20.9/(20.9-%O2d))
lbs./MMBtu (CO2)HP 1954 E=Cd x Fc x (100 / % CO2d)
lbs./cu.ft 2.700E-06 5.888E-06 4.845E-05
lbs./hr.0.63 1.37 11.24 10.53 8.75
ppm corrected for %O2 11.47 23.94 323.61 10.70 8.61 Raw Value
Run 3
Dry VOC NOX CO CO2 O2
Atomic Weight 44 46 28
lbs./MMBtu (O2)E=Cd x Fd x (20.9/(20.9-%O2d))
lbs./MMBtu (CO2)HP 1951 E=Cd x Fc x (100 / % CO2d)
lbs./cu.ft 2.755E-06 5.712E-06 4.815E-05
lbs./hr.0.67 1.38 11.62 10.57 8.77
ppm corrected for %O2 11.73 23.26 322.099 10.68 8.59 Raw Value
Run 4
Dry VOC NOX CO CO2 O2
Atomic Weight 44 46 28
lbs./MMBtu (O2)E=Cd x Fd x (20.9/(20.9-%O2d))
lbs./MMBtu (CO2)E=Cd x Fc x (100 / % CO2d)
lbs./cu.ft
lbs./hr.
ppm corrected for %O2 Raw Value
Run 5
Dry VOC NOX CO CO2 O2
Atomic Weight 44 46 28
lbs./MMBtu (O2)E=Cd x Fd x (20.9/(20.9-%O2d))
lbs./MMBtu (CO2)E=Cd x Fc x (100 / % CO2d)
lbs./cu.ft
lbs./hr.
ppm corrected for %O2 Raw Value
C For Cal Drift
Raw Value
C For Cal Drift
C For Cal Drift
C For Cal Drift
C For Cal Drift
O2
CO2
Clear
lbs./MMBTU
LFG NOx CO VOC Failed
Calibration Error Test
Test Date August 10, 2023 O2
CS - Cal. Span 24.58
Units %
Cylinder No. Expiration
Date Cal. Gas CV- Certified
Concentration
CDir or CS -
Measured
Concentration
Difference
ACE Eq. 7E-1
Analyzer Cal.
Error
Status
Low-level 0.00 0.10 0.10 0.41% Passed Cal.
EB0078899 07/13/29 Mid-level 10.95 10.98 0.03 0.12% Passed Cal.
SG9164824Bal 02/13/31 High-level 24.58 24.55 0.03 0.12% Passed Cal.
% of Span Sec. 8.2.1 Cal Gas Verification
0 to 20% of CS - Cal. Span Low-Level 0.00%
40 to 60% of Cal. Span Mid-level 44.55%
100% of Cal. Span High-level 100.00%
Test Date August 10, 2023 CO2
CS - Cal. Span 23.78
Units %
Cylinder
No.
Expiration
Date Cal. Gas CV- Certified
Concentration
CDir or CS -
Measured
Concentration
Difference
ACE Eq. 7E-1
Analyzer Cal.
Error
Status
Low-level 0.00 0.18 0.18 0.757% Passed Cal.
EB0078899 07/13/29 Mid-level 10.74 10.68 0.06 0.252% Passed Cal.
SG9164824Bal 02/13/31 High-level 23.78 23.81 0.03 0.126% Passed Cal.
% of Span Sec. 8.2.1 Cal Gas Verification
0 to 20% of Cal. Span Low-Level 0.00%
40 to 60% of Cal. Span Mid-level 45.16%
100% of Cal. Span High-level 100.00%
Test Date August 10, 2023 VOC
CS - Cal. Span 60.00
Units ppm
Cylinder
No.
Expiration
Date Cal. Gas CV- Certified
Concentration
CDir or CS -
Measured
Concentration
Difference
ACE Eq. 7E-1
Analyzer Cal.
Error
Status
Low-level 0.00 0.00 0.00 0.000% Passed Cal.
EB0098694 04/18/29 Mid-level 40.00 40.00 0.00 0.000% Passed Cal.
High-level 60.00 60.00 0.00 0.000% Passed Cal.
% of Span Sec. 8.2.1 Cal Gas Verification
0 to 20% of Cal. Span Low-Level 0.00%
40 to 60% of Cal. Span Mid-level 66.67% out of range
100% of Cal. Span High-level 100.00%
Test Date August 10, 2023 NOx
CS - Cal. Span 350.00
Units ppm
Cylinder
No.
Expiration
Date Cal. Gas CV- Certified
Concentration
CDir or CS -
Measured
Concentration
Difference
ACE Eq. 7E-1
Analyzer Cal.
Error
Status
Low-level 0.00 0.11 0.11 0.031% Passed Cal.
CC122482 02/20/31 Mid-level 200.00 202.76 2.76 0.789% Passed Cal.
High-level 350.00 349.71 0.29 0.083% Passed Cal.
% of Span Sec. 8.2.1 Cal Gas Verification
0 to 20% of Cal. Span Low-Level 0.00%
40 to 60% of Cal. Span Mid-level 57.14%
100% of Cal. Span High-level 100.00%
Test Date August 10, 2023 CO
12.31 CS - Cal. Span 950.00
Units ppm
Cylinder
No.
Expiration
Date Cal. Gas CV- Certified
Concentration
CDir or CS -
Measured
Concentration
Difference
ACE Eq. 7E-1
Analyzer Cal.
Error
Status
Low-level 0.00 0.46 0.46 0.048% Passed Cal.
CC210350 03/25/27 Mid-level 500.00 482.42 17.58 1.851% Passed Cal.
High-level 950.00 945.35 4.65 0.489% Passed Cal.
% of Span Sec. 8.2.1 Cal Gas Verification
0 to 20% of Cal. Span Low-Level 0.00%
40 to 60% of Cal. Span Mid-level 52.63%
100% of Cal. Span High-level 100.00%
Valid Cal Gas
Valid Cal Gas
Valid Cal Gas
Valid Cal Gas
Valid Cal Gas
Valid Cal Gas
Valid Cal Gas
LFG NOx CO VOC Failed
Division of Air Quality Stack Test Review of
Nodal Power
VOC NOX CO CO2 O2 LFG Generator
CS Calibration Span 60.00 350.00 950.00 23.78 24.58
Units ppm ppm ppm % % Unprotected
CV - Cylinder Value: VOC NOX CO CO2 O2
Low-Level 0.00 0.00 0.00 0.00 0.00
Mid-Level 40.00 200.00 500.00 10.74 10.95
High-Level 60.00 350.00 950.00 23.78 24.58
0 to 20% of Cal. Span 0.00% 0.00% 0.00% 0.00% 0.00%
40 to 60% of Cal. Span 66.7% 57.1% 52.6% 45.2% 44.5%
100% of Cal. Span 100.0% 100.0% 100.0% 100.0% 100.0%
Cdir - Enter Actual Up-scale Cylinder Value Used To Correct Emission Concentration.
CDir CMA 40.00 200.00 500.00 10.74 10.95
Calibration Error Test
Cs - Measured Concentration VOC NOX CO CO2 O2
Low-Level 0.00 0.11 0.46 0.18 0.10
Mid-Level 40.00 202.76 482.42 10.68 10.98
High-Level 60.00 349.71 945.35 23.81 24.55
Enter Up-scale Analyzer Response to be used during testing.
ACE Eq. 7E-1 40.00 202.76 482.42 10.68 10.98
Low-Level 0.00% 0.03% 0.05% 0.76% 0.41%
ppmdv Difference 0 0.11 0.46 0.18 0.1
Status Passed Cal. Passed Cal. Passed Cal. Passed Cal.Passed Cal.
Mid-Level 0.00% 0.79% 1.85% 0.25% 0.12%
ppmdv Difference 0 2.76 17.58 0.06 0.03
Status Passed Cal. Passed Cal. Passed Cal. Passed Cal.Passed Cal.
High-Level 0.00% 0.08% 0.49% 0.13% 0.12%
ppmdv Difference 0 0.29 4.65 0.03 0.03
Status Passed Cal. Passed Cal. Passed Cal. Passed Cal.Passed Cal.
Pre-Test Sampling System Bias
Initial Values VOC NOX CO CO2 O2
CO - Low-Level 0.00 0.20 0.80 0.10 0.10 System Bias.
SBi - Zero Bias 0.00% 0.03% 0.04% 0.34% 0.00%± 5% of Span
Difference 0 0.09 0.34 0.08 0
Pass or Failed Invalid Run Passed Cal. Passed Cal. Passed Cal. Passed Cal. Passed Cal.
CM - Up-scale Gas 39.70 192.80 479.40 10.80 10.90
SBi - Up-Scale Bias 0.50% 2.85% 0.32% 0.50% 0.33%
Difference 0.30 9.96 3.02 0.12 0.08
Pass or Failed Invalid Run Passed Cal. Passed Cal. Passed Cal. Passed Cal. Passed Cal.
Raw Test Data Time Start Stop
Test Date:8/10/2023 SO2
VOC NOX CO CO2 O2 NOX
22.0 49.1 630.02 10.7 8.6 CO
36.7% 14.0% 66.3% 45.0% 34.9% CO2/O2
Post-Test System Bias 7E-2 SB=(Cs - Cdir)/CS x 100
Final Values VOC NOX CO CO2 O2
CO - Low-Level 0.00 0.70 0.60 0.10 0.00 System Bias.
SBi - Zero Bias 0.00% 0.17% 0.01% 0.34% 0.41%± 5% of Span
Difference 0.0 0.6 0.1 0.1 0.1
Pass or Invalid Run Passed Cal. Passed Cal. Passed Cal. Passed Cal. Passed Cal.
CM - Up-scale Gas 39.30 194.30 461.50 10.80 10.80
SBi - Up-Scale Bias 1.17% 2.42% 2.20% 0.50% 0.73%
Difference 0.7 8.5 20.9 0.1 0.2
Pass or Invalid Run Passed Cal. Passed Cal. Passed Cal. Passed Cal. Passed Cal.
Calibration Drift % of Span - D=ABS(SBf - SBi)
Low-Level Drift 0.00% 0.14% 0.02% 0.00% 0.41% Drift
Difference 0.0 0.5 0.2 0.0 0.1 3% of Span
Pass or Re-Calibrate Pass Pass Pass Pass Pass
Up-scale Gas Drift 0.67% 0.43% 1.88% 0.00% 0.41%
Difference 0.4 1.5 17.9 0.0 0.1
Pass or Re-Calibrate Pass Pass Pass Pass Pass
LFG Generator Flow & Moisture
As ft^2 Pbar Pq (static) Ps Avg Ts F CO2 - FCO2 O2 N2+C Md Ms
1.718 25.47 1.33 25.57 774 10.64 8.68 80.68 30.05 28.55
Y Cp Vm cf Vlc AVG Tm F Vm std Vw std Bws S Bws 383.9369
0.9920 0.81 37.782 96.00 70 31.772 4.519 0.1245 0.9990 0.999
Load - Megawatts
Avg. √∆P's Vs
(ft/sec.)Qsw scfh wet Qa acfm Qsd dscfh
Heat Input
Btu/hr Low Mid High
1.3536 122.010 275,955 12,577 241,594.75 Enert >
#1 - Times
Date
Point No.∆P √∆P ts F tm F (in) tm F (out)
Final
Vf
Initial
Vi
1 1.20 1.095 751 82 67 846 771 74.7
2 1.50 1.225 753 85 49 759 750 9.3
3 1.70 1.304 753 86 46 623 621 2
4 1.70 1.304 768 86 46 933 923 10
5 2.00 1.414 778 87 48
6 2.10 1.449 781 87 49
7 2.20 1.483 782 88 50
8 2.20 1.483 784 88 51
9 1.50 1.225 768 89 52
10 1.60 1.265 769 90 53
11 1.80 1.342 776 90 54
12 1.90 1.378 779 91 55
13 1.90 1.378 782 91 56
14 2.10 1.449 782
15 2.00 1.414 786
16 2.10 1.449 789
17
18
19
20
21
22
23
24
Failed Bias Dialog
Failed Drift Dialog
Failed Cal Error Dialog
CO Calibration Gas
Failed Bias Dialog
LFG NOx CO VOC Failed
Division of Air Quality Stack Test Review of
Nodal Power
VOC NOX CO CO2 O2 LFG Generator
CS Calibration Span 60.00 350.00 950.00 23.78 24.58
Units ppm ppm ppm % %
CV - Cylinder Value: VOC NOX CO CO2 O2
Low-Level 0.00 0.00 0.00 0.00 0.00
Mid-Level 40.00 200.00 500.00 10.74 10.95
High-Level 60.00 350.00 950.00 23.78 24.58
0 to 20% of Cal. Span 0.00% 0.00% 0.00% 0.00% 0.00%
40 to 60% of Cal. Span 66.7% 57.1% 52.6% 45.2% 44.5%
100% of Cal. Span 100.0% 100.0% 100.0% 100.0% 100.0%
Cdir - Enter Actual Up-scale Cylinder Value Used To Correct Emission Concentration.
CMA 40.00 200.00 500.00 10.74 10.95
Calibration Error Test
Measured Concentration VOC NOX CO CO2 O2
Low-Level 0.00 0.11 0.46 0.18 0.10
Mid-Level 40.00 202.76 482.42 10.68 10.98
High-Level 60.00 349.71 945.35 23.81 24.55
Enter Up-scale Analyzer Response to be used during testing.
ACE Eq. 7E-1 40.00 202.76 482.42 10.68 10.98
Low-Level 0.00% 0.03% 0.05% 0.76% 0.41%
ppmdv Difference 0 0.11 0.46 0.18 0.1
Status Passed Cal. Passed Cal. Passed Cal. Passed Cal.Passed Cal.
Mid-Level 0.00% 0.79% 1.85% 0.25% 0.12%
ppmdv Difference 0 2.76 17.58 0.06 0.03
Status Passed Cal. Passed Cal. Passed Cal. Passed Cal.Passed Cal.
High-Level 0.00% 0.08% 0.49% 0.13% 0.12%
ppmdv Difference 0 0.29 4.65 0.03 0.03
Status Passed Cal. Passed Cal. Passed Cal. Passed Cal.Passed Cal.
Pre-Test Sampling System Bias
Initial Values VOC NOX CO CO2 O2
CO - Low-Level 0.00 0.70 0.60 0.10 0.00 System Bias.
SBi - Zero Bias 0.00% 0.17% 0.01% 0.34% 0.41%± 5% of Span
Difference 0 0.59 0.14 0.08 0.1
Pass or Invalid Run Passed Cal. Passed Cal. Passed Cal. Passed Cal. Passed Cal.
CM - Up-scale Gas 39.30 194.30 461.50 10.80 10.80
SBi - Up-Scale Bias 1.17% 2.42% 2.20% 0.50% 0.73%
Difference 0.7 8.46 20.92 0.12 0.18
Pass or Invalid Run Passed Cal. Passed Cal. Passed Cal. Passed Cal. Passed Cal.
Raw Test Data Time Start Stop
Test Date:8/10/2023 SO2
VOC NOX CO CO2 O2 NOX
23.0 48.7 611.54 10.7 8.6 CO
38.3% 13.9% 64.4% 45.0% 35.0% CO2/O2
Post-Test System Bias 7E-2 SB=(Cs - Cdir)/CS x 100
Final Values VOC NOX CO CO2 O2
CO - Low-Level 0.10 0.20 0.40 0.00 0.00 System Bias.
SBi - Zero Bias 0.17% 0.03% 0.01% 0.76% 0.41%± 5% of Span
Difference 0.1 0.1 0.1 0.2 0.1
Pass or Invalid Run Passed Cal. Passed Cal. Passed Cal. Passed Cal. Passed Cal.
CM - Up-scale Gas 38.40 198.20 456.40 11.00 10.80
SBi - Up-Scale Bias 2.67% 1.30% 2.74% 1.35% 0.73%
Difference 1.6 4.6 26.0 0.3 0.2
Pass or Invalid Run Passed Cal. Passed Cal. Passed Cal. Passed Cal. Passed Cal.
Calibration Drift % of Span - D=ABS(SBf - SBi)
Low-Level Drift 0.17% 0.14% 0.01% 0.42% 0.00% Response Spec.
Difference 0.1 0.5 0.2 0.1 0.0 3% of Span
Pass or Re-Calibrate Pass Pass Pass Pass Pass
Up-scale Gas Drift 1.50% 1.11% 0.54% 0.84% 0.00%
Difference 0.9 3.9 5.1 0.2 0.0
Pass or Re-Calibrate Pass Pass Pass Pass Pass
LFG Generator Flow & Moisture
As ft^2 Pbar Pq (static) Ps Avg Ts F CO2 - FCO2 O2 N2+C Md Ms
1.72 25.47 1.33 25.57 789 10.53 8.75 80.72 30.04 28.53
Y Cp Vm cf Vlc AVG Tm F Vm std Vw std Bws S Bws 414.9653
0.9920 0.81 37.716 96.80 71 31.666 4.556 0.1258 0.9990 0.999
Load - Megawatts
Avg. √∆P's Vs Qsw scfh wet Qa acfm Qsd dscfh
Heat Input
Btu/hr Low Mid High
1.3093 118.77 265,454 12,243 232,062.52 Enert >
#1 - Times
Date
Point No.∆P √∆P ts F tm F (in) tm F (out)
Final
Vf
Initial
Vi
1 1.30 1.140 790 85 66 922 846 76.2
2 1.40 1.183 788 86 53 769 759 10.1
3 1.50 1.225 789 86 51 626 623 2.8
4 1.60 1.265 789 86 51 940 933 7.7
5 1.80 1.342 787 87 52
6 1.90 1.378 787 87 52
7 2.10 1.449 788 87 52
8 2.40 1.549 790 89 53
9 1.40 1.183 788 89 54
10 1.50 1.225 789 89 54
11 1.60 1.265 790 89 54
12 1.70 1.304 791 90 55
13 1.80 1.342 789 90 55
14 1.80 1.342 787
15 1.90 1.378 787
16 1.90 1.378 788
17
18
19
20
21
22
23
24
Failed Bias Dialog
Failed Drift Dialog
Failed Cal Error Dialog
Failed Bias Dialog
LFG NOx CO VOC Failed
Division of Air Quality Stack Test Review of
Nodal Power
VOC NOX CO CO2 O2 LFG Generator
CS Calibration Span 60.00 350.00 950.00 23.78 24.58
Units ppm ppm ppm % %
CV - Cylinder Value: VOC NOX CO CO2 O2
Low-Level 0.00 0.00 0.00 0.00 0.00
Mid-Level 40.00 200.00 500.00 10.74 10.95
High-Level 60.00 350.00 950.00 23.78 24.58
0 to 20% of Cal. Span 0.00% 0.00% 0.00% 0.00% 0.00%
40 to 60% of Cal. Span 66.7% 57.1% 52.6% 45.2% 44.5%
100% of Cal. Span 100.0% 100.0% 100.0% 100.0% 100.0%
Cdir - Enter Actual Up-scale Cylinder Value Used To Correct Emission Concentration.
CMA 40.00 200.00 500.00 10.74 10.95
Calibration Error Test
Measured Concentration VOC NOX CO CO2 O2
Low-Level 0.00 0.11 0.46 0.18 0.10
Mid-Level 40.00 202.76 482.42 10.68 10.98
High-Level 60.00 349.71 945.35 23.81 24.55
Enter Up-scale Analyzer Response to be used during testing.
ACE Eq. 7E-1 40.00 202.76 482.42 10.68 10.98
Low-Level 0.00% 0.03% 0.05% 0.76% 0.41%
ppmv Difference 0 0.11 0.46 0.18 0.1
Status Passed Cal. Passed Cal. Passed Cal. Passed Cal.Passed Cal.
Mid-Level 0.00% 0.79% 1.85% 0.25% 0.12%
ppmv Difference 0 2.76 17.58 0.06 0.03
Status Passed Cal. Passed Cal. Passed Cal. Passed Cal.Passed Cal.
High-Level 0.00% 0.08% 0.49% 0.13% 0.12%
ppmv Difference 0 0.29 4.65 0.03 0.03
Status Passed Cal. Passed Cal. Passed Cal. Passed Cal.Passed Cal.
Pre-Test Sampling System Bias
Initial Values VOC NOX CO CO2 O2
CO - Low-Level 0.10 0.20 0.40 0.00 0.00 System Bias.
SBi - Zero Bias 0.17% 0.03% 0.01% 0.76% 0.41%± 5% of Span
Difference 0.1 0.09 0.06 0.18 0.1
Pass or Invalid Run Passed Cal. Passed Cal. Passed Cal. Passed Cal. Passed Cal.
CM - Up-scale Gas 38.40 198.20 456.40 11.00 10.80
SBi - Up-Scale Bias 2.67% 1.30% 2.74% 1.35% 0.73%
Difference 1.6 4.56 26.02 0.32 0.18
Pass or Invalid Run Passed Cal. Passed Cal. Passed Cal. Passed Cal. Passed Cal.
Raw Test Data Time Start Stop
Test Date:8/10/2023 SO2
VOC NOX CO CO2 O2 NOX
23.1 47.9 600.85 10.7 8.6 CO
38.6% 13.7% 63.2% 44.9% 34.9% CO2/O2
Post-Test System Bias 7E-2 SB=(Cs - Cdir)/CS x 100
Final Values VOC NOX CO CO2 O2
CO - Low-Level 0.10 0.50 0.30 0.00 0.00 System Bias.
SBi - Zero Bias 0.17% 0.11% 0.02% 0.76% 0.41%± 5% of Span
Difference 0.1 0.4 0.2 0.2 0.1
Pass or Invalid Run Passed Cal. Passed Cal. Passed Cal. Passed Cal. Passed Cal.
CM - Up-scale Gas 38.20 199.90 451.10 10.70 10.70
SBi - Up-Scale Bias 3.00% 0.82% 3.30% 0.08% 1.14%
Difference 1.8 2.9 31.3 0.0 0.3
Pass or Invalid Run Passed Cal. Passed Cal. Passed Cal. Passed Cal. Passed Cal.
Calibration Drift % of Span - D=ABS(SBf - SBi)
Low-Level Drift 0.00% 0.09% 0.01% 0.00% 0.00% Response Spec.
Difference 0.0 0.3 0.1 0.0 0.0 3% of Span
Pass or Re-Calibrate Pass Pass Pass Pass Pass
Up-scale Gas Drift 0.33% 0.49% 0.56% 1.26% 0.41%
Difference 0.2 1.7 5.3 0.3 0.1
Pass or Re-Calibrate Pass Pass Pass Pass Pass
LFG Generator Flow & Moisture
As ft^2 Pbar Pq (static) Ps Avg Ts F CO2 - FCO2 O2 N2+C Md Ms
1.72 25.47 1.33 25.57 790 10.57 8.77 80.66 30.04 28.58
Y Cp Vm cf Vlc AVG Tm F Vm std Vw std Bws S Bws 417.3990
0.9920 0.81 38.093 93.80 70 32.059 4.415 0.1210 0.9990 0.999
Load - Megawatts
Avg. √∆P's Vs Qsw scfh wet Qa acfm Qsd dscfh
Heat Input
Btu/hr Low Mid High
1.3564 122.98 274,616 12,677 241,373.69 Enert >
#1 - Times
Date
Point No.∆P √∆P ts F tm F (in) tm F (out)
Final
Vf
Initial
Vi
1 1.40 1.183 785 88 63 798 720 78.3
2 1.50 1.225 788 88 53 768 759 9
3 1.70 1.304 791 89 47 627 626 1.8
4 1.70 1.304 792 89 46 945 940 4.7
5 1.90 1.378 792 90 46
6 2.10 1.449 792 90 47 FT```
7 2.20 1.483 793 90 47
8 2.30 1.517 793 90 47
9 1.60 1.265 786 91 48
10 1.50 1.225 787 91 49
11 1.70 1.304 787 91 49
12 1.80 1.342 790 91 49
13 1.90 1.378 790 91 49
14 2.00 1.414 791
15 2.10 1.449 790
16 2.20 1.483 788
17
18
19
20
21
22
23
24
Failed Bias Dialog
Failed Cal Error Dialog
Failed Drift Dialog
Failed Bias Dialog