Loading...
HomeMy WebLinkAboutDAQ-2024-0050401 DAQC-075-24 Site ID# 10129 (B4) MEMORANDUM TO: STACK TEST FILE – WASATCH INTEGRATED WASTE MANAGEMENT DISTRICT – Landfill THROUGH: Harold Burge, Major Source Compliance Section Manager FROM: Paul Morris, Environmental Scientist DATE: January 25, 2024 SUBJECT: Location: 1997 East 3500 North, Layton, Davis County, Utah 84040 Contact: Nathan Rich – 801-614-5600 Tester: Alliance Technical Group, LLC Source: Landfill Gas Generator (LFG) FRS ID #: UT0000004901100033 Permit# 1100033003 Date of Last Revision: November 30, 2022 Action Code: TR Subject: Review of Stack Test Report received January 12, 2024 On January 12, 2024, (email) the DAQ received a stack test report for the Landfill Gas Generator (LFG) located at Wasatch Integrated Waste Management District’s Davis landfill located in Layton, Utah. Initial testing was performed on August 10, 2023, to demonstrate compliance with the emission limits found in Permit Condition II.B.3.d. During this test the source exceeded their Carbon Monoxide limit of 2.5 g/hp-hr. The source was retested on December 5, 2023. The DAQ-calculated test results are: Source Test Date Pollutant DAQ Result Test Result Limit LFG 8/10/2023 NOx 0.3 g/hp-hr 0.3 g/hp-hr 0.5 g/hp-hr 1.4 lb/hr 1.4 lb/hr 2.46 lb/hr CO 2.7 g/hp-hr 2.7 g/hp-hr 2.5 g/hp-hr 11.5 lb/hr 11.5 lb/hr 12.31 lb/hr VOC 0.15 g/hp-hr 0.16 g/hp-hr 0.88 g/hp-hr 0.64 lb/hr 0.71 lb/hr 4.33 lb/hr LFG 12/5/2023 NOx 0.4 g/hp-hr 0.4 g/hp-hr 0.5 g/hp-hr 1.87 lb/hr 1.87 lb/hr 2.46 lb/hr CO 2.4 g/hp-hr 2.4 g/hp-hr 2.5 g/hp-hr 10.44 lb/hr 10.45 lb/hr 12.31 lb/hr VOC 0.16 g/hp-hr 0.17 g/hp-hr 0.88 g/hp-hr 0.67 lb/hr 0.76 lb/hr 4.33 lb/hr 6 , 3 2 DEVIATIONS: Wasatch Integrated Waste Management District exceeded their permitted Carbon Monoxide emissions and failed to submit a Deviation Report within 7 days. See attached Deviation Reports. CONCLUSION: The submitted test report appear to be acceptable. RECOMMENDATION: Emissions appear to have been in compliance with the applicable limits during the second round of testing. Send an Early Settlement Agreement for the violations. HPV: No. ATTACHMENTS: Stack test report received January 12, 2024, Deviation Reports, Certification Statement cover letter and DAQ generated Excel test review spreadsheets. TEST REPORT SUMMARY CORPORATE OFFICE 255 Grant St. SE, Suite 600 Decatur, AL 35601 256.351.0121 www.alliancetechnicalgroup.com Client Information / Test Location Source Information Nodal Power Engine/Unit ID: LFG Generator Davis Landfill Engine Make/Model: Caterpillar G3520C Layton, Utah Engine Serial Number: GZJ00710 Engine Type: Compression/Spark, Rich/Lean Engine Date of Manufacture: 7/7/1905 Engine Rating: 2,233 HP Engine/Unit ID: LFG Generator Regulatory Applicability Project No. DAQE-AN101290026-22 AST-2023-4493 Run No. Run 1 Run 2 Run 3 Average Date 12/5/23 12/5/23 12/5/23 Engine Load, % * 89 90 90 90 Nitrogen Oxides Data Emission Rate, lb/hr 2.17 1.78 1.66 1.87 Permit Limit, lb/hr -- -- -- 2.46 Percent of Limit, % -- -- -- 76 Emission Factor, g/HP-hr 0.49 0.40 0.37 0.42 Permit Limit, lb/hr -- -- -- 0.5 Percent of Limit, % -- -- -- 85 Carbon Monoxide Data Emission Rate, lb/hr 11.36 10.11 9.90 10.45 Permit Limit, lb/hr -- -- -- 12.31 Percent of Limit, % -- -- -- 85 Emission Factor, g/HP-hr 2.58 2.28 2.23 2.36 Permit Limit, lb/hr -- -- -- 2.5 Percent of Limit, % -- -- -- 95 Non- Methane HC Data Emission Rate, lb/hr 0.72 0.76 0.80 0.76 Permit Limit, lb/hr -- -- -- 4.33 Percent of Limit, % -- -- -- 18 Emission Factor, g/HP-hr 0.16 0.17 0.18 0.17 Permit Limit, lb/hr -- -- -- 0.88 Percent of Limit, % -- -- -- 20 *Performance testing was conducted while the engine was operating at the highest achievable load at current site conditions. Source Test Report Nodal Power 250 E. 200 S., Suite 310 Salt Lake City, UT 84111 Davis Landfill Layton, Utah Source Tested: New Landfill Gas (LFG) Generator Engine Test Date: December 5, 2023 Project No. AST-2023-4493 Prepared By Alliance Technical Group, LLC 3683 W 2270 S, Suite E West Valley City, UT 84120 . Source Test Report Source & Contact Information AST-2023-4493 Nodal Power – Layton, UT Page i Regulatory Information Permit No. DAQE-AN101290026-22 Source Information Source Name Target Parameters New Landfill Gas (LFG) Generator Engine NOx, CO, VOC Contact Information Test Location Test Company Nodal Power Davis Landfill 1997 East 3500 North Layton, Utah 84040 Bryan Black bryan@nodalpower.com (801) 301-8151 Alliance Technical Group, LLC 3683 W 2270 S, Suite E West Valley City, UT 84120 Project Manager Charles Horton charles.horton@alliancetg.com (352) 663-7568 Field Team Leader Tobias Hubbard tobias.hubbard@alliancetg.com (605) 645-8562 (subject to change) QA/QC Manager Kathleen Shonk katie.shonk@alliancetg.com (812) 452-4785 Report Coordinator Delaine Spangler delaine.spangler@alliancetg.com 2 of 63 Source Test Report Certification Statement AST-2023-4493 Nodal Power – Layton, UT Page ii Alliance Technical Group, LLC (Alliance) has completed the source testing as described in this report. Results apply only to the source(s) tested and operating condition(s) for the specific test date(s) and time(s) identified within this report. All results are intended to be considered in their entirety, and Alliance is not responsible for use of less than the complete test report without written consent. This report shall not be reproduced in full or in part without written approval from the customer. To the best of my knowledge and abilities, all information, facts and test data are correct. Data presented in this report has been checked for completeness and is accurate, error-free and legible. Onsite testing was conducted in accordance with approved internal Standard Operating Procedures. Any deviations or test program notes are detailed in the relevant sections on the test report. This report is only considered valid once an authorized representative of Alliance has signed in the space provided below; any other version is considered draft. This document was prepared in portable document format (.pdf) and contains pages as identified in the bottom footer of this document. Charles Horton, QSTI Alliance Technical Group, LLC Date 1/11/2024 3 of 63 Source Test Report Table of Contents AST-2023-4493 Nodal Power – Layton, UT Page iii TABLE OF CONTENTS 1.0 Introduction .................................................................................................................................................. 1-1 1.1 Facility and Process Description .............................................................................................................. 1-1 1.2 Project Team ............................................................................................................................................ 1-1 1.3 Instrument Information ............................................................................................................................ 1-1 1.4 Test Protocol and Notification ................................................................................................................. 1-1 2.0 Testing Methodology .................................................................................................................................... 2-1 2.1 U.S. EPA Reference Test Methods 1 and 2 – Sampling/Traverse Points and Volumetric Flow Rate ..... 2-1 2.2 U.S. EPA Reference Test Method 3A – Oxygen/Carbon Dioxide ........................................................... 2-1 2.3 U.S. EPA Reference Test Method 4 – Moisture Content ......................................................................... 2-1 2.4 U.S. EPA Reference Test Method 7E – Nitrogen Oxides ........................................................................ 2-2 2.5 U.S. EPA Reference Test Method 10 – Carbon Monoxide ...................................................................... 2-2 2.6 U.S. EPA Alternative Test Method ALT-096 – Non Methane Hydrocarbons ......................................... 2-2 2.7 U.S. EPA Reference Test Method 205 – Gas Dilution System Certification ........................................... 2-2 2.8 Quality Assurance/Quality Control – U.S. EPA Reference Methods 3A, 7E and 10 ............................... 2-2 2.9 Quality Assurance/Quality Control – U.S. EPA Reference Method ALT-096 ........................................ 2-3 LIST OF TABLES Table 1-1: Project Team ........................................................................................................................................... 1-1 Table 1-2: Instrument Information ........................................................................................................................... 1-1 Table 2-1: Source Testing Methodology .................................................................................................................. 2-1 APPENDICES Appendix A Sample Calculations Appendix B Field Data Appendix C Quality Assurance/Quality Control Data Appendix D Engine Operating Data Appendix E Site Specific Test Plan & Associated Documentation 4 of 63 Introduction 5 of 63 Source Test Report Introduction AST-2023-4493 Nodal Power – Layton, UT Page 1-1 1.0 Introduction Alliance Technical Group, LLC (Alliance) was retained by Nodal Power to conduct initial compliance testing at the Davis Landfill in Layton, Utah. Portions of the facility are subject to provisions of the Utah Department of Environmental Quality – Division of Air Quality (UDAQ) Permit No. DAQE-AN101290026-22. Testing was conducted at the exhaust of the new landfill gas (LFG) generator engine. Compliance testing was conducted to determine the emission rates of nitrogen oxides (NOx), carbon monoxide (CO) and volatile organic compounds (VOC). Testing consisted of three (3) 60-minute test runs for the source. Performance testing was conducted while the engine was operating at the highest achievable load at current site conditions. The Test Report Summary (TRS) provides the results from the compliance testing, including the three (3) run average, with comparisons to the applicable limits. Any difference between the summary results listed in the TRS and the detailed results contained in the appendices is due to rounding for presentation. 1.1 Facility and Process Description Wasatch Integrated Waste Management District operates Davis Landfill, a municipal solid waste (MSW) landfill located in Davis County, Utah. The facility accepts municipal and commercial waste. The new LFG generator engine is rated at 2,233 horsepower (HP). 1.2 Project Team Personnel involved in this project are identified in the following table. Table 1-1: Project Team Nodal Power Personnel Bryan Black Alliance Personnel Tobias Hubbard Xander Krahn 1.3 Instrument Information The instruments used to conduct the compliance testing are summarized in the following table. Table 1-2: Instrument Information Pollutant Manufacturer Model Serial Number O2 Servomex 1440 14150/3279 CO2 CO Thermo 48i 208845 NOx Thermo 42C 42CHL-59778-324 VOC Thermo 55i 1209052150 1.4 Test Protocol and Notification Testing was conducted in accordance with the Site Specific Test Plan (SSTP) submitted to the UDAQ by Nodal Power. 6 of 63 Testing Methodology 7 of 63 Source Test Report Testing Methodology AST-2023-4493 Nodal Power – Layton, UT Page 2-1 2.0 Testing Methodology The emissions testing program was conducted in accordance with the U.S. EPA Reference Test Methods listed in Table 2-1. Method descriptions are provided below while quality assurance/quality control data is provided in Appendix C. Table 2-1: Source Testing Methodology Parameter U.S. EPA Reference Test Methods Notes/Remarks Volumetric Flow Rate 1 & 2 Full Velocity Traverses Oxygen/Carbon Dioxide 3A Instrumental Analysis Moisture Content 4 Gravimetric Analysis Nitrogen Oxides 7E Instrumental Analysis Carbon Monoxide 10 Instrumental Analysis Non-Methane Hydrocarbons ALT-096 Instrumental Analysis Gas Dilution System Certification 205 -- 2.1 U.S. EPA Reference Test Methods 1 and 2 – Sampling/Traverse Points and Volumetric Flow Rate The sampling location and number of traverse (sampling) points were selected in accordance with U.S. EPA Reference Test Method 1. To determine the minimum number of traverse points, the upstream and downstream distances were equated into equivalent diameters and compared to Figure 1-2 in U.S. EPA Reference Test Method 1. Full velocity traverses were conducted in accordance with U.S. EPA Reference Test Method 2 to determine the average stack gas velocity pressure, static pressure, and temperature. The velocity and static pressure measurement system consisted of a pitot tube and inclined manometer. The stack gas temperature was measured with a K-type thermocouple and pyrometer. 2.2 U.S. EPA Reference Test Method 3A – Oxygen/Carbon Dioxide The oxygen (O2) and carbon dioxide (CO2) testing were conducted in accordance with U.S. EPA Reference Test Method 3A. Data was collected online and reported in one-minute averages. The sampling system consisted of a stainless-steel probe, Teflon sample line(s), gas conditioning system and the identified gas analyzer. The gas conditioning system was a non-contact condenser used to remove moisture from the stack gas. If an unheated Teflon sample line was used, then a portable non-contact condenser was placed in the system directly after the probe. Otherwise, a heated Teflon sample line was used. The quality control measures are described in Section 2.8. 2.3 U.S. EPA Reference Test Method 4 – Moisture Content The stack gas moisture content (BWS) was determined in accordance with U.S. EPA Reference Test Method 4. The gas conditioning train consisted of a series of chilled impingers. The impingers were pre and post-measured to determine the amount of moisture condensed during each test run. 8 of 63 Source Test Report Testing Methodology AST-2023-4493 Nodal Power – Layton, UT Page 2-2 2.4 U.S. EPA Reference Test Method 7E – Nitrogen Oxides The nitrogen oxides (NOx) testing was conducted in accordance with U.S. EPA Reference Test Method 7E. Data was collected online and reported in one-minute averages. The sampling system consisted of a stainless-steel probe, Teflon sample line(s), gas conditioning system and the identified gas analyzer. The gas conditioning system was a non-contact condenser used to remove moisture from the stack gas. If an unheated Teflon sample line was used, then a portable non-contact condenser was placed in the system directly after the probe. Otherwise, a heated Teflon sample line was used. The quality control measures are described in Section 2.8. 2.5 U.S. EPA Reference Test Method 10 – Carbon Monoxide The carbon monoxide (CO) testing was conducted in accordance with U.S. EPA Reference Test Method 10. Data was collected online and reported in one-minute averages. The sampling system consisted of a stainless-steel probe, Teflon sample line(s), gas conditioning system, and the identified gas analyzer. The gas conditioning system was a non-contact condenser used to remove moisture from the gas. If an unheated Teflon sample line was used, then a portable non-contact condenser was placed in the system directly after the probe. Otherwise, a heated Teflon sample line was used. The quality control measures are described in Section 2.8. 2.6 U.S. EPA Alternative Test Method ALT-096 – Non Methane Hydrocarbons The non-methane hydrocarbon (NMHC) testing was conducted in accordance with U.S. EPA Alternate Test Method ALT-096. EPA Method 25A is incorporated by reference. The sampling system consisted of a stainless steel probe, heated Teflon sample line(s) and the Thermo 55i analyzer. The quality control measures are described in Section 2.9. 2.7 U.S. EPA Reference Test Method 205 – Gas Dilution System Certification A calibration gas dilution system field check was conducted in accordance with U.S. EPA Reference Method 205. Multiple dilution rates and total gas flow rates were utilized to force the dilution system to perform two dilutions on each mass flow controller. The diluted calibration gases were sent directly to the analyzer, and the analyzer response recorded in an electronic field data sheet. The analyzer response agreed within 2% of the actual diluted gas concentration. A second Protocol 1 calibration gas, with a cylinder concentration within 10% of one of the gas divider settings described above, was introduced directly to the analyzer, and the analyzer response recorded in an electronic field data sheet. The cylinder concentration and the analyzer response agreed within 2%. These steps were repeated three (3) times. Copies of the Method 205 data can be found in the Quality Assurance/Quality Control Appendix. 2.8 Quality Assurance/Quality Control – U.S. EPA Reference Methods 3A, 7E and 10 Cylinder calibration gases used met EPA Protocol 1 (+/- 2%) standards. Copies of all calibration gas certificates can be found in the Quality Assurance/Quality Control Appendix. Low Level gas was introduced directly to the analyzer. After adjusting the analyzer to the Low Level gas concentration and once the analyzer reading was stable, the analyzer value was recorded. This process was repeated for the Mid Level gas. Next, High Level gas was introduced directly to the analyzer, and the response recorded when it was stable. All values were within 2.0 percent of the Calibration Span or 0.5 ppmv absolute difference. High or Mid Level gas (whichever was closer to the stack gas concentration) was introduced at the probe and the time required for the analyzer reading to reach 95 percent or 0.5 ppm (whichever was less restrictive) of the gas 9 of 63 Source Test Report Testing Methodology AST-2023-4493 Nodal Power – Layton, UT Page 2-3 concentration was recorded. The analyzer reading was observed until it reached a stable value, and this value was recorded. Next, Low Level gas was introduced at the probe and the time required for the analyzer reading to decrease to a value within 5.0 percent or 0.5 ppm (whichever was less restrictive) was recorded. If the Low Level gas was zero gas, the response was 0.5 ppm or 5.0 percent of the upscale gas concentration (whichever was less restrictive). The analyzer reading was observed until it reached a stable value and this value was recorded. The measurement system response time and initial system bias were determined from these data. The System Bias was within 5.0 percent of the Calibration Span or 0.5 ppmv absolute difference. High or Mid Level gas (whichever was closer to the stack gas concentration) was introduced at the probe. After the analyzer response was stable, the value was recorded. Next, Low Level gas was introduced at the probe, and the analyzer value recorded once it reached a stable response. The System Bias was within 5.0 percent of the Calibration Span or 0.5 ppmv absolute difference or the data was invalidated and the Calibration Error Test and System Bias were repeated. Drift between pre- and post-run System Bias was within 0.5 ppmv absolute difference or the Calibration Error Test and System Bias were repeated. To determine the number of sampling points, a gas stratification check was conducted prior to initiating testing. The pollutant concentrations were measured at three points (16.7, 50.0 and 83.3 percent of the measurement line). Each traverse point was sampled for a minimum of twice the system response time. If the pollutant concentration at each traverse point did not differ more than 5% or 0.5 ppm (whichever was less restrictive) of the average pollutant concentration, then single point sampling was conducted during the test runs. If the pollutant concentration did not meet these specifications but differed less than 10% or 1.0 ppm from the average concentration, then three (3) point sampling was conducted (stacks less than 7.8 feet in diameter - 16.7, 50.0 and 83.3 percent of the measurement line; stacks greater than 7.8 feet in diameter – 0.4, 1.0, and 2.0 meters from the stack wall). If the pollutant concentration differed by more than 10% or 1.0 ppm from the average concentration, then sampling was conducted at a minimum of twelve (12) traverse points. Copies of stratification check data can be found in the Quality Assurance/Quality Control Appendix. An NO2 – NO converter check was performed on the analyzer prior to initiating testing. An approximately 50 ppm nitrogen dioxide cylinder gas was introduced directly to the NOx analyzer and the instrument response was recorded in an electronic data sheet. The instrument response was within +/- 10 percent of the cylinder concentration. A Data Acquisition System (Dutech Analog Signal Modules) with battery backup was used to record the instrument response in one (1) minute averages. The data was continuously stored as a *.CSV file in Excel format on the hard drive of a computer. At the completion of testing, the data was also saved to the Alliance server. All data was reviewed by the Field Team Leader before leaving the facility. Once arriving at Alliance’s office, all written and electronic data was relinquished to the report coordinator and then a final review was performed by the Project Manager. 2.9 Quality Assurance/Quality Control – U.S. EPA Reference Method ALT-096 EPA Protocol 1 Calibration Gases – Cylinder calibration gases used met EPA Protocol 1 (+/- 2%) standards. Copies of all calibration gas certificates are provided in the Quality Assurance/Quality Control Appendix. 10 of 63 Source Test Report Testing Methodology AST-2023-4493 Nodal Power – Layton, UT Page 2-4 Zero gas was introduced through the sampling system to the analyzer. After adjusting the analyzer to the Zero gas concentration and once the analyzer reading was stable, the analyzer value was recorded. This process was repeated for the High Level gas, and the time required for the analyzer reading to reach 95 percent of the gas concentration was recorded to determine the response time. Next, Mid and Low Level gases were introduced through the sampling system to the analyzer, and the response was recorded when it is stable. All values must be within +/- 5% of the calibration gas concentrations. Post Test Drift Checks – Mid Level gas were introduced through the sampling system. After the analyzer response was stable, the value was recorded. Next, Zero gas was introduced through the sampling system, and the analyzer value recorded once it reached a stable response. The Analyzer Drift must be less than 3 percent of the Calibration Span. Data Collection – A Data Acquisition System with battery backup was used to record the instrument response (analog 0-10 volt signal) in one (1) minute averages. The data was continuously stored as a *.CSV file in Excel format on the hard drive of a desktop computer. At the completion of the emissions testing the data was also saved to disk. 11 of 63 Appendix A 12 of 63 Appendix A Example Calculations Location Source Project No. Run No. Parameter(s) Meter Pressure (Pm), in. Hg where, Pb 25.39 = barometric pressure, in. Hg ΔH 1.000 = pressure differential of orifice, in H2O Pm 25.46 = in. Hg Absolute Stack Gas Pressure (Ps), in. Hg where, Pb 25.39 = barometric pressure, in. Hg Pg 1.30 = static pressure, in. H2O Ps 25.49 = in. Hg Standard Meter Volume (Vmstd), dscf where, Y 0.970 = meter correction factor Vm 36.144 = meter volume, cf Pm 25.46 = absolute meter pressure, in. Hg Tm 510.5 = absolute meter temperature, °R Vmstd 30.840 = dscf Standard Wet Volume (Vwstd), scf where, Vlc 94.3 = Volume of H2O collected, ml Vwstd 4.447 = scf Moisture Fraction (BWSsat), dimensionless (theoretical at saturated conditions) where, Ts 795.0 = stack temperature, °F Ps 25.5 = absolute stack gas pressure, in. Hg BWSsat 1.000 = dimensionless Moisture Fraction (BWS), dimensionless where, Vwstd 4.447 = standard wet volume, scf Vmstd 30.840 = standard meter volume, dscf BWS 0.126 = dimensionless Moisture Fraction (BWS), dimensionless where, BWSsat 1.000 = moisture fraction (theoretical at saturated conditions) BWSmsd 0.126 = moisture fraction (measured) BWS 0.126 Molecular Weight (DRY) (Md), lb/lb-mole where, CO2 10.9 = carbon dioxide concentration, % O2 8.4 = oxygen concentration, % Md 30.08 = lb/lb mol Nodal Power - Nodal Power - Davis Landfill, Layton LFG Generator AST-2023-4493 1 BWS Vwstd = 0.04716 x Vlc Vmstd =17.636 x Vm x Pm x Y Tm BWS ൌ Vwstd ሺVwstd ൅ Vmstdሻ Md ൌ ሺ0.44 ൈ % COଶ ሻ ൅ ሺ0.32 ൈ % O2ሻ ൅ ሺ0.28 ሺ100 െ % COଶ െ % O2ሻሻ BWS ൌ BWSmsd unless BWSsat ൏ BWSmsd BWSsat ൌ 10଺.ଷ଻ି ଶ,଼ଶ଻ ୘ୱାଷ଺ହ Ps Ps ൌ Pb ൅ Pg 13.6 Pm ൌ Pb ൅ Δ H 13.6 13 of 63 Appendix A Example Calculations Location Source Project No. Run No. Parameter(s) Nodal Power - Nodal Power - Davis Landfill, Layton LFG Generator AST-2023-4493 1 BWS Molecular Weight (WET) (Ms), lb/lb-mole where, Md 30.08 = molecular weight (DRY), lb/lb mol BWS 0.126 = moisture fraction, dimensionless Ms 28.56 = lb/lb mol Average Velocity (Vs), ft/sec where, Cp 0.84 = pitot tube coefficient Δ P1/2 1.318 = average pre/post test velocity head of stack gas, (in. H2O)1/2 Ts 1254.7 = average pre/post test absolute stack temperature, °R Ps 25.49 = absolute stack gas pressure, in. Hg Ms 28.56 = molecular weight of stack gas, lb/lb mol Vs 124.2 = ft/sec Average Stack Gas Flow at Stack Conditions (Qa), acfm where, Vs 124.2 = stack gas velocity, ft/sec As 1.72 = cross-sectional area of stack, ft2 Qa 12,808 = acfm Average Stack Gas Flow at Standard Conditions (Qs), dscfm Ps Ts where, Qa 12,808 = average stack gas flow at stack conditions, acfm BWS 0.126 = moisture fraction, dimensionless Ps 25.49 = absolute stack gas pressure, in. Hg Ts 1254.7 = average pre/post test absolute stack temperature, °R Qs 4,010 = dscfm Dry Gas Meter Calibration Check (Yqa), percent where, Y 0.97 = meter correction factor, dimensionless Θ 60 = run time, min. Vm 36.144 = total meter volume, dcf Tm 510.5 = absolute meter temperature, °R ΔH@ 1.898 = orifice meter calibration coefficient, in. H2O Pb 25.39 = barometric pressure, in. Hg ΔH avg 1.000 = average pressure differential of orifice, in H2O Md 30.08 = molecular weight (DRY), lb/lb mol (Δ H)1/2 1.000 = average square root pressure differential of orifice, (in. H2O)1/2 Yqa 2.5 = percent Qsd = 17.636 x Qa x (1 - BWS) x Ms ൌ Md ሺ1 െ BWSሻ ൅ 18.015 ሺBWSሻ Vs ൌ 85.49 ൈ Cp ൈ ሺΔ P ଵ/ଶ ሻ avg ൈ Ts Ps x Ms Qa ൌ 60 ൈ Vs ൈ As Yqa ൌ Y െ Θ Vm 0.0319 ൈ Tm ൈ 29 ΔH@ ൈ Pb ൅ Δ Havg. 13.6 ൈ Md ΔH avg. Y ൈ 100 14 of 63 Appendix A Example Calculations Location: Source: Project No.: Run No. /Method O₂ - Outlet Concentration (C O₂), % dry CMA ( CM - C0 ) where, Cobs 8.33 = average analyzer value during test, % dry Co 0.05 = average of pretest & posttest zero responses, % dry CMA 10.98 = actual concentration of calibration gas, % dry CM 10.93 = average of pretest & posttest calibration responses, % dry CO₂8.36 = O₂ Concentration, % dry CO₂ = ( Cobs - C0 ) x Nodal Power - Davis Landfill, Layton, UT LFG Generator AST-2023-4493 Run 1 / Method 3A 15 of 63 Appendix A Example Calculations Location: Source: Project No.: Run No. /Method CO₂ - Outlet Concentration (C CO₂), % dry CMA ( CM - C0 ) where, Cobs 11.14 = average analyzer value during test, % dry Co 0.07 = average of pretest & posttest zero responses, % dry CMA 10.90 = actual concentration of calibration gas, % dry CM 11.13 = average of pretest & posttest calibration responses, % dry CCO₂10.91 = CO₂ Concentration, % dry CCO₂ = ( Cobs - C0 ) x Nodal Power - Davis Landfill, Layton, UT LFG Generator AST-2023-4493 Run 1 / Method 3A 16 of 63 Appendix A Example Calculations Location: Source: Project No.: Run No. /Method NOx - Outlet Concentration (C NOx), ppmvd CMA ( CM - C0 ) where, Cobs 73.88 = average analyzer value during test, ppmvd Co 0.38 = average of pretest & posttest zero responses, ppmvd CMA 50.00 = actual concentration of calibration gas, ppmvd CM 49.05 = average of pretest & posttest calibration responses, ppmvd CNOx 75.52 = NOx Concentration, ppmvd NOx - Outlet Concentration (C NOxc15), ppmvd @ 15% O₂ 20.9 - 15 20.9 - O₂ where, CNOx 75.52 = NOx - Outlet Concentration, ppmvd CO₂8.36 = oxygen concentration, % CNOxc15 35.52 = ppmvd @15% O₂ NOx - Outlet Emission Rate (ERNOx), lb/hr where, CNOx 75.52 = NOx - Outlet Concentration, ppmvd MW 46.0055 = NOx molecular weight, g/g-mole Qs 4,010 = stack gas volumetric flow rate at standard conditions, dscfm ERNOx 2.17 = lb/hr NOx - Outlet Emission Rate (ERNOxTPY), ton/yr ERNOx x 8,760 2,000 where, ERNOx 2.17 = NOx - Outlet Emission Rate, lb/hr ERNOxTPY 9.51 = ton/yr NOx - Outlet Emission Factor (EFNOx), g/hp-hr ERNOx x 453.592 EBW where, ERNOx 2.17 = NOx - Outlet Emission Rate, lb/hr EBW 1,994 = engine brake work, HP EFNOx 0.494 = g/hp-hr ERNOxTPY = EFNOx = ERNOx =CNOx x MW x Qs x 60 x 28.32 24.04 x 1.0E06 x 453.592 CNOxc15 = CNOx x CNOx = ( Cobs - C0 ) x Nodal Power - Davis Landfill, Layton, UT LFG Generator AST-2023-4493 Run 1 / Method 7E 𝑚𝑖𝑛 ℎ𝑟 𝐿 𝑓𝑡ଷ 𝐿 𝑔െ𝑚𝑜𝑙𝑒 𝑔 𝑙𝑏 𝑙𝑏 𝑡𝑜𝑛 ℎ𝑟 𝑦𝑟 𝑔 𝑙𝑏 17 of 63 Appendix A Example Calculations Location: Source: Project No.: Run No. /Method CO - Outlet Concentration (C CO), ppmvd CMA ( CM - C0 ) where, Cobs 663.97 = average analyzer value during test, ppmvd Co -0.11 = average of pretest & posttest zero responses, ppmvd CMA 500.00 = actual concentration of calibration gas, ppmvd CM 511.56 = average of pretest & posttest calibration responses, ppmvd CCO 648.94 = CO Concentration, ppmvd CO - Outlet Concentration (C COc15), ppmvd @ 15% O₂ 20.9 - 15 20.9 - O₂ where, CCO 648.94 = CO - Outlet Concentration, ppmvd CO₂8.36 = oxygen concentration, % CCOc15 305.27 = ppmvd @15% O₂ CO - Outlet Emission Rate (ERCO), lb/hr where, CCO 648.94 = CO - Outlet Concentration, ppmvd MW 28.01 = CO molecular weight, g/g-mole Qs 4,010 = stack gas volumetric flow rate at standard conditions, dscfm ERCO 11.36 = lb/hr CO - Outlet Emission Rate (ERCOTPY), ton/yr ERCO x 8,760 2,000 where, ERCO 11.36 = CO - Outlet Emission Rate, lb/hr ERCOTPY 49.75 = ton/yr CO - Outlet Emission Factor (EFCO), g/hp-hr ERCO x 453.592 EBW where, ERCO 11.36 = CO - Outlet Emission Rate, lb/hr EBW 1,994 = engine brake work, HP EFCO 2.584 = g/hp-hr ERCOTPY = EFCO = ERCO =CCO x MW x Qs x 60 x 28.32 24.04 x 1.0E06 x 453.592 CCOc15 = CCO x CCO = ( Cobs - C0 ) x Nodal Power - Davis Landfill, Layton, UT LFG Generator AST-2023-4493 Run 1 / Method 10 𝑚𝑖𝑛 ℎ𝑟 𝐿 𝑓𝑡ଷ 𝐿 𝑔െ𝑚𝑜𝑙𝑒 𝑔 𝑙𝑏 𝑙𝑏 𝑡𝑜𝑛 ℎ𝑟 𝑦𝑟 𝑔 𝑙𝑏 18 of 63 Appendix A Example Calculations Location: Source: Project No.: Run No. /Method NMHC - Outlet Concentration (as C3H8) (C NMHC), ppmvd CNMHCw 1 - BWS where, CNMHCw 22.91 = NMHC - Outlet Concentration (as C3H8), ppmvw BWS 0.126 = moisture fraction, unitless CNMHC 26.21 = ppmvd NMHC - Outlet Concentration (as C3H8) (C NMHCc15), ppmvd @ 15% O₂ 20.9 - 15 20.9 - O₂ where, CNMHC 26.21 = NMHC - Outlet Concentration (as C3H8), ppmvd CO₂8.36 = oxygen concentration, % CNMHCc15 12.33 = ppmvd @15% O₂ NMHC - Outlet Emission Rate (as C3H8) (ER NMHC), lb/hr where, CNMHC 26.21 = NMHC - Outlet Concentration (as C3H8), ppmvd MW 44.1 = NMHC molecular weight, g/g-mole Qs 4,010 = stack gas volumetric flow rate at standard conditions, dscfm ERNMHC 0.72 = lb/hr NMHC - Outlet Emission Rate (as C3H8) (ER NMHCTPY), ton/yr ERNMHC x 8,760 2,000 where, ERNMHC 0.72 = NMHC - Outlet Emission Rate (as C3H8), lb/hr ERNMHCTPY 3.16 = ton/yr NMHC - Outlet Emission Factor (as C3H8) (EF NMHC), g/hp-hr ERNMHC x 454 EBW where, ERNMHC 0.72 = NMHC - Outlet Emission Rate (as C3H8), lb/hr EBW 1,994 = engine brake work, HP EFNMHC 0.164 = g/hp-hr Nodal Power - Davis Landfill, Layton, UT LFG Generator AST-2023-4493 Run 1 / Method Alt-096 CNMHC = CNMHCc15 = CNMHC x ERNMHC =CNMHC x MW x Qs x 60 x 28.32 24.04 x 1.0E06 x 454 ERNMHCTPY = EFNMHC = 𝑚𝑖𝑛 ℎ𝑟 𝐿 𝑓𝑡ଷ 𝐿 𝑔െ𝑚𝑜𝑙𝑒 𝑔 𝑙𝑏 𝑙𝑏 𝑡𝑜𝑛 ℎ𝑟 𝑦𝑟 𝑔 𝑙𝑏 19 of 63 Appendix B 20 of 63 Emissions Calculations Location Source Project No. Run Number Run 1 Run 2 Run 3 Average Date 12/5/23 12/5/23 12/5/23 -- Start Time 11:11 17:35 19:04 -- Stop Time 12:11 18:35 20:04 -- Engine Manufacturer Engine Model Engine Serial Number Engine Type Engine Date of Manufacturer DOM Engine Hour Meter Reading EMR Generator Output, kW Gen OP 1,487 1,502 1,498 1,496 Engine Brake Work, HP EBW 1,994 2,014 2,009 2,006 Maximum Brake Work, HP MaxEBW 2,233 2,233 2,233 2,233 Engine Load, %EL 89% 90% 90% 90% Ambient Temperature TAmb 52 52 52 52 Relative Humidity, % RH 50 50 50 50 Barometric Pressure, in. Hg Pb 25.39 25.39 25.39 25.39 Moisture Fraction, dimensionless BWS 0.126 0.125 0.126 0.126 Volumetric Flow Rate (M1-4), dscfm Qs 4,010 3,842 3,791 3,881 O₂ Concentration, % dry CO₂8.36 8.61 8.58 8.51 CO₂ Concentration, % dry CCO₂10.91 10.72 10.76 10.80 CO Concentration, ppmvd CCO 648.94 602.92 598.03 616.63 CO Concentration, ppmvd @ 15 % O₂CCOc15 305.27 289.35 286.28 293.63 CO Emission Rate, lb/hr ERCO 11.36 10.11 9.90 10.45 CO Emission Rate, ton/yr ERCOTPY 49.75 44.28 43.34 45.79 CO Emission Factor, g/HP-hr EFCO 2.58 2.28 2.23 2.36 NOx Concentration, ppmvd CNOx 75.52 64.74 60.94 67.07 NOx Concentration, ppmvd @ 15 % O₂CNOxc15 35.52 31.07 29.17 31.92 NOx Emission Rate, lb/hr ERNOx 2.17 1.78 1.66 1.87 NOx Emission Rate, ton/yr ERNOxTPY 9.51 7.81 7.25 8.19 NOx Emission Factor, g/HP-hr EFNOx 0.49 0.40 0.37 0.42 NMHC (as C₃H₈) Concentration, ppmvd CNMHC 26.21 28.76 30.56 28.51 NMHC (as C₃H₈) Concentration, ppmvw CNMHCw 22.91 25.16 26.71 24.93 NMHC (as C₃H₈) Concentration, ppmvd @ 15 % O₂CNMHCc15 12.33 13.80 14.63 13.59 NMHC (as C₃H₈) Emission Rate, lb/hr ERNMHC 0.72 0.76 0.80 0.76 NMHC (as C₃H₈) Emission Rate, ton/yr ERNMHCTPY 3.16 3.33 3.49 3.33 NMHC (as C₃H₈) Emission Factor, g/HP-hr EFNMHC 0.16 0.17 0.18 0.17 Engine Data 6,131 Input Data - Outlet Calculated Data - Outlet Nodal Power - Davis Landfill, Layton, UT LFG Generator AST-2023-4493 Caterpillar G3520C GZJ00710 Spark Ignition - 4SLB 2015 21 of 63 Method 1 Data Location Source Project No. Date Vertical Circular 25.25 in 7.50 in 17.75 in 1.72 ft2 2 1 3.4 ft 2.3 (must be > 0.5) 3.1 ft 2.1 (must be > 2) 16 16 Measurer (Initial and Date):AJE 12/5/23 Reviewer (Initial and Date):TCH 12/5/23 2345 6 789101112 1 14.6 -- 6.7 --4.4 -- 3.2 -- 2.6 -- 2.1 1 3.2 0.57 8.07 2 85.4 -- 25.0 -- 14.6 -- 10.5 -- 8.2 -- 6.7 2 10.51.869.36 3 -- -- 75.0 -- 29.6 -- 19.4 -- 14.6 -- 11.8 3 19.4 3.44 10.94 4 -- -- 93.3 -- 70.4 -- 32.3 -- 22.6 -- 17.7 4 32.3 5.73 13.23 5 -- -- -- -- 85.4 -- 67.7 -- 34.2 -- 25.0 5 67.7 12.02 19.52 6 -- -- -- -- 95.6 -- 80.6 -- 65.8 -- 35.6 6 80.6 14.31 21.81 7 -- -- -- ------ 89.5 -- 77.4 -- 64.4 7 89.5 15.89 23.39 8 -- -- -- ------ 96.8 -- 85.4 -- 75.0 8 96.8 17.18 24.68 9 -- -- -- ------ -- -- 91.8 -- 82.3 9 -- -- -- 10 -- -- -- ------ -- -- 97.4 -- 88.2 10 -- -- -- 11 -- -- -- ------ -- -- -- -- 93.3 11 -- -- -- 12 -- -- -- ------ -- -- -- -- 97.9 12 -- -- -- *Percent of stack diameter from inside wall to traverse point. A = 3.4 ft. B = 3.1 ft. Depth of Duct = 17.75 in. Cross Sectional Area of Duct: Nodal Power - Davis Landfill, Layton, UT LFG Generator AST-2023-4493 12/05/23 Stack Parameters Duct Orientation: Duct Design: Distance from Far Wall to Outside of Port: Nipple Length: Depth of Duct: No. of Test Ports: Number of Readings per Point: Distance A: Distance A Duct Diameters: Distance B: Distance B Duct Diameters: Minimum Number of Traverse Points: Actual Number of Traverse Points: CIRCULAR DUCT Number of traverse points on a diameter Stack Diagram Cross Sectional Area LOCATION OF TRAVERSE POINTS Traverse Point % of Diameter Distance from inside wall Distance from outside of port Upstream Disturbance Downstream Disturbance B A 22 of 63 Cyclonic Flow Check Location Source Project No. Date Sample Point Angle (ΔP=0) 1 0 2 2 3 0 4 0 5 2 6 4 7 2 8 0 9 0 10 3 11 3 12 2 13 4 14 2 15 1 16 0 Average 1.6 Nodal Power - Davis Landfill, Layton, UT LFG Generator AST-2023-4493 12/5/23 23 of 63 Field Data Method 2 Data Location Source Project No. Δ P (in. WC) Ts (°F) Δ P (in. WC) Ts (°F) Δ P (in. WC) Ts (°F) 1.10 795 1.10 796 1.00 798 1.30 793 1.20 795 1.20 798 1.70 793 1.50 795 1.40 799 1.60 794 1.60 796 1.60 795 1.80 794 1.70 797 1.80 796 2.00 795 2.00 798 1.90 794 2.10 793 1.90 796 2.00 796 2.10 795 1.80 795 1.60 795 1.30 796 1.10 795 1.10 796 1.50 796 1.30 754 1.10 798 1.80 795 1.60 796 1.50 798 1.80 794 1.60 798 1.60 794 1.90 796 1.70 796 1.80 795 2.00 797 2.00 796 2.00 796 2.00 796 1.80 795 1.90 798 2.00 798 1.70 793 1.60 796 Average Square Root of ΔP, (in. WC)1/2 (ΔP)1/2 1.274 Average ΔP, in. WC (ΔP)1.64 Pitot Tube Coefficient (Cp)0.840 Barometric Pressure, in. Hg (Pb)25.39 Static Pressure, in. WC (Pg)1.30 Stack Pressure, in. Hg (Ps)25.49 Average Temperature, °F (Ts)794.9 Average Temperature, °R (Ts)1254.5 Measured Moisture Fraction (BWSmsd)0.125 Moisture Fraction @ Saturation (BWSsat)1.000 Moisture Fraction (BWS)0.125 O2 Concentration, % (O2)8.5 CO2 Concentration, % (CO2)10.8 Molecular Weight, lb/lb-mole (dry) (Md)30.07 Molecular Weight, lb/lb-mole (wet) (Ms)28.56 Velocity, ft/sec (Vs)120.1 VFR at stack conditions, acfm (Qa)12,387 VFR at standard conditions, scfh (Qsw)266,278 VFR at standard conditions, scfm (Qsw)4,438 VFR at standard conditions, dscfm (Qsd)3,881 8 Nodal Power - Davis Landfill, Layton, UT LFG Generator AST-2023-4493 Run No. 1 2 3 Status VALID VALID VALID Date 12/5/23 12/5/23 12/5/23 Stop Time 11:21 17:52 19:23 Start Time 11:15 17:45 19:15 Traverse Point A1 2 3 4 Leak Check Pass Pass Pass 3 4 5 6 7 5 6 7 8 B1 2 0.840 0.840 0.840 1.75 1.60 1.57 1.318 1.260 1.246 1.30 1.30 1.30 25.39 25.39 25.39 795.0 793.2 796.4 25.49 25.49 25.49 0.126 0.125 0.126 1254.7 1252.9 1256.0 30.08 30.06 30.07 8.4 8.6 8.6 10.9 10.7 10.8 124.2 118.7 117.5 28.56 28.55 28.56 12,808 12,238 12,115 4,588 4,390 4,335 275,298 263,419 260,116 4,010 3,842 3,791 1.0001.0001.000 0.1260.1250.126 24 of 63 Method 4 Data Location Source Project No. Parameter(s) Console Units / Method ft3 M4 Run No. Date Status Start Time End Time Run Time, min (θ) Meter ID Meter Correction Factor (Y) Orifice Calibration Value (ΔH @) Max Vacuum, in. Hg Post Leak Check, ft3/min (at max vac.) Meter Volume, ft3 Total Meter Volume, ft3 (Vm) Meter Probe Filter Vacuum Imp. Exit Meter Probe Filter Vacuum Imp. Exit Meter Probe Filter Vacuum Imp. Exit 47 -- -- 2 45 45 -- -- 2 44 46 -- -- 2 43 47 -- -- 2 44 45 -- -- 2 44 46 -- -- 2 43 48 -- -- 2 44 45 -- -- 2 44 46 -- -- 2 43 48 -- -- 2 44 45 -- -- 2 44 46 -- -- 2 44 49 -- -- 2 43 46 -- -- 2 44 46 -- -- 2 44 50 -- -- 2 43 46 -- -- 2 44 47 -- -- 2 44 50 -- -- 2 43 46 -- -- 2 44 47 -- -- 2 44 52 -- -- 2 44 46 -- -- 2 44 47 -- -- 2 45 52 -- -- 2 44 47 -- -- 2 44 47 -- -- 2 44 53 -- -- 2 44 47 -- -- 2 45 47 -- -- 2 45 55 -- -- 2 45 47 -- -- 2 45 47 -- -- 2 44 55 -- -- 2 45 48 -- -- 2 45 46 -- -- 2 45 55 -- -- 2 45 48 -- -- 2 45 46 -- -- 2 45 Average Temperature, °F (Tm)51 -- -- 2 44 46 -- -- 2 44 46 -- -- 2 44 Average Temperature, °R (Tm)511 -- -- -- -- 506 -- -- -- -- 506 -- -- -- -- Minimum Temperature, °F 47 -- -- 2 43 45 -- -- 2 44 46 -- -- 2 43 Maximum Temperature, °F 55 -- -- 2 45 48 -- -- 2 45 47 -- -- 2 45 Barometric Pressure, in. Hg (Pb) Meter Orifice Pressure , in. WC (ΔH) Meter Pressure, in. Hg (Pm) Standard Meter Volume, ft3 (Vmstd) Analysis Type Impinger 1, Pre/Post Test, g 796.3 855.7 59.4 773.7 834.9 61.2 782.4 843.2 60.8 Impinger 2, Pre/Post Test, g 730.4 748.7 18.3 734.2 751.8 17.6 751.8 770.3 18.5 Impinger 3, Pre/Post Test, g 638.3 642.5 4.2 642.5 646.5 4.0 646.5 650.8 4.3 Impinger 4, Pre/Post Test, g 938.8 951.2 12.4 951.2 963.2 12.0 963.2 975.0 11.8 Volume Water Collected, mL (Vlc) Standard Water Volume, ft3 (Vwstd) Moisture Fraction Measured (BWS) Gas Molecular Weight, lb/lb-mole (dry) (Md) DGM Calibration Check Value (Yqa) Temperature, °F 0 5 30 35 60 Nodal Power - Davis Landfill, Layton, UT LFG Generator AST-2023-4493 BWS 1 VALID 12/5/23 11:11 12:11 60 M5-26 0.970 1.898 VALID 19:04 20:04 60 M5-26 0.970 1.898 2 0.001 30.06 3.5 95.4 4.499 0.126 3.6 30.07 H2O H2O Empty H2O Empty 25.39 1.000 25.39 1.000 2 12/5/23 3 12/5/23 VALID 17:35 18:35 60 M5-26 0.970 1.898 2 0.001 892.173 895.210 898.245 901.280 904.315 907.350 910.385 913.420 916.455 919.490 922.525 925.560 928.591 878.960 881.995 885.025 888.057 851.674 854.705 857.740 860.770 863.800 866.835 869.865 872.900 875.930 36.144 36.383 36.418 H2O 94.8 4.471 0.125 30.08 2.5 25.46 31.327 25.46 31.343 Gravimetric Gravimetric Silica Silica Silica 25.39 94.3 4.447 0.126 1.000 25.46 30.840 H2O H2O Empty Gravimetric 2 0.001 799.777 802.790 805.800 808.815 811.825 814.840 817.850 820.860 823.875 826.885 829.900 832.910 835.92160 0 5 10 15 20 25 10 15 20 25 40 45 50 55 30 35 40 45 50 55 25 of 63 Run 1 - RM Data Location: Source: Project No.: Date: Time O₂ - Outlet CO₂ - Outlet CO - Outlet NOx - Outlet NMHC - Outlet Unit % dry % dry ppmvd ppmvd ppmvw Status Valid Valid Valid Valid Valid Uncorrected Run Average (Cobs)8.33 11.14 663.97 73.88 22.91 Cal Gas Concentration (CMA)10.98 10.90 500.00 50.00 40.00 Pretest System Zero Response 0.04 0.03 -0.03 0.17 0.04 Posttest System Zero Response 0.06 0.10 -0.19 0.59 0.04 Average Zero Response (Co)0.05 0.07 -0.11 0.38 0.04 Pretest System Cal Response 10.93 11.13 512.16 48.66 40.21 Posttest System Cal Response 10.92 11.13 510.95 49.43 40.53 Average Cal Response (CM)10.93 11.13 511.56 49.05 40.37 Corrected Run Average (Corr)8.36 10.91 648.94 75.52 NA 11:11 8.31 11.15 669.52 71.70 21.94 11:12 8.29 11.16 668.43 72.11 21.59 11:13 8.35 11.12 658.70 67.54 22.15 11:14 8.34 11.14 674.82 72.72 22.54 11:15 8.30 11.16 674.13 74.96 22.13 11:16 8.32 11.14 658.95 70.91 21.79 11:17 8.35 11.13 656.21 68.49 22.00 11:18 8.31 11.17 673.56 74.25 22.38 11:19 8.29 11.15 663.42 73.30 22.30 11:20 8.32 11.15 674.89 76.03 22.27 11:21 8.28 11.17 678.61 81.78 21.93 11:22 8.34 11.11 657.68 73.85 21.66 11:23 8.36 11.11 656.39 72.99 22.08 11:24 8.31 11.17 669.33 77.43 22.42 11:25 8.29 11.17 666.73 77.15 22.33 11:26 8.32 11.14 662.10 74.20 21.98 11:27 8.34 11.13 665.32 74.99 22.47 11:28 8.33 11.14 668.12 76.35 22.65 11:29 8.29 11.17 680.90 81.17 22.59 11:30 8.30 11.14 657.85 74.54 22.19 11:31 8.36 11.12 651.11 68.79 22.51 11:32 8.32 11.16 668.57 74.01 23.18 11:33 8.30 11.17 674.46 77.22 22.56 11:34 8.31 11.14 662.58 74.99 22.03 11:35 8.37 11.12 664.50 72.93 22.26 11:36 8.31 11.15 669.98 76.95 23.56 11:37 8.33 11.12 657.91 72.37 22.59 11:38 8.31 11.16 675.17 77.34 23.20 11:39 8.31 11.12 659.29 73.39 22.18 11:40 8.37 11.11 664.07 71.85 22.43 11:41 8.31 11.15 670.58 77.38 22.37 11:42 8.32 11.13 660.85 74.23 22.68 11:43 8.35 11.12 655.64 71.08 23.00 11:44 8.34 11.13 657.24 71.74 23.09 11:45 8.33 11.13 662.74 73.05 23.19 11:46 8.31 11.16 675.95 77.77 23.02 11:47 8.30 11.14 669.79 77.24 22.67 11:48 8.37 11.08 650.36 68.89 22.88 11:49 8.34 11.15 666.77 74.39 23.39 11:50 8.30 11.16 667.24 75.40 23.11 11:51 8.32 11.14 661.39 73.91 23.23 11:52 8.33 11.13 659.55 72.72 23.58 11:53 8.34 11.13 663.47 73.63 23.62 11:54 8.33 11.15 672.11 76.60 23.67 11:55 8.31 11.15 671.93 78.66 23.52 11:56 8.34 11.13 654.55 72.31 23.61 11:57 8.35 11.13 653.74 70.12 23.58 11:58 8.33 11.15 661.07 72.36 23.49 11:59 8.30 11.17 670.75 76.44 23.06 12:00 8.31 11.14 663.31 74.97 23.09 12:01 8.35 11.12 661.03 72.96 23.79 12:02 8.34 11.13 661.78 73.59 23.88 12:03 8.32 11.15 665.58 74.88 23.58 12:04 8.29 11.16 665.43 76.60 23.57 12:05 8.36 11.09 648.80 68.25 23.76 12:06 8.37 11.11 660.66 71.95 24.58 12:07 8.34 11.12 663.93 74.80 24.51 12:08 8.38 11.08 651.30 70.39 23.98 12:09 8.41 11.08 648.88 68.22 24.47 12:10 8.36 11.13 658.44 71.90 24.56 Nodal Power - Davis Landfill, Layton, UT LFG Generator AST-2023-4493 12/5/23 26 of 63 Run 2 - RM Data Location: Source: Project No.: Date: Time O₂ - Outlet CO₂ - Outlet CO - Outlet NOx - Outlet NMHC - Outlet Unit % dry % dry ppmvd ppmvd ppmvw Status Valid Valid Valid Valid Valid Uncorrected Run Average (Cobs)8.55 10.90 611.62 63.02 25.16 Cal Gas Concentration (CMA)10.98 10.90 500.00 50.00 40.00 Pretest System Zero Response 0.05 0.04 -0.51 0.48 0.04 Posttest System Zero Response 0.05 0.06 -0.52 0.53 0.04 Average Zero Response (Co)0.05 0.05 -0.52 0.51 0.04 Pretest System Cal Response 10.89 11.07 507.29 48.55 39.64 Posttest System Cal Response 10.90 11.08 506.97 49.01 39.37 Average Cal Response (CM)10.90 11.08 507.13 48.78 39.51 Corrected Run Average (Corr)8.61 10.72 602.92 64.74 NA 17:35 8.53 10.88 615.29 62.70 26.48 17:36 8.53 10.88 615.56 63.67 24.05 17:37 8.53 10.88 613.52 65.00 24.93 17:38 8.58 10.82 606.47 60.13 25.03 17:39 8.66 10.81 606.08 57.80 26.19 17:40 8.59 10.87 609.58 62.68 26.00 17:41 8.56 10.89 615.15 65.04 24.90 17:42 8.53 10.89 615.36 66.22 24.60 17:43 8.58 10.86 611.45 62.85 24.88 17:44 8.53 10.93 621.11 68.43 24.89 17:45 8.52 10.90 613.96 66.36 24.67 17:46 8.59 10.85 609.66 61.92 24.87 17:47 8.56 10.90 617.55 66.24 25.18 17:48 8.55 10.88 613.01 64.83 25.06 17:49 8.58 10.87 612.13 63.65 25.22 17:50 8.57 10.88 610.05 63.45 25.13 17:51 8.55 10.90 617.70 65.49 25.11 17:52 8.52 10.93 620.83 67.97 24.77 17:53 8.54 10.87 609.35 62.55 24.19 17:54 8.58 10.88 613.92 63.05 25.29 17:55 8.53 10.91 614.50 65.71 24.89 17:56 8.55 10.88 610.52 63.01 24.61 17:57 8.58 10.86 609.28 61.69 25.00 17:58 8.56 10.90 615.06 65.19 25.00 17:59 8.55 10.91 616.34 65.78 24.96 18:00 8.52 10.93 615.48 65.81 24.67 18:01 8.54 10.91 612.38 63.92 24.51 18:02 8.55 10.90 611.42 62.97 24.77 18:03 8.58 10.87 609.39 61.58 25.20 18:04 8.56 10.90 612.19 63.81 25.48 18:05 8.55 10.91 613.09 64.17 25.16 18:06 8.56 10.88 611.19 62.42 25.30 18:07 8.57 10.89 612.07 63.10 25.56 18:08 8.52 10.93 617.39 66.89 25.03 18:09 8.54 10.89 610.28 62.79 24.77 18:10 8.58 10.89 610.01 61.74 25.47 18:11 8.54 10.92 612.51 64.18 25.46 18:12 8.55 10.89 607.70 61.08 25.20 18:13 8.57 10.89 609.94 61.44 25.49 18:14 8.54 10.92 615.20 64.74 25.47 18:15 8.52 10.92 611.84 63.40 25.24 18:16 8.54 10.91 615.13 64.03 25.28 18:17 8.54 10.92 614.97 65.16 25.48 18:18 8.53 10.91 609.08 62.82 25.43 18:19 8.57 10.88 607.92 60.24 25.43 18:20 8.57 10.89 605.13 59.32 25.68 18:21 8.54 10.91 609.70 61.85 25.46 18:22 8.52 10.93 610.33 62.21 25.40 18:23 8.54 10.89 604.87 59.14 25.14 18:24 8.54 10.93 612.05 61.74 25.64 18:25 8.50 10.92 609.83 61.98 24.57 18:26 8.55 10.90 605.48 59.35 24.96 18:27 8.55 10.92 610.00 61.28 25.26 18:28 8.52 10.92 609.42 61.51 25.17 18:29 8.55 10.89 604.11 59.00 24.99 18:30 8.56 10.91 609.63 61.38 25.29 18:31 8.54 10.92 609.66 61.95 25.55 18:32 8.53 10.92 608.25 60.86 25.44 18:33 8.54 10.91 608.69 61.19 25.50 18:34 8.54 10.92 607.56 60.51 25.50 Nodal Power - Davis Landfill, Layton, UT LFG Generator AST-2023-4493 12/5/23 27 of 63 Run 3 - RM Data Location: Source: Project No.: Date: Time O₂ - Outlet CO₂ - Outlet CO - Outlet NOx - Outlet NMHC - Outlet Unit % dry % dry ppmvd ppmvd ppmvw Status Valid Valid Valid Valid Valid Uncorrected Run Average (Cobs)8.52 10.93 606.63 59.84 26.71 Cal Gas Concentration (CMA)10.98 10.90 500.00 50.00 40.00 Pretest System Zero Response 0.05 0.06 -0.52 0.53 0.04 Posttest System Zero Response 0.04 0.07 -0.53 0.56 0.04 Average Zero Response (Co)0.05 0.07 -0.53 0.55 0.04 Pretest System Cal Response 10.90 11.08 506.97 49.01 39.37 Posttest System Cal Response 10.89 11.07 507.24 49.38 38.97 Average Cal Response (CM)10.90 11.08 507.11 49.20 39.17 Corrected Run Average (Corr)8.58 10.76 598.03 60.94 NA 19:04 8.54 10.90 609.53 59.83 25.43 19:05 8.51 10.92 611.13 61.74 25.40 19:06 8.55 10.88 602.72 57.29 25.52 19:07 8.55 10.91 609.73 60.31 25.68 19:08 8.51 10.94 612.00 62.20 26.01 19:09 8.51 10.93 609.17 60.94 25.84 19:10 8.52 10.92 607.34 60.58 25.96 19:11 8.53 10.92 606.71 59.98 26.17 19:12 8.54 10.91 603.55 58.53 26.04 19:13 8.54 10.92 606.30 59.39 26.75 19:14 8.54 10.91 602.78 58.18 26.55 19:15 8.54 10.92 607.69 59.78 26.77 19:16 8.54 10.91 604.41 59.03 26.68 19:17 8.53 10.92 608.43 59.94 26.60 19:18 8.50 10.96 617.49 64.92 26.17 19:19 8.49 10.94 606.12 61.23 25.69 19:20 8.57 10.89 600.94 57.75 26.65 19:21 8.55 10.91 603.04 58.74 27.30 19:22 8.53 10.93 605.87 59.73 26.92 19:23 8.52 10.93 604.31 59.29 26.80 19:24 8.55 10.91 602.53 58.02 26.79 19:25 8.54 10.93 608.09 60.14 26.74 19:26 8.51 10.94 608.81 61.04 26.71 19:27 8.50 10.95 609.46 62.04 26.71 19:28 8.52 10.92 603.73 59.95 26.25 19:29 8.54 10.91 602.76 59.11 26.80 19:30 8.55 10.91 603.35 58.83 26.70 19:31 8.51 10.95 607.70 60.38 27.19 19:32 8.51 10.94 604.93 59.99 27.39 19:33 8.52 10.92 602.84 58.45 26.91 19:34 8.53 10.92 602.76 57.81 26.82 19:35 8.53 10.93 606.12 59.91 26.76 19:36 8.52 10.93 606.12 59.81 26.72 19:37 8.51 10.94 607.58 59.89 26.87 19:38 8.48 10.98 616.44 63.75 26.79 19:39 8.49 10.92 601.89 58.08 26.36 19:40 8.53 10.93 606.24 59.25 26.34 19:41 8.50 10.95 609.61 61.08 26.85 19:42 8.51 10.93 603.47 58.89 26.82 19:43 8.53 10.91 603.46 58.25 26.71 19:44 8.53 10.93 605.76 59.59 27.98 19:45 8.50 10.94 607.37 59.66 26.95 19:46 8.51 10.93 605.81 58.87 27.05 19:47 8.52 10.92 608.47 59.04 26.88 19:48 8.47 10.98 614.99 63.72 26.81 19:49 8.49 10.93 604.10 59.43 26.68 19:50 8.54 10.91 602.42 57.48 27.07 19:51 8.53 10.93 607.25 59.64 27.26 19:52 8.50 10.94 608.87 60.66 26.84 19:53 8.51 10.93 605.79 59.92 26.74 19:54 8.51 10.93 606.87 59.25 26.92 19:55 8.51 10.94 608.28 60.97 26.84 19:56 8.51 10.93 604.83 58.84 27.10 19:57 8.50 10.95 611.46 61.16 27.40 19:58 8.45 10.99 612.68 64.21 26.68 19:59 8.52 10.90 598.85 56.16 26.44 20:00 8.52 10.94 606.93 58.85 27.99 20:01 8.49 10.95 609.35 60.49 27.58 20:02 8.50 10.94 606.12 59.76 27.33 20:03 8.52 10.92 604.53 58.52 28.01 Nodal Power - Davis Landfill, Layton, UT LFG Generator AST-2023-4493 12/5/23 28 of 63 Appendix C 29 of 63 Location Source Project No. O₂ - Outlet CO₂ - Outlet CO - Outlet NOx - Outlet NMHC - Outlet Make servomex servomex thermo thermo thermo Model 4900 4900 48i 42i-HL 55i S/N 100269 100269 208845 1216453124 1209052150 Operating Range 25 100 1000 100 200 Cylinder ID Zero NA NA NA NA NA Low NA NA NA NA EB0065892 Mid RR03686 RR03686 CC729836 CC736761 EB0065892 High RR03384 RR03384 CC729836 CC736761 EB0065892 Cylinder Certifed Values Zero NA NA NA NA NA Low NA NA NA NA 509 Mid 10.98 10.9 1099 99.1 509 High 24.0 23.7 1099 99.1 509 Cylinder Expiration Date Zero NA NA NA NA NA Low NA NA NA NA 4/18/29 Mid 9/19/31 9/19/31 5/3/29 10/28/31 4/18/29 High 10/19/29 10/19/29 5/3/29 10/28/31 4/18/29 Type of Sample Line Heated Sample Line Parameter Nodal Power - Davis Landfill, Layton, UT LFG Generator AST-2023-4493 30 of 63 Location: Source: Project No.: O₂ - Outlet CO₂ - Outlet CO - Outlet NOx - Outlet NMHC - Outlet Zero 30 30 30 30 30 Low NA NA NA NA 30 Mid 30 30 30 30 30 High NA NA NA NA 30 Average 30.0 30.0 30.0 30.0 30.0 Nodal Power - Davis Landfill, Layton, UT LFG Generator AST-2023-4493 Parameter Response Times, seconds 31 of 63 Location: Source: Project No.: Date: O₂ - Outlet CO₂ - Outlet CO - Outlet NOx - Outlet NMHC - Outlet Expected Average Concentration 8.50 10.70 650.00 50.00 30.00 Span Between Low 8.50 10.70 650.00 50.00 45.00 High 42.50 53.50 3250.00 250.00 75.00 Desired Span 24.00 23.70 950.00 99.10 75.00 Low Range Gas Low NA NA NA NA 18.75 High NA NA NA NA 26.25 Mid Range Gas Low 9.60 9.48 380.00 39.64 33.75 High 14.40 14.22 570.00 59.46 41.25 High Range Gas Low NA NA NA NA 60.00 High NA NA NA NA 67.50 Actual Concentration (% or ppm) Zero 0.00 0.00 0.00 0.00 0.00 Low NA NA NA NA 20.00 Mid 10.98 10.90 500.00 50.00 40.00 High 24.00 23.70 950.00 99.10 60.00 Upscale Calibration Gas (CMA)Mid Mid Mid Mid Mid Instrument Response (% or ppm) Zero 0.00 0.03 -0.05 0.05 0.04 Low NA NA NA NA 19.83 Mid 11.01 11.18 514.71 49.53 40.21 High 23.99 23.76 950.73 99.04 60.00 Performance (% of Span or Cal. Gas Conc.) Zero 0.00 0.13 0.01 0.05 0.00 Low NA NA NA NA -0.98 Mid 0.12 1.18 1.55 0.47 0.49 High 0.04 0.25 0.08 0.06 0.00 Status Zero PASS PASS PASS PASS PASS Low NA NA NA NA PASS Mid PASS PASS PASS PASS PASS High PASS PASS PASS PASS PASS LFG Generator Nodal Power - Davis Landfill, Layton, UT Parameter 12/5/23 AST-2023-4493 32 of 63 Location: Source: Project No.: O₂ - Outlet CO₂ - Outlet CO - Outlet NOx - Outlet NMHC - Outlet Run 1 Date 12/5/23 Span Value 24.00 23.70 950.00 99.10 75.00 Initial Instrument Zero Cal Response 0.00 0.03 -0.05 0.05 0.04 Initial Instrument Upscale Cal Response 11.01 11.18 514.71 49.53 40.21 Pretest System Zero Response 0.04 0.03 -0.03 0.17 0.04 Posttest System Zero Response 0.06 0.10 -0.19 0.59 0.04 Pretest System Upscale Response 10.93 11.13 512.16 48.66 40.21 Posttest System Upscale Response 10.92 11.13 510.95 49.43 40.53 Bias (%) Pretest Zero 0.17 0.00 0.00 0.12 NA Posttest Zero 0.25 0.30 -0.01 0.54 NA Pretest Span -0.33 -0.21 -0.27 -0.88 NA Posttest Span -0.37 -0.21 -0.40 -0.10 NA Drift (%) Zero 0.08 0.30 -0.02 0.42 0.00 Mid -0.04 0.00 -0.13 0.78 0.43 Run 2 Date 12/5/23 Span Value 24.00 23.70 950.00 99.10 75.00 Instrument Zero Cal Response 0.00 0.03 -0.05 0.05 0.04 Instrument Upscale Cal Response 11.01 11.18 514.71 49.53 40.21 Pretest System Zero Response 0.05 0.04 -0.51 0.48 0.04 Posttest System Zero Response 0.05 0.06 -0.52 0.53 0.04 Pretest System Upscale Response 10.89 11.07 507.29 48.55 39.64 Posttest System Upscale Response 10.90 11.08 506.97 49.01 39.37 Bias (%) Pretest Zero 0.21 0.04 -0.05 0.43 NA Posttest Zero 0.21 0.13 -0.05 0.48 NA Pretest Span -0.50 -0.46 -0.78 -0.99 NA Posttest Span -0.46 -0.42 -0.81 -0.52 NA Drift (%) Zero 0.00 0.08 0.00 0.05 0.00 Mid 0.04 0.04 -0.03 0.46 -0.36 Run 3 Date 12/5/23 Span Value 24.00 23.70 950.00 99.10 75.00 Instrument Zero Cal Response 0.00 0.03 -0.05 0.05 0.04 Instrument Upscale Cal Response 11.01 11.18 514.71 49.53 40.21 Pretest System Zero Response 0.05 0.06 -0.52 0.53 0.04 Posttest System Zero Response 0.04 0.07 -0.53 0.56 0.04 Pretest System Upscale Response 10.90 11.08 506.97 49.01 39.37 Posttest System Upscale Response 10.89 11.07 507.24 49.38 38.97 Bias (%) Pretest Zero 0.21 0.13 -0.05 0.48 NA Posttest Zero 0.17 0.17 -0.05 0.51 NA Pretest Span -0.46 -0.42 -0.81 -0.52 NA Posttest Span -0.50 -0.46 -0.79 -0.15 NA Drift (%) Zero -0.04 0.04 0.00 0.03 0.00 Mid -0.04 -0.04 0.03 0.37 -0.53 Parameter Nodal Power - Davis Landfill, Layton, UT LFG Generator AST-2023-4493 33 of 63 Balance Red Ball Technical Gas Service 555 Craig Kennedy Way Shreveport, LA 71107 800-551-8150 Accreditation #62754 PGVP Vendor ID # G12021 EPA PROTOCOL GAS CERTIFICATE OF ANALYSIS Cylinder Number:RR03384 Certification Date:10/21/2021 Product ID Number:127907 Expiration Date:10/19/2029 Cylinder Pressure:1900 PSIG MFG Facility: - Shreveport - LA COA #RR03384.20211012-0 Lot Number:RR03384.20211012 Customer PO. NO.:Tracking Number:103923781 Customer:Previous Certification Dates: This calibration standard has been certified per the May 2012 EPA Traceability Protocol, Document EPA-600/R-12/531, using procedure G2. Do Not Use This Cylinder Below 100 psig (0.7 Megapascal). Certified Concentration(s) Component Concentration Uncertainty Analytical Principle Assayed On Carbon Dioxide 23.7 %±0.18 %NDIR 10/21/2021 Oxygen 24.0 %±0.13 %MPA 10/20/2021 Nitrogen Analytical Measurement Data Available Online. Reference Standard(s) Serial Number Lot Expiration Type Balance Component Concentration Uncertainty(%)NIST Reference CC727782 CC727782.20201022 04/06/2029 GMIS N2 O2 20.03 %0.115 SRM 2659a EB0039149 EB0039149.20190610 11/24/2027 GMIS N2 CO2 24.75 %0.274 C1579010.02 EB0078072 EB0078072.20180504 07/21/2026 GMIS N2 O2 24 %0.497 071001 EB0100923 EB0100923.20201022 05/19/2029 GMIS N2 CO2 19.47 %0.171 C1847810.03 Analytical Instrumentation SMART-CERT Component Principle Make MPC Date O2 MPA Thermo 10/01/2021 CO2 NDIR Thermo 10/19/2021 Serial 1162980025 1162980025 This is to certify the gases referenced have been calibrated/tested, and verified to meet the defined specifications. This calibration/test was performed using Gases or Scales that are traceable through National Institute of Standards and Technology (NIST) to the International System of Units (SI). The basis of compliance stated is a comparison of the measurement parameters to the specified or required calibration/testing process. The expanded uncertainties use a coverage factor of k=2 to approximate the 95% confidence level of the measurement, unless otherwise noted. This calibration certificate applies only to the item described and shall not be reproduced other than in full, without written approval from Red Ball Technical Gas Services. If not included, the uncertainty of calibrations are available upon request and were taken into account when determining pass or fail. Brittany Johnson Analytical Chemist Assay Laboratory: Red Ball TGS Version 02-J, Revised on 2018-09-17 Model 410i 410i 34 of 63 Balance Red Ball Technical Gas Service 555 Craig Kennedy Way Shreveport, LA 71107 800-551-8150 Accreditation #62754 PGVP Vendor ID # G12023 EPA PROTOCOL GAS CERTIFICATE OF ANALYSIS Cylinder Number:RR03686 Certification Date:09/21/2023 Product ID Number:125371 Expiration Date:09/19/2031 Cylinder Pressure:1900 PSIG MFG Facility: - Shreveport - LA COA #RR03686.20230831-0 Lot Number:RR03686.20230831 Customer PO. NO.:Tracking Number:107553544 Customer:Previous Certification Dates: This calibration standard has been certified per the May 2012 EPA Traceability Protocol, Document EPA-600/R-12/531, using procedure G1. Do Not Use This Cylinder Below 100 psig (0.7 Megapascal). Certified Concentration(s) Component Concentration Uncertainty Analytical Principle Assayed On Carbon Dioxide 10.9 %±0.11 %FTIR 09/21/2023 Oxygen 10.98 %±0.03 %MPA 09/18/2023 Nitrogen Analytical Measurement Data Available Online. Reference Standard(s) Serial Number Lot Expiration Type Balance Component Concentration Uncertainty(%)NIST Reference CC737012 CC737012.20230228 07/09/2031 GMIS N2 O2 20 %0.112 SRM 2659a EB0022021 EB0022021.20180323 07/15/2026 GMIS N2 CO2 14.9 %0.777 101001 Analytical Instrumentation SMART-CERT Component Principle Make MPC Date O2 MPA Thermo 09/18/2023 CO2 FTIR MKS 09/21/2023 Serial 1162980025 017146467 This is to certify the gases referenced have been calibrated/tested, and verified to meet the defined specifications. This calibration/test was performed using Gases or Scales that are traceable through National Institute of Standards and Technology (NIST) to the International System of Units (SI). The basis of compliance stated is a comparison of the measurement parameters to the specified or required calibration/testing process. The expanded uncertainties use a coverage factor of k=2 to approximate the 95% confidence level of the measurement, unless otherwise noted. This calibration certificate applies only to the item described and shall not be reproduced other than in full, without written approval from Red Ball Technical Gas Services. If not included, the uncertainty of calibrations are available upon request and were taken into account when determining pass or fail. Jasmine Godfrey Analytical Chemist Assay Laboratory: Red Ball TGS Version 02-J, Revised on 2018-09-17 Model 410i MKS 2031DJG2EKVS13T 35 of 63 Balance Red Ball Technical Gas Service 555 Craig Kennedy Way Shreveport, LA 71107 800-551-8150 Accreditation #62754 PGVP Vendor ID # G12023 EPA PROTOCOL GAS CERTIFICATE OF ANALYSIS Cylinder Number:CC736761 Certification Date:10/30/2023 Product ID Number:123812 Expiration Date:10/28/2031 Cylinder Pressure:1900 PSIG MFG Facility: - Shreveport - LA COA #CC736761.20231011-0 Lot Number:CC736761.20231011 Customer PO. NO.:Tracking Number:101358901 Customer:Previous Certification Dates: This calibration standard has been certified per the May 2012 EPA Traceability Protocol, Document EPA-600/R-12/531, using procedure G1. Do Not Use This Cylinder Below 100 psig (0.7 Megapascal). Certified Concentration(s) Component Concentration Uncertainty Analytical Principle Assayed On Nitric Oxide 99.1 PPM ±0.8 PPM Chemiluminescence 10/16/2023, 10/30/2023 Total Oxides of Nitrogen 99.5 PPM Nitrogen Analytical Measurement Data Available Online. Reference Standard(s) Serial Number Lot Expiration Type Balance Component Concentration Uncertainty(%)NIST Reference ALM066143 ALM066143.20230117 08/28/2031 GMIS N2 NO 280 PPM 0.563 SRM 1687b Analytical Instrumentation SMART-CERT Component Principle Make MPC Date NO Chemiluminescence Thermo 10/02/2023 Serial 1152610017 This is to certify the gases referenced have been calibrated/tested, and verified to meet the defined specifications. This calibration/test was performed using Gases or Scales that are traceable through National Institute of Standards and Technology (NIST) to the International System of Units (SI). The basis of compliance stated is a comparison of the measurement parameters to the specified or required calibration/testing process. The expanded uncertainties use a coverage factor of k=2 to approximate the 95% confidence level of the measurement, unless otherwise noted. This calibration certificate applies only to the item described and shall not be reproduced other than in full, without written approval from Red Ball Technical Gas Services. If not included, the uncertainty of calibrations are available upon request and were taken into account when determining pass or fail. Aaron Varelas Analytical Chemist Assay Laboratory: Red Ball TGS Version 02-J, Revised on 2018-09-17 Model 42i-HL 36 of 63 Balance Red Ball Technical Gas Service 555 Craig Kennedy Way Shreveport, LA 71107 800-551-8150 Accreditation #62754 PGVP Vendor ID # G12021 EPA PROTOCOL GAS CERTIFICATE OF ANALYSIS Cylinder Number:CC729836 Certification Date:05/05/2021 Product ID Number:122237 Expiration Date:05/03/2029 Cylinder Pressure:1900 PSIG MFG Facility: - Shreveport - LA COA #CC729836.20210429-0 Lot Number:CC729836.20210429 Customer PO. NO.:Tracking Number:098858653 Customer:Previous Certification Dates: This calibration standard has been certified per the May 2012 EPA Traceability Protocol, Document EPA-600/R-12/531, using procedure G1. Do Not Use This Cylinder Below 100 psig (0.7 Megapascal). Certified Concentration(s) Component Concentration Uncertainty Analytical Principle Assayed On Carbon Monoxide 1099 PPM ±9 PPM FTIR 05/05/2021 Nitrogen Analytical Measurement Data Available Online. Reference Standard(s) Serial Number Lot Expiration Type Balance Component Concentration Uncertainty(%)NIST Reference CC734577 CC734577.20200508 03/09/2029 GMIS N2 CO 965 PPM 0.36 SRM 1681b EB0104712 EB0104712.20181130 03/01/2029 GMIS N2 CO 1528 PPM 0.404 SRM 2638a Analytical Instrumentation SMART-CERT Component Principle Make MPC Date CO FTIR MKS 04/15/2021 Serial 017146467 This is to certify the gases referenced have been calibrated/tested, and verified to meet the defined specifications. This calibration/test was performed using Gases or Scales that are traceable through National Institute of Standards and Technology (NIST) to the International System of Units (SI). The basis of compliance stated is a comparison of the measurement parameters to the specified or required calibration/testing process. The expanded uncertainties use a coverage factor of k=2 to approximate the 95% confidence level of the measurement, unless otherwise noted. This calibration certificate applies only to the item described and shall not be reproduced other than in full, without written approval from Red Ball Technical Gas Services. If not included, the uncertainty of calibrations are available upon request and were taken into account when determining pass or fail. Brandon Theus Laboratory Supervisor Assay Laboratory: Red Ball TGS Version 02-J, Revised on 2018-09-17 Model MKS 2031DJG2EKVS13T 37 of 63 Balance Red Ball Technical Gas Service 555 Craig Kennedy Way Shreveport, LA 71107 800-551-8150 Accreditation #62754 PGVP Vendor ID # G12021 EPA PROTOCOL GAS CERTIFICATE OF ANALYSIS Cylinder Number:EB0065892 Certification Date:04/20/2021 Product ID Number:124238 Expiration Date:04/18/2029 Cylinder Pressure:1900 PSIG MFG Facility: - Shreveport - LA COA #EB0065892.20210405-0 Lot Number:EB0065892.20210405 Customer PO. NO.:Tracking Number:083031845 Customer:Previous Certification Dates: This calibration standard has been certified per the May 2012 EPA Traceability Protocol, Document EPA-600/R-12/531, using procedure G1. Do Not Use This Cylinder Below 100 psig (0.7 Megapascal). Certified Concentration(s) Component Concentration Uncertainty Analytical Principle Assayed On Propane 509 PPM ±4 PPM FTIR 04/20/2021 Nitrogen Analytical Measurement Data Available Online. Reference Standard(s) Serial Number Lot Expiration Type Balance Component Concentration Uncertainty(%)NIST Reference EB0057206 EB0057206.20160107 05/17/2024 GMIS N2 C3H8 750 PPM 0.634 5647A Analytical Instrumentation SMART-CERT Component Principle Make MPC Date C3H8 FTIR MKS 03/24/2021 Serial 017146467 This is to certify the gases referenced have been calibrated/tested, and verified to meet the defined specifications. This calibration/test was performed using Gases or Scales that are traceable through National Institute of Standards and Technology (NIST) to the International System of Units (SI). The basis of compliance stated is a comparison of the measurement parameters to the specified or required calibration/testing process. The expanded uncertainties use a coverage factor of k=2 to approximate the 95% confidence level of the measurement, unless otherwise noted. This calibration certificate applies only to the item described and shall not be reproduced other than in full, without written approval from Red Ball Technical Gas Services. If not included, the uncertainty of calibrations are available upon request and were taken into account when determining pass or fail. Anthony Cyr Assistant Operations Manager Assay Laboratory: Red Ball TGS Version 02-J, Revised on 2018-09-17 Model MKS 2031DJG2EKVS13T 38 of 63 Location: Project No.: Analyzer Make thermo Pre-Test Date Time Analyzer Model 42i-HL Pre-Test Concentration, ppm Serial Number 1216453124 Pre-Test Efficiency, %- Cylinder ID Number EB0033140 Post-Test Date 12/8/23 Time 15:06 Cylinder Exp. Date 9/14/26 Post-Test Concentration, ppm 45.75 Cylinder Concentration, ppm 50.0 Post-Test Efficiency, %92 *Required Efficiency is ≥ 90 %. Nodal Power - Davis Landfill, Layton, UT AST-2023-4493 NO2 Converter Check - Outlet 39 of 63 Balance Red Ball Technical Gas Service 555 Craig Kennedy Way Shreveport, LA 71107 800-551-8150 Accreditation #62754 PGVP Vendor ID # G12023 EPA PROTOCOL GAS CERTIFICATE OF ANALYSIS Cylinder Number:EB0033140 Certification Date:09/15/2023 Product ID Number:124731 Expiration Date:09/14/2026 Cylinder Pressure:1900 PSIG MFG Facility: - Shreveport - LA COA #EB0033140.20230824-0 Lot Number:EB0033140.20230824 Customer PO. NO.:Tracking Number:056760011 Customer:Previous Certification Dates: This calibration standard has been certified per the May 2012 EPA Traceability Protocol, Document EPA-600/R-12/531, using procedure G1. Do Not Use This Cylinder Below 100 psig (0.7 Megapascal). Certified Concentration(s) Component Concentration Uncertainty Analytical Principle Assayed On Nitrogen Dioxide 50.0 PPM ±0.5 PPM FTIR 09/01/2023, 09/15/2023 Air Analytical Measurement Data Available Online. Reference Standard(s) Serial Number Lot Expiration Type Balance Component Concentration Uncertainty(%)NIST Reference EB0057301 EB0057301.20201020 05/04/2026 GMIS AIR NO2 96.4 PPM 1.028 C2190301.02 Analytical Instrumentation SMART-CERT Component Principle Make MPC Date NO2 FTIR MKS 08/31/2023 NO2 FTIR MKS 09/15/2023 Serial 017146467 017146467 This is to certify the gases referenced have been calibrated/tested, and verified to meet the defined specifications. This calibration/test was performed using Gases or Scales that are traceable through National Institute of Standards and Technology (NIST) to the International System of Units (SI). The basis of compliance stated is a comparison of the measurement parameters to the specified or required calibration/testing process. The expanded uncertainties use a coverage factor of k=2 to approximate the 95% confidence level of the measurement, unless otherwise noted. This calibration certificate applies only to the item described and shall not be reproduced other than in full, without written approval from Red Ball Technical Gas Services. If not included, the uncertainty of calibrations are available upon request and were taken into account when determining pass or fail. Jasmine Godfrey Analytical Chemist Assay Laboratory: Red Ball TGS Version 02-J, Revised on 2018-09-17 Model MKS 2031DJG2EKVS13T MKS 2031DJG2EKVS13T 40 of 63 Location: Source: Project No.: Date (%) lpm (%)(%)(%)(%)(%)(%)(%)( ± 2 %) 10L/10L 80.0 5.0 19.2 19.2 19.32 19.31 19.28 19.30 0.10 0.5% 10L/10L 50.0 5.0 12.0 12.0 12.11 12.08 12.08 12.09 0.09 0.7% 10L/1L 20.0 4.0 4.8 4.8 4.82 4.73 4.73 4.76 -0.04 -0.8% 10L/1L 10.0 4.0 2.4 2.4 2.37 2.37 2.38 2.37 -0.03 -1.1% (%)( ± 2 %)( ± 2 %)( ± 2 %) 19.30 0.1%0.0% -0.1% 12.09 0.2% -0.1% -0.1% 4.76 1.3% -0.6% -0.6% 2.37 -0.1% -0.1% 0.3% Mid-Level Supply Gas Calibration Direct to Analyzer Calibration Injection 1 Injection 2 Injection 3 Average Gas Analyzer Analyzer Analyzer Analyzer Concentration Concentration Concentration Concentration Concentration (%) (%) (%) (%) (%) (%)( ± 2 %) 10.98 10.98 11.00 11.00 10.99 0.01 0.1% Analyzer Make: Nodal Power - Davis Landfill, Layton, UT LFG Generator AST-2023-4493 12/8/23 servomex Analyzer Model: Analyzer SN: Environics ID: Component/Balance Gas: O2/N2 4900 100269 8027 Cylinder Gas ID (Dilution): RR03384 Cylinder Gas Concentration (Dilution), %: 24.0 *Not all AST Environics Units have 2-10L Mass Flow Controllers. For these units the 90% @ 7lpm and 80% @ 7lpm injections will not be conducted. Cylinder Gas ID (Mid-Level): RR03686 Cylinder Gas Concentration (Mid-Level), %: 10.98 Target Mass Flow Contollers Target Dilution Target Flow Rate Target Concentration Actual Concentration Injection 1 Analyzer Concentration Injection 2 Analyzer Concentration Injection 3 Analyzer Concentration Average Analyzer Concentration Difference Average Error Average Analyzer Concentration Injection 1 Error Injection 2 Error Injection 3 Error Difference Average Error 41 of 63 Issuing Department Dilution System Make: Dilution System Model: Dilution System S/N: Calibration Equipment Make: Calibration Equipment Model: Calibration Equipment S/N: Flow Cell S/N: Flow Cell S/N: Calibration Gas: Barometric Pressure, mmHg: Ambient Temperature, °F: Mass Flow Controller ID Size, ccm: Make: Model: S/N: Set Flow True Flow Difference Set Flow True Flow Difference Set Flow True Flow Difference cc/min cc/min cc/min cc/min cc/min cc/min 5%500 508 1.6%500 504 0.8%50 50 0.6% 10%1,000 1,024 2.4%1,000 1,020 2.0%100 101 0.7% 20%2,000 2,057 2.8%2,000 2,048 2.4%200 203 1.6% 30%3,000 3,079 2.6%3,000 3,073 2.4%300 305 1.8% 40%4,000 4,104 2.6%4,000 4,094 2.4%400 407 1.6% 50%5,000 5,113 2.3%5,000 5,107 2.1%500 507 1.4% 60%6,000 6,129 2.1%6,000 6,120 2.0%600 609 1.5% 70%7,000 7,136 1.9%7,000 7,134 1.9%700 711 1.6% 80%8,000 8,145 1.8%8,000 8,152 1.9%800 813 1.7% 90%9,000 9,162 1.8%9,000 9,171 1.9%900 917 1.9% 100%10,000 10,193 1.9%10,000 10,189 1.9%1,000 1,022 2.2% Date: Document ID Revision Effective Date Page 620.009 22.0 12/16/22 1 of 1 Mass Flow Controller Calibration Tech Services 8027 Alicat Scientific M-10SLPD/5MM-D/5M, M-1SLPM-D/5M 127208/127206 127208 127206 Nitrogen Calibration Performed By:RJL 3/31/2023 0455242007 Note: The mass flow controller's calibration values are used by the dilution system's operating software to improve accuracy. These calibrations are not necessarily indicative of the systems overall performance. Performance is verified by conducting a Method 205 prior to each field use. 0455242008 0455238004 Environics EFC 202 10,000 # 2 # 3 Environics 1,000 Environics EFC 202 EFC 202 #1 10,000 Environics 25.76 66 4040 42 of 63 QA Data Location Source Project No. Parameter(s) Date Pitot ID Evidence of damage? Evidence of mis-alignment? Calibration or Repair required? 12/5/23 P-103-3 no no no Date Probe or Thermocouple ID Reference Temp. (°F) Indicated Temp. (°F)Difference Criteria 12/5/23 P-103-3 51.0 51.0 0.0% Date 12/04/23 12/05/23 Balance ID:SCALE-24 SCLAE-24 Test Weight ID:SCL-1 KG-3 SLC-1 KG-3 Certified Weight (g):1000.0 1000.0 Measured Weight (g):1000.0 1000.0 Weight Difference (g):0.0 0.0 -- -- -- Date Barometric Pressure Evidence of damage? Reading Verified Calibration or Repair required? 12/5/23 Weather Station NA NA NA 12/4/23 M5-26 Reagent Lot#Field Prep performed Field Lot Date By DI 231106 No N/A 12/5/2023 Fisher Nodal Power - Davis Landfill, Layton, UT LFG Generator AST-2023-4493 BWS ± 1.5 % (absolute) Field Balance Check Pass Weather Station Location Salt Lake City, UT Date Meter Box ID Positive Pressure Leak Check 43 of 63 Document ID 620.004 Revision 23.0 Effective Date 1/25/23 Issuing Department Page 1 of 1 Console ID: Meter S/N:16621844 Critical Orifice S/N: (PbI) (PbF) (Pb) (Y)1330-31 1330-31 1330-25 1330-25 1330-19 1330-19 (K')0.8429 0.8429 0.6728 0.673 0.5186 0.519 (VP)14.0 14.0 15.0 15.0 17.0 17.0 Initial DGM Volume, ft3 (VmI)943.576 954.771 968.638 977.523 992.375 999.388 Final DGM Volume, ft3 (VmF)954.771 965.986 977.523 986.413 999.338 1,006.383 Total DGM Volume, ft3 (Vm)11.195 11.215 8.885 8.890 6.963 6.995 Ambient Temperature, °F (Ta)67 67 66 67 68 68 Initial DGM Temperature, °F (TmI)66 66 67 67 68 68 Final DGM Temperature, °F (TmF)66 67 67 67 68 68 Average DGM Temperature, °F ( Tm)66 67 67 67 68 68 Elapsed Time (Θ)10.00 10.00 10.00 10.00 10.00 10.00 Meter Orifice Pressure, in. WC (ΔH)3.50 3.50 2.20 2.20 1.30 1.30 Standard Meter volume, ft3 (Vmstd)9.7342 9.7423 7.6825 7.6868 5.9938 6.0214 Standard Critical Orifice Volume, ft3 (Vcr)9.4226 9.4226 7.5282 7.5211 5.7918 5.7918 Meter Correction Factor (Y)0.968 0.967 0.980 0.978 0.966 0.962 Tolerance --0.002 0.003 0.010 0.008 0.004 0.008 Orifice Calibration Value (ΔH @)1.928 1.926 1.888 1.892 1.876 1.876 Tolerance --0.030 0.028 0.010 0.006 0.021 0.021 Orifice Cal Check -- Meter Correction Factor (Y) Orifice Calibration Value (ΔH @) Accuracy Difference oF oR oF oR %oF 0 460 0 460 0.0 0 68 528 67 527 0.2 1 100 560 100 560 0.0 0 223 683 223 683 0.0 0 248 708 247 707 0.1 1 273 733 272 732 0.1 1 300 760 298 758 0.3 2 400 860 399 859 0.1 1 500 960 498 958 0.2 2 600 1,060 598 1,058 0.2 2 700 1,160 699 1,159 0.1 1 800 1,260 799 1,259 0.1 1 900 1,360 899 1,359 0.1 1 1,000 1,460 1,000 1,460 0.0 0 1,100 1,560 1,101 1,561 -0.1 1 1,200 1,660 1,201 1,661 -0.1 1 Calibration Date: Stacey CunninghamReviewed By: RYAN LYONSCalibration By: 11/3/2023 Equipment Detail - Thermocouple Sensor Reference Temp.Display Temp. OMEGA T-197207 Personnel Reference Calibrator Make: Reference Calibrator Model: Reference Calibrator S/N: Calibration Detail K' Factor, ft3·R1/2 / in. WC·min CL23A Vacuum Pressure, in. Hg Initial Barometric Pressure, in. Hg Final Barometric Pressure, in. Hg Average Barometric Pressure, in. Hg Critifcal Orifice ID Calibration Detail M5-26 1330 Positive Pressure Leak Check Equipment Detail - Dry Gas Meter 0.970 1.898 Yes 1.18 1.57 1.54 DGM Calibration-Orifices Tech Services 25.65 25.66 25.66 44 of 63 Appendix D 45 of 63 Nodal Power - Davis Landfill Run 1 Process Data compdnc_ndx Mon_Gen01_Totat_stamp O2EU DischargeTempEU DischargeFlowEU SiteKWHEU DischargePresEU G1KW CH4EU 388475 6132.59 12/5/23 12:12 0 98.537 534 6807129 3.00889 1487 49.5214 388474 6132.58 12/5/23 12:11 0 101.393 535 6807103 2.99763 1489 49.5404 388473 6132.56 12/5/23 12:10 0 99.9515 536 6807078 2.97341 1486 49.5995 388472 6132.54 12/5/23 12:09 0 97.7713 540 6807052 3.02033 1488 49.4985 388471 6132.53 12/5/23 12:08 0 95.2273 538 6807027 2.98047 1486 49.4298 388470 6132.51 12/5/23 12:07 0 92.7553 535 6807001 2.9799 1487 49.4432 388469 6132.49 12/5/23 12:06 0 91.1485 534 6806982 3.00164 1489 49.6167 388468 6132.48 12/5/23 12:05 0 91.7803 538 6806957 2.98981 1489 49.5042 388467 6132.46 12/5/23 12:04 0 95.7045 538 6806931 2.97551 1491 49.4355 388466 6132.44 12/5/23 12:03 0 100.37 530 6806906 2.98695 1484 49.4947 388465 6132.43 12/5/23 12:02 0 100.848 534 6806881 2.97513 1484 49.3211 388464 6132.41 12/5/23 12:01 0 98.9696 536 6806855 2.97665 1486 49.3974 388463 6132.39 12/5/23 12:00 0 96.8032 536 6806830 2.99458 1486 49.3021 388462 6132.38 12/5/23 11:59 0 94.3827 532 6806804 3.01308 1488 49.3459 388461 6132.36 12/5/23 11:58 0 92.0343 533 6806779 2.97227 1485 49.2677 388460 6132.34 12/5/23 11:57 0 90.8979 535 6806760 3.01213 1484 49.2525 388459 6132.33 12/5/23 11:56 0 92.2884 537 6806735 2.97742 1486 49.4108 388458 6132.31 12/5/23 11:55 0 96.6555 534 6806709 3.00393 1486 49.2086 388457 6132.29 12/5/23 11:54 0 100.947 530 6806684 3.0024 1485 49.3059 388456 6132.28 12/5/23 11:53 0 100.545 535 6806658 2.99802 1488 49.4279 388455 6132.26 12/5/23 11:52 0 98.5061 537 6806633 3.03483 1487 49.3955 388454 6132.24 12/5/23 11:51 0 96.0375 537 6806608 3.02453 1490 49.4088 388453 6132.23 12/5/23 11:50 0 93.4523 534 6806582 2.96407 1490 49.5004 388452 6132.21 12/5/23 11:49 0 91.4575 534 6806563 3.0148 1485 49.5004 388451 6132.19 12/5/23 11:48 0 91.6086 537 6806538 2.9818 1486 49.4832 388450 6132.18 12/5/23 11:47 0 95.011 533 6806512 3.00965 1483 49.5805 388449 6132.16 12/5/23 11:46 0 99.9515 531 6806487 2.99249 1485 49.6854 388448 6132.14 12/5/23 11:45 0 101.074 535 6806461 2.97932 1488 49.6815 388447 6132.13 12/5/23 11:44 0 99.2786 537 6806436 2.97456 1489 49.5843 388446 6132.11 12/5/23 11:43 0 96.8993 537 6806411 2.97017 1488 49.5748 388445 6132.09 12/5/23 11:42 0 94.3003 537 6806385 3.02281 1488 49.3345 388444 6132.08 12/5/23 11:41 0 92.0618 534 6806360 2.98104 1490 49.5843 388443 6132.06 12/5/23 11:40 0 91.1623 534 6806341 2.9984 1492 49.5233 388442 6132.04 12/5/23 11:39 0 93.2635 539 6806315 3.01423 1488 49.4546 388441 6132.03 12/5/23 11:38 0 98.2039 532 6806290 2.97417 1488 49.4336 388440 6132.01 12/5/23 11:37 0 101.26 537 6806264 3.00641 1489 49.4851 388439 6131.99 12/5/23 11:36 0 100.027 535 6806239 2.99344 1491 49.529 388438 6131.98 12/5/23 11:35 0 97.9979 536 6806213 2.98638 1490 49.5233 388437 6131.96 12/5/23 11:34 0 95.6049 538 6806188 2.99325 1489 49.5023 388436 6131.94 12/5/23 11:33 0 93.1467 536 6806162 3.00298 1487 49.447 388435 6131.93 12/5/23 11:32 0 91.2653 534 6806137 3.04322 1487 49.3955 388434 6131.91 12/5/23 11:31 0 91.2138 537 6806112 3.00698 1488 49.4737 388433 6131.89 12/5/23 11:30 0 94.314 540 6806092 3.00755 1490 49.2487 388432 6131.88 12/5/23 11:29 0 99.2889 527 6806067 2.9902 1487 49.4527 388431 6131.86 12/5/23 11:28 0 101.095 533 6806042 3.00202 1485 49.447 388430 6131.84 12/5/23 11:27 0 99.4949 535 6806016 2.97379 1484 49.5214 388429 6131.83 12/5/23 11:26 0 97.5379 539 6805991 3.02338 1487 49.2792 388428 6131.81 12/5/23 11:25 0 95.2582 537 6805965 3.02167 1487 49.3459 388427 6131.79 12/5/23 11:24 0 92.8549 535 6805940 3.0333 1488 49.3402 388426 6131.78 12/5/23 11:23 0 91.2069 537 6805915 2.98428 1488 49.283 388425 6131.76 12/5/23 11:22 0 91.6807 536 6805895 3.02491 1490 49.3612 388424 6131.74 12/5/23 11:21 0 95.368 533 6805870 3.03006 1489 49.2582 388423 6131.72 12/5/23 11:20 0 100.127 531 6805845 2.98257 1486 49.304 388422 6131.71 12/5/23 11:19 0 100.738 536 6805819 2.98905 1487 49.3593 388421 6131.69 12/5/23 11:18 0 99.0897 533 6805794 2.98314 1486 49.4088 388420 6131.68 12/5/23 11:17 0 97.0023 537 6805768 3.0354 1486 49.3726 388419 6131.66 12/5/23 11:16 0 94.6093 537 6805743 2.96845 1485 49.3555 388418 6131.64 12/5/23 11:15 0 92.2918 535 6805718 3.02262 1489 49.4985 388417 6131.62 12/5/23 11:14 0 90.9529 534 6805692 2.99649 1490 49.4375 388416 6131.61 12/5/23 11:13 0 91.9966 536 6805673 2.99954 1490 49.4203 388415 6131.59 12/5/23 11:12 0 96.2573 538 6805648 2.99077 1488 49.3555 388414 6131.58 12/5/23 11:11 0 100.573 531 6805622 3.03063 1488 49.3078 95.89 535 6806350 3.00 1487 49.43 46 of 63 compdnc_nMon_Gen0 t_stamp O2EU DischargeT DischargeF SiteKWHEUDischargePG1KW CH4EU 388857 6136.08 12/5/23 18:34 0 93.6205 539 6810927 3.13573 1500 50.0839 388856 6136.06 12/5/23 18:33 0 98.8528 537 6810901 3.12104 1499 50.0973 388855 6136.05 12/5/23 18:32 0 101.328 537 6810875 3.11551 1500 50.0801 388854 6136.03 12/5/23 18:31 0 99.8176 540 6810850 3.10349 1499 50.0877 388853 6136.02 12/5/23 18:30 0 97.7027 535 6810824 3.09739 1498 50.1793 388852 6136 12/5/23 18:29 0 95.1449 541 6810805 3.1281 1498 49.9847 388851 6135.98 12/5/23 18:28 0 92.7038 540 6810779 3.10025 1500 49.9447 388850 6135.97 12/5/23 18:27 0 91.1417 539 6810753 3.11685 1500 49.9657 388849 6135.95 12/5/23 18:26 0 92.2472 541 6810727 3.11685 1500 49.9695 388848 6135.93 12/5/23 18:25 0 96.7791 539 6810702 3.11284 1499 49.796 388847 6135.91 12/5/23 18:24 0 101.012 537 6810676 3.10712 1498 49.9657 388846 6135.9 12/5/23 18:23 0 100.645 543 6810650 3.09243 1501 49.7349 388845 6135.88 12/5/23 18:22 0 98.5404 537 6810625 3.09052 1499 49.9733 388844 6135.86 12/5/23 18:21 0 96.0307 538 6810605 3.12848 1499 49.9047 388843 6135.85 12/5/23 18:20 0 93.4008 540 6810580 3.09319 1498 49.8265 388842 6135.83 12/5/23 18:19 0 91.5468 541 6810554 3.07965 1501 50.0286 388841 6135.81 12/5/23 18:18 0 91.9657 539 6810528 3.093 1500 49.8246 388840 6135.8 12/5/23 18:17 0 95.8075 536 6810502 3.08347 1502 49.9561 388839 6135.78 12/5/23 18:16 0 100.552 536 6810477 3.08537 1502 49.9447 388838 6135.77 12/5/23 18:15 0 101.016 539 6810451 3.11837 1499 49.8455 388837 6135.75 12/5/23 18:14 0 98.9867 540 6810425 3.08633 1502 49.9237 388836 6135.73 12/5/23 18:13 0 96.5319 541 6810406 3.11303 1501 50.0439 388835 6135.71 12/5/23 18:12 0 93.8849 542 6810380 3.06573 1499 49.9104 388834 6135.7 12/5/23 18:11 0 91.6704 540 6810354 3.07221 1502 49.9027 388833 6135.68 12/5/23 18:10 0 91.1691 538 6810328 3.09472 1501 50.0896 388832 6135.67 12/5/23 18:09 0 94.1046 541 6810303 3.07603 1501 49.9752 388831 6135.65 12/5/23 18:08 0 99.3129 536 6810277 3.0972 1505 49.9371 388830 6135.63 12/5/23 18:07 0 101.479 539 6810251 3.10903 1504 49.9867 388829 6135.62 12/5/23 18:06 0 99.7008 544 6810225 3.12066 1504 49.9981 388828 6135.6 12/5/23 18:05 0 97.222 539 6810206 3.07355 1504 50.0343 388827 6135.58 12/5/23 18:04 0 94.5475 540 6810180 3.07622 1502 50.0095 388826 6135.57 12/5/23 18:03 0 92.0309 541 6810154 3.07469 1503 49.9275 388825 6135.55 12/5/23 18:02 0 91.049 540 6810128 3.1075 1502 50.0095 388824 6135.53 12/5/23 18:01 0 93.3184 538 6810103 3.07259 1501 50.0229 388823 6135.52 12/5/23 18:00 0 98.458 537 6810077 3.08995 1502 50.0706 388822 6135.5 12/5/23 17:59 0 101.696 539 6810051 3.08194 1504 49.9447 388821 6135.48 12/5/23 17:58 0 100.137 539 6810025 3.12276 1503 49.7121 388820 6135.46 12/5/23 17:57 0 97.6271 541 6810006 3.06668 1500 49.7578 388819 6135.45 12/5/23 17:56 0 94.7054 538 6809980 3.12543 1502 49.6472 388818 6135.43 12/5/23 17:55 0 92.1099 538 6809955 3.11379 1503 49.7635 388817 6135.41 12/5/23 17:54 0 91.2 540 6809929 3.10101 1503 49.7502 388816 6135.4 12/5/23 17:53 0 93.8162 542 6809903 3.09415 1504 49.5748 388815 6135.38 12/5/23 17:52 0 99.0691 539 6809878 3.09606 1502 49.5767 388814 6135.36 12/5/23 17:51 0 102.032 538 6809852 3.10616 1500 49.5843 388813 6135.35 12/5/23 17:50 0 100.137 539 6809826 3.12696 1502 49.6262 388812 6135.33 12/5/23 17:49 0 97.246 542 6809800 3.12181 1502 49.6358 388811 6135.32 12/5/23 17:48 0 94.1183 541 6809781 3.11799 1504 49.6281 388810 6135.3 12/5/23 17:47 0 91.6979 540 6809755 3.1199 1505 49.6529 388809 6135.28 12/5/23 17:46 0 91.6532 543 6809729 3.10922 1501 49.7216 388808 6135.26 12/5/23 17:45 0 95.423 537 6809704 3.089 1503 49.7082 388807 6135.25 12/5/23 17:44 0 100.806 537 6809678 3.09243 1503 49.7349 388806 6135.23 12/5/23 17:43 0 102.303 542 6809652 3.08576 1503 49.714 388805 6135.21 12/5/23 17:42 0 99.4502 539 6809626 3.10636 1502 49.6911 388804 6135.2 12/5/23 17:41 0 96.0238 538 6809601 3.089 1503 49.7407 388803 6135.18 12/5/23 17:40 0 92.8137 539 6809581 3.10044 1502 49.7254 388802 6135.16 12/5/23 17:39 0 91.5983 544 6809556 3.09682 1503 49.6949 388801 6135.15 12/5/23 17:38 0 94.2969 543 6809530 3.08633 1503 49.7979 388800 6135.13 12/5/23 17:37 0 99.8244 538 6809504 3.12066 1506 49.632 388799 6135.12 12/5/23 17:36 0 103.447 538 6809478 3.09339 1502 49.8455 388798 6135.1 12/5/23 17:35 0 101.174 539 6809452 3.08518 1504 49.6281 96.46 539 6810190 3.10 1502 49.86 47 of 63 compdnc_nMon_Gen0 t_stamp O2EU DischargeT DischargeF SiteKWHEUDischargeP G1KW CH4EU 388947 6137.58 12/5/23 20:04 0 97.3525 541 6813168 3.08251 1498 49.5976 388946 6137.57 12/5/23 20:03 0 95.5637 539 6813143 3.07698 1497 50.0706 388945 6137.55 12/5/23 20:02 0 93.5518 539 6813118 3.08385 1496 49.9027 388944 6137.53 12/5/23 20:01 0 91.6807 537 6813092 3.10941 1496 50.0572 388943 6137.52 12/5/23 20:00 0 90.9357 539 6813067 3.10235 1496 49.7635 388942 6137.5 12/5/23 19:59 0 92.9167 541 6813042 3.08194 1496 50.0286 388941 6137.48 12/5/23 19:58 0 97.8022 533 6813016 3.0724 1498 49.958 388940 6137.47 12/5/23 19:57 0 100.727 535 6812991 3.09949 1497 49.8627 388939 6137.45 12/5/23 19:56 0 99.8759 539 6812966 3.10788 1497 49.8951 388938 6137.43 12/5/23 19:55 0 98.5747 538 6812940 3.11646 1495 49.9847 388937 6137.42 12/5/23 19:54 0 96.9886 539 6812915 3.07832 1497 50.0057 388936 6137.4 12/5/23 19:53 0 95.1311 538 6812896 3.08709 1497 49.9008 388935 6137.38 12/5/23 19:52 0 93.0952 539 6812871 3.12161 1499 50.0114 388934 6137.37 12/5/23 19:51 0 91.4919 536 6812846 3.12619 1499 50.0324 388933 6137.35 12/5/23 19:50 0 91.5193 541 6812821 3.10082 1498 50.0496 388932 6137.33 12/5/23 19:49 0 94.6162 537 6812796 3.0869 1497 50.0458 388931 6137.32 12/5/23 19:48 0 99.3713 536 6812771 3.12524 1499 49.9847 388930 6137.3 12/5/23 19:47 0 100.487 538 6812746 3.122 1498 49.9352 388929 6137.28 12/5/23 19:46 0 99.4708 540 6812720 3.11303 1498 49.8894 388928 6137.27 12/5/23 19:45 0 98.2623 541 6812695 3.07851 1498 49.7273 388927 6137.25 12/5/23 19:44 0 96.8135 539 6812670 3.08328 1496 50.0095 388926 6137.23 12/5/23 19:43 0 95.0076 541 6812645 3.09567 1497 50.0534 388925 6137.22 12/5/23 19:42 0 93.0025 538 6812620 3.10559 1497 50.2231 388924 6137.2 12/5/23 19:41 0 91.3236 538 6812595 3.08232 1498 49.9981 388923 6137.18 12/5/23 19:40 0 91.0764 538 6812570 3.11398 1498 50.0801 388922 6137.17 12/5/23 19:39 0 93.7956 539 6812545 3.10636 1498 49.8856 388921 6137.15 12/5/23 19:38 0 98.7155 537 6812520 3.12028 1496 49.939 388920 6137.13 12/5/23 19:37 0 100.648 538 6812495 3.11494 1497 50.0324 388919 6137.11 12/5/23 19:36 0 99.6905 539 6812470 3.12104 1497 50.0782 388918 6137.1 12/5/23 19:35 0 98.4752 539 6812445 3.089 1497 49.7788 388917 6137.08 12/5/23 19:34 0 97.016 540 6812420 3.10864 1498 49.7979 388916 6137.06 12/5/23 19:33 0 95.2651 540 6812395 3.11036 1499 49.8703 388915 6137.05 12/5/23 19:32 0 93.2943 537 6812370 3.11933 1498 49.7674 388914 6137.03 12/5/23 19:31 0 91.6155 542 6812345 3.07126 1497 49.8913 388913 6137.01 12/5/23 19:30 0 91.2893 539 6812320 3.08175 1498 49.8303 388912 6137 12/5/23 19:29 0 93.8231 540 6812295 3.10521 1498 50.0229 388911 6136.98 12/5/23 19:28 0 98.7224 538 6812269 3.08385 1498 49.8379 388910 6136.97 12/5/23 19:27 0 100.563 536 6812244 3.11303 1499 49.979 388909 6136.95 12/5/23 19:26 0 99.6734 540 6812218 3.07794 1499 49.9352 388908 6136.93 12/5/23 19:25 0 98.5061 540 6812199 3.1157 1501 49.7388 388907 6136.91 12/5/23 19:24 0 97.0366 542 6812173 3.10521 1500 49.7483 388906 6136.9 12/5/23 19:23 0 95.1586 539 6812147 3.10807 1500 49.9237 388905 6136.88 12/5/23 19:22 0 93.0574 535 6812122 3.09148 1496 49.897 388904 6136.87 12/5/23 19:21 0 91.3099 538 6812096 3.08919 1497 50.0381 388903 6136.85 12/5/23 19:20 0 91.1588 540 6812070 3.12181 1499 49.9638 388902 6136.83 12/5/23 19:19 0 94.1286 538 6812045 3.10464 1498 50.061 388901 6136.82 12/5/23 19:18 0 99.0863 534 6812025 3.09796 1498 50.2136 388900 6136.8 12/5/23 19:17 0 100.703 541 6812000 3.13802 1497 50.1754 388899 6136.78 12/5/23 19:16 0 99.5601 541 6811974 3.09358 1498 50.0076 388898 6136.77 12/5/23 19:15 0 98.1696 540 6811948 3.093 1497 50.1144 388897 6136.75 12/5/23 19:14 0 96.4598 542 6811923 3.10521 1499 50.1182 388896 6136.73 12/5/23 19:13 0 94.4685 540 6811897 3.11418 1501 50.0667 388895 6136.72 12/5/23 19:12 0 92.3571 539 6811871 3.09777 1497 50.1068 388894 6136.7 12/5/23 19:11 0 90.9082 538 6811845 3.11284 1498 49.939 388893 6136.68 12/5/23 19:10 0 91.6086 537 6811820 3.10349 1500 50.0477 388892 6136.67 12/5/23 19:09 0 95.6599 538 6811800 3.11055 1501 49.9409 388891 6136.65 12/5/23 19:08 0 100.185 537 6811775 3.1075 1502 50.0019 388890 6136.63 12/5/23 19:07 0 100.463 538 6811749 3.09949 1501 49.9256 388889 6136.61 12/5/23 19:06 0 99.0829 541 6811723 3.0705 1501 50.021 388888 6136.6 12/5/23 19:05 0 97.3971 539 6811698 3.09968 1500 49.9466 388887 6136.58 12/5/23 19:04 0 95.3852 541 6811672 3.09625 1501 49.8589 95.90 539 6812408 3.10 1498 49.97 48 of 63 Appendix E 49 of 63 Site Specific Test Plan Nodal Power 250 E. 200 S., Suite 310 Salt Lake City, UT 84111 Davis Landfill Layton, Utah Source to be Tested: New Landfill Gas (LFG) Generator Engine Proposed Test Date: December 4, 2023 Project No. AST-2023-4493 Prepared By Alliance Technical Group, LLC 3683 W 2270 S, Suite E West Valley City, UT 84120 50 of 63 Site Specific Test Plan Test Program Summary AST-2023-4493 Nodal Power – Layton, UT Page i Regulatory Information Permit No. DAQE-AN101290026-22 Source Information Source Name Target Parameters New Landfill Gas (LFG) Generator Engine NOx, CO, VOC Contact Information Test Location Test Company Nodal Power Davis Landfill 1997 East 3500 North Layton, Utah 84040 Bryan Black bryan@nodalpower.com (801) 301-8151 Alliance Technical Group, LLC 3683 W 2270 S, Suite E West Valley City, UT 84120 Project Manager Charles Horton charles.horton@alliancetg.com (352) 663-7568 Field Team Leader Tobias Hubbard tobias.hubbard@alliancetg.com (605) 645-8562 (subject to change) QA/QC Manager Kathleen Shonk katie.shonk@alliancetg.com (812) 452-4785 Test Plan/Report Coordinator Hope Bean hope.bean@alliancetg.com (904) 651-3373 51 of 63 Site Specific Test Plan Table of Contents AST-2023-4493 Nodal Power – Layton, UT Page ii TABLE OF CONTENTS 1.0 Introduction .................................................................................................................................................. 1-1 1.1 Facility Description .................................................................................................................................. 1-1 1.2 Project Team ............................................................................................................................................ 1-1 1.3 Safety Requirements ................................................................................................................................ 1-1 2.0 Summary of Test Program ............................................................................................................................ 2-1 2.1 General Description ................................................................................................................................. 2-1 2.2 Process/Control System Parameters to be Monitored and Recorded ....................................................... 2-1 2.3 Proposed Test Schedule ........................................................................................................................... 2-1 2.4 Emission Limits ....................................................................................................................................... 2-2 2.5 Test Report ............................................................................................................................................... 2-2 3.0 Testing Methodology .................................................................................................................................... 3-1 3.1 U.S. EPA Reference Test Methods 1 & 2 – Volumetric Flow Rate ......................................................... 3-1 3.2 U.S. EPA Reference Test Method 3A – Oxygen and Carbon Dioxide .................................................... 3-1 3.3 U.S. EPA Reference Test Method 4 – Gas Moisture Content .................................................................. 3-2 3.4 U.S. EPA Reference Test Method 7E – Nitrogen Oxides ........................................................................ 3-2 3.5 U.S. EPA Reference Test Method 10 – Carbon Monoxide ...................................................................... 3-2 3.6 U.S. EPA Reference Test Method 25A – Volatile Organic Compounds ................................................. 3-2 3.7 U.S. EPA Alternative Test Method ALT-096 – Volatile Organic Compounds ....................................... 3-2 3.8 U.S. EPA Reference Test Method 205 – Gas Dilution System Certification ........................................... 3-2 3.9 Quality Assurance/Quality Control – U.S. EPA Reference Test Methods 3A, 7E and 10 ....................... 3-3 3.10 Quality Assurance/Quality Control – U.S. EPA Reference Test Method 25A ........................................ 3-4 3.11 Quality Assurance/Quality Control – U.S. EPA Reference Method ALT-096 ........................................ 3-4 4.0 Quality Assurance Program .......................................................................................................................... 4-1 4.1 Equipment ................................................................................................................................................ 4-1 4.2 Field Sampling ......................................................................................................................................... 4-2 LIST OF TABLES Table 1-1: Project Team ........................................................................................................................................... 1-1 Table 2-1: Program Outline and Tentative Test Schedule ........................................................................................ 2-1 Table 2-2: Emission Limits ...................................................................................................................................... 2-2 Table 3-1: Source Testing Methodology .................................................................................................................. 3-1 52 of 63 Site Specific Test Plan Introduction AST-2023-4493 Nodal Power – Layton, UT Page 1-1 1.0 Introduction Alliance Technical Group, LLC (Alliance) was retained by Nodal Power to conduct initial compliance testing at the Davis Landfill located in Layton, Utah. Portions of the facility are subject to provisions of the Utah Department of Environmental Quality – Division of Air Quality (UDAQ) Permit No. DAQE-AN101290026-22. Testing will be conducted to determine the emission rates of nitrogen oxides (NOx), carbon monoxide (CO) and volatile organic compounds (VOC) at the exhaust of the new landfill gas (LFG) generator engine. This site-specific test plan (SSTP) has been prepared to address the notification and testing requirements of the UDAQ permit. 1.1 Facility Description Wasatch Integrated Waste Management District (Wasatch) operates the Davis Landfill, a municipal solid waste (MSW) landfill located in Davis County, Utah. The facility accepts municipal and commercial waste. The new LFG generator engine is rated at 2,233 horsepower (HP). 1.2 Project Team Personnel planned to be involved in this project are identified in the following table. Table 1-1: Project Team Nodal Power Personnel Bryan Black Regulatory Agency UDAQ Alliance Personnel Tobias Hubbard other field personnel assigned at time of testing event 1.3 Safety Requirements Testing personnel will undergo site-specific safety training for all applicable areas upon arrival at the site. Alliance personnel will have current OSHA or MSHA safety training and be equipped with hard hats, safety glasses with side shields, steel-toed safety shoes, hearing protection, fire resistant clothing, and fall protection (including shock corded lanyards and full-body harnesses). Alliance personnel will conduct themselves in a manner consistent with Client and Alliance’s safety policies. A Job Safety Analysis (JSA) will be completed daily by the Alliance Field Team Leader. 53 of 63 Site Specific Test Plan Summary of Test Programs AST-2023-4493 Nodal Power – Layton, UT Page 2-1 2.0 Summary of Test Program To satisfy the requirements of the UDAQ permit, the facility will conduct a performance test program to determine the compliance status of the new LFG generator engine. 2.1 General Description All testing will be performed in accordance with specifications stipulated in U.S. EPA Reference Test Methods 1, 2, 3A, 4, 7E, 10 and 25A or ALT-096. Table 2-1 presents an outline and tentative schedule for the emissions testing program. The following is a summary of the test objectives.  Testing will be performed to demonstrate compliance with the UDAQ permit.  Emissions testing will be conducted on the exhaust of the new LFG generator engine.  Performance testing will be conducted at no less than 90 percent of the combustion rate achieved to date.  Each of the three (3) test runs will be approximately 60 minutes in duration. 2.2 Process/Control System Parameters to be Monitored and Recorded Plant personnel will collect operational and parametric data at least once every 15 minutes during the testing. The following list identifies the measurements, observations and records that will be collected during the testing program:  Engine Load  Catalyst Inlet Temperature  Catalyst Pressure Differential  Fuel Consumption 2.3 Proposed Test Schedule Table 2-1 presents an outline and tentative schedule for the emissions testing program. Table 2-1: Program Outline and Tentative Test Schedule Testing Location Parameter US EPA Method No. of Runs Run Duration Est. Onsite Time DAY 1 – December 4, 2023 Equipment Setup & Pretest QA/QC Checks 8 hrs New LFG Generator Engine VFR 1 & 2 3 60 mins O2/CO2 3A BWS 4 NOx 7E CO 10 VOC 25A or ALT-096 54 of 63 Site Specific Test Plan Summary of Test Programs AST-2023-4493 Nodal Power – Layton, UT Page 2-2 2.4 Emission Limits Emission limits for each pollutant are below. Table 2-2: Emission Limits Source Pollutant Citation New LFG Generator Engine NOx – 2.46 lb/hr; 0.5 g/hp/hr Permit CO – 12.31 lb/hr; 2.5 g/hp/hr VOC 4.33 lb/hr; 0.88 g/hp/hr 2.5 Test Report The final test report must be submitted within 60 days of the completion of the performance test and will include the following information.  Introduction – Brief discussion of project scope of work and activities.  Results and Discussion – A summary of test results and process/control system operational data with comparison to regulatory requirements or vendor guarantees along with a description of process conditions and/or testing deviations that may have affected the testing results.  Methodology – A description of the sampling and analytical methodologies.  Sample Calculations – Example calculations for each target parameter.  Field Data – Copies of actual handwritten or electronic field data sheets.  Quality Control Data – Copies of all instrument calibration data and/or calibration gas certificates.  Process Operating/Control System Data – Process operating and control system data (as provided by Nodal Power) to support the test results. 55 of 63 Site Specific Test Plan Testing Methodology AST-2023-4493 Nodal Power – Layton, UT Page 3-1 3.0 Testing Methodology This section provides a description of the sampling and analytical procedures for each test method that will be employed during the test program. All equipment, procedures and quality assurance measures necessary for the completion of the test program meet or exceed the specifications of each relevant test method. The emission testing program will be conducted in accordance with the test methods listed in Table 3-1. Table 3-1: Source Testing Methodology Parameter U.S. EPA Reference Test Methods Notes/Remarks Volumetric Flow Rate 1 & 2 Volumetric Flow Rate Oxygen / Carbon Dioxide 3A Oxygen / Carbon Dioxide Moisture Content 4 Moisture Content Nitrogen Oxides 7E Nitrogen Oxides Carbon Monoxide 10 Carbon Monoxide Volatile Organic Compounds 25A Volatile Organic Compounds Volatile Organic Compounds ALT-096 Volatile Organic Compounds Gas Dilution System Certification 205 --- All stack diameters, depths, widths, upstream and downstream disturbance distances and nipple lengths will be measured on site with a verification measurement provided by the Field Team Leader. 3.1 U.S. EPA Reference Test Methods 1 & 2 – Volumetric Flow Rate The sampling location and number of traverse (sampling) points will be selected in accordance with U.S. EPA Reference Test Method 1. To determine the minimum number of traverse points, the upstream and downstream distances will be equated into equivalent diameters and compared to Figure 1-2 in U.S. EPA Reference Test Method 1. Full velocity traverses will be conducted in accordance with U.S. EPA Reference Test Method 2 to determine the average stack gas velocity pressure, static pressure and temperature. The velocity and static pressure measurement system will consist of a pitot tube and inclined manometer. The stack gas temperature will be measured with a K- type thermocouple and pyrometer. Stack gas velocity pressure and temperature readings will be recorded during each test run. The data collected will be utilized to calculate the volumetric flow rate in accordance with U.S. EPA Reference Test Method 2. 3.2 U.S. EPA Reference Test Method 3A – Oxygen and Carbon Dioxide The oxygen (O2) and carbon dioxide (CO2) testing will be conducted in accordance with U.S. EPA Reference Test Method 3A. Data will be collected online and reported in one-minute averages. The sampling system will consist of a stainless steel probe, Teflon sample line(s), gas conditioning system and the identified gas analyzer. The gas conditioning system will be a non-contact condenser used to remove moisture from the stack gas. If an unheated Teflon sample line will be used, then a portable non-contact condenser will be placed in the system directly after the 56 of 63 Site Specific Test Plan Testing Methodology AST-2023-4493 Nodal Power – Layton, UT Page 3-2 probe. Otherwise, a heated Teflon sample line will be used. The quality control measures are described in Section 3.9 3.3 U.S. EPA Reference Test Method 4 – Gas Moisture Content The stack gas moisture content will be determined in accordance with U.S. EPA Reference Test Method 4. The gas conditioning train will consist of a series of chilled impingers. Prior to testing, each impinger will be filled with a known quantity of water or silica gel. Each impinger will be analyzed gravimetrically before and after each test run on the same analytical balance to determine the amount of moisture condensed. 3.4 U.S. EPA Reference Test Method 7E – Nitrogen Oxides The nitrogen oxides (NOx) testing will be conducted in accordance with U.S. EPA Reference Test Method 7E. Data will be collected online and reported in one-minute averages. The sampling system will consist of a stainless steel probe, Teflon sample line(s), gas conditioning system and the identified gas analyzer. The gas conditioning system will be a non-contact condenser used to remove moisture from the stack gas. If an unheated Teflon sample line is used, then a portable non-contact condenser will be placed in the system directly after the probe. Otherwise, a heated Teflon sample line will be used. The quality control measures are described in Section 3.9. 3.5 U.S. EPA Reference Test Method 10 – Carbon Monoxide The carbon monoxide (CO) testing will be conducted in accordance with U.S. EPA Reference Test Method 10. Data will be collected online and reported in one-minute averages. The sampling system will consist of a stainless steel probe, Teflon sample line(s), gas conditioning system, and the identified gas analyzer. The gas conditioning system will be a non-contact condenser used to remove moisture from the gas. If an unheated Teflon sample line is used, then a portable non-contact condenser will be placed in the system directly after the probe. Otherwise, a heated Teflon sample line will be used. The quality control measures are described in Section 3.9. 3.6 U.S. EPA Reference Test Method 25A – Volatile Organic Compounds The volatile organic compounds (VOC) testing will be conducted in accordance with U.S. EPA Reference Test Method 25A. Data will be collected online and reported in one-minute averages. The sampling system will consist of a stainless steel probe, heated Teflon sample line(s) and the identified gas analyzer. The quality control measures are described in Section 3.10. 3.7 U.S. EPA Alternative Test Method ALT-096 – Volatile Organic Compounds The volatile organic compounds (VOC) testing will be conducted in accordance with U.S. EPA Alternate Test Method ALT-096. EPA Method 25A is incorporated by reference. The sampling system will consist of a stainless steel probe, heated Teflon sample line(s) and a Thermo 55i analyzer. VOC data will be collected in one (1) minute averages. The quality control measures are described in Section 3.11. 3.8 U.S. EPA Reference Test Method 205 – Gas Dilution System Certification A calibration gas dilution system field check will be conducted in accordance with U.S. EPA Reference Method 205. An initial three (3) point calibration will be conducted, using individual Protocol 1 gases, on the analyzer used to complete the dilution system field check. Multiple dilution rates and total gas flow rates will be utilized to force the dilution system to perform two dilutions on each mass flow controller. The diluted calibration gases will be sent directly to the analyzer, and the analyzer response recorded in an electronic field data sheet. The analyzer response must agree within 2% of the actual diluted gas concentration. A second Protocol 1 calibration gas, with a cylinder concentration within 10% of one of the gas divider settings described above, will be introduced directly to the 57 of 63 Site Specific Test Plan Testing Methodology AST-2023-4493 Nodal Power – Layton, UT Page 3-3 analyzer, and the analyzer response recorded in an electronic field data sheet. The cylinder concentration and the analyzer response must agree within 2%. These steps will be repeated three (3) times. 3.9 Quality Assurance/Quality Control – U.S. EPA Reference Test Methods 3A, 7E and 10 Cylinder calibration gases will meet EPA Protocol 1 (+/- 2%) standards. Copies of all calibration gas certificates will be included in the Quality Assurance/Quality Control Appendix of the report. Low Level gas will be introduced directly to the analyzer. After adjusting the analyzer to the Low Level gas concentration and once the analyzer reading is stable, the analyzer value will be recorded. This process will be repeated for the High Level gas. For the Calibration Error Test, Low, Mid, and High Level calibration gases will be sequentially introduced directly to the analyzer. The Calibration Error for each gas must be within 2.0 percent of the Calibration Span or 0.5 ppmv/% absolute difference. High or Mid Level gas (whichever is closer to the stack gas concentration) will be introduced at the probe and the time required for the analyzer reading to reach 95 percent or 0.5 ppm/% (whichever was less restrictive) of the gas concentration will be recorded. The analyzer reading will be observed until it reaches a stable value, and this value will be recorded. Next, Low Level gas will be introduced at the probe and the time required for the analyzer reading to decrease to a value within 5.0 percent or 0.5 ppm/% (whichever was less restrictive) will be recorded. If the Low Level gas is zero gas, the acceptable response must be 5.0 percent of the upscale gas concentration or 0.5 ppm/% (whichever was less restrictive). The analyzer reading will be observed until it reaches a stable value and this value will be recorded. The measurement system response time and initial system bias will be determined from these data. The System Bias for each gas must be within 5.0 percent of the Calibration Span or 0.5 ppmv/% absolute difference. High or Mid Level gas (whichever is closer to the stack gas concentration) will be introduced at the probe. After the analyzer response is stable, the value will be recorded. Next, Low Level gas will be introduced at the probe, and the analyzer value will be recorded once it reaches a stable response. The System Bias for each gas must be within 5.0 percent of the Calibration Span or 0.5 ppmv/% absolute difference or the data is invalidated and the Calibration Error Test and System Bias must be repeated. The Drift between pre- and post-run System Bias must be within 3 percent of the Calibration Span or 0.5 ppmv/% absolute difference or the Calibration Error Test and System Bias must be repeated. To determine the number of sampling points, a gas stratification check will be conducted prior to initiating testing. The pollutant concentrations will be measured at twelve traverse points (as described in Method 1) or three points (16.7, 50.0 and 83.3 percent of the measurement line). Each traverse point will be sampled for a minimum of twice the system response time. If the pollutant concentration at each traverse point do not differ more than 5% or 0.5 ppm/0.3% (whichever is less restrictive) of the average pollutant concentration, then single point sampling will be conducted during the test runs. If the pollutant concentration does not meet these specifications but differs less than 10% or 1.0 ppm/0.5% from the average concentration, then three (3) point sampling will be conducted (stacks less than 7.8 feet in diameter - 16.7, 50.0 and 83.3 percent of the measurement line; stacks greater than 7.8 feet in diameter – 0.4, 1.0, and 2.0 meters from the stack wall). If the pollutant concentration differs by more than 10% or 1.0 ppm/0.5% from the average concentration, then sampling will be conducted at a minimum of twelve (12) traverse points. Copies of stratification check data will be included in the Quality Assurance/Quality Control Appendix of the report. 58 of 63 Site Specific Test Plan Testing Methodology AST-2023-4493 Nodal Power – Layton, UT Page 3-4 An NO2 – NO converter check will be performed on the analyzer prior to initiating testing or at the completion of testing. An approximately 50 ppm nitrogen dioxide cylinder gas will be introduced directly to the NOx analyzer and the instrument response will be recorded in an electronic data sheet. The instrument response must be within +/- 10 percent of the cylinder concentration. A Data Acquisition System with battery backup will be used to record the instrument response in one (1) minute averages. The data will be continuously stored as a *.CSV file in Excel format on the hard drive of a computer. At the completion of testing, the data will also be saved to the Alliance server. All data will be reviewed by the Field Team Leader before leaving the facility. Once arriving at Alliance’s office, all written and electronic data will be relinquished to the report coordinator and then a final review will be performed by the Project Manager. 3.10 Quality Assurance/Quality Control – U.S. EPA Reference Test Method 25A Cylinder calibration gases will meet EPA Protocol 1 (+/- 2%) standards. Copies of all calibration gas certificates will be included in the Quality Assurance/Quality Control Appendix of the report. Within two (2) hours prior to testing, zero gas will be introduced through the sampling system to the analyzer. After adjusting the analyzer to the Zero gas concentration and once the analyzer reading is stable, the analyzer value will be recorded. This process will be repeated for the High Level gas, and the time required for the analyzer reading to reach 95 percent of the gas concentration will be recorded to determine the response time. Next, Low and Mid Level gases will be introduced through the sampling system to the analyzer, and the response will be recorded when it is stable. All values must be less than +/- 5 percent of the calibration gas concentrations. Mid Level gas will be introduced through the sampling system. After the analyzer response is stable, the value will be recorded. Next, Zero gas will be introduced through the sampling system, and the analyzer value recorded once it reaches a stable response. The Analyzer Drift must be less than +/- 3 percent of the span value. A Data Acquisition System with battery backup will be used to record the instrument response in one (1) minute averages. The data will be continuously stored as a *.CSV file in Excel format on the hard drive of a computer. At the completion of testing, the data will also be saved to the Alliance server. All data will be reviewed by the Field Team Leader before leaving the facility. Once arriving at Alliance’s office, all written and electronic data will be relinquished to the report coordinator and then a final review will be performed by the Project Manager. 3.11 Quality Assurance/Quality Control – U.S. EPA Reference Method ALT-096 EPA Protocol 1 Calibration Gases – Cylinder calibration gases used will meet EPA Protocol 1 (+/- 2%) standards. Copies of all calibration gas certificates will be provided in the Quality Assurance/Quality Control Appendix. Zero gas will be introduced through the sampling system to the analyzer. After adjusting the analyzer to the Zero gas concentration and once the analyzer reading is stable, the analyzer value will be recorded. This process will be repeated for the High Level gas, and the time required for the analyzer reading to reach 95 percent of the gas concentration will be recorded to determine the response time. Next, Mid and Low Level gases will be introduced through the sampling system to the analyzer, and the response will be recorded when it is stable. All values must be within +/- 5% of the calibration gas concentrations. Post Test Drift Checks – Mid Level gas will be introduced through the sampling system. After the analyzer response is stable, the value will be recorded. Next, Zero gas will be introduced through the sampling system, and 59 of 63 Site Specific Test Plan Testing Methodology AST-2023-4493 Nodal Power – Layton, UT Page 3-5 the analyzer value recorded once it reaches a stable response. The Analyzer Drift must be less than 3 percent of the Calibration Span. Data Collection – A Data Acquisition System with battery backup will be used to record the instrument response (analog 0-10 volt signal) in one (1) minute averages. The data will be continuously stored as a *.CSV file in Excel format on the hard drive of a desktop computer. At the completion of the emissions testing the data will be also saved to the Alliance server. All data will be reviewed by the Field Team Leader before leaving the facility. Once arriving at Alliance’s office, all written and electronic data will be relinquished to the report coordinator and then a final review will be performed by the Project Manager. 60 of 63 Site Specific Test Plan Quality Assurance Program AST-2023-4493 Nodal Power – Layton, UT Page 4-1 4.0 Quality Assurance Program Alliance follows the procedures outlined in the Quality Assurance/Quality Control Management Plan to ensure the continuous production of useful and valid data throughout the course of this test program. The QC checks and procedures described in this section represent an integral part of the overall sampling and analytical scheme. Adherence to prescribed procedures is quite often the most applicable QC check. 4.1 Equipment Field test equipment is assigned a unique, permanent identification number. Prior to mobilizing for the test program, equipment is inspected before being packed to detect equipment problems prior to arriving on site. This minimizes lost time on the job site due to equipment failure. Occasional equipment failure in the field is unavoidable despite the most rigorous inspection and maintenance procedures. Therefore, replacements for critical equipment or components are brought to the job site. Equipment returning from the field is inspected before it is returned to storage. During the course of these inspections, items are cleaned, repaired, reconditioned and recalibrated where necessary. Calibrations are conducted in a manner, and at a frequency, which meets or exceeds U.S. EPA specifications. The calibration procedures outlined in the U.S. EPA Methods, and those recommended within the Quality Assurance Handbook for Air Pollution Measurement Systems: Volume III (EPA-600/R-94/038c, September 1994) are utilized. When these methods are inapplicable, methods such as those prescribed by the American Society for Testing and Materials (ASTM) or other nationally recognized agency may be used. Data obtained during calibrations is checked for completeness and accuracy. Copies of calibration forms are included in the report. The following sections elaborate on the calibration procedures followed by Alliance for these items of equipment.  Dry Gas Meter and Orifice. A full meter calibration using critical orifices as the calibration standard is conducted at least semi-annually, more frequently if required. The meter calibration procedure determines the meter correction factor (Y) and the meter’s orifice pressure differential (ΔH@). Alliance uses approved Alternative Method 009 as a post-test calibration check to ensure that the correction factor has not changed more than 5% since the last full meter calibration. This check is performed after each test series.  Pitot Tubes and Manometers. Type-S pitot tubes that meet the geometric criteria required by U.S. EPA Reference Test Method 2 are assigned a coefficient of 0.84 unless a specific coefficient has been determined from a wind tunnel calibration. If a specific coefficient from a wind tunnel calibration has been obtained that coefficient will be used in lieu of 0.84. Standard pitot tubes that meet the geometric criteria required by U.S. EPA Reference Test Method 2 are assigned a coefficient of 0.99. Any pitot tubes not meeting the appropriate geometric criteria are discarded and replaced. Manometers are verified to be level and zeroed prior to each test run and do not require further calibration.  Temperature Measuring Devices. All thermocouple sensors mounted in Dry Gas Meter Consoles are calibrated semi-annually with a NIST-traceable thermocouple calibrator (temperature simulator) and verified during field use using a second NIST-traceable meter. NIST-traceable thermocouple calibrators are calibrated annually by an outside laboratory.  Digital Calipers. Calipers are calibrated annually by Alliance by using gage blocks that are calibrated annually by an outside laboratory.  Barometer. The barometric pressure is obtained from a nationally recognized agency or a calibrated barometer. Calibrated barometers are checked prior to each field trip against a mercury barometer. The 61 of 63 Site Specific Test Plan Quality Assurance Program AST-2023-4493 Nodal Power – Layton, UT Page 4-2 barometer is acceptable if the values agree within ± 2 percent absolute. Barometers not meeting this requirement are adjusted or taken out of service.  Balances and Weights. Balances are calibrated annually by an outside laboratory. A functional check is conducted on the balance each day it is use in the field using a calibration weight. Weights are re-certified every two (2) years by an outside laboratory or internally. If conducted internally, they are weighed on a NIST traceable balance. If the weight does not meet the expected criteria, they are replaced.  Other Equipment. A mass flow controller calibration is conducted on each Environics system annually following the procedures in the Manufacturer’s Operation manual. Other equipment such as probes, umbilical lines, cold boxes, etc. are routinely maintained and inspected to ensure that they are in good working order. They are repaired or replaced as needed. 4.2 Field Sampling Field sampling will be done in accordance with the Standard Operating Procedures (SOP) for the applicable test method(s). General QC measures for the test program include:  Cleaned glassware and sample train components will be sealed until assembly.  Sample trains will be leak checked before and after each test run.  Appropriate impinger temperatures will be maintained.  The sampling port will be sealed to prevent air from leaking from the port.  Dry gas meter, ΔP, ΔH, temperature and pump vacuum data will be recorded during each sample point.  All raw data will be maintained in organized manner.  All raw data will be reviewed on a daily basis for completeness and acceptability. 62 of 63 Last Page of Report 63 of 63 TEST REPORT SUMMARY CORPORATE OFFICE 255 Grant St. SE, Suite 600 Decatur, AL 35601 256.351.0121 www.alliancetechnicalgroup.com Client Information / Test Location Source Information Nodal Power Engine/Unit ID: LFG Generator Davis Landfill Engine Make/Model: Caterpillar G3520C Layton, Utah Engine Serial Number: GZJ00710 Engine Type: Compression/Spark, Rich/Lean Engine Date of Manufacture: 7/7/1905 Engine Rating: 2,233 HP Regulatory Applicability Project No. DAQE-AN101290026-22 AST-2023-3003 Run No. Run 1 Run 2 Run 3 Average Date 8/10/23 8/10/23 8/10/23 -- Engine Load, % * 88 87 87 88 Nitrogen Oxides Data Emission Rate, lb/hr 1.5 1.4 1.4 1.4 Permit Limit, lb/hr -- -- -- 2.46 Percent of Limit, % -- -- -- 57 Emission Factor, g/HP-hr 0.33 0.32 0.32 0.32 Permit Limit, lb/hr -- -- -- 0.5 Percent of Limit, % -- -- -- 65 Carbon Monoxide Data Emission Rate, lb/hr 11.7 11.2 11.6 11.5 Permit Limit, lb/hr -- -- -- 12.31 Percent of Limit, % -- -- -- 93 Emission Factor, g/HP-hr 2.7 2.6 2.7 2.7 Permit Limit, lb/hr -- -- -- 2.5 Percent of Limit, % -- -- -- > 100 Non- Methane HC Data Emission Rate, lb/hr 0.70 0.70 0.73 0.71 Permit Limit, lb/hr -- -- -- 4.33 Percent of Limit, % -- -- -- 16 Emission Factor, g/HP-hr 0.16 0.16 0.17 0.16 Permit Limit, lb/hr -- -- -- 0.88 Percent of Limit, % -- -- -- 19 * Performance testing was conducted while the engine was operating at the highest achievable load at current site conditions. Source Test Report Nodal Power 250 E. 200 S., Suite 310 Salt Lake City, UT 84111 Davis Landfill Layton, Utah Source Tested: New Landfill Gas (LFG) Generator Engine Test Date: August 10, 2023 Project No. AST-2023-3003 Prepared By Alliance Technical Group, LLC 3683 W 2270 S, Suite E West Valley City, UT 84120 . Source Test Report Source & Contact Information AST-2023-3003 Nodal Power – Layton, UT Page i Regulatory Information Permit No. DAQE-AN101290026-22 Source Information Source Name Target Parameters New Landfill Gas (LFG) Generator Engine NOx, CO, VOC Contact Information Test Location Test Company Nodal Power Davis Landfill 1997 East 3500 North Layton, Utah Bryan Black bryan@nodalpower.com (801) 301-8151 Alliance Technical Group, LLC 3683 W 2270 S, Suite E West Valley City, UT 84120 Project Manager Charles Horton charles.horton@alliancetg.com (352) 663-7568 Field Team Leader Tobias Hubbard tobias.hubbard@alliancetg.com (605) 645-8562 QA/QC Manager Kathleen Shonk katie.shonk@alliancetg.com (812) 452-4785 Report Coordinator Colton Basinger colton.basinger@alliancetg.com (972) 931-7127 2 of 78 Source Test Report Certification Statement AST-2023-3003 Nodal Power – Layton, UT Page ii Alliance Technical Group, LLC (Alliance) has completed the source testing as described in this report. Results apply only to the source(s) tested and operating condition(s) for the specific test date(s) and time(s) identified within this report. All results are intended to be considered in their entirety, and Alliance is not responsible for use of less than the complete test report without written consent. This report shall not be reproduced in full or in part without written approval from the customer. To the best of my knowledge and abilities, all information, facts and test data are correct. Data presented in this report has been checked for completeness and is accurate, error-free and legible. Onsite testing was conducted in accordance with approved internal Standard Operating Procedures. Any deviations or test program notes are detailed in the relevant sections on the test report. This report is only considered valid once an authorized representative of Alliance has signed in the space provided below; any other version is considered draft. This document was prepared in portable document format (.pdf) and contains pages as identified in the bottom footer of this document. Charles Horton, QSTI Alliance Technical Group, LLC Date 3 of 78 Source Test Report Table of Contents AST-2023-3003 Nodal Power – Layton, UT Page iii TABLE OF CONTENTS 1.0 Introduction .................................................................................................................................................. 1-1 1.1 Facility and Process Description .............................................................................................................. 1-1 1.2 Project Team ............................................................................................................................................ 1-1 1.3 Instrument Information ............................................................................................................................ 1-1 1.4 Site Specific Test Plan and Notification................................................................................................... 1-1 2.0 Testing Methodology .................................................................................................................................... 2-1 2.1 U.S. EPA Reference Test Methods 1 & 2 – Volumetric Flow Rate ......................................................... 2-1 2.2 U.S. EPA Reference Test Method 3A – Oxygen/Carbon Dioxide ........................................................... 2-1 2.3 U.S. EPA Reference Test Method 4 – Moisture Content ......................................................................... 2-1 2.4 U.S. EPA Reference Test Method 7E – Nitrogen Oxides ........................................................................ 2-2 2.5 U.S. EPA Reference Test Method 10 – Carbon Monoxide ...................................................................... 2-2 2.6 U.S. EPA Reference Test Method 25A – Non Methane Hydrocarbons ................................................... 2-2 2.7 U.S. EPA Reference Test Method 205 – Gas Dilution System Certification ........................................... 2-2 2.8 Quality Assurance/Quality Control – U.S. EPA Reference Methods 3A, 7E and 10............................... 2-2 2.9 Quality Assurance/Quality Control – U. S. EPA Reference Method 25A ............................................... 2-3 LIST OF TABLES Table 1-1: Project Team ........................................................................................................................................... 1-1 Table 1-2: Instrument Information ........................................................................................................................... 1-1 Table 2-1: Source Testing Methodology .................................................................................................................. 2-1 APPENDICES Appendix A Sample Calculations Appendix B Field Data Appendix C Quality Assurance/Quality Control Data Appendix D Engine Operating Data Appendix E Site Specific Test Plan & Associated Documentation 4 of 78 Introduction 5 of 78 Source Test Report Introduction AST-2023-3003 Nodal Power – Layton, UT Page 1-1 1.0 Introduction Alliance Technical Group, LLC (Alliance) was retained by Nodal Power to conduct initial compliance testing at the Davis Landfill in Layton, Utah. Portions of the facility are subject to provisions of the Utah Department of Environmental Quality – Division of Air Quality (UDAQ) Permit No. DAQE-AN101290026-22. Testing was conducted at the exhaust of the new landfill gas (LFG) generator engine. Compliance testing was conducted to determine the emission rates of nitrogen oxides (NOx), carbon monoxide (CO) and volatile organic compounds (VOC). Testing consisted of three (3) 60-minute test runs for the source. Performance testing was conducted while the engine was operating at the highest achievable load at current site conditions. The Test Report Summary (TRS) provides the results from the compliance testing, including the three (3) run average, with comparisons to the applicable limits. Any difference between the summary results listed in the TRS and the detailed results contained in the appendices is due to rounding for presentation. 1.1 Facility and Process Description Wasatch Integrated Waste Management District operates Davis Landfill, a municipal solid waste (MSW) landfill located in Davis County, Utah. The facility accepts municipal and commercial waste. The new LFG generator engine is rated at 2,233 horsepower (HP). 1.2 Project Team Personnel involved in this project are identified in the following table. Table 1-1: Project Team Nodal Power Personnel Bryan Black Alliance Personnel Tobias Hubbard Alex Lawrence Supilani Mailei 1.3 Instrument Information The instruments used to conduct the compliance testing are summarized in the following table. Table 1-2: Instrument Information Pollutant Manufacturer Model Serial Number O2 Servomex 1440 14150/3279 CO2 CO Thermo 48i 208845 NOx Thermo 42C 42CHL-59778-324 VOC Thermo 55i 1209052150 1.4 Site Specific Test Plan and Notification Testing was conducted in accordance with the Site Specific Test Plan (SSTP) submitted to the UDAQ by Nodal Power. 6 of 78 Testing Methodology 7 of 78 Source Test Report Testing Methodology AST-2023-3003 Nodal Power – Layton, UT Page 2-1 2.0 Testing Methodology The emissions testing program was conducted in accordance with the U.S. EPA Reference Test Methods listed in Table 2-1. Method descriptions are provided below while quality assurance/quality control data is provided in Appendix C. Table 2-1: Source Testing Methodology Parameter U.S. EPA Reference Test Methods Notes/Remarks Volumetric Flow Rate 1 & 2 Full Velocity Traverses Oxygen/Carbon Dioxide 3A Instrumental Analysis Moisture Content 4 Gravimetric Analysis Nitrogen Oxides 7E Instrumental Analysis Carbon Monoxide 10 Instrumental Analysis (Non-Methane) Hydrocarbons 25A Instrumental Analysis Gas Dilution System Certification 205 -- 2.1 U.S. EPA Reference Test Methods 1 & 2 – Volumetric Flow Rate The sampling location and number of traverse (sampling) points were selected in accordance with U.S. EPA Reference Test Method 1. To determine the minimum number of traverse points, the upstream and downstream distances were equated into equivalent diameters and compared to Figure 1-2 in U.S. EPA Reference Test Method 1. Full velocity traverses were conducted in accordance with U.S. EPA Reference Test Method 2 to determine the average stack gas velocity pressure, static pressure, and temperature. The velocity and static pressure measurement system consisted of a pitot tube and inclined manometer. The stack gas temperature was measured with a K-type thermocouple and pyrometer. 2.2 U.S. EPA Reference Test Method 3A – Oxygen/Carbon Dioxide The oxygen (O2) and carbon dioxide (CO2) testing were conducted in accordance with U.S. EPA Reference Test Method 3A. Data was collected online and reported in one-minute averages. The sampling system consisted of a stainless-steel probe, Teflon sample line(s), gas conditioning system, and the identified gas analyzer. The gas conditioning system was a non-contact condenser used to remove moisture from the stack gas. If an unheated Teflon sample line was used, then a portable non-contact condenser was placed in the system directly after the probe. Otherwise, a heated Teflon sample line was used. Sampling was conducted at three traverse points passing through the centroidal area of the duct (rake probe for strat). The quality control measures are described in Section 2.8. 2.3 U.S. EPA Reference Test Method 4 – Moisture Content The stack gas moisture content was determined in accordance with U.S. EPA Reference Test Method 4. The gas conditioning train consisted of a series of chilled impingers. The impingers were pre and post-measured to determine the amount of moisture condensed during each test run. 8 of 78 Source Test Report Testing Methodology AST-2023-3003 Nodal Power – Layton, UT Page 2-2 2.4 U.S. EPA Reference Test Method 7E – Nitrogen Oxides The nitrogen oxides (NOx) testing was conducted in accordance with U.S. EPA Reference Test Method 7E. Data was collected online and reported in one-minute averages. The sampling system consisted of a stainless steel probe, Teflon sample line(s), gas conditioning system and the identified gas analyzer. The gas conditioning system was a non-contact condenser used to remove moisture from the stack gas. If an unheated Teflon sample line was used, then a portable non-contact condenser was placed in the system directly after the probe. Otherwise, a heated Teflon sample line was used. The quality control measures are described in Section 2.8. 2.5 U.S. EPA Reference Test Method 10 – Carbon Monoxide The carbon monoxide (CO) testing was conducted in accordance with U.S. EPA Reference Test Method 10. Data was collected online and reported in one-minute averages. The sampling system consisted of a stainless steel probe, Teflon sample line(s), gas conditioning system, and the identified gas analyzer. The gas conditioning system was a non-contact condenser used to remove moisture from the gas. If an unheated Teflon sample line was used, then a portable non-contact condenser was placed in the system directly after the probe. Otherwise, a heated Teflon sample line was used. The quality control measures are described in Section 2.8. 2.6 U.S. EPA Reference Test Method 25A – Non Methane Hydrocarbons The non-methane hydrocarbon (NMHC) testing was conducted in accordance with U.S. EPA Reference Test Method 25A. Data was collected online and reported in one-minute averages. The sampling system consisted of a stainless steel probe, heated Teflon sample line(s) and the identified gas analyzer equipped with a non-methane cutter. The quality control measures are described in Section 2.9. 2.7 U.S. EPA Reference Test Method 205 – Gas Dilution System Certification A calibration gas dilution system field check was conducted in accordance with U.S. EPA Reference Method 205. Multiple dilution rates and total gas flow rates were utilized to force the dilution system to perform two dilutions on each mass flow controller. The diluted calibration gases were sent directly to the analyzer, and the analyzer response recorded in an electronic field data sheet. The analyzer response agreed within 2% of the actual diluted gas concentration. A second Protocol 1 calibration gas, with a cylinder concentration within 10% of one of the gas divider settings described above, was introduced directly to the analyzer, and the analyzer response recorded in an electronic field data sheet. The cylinder concentration and the analyzer response agreed within 2%. These steps were repeated three (3) times. Copies of the Method 205 data can be found in the Quality Assurance/Quality Control Appendix. 2.8 Quality Assurance/Quality Control – U.S. EPA Reference Methods 3A, 7E and 10 Cylinder calibration gases used met EPA Protocol 1 (+/- 2%) standards. Copies of all calibration gas certificates can be found in the Quality Assurance/Quality Control Appendix. Low Level gas was introduced directly to the analyzer. After adjusting the analyzer to the Low Level gas concentration and once the analyzer reading was stable, the analyzer value was recorded. This process was repeated for the Mid Level gas. Next, High Level gas was introduced directly to the analyzer, and the response recorded when it was stable. All values were within 2.0 percent of the Calibration Span or 0.5 ppmv absolute difference. High or Mid Level gas (whichever was closer to the stack gas concentration) was introduced at the probe and the time required for the analyzer reading to reach 95 percent or 0.5 ppm (whichever was less restrictive) of the gas 9 of 78 Source Test Report Testing Methodology AST-2023-3003 Nodal Power – Layton, UT Page 2-3 concentration was recorded. The analyzer reading was observed until it reached a stable value, and this value was recorded. Next, Low Level gas was introduced at the probe and the time required for the analyzer reading to decrease to a value within 5.0 percent or 0.5 ppm (whichever was less restrictive) was recorded. If the Low Level gas was zero gas, the response was 0.5 ppm or 5.0 percent of the upscale gas concentration (whichever was less restrictive). The analyzer reading was observed until it reached a stable value and this value was recorded. The measurement system response time and initial system bias were determined from these data. The System Bias was within 5.0 percent of the Calibration Span or 0.5 ppmv absolute difference High or Mid Level gas (whichever was closer to the stack gas concentration) was introduced at the probe. After the analyzer response was stable, the value was recorded. Next, Low Level gas was introduced at the probe, and the analyzer value recorded once it reached a stable response. The System Bias was within 5.0 percent of the Calibration Span or 0.5 ppmv absolute difference or the data was invalidated and the Calibration Error Test and System Bias were repeated. Drift between pre- and post-run System Bias was within 0.5 ppmv absolute difference or the Calibration Error Test and System Bias were repeated. To determine the number of sampling points, a gas stratification check was conducted prior to initiating testing. The pollutant concentrations were measured at three points (16.7, 50.0 and 83.3 percent of the measurement line). Each traverse point was sampled for a minimum of twice the system response time. If the pollutant concentration at each traverse point did not differ more than 5% or 0.5 ppm (whichever was less restrictive) of the average pollutant concentration, then single point sampling was conducted during the test runs. If the pollutant concentration did not meet these specifications but differed less than 10% or 1.0 ppm from the average concentration, then three (3) point sampling was conducted (stacks less than 7.8 feet in diameter - 16.7, 50.0 and 83.3 percent of the measurement line; stacks greater than 7.8 feet in diameter – 0.4, 1.0, and 2.0 meters from the stack wall). If the pollutant concentration differed by more than 10% or 1.0 ppm from the average concentration, then sampling was conducted at a minimum of twelve (12) traverse points. Copies of stratification check data can be found in the Quality Assurance/Quality Control Appendix. An NO2 – NO converter check was performed on the analyzer prior to initiating testing. An approximately 50 ppm nitrogen dioxide cylinder gas was introduced directly to the NOx analyzer and the instrument response was recorded in an electronic data sheet. The instrument response was within +/- 10 percent of the cylinder concentration. A Data Acquisition System (Dutech Analog Signal Modules) with battery backup was used to record the instrument response in one (1) minute averages. The data was continuously stored as a *.CSV file in Excel format on the hard drive of a computer. At the completion of testing, the data was also saved to the Alliance server. All data was reviewed by the Field Team Leader before leaving the facility. Once arriving at Alliance’s office, all written and electronic data was relinquished to the report coordinator and then a final review was performed by the Project Manager. 2.9 Quality Assurance/Quality Control – U. S. EPA Reference Method 25A Cylinder calibration gases used met EPA Protocol 1 (+/- 2%) standards. Copies of all calibration gas certificates can be found in the Quality Assurance/Quality Control Appendix. 10 of 78 Source Test Report Testing Methodology AST-2023-3003 Nodal Power – Layton, UT Page 2-4 Within two (2) hours prior to testing, zero gas was introduced through the sampling system to the analyzer. After adjusting the analyzer to the Zero gas concentration and once the analyzer reading was stable, the analyzer value was recorded. This process was repeated for the High Level gas, and the time required for the analyzer reading to reach 95 percent of the gas concentration was recorded to determine the response time. Next, Low and Mid Level gases were introduced through the sampling system to the analyzer, and the response was recorded when it was stable. All values were less than +/- 5 percent of the calibration gas concentrations. Mid Level gas was introduced through the sampling system. After the analyzer response was stable, the value was recorded. Next, Zero gas was introduced through the sampling system, and the analyzer value recorded once it reached a stable response. The Analyzer Drift was less than +/- 3 percent of the span value. A Data Acquisition System (Dutech Analog Signal Modules) with battery backup was used to record the instrument response in one (1) minute averages. The data was continuously stored as a *.CSV file in Excel format on the hard drive of a computer. At the completion of testing, the data was also saved to the Alliance server. All data was reviewed by the Field Team Leader before leaving the facility. Once arriving at Alliance’s office, all written and electronic data was relinquished to the report coordinator and then a final review was performed by the Project Manager. 11 of 78 Appendix A 12 of 78 Example Calculations Location Source Project No. Run No. Parameter(s) Meter Pressure (Pm), in. Hg where, Pb 25.47 = barometric pressure, in. Hg ΔH 1.100 = pressure differential of orifice, in H2O Pm 25.55 = in. Hg Absolute Stack Gas Pressure (Ps), in. Hg where, Pb 25.47 = barometric pressure, in. Hg Pg 1.40 = static pressure, in. H2O Ps 25.57 = in. Hg Standard Meter Volume (Vmstd), dscf where, Y 0.992 = meter correction factor Vm 37.782 = meter volume, cf Pm 25.55 = absolute meter pressure, in. Hg Tm 547.4 = absolute meter temperature, °R Vmstd 30.855 = dscf Standard Wet Volume (Vwstd), scf where, Vlc 96.0 = Volume of H2O collected, ml Vwstd 4.527 = scf Moisture Fraction (BWSsat), dimensionless (theoretical at saturated conditions) where, Ts 773.8 = stack temperature, °F Ps 25.6 = absolute stack gas pressure, in. Hg BWSsat 1.000 = dimensionless Moisture Fraction (BWS), dimensionless where, Vwstd 4.527 = standard wet volume, scf Vmstd 30.855 = standard meter volume, dscf BWS 0.128 = dimensionless Moisture Fraction (BWS), dimensionless where, BWSsat 1.000 = moisture fraction (theoretical at saturated conditions) BWSmsd 0.128 = moisture fraction (measured) BWS 0.128 Molecular Weight (DRY) (Md), lb/lb-mole where, CO2 10.67 = carbon dioxide concentration, % O2 8.64 = oxygen concentration, % Md 30.05 = lb/lb mol Molecular Weight (WET) (Ms), lb/lb-mole where, Md 30.05 = molecular weight (DRY), lb/lb mol BWS 0.128 = moisture fraction, dimensionless Ms 28.51 = lb/lb mol Nodal Power - Nodal Power - Davis Landfill, Layton LFG Generator AST-2023-3003 1 VFR Vwstd = 0.04716 x Vlc Vmstd = 17.636 x Vm x Pm x Y Tm BWS = Vwstd (Vwstd +Vmstd) Ms = Md (1 − BWS) + 18.015 (BWS) Md = (0.44 × % CO) + (0.32 × % O2) + (0.28 (100 − % CO − % O2)) BWS = BWSmsd unless BWSsat <BWSmsd BWSsat = 10., Ps Ps = Pb + Pg 13 6 Pm = Pb + Δ H 13 6 13 of 78 Example Calculations Location Source Project No. Run No. Parameter(s) Nodal Power - Nodal Power - Davis Landfill, Layton LFG Generator AST-2023-3003 1 VFR Average Velocity (Vs), ft/sec where, Cp 0.81 = pitot tube coefficient Δ P1/2 1.354 = average pre/post test velocity head of stack gas, (in. H2O)1/2 Ts 1233.5 = average pre/post test absolute stack temperature, °R Ps 25.57 = absolute stack gas pressure, in. Hg Ms 28.51 = molecular weight of stack gas, lb/lb mol Vs 122.1 = ft/sec Average Stack Gas Flow at Stack Conditions (Qa), acfm where, Vs 122.1 = stack gas velocity, ft/sec As 1.72 = cross-sectional area of stack, ft 2 Qa 12,586 = acfm Average Stack Gas Flow at Standard Conditions (Qs), dscfm Ps Ts where, Qa 12,586 = average stack gas flow at stack conditions, acfm BWS 0.128 = moisture fraction, dimensionless Ps 25.57 = absolute stack gas pressure, in. Hg Ts 1233.5 = average pre/post test absolute stack temperature, °R Qs 4,013 = dscfm Dry Gas Meter Calibration Check (Yqa), percent where, Y 0.992 = meter correction factor, dimensionless Θ 60 = run time, min. Vm 37.782 = total meter volume, dcf Tm 547.4 = absolute meter temperature, °R ΔH@ 1.86 = orifice meter calibration coefficient, in. H2O Pb 25.47 = barometric pressure, in. Hg ΔH avg 1.100 = average pressure differential of orifice, in H2O Md 30.06 = molecular weight (DRY), lb/lb mol (Δ H)1/2 1.049 = average square root pressure differential of orifice, (in. H2O)1/2 Yqa 0.0 = percent Qsd = 17.636 x Qa x (1 - BWS) x Vs = 85.49 × Cp × (Δ P /) avg × Ts Ps x Ms Qa = 60 × Vs × As Yqa = Y − Θ Vm 0.0319 × Tm × 29 ΔH@ × Pb + Δ Havg. 13.6 × Md ΔH avg. Y × 100 14 of 78 Location: Source: Project No.: Run No. /Method O₂ - Outlet Concentration (CO₂), % dry CMA ( CM - C0 ) where, Cobs 8.59 = average analyzer value during test, % dry Co 0.07 = average of pretest & posttest zero responses, % dry CMA 10.95 = actual concentration of calibration gas, % dry CM 10.86 = average of pretest & posttest calibration responses, % dry CO₂8.64 = O₂ Concentration, % dry Nodal Power – Davis Landfill, Layton, UT LFG Generator AST-2023-3003 Run 1 / Method 3A CO₂ = ( Cobs - C0 ) x 15 of 78 Location: Source: Project No.: Run No. /Method CO₂ - Outlet Concentration (CCO₂), % dry CMA ( CM - C0 ) where, Cobs 10.70 = average analyzer value during test, % dry Co 0.08 = average of pretest & posttest zero responses, % dry CMA 10.78 = actual concentration of calibration gas, % dry CM 10.81 = average of pretest & posttest calibration responses, % dry CCO₂10.67 = CO₂ Concentration, % dry Nodal Power – Davis Landfill, Layton, UT LFG Generator AST-2023-3003 Run 1 / Method 3A CCO₂ = ( Cobs - C0 ) x 16 of 78 Location: Source: Project No.: Run No. /Method NOx - Outlet Concentration (CNOx), ppmvd CMA ( CM - C0 ) where, Cobs 49.10 = average analyzer value during test, ppmvd Co 0.44 = average of pretest & posttest zero responses, ppmvd CMA 200.00 = actual concentration of calibration gas, ppmvd CM 193.54 = average of pretest & posttest calibration responses, ppmvd CNOx 50.40 = NOx Concentration, ppmvd NOx - Outlet Concentration (CNOxc15), ppmvd @ 15% O₂ 20.9 - 15 20.9 - O₂ where, CNOx 50.40 = NOx - Outlet Concentration, ppmvd CO₂8.64 = oxygen concentration, % CNOxc15 24.26 = ppmvd @15% O₂ NOx - Outlet Emission Rate (ERNOx), lb/hr where, CNOx 50.40 = NOx - Outlet Concentration, ppmvd MW 46.0055 = NOx molecular weight, g/g-mole Qs 4,013 = stack gas volumetric flow rate at standard conditions, dscfm ERNOx 1.5 = lb/hr NOx - Outlet Emission Rate (ERNOxTPY), ton/yr ERNOx x 8,760 2,000 where, ERNOx 1.5 = NOx - Outlet Emission Rate, lb/hr ERNOxTPY 6.4 = ton/yr NOx - Outlet Emission Factor (EFNOx), g/hp-hr ERNOx x 453.592 EBW where, ERNOx 1.5 = NOx - Outlet Emission Rate, lb/hr EBW 1,965 = engine brake work, HP EFNOx 0.33 = g/hp-hr Nodal Power – Davis Landfill, Layton, UT LFG Generator AST-2023-3003 Run 1 / Method 7E CNOxc15 = CNOx x CNOx = ( Cobs - C0 ) x ERNOx =CNOx x MW x Qs x 60 x 28.32 24.04 x 1.0E06 x 453.592 ERNOxTPY = EFNOx = ℎ − ℎ 17 of 78 Location: Source: Project No.: Run No. /Method CO - Outlet Concentration (CCO), ppmvd CMA ( CM - C0 ) where, Cobs 630.02 = average analyzer value during test, ppmvd Co 0.68 = average of pretest & posttest zero responses, ppmvd CMA 500.00 = actual concentration of calibration gas, ppmvd CM 470.43 = average of pretest & posttest calibration responses, ppmvd CCO 669.87 = CO Concentration, ppmvd CO - Outlet Concentration (CCOc15), ppmvd @ 15% O₂ 20.9 - 15 20.9 - O₂ where, CCO 669.87 = CO - Outlet Concentration, ppmvd CO₂8.64 = oxygen concentration, % CCOc15 322.48 = ppmvd @15% O₂ CO - Outlet Emission Rate (ERCO), lb/hr where, CCO 669.87 = CO - Outlet Concentration, ppmvd MW 28.01 = CO molecular weight, g/g-mole Qs 4,013 = stack gas volumetric flow rate at standard conditions, dscfm ERCO 11.7 = lb/hr CO - Outlet Emission Rate (ERCOTPY), ton/yr ERCO x 8,760 2,000 where, ERCO 11.7 = CO - Outlet Emission Rate, lb/hr ERCOTPY 51.4 = ton/yr CO - Outlet Emission Factor (EFCO), g/hp-hr ERCO x 453.592 EBW where, ERCO 11.7 = CO - Outlet Emission Rate, lb/hr EBW 1,965 = engine brake work, HP EFCO 2.7 = g/hp-hr Nodal Power – Davis Landfill, Layton, UT LFG Generator AST-2023-3003 Run 1 / Method 10 CCOc15 = CCO x CCO = ( Cobs - C0 ) x ERCO =CCO x MW x Qs x 60 x 28.32 24.04 x 1.0E06 x 453.592 ERCOTPY = EFCO = ℎ − ℎ 18 of 78 Location: Source: Project No.: Run No. /Method NMHC - Outlet Concentration (as C3H8) (CNMHC), ppmvd CNMHCw 1 - BWS where, CNMHCw 21.99 = NMHC - Outlet Concentration (as C3H8), ppmvw BWS 0.128 = moisture fraction, unitless CNMHC 25.22 = ppmvd NMHC - Outlet Concentration (as C3H8) (CNMHCc15), ppmvd @ 15% O₂ 20.9 - 15 20.9 - O₂ where, CNMHC 25.22 = NMHC - Outlet Concentration (as C3H8), ppmvd CO₂8.64 = oxygen concentration, % CNMHCc15 12.14 = ppmvd @15% O₂ NMHC - Outlet Emission Rate (as C3H8) (ERNMHC), lb/hr where, CNMHC 25.22 = NMHC - Outlet Concentration (as C3H8), ppmvd MW 44.1 = NMHC molecular weight, g/g-mole Qs 4,013 = stack gas volumetric flow rate at standard conditions, dscfm ERNMHC 0.70 = lb/hr NMHC - Outlet Emission Rate (as C3H8) (ERNMHCTPY), ton/yr ERNMHC x 8,760 2,000 where, ERNMHC 0.70 = NMHC - Outlet Emission Rate (as C3H8), lb/hr ERNMHCTPY 3.0 = ton/yr NMHC - Outlet Emission Factor (as C3H8) (EFNMHC), g/hp-hr ERNMHC x 454 EBW where, ERNMHC 0.70 = NMHC - Outlet Emission Rate (as C3H8), lb/hr EBW 1,965 = engine brake work, HP EFNMHC 0.16 = g/hp-hr ERNMHCTPY = EFNMHC = ERNMHC =CNMHC x MW x Qs x 60 x 28.32 24.04 x 1.0E06 x 454 CNMHC = CNMHCc15 = CNMHC x Nodal Power – Davis Landfill, Layton, UT LFG Generator AST-2023-3003 Run 1 / Method Alt-096 ℎ − ℎ 19 of 78 Appendix B 20 of 78 Emissions Calculations Location Source Project No. Run Number Run 1 Run 2 Run 3 Average Date 8/10/23 8/10/23 8/10/23 -- Start Time 14:05 15:26 16:50 -- Stop Time 15:05 16:26 17:50 -- Engine Manufacturer Engine Model Engine Serial Number Engine Type Engine Date of Manufacturer DOM Engine Hour Meter Reading EMR Generator Output, kW Gen OP 1,408 1,400 1,398 1,402 Engine Brake Work, HP EBW 1,965 1,954 1,951 1,957 Maximum Brake Work, HP MaxEBW 2,233 2,233 2,233 2,233 Engine Load, % EL 88% 87% 87% 88% Ambient Temperature TAmb 80 80 80 80 Relative Humidity, % RH 12 12 12 12 Barometric Pressure, in. Hg Pb 25.50 25.50 25.50 25.50 Moisture Fraction, dimensionless BWS 0.128 0.129 0.125 0.127 Volumetric Flow Rate (M1-4), dscfm Qs 4,013 3,854 4,007 3,958 O₂ Concentration, % dry CO₂8.64 8.75 8.75 8.72 CO₂ Concentration, % dry CCO₂10.67 10.59 10.60 10.62 CO Concentration, ppmvd CCO 669.87 666.42 662.24 666.17 CO Concentration, ppmvd @ 15 % O₂CCOc15 322.48 323.63 321.61 322.57 CO Emission Rate, lb/hr ERCO 11.7 11.2 11.6 11.5 CO Emission Rate, ton/yr ERCOTPY 51.4 49.1 50.7 50.4 CO Emission Factor, g/HP-hr EFCO 2.7 2.6 2.7 2.7 NOx Concentration, ppmvd CNOx 50.40 49.27 47.82 49.16 NOx Concentration, ppmvd @ 15 % O₂CNOxc15 24.26 23.93 23.22 23.80 NOx Emission Rate, lb/hr ERNOx 1.5 1.4 1.4 1.4 NOx Emission Rate, ton/yr ERNOxTPY 6.4 6.0 6.0 6.1 NOx Emission Factor, g/HP-hr EFNOx 0.3 0.3 0.3 0.3 NMHC (as C3H8) Concentration, ppmvd CNMHC 25.22 26.37 26.43 26.01 NMHC (as C3H8) Concentration, ppmvw CNMHCw 21.99 22.97 23.13 22.70 NMHC (as C3H8) Concentration, ppmvd @ 15 % O₂CNMHCc15 12.14 12.81 12.84 12.59 NMHC (as C3H8) Emission Rate, lb/hr ERNMHC 0.70 0.70 0.73 0.71 NMHC (as C3H8) Emission Rate, ton/yr ERNMHCTPY 3.0 3.1 3.2 3.1 NMHC (as C3H8) Emission Factor, g/HP-hr EFNMHC 0.16 0.16 0.17 0.16 Nodal Power – Davis Landfill, Layton, UT LFG Generator AST-2023-3003 Caterpillar G3520C GZJ00710 Compression/Spark, Rich/Lean 7/7/1905 Engine Data 3,581 Input Data - Outlet Calculated Data - Outlet 21 of 78 Method 1 Data Location Source Project No. Date Vertical Circular 25.25 in 7.50 in 17.75 in 1.72 ft2 2 1 3.4 ft 2.3 (must be > 0.5) 3.1 ft 2.1 (must be > 2) 16 16 Measurer (Initial and Date):AML 8/10 Reviewer (Initial and Date):SPR 8/10 2 3 4 5 6 7 8 9 10 11 12 1 14.6 -- 6.7 -- 4.4 -- 3.2 -- 2.6 -- 2.1 1 3.2 0.57 8.07 2 85.4 -- 25.0 -- 14.6 -- 10.5 -- 8.2 -- 6.7 2 10.5 1.86 9.36 3 -- -- 75.0 -- 29.6 -- 19.4 -- 14.6 -- 11.8 3 19.4 3.44 10.94 4 -- -- 93.3 -- 70.4 -- 32.3 -- 22.6 -- 17.7 4 32.3 5.73 13.23 5 -- -- -- -- 85.4 -- 67.7 -- 34.2 -- 25.0 5 67.7 12.02 19.52 6 -- -- -- -- 95.6 -- 80.6 -- 65.8 -- 35.6 6 80.6 14.31 21.81 7 -- -- -- -- -- -- 89.5 -- 77.4 -- 64.4 7 89.5 15.89 23.39 8 -- -- -- -- -- -- 96.8 -- 85.4 -- 75.0 8 96.8 17.18 24.68 9 -- -- -- -- -- -- -- -- 91.8 -- 82.3 9 -- -- -- 10 -- -- -- -- -- -- -- -- 97.4 -- 88.2 10 -- -- -- 11 -- -- -- -- -- -- -- -- -- -- 93.3 11 -- -- -- 12 -- -- -- -- -- -- -- -- -- -- 97.9 12 -- -- -- *Percent of stack diameter from inside wall to traverse point. A = 3.42 ft. B = 3.13 ft. Depth of Duct = 17.75 in. Number of traverse points on a diameter Stack Diagram Cross Sectional Area LOCATION OF TRAVERSE POINTS Traverse Point % of Diameter Distance from inside wall Distance from outside of port Number of Readings per Point: Distance A: Distance A Duct Diameters: Distance B: Distance B Duct Diameters: Minimum Number of Traverse Points: Actual Number of Traverse Points: CIRCULAR DUCT Cross Sectional Area of Duct: Nodal Power - Nodal Power - Davis Landfill, Layton LFG Generator AST-2023-3003 Stack Parameters Duct Orientation: Duct Design: Distance from Far Wall to Outside of Port: Nipple Length: Depth of Duct: No. of Test Ports: Upstream Disturbance Downstream Disturbance B A 22 of 78 Cyclonic Flow Check Location Source Project No. Date Sample Point Angle (ΔP=0) 1 0 2 0 3 5 4 5 5 5 6 0 7 0 8 5 9 0 10 0 11 0 12 5 13 5 14 5 15 5 16 5 Average 2.8 Nodal Power - Nodal Power - Davis Landfill, Layton LFG Generator AST-2023-3003 8/10/23 23 of 78 Field Data Method 2 Data Location Source Project No. Δ P (in. WC) Ts (°F) Δ P (in. WC) Ts (°F) Δ P (in. WC) Ts (°F) 1.20 751 1.30 790 1.40 785 1.50 753 1.40 788 1.50 788 1.70 753 1.50 789 1.70 791 1.70 768 1.60 789 1.70 792 2.00 778 1.80 787 1.90 792 2.10 781 1.90 787 2.10 792 2.20 782 2.10 788 2.20 793 2.20 784 2.40 790 2.30 793 1.50 768 1.40 788 1.60 786 1.60 769 1.50 789 1.50 787 1.80 776 1.60 790 1.70 787 1.90 779 1.70 791 1.80 790 1.90 782 1.80 789 1.90 790 2.10 782 1.80 787 2.00 791 2.00 786 1.90 787 2.10 790 2.10 789 1.90 788 2.20 788 Average Square Root of ΔP, (in. WC)1/2 (ΔP)1/2 1.340 Average ΔP, in. WC (ΔP)1.81 Pitot Tube Coefficient (Cp)0.811 Barometric Pressure, in. Hg (Pb)25.47 Static Pressure, in. WC (Pg)1.33 Stack Pressure, in. Hg (Ps)25.57 Average Temperature, °F (Ts)784.0 Average Temperature, °R (Ts)1243.7 Measured Moisture Fraction (BWSmsd)0.127 Moisture Fraction @ Saturation (BWSsat)1.000 Moisture Fraction (BWS)0.127 O2 Concentration, % (O2)8.71 CO2 Concentration, % (CO2)10.62 Molecular Weight, lb/lb-mole (dry) (Md)30.05 Molecular Weight, lb/lb-mole (wet) (Ms)28.52 Velocity, ft/sec (Vs)121.3 VFR at stack conditions, acfm (Qa)12,508 VFR at standard conditions, scfh (Qsw)272,120 VFR at standard conditions, scfm (Qsw)4,535 VFR at standard conditions, dscfm (Qsd)3,958 1.0001.0001.000 0.1250.1290.128 4,013 3,854 4,007 4,602 4,425 4,579 276,104 265,529 274,727 12,586 12,252 12,688 122.1 118.8 123.1 28.51 28.49 28.54 30.05 30.04 30.05 8.64 8.75 8.75 10.67 10.59 10.60 0.128 0.129 0.125 1233.5 1248.2 1249.4 773.8 788.6 789.7 25.57 25.57 25.57 1.40 1.30 1.30 25.47 25.47 25.47 0.811 0.811 0.811 1.84 1.73 1.85 1.354 1.309 1.356 3 4 5 6 7 5 6 7 8 B1 2 Traverse Point 1 2 3 4 Leak Check Pass Pass Pass Stop Time 15:05 16:26 17:50 Start Time 14:05 15:26 16:50 8 Nodal Power - Nodal Power - Davis Landfill, Layton LFG Generator AST-2023-3003 Run No. 1 2 3 Status VALID VALID VALID Date 8/10/23 8/10/23 8/10/23 24 of 78 Method 4 Data Location Source Project No. Parameter(s) Console Units / Method ft3 M4 Run No. Date Status Start Time End Time Run Time, min (θ) Meter ID Meter Correction Factor (Y) Orifice Calibration Value (ΔH @) Max Vacuum, in. Hg Post Leak Check, ft3/min (at max vac.) Meter Volume, ft3 Total Meter Volume, ft3 (Vm) Meter Probe Filter Vacuum Imp. Exit Meter Probe Filter Vacuum Imp. Exit Meter Probe Filter Vacuum Imp. Exit 82 -- -- 5 67 85 -- -- 3 66 88 -- -- 3 63 85 -- -- 6 49 86 -- -- 3 53 88 -- -- 3 53 86 -- -- 7 46 86 -- -- 3 51 89 -- -- 3 47 86 -- -- 7 46 86 -- -- 3 51 89 -- -- 3 46 87 -- -- 7 48 87 -- -- 3 52 90 -- -- 3 46 87 -- -- 7 49 87 -- -- 3 52 90 -- -- 3 47 88 -- -- 7 50 87 -- -- 4 52 90 -- -- 3 47 88 -- -- 7 51 89 -- -- 4 53 90 -- -- 3 47 89 -- -- 7 52 89 -- -- 4 54 91 -- -- 3 48 90 -- -- 7 53 89 -- -- 4 54 91 -- -- 3 49 90 -- -- 7 54 89 -- -- 4 54 91 -- -- 3 49 91 -- -- 7 55 90 -- -- 4 55 91 -- -- 3 49 91 -- -- 7 56 90 -- -- 4 55 91 -- -- 3 49 Average Temperature, °F (Tm)88 -- -- 7 52 88 -- -- 4 54 90 -- -- 3 49 Average Temperature, °R (Tm)547 -- -- -- -- 547 -- -- -- -- 550 -- -- -- -- Minimum Temperature, °F 82 -- -- 5 46 85 -- -- 3 51 88 -- -- 3 46 Maximum Temperature, °F 91 -- -- 7 67 90 -- -- 4 66 91 -- -- 3 63 Barometric Pressure, in. Hg (Pb) Meter Orifice Pressure , in. WC (ΔH) Meter Pressure, in. Hg (Pm) Standard Meter Volume, ft3 (Vmstd) Analysis Type Impinger 1, Pre/Post Test, g 771.3 846.0 74.7 846.0 922.2 76.2 719.8 798.1 78.3 Impinger 2, Pre/Post Test, g 749.5 758.8 9.3 758.8 768.9 10.1 758.8 767.8 9.0 Impinger 3, Pre/Post Test, g 620.7 622.7 2.0 622.7 625.5 2.8 625.5 627.3 1.8 Impinger 4, Pre/Post Test, g 922.5 932.5 10.0 932.5 940.2 7.7 940.2 944.9 4.7 Volume Water Collected, mL (Vlc) Standard Water Volume, ft3 (Vwstd) Moisture Fraction Measured (BWS) Gas Molecular Weight, lb/lb-mole (dry) (Md) DGM Calibration Check Value (Yqa) 0 5 10 15 20 25 10 15 20 25 40 45 50 55 30 35 40 45 50 55 60 7 .001 @ 10 20.851 24.055 27.225 30.390 33.525 36.640 39.790 42.940 46.085 49.220 52.330 55.500 58.633 25.47 96.0 4.527 0.128 1.100 25.55 30.855 H2O H2O Empty Gravimetric 30.06 0.0 25.55 30.801 25.55 30.983 Gravimetric Gravimetric Silica Silica Silica H2O 96.8 4.565 0.129 37.782 37.716 38.093 59.635 62.820 66.020 69.225 72.395 75.470 78.610 81.745 84.880 87.965 91.075 94.220 97.351 97.502 100.755 103.920 107.170 110.390 113.515 116.700 119.810 122.985 126.155 129.340 132.375 135.595 VALID 15:26 16:26 60 MB-704 0.992 1.860 4 .001 @8 2 8/10/23 3 8/10/23 25.47 1.100 25.47 1.100 H2O Empty .001 @ 6 30.05 -0.2 93.8 4.424 0.125 0.6 30.05 H2O H2O Empty 16:50 17:50 60 MB-704 0.992 1.860 3 Nodal Power - Nodal Power - Davis Landfill, Layton LFG Generator AST-2023-3003 VFR 1 VALID 8/10/23 14:05 15:05 60 MB-704 0.992 1.860 VALID Temperature, °F 0 5 30 35 60 25 of 78 Run 1 - RM Data Location: Source: Project No.: Date: Time O₂ - Outlet CO₂ - Outlet CO - Outlet NOx - Outlet NMHC - Outlet Unit % dry % dry ppmvd ppmvd ppmvw Status Valid Valid Valid Valid Valid 14:05 8.52 10.73 641.34 48.75 19.64 14:06 8.54 10.72 642.39 50.07 22.55 14:07 8.57 10.70 639.29 51.32 22.44 14:08 8.56 10.72 639.11 49.42 22.19 14:09 8.59 10.70 640.69 50.02 22.19 14:10 8.58 10.71 636.24 50.52 22.35 14:11 8.58 10.71 634.21 49.38 22.63 14:12 8.58 10.72 635.25 49.03 22.38 14:13 8.56 10.73 635.80 49.01 22.26 14:14 8.56 10.72 636.96 48.62 22.39 14:15 8.57 10.73 638.86 49.19 22.55 14:16 8.58 10.71 636.79 49.54 22.48 14:17 8.57 10.73 637.02 49.48 22.20 14:18 8.57 10.72 635.40 48.26 22.12 14:19 8.58 10.70 637.08 48.94 22.08 14:20 8.59 10.70 634.61 48.16 21.79 14:21 8.58 10.70 638.06 49.04 21.71 14:22 8.62 10.68 633.20 49.86 21.33 14:23 8.61 10.68 633.71 47.93 21.81 14:24 8.63 10.67 630.55 48.64 21.61 14:25 8.62 10.69 629.78 48.12 21.61 14:26 8.59 10.71 629.23 46.85 22.12 14:27 8.58 10.72 631.85 47.54 21.92 14:28 8.59 10.72 634.14 48.42 22.01 14:29 8.61 10.69 632.40 49.75 21.80 14:30 8.60 10.69 629.23 47.56 22.14 14:31 8.59 10.70 630.15 47.38 21.83 14:32 8.58 10.71 627.28 47.92 21.28 14:33 8.57 10.73 627.73 47.54 21.31 14:34 8.58 10.72 633.11 48.28 21.78 14:35 8.60 10.71 634.78 50.19 21.86 14:36 8.62 10.67 631.72 52.12 21.36 14:37 8.61 10.68 629.10 50.09 21.45 14:38 8.61 10.68 627.38 49.68 22.23 14:39 8.61 10.68 627.00 49.41 22.22 14:40 8.60 10.68 624.05 49.49 22.56 14:41 8.59 10.70 626.35 48.45 21.88 14:42 8.59 10.70 625.82 50.44 21.82 14:43 8.61 10.69 622.62 48.44 22.05 14:44 8.59 10.69 622.92 46.74 22.13 14:45 8.58 10.71 624.92 47.35 21.95 14:46 8.55 10.73 629.26 48.19 21.95 14:47 8.57 10.72 627.04 49.52 22.02 14:48 8.58 10.71 627.56 49.66 22.15 14:49 8.60 10.69 625.44 49.63 22.27 14:50 8.58 10.70 623.95 47.57 22.39 14:51 8.57 10.71 624.88 48.57 22.46 14:52 8.56 10.72 627.90 48.82 22.23 14:53 8.59 10.69 626.48 51.08 21.80 14:54 8.59 10.69 624.65 49.46 21.54 14:55 8.58 10.71 624.84 49.25 21.79 14:56 8.59 10.69 626.02 49.90 22.14 14:57 8.61 10.67 623.83 50.46 22.24 14:58 8.59 10.69 625.06 49.77 22.24 14:59 8.61 10.68 623.49 50.87 21.97 15:00 8.62 10.67 620.93 49.48 22.06 15:01 8.61 10.67 621.68 49.36 22.13 15:02 8.61 10.68 620.42 49.00 22.11 15:03 8.59 10.69 619.62 49.11 21.96 15:04 8.61 10.69 620.21 49.58 22.05 Parameter O₂ - Outlet CO₂ - Outlet CO - Outlet NOx - Outlet NMHC - Outlet Uncorrected Run Average (Cobs)8.59 10.70 630.02 49.10 21.99 Cal Gas Concentration (CMA)10.95 10.78 500.00 200.00 40.00 Pretest System Zero Response 0.12 0.10 0.80 0.15 0.04 Posttest System Zero Response 0.02 0.06 0.55 0.73 0.04 Average Zero Response (Co)0.07 0.08 0.68 0.44 0.04 Pretest System Cal Response 10.94 10.84 479.39 192.76 39.74 Posttest System Cal Response 10.78 10.78 461.47 194.32 39.32 Average Cal Response (CM)10.86 10.81 470.43 193.54 39.53 Corrected Run Average (Corr)8.64 10.67 669.87 50.40 NA Nodal Power – Davis Landfill, Layton, UT LFG Generator AST-2023-3003 8/10/23 26 of 78 Run 2 - RM Data Location: Source: Project No.: Date: Time O₂ - Outlet CO₂ - Outlet CO - Outlet NOx - Outlet NMHC - Outlet Unit % dry % dry ppmvd ppmvd ppmvw Status Valid Valid Valid Valid Valid 15:26 8.64 10.62 618.77 47.92 22.23 15:27 8.64 10.62 614.55 47.36 22.16 15:28 8.60 10.66 617.26 46.11 22.36 15:29 8.62 10.66 616.25 48.10 22.31 15:30 8.61 10.66 618.92 47.96 22.36 15:31 8.63 10.65 616.06 47.49 21.94 15:32 8.61 10.68 618.31 47.86 22.05 15:33 8.62 10.66 617.72 50.19 22.21 15:34 8.62 10.66 615.43 48.53 22.67 15:35 8.63 10.66 612.97 48.36 22.72 15:36 8.62 10.67 611.86 46.47 22.73 15:37 8.62 10.66 612.51 48.02 22.79 15:38 8.60 10.68 611.38 47.41 22.67 15:39 8.59 10.69 612.47 46.40 22.64 15:40 8.59 10.70 616.58 48.09 22.83 15:41 8.59 10.69 617.21 48.71 22.85 15:42 8.60 10.67 613.16 49.83 22.65 15:43 8.62 10.67 612.47 48.66 23.17 15:44 8.61 10.67 613.71 48.38 23.30 15:45 8.62 10.67 612.87 49.10 22.94 15:46 8.63 10.66 610.99 48.87 22.99 15:47 8.61 10.68 610.08 47.16 23.18 15:48 8.61 10.69 612.87 48.71 23.20 15:49 8.60 10.69 612.95 49.31 23.28 15:50 8.60 10.71 610.53 48.21 23.12 15:51 8.59 10.71 613.24 48.30 22.91 15:52 8.58 10.70 614.53 50.07 22.68 15:53 8.60 10.70 614.66 49.82 22.72 15:54 8.61 10.69 611.78 49.99 22.99 15:55 8.61 10.69 611.51 50.28 23.17 15:56 8.60 10.69 610.91 49.07 23.20 15:57 8.61 10.69 612.96 50.36 23.20 15:58 8.59 10.69 611.12 49.67 23.22 15:59 8.60 10.69 613.67 49.60 23.31 16:00 8.61 10.68 612.83 50.65 23.35 16:01 8.61 10.69 613.56 50.24 23.04 16:02 8.63 10.68 611.20 50.19 23.04 16:03 8.62 10.67 608.84 49.17 23.19 16:04 8.60 10.70 608.42 48.60 23.29 16:05 8.60 10.70 611.27 48.41 23.46 16:06 8.61 10.68 609.99 49.06 23.51 16:07 8.61 10.70 609.31 48.97 23.42 16:08 8.62 10.67 606.89 48.58 23.25 16:09 8.60 10.71 606.86 47.26 23.28 16:10 8.59 10.70 605.56 47.38 23.24 16:11 8.59 10.71 606.38 47.89 22.97 16:12 8.58 10.73 607.67 48.57 22.97 16:13 8.59 10.72 606.99 49.17 23.06 16:14 8.58 10.72 609.06 48.06 23.07 16:15 8.58 10.73 612.24 49.73 22.95 16:16 8.59 10.72 613.78 51.42 22.99 16:17 8.62 10.71 612.49 51.50 23.09 16:18 8.63 10.70 609.04 50.45 23.15 16:19 8.62 10.70 607.85 49.91 23.39 16:20 8.63 10.70 609.51 49.48 23.49 16:21 8.64 10.69 606.56 49.67 23.40 16:22 8.63 10.70 604.31 47.33 23.43 16:23 8.62 10.72 603.83 47.16 23.23 16:24 8.62 10.72 602.55 46.83 23.12 16:25 8.60 10.74 603.02 46.66 23.12 Parameter O₂ - Outlet CO₂ - Outlet CO - Outlet NOx - Outlet NMHC - Outlet Uncorrected Run Average (Cobs)8.61 10.69 611.54 48.71 22.97 Cal Gas Concentration (CMA)10.95 10.78 500.00 200.00 40.00 Pretest System Zero Response 0.02 0.06 0.55 0.73 0.04 Posttest System Zero Response 0.00 0.03 0.44 0.22 0.05 Average Zero Response (Co)0.01 0.05 0.50 0.48 0.05 Pretest System Cal Response 10.78 10.78 461.47 194.32 39.32 Posttest System Cal Response 10.76 10.98 456.43 198.23 38.38 Average Cal Response (CM)10.77 10.88 458.95 196.28 38.85 Corrected Run Average (Corr)8.75 10.59 666.42 49.27 NA Nodal Power – Davis Landfill, Layton, UT LFG Generator AST-2023-3003 8/10/23 27 of 78 Run 3 - RM Data Location: Source: Project No.: Date: Time O₂ - Outlet CO₂ - Outlet CO - Outlet NOx - Outlet NMHC - Outlet Unit % dry % dry ppmvd ppmvd ppmvw Status Valid Valid Valid Valid Valid 16:50 8.59 10.81 603.26 43.51 22.75 16:51 8.59 10.76 606.58 46.46 22.87 16:52 8.61 10.74 605.10 48.41 22.88 16:53 8.60 10.73 603.27 46.55 23.24 16:54 8.60 10.72 604.00 47.59 23.13 16:55 8.60 10.72 605.13 46.95 23.17 16:56 8.59 10.71 606.26 47.59 23.25 16:57 8.59 10.69 606.13 48.27 23.00 16:58 8.61 10.69 603.24 47.40 22.91 16:59 8.59 10.69 602.16 46.61 23.20 17:00 8.58 10.71 603.39 46.17 23.22 17:01 8.59 10.69 606.31 48.14 22.99 17:02 8.60 10.68 606.15 50.17 22.95 17:03 8.61 10.67 603.74 48.43 22.84 17:04 8.62 10.67 601.94 48.07 23.56 17:05 8.59 10.70 601.89 47.09 23.41 17:06 8.59 10.69 603.69 47.84 23.26 17:07 8.62 10.67 601.34 48.72 23.16 17:08 8.59 10.69 601.70 46.46 23.10 17:09 8.58 10.69 600.81 47.38 23.21 17:10 8.60 10.67 603.69 48.28 23.18 17:11 8.59 10.68 602.27 48.98 23.11 17:12 8.60 10.67 602.11 48.00 23.09 17:13 8.59 10.68 602.23 48.82 23.37 17:14 8.60 10.66 603.87 47.81 23.55 17:15 8.61 10.66 600.91 49.85 23.34 17:16 8.62 10.65 599.57 47.37 23.30 17:17 8.58 10.67 600.04 47.04 23.61 17:18 8.58 10.66 597.34 47.61 23.68 17:19 8.59 10.67 598.68 47.37 23.16 17:20 8.58 10.68 597.36 46.57 22.78 17:21 8.57 10.69 599.42 46.36 22.99 17:22 8.58 10.68 599.44 46.58 22.58 17:23 8.59 10.67 599.79 48.30 22.94 17:24 8.58 10.68 600.47 47.44 22.86 17:25 8.59 10.67 600.06 48.78 22.83 17:26 8.57 10.68 602.33 47.52 22.97 17:27 8.60 10.65 602.02 49.53 22.98 17:28 8.60 10.66 602.15 49.43 22.99 17:29 8.62 10.63 598.37 49.27 22.89 17:30 8.61 10.63 597.35 46.73 22.97 17:31 8.57 10.67 602.01 47.27 23.25 17:32 8.57 10.67 602.66 49.85 23.10 17:33 8.59 10.66 600.01 49.62 22.99 17:34 8.60 10.64 600.19 48.51 23.05 17:35 8.61 10.63 598.57 48.40 23.40 17:36 8.60 10.64 599.54 48.14 23.30 17:37 8.60 10.65 597.51 48.78 23.04 17:38 8.59 10.66 597.89 48.12 23.30 17:39 8.60 10.65 595.59 48.19 23.30 17:40 8.58 10.66 597.66 46.95 23.05 17:41 8.58 10.67 598.96 48.33 23.34 17:42 8.58 10.65 600.70 48.89 23.06 17:43 8.61 10.64 595.61 49.37 22.82 17:44 8.57 10.66 594.64 46.01 23.07 17:45 8.57 10.67 595.58 47.03 23.33 17:46 8.58 10.66 597.76 47.56 23.18 17:47 8.58 10.66 599.29 49.05 23.03 17:48 8.58 10.65 596.05 48.19 23.26 17:49 8.59 10.65 595.51 47.84 23.38 Parameter O₂ - Outlet CO₂ - Outlet CO - Outlet NOx - Outlet NMHC - Outlet Uncorrected Run Average (Cobs)8.59 10.68 600.85 47.86 23.13 Cal Gas Concentration (CMA)10.95 10.78 500.00 200.00 40.00 Pretest System Zero Response 0.00 0.03 0.44 0.22 0.05 Posttest System Zero Response 0.01 0.03 0.29 0.49 0.05 Average Zero Response (Co)0.01 0.03 0.37 0.36 0.05 Pretest System Cal Response 10.76 10.98 456.43 198.23 38.38 Posttest System Cal Response 10.74 10.73 451.06 199.85 38.22 Average Cal Response (CM)10.75 10.86 453.75 199.04 38.30 Corrected Run Average (Corr)8.75 10.60 662.24 47.82 NA Nodal Power – Davis Landfill, Layton, UT LFG Generator AST-2023-3003 8/10/23 28 of 78 Appendix C 29 of 78 QA Data Location Source Project No. O₂ - Outlet CO₂ - Outlet CO - Outlet NOx - Outlet NMHC - Outlet Make SERVOMEX SERVOMEX THERMO THERMO THERMO Model 1440 1440 48i 42C 55i S/N 14200/3279 14150/3279 208845 42CHL-59778-324 1209052150 Operating Range 25 25 1000 500 200 Cylinder ID Zero NA NA NA NA NA Low NA NA NA NA EB0098694 Mid EB0078899 EB0078899 CC210350 CC122482 EB0098694 High SG9164824BAL SG9164824BAL CC210350 CC122482 EB0098694 Cylinder Certifed Values Zero NA NA NA NA NA Low NA NA NA NA 509 Mid 10.95 10.74 2228 504.1 509 High 24.58 23.78 2228 504.1 509 Cylinder Expiration Date Zero NA NA NA NA NA Low NA NA NA NA 04.18.29 Mid 07.13.29 07.13.29 03.25.27 02.20.31 04.18.29 High 02.13.31 02.13.31 03.25.27 02.20.31 04.18.29 Parameter Nodal Power – Davis Landfill, Layton, UT LFG Generator AST-2023-3003 30 of 78 Response Times Location: Source: Project No.: O₂ - Outlet CO₂ - Outlet CO - Outlet NOx - Outlet NMHC - Outlet Zero 30 30 30 30 45 Low NA NA NA NA 45 Mid 30 30 30 30 45 High NA NA NA NA 45 Average 30.0 30.0 30.0 30.0 45.0 Nodal Power – Davis Landfill, Layton, UT LFG Generator AST-2023-3003 Parameter Response Times, seconds 31 of 78 Calibration Data Location: Source: Project No.: Date: O₂ - Outlet CO₂ - Outlet CO - Outlet NOx - Outlet NMHC - Outlet Expected Average Concentration 12.00 12.00 650.00 100.00 30.0 Span Between Low 12.00 12.00 650.00 100.00 45.0 High 60.00 60.00 3,250.00 500.00 75.0 Desired Span 24.58 23.78 950.00 350.00 75.0 Low Range Gas Low NA NA NA NA 18.8 High NA NA NA NA 26.3 Mid Range Gas Low 9.83 9.51 380.00 140.00 33.8 High 14.75 14.27 570.00 210.00 41.3 High Range Gas Low NA NA NA NA 60.0 High NA NA NA NA 67.5 Actual Concentration (% or ppm) Zero 0.00 0.00 0.00 0.00 0.0 Low NA NA NA NA 20.0 Mid 10.95 10.78 500.00 200.00 40.0 High 24.58 23.78 950.00 350.00 60.0 Upscale Calibration Gas (CMA)Mid Mid Mid Mid Mid Instrument Response (% or ppm) Zero 0.10 0.18 0.46 0.11 0.0 Low NA NA NA NA 19.7 Mid 10.98 10.68 482.42 202.76 40.0 High 24.55 23.81 945.35 349.71 60.0 Performance (% of Span or Cal. Gas Conc.) Zero 0.41 0.76 0.05 0.03 0.0 Low NA NA NA NA -1.6 Mid 0.12 0.42 1.85 0.79 -0.1 High 0.12 0.13 0.49 0.08 0.0 Status Zero PASS PASS PASS PASS PASS Low NA NA NA NA PASS Mid PASS PASS PASS PASS PASS High PASS PASS PASS PASS PASS LFG Generator Nodal Power – Davis Landfill, Layton, UT Parameter 8/10/23 AST-2023-3003 32 of 78 Bias/Drift Determinations Location: Source: Project No.: O₂ - Outlet CO₂ - Outlet CO - Outlet NOx - Outlet NMHC - Outlet Run 1 Date 8/10/23 Span Value 24.6 23.8 950.0 350.0 75.0 Initial Instrument Zero Cal Response 0.1 0.2 0.5 0.1 0.0 Initial Instrument Upscale Cal Response 11.0 10.7 482.4 202.8 40.0 Pretest System Zero Response 0.1 0.1 0.8 0.2 0.0 Posttest System Zero Response 0.0 0.1 0.6 0.7 0.0 Pretest System Upscale Response 10.9 10.8 479.4 192.8 39.7 Posttest System Upscale Response 10.8 10.8 461.5 194.3 39.3 Bias (%) Pretest Zero 0.1 -0.3 0.0 0.0 NA Posttest Zero -0.3 -0.5 0.0 0.2 NA Pretest Span -0.2 0.7 -0.3 -2.9 NA Posttest Span -0.8 0.4 -2.2 -2.4 NA Drift (%) Zero -0.4 -0.2 0.0 0.2 0.0 Mid -0.7 -0.3 -1.9 0.4 -0.6 Run 2 Date 8/10/23 Span Value 24.6 23.8 950.0 350.0 75.0 Instrument Zero Cal Response 0.1 0.2 0.5 0.1 0.0 Instrument Upscale Cal Response 11.0 10.7 482.4 202.8 40.0 Pretest System Zero Response 0.0 0.1 0.6 0.7 0.0 Posttest System Zero Response 0.0 0.0 0.4 0.2 0.1 Pretest System Upscale Response 10.8 10.8 461.5 194.3 39.3 Posttest System Upscale Response 10.8 11.0 456.4 198.2 38.4 Bias (%) Pretest Zero -0.3 -0.5 0.0 0.2 NA Posttest Zero -0.4 -0.6 0.0 0.0 NA Pretest Span -0.8 0.4 -2.2 -2.4 NA Posttest Span -0.9 1.3 -2.7 -1.3 NA Drift (%) Zero -0.1 -0.1 0.0 -0.1 0.0 Mid -0.1 0.8 -0.5 1.1 -1.3 Run 3 Date 8/10/23 Span Value 24.6 23.8 950.0 350.0 75.0 Instrument Zero Cal Response 0.1 0.2 0.5 0.1 0.0 Instrument Upscale Cal Response 11.0 10.7 482.4 202.8 40.0 Pretest System Zero Response 0.0 0.0 0.4 0.2 0.1 Posttest System Zero Response 0.0 0.0 0.3 0.5 0.1 Pretest System Upscale Response 10.8 11.0 456.4 198.2 38.4 Posttest System Upscale Response 10.7 10.7 451.1 199.9 38.2 Bias (%) Pretest Zero -0.4 -0.6 0.0 0.0 NA Posttest Zero -0.4 -0.6 0.0 0.1 NA Pretest Span -0.9 1.3 -2.7 -1.3 NA Posttest Span -1.0 0.2 -3.3 -0.8 NA Drift (%) Zero 0.0 0.0 0.0 0.1 0.0 Mid -0.1 -1.1 -0.6 0.5 -0.2 Parameter Nodal Power – Davis Landfill, Layton, UT LFG Generator AST-2023-3003 33 of 78 34 of 78 35 of 78 36 of 78 37 of 78 Balance Red Ball Technical Gas Service 555 Craig Kennedy Way Shreveport, LA 71107 800-551-8150 Accreditation #62754 PGVP Vendor ID # G12021 EPA PROTOCOL GAS CERTIFICATE OF ANALYSIS Cylinder Number:EB0098694 Certification Date:04/20/2021 Product ID Number:124238 Expiration Date:04/18/2029 Cylinder Pressure:1900 PSIG MFG Facility: - Shreveport - LA COA #EB0098694.20210405-0 Lot Number:EB0098694.20210405 Customer PO. NO.:Tracking Number:095704193 Customer:Previous Certification Dates: This calibration standard has been certified per the May 2012 EPA Traceability Protocol, Document EPA-600/R-12/531, using procedure G1. Do Not Use This Cylinder Below 100 psig (0.7 Megapascal). Certified Concentration(s) Component Concentration Uncertainty Analytical Principle Assayed On Propane 509 PPM ±4 PPM FTIR 04/20/2021 Nitrogen Analytical Measurement Data Available Online. Reference Standard(s) Serial Number Lot Expiration Type Balance Component Concentration Uncertainty(%)NIST Reference EB0057206 EB0057206.20160107 05/17/2024 GMIS N2 C3H8 750 PPM 0.634 5647A Analytical Instrumentation SMART-CERT Component Principle Make MPC Date C3H8 FTIR MKS 03/24/2021 Serial 017146467 This is to certify the gases referenced have been calibrated/tested, and verified to meet the defined specifications. This calibration/test was performed using Gases or Scales that are traceable through National Institute of Standards and Technology (NIST) to the International System of Units (SI). The basis of compliance stated is a comparison of the measurement parameters to the specified or required calibration/testing process. The expanded uncertainties use a coverage factor of k=2 to approximate the 95% confidence level of the measurement, unless otherwise noted. This calibration certificate applies only to the item described and shall not be reproduced other than in full, without written approval from Red Ball Technical Gas Services. If not included, the uncertainty of calibrations are available upon request and were taken into account when determining pass or fail. Anthony Cyr Assistant Operations Manager Assay Laboratory: Red Ball TGS Version 02-J, Revised on 2018-09-17 Model MKS 2031DJG2EKVS13T 38 of 78 Location: Project No.: Analyzer Make THERMO Pre-Test Date 8.10.23 Time 8:08 Analyzer Model 42C Pre-Test Concentration, ppm 45.65 Serial Number 42CHL-59778-324 Pre-Test Efficiency, %96 Cylinder ID Number CC509482 Post-Test Date Time Cylinder Exp. Date 03.20.26 Post-Test Concentration, ppm Cylinder Concentration, ppm 47.8 Post-Test Efficiency, %- *Required Efficiency is ≥ 90 %. Nodal Power – Davis Landfill, Layton, UT AST-2023-3003 NO2 Converter Check - Outlet 39 of 78 Location: Source: Project No.: Date EPA O2 SERVOMEX 1440 14200/3279 25.0 Cylinder Number ID Zero NA Mid EB0078899 High SG9164824BAL Cylinder Certified Values Zero 0.0 Mid 10.95 High 24.58 Instrument Response (% or ppm) Zero 0.1 Mid 11.0 High 24.6 Calibration Gas Selection (% of Span) Mid 43.8 High 98.3 Calibration Error Performance (% of Span) Zero 0.4 Mid 0.0 High 0.0 Linearity (% of Range) -0.2 SERVOMEX 1440 14200/3279 8027.0 (%)lpm (%)(%)(%)(%)(%)(%)( ± 2 %) 10L/10L*80.0 7.0 18.8 18.8 18.7 18.9 18.8 18.80 0.00 0.0% 10L/5L 50.0 5.0 11.7 11.7 11.8 11.8 11.8 11.76 0.06 0.5% 10L/1L 20.0 4.0 4.9 4.9 5.0 4.9 4.9 4.94 0.04 0.8% 10L/1L 10.0 4.0 2.5 2.5 2.5 2.5 2.5 2.52 0.02 0.8% (%)( ± 2 %)( ± 2 %)( ± 2 %) 18.80 -0.3%0.3%0.1% 11.76 0.0%0.1%0.0% 4.94 0.4%-0.4%0.0% 2.52 0.0%0.0%0.0% Mid-Level Supply Gas Calibration Direct to Analyzer Calibration Injection 1 Injection 2 Injection 3 Average Gas Analyzer Analyzer Analyzer Analyzer Concentration Concentration Concentration Concentration Concentration (%)(%)(%)(%)(%)(%)( ± 2 %) 10.95 10.9 11.0 11.0 10.95 0.00 0.0% Average Analyzer Concentration Injection 1 Error Injection 2 Error Injection 3 Error Difference Average Error Injection 3 Analyzer Concentration Average Analyzer Concentration Difference Average Error Cylinder Gas ID (Dilution): SG9164824BAL Cylinder Gas Concentration (Dilution), %: 24.6 *Not all AST Environics Units have 2-10L Mass Flow Controllers. For these units the 90% @ 7lpm and 80% @ 7lpm injections will not be conducted. Cylinder Gas ID (Mid-Level): EB0078899 Cylinder Gas Concentration (Mid-Level), %: 10.95 Target Mass Flow Contollers Target Dilution Target Flow Rate Target Concentration Actual Concentration Injection 1 Analyzer Concentration Injection 2 Analyzer Concentration Analyzer Model: Analyzer SN: Environics ID: Component/Balance Gas: O2/N2 Analyzer Make: Nodal Power – Davis Landfill, Layton, UT LFG Generator AST-2023-3003 8/10/23 Parameter Make Model S/N Span Method Criteria 40 of 78 Issuing Department Dilution System Make: Dilution System Model: Dilution System S/N: Calibration Equipment Make: Calibration Equipment Model: Calibration Equipment S/N: Flow Cell S/N: Flow Cell S/N: Calibration Gas: Barometric Pressure, mmHg: Ambient Temperature, °F: Mass Flow Controller ID Size, ccm: Make: Model: S/N: Set Flow True Flow Difference Set Flow True Flow Difference Set Flow True Flow Difference cc/min cc/min cc/min cc/min cc/min cc/min 5%500 508 1.6%500 504 0.8%50 50 0.6% 10%1,000 1,024 2.4%1,000 1,020 2.0%100 101 0.7% 20%2,000 2,057 2.8%2,000 2,048 2.4%200 203 1.6% 30%3,000 3,079 2.6%3,000 3,073 2.4%300 305 1.8% 40%4,000 4,104 2.6%4,000 4,094 2.4%400 407 1.6% 50%5,000 5,113 2.3%5,000 5,107 2.1%500 507 1.4% 60%6,000 6,129 2.1%6,000 6,120 2.0%600 609 1.5% 70%7,000 7,136 1.9%7,000 7,134 1.9%700 711 1.6% 80%8,000 8,145 1.8%8,000 8,152 1.9%800 813 1.7% 90%9,000 9,162 1.8%9,000 9,171 1.9%900 917 1.9% 100%10,000 10,193 1.9%10,000 10,189 1.9%1,000 1,022 2.2% Date: Document ID Revision Effective Date Page 620.009 22.0 12/16/22 1 of 1 Mass Flow Controller Calibration Tech Services 8027 Alicat Scientific M-10SLPD/5MM-D/5M, M-1SLPM-D/5M 127208/127206 127208 127206 Nitrogen Calibration Performed By:RJL 3/31/2023 0455242007 Note: The mass flow controller's calibration values are used by the dilution system's operating software to improve accuracy. These calibrations are not necessarily indicative of the systems overall performance. Performance is verified by conducting a Method 205 prior to each field use. 0455242008 0455238004 Environics EFC 202 10,000 # 2 # 3 Environics 1,000 Environics EFC 202 EFC 202 #1 10,000 Environics 25.76 66 4040 41 of 78 QA Data Location Source Project No. Parameter(s) Date Pitot ID Evidence of damage? Evidence of mis-alignment? Calibration or Repair required? 8/9/23 P-1062 no no no Date 08/10/23 Balance ID:5A2881026 Test Weight ID:SLC-1KG-3 Certified Weight (g):1000.0 Measured Weight (g):1000.0 Weight Difference (g):0.0 -- -- -- -- Date Barometric Pressure Evidence of damage? Reading Verified Calibration or Repair required? 8/9/23 Weather Station NA NA NA 8/9/23 MB-704 Field Balance Check Pass Weather Station Location Date Meter Box ID Positive Pressure Leak Check Nodal Power - Nodal Power - Davis Landfill, Layton LFG Generator AST-2023-3003 VFR 42 of 78 43 of 78 Document ID 620.004 Revision 23.0 Effective Date 1/25/23 Issuing Department Page 1 of 1 Console ID: Meter S/N: Critical Orifice S/N: (PbI) (PbF) (Pb) (Y)1330-31 1330-31 1330-25 1330-25 1330-19 1330-19 (K')0.8429 0.8429 0.6728 0.673 0.5186 0.519 (VP)13.0 13.0 15.0 15.0 16.0 16.0 Initial DGM Volume, ft3 (VmI)753.100 769.643 782.800 796.038 806.000 816.783 Final DGM Volume, ft3 (VmF)769.643 780.710 796.038 804.888 816.437 823.493 Total DGM Volume, ft3 (Vm)16.543 11.067 13.238 8.850 10.437 6.710 Ambient Temperature, °F (Ta)72 72 73 73 74 75 Initial DGM Temperature, °F (TmI)73 74 74 74 75 75 Final DGM Temperature, °F (TmF)74 75 74 75 75 75 Average DGM Temperature, °F ( Tm)74 75 74 75 75 75 Elapsed Time (Θ)15.00 10.00 15.00 10.00 15.00 10.00 Meter Orifice Pressure, in. WC (ΔH)3.40 3.40 2.10 2.10 1.30 1.30 Standard Meter volume, ft3 (Vmstd)14.0740 9.3976 11.2099 7.4871 8.8012 5.6584 Standard Critical Orifice Volume, ft3 (Vcr)13.9631 9.3087 11.1348 7.4232 8.5748 5.7112 Meter Correction Factor (Y)0.992 0.991 0.993 0.991 0.974 1.009 Tolerance --0.000 0.001 0.001 0.000 0.018 0.017 Orifice Calibration Value (ΔH @)1.878 1.874 1.815 1.814 1.887 1.891 Tolerance --0.018 0.014 0.044 0.046 0.027 0.031 Orifice Cal Check -- Meter Correction Factor (Y) Orifice Calibration Value (ΔH @) Accuracy Difference oF oR oF oR %oF 0 460 0 460 0.0 0 68 528 66 526 0.4 2 100 560 98 558 0.4 2 223 683 223 683 0.0 0 248 708 248 708 0.0 0 273 733 274 734 -0.1 1 300 760 300 760 0.0 0 400 860 399 859 0.1 1 500 960 498 958 0.2 2 600 1,060 600 1,060 0.0 0 700 1,160 702 1,162 -0.2 2 800 1,260 801 1,261 -0.1 1 900 1,360 901 1,361 -0.1 1 1,000 1,460 1,002 1,462 -0.1 2 1,100 1,560 1,102 1,562 -0.1 2 1,200 1,660 1,202 1,662 -0.1 2 Calibration Date: Yes 0.11 0.11 0.06 DGM Calibration-Orifices Tech Services 25.45 25.48 25.47 K' Factor, ft3·R1/2 / in. WC·min CL23A Vacuum Pressure, in. Hg Initial Barometric Pressure, in. Hg Final Barometric Pressure, in. Hg Average Barometric Pressure, in. Hg Critifcal Orifice ID Calibration Detail MB-704 18392989 1330 Positive Pressure Leak Check Equipment Detail - Dry Gas Meter 0.992 1.860 Personnel Reference Calibrator Make: Reference Calibrator Model: Reference Calibrator S/N: Calibration Detail Equipment Detail - Thermocouple Sensor Reference Temp.Display Temp. OMEGA T-197207 Stacey CunninghamReviewed By: RYAN LYONSCalibration By: 6/20/2023 44 of 78 Appendix D 45 of 78 Nodal Power - Davis Landfill Run 1 Process Data compdnc_ndx Total Operating Hours Timestamp O2EU Temp Flow Site Pwr KW/hr Pressure G1KW Methane % 220129 3582.44 8/10/2023 15:03:47 0 103.32 515 3479511 2.9204 1407 47.1854 220128 3582.42 8/10/2023 15:02:47 0 103.35 518 3479487 2.8500 1407 47.2426 220127 3582.40 8/10/2023 15:01:47 0 103.37 513 3479463 2.9412 1403 47.2044 220126 3582.39 8/10/2023 15:00:47 0 103.37 515 3479439 2.9410 1403 47.3322 220125 3582.37 8/10/2023 14:59:47 0 103.45 512 3479416 2.9601 1404 47.3074 220124 3582.35 8/10/2023 14:58:47 0 103.51 515 3479392 2.9429 1401 47.1358 220123 3582.34 8/10/2023 14:57:47 0 103.59 511 3479368 2.9921 1400 47.2864 220122 3582.32 8/10/2023 14:56:47 0 103.61 513 3479344 2.9753 1404 47.1434 220121 3582.30 8/10/2023 14:55:47 0 103.56 515 3479321 2.9484 1405 47.2388 220120 3582.29 8/10/2023 14:54:47 0 103.54 515 3479297 2.9414 1405 47.1434 220119 3582.27 8/10/2023 14:53:47 0 103.57 514 3479279 2.9431 1401 47.3570 220118 3582.25 8/10/2023 14:52:47 0 103.57 511 3479255 2.9233 1405 47.3989 220117 3582.24 8/10/2023 14:51:47 0 103.52 516 3479231 2.9620 1408 47.2597 220116 3582.22 8/10/2023 14:50:47 0 103.48 515 3479208 2.9301 1410 47.2578 220115 3582.20 8/10/2023 14:49:47 0 103.33 519 3479184 2.8897 1403 47.3207 220114 3582.19 8/10/2023 14:48:47 0 103.34 514 3479160 2.9126 1402 47.3017 220113 3582.17 8/10/2023 14:47:47 0 103.32 511 3479136 2.9933 1401 47.4294 220112 3582.16 8/10/2023 14:46:47 0 103.28 513 3479113 2.9416 1407 47.2960 220111 3582.14 8/10/2023 14:45:47 0 103.14 516 3479089 2.9408 1409 47.3360 220110 3582.12 8/10/2023 14:44:47 0 102.94 515 3479065 2.9408 1405 47.2769 220109 3582.11 8/10/2023 14:43:47 0 102.85 516 3479041 2.8880 1405 47.4466 220108 3582.09 8/10/2023 14:42:47 0 102.88 514 3479017 2.9202 1412 47.3093 220107 3582.07 8/10/2023 14:41:47 0 102.95 513 3478993 2.9559 1411 47.4104 220106 3582.05 8/10/2023 14:40:47 0 102.97 515 3478970 2.8788 1405 47.4466 220105 3582.04 8/10/2023 14:39:47 0 103.09 512 3478946 2.9583 1402 47.5114 220104 3582.02 8/10/2023 14:38:47 0 103.17 514 3478928 2.9416 1408 47.4924 220103 3582.00 8/10/2023 14:37:47 0 103.17 516 3478904 2.9402 1408 47.4771 220102 3581.99 8/10/2023 14:36:47 0 103.14 514 3478880 2.9439 1408 47.5191 220101 3581.97 8/10/2023 14:35:47 0 103.14 512 3478857 2.9679 1411 47.5210 220100 3581.95 8/10/2023 14:34:47 0 103.02 514 3478833 2.9507 1414 47.5725 220099 3581.94 8/10/2023 14:33:47 0 102.84 519 3478809 2.9431 1413 47.4504 220098 3581.92 8/10/2023 14:32:47 0 102.73 518 3478785 2.8939 1412 47.4561 220097 3581.90 8/10/2023 14:31:47 0 102.73 514 3478761 2.9336 1406 47.6220 220096 3581.89 8/10/2023 14:30:47 0 102.69 519 3478737 2.8744 1411 47.6754 220095 3581.87 8/10/2023 14:29:47 0 102.69 515 3478713 2.9347 1413 47.6087 220094 3581.85 8/10/2023 14:28:47 0 102.70 516 3478689 2.9305 1418 47.5019 220093 3581.84 8/10/2023 14:27:47 0 102.65 517 3478665 2.8634 1417 47.5953 220092 3581.82 8/10/2023 14:26:47 0 102.62 516 3478642 2.9316 1409 47.6564 220091 3581.80 8/10/2023 14:25:47 0 102.73 518 3478618 2.8929 1409 47.5648 220090 3581.79 8/10/2023 14:24:47 0 102.83 513 3478594 2.9812 1408 47.5133 220089 3581.77 8/10/2023 14:23:47 0 102.83 517 3478570 2.9490 1409 47.5648 220088 3581.75 8/10/2023 14:22:47 0 102.80 518 3478552 2.8853 1408 47.5534 220087 3581.74 8/10/2023 14:21:47 0 102.82 516 3478528 2.8990 1404 47.7555 220086 3581.72 8/10/2023 14:20:47 0 102.79 516 3478504 2.9570 1411 47.6297 220085 3581.70 8/10/2023 14:19:47 0 102.63 519 3478481 2.9126 1414 47.5553 220084 3581.69 8/10/2023 14:18:47 0 102.55 515 3478457 2.9614 1412 47.6621 220083 3581.67 8/10/2023 14:17:47 0 102.48 520 3478433 2.8805 1414 47.4447 220082 3581.65 8/10/2023 14:16:47 0 102.42 519 3478409 2.9084 1420 47.6163 220081 3581.64 8/10/2023 14:15:47 0 102.34 520 3478385 2.8927 1417 47.7079 220080 3581.62 8/10/2023 14:14:47 0 102.27 516 3478361 2.8903 1414 47.5801 220079 3581.60 8/10/2023 14:13:47 0 102.22 513 3478337 2.9730 1408 47.7460 220078 3581.59 8/10/2023 14:12:47 0 102.23 518 3478313 2.9366 1406 47.5362 220077 3581.57 8/10/2023 14:11:47 0 102.30 512 3478289 2.9322 1401 47.7670 220076 3581.55 8/10/2023 14:10:47 0 102.38 514 3478265 2.9898 1396 47.6163 220075 3581.54 8/10/2023 14:09:47 0 102.45 511 3478247 2.9889 1402 47.6259 220074 3581.52 8/10/2023 14:08:47 0 102.46 516 3478223 2.9763 1409 47.6507 220073 3581.50 8/10/2023 14:07:47 0 102.39 516 3478199 2.9444 1410 47.6507 220072 3581.49 8/10/2023 14:06:47 0 102.39 511 3478175 3.0274 1406 47.6983 220071 3581.47 8/10/2023 14:05:47 0 102.38 515 3478152 2.9444 1406 47.8051 1 of 1 46 of 78 Nodal Power - Davis Landfill Run 2 Process Data compdnc_ndx Total Operating Hours Timestamp O2EU Temp Flow Site Pwr KW/hr Pressure G1KW Methane % 220211 3583.80 8/10/2023 16:25:47 0 103.40 508 3481424 3.0255 1389 47.7117 220210 3583.79 8/10/2023 16:24:47 0 103.48 510 3481401 2.9814 1389 47.6316 220209 3583.77 8/10/2023 16:23:47 0 103.53 512 3481377 2.9427 1388 47.8166 220208 3583.75 8/10/2023 16:22:47 0 103.55 511 3481354 3.0104 1393 47.8394 220207 3583.74 8/10/2023 16:21:47 0 103.51 512 3481331 2.9723 1398 47.8490 220206 3583.72 8/10/2023 16:20:47 0 103.49 511 3481307 3.0049 1399 47.8013 220205 3583.70 8/10/2023 16:19:47 0 103.48 513 3481284 2.9664 1399 47.6907 220204 3583.69 8/10/2023 16:18:47 0 103.57 512 3481260 2.9543 1399 47.8108 220203 3583.67 8/10/2023 16:17:47 0 103.68 509 3481237 3.0057 1399 47.8223 220202 3583.65 8/10/2023 16:16:47 0 103.72 514 3481214 2.9730 1406 47.5992 220201 3583.64 8/10/2023 16:15:47 0 103.66 514 3481190 2.9805 1410 47.7479 220200 3583.62 8/10/2023 16:14:47 0 103.55 517 3481167 2.9465 1406 47.7593 220199 3583.60 8/10/2023 16:13:47 0 103.42 517 3481143 2.8994 1404 47.8356 220198 3583.59 8/10/2023 16:12:47 0 103.44 510 3481120 3.0198 1396 47.8108 220197 3583.57 8/10/2023 16:11:47 0 103.48 515 3481096 2.9572 1394 47.7689 220196 3583.56 8/10/2023 16:10:47 0 103.43 512 3481073 3.0020 1398 47.7326 220195 3583.54 8/10/2023 16:09:47 0 103.44 514 3481050 2.9660 1395 47.7059 220194 3583.52 8/10/2023 16:08:47 0 103.41 511 3481032 3.0131 1398 47.6812 220193 3583.50 8/10/2023 16:07:47 0 103.41 513 3481009 2.9624 1392 47.7937 220192 3583.49 8/10/2023 16:06:47 0 103.34 508 3480985 3.0009 1392 47.7231 220191 3583.47 8/10/2023 16:05:47 0 103.25 510 3480962 3.0324 1393 47.8108 220190 3583.45 8/10/2023 16:04:47 0 103.20 513 3480939 2.9810 1404 47.7307 220189 3583.44 8/10/2023 16:03:47 0 103.24 509 3480915 2.9879 1399 47.6983 220188 3583.42 8/10/2023 16:02:47 0 103.35 513 3480892 2.9164 1402 47.7994 220187 3583.41 8/10/2023 16:01:47 0 103.44 513 3480868 2.8920 1407 47.7212 220186 3583.39 8/10/2023 16:00:47 0 103.45 514 3480844 2.9383 1412 47.6487 220185 3583.37 8/10/2023 15:59:47 0 103.39 519 3480820 2.9168 1413 47.8528 220184 3583.35 8/10/2023 15:58:47 0 103.42 514 3480796 2.9368 1406 47.6812 220183 3583.34 8/10/2023 15:57:47 0 103.51 511 3480772 2.9963 1399 47.7193 220182 3583.32 8/10/2023 15:56:47 0 103.51 512 3480748 2.9276 1408 47.7174 220181 3583.30 8/10/2023 15:55:47 0 103.56 513 3480724 2.9372 1401 47.7193 220180 3583.29 8/10/2023 15:54:47 0 103.68 509 3480700 2.9820 1399 47.7574 220179 3583.27 8/10/2023 15:53:47 0 103.77 512 3480677 2.9776 1406 47.7117 220178 3583.25 8/10/2023 15:52:47 0 103.82 519 3480653 2.8334 1410 47.6354 220177 3583.24 8/10/2023 15:51:47 0 103.89 515 3480635 2.9038 1405 47.7593 220176 3583.22 8/10/2023 15:50:47 0 103.94 512 3480611 2.9763 1399 47.7422 220175 3583.20 8/10/2023 15:49:47 0 103.85 513 3480588 2.9686 1399 47.6507 220174 3583.19 8/10/2023 15:48:47 0 103.81 510 3480564 3.0076 1395 47.7136 220173 3583.17 8/10/2023 15:47:47 0 103.72 511 3480540 3.0032 1394 47.6259 220172 3583.15 8/10/2023 15:46:47 0 103.59 512 3480517 2.9810 1394 47.5782 220171 3583.14 8/10/2023 15:45:47 0 103.55 507 3480493 2.9833 1391 47.6487 220170 3583.12 8/10/2023 15:44:47 0 103.62 508 3480470 3.0129 1391 47.6163 220169 3583.10 8/10/2023 15:43:47 0 103.64 511 3480446 2.9892 1397 47.5553 220168 3583.09 8/10/2023 15:42:47 0 103.77 511 3480423 2.9908 1398 47.5782 220167 3583.07 8/10/2023 15:41:47 0 103.89 511 3480399 2.9513 1402 47.7021 220166 3583.05 8/10/2023 15:40:47 0 103.93 514 3480375 2.9522 1407 47.5591 220165 3583.04 8/10/2023 15:39:47 0 103.93 517 3480351 2.9345 1406 47.6926 220164 3583.02 8/10/2023 15:38:47 0 103.90 514 3480328 2.9528 1397 47.5629 220163 3583.00 8/10/2023 15:37:47 0 103.95 511 3480304 2.9812 1396 47.5934 220162 3582.99 8/10/2023 15:36:47 0 103.99 507 3480286 2.9736 1394 47.6754 220161 3582.97 8/10/2023 15:35:47 0 104.01 513 3480263 2.9538 1394 47.5782 220160 3582.95 8/10/2023 15:34:47 0 104.01 512 3480239 2.9702 1399 47.5610 220159 3582.94 8/10/2023 15:33:47 0 104.00 511 3480216 2.9732 1398 47.6621 220158 3582.92 8/10/2023 15:32:47 0 104.05 514 3480192 2.9322 1400 47.5324 220157 3582.90 8/10/2023 15:31:47 0 104.04 514 3480168 2.9553 1402 47.5553 220156 3582.89 8/10/2023 15:30:47 0 103.91 519 3480144 2.8845 1408 47.4390 220155 3582.87 8/10/2023 15:29:47 0 103.81 514 3480121 2.9210 1410 47.6068 220154 3582.85 8/10/2023 15:28:47 0 103.66 516 3480097 2.9383 1408 47.5133 220153 3582.84 8/10/2023 15:27:47 0 103.58 513 3480073 2.9767 1402 47.5553 220152 3582.82 8/10/2023 15:26:47 0 103.54 513 3480049 2.9688 1402 47.5324 1 of 1 47 of 78 Nodal Power - Davis Landfill Run 3 Process Data compdnc_ndx Total Operating Hours Timestamp O2EU Temp Flow Site Pwr KW/hr Pressure G1KW Methane % 220296 3585.22 8/10/2023 17:50:48 0 101.90 511 3483405 3.0745 1402 47.8490 220295 3585.20 8/10/2023 17:49:48 0 101.92 509 3483382 3.0818 1393 47.9024 220294 3585.19 8/10/2023 17:48:48 0 101.90 505 3483358 3.1334 1390 47.8966 220293 3585.17 8/10/2023 17:47:48 0 101.93 512 3483334 3.0604 1389 47.7708 220292 3585.15 8/10/2023 17:46:48 0 101.95 510 3483310 3.0509 1399 47.7689 220291 3585.14 8/10/2023 17:45:48 0 101.92 512 3483287 3.0726 1400 47.7212 220290 3585.12 8/10/2023 17:44:48 0 101.98 507 3483263 3.1317 1394 47.7174 220289 3585.10 8/10/2023 17:43:48 0 102.01 512 3483239 3.0764 1391 47.7574 220288 3585.09 8/10/2023 17:42:48 0 102.14 509 3483216 3.0825 1397 47.6125 220287 3585.07 8/10/2023 17:41:48 0 102.23 513 3483192 3.0779 1406 47.6182 220286 3585.06 8/10/2023 17:40:48 0 102.12 512 3483168 3.0688 1404 47.6468 220285 3585.04 8/10/2023 17:39:48 0 102.01 512 3483145 3.0659 1395 47.4733 220284 3585.02 8/10/2023 17:38:48 0 102.03 508 3483121 3.1125 1396 47.4504 220283 3585.00 8/10/2023 17:37:48 0 102.14 511 3483098 3.0716 1395 47.3246 220282 3584.99 8/10/2023 17:36:48 0 102.26 511 3483080 3.0966 1393 47.3760 220281 3584.97 8/10/2023 17:35:48 0 102.36 513 3483056 3.0367 1397 47.3780 220280 3584.95 8/10/2023 17:34:48 0 102.37 511 3483033 3.0606 1402 47.4523 220279 3584.94 8/10/2023 17:33:48 0 102.34 517 3483009 3.0314 1408 47.3684 220278 3584.92 8/10/2023 17:32:48 0 102.48 510 3482986 3.0858 1406 47.3284 220277 3584.90 8/10/2023 17:31:48 0 102.61 511 3482962 3.0520 1402 47.3932 220276 3584.89 8/10/2023 17:30:48 0 102.60 514 3482939 3.0112 1398 47.2140 220275 3584.87 8/10/2023 17:29:48 0 102.49 511 3482915 3.0968 1394 47.3722 220274 3584.85 8/10/2023 17:28:48 0 102.47 507 3482892 3.0442 1395 47.4867 220273 3584.84 8/10/2023 17:27:48 0 102.41 510 3482868 3.0640 1398 47.3436 220272 3584.82 8/10/2023 17:26:48 0 102.49 508 3482845 3.0621 1397 47.3951 220271 3584.80 8/10/2023 17:25:48 0 102.50 514 3482821 3.0030 1398 47.5324 220270 3584.79 8/10/2023 17:24:48 0 102.50 509 3482798 3.0762 1397 47.6926 220269 3584.77 8/10/2023 17:23:48 0 102.57 513 3482775 3.0175 1393 47.4180 220268 3584.75 8/10/2023 17:22:48 0 102.63 512 3482751 3.0785 1399 47.5381 220267 3584.74 8/10/2023 17:21:48 0 102.66 516 3482728 3.0163 1399 47.7174 220266 3584.72 8/10/2023 17:20:48 0 102.69 510 3482704 3.0501 1397 47.7193 220265 3584.70 8/10/2023 17:19:48 0 102.73 511 3482681 3.0270 1393 47.7174 220264 3584.69 8/10/2023 17:18:48 0 102.74 510 3482658 3.0617 1401 47.7002 220263 3584.67 8/10/2023 17:17:48 0 102.83 510 3482634 3.0533 1394 47.7288 220262 3584.65 8/10/2023 17:16:48 0 102.90 511 3482611 2.9984 1397 47.7727 220261 3584.64 8/10/2023 17:15:48 0 102.90 516 3482587 2.9984 1405 47.7136 220260 3584.62 8/10/2023 17:14:48 0 102.99 507 3482564 3.1037 1402 47.7803 220259 3584.60 8/10/2023 17:13:48 0 103.07 512 3482541 2.9946 1398 47.7670 220258 3584.59 8/10/2023 17:12:48 0 103.16 508 3482517 3.0789 1399 47.6125 220257 3584.57 8/10/2023 17:11:48 0 103.28 509 3482494 3.0089 1396 47.9062 220256 3584.55 8/10/2023 17:10:48 0 103.33 512 3482470 2.9713 1399 47.6201 220255 3584.54 8/10/2023 17:09:48 0 103.31 510 3482447 3.0831 1396 47.8223 220254 3584.52 8/10/2023 17:08:48 0 103.27 509 3482424 3.0942 1392 47.7098 220253 3584.50 8/10/2023 17:07:48 0 103.23 514 3482400 2.9955 1395 47.6545 220252 3584.49 8/10/2023 17:06:48 0 103.28 509 3482377 3.0800 1395 47.8452 220251 3584.47 8/10/2023 17:05:48 0 103.35 512 3482354 3.0446 1399 47.7174 220250 3584.45 8/10/2023 17:04:48 0 103.42 513 3482330 3.0182 1397 47.7021 220249 3584.44 8/10/2023 17:03:48 0 103.52 508 3482307 3.0566 1397 47.7555 220248 3584.42 8/10/2023 17:02:48 0 103.58 510 3482284 3.0537 1400 47.6621 220247 3584.40 8/10/2023 17:01:48 0 103.62 509 3482260 3.0591 1401 47.8375 220246 3584.39 8/10/2023 17:00:48 0 103.60 512 3482237 2.9889 1401 47.7727 220245 3584.37 8/10/2023 16:59:48 0 103.54 513 3482213 2.9664 1401 47.7670 220244 3584.35 8/10/2023 16:58:48 0 103.55 510 3482196 3.0270 1400 47.6240 220243 3584.34 8/10/2023 16:57:48 0 103.55 516 3482172 3.0081 1406 47.7288 220242 3584.32 8/10/2023 16:56:48 0 103.53 514 3482149 2.9917 1413 47.6144 220241 3584.30 8/10/2023 16:55:48 0 103.56 514 3482125 2.9871 1407 47.5953 220240 3584.29 8/10/2023 16:54:48 0 103.58 511 3482101 2.9675 1397 47.6087 220239 3584.27 8/10/2023 16:53:48 0 103.60 509 3482077 3.0348 1396 47.5934 220238 3584.26 8/10/2023 16:52:48 0 103.56 510 3482053 3.0018 1395 47.7460 220237 3584.24 8/10/2023 16:51:48 0 103.58 513 3482029 3.0030 1394 47.6201 220236 3584.22 8/10/2023 16:50:48 0 103.60 512 3482006 3.0261 1398 47.6468 220235 3584.20 8/10/2023 16:49:48 0 103.61 517 3481982 2.9440 1399 47.7212 1 of 1 48 of 78 Appendix E 49 of 78 Site Specific Test Plan Nodal Power 250 E. 200 S., Suite 310 Salt Lake City, UT 84111 Davis Landfill Layton, Utah Source to be Tested: New Landfill Gas (LFG) Generator Engine Proposed Test Date: August 9, 2023 Project No. AST-2023-2904 Prepared By Alliance Technical Group, LLC 3683 W 2270 S, Suite E West Valley City, UT 84120 50 of 78 Site Specific Test Plan Test Program Summary AST-2023-2904 Nodal Power – Layton, UT Page i Regulatory Information Permit No. DAQE-AN101290026-22 Source Information Source Name Target Parameters New Landfill Gas (LFG) Generator Engine NOx, CO, VOC Contact Information Test Location Test Company Nodal Power Davis Landfill 1997 East 3500 North Layton, Utah Bryan Black bryan@nodalpower.com (801) 301-8151 Alliance Technical Group, LLC 3683 W 2270 S, Suite E West Valley City, UT 84120 Project Manager Charles Horton charles.horton@alliancetg.com (352) 663-7568 Field Team Leader Tobias Hubbard tobias.hubbard@alliancetg.com (605) 645-8562 (subject to change) QA/QC Manager Kathleen Shonk katie.shonk@alliancetg.com (812) 452-4785 Test Plan/Report Coordinator Sarah Perry sarah.perry@alliancetg.com 51 of 78 Site Specific Test Plan Table of Contents AST-2023-2904 Nodal Power – Layton, UT Page ii TABLE OF CONTENTS 1.0 Introduction .................................................................................................................................................. 1-1 1.1 Facility Description .................................................................................................................................. 1-1 1.2 Project Team ............................................................................................................................................ 1-1 1.3 Safety Requirements ................................................................................................................................ 1-1 2.0 Summary of Test Program ............................................................................................................................ 2-1 2.1 General Description ................................................................................................................................. 2-1 2.2 Process/Control System Parameters to be Monitored and Recorded ....................................................... 2-1 2.3 Proposed Test Schedule ........................................................................................................................... 2-1 2.4 Emission Limits ....................................................................................................................................... 2-2 2.5 Test Report ............................................................................................................................................... 2-2 3.0 Testing Methodology .................................................................................................................................... 3-1 3.1 U.S. EPA Reference Test Methods 1 and 2 – Sampling/Traverse Points and Volumetric Flow Rate ..... 3-1 3.2 U.S. EPA Reference Test Method 3A – Oxygen/Carbon Dioxide ........................................................... 3-1 3.3 U.S. EPA Reference Test Method 4 – Moisture Content ......................................................................... 3-2 3.4 U.S. EPA Reference Test Method 7E – Nitrogen Oxides ........................................................................ 3-2 3.5 U.S. EPA Reference Test Method 10 – Carbon Monoxide ...................................................................... 3-2 3.6 U.S. EPA Reference Test Method 25A – Volatile Organic Compounds ................................................. 3-2 3.7 U.S. EPA Alternative Test Method ALT-096 – Volatile Organic Compounds ....................................... 3-2 3.8 U.S. EPA Reference Test Method 205 – Gas Dilution System Certification ........................................... 3-2 3.9 Quality Assurance/Quality Control – U.S. EPA Reference Test Methods 3A, 7E and 10 ....................... 3-3 3.10 Quality Assurance/Quality Control – U.S. EPA Reference Test Method 25A ........................................ 3-4 3.11 Quality Assurance/Quality Control – U.S. EPA Reference Method ALT-096 ........................................ 3-4 4.0 Quality Assurance Program .......................................................................................................................... 4-1 4.1 Equipment ................................................................................................................................................ 4-1 4.2 Field Sampling ......................................................................................................................................... 4-2 LIST OF TABLES Table 1-1: Project Team ........................................................................................................................................... 1-1 Table 2-1: Program Outline and Tentative Test Schedule ........................................................................................ 2-1 Table 2-2: Emission Limits ...................................................................................................................................... 2-2 Table 3-1: Source Testing Methodology .................................................................................................................. 3-1 LIST OF APPENDICES Appendix A Method 1 Data Appendix B Example Field Data Sheets 52 of 78 Site Specific Test Plan Introduction AST-2023-2904 Nodal Power – Layton, UT Page 1-1 1.0 Introduction Alliance Technical Group, LLC (Alliance) was retained by Nodal Power to conduct initial compliance testing at the Davis Landfill in Layton, Utah. Portions of the facility are subject to provisions of the Utah Department of Environmental Quality – Division of Air Quality (UDAQ) Permit No. DAQE-AN101290026-22. Testing will be conducted to determine the emission rates of nitrogen oxides (NOx), carbon monoxide (CO) and volatile organic compounds (VOC) at the exhaust of the new landfill gas (LFG) generator engine. This site-specific test plan (SSTP) has been prepared to address the notification and testing requirements of the UDEQ permit and the NESHAP. 1.1 Facility Description Wasatch Integrated Waste Management District operates Davis Landfill, a municipal solid waste (MSW) landfill located in Davis County, Utah. The facility accepts municipal and commercial waste. The new LFG generator engine is rated at 2,233 horsepower (HP). 1.2 Project Team Personnel planned to be involved in this project are identified in the following table. Table 1-1: Project Team Nodal Power Personnel Bryan Black Regulatory Agency UDAQ Alliance Personnel Tobias Hubbard other field personnel assigned at time of testing event 1.3 Safety Requirements Testing personnel will undergo site-specific safety training for all applicable areas upon arrival at the site. Alliance personnel will have current OSHA or MSHA safety training and be equipped with hard hats, safety glasses with side shields, steel-toed safety shoes, hearing protection, fire resistant clothing, and fall protection (including shock corded lanyards and full-body harnesses). Alliance personnel will conduct themselves in a manner consistent with Client and Alliance’s safety policies. A Job Safety Analysis (JSA) will be completed daily by the Alliance Field Team Leader. 53 of 78 Site Specific Test Plan Summary of Test Programs AST-2023-2904 Nodal Power – Layton, UT Page 2-1 2.0 Summary of Test Program To satisfy the requirements of the UDAQ permit, the facility will conduct a performance test program to determine the compliance status of the new LFG generator engine. 2.1 General Description All testing will be performed in accordance with specifications stipulated in U.S. EPA Reference Test Methods 1, 2, 3A, 4, 7E, 10 and 25A or ALT-096. Table 2-1 presents an outline and tentative schedule for the emissions testing program. The following is a summary of the test objectives.  Testing will be performed to demonstrate compliance with the UDAQ permit.  Emissions testing will be conducted on the exhaust of the new LFG generator engine.  Performance testing will be conducted at the maximum normal operation load for the source.  Each of the three (3) test runs will be approximately 60 minutes in duration. 2.2 Process/Control System Parameters to be Monitored and Recorded Plant personnel will collect operational and parametric data at least once every 15 minutes during the testing. The following list identifies the measurements, observations and records that will be collected during the testing program:  Engine Load  Catalyst Inlet Temperature  Catalyst Pressure Differential  Fuel Consumption 2.3 Proposed Test Schedule Table 2-1 presents an outline and tentative schedule for the emissions testing program. Table 2-1: Program Outline and Tentative Test Schedule Testing Location Parameter US EPA Method No. of Runs Run Duration Est. Onsite Time DAY 1 – August 9, 2023 Equipment Setup & Pretest QA/QC Checks 8 hr New LFG Generator Engine VFR 1-2 3 60 min O2/CO2 3/3A BWS 4 NOx 7E CO 10 VOC 25A or ALT-096 DAY 2 – August 10, 2023 Contingency Day (if needed) 54 of 78 Site Specific Test Plan Summary of Test Programs AST-2023-2904 Nodal Power – Layton, UT Page 2-2 2.4 Emission Limits Emission limits for each pollutant are below. Table 2-2: Emission Limits Source Pollutant Citation New LFG Generator Engine NOx – 2.46 lb/hr; 0.5 g/HP-hr Permit CO – 12.31 lb/hr; 2.5 g/HP-hr VOC – 4.33 lb/hr; 0.88 g/HP-hr 2.5 Test Report The final test report must be submitted within 60 days of the completion of the performance test and will include the following information.  Introduction – Brief discussion of project scope of work and activities.  Results and Discussion – A summary of test results and process/control system operational data with comparison to regulatory requirements or vendor guarantees along with a description of process conditions and/or testing deviations that may have affected the testing results.  Methodology – A description of the sampling and analytical methodologies.  Sample Calculations – Example calculations for each target parameter.  Field Data – Copies of actual handwritten or electronic field data sheets.  Quality Control Data – Copies of all instrument calibration data and/or calibration gas certificates.  Process Operating/Control System Data – Process operating and control system data (as provided by Nodal Power) to support the test results. 55 of 78 Site Specific Test Plan Testing Methodology AST-2023-2904 Nodal Power – Layton, UT Page 3-1 3.0 Testing Methodology This section provides a description of the sampling and analytical procedures for each test method that will be employed during the test program. All equipment, procedures and quality assurance measures necessary for the completion of the test program meet or exceed the specifications of each relevant test method. The emission testing program will be conducted in accordance with the test methods listed in Table 3-1. Table 3-1: Source Testing Methodology Parameter U.S. EPA Reference Test Methods Notes/Remarks Volumetric Flow Rate 1 & 2 Volumetric Flow Rate Oxygen / Carbon Dioxide 3A Oxygen / Carbon Dioxide Moisture Content 4 Moisture Content Nitrogen Oxides 7E Nitrogen Oxides Carbon Monoxide 10 Carbon Monoxide Volatile Organic Compounds 25A Volatile Organic Compounds Volatile Organic Compounds ALT-096 Volatile Organic Compounds Gas Dilution System Certification 205 --- All stack diameters, depths, widths, upstream and downstream disturbance distances and nipple lengths will be measured on site with a verification measurement provided by the Field Team Leader. 3.1 U.S. EPA Reference Test Methods 1 and 2 – Sampling/Traverse Points and Volumetric Flow Rate The sampling location and number of traverse (sampling) points will be selected in accordance with U.S. EPA Reference Test Method 1. To determine the minimum number of traverse points, the upstream and downstream distances will be equated into equivalent diameters and compared to Figure 1-2 in U.S. EPA Reference Test Method 1. Full velocity traverses will be conducted in accordance with U.S. EPA Reference Test Method 2 to determine the average stack gas velocity pressure, static pressure and temperature. The velocity and static pressure measurement system will consist of a pitot tube and inclined manometer. The stack gas temperature will be measured with a K- type thermocouple and pyrometer. Stack gas velocity pressure and temperature readings will be recorded during each test run. The data collected will be utilized to calculate the volumetric flow rate in accordance with U.S. EPA Reference Test Method 2. 3.2 U.S. EPA Reference Test Method 3A – Oxygen/Carbon Dioxide The oxygen (O2) and carbon dioxide (CO2) testing will be conducted in accordance with U.S. EPA Reference Test Method 3A. Data will be collected online and reported in one-minute averages. The sampling system will consist of a stainless steel probe, Teflon sample line(s), gas conditioning system and the identified gas analyzer. The gas conditioning system will be a non-contact condenser used to remove moisture from the stack gas. If an unheated Teflon sample line is used, then a portable non-contact condenser will be placed in the system directly after the 56 of 78 Site Specific Test Plan Testing Methodology AST-2023-2904 Nodal Power – Layton, UT Page 3-2 probe. Otherwise, a heated Teflon sample line will be used. The quality control measures are described in Section 3.9. 3.3 U.S. EPA Reference Test Method 4 – Moisture Content The stack gas moisture content will be determined in accordance with U.S. EPA Reference Test Method 4. The gas conditioning train will consist of a series of chilled impingers. Prior to testing, each impinger will be filled with a known quantity of water or silica gel. Each impinger will be analyzed gravimetrically before and after each test run on the same analytical balance to determine the amount of moisture condensed. 3.4 U.S. EPA Reference Test Method 7E – Nitrogen Oxides The nitrogen oxides (NOx) testing will be conducted in accordance with U.S. EPA Reference Test Method 7E. Data will be collected online and reported in one-minute averages. The sampling system will consist of a stainless steel probe, Teflon sample line(s), gas conditioning system and the identified gas analyzer. The gas conditioning system will be a non-contact condenser used to remove moisture from the stack gas. If an unheated Teflon sample line is used, then a portable non-contact condenser will be placed in the system directly after the probe. Otherwise, a heated Teflon sample line will be used. The quality control measures are described in Section 3.9. 3.5 U.S. EPA Reference Test Method 10 – Carbon Monoxide The carbon monoxide (CO) testing will be conducted in accordance with U.S. EPA Reference Test Method 10. Data will be collected online and reported in one-minute averages. The sampling system will consist of a stainless steel probe, Teflon sample line(s), gas conditioning system, and the identified gas analyzer. The gas conditioning system will be a non-contact condenser used to remove moisture from the gas. If an unheated Teflon sample line is used, then a portable non-contact condenser will be placed in the system directly after the probe. Otherwise, a heated Teflon sample line will be used. The quality control measures are described in Section 3.9. 3.6 U.S. EPA Reference Test Method 25A – Volatile Organic Compounds The volatile organic compounds (VOC) testing will be conducted in accordance with U.S. EPA Reference Test Method 25A. Data will be collected online and reported in one-minute averages. The sampling system will consist of a stainless steel probe, heated Teflon sample line(s) and the identified gas analyzer. The quality control measures are described in Section 3.10. 3.7 U.S. EPA Alternative Test Method ALT-096 – Volatile Organic Compounds The volatile organic compounds (VOC) testing will be conducted in accordance with U.S. EPA Alternate Test Method ALT-096. EPA Method 25A is incorporated by reference. The sampling system will consist of a stainless steel probe, heated Teflon sample line(s) and a Thermo 55i analyzer. VOC data will be collected in one (1) minute averages. The quality control measures are described in Section 3.11. 3.8 U.S. EPA Reference Test Method 205 – Gas Dilution System Certification A calibration gas dilution system field check will be conducted in accordance with U.S. EPA Reference Method 205. An initial three (3) point calibration will be conducted, using individual Protocol 1 gases, on the analyzer used to complete the dilution system field check. Multiple dilution rates and total gas flow rates will be utilized to force the dilution system to perform two dilutions on each mass flow controller. The diluted calibration gases will be sent directly to the analyzer, and the analyzer response recorded in an electronic field data sheet. The analyzer response must agree within 2% of the actual diluted gas concentration. A second Protocol 1 calibration gas, with a cylinder concentration within 10% of one of the gas divider settings described above, will be introduced directly to the 57 of 78 Site Specific Test Plan Testing Methodology AST-2023-2904 Nodal Power – Layton, UT Page 3-3 analyzer, and the analyzer response recorded in an electronic field data sheet. The cylinder concentration and the analyzer response must agree within 2%. These steps will be repeated three (3) times. 3.9 Quality Assurance/Quality Control – U.S. EPA Reference Test Methods 3A, 7E and 10 Cylinder calibration gases will meet EPA Protocol 1 (+/- 2%) standards. Copies of all calibration gas certificates will be included in the Quality Assurance/Quality Control Appendix of the report. Low Level gas will be introduced directly to the analyzer. After adjusting the analyzer to the Low Level gas concentration and once the analyzer reading is stable, the analyzer value will be recorded. This process will be repeated for the High Level gas. For the Calibration Error Test, Low, Mid, and High Level calibration gases will be sequentially introduced directly to the analyzer. The Calibration Error for each gas must be within 2.0 percent of the Calibration Span or 0.5 ppmv/% absolute difference. High or Mid Level gas (whichever is closer to the stack gas concentration) will be introduced at the probe and the time required for the analyzer reading to reach 95 percent or 0.5 ppm/% (whichever was less restrictive) of the gas concentration will be recorded. The analyzer reading will be observed until it reaches a stable value, and this value will be recorded. Next, Low Level gas will be introduced at the probe and the time required for the analyzer reading to decrease to a value within 5.0 percent or 0.5 ppm/% (whichever was less restrictive) will be recorded. If the Low Level gas is zero gas, the acceptable response must be 5.0 percent of the upscale gas concentration or 0.5 ppm/% (whichever was less restrictive). The analyzer reading will be observed until it reaches a stable value and this value will be recorded. The measurement system response time and initial system bias will be determined from these data. The System Bias for each gas must be within 5.0 percent of the Calibration Span or 0.5 ppmv/% absolute difference. High or Mid Level gas (whichever is closer to the stack gas concentration) will be introduced at the probe. After the analyzer response is stable, the value will be recorded. Next, Low Level gas will be introduced at the probe, and the analyzer value will be recorded once it reaches a stable response. The System Bias for each gas must be within 5.0 percent of the Calibration Span or 0.5 ppmv/% absolute difference or the data is invalidated and the Calibration Error Test and System Bias must be repeated. The Drift between pre- and post-run System Bias must be within 3 percent of the Calibration Span or 0.5 ppmv/% absolute difference or the Calibration Error Test and System Bias must be repeated. To determine the number of sampling points, a gas stratification check will be conducted prior to initiating testing. The pollutant concentrations will be measured at twelve traverse points (as described in Method 1) or three points (16.7, 50.0 and 83.3 percent of the measurement line). Each traverse point will be sampled for a minimum of twice the system response time. If the pollutant concentration at each traverse point do not differ more than 5% or 0.5 ppm/0.3% (whichever is less restrictive) of the average pollutant concentration, then single point sampling will be conducted during the test runs. If the pollutant concentration does not meet these specifications but differs less than 10% or 1.0 ppm/0.5% from the average concentration, then three (3) point sampling will be conducted (stacks less than 7.8 feet in diameter - 16.7, 50.0 and 83.3 percent of the measurement line; stacks greater than 7.8 feet in diameter – 0.4, 1.0, and 2.0 meters from the stack wall). If the pollutant concentration differs by more than 10% or 1.0 ppm/0.5% from the average concentration, then sampling will be conducted at a minimum of twelve (12) traverse points. Copies of stratification check data will be included in the Quality Assurance/Quality Control Appendix of the report. 58 of 78 Site Specific Test Plan Testing Methodology AST-2023-2904 Nodal Power – Layton, UT Page 3-4 An NO2 – NO converter check will be performed on the analyzer prior to initiating testing or at the completion of testing. An approximately 50 ppm nitrogen dioxide cylinder gas will be introduced directly to the NOx analyzer and the instrument response will be recorded in an electronic data sheet. The instrument response must be within +/- 10 percent of the cylinder concentration. A Data Acquisition System with battery backup will be used to record the instrument response in one (1) minute averages. The data will be continuously stored as a *.CSV file in Excel format on the hard drive of a computer. At the completion of testing, the data will also be saved to the Alliance server. All data will be reviewed by the Field Team Leader before leaving the facility. Once arriving at Alliance’s office, all written and electronic data will be relinquished to the report coordinator and then a final review will be performed by the Project Manager. 3.10 Quality Assurance/Quality Control – U.S. EPA Reference Test Method 25A Cylinder calibration gases will meet EPA Protocol 1 (+/- 2%) standards. Copies of all calibration gas certificates will be included in the Quality Assurance/Quality Control Appendix of the report. Within two (2) hours prior to testing, zero gas will be introduced through the sampling system to the analyzer. After adjusting the analyzer to the Zero gas concentration and once the analyzer reading is stable, the analyzer value will be recorded. This process will be repeated for the High Level gas, and the time required for the analyzer reading to reach 95 percent of the gas concentration will be recorded to determine the response time. Next, Low and Mid Level gases will be introduced through the sampling system to the analyzer, and the response will be recorded when it is stable. All values must be less than +/- 5 percent of the calibration gas concentrations. Mid Level gas will be introduced through the sampling system. After the analyzer response is stable, the value will be recorded. Next, Zero gas will be introduced through the sampling system, and the analyzer value recorded once it reaches a stable response. The Analyzer Drift must be less than +/- 3 percent of the span value. A Data Acquisition System with battery backup will be used to record the instrument response in one (1) minute averages. The data will be continuously stored as a *.CSV file in Excel format on the hard drive of a computer. At the completion of testing, the data will also be saved to the Alliance server. All data will be reviewed by the Field Team Leader before leaving the facility. Once arriving at Alliance’s office, all written and electronic data will be relinquished to the report coordinator and then a final review will be performed by the Project Manager. 3.11 Quality Assurance/Quality Control – U.S. EPA Reference Method ALT-096 EPA Protocol 1 Calibration Gases – Cylinder calibration gases used will meet EPA Protocol 1 (+/- 2%) standards. Copies of all calibration gas certificates will be provided in the Quality Assurance/Quality Control Appendix. Zero gas will be introduced through the sampling system to the analyzer. After adjusting the analyzer to the Zero gas concentration and once the analyzer reading is stable, the analyzer value will be recorded. This process will be repeated for the High Level gas, and the time required for the analyzer reading to reach 95 percent of the gas concentration will be recorded to determine the response time. Next, Mid and Low Level gases will be introduced through the sampling system to the analyzer, and the response will be recorded when it is stable. All values must be within +/- 5% of the calibration gas concentrations. 59 of 78 Site Specific Test Plan Testing Methodology AST-2023-2904 Nodal Power – Layton, UT Page 3-5 Post Test Drift Checks – Mid Level gas will be introduced through the sampling system. After the analyzer response is stable, the value will be recorded. Next, Zero gas will be introduced through the sampling system, and the analyzer value recorded once it reaches a stable response. The Analyzer Drift must be less than 3 percent of the Calibration Span. Data Collection – A Data Acquisition System with battery backup will be used to record the instrument response (analog 0-10 volt signal) in one (1) minute averages. The data will be continuously stored as a *.CSV file in Excel format on the hard drive of a desktop computer. At the completion of the emissions testing the data will be also saved to the Alliance server. All data will be reviewed by the Field Team Leader before leaving the facility. Once arriving at Alliance’s office, all written and electronic data will be relinquished to the report coordinator and then a final review will be performed by the Project Manager. 60 of 78 Site Specific Test Plan Quality Assurance Program AST-2023-2904 Nodal Power – Layton, UT Page 4-1 4.0 Quality Assurance Program Alliance follows the procedures outlined in the Quality Assurance/Quality Control Management Plan to ensure the continuous production of useful and valid data throughout the course of this test program. The QC checks and procedures described in this section represent an integral part of the overall sampling and analytical scheme. Adherence to prescribed procedures is quite often the most applicable QC check. 4.1 Equipment Field test equipment is assigned a unique, permanent identification number. Prior to mobilizing for the test program, equipment is inspected before being packed to detect equipment problems prior to arriving on site. This minimizes lost time on the job site due to equipment failure. Occasional equipment failure in the field is unavoidable despite the most rigorous inspection and maintenance procedures. Therefore, replacements for critical equipment or components are brought to the job site. Equipment returning from the field is inspected before it is returned to storage. During the course of these inspections, items are cleaned, repaired, reconditioned and recalibrated where necessary. Calibrations are conducted in a manner, and at a frequency, which meets or exceeds U.S. EPA specifications. The calibration procedures outlined in the U.S. EPA Methods, and those recommended within the Quality Assurance Handbook for Air Pollution Measurement Systems: Volume III (EPA-600/R-94/038c, September 1994) are utilized. When these methods are inapplicable, methods such as those prescribed by the American Society for Testing and Materials (ASTM) or other nationally recognized agency may be used. Data obtained during calibrations is checked for completeness and accuracy. Copies of calibration forms are included in the report. The following sections elaborate on the calibration procedures followed by Alliance for these items of equipment.  Dry Gas Meter and Orifice. A full meter calibration using critical orifices as the calibration standard is conducted at least semi-annually, more frequently if required. The meter calibration procedure determines the meter correction factor (Y) and the meter’s orifice pressure differential (ΔH@). Alliance uses approved Alternative Method 009 as a post-test calibration check to ensure that the correction factor has not changed more than 5% since the last full meter calibration. This check is performed after each test series.  Pitot Tubes and Manometers. Type-S pitot tubes that meet the geometric criteria required by U.S. EPA Reference Test Method 2 are assigned a coefficient of 0.84 unless a specific coefficient has been determined from a wind tunnel calibration. If a specific coefficient from a wind tunnel calibration has been obtained that coefficient will be used in lieu of 0.84. Standard pitot tubes that meet the geometric criteria required by U.S. EPA Reference Test Method 2 are assigned a coefficient of 0.99. Any pitot tubes not meeting the appropriate geometric criteria are discarded and replaced. Manometers are verified to be level and zeroed prior to each test run and do not require further calibration.  Temperature Measuring Devices. All thermocouple sensors mounted in Dry Gas Meter Consoles are calibrated semi-annually with a NIST-traceable thermocouple calibrator (temperature simulator) and verified during field use using a second NIST-traceable meter. NIST-traceable thermocouple calibrators are calibrated annually by an outside laboratory.  Nozzles. Nozzles are measured three (3) times prior to initiating sampling with a caliper. The maximum difference between any two (2) dimensions is 0.004 in.  Digital Calipers. Calipers are calibrated annually by Alliance by using gage blocks that are calibrated annually by an outside laboratory. 61 of 78 Site Specific Test Plan Quality Assurance Program AST-2023-2904 Nodal Power – Layton, UT Page 4-2  Barometer. The barometric pressure is obtained from a nationally recognized agency or a calibrated barometer. Calibrated barometers are checked prior to each field trip against a mercury barometer. The barometer is acceptable if the values agree within ± 2 percent absolute. Barometers not meeting this requirement are adjusted or taken out of service.  Balances and Weights. Balances are calibrated annually by an outside laboratory. A functional check is conducted on the balance each day it is use in the field using a calibration weight. Weights are re-certified every two (2) years by an outside laboratory or internally. If conducted internally, they are weighed on a NIST traceable balance. If the weight does not meet the expected criteria, they are replaced.  Other Equipment. A mass flow controller calibration is conducted on each Environics system annually following the procedures in the Manufacturer’s Operation manual. Other equipment such as probes, umbilical lines, cold boxes, etc. are routinely maintained and inspected to ensure that they are in good working order. They are repaired or replaced as needed. 4.2 Field Sampling Field sampling will be done in accordance with the Standard Operating Procedures (SOP) for the applicable test method(s). General QC measures for the test program include:  Cleaned glassware and sample train components will be sealed until assembly.  Sample trains will be leak checked before and after each test run.  Appropriate probe, filter and impinger temperatures will be maintained.  The sampling port will be sealed to prevent air from leaking from the port.  Dry gas meter, ΔP, ΔH, temperature and pump vacuum data will be recorded during each sample point.  All raw data will be maintained in organized manner.  All raw data will be reviewed on a daily basis for completeness and acceptability. 62 of 78 SSTP-Appendix A 63 of 78 Method 1 Data Location Source Project No. Date in in 0.00 in --ft2 -- ft --(must be > 0.5) ft --(must be > 2) 0 Measurer (Initial and Date): Reviewer (Initial and Date): 2 3 4 5 6 7 8 9 10 11 12 1 25.0 16.7 12.5 10.0 8.3 7.1 6.3 5.6 5.0 4.5 4.2 1 -- -- -- 2 75.0 50.0 37.5 30.0 25.0 21.4 18.8 16.7 15.0 13.6 12.5 2 -- -- -- 3 -- 83.3 62.5 50.0 41.7 35.7 31.3 27.8 25.0 31.8 20.8 3 -- -- -- 4 -- -- 87.5 70.0 58.3 50.0 43.8 38.9 35.0 22.7 29.2 4 -- -- -- 5 -- -- -- 90.0 75.0 64.3 56.3 50.0 45.0 40.9 37.5 5 -- -- -- 6 -- -- -- -- 91.7 78.6 68.8 61.1 55.0 50.0 45.8 6 -- -- -- 7 -- -- -- -- -- 92.9 81.3 72.2 65.0 59.1 54.2 7 -- -- -- 8 -- -- -- -- -- -- 93.8 83.3 75.0 68.2 62.5 8 -- -- -- 9 -- -- -- -- -- -- -- 94.4 85.0 77.3 70.8 9 -- -- -- 10 -- -- -- -- -- -- -- -- 95.0 86.4 79.2 10 -- -- -- 11 -- -- -- -- -- -- -- -- -- 95.5 87.5 11 -- -- -- 12 -- -- -- -- -- -- -- -- -- -- 95.8 12 -- -- -- *Percent of stack diameter from inside wall to traverse point. A = ft. B = ft. Depth of Duct = 0 in. Cross Sectional Area of Duct: -- -- -- Stack Parameters Duct Orientation: Duct Design: Distance from Far Wall to Outside of Port: Nipple Length: Depth of Duct: No. of Test Ports: Number of Readings per Point: Distance A: Distance A Duct Diameters: Distance B: Distance B Duct Diameters: Minimum Number of Traverse Points: Actual Number of Traverse Points: DUCT Number of traverse points on a diameter Stack Diagram Cross Sectional Area LOCATION OF TRAVERSE POINTS Traverse Point % of Diameter Distance from inside wall Distance from outside of port Upstream Disturbance Downstream Disturbance BA 64 of 78 SSTP- Appendix B 65 of 78 QA Data Location Source Project No. O₂ - Outlet CO₂ - Outlet CO - Outlet NOx - Outlet THC - Outlet Make -- -- -- -- -- Model -- -- -- -- -- S/N -- -- -- -- -- Operating Range -- -- -- -- -- Cylinder ID Zero NA NA NA NA NA Low NA NA NA NA -- Mid -- -- -- -- -- High -- -- -- -- -- Cylinder Certifed Values Zero NA NA NA NA NA Low NA NA NA NA -- Mid -- -- -- -- -- High -- -- -- -- -- Cylinder Expiration Date Zero NA NA NA NA NA Low NA NA NA NA -- Mid -- -- -- -- -- High -- -- -- -- -- Parameter -- - -- -- -- 66 of 78 Response Times Location: Source: Project No.: O₂ - Outlet CO₂ - Outlet CO - Outlet NOx - Outlet THC - Outlet Zero -- -- -- -- -- Low NA NA NA NA -- Mid -- -- -- -- -- High -- -- -- -- -- Average -- -- -- -- -- -- - -- -- -- Parameter Response Times, seconds 67 of 78 Calibration Data Location: Source: Project No.: Date: O₂ - Outlet CO₂ - Outlet CO - Outlet NOx - Outlet THC - Outlet Expected Average Concentration -- -- -- -- -- Span Between Low -- -- -- -- -- High -- -- -- -- -- Desired Span -- -- -- -- -- Low Range Gas Low NA NA NA NA -- High NA NA NA NA -- Mid Range Gas Low -- -- -- -- -- High -- -- -- -- -- High Range Gas Low NA NA NA NA -- High NA NA NA NA -- Actual Concentration (% or ppm) Zero 0.00 0.00 0.00 0.00 0.00 Low NA NA NA NA -- Mid -- -- -- -- -- High -- -- -- -- -- Response Time (seconds)-- -- -- -- -- Upscale Calibration Gas (CMA)-- -- -- -- -- Instrument Response (% or ppm) Zero -- -- -- -- -- Low NA NA NA NA -- Mid -- -- -- -- -- High -- -- -- -- -- Performance (% of Span or Cal. Gas Conc.) Zero -- -- -- -- 0.00 Low NA NA NA NA -- Mid -- -- -- -- -- High -- -- -- -- -- Performance Criteria Zero 2.00 2.00 2.00 2.00 5.00 Low NA NA NA NA 5.00 Mid 2.00 2.00 2.00 2.00 5.00 High 2.00 2.00 2.00 2.00 5.00 Status Zero -- -- -- -- PASS Low NA NA NA NA -- Mid -- -- -- -- -- High -- -- -- -- -- -- -- - -- Parameter -- -- 68 of 78 Bias/Drift Determinations Location: Source: Project No.: O₂ - Outlet CO₂ - Outlet CO - Outlet NOx - Outlet THC - Outlet Run 1 Date -- Span Value - - - - - Initial Instrument Zero Cal Response - - - - - Initial Instrument Upscale Cal Response #N/A #N/A #N/A #N/A #N/A Pretest System Zero Response - - - - - Posttest System Zero Response - - - - - Pretest System Upscale Response - - - - - Posttest System Upscale Response - - - - - Bias (%) Pretest Zero -- -- -- -- NA Posttest Zero -- -- -- -- NA Pretest Span -- -- -- -- NA Posttest Span -- -- -- -- NA Drift (%) Zero - - - - - Mid - - - - - Run 2 Date -- Span Value - - - - - Instrument Zero Cal Response - - - - - Instrument Upscale Cal Response #N/A #N/A #N/A #N/A - Pretest System Zero Response - - - - - Posttest System Zero Response - - - - - Pretest System Upscale Response - - - - - Posttest System Upscale Response - - - - - Bias (%) Pretest Zero -- -- -- -- NA Posttest Zero -- -- -- -- NA Pretest Span -- -- -- -- NA Posttest Span -- -- -- -- NA Drift (%) Zero - - - - - Mid - - - - - Run 3 Date -- Span Value - - - - - Instrument Zero Cal Response - - - - - Instrument Upscale Cal Response #N/A #N/A #N/A #N/A #N/A Pretest System Zero Response - - - - - Posttest System Zero Response - - - - - Pretest System Upscale Response - - - - - Posttest System Upscale Response - - - - - Bias (%) Pretest Zero -- -- -- -- NA Posttest Zero -- -- -- -- NA Pretest Span -- -- -- -- NA Posttest Span -- -- -- -- NA Drift (%) Zero - - - - - Mid - - - - - Parameter -- - -- -- -- 69 of 78 Run 1 - RM Data Location: Source: Project No.: Date: Time O₂ - Outlet CO₂ - Outlet CO - Outlet NOx - Outlet THC - Outlet Unit % dry % dry ppmvd ppmvd ppmvw Status Valid Valid Valid Valid Valid - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Parameter O₂ - Outlet CO₂ - Outlet CO - Outlet NOx - Outlet THC - Outlet Uncorrected Run Average (Cobs)- - - - - Cal Gas Concentration (CMA)#N/A #N/A #N/A #N/A #N/A Pretest System Zero Response Posttest System Zero Response Average Zero Response (Co)- - - - - Pretest System Cal Response Posttest System Cal Response Average Cal Response (CM)- - - - - Corrected Run Average (Corr)- - - - NA -- - -- -- -- - 70 of 78 Location: Project No.: Analyzer Make --Pre-Test Date Time Analyzer Model --Pre-Test Concentration, ppm Serial Number --Pre-Test Efficiency, %- Cylinder ID Number Post-Test Date Time Cylinder Exp. Date Post-Test Concentration, ppm Cylinder Concentration, ppm Post-Test Efficiency, %- *Required Efficiency is ≥ 90 %. -- - -- -- NO2 Converter Check - Outlet 71 of 78 Location: Source: Project No.: Date EPA O2 -- -- -- -- Cylinder Number ID Zero NA Mid -- High -- Cylinder Certified Values Zero 0.0 Mid -- High -- Instrument Response (% or ppm) Zero -- Mid -- High -- Calibration Gas Selection (% of Span) Mid -- High -- Calibration Error Performance (% of Span) Zero -- Mid -- High -- Linearity (% of Range) -- (%) lpm (%) (%) (%) (%) (%) (%) (%)( ± 2 %) 10L/10L* 90.0 7.0 - - - - 10L/10L* 80.0 7.0 - - - - 10L/5L 80.0 5.0 - - - - 10L/5L 50.0 5.0 - - - - 10L/1L 20.0 4.0 - - - - 10L/1L 10.0 4.0 - - - - (%)( ± 2 %)( ± 2 %)( ± 2 %) - - - - - - - - - - - - - - - - - - - - - - - - Mid-Level Supply Gas Calibration Direct to Analyzer Calibration Injection 1 Injection 2 Injection 3 Average Gas Analyzer Analyzer Analyzer Analyzer Concentration Concentration Concentration Concentration Concentration (%) (%) (%) (%) (%) (%)( ± 2 %) - - - - Analyzer Make: -- -- - -- -- -- Parameter Make Model S/N Span Method Criteria Analyzer Model: -- Analyzer SN: -- Environics ID: -- Component/Balance Gas: O2/N2 Cylinder Gas ID (Dilution): Cylinder Gas Concentration (Dilution), %: *Not all AST Environics Units have 2-10L Mass Flow Controllers. For these units the 90% @ 7lpm and 80% @ 7lpm injections will not be conducted. Cylinder Gas ID (Mid-Level): Cylinder Gas Concentration (Mid-Level), %: Target Mass Flow Contollers Target Dilution Target Flow Rate Target Concentration Actual Concentration Injection 1 Analyzer Concentration Injection 2 Analyzer Concentration Injection 3 Analyzer Concentration Average Analyzer Concentration Difference Average Error Average Analyzer Concentration Injection 1 Error Injection 2 Error Injection 3 Error Difference Average Error 72 of 78 Location: Source: Project No.: Date: Time NOx CO O2 CO2 (ppm) (ppm) (%) (%) A-1 2 0:00 3 0:00 4 0:00 5 0:00 6 0:00 B-1 0:00 2 0:00 3 0:00 4 0:00 5 0:00 6 0:00 -- -- -- -- Single Point Single Point Single Point Single Point Average Criteria Met Traverse Point -- - -- -- -- 73 of 78 Cyclonic Flow Check Location Source Project No. Date Sample Point Angle (ΔP=0) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Average -- -- -- -- 74 of 78 Field Data Method 2 Data Location Source Project No. Δ P (in. WC) Ts (°F) Δ P (in. WC) Ts (°F) Δ P (in. WC) Ts (°F) Average Square Root of ΔP, (in. WC)1/2 (ΔP)1/2 -- Average ΔP, in. WC (ΔP)-- Pitot Tube Coefficient (Cp)-- Barometric Pressure, in. Hg (Pb)-- Static Pressure, in. WC (Pg)-- Stack Pressure, in. Hg (Ps)-- Average Temperature, °F (Ts)-- Average Temperature, °R (Ts)-- Measured Moisture Fraction (BWSmsd)-- Moisture Fraction @ Saturation (BWSsat)-- Moisture Fraction (BWS)-- O2 Concentration, % (O2)-- CO2 Concentration, % (CO2)-- Molecular Weight, lb/lb-mole (dry)(Md)-- Molecular Weight, lb/lb-mole (wet)(Ms)-- Velocity, ft/sec (Vs)-- VFR at stack conditions, acfm (Qa)-- VFR at standard conditions, scfh (Qsw)-- VFR at standard conditions, scfm (Qsw)-- VFR at standard conditions, dscfm (Qsd)-- -- -- -- Run No. 1 2 3 Status VALID VALID VALID Date -- -- Stop Time Start Time Traverse Point Leak Check -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- ------ ------ 75 of 78 Method 4 Data Location Source Project No. Parameter(s) Console Units / Method ft3 M4 Run No. Date Status Start Time End Time Run Time, min (θ) Meter ID Meter Correction Factor (Y) Orifice Calibration Value (ΔH @) Max Vacuum, in. Hg Post Leak Check, ft3/min (at max vac.) Meter Volume, ft3 Total Meter Volume, ft3 (Vm) Meter Probe Filter Vacuum Imp. Exit Meter Probe Filter Vacuum Imp. Exit Meter Probe Filter Vacuum Imp. Exit -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- Average Temperature, °F (Tm)-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- Average Temperature, °R (Tm)-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- Minimum Temperature, °F -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- Maximum Temperature, °F -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- Barometric Pressure, in. Hg (Pb) Meter Orifice Pressure , in. WC (ΔH) Meter Pressure, in. Hg (Pm) Standard Meter Volume, ft3 (Vmstd) Analysis Type Impinger 1, Pre/Post Test, g -- -- -- -- -- -- -- -- -- Impinger 2, Pre/Post Test, g -- -- -- -- -- -- -- -- -- Impinger 3, Pre/Post Test, g -- -- -- -- -- -- -- -- -- Impinger 4, Pre/Post Test, g -- -- -- -- -- -- -- -- -- Volume Water Collected, mL (Vlc) Standard Water Volume, ft3 (Vwstd) Moisture Fraction Measured (BWS) Gas Molecular Weight, lb/lb-mole (dry) (Md) DGM Calibration Check Value (Yqa) Temperature, °F 0 5 30 35 60 -- -- -- -- 1 -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- 2 -- 3 -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- Gravimetric Gravimetric -- -- -- -- -- -- -- -- -- -- -- -- -- Gravimetric -- 60 0 5 10 15 20 25 10 15 20 25 40 45 50 55 30 35 40 45 50 55 76 of 78 Location -- - -- Source -- Project No.-- Run 3Run 2Run 1Run Number ------Date ------Start Time ------Stop Time Pre Catalyst Temperature, °F (PreT) Time, 0 min Time, 15 min Time, 30 min Time, 45 min Time, 60 min ------Average Catalyst Differential Pressure, in WC (ΔP) Time, 0 min Time, 15 min Time, 30 min Time, 45 min Time, 60 min ----Average -- Speed, RPM (ES) Time, 0 min Time, 15 min Time, 30 min Time, 45 min Time, 60 min ------Average Suction Pressure, psig (SP) Time, 0 min Time, 15 min Time, 30 min Time, 45 min Time, 60 min ------Average Discharge Pressure, psig (DiT) Time, 0 min Time, 15 min Time, 30 min Time, 45 min Time, 60 min ------Average Brake Work, HP (EBW) Time, 0 min Time, 15 min Time, 30 min Time, 45 min Time, 60 min ------Average Load, % (EL) Time, 0 min Time, 15 min Time, 30 min Time, 45 min Time, 60 min ------Average Fuel Rate, scfh (FR) Time, 0 min Time, 15 min Time, 30 min Time, 45 min Time, 60 min ----Average Operational Data 77 of 78 Last Page of Report 78 of 78 LFG NOx CO VOC retest Reference Methods 2, 3A, 6C, 7E, 10, & 19 Source Information Company Name Nodal Power Company Contact:Bryan Black Contact Phone No.(801) 301-8151 Stack Designation:LFG Generator Test & Review Dates Test Date:12/5/2023 & Review Date: 1/16/2024 Observer: Reviewer:Paul Morris Emission Limits Emission Rates VOC NOX CO VOC NOX CO g/hp-hr 0.8800 0.5000 2.5000 0.155 0.432 2.421 lbs./hr. 4.3 2.5 12.3 0.67 1.865 10.444 ppm Percent %O2 Correction as a whole #15.00 15.00 15.00 Test Information Heat Input Stack I.D. inches As ft^2 Y Dl H @ Cp Pbar Pq (static) fuel flow rate (Btu/hr.) Heat Input (Btu/hr.) 17.75 1.718 0.9700 1.898 0.84 25.39 1.3 Contractor Information Contact: #N/A Contracting Company: #N/A Address: #N/A Phone No.: #N/A Project No.: Division of Air Quality Instrumental Reference Methods - Gaseous Measurements Round Method 19 - F factors for Coal, Oil, and Gas Fd Fw Fc scf/MMBtu scf/MMBtu scf/MMBtu Diluent F factor used O2 CO2 Anthrocite 2 Bituminous 2 Lignite Natural Propane Butane 10100 COAL OIL GAS 9780 9860 9190 8710 8710 8710 10540 10640 11950 320 10610 10200 10390 1970 1800 1910 1420 1040 1190 1250 Wet CEM Correct For O2 CO2 Interference w/CO Yes Yes Yes LFG NOx CO VOC retest Division of Air Quality NSPS Relative Accuracy Performance Specification Test - CEMS Certification Nodal Power LFG Generator Average Emission Dry VOC NOX CO g/hp-hr 0.155 0.432 2.421 Average % concentration lbs./hr.0.67 1.87 10.44 CO2 O2 ppm corrected for %O2 11.93 31.82 293.21 10.79 8.51 Run 1 Enter O2 or CO2 Dry VOC NOX CO CO2 O2 O2 Atomic Weight 44.1 46 28 lbs./MMBtu (O2)E=Cd x Fd x (20.9/(20.9-%O2d)) lbs./MMBtu (CO2)HP 1994 E=Cd x Fc x (100 / % CO2d) lbs./cu.ft 2.598E-06 9.020E-06 4.718E-05 lbs./hr.0.63 2.17 11.36 10.91 8.36 ppm corrected for %O2 10.67 35.53 305.32 11.14 8.33 Run 2 Dry VOC NOX CO CO2 O2 Atomic Weight 44.1 46 28 lbs./MMBtu (O2)E=Cd x Fd x (20.9/(20.9-%O2d)) lbs./MMBtu (CO2)HP 2014 E=Cd x Fc x (100 / % CO2d) lbs./cu.ft 2.883E-06 7.666E-06 4.368E-05 lbs./hr.0.66 1.77 10.07 10.70 8.59 ppm corrected for %O2 12.07 30.77 288.01 11.14 8.55 Raw Value Run 3 Dry VOC NOX CO CO2 O2 Atomic Weight 44.1 46 28 lbs./MMBtu (O2)E=Cd x Fd x (20.9/(20.9-%O2d)) lbs./MMBtu (CO2)HP 2009 E=Cd x Fc x (100 / % CO2d) lbs./cu.ft 3.122E-06 7.273E-06 4.348E-05 lbs./hr.0.71 1.66 9.90 10.75 8.58 ppm corrected for %O2 13.05 29.15 286.314 10.93 8.52 Raw Value Run 4 Dry VOC NOX CO CO2 O2 Atomic Weight 44 46 28 lbs./MMBtu (O2)E=Cd x Fd x (20.9/(20.9-%O2d)) lbs./MMBtu (CO2)E=Cd x Fc x (100 / % CO2d) lbs./cu.ft lbs./hr. ppm corrected for %O2 Raw Value Run 5 Dry VOC NOX CO CO2 O2 Atomic Weight 44 46 28 lbs./MMBtu (O2)E=Cd x Fd x (20.9/(20.9-%O2d)) lbs./MMBtu (CO2)E=Cd x Fc x (100 / % CO2d) lbs./cu.ft lbs./hr. ppm corrected for %O2 Raw Value C For Cal Drift Raw Value C For Cal Drift C For Cal Drift C For Cal Drift C For Cal Drift O2 CO2 Clear lbs./MMBTU LFG NOx CO VOC retest Calibration Error Test Test Date December 5, 2023 O2 CS - Cal. Span 24.00 Units % Cylinder No. Expiration Date Cal. Gas CV- Certified Concentration CDir or CS - Measured Concentration Difference ACE Eq. 7E-1 Analyzer Cal. Error Status Low-level 0.00 0.00 0.00 0.00% Passed Cal. RR03686 09/19/31 Mid-level 10.98 11.01 0.03 0.12% Passed Cal. RR03384 10/19/29 High-level 24.00 23.99 0.01 0.04% Passed Cal. % of Span Sec. 8.2.1 Cal Gas Verification 0 to 20% of CS - Cal. Span Low-Level 0.00% 40 to 60% of Cal. Span Mid-level 45.75% 100% of Cal. Span High-level 100.00% Test Date December 5, 2023 CO2 CS - Cal. Span 23.70 Units % Cylinder No. Expiration Date Cal. Gas CV- Certified Concentration CDir or CS - Measured Concentration Difference ACE Eq. 7E-1 Analyzer Cal. Error Status Low-level 0.00 0.03 0.03 0.127% Passed Cal. RR03686 09/19/31 Mid-level 10.90 11.18 0.28 1.181% Passed Cal. RR03384 10/19/29 High-level 23.70 23.76 0.06 0.253% Passed Cal. % of Span Sec. 8.2.1 Cal Gas Verification 0 to 20% of Cal. Span Low-Level 0.00% 40 to 60% of Cal. Span Mid-level 45.99% 100% of Cal. Span High-level 100.00% Test Date December 5, 2023 VOC CS - Cal. Span 60.00 Units ppm Cylinder No. Expiration Date Cal. Gas CV- Certified Concentration CDir or CS - Measured Concentration Difference ACE Eq. 7E-1 Analyzer Cal. Error Status Low-level 0.00 0.04 0.04 0.067% Passed Cal. EB0065892 04/18/29 Mid-level 40.00 40.21 0.21 0.350% Passed Cal. High-level 60.00 60.00 0.00 0.000% Passed Cal. % of Span Sec. 8.2.1 Cal Gas Verification 0 to 20% of Cal. Span Low-Level 0.00% 40 to 60% of Cal. Span Mid-level 66.67% out of range 100% of Cal. Span High-level 100.00% Test Date December 5, 2023 NOx CS - Cal. Span 99.10 Units ppm Cylinder No. Expiration Date Cal. Gas CV- Certified Concentration CDir or CS - Measured Concentration Difference ACE Eq. 7E-1 Analyzer Cal. Error Status Low-level 0.00 0.05 0.05 0.050% Passed Cal. EB0033140 09/14/26 Mid-level 50.00 49.53 0.47 0.474% Passed Cal. CC736761 10/28/31 High-level 99.10 99.04 0.06 0.061% Passed Cal. % of Span Sec. 8.2.1 Cal Gas Verification 0 to 20% of Cal. Span Low-Level 0.00% 40 to 60% of Cal. Span Mid-level 50.45% 100% of Cal. Span High-level 100.00% Test Date December 5, 2023 CO 12.31 CS - Cal. Span 950.00 Units ppm Cylinder No. Expiration Date Cal. Gas CV- Certified Concentration CDir or CS - Measured Concentration Difference ACE Eq. 7E-1 Analyzer Cal. Error Status Low-level 0.00 -0.05 0.05 0.005% Passed Cal. CC729836 05/03/29 Mid-level 500.00 514.71 14.71 1.548% Passed Cal. High-level 950.00 950.73 0.73 0.077% Passed Cal. % of Span Sec. 8.2.1 Cal Gas Verification 0 to 20% of Cal. Span Low-Level 0.00% 40 to 60% of Cal. Span Mid-level 52.63% 100% of Cal. Span High-level 100.00% Valid Cal Gas Valid Cal Gas Valid Cal Gas Valid Cal Gas Valid Cal Gas Valid Cal Gas Valid Cal Gas Valid Cal Gas LFG NOx CO VOC retest Division of Air Quality Stack Test Review of Nodal Power VOC NOX CO CO2 O2 LFG Generator CS Calibration Span 60.00 99.10 950.00 23.70 24.00 Units ppm ppm ppm % % Unprotected CV - Cylinder Value: VOC NOX CO CO2 O2 Low-Level 0.00 0.00 0.00 0.00 0.00 Mid-Level 40.00 50.00 500.00 10.90 10.98 High-Level 60.00 99.10 950.00 23.70 24.00 0 to 20% of Cal. Span 0.00% 0.00% 0.00% 0.00% 0.00% 40 to 60% of Cal. Span 66.7% 50.5% 52.6% 46.0% 45.8% 100% of Cal. Span 100.0% 100.0% 100.0% 100.0% 100.0% Cdir - Enter Actual Up-scale Cylinder Value Used To Correct Emission Concentration. CDir CMA 40.00 50.00 500.00 10.90 10.98 Calibration Error Test Cs - Measured Concentration VOC NOX CO CO2 O2 Low-Level 0.04 0.05 -0.05 0.03 0.00 Mid-Level 40.21 49.53 514.71 11.18 11.01 High-Level 60.00 99.04 950.73 23.76 23.99 Enter Up-scale Analyzer Response to be used during testing. ACE Eq. 7E-1 40.21 49.53 514.71 11.18 11.01 Low-Level 0.07% 0.05% 0.01% 0.13% 0.00% ppmdv Difference 0.04 0.05 0.05 0.03 0 Status Passed Cal. Passed Cal. Passed Cal. Passed Cal.Passed Cal. Mid-Level 0.35% 0.47% 1.55% 1.18% 0.12% ppmdv Difference 0.21 0.47 14.71 0.28 0.03 Status Passed Cal. Passed Cal. Passed Cal. Passed Cal.Passed Cal. High-Level 0.00% 0.06% 0.08% 0.25% 0.04% ppmdv Difference 0 0.06 0.73 0.06 0.01 Status Passed Cal. Passed Cal. Passed Cal. Passed Cal.Passed Cal. Pre-Test Sampling System Bias Initial Values VOC NOX CO CO2 O2 CO - Low-Level 0.04 0.17 -0.03 0.03 0.04 System Bias. SBi - Zero Bias 0.00% 0.12% 0.00% 0.00% 0.17%± 5% of Span Difference 0 0.12 0.02 0 0.04 Pass or Failed Invalid Run Passed Cal. Passed Cal. Passed Cal. Passed Cal. Passed Cal. CM - Up-scale Gas 40.21 48.66 512.16 11.13 10.93 SBi - Up-Scale Bias 0.00% 0.88% 0.27% 0.21% 0.33% Difference 0.00 0.87 2.55 0.05 0.08 Pass or Failed Invalid Run Passed Cal. Passed Cal. Passed Cal. Passed Cal. Passed Cal. Raw Test Data Time Start Stop Test Date:12/5/2023 SO2 VOC NOX CO CO2 O2 NOX 22.9 73.9 663.97 11.1 8.3 CO 38.2% 74.6% 69.9% 47.0% 34.7% CO2/O2 Post-Test System Bias 7E-2 SB=(Cs - Cdir)/CS x 100 Final Values VOC NOX CO CO2 O2 CO - Low-Level 0.04 0.59 -0.19 0.10 0.06 System Bias. SBi - Zero Bias 0.00% 0.54% 0.01% 0.30% 0.25%± 5% of Span Difference 0.0 0.5 0.1 0.1 0.1 Pass or Invalid Run Passed Cal. Passed Cal. Passed Cal. Passed Cal. Passed Cal. CM - Up-scale Gas 40.53 49.43 510.95 11.13 10.92 SBi - Up-Scale Bias 0.53% 0.10% 0.40% 0.21% 0.37% Difference 0.3 0.1 3.8 0.0 0.1 Pass or Invalid Run Passed Cal. Passed Cal. Passed Cal. Passed Cal. Passed Cal. Calibration Drift % of Span - D=ABS(SBf - SBi) Low-Level Drift 0.00% 0.42% 0.01% 0.30% 0.08% Drift Difference 0.0 0.4 0.2 0.1 0.0 3% of Span Pass or Re-Calibrate Pass Pass Pass Pass Pass Up-scale Gas Drift 0.53% 0.78% 0.13% 0.00% 0.04% Difference 0.3 0.8 1.2 0.0 0.0 Pass or Re-Calibrate Pass Pass Pass Pass Pass LFG Generator Flow & Moisture As ft^2 Pbar Pq (static) Ps Avg Ts F CO2 - FCO2 O2 N2+C Md Ms 1.718 25.39 1.30 25.49 795 10.91 8.36 80.73 30.08 28.57 Y Cp Vm cf Vlc AVG Tm F Vm std Vw std Bws S Bws 430.4055 0.9700 0.84 36.144 94.30 47 30.971 4.439 0.1254 0.9990 0.999 Load - Megawatts Avg. √∆P's Vs (ft/sec.)Qsw scfh wet Qa acfm Qsd dscfh Heat Input Btu/hr Low Mid High 1.3176 124.230 275,345 12,806 240,829.34 Enert > #1 - Times Date Point No.∆P √∆P ts F tm F (in) tm F (out) Final Vf Initial Vi 1 1.10 1.049 795 47 45 856 796 59.4 2 1.30 1.140 793 47 44 749 730 18.3 3 1.70 1.304 793 48 44 643 638 4.2 4 1.60 1.265 794 48 44 951 939 12.4 5 1.80 1.342 794 49 43 6 2.00 1.414 795 50 43 7 2.10 1.449 793 50 43 8 2.10 1.449 795 52 44 9 1.30 1.140 796 52 44 10 1.50 1.225 796 53 44 11 1.80 1.342 795 55 45 12 1.80 1.342 794 55 45 13 1.90 1.378 796 55 45 14 2.00 1.414 797 15 2.00 1.414 796 16 2.00 1.414 798 17 18 19 20 21 22 23 24 Failed Bias Dialog Failed Drift Dialog Failed Cal Error Dialog CO Calibration Gas Failed Bias Dialog LFG NOx CO VOC retest Division of Air Quality Stack Test Review of Nodal Power VOC NOX CO CO2 O2 LFG Generator CS Calibration Span 60.00 99.10 950.00 23.70 24.00 Units ppm ppm ppm % % CV - Cylinder Value: VOC NOX CO CO2 O2 Low-Level 0.00 0.00 0.00 0.00 0.00 Mid-Level 40.00 50.00 500.00 10.90 10.98 High-Level 60.00 99.10 950.00 23.70 24.00 0 to 20% of Cal. Span 0.00% 0.00% 0.00% 0.00% 0.00% 40 to 60% of Cal. Span 66.7% 50.5% 52.6% 46.0% 45.8% 100% of Cal. Span 100.0% 100.0% 100.0% 100.0% 100.0% Cdir - Enter Actual Up-scale Cylinder Value Used To Correct Emission Concentration. CMA 40.00 50.00 500.00 10.90 10.98 Calibration Error Test Measured Concentration VOC NOX CO CO2 O2 Low-Level 0.04 0.05 -0.05 0.03 0.00 Mid-Level 40.21 49.53 514.71 11.18 11.01 High-Level 60.00 99.04 950.73 23.76 23.99 Enter Up-scale Analyzer Response to be used during testing. ACE Eq. 7E-1 40.21 49.53 514.71 11.18 11.01 Low-Level 0.07% 0.05% 0.01% 0.13% 0.00% ppmdv Difference 0.04 0.05 0.05 0.03 0 Status Passed Cal. Passed Cal. Passed Cal. Passed Cal.Passed Cal. Mid-Level 0.35% 0.47% 1.55% 1.18% 0.12% ppmdv Difference 0.21 0.47 14.71 0.28 0.03 Status Passed Cal. Passed Cal. Passed Cal. Passed Cal.Passed Cal. High-Level 0.00% 0.06% 0.08% 0.25% 0.04% ppmdv Difference 0 0.06 0.73 0.06 0.01 Status Passed Cal. Passed Cal. Passed Cal. Passed Cal.Passed Cal. Pre-Test Sampling System Bias Initial Values VOC NOX CO CO2 O2 CO - Low-Level 0.04 0.59 -0.19 0.10 0.06 System Bias. SBi - Zero Bias 0.00% 0.54% 0.01% 0.30% 0.25%± 5% of Span Difference 0 0.54 0.14 0.07 0.06 Pass or Invalid Run Passed Cal. Passed Cal. Passed Cal. Passed Cal. Passed Cal. CM - Up-scale Gas 40.53 49.43 510.95 11.13 10.92 SBi - Up-Scale Bias 0.53% 0.10% 0.40% 0.21% 0.37% Difference 0.32 0.1 3.76 0.05 0.09 Pass or Invalid Run Passed Cal. Passed Cal. Passed Cal. Passed Cal. Passed Cal. Raw Test Data Time Start Stop Test Date:12/5/2023 SO2 VOC NOX CO CO2 O2 NOX 25.2 63.0 611.62 10.9 8.6 CO 41.9% 63.6% 64.4% 46.0% 35.6% CO2/O2 Post-Test System Bias 7E-2 SB=(Cs - Cdir)/CS x 100 Final Values VOC NOX CO CO2 O2 CO - Low-Level 0.04 0.53 -0.52 0.06 0.05 System Bias. SBi - Zero Bias 0.00% 0.48% 0.05% 0.13% 0.21%± 5% of Span Difference 0.0 0.5 0.5 0.0 0.1 Pass or Invalid Run Passed Cal. Passed Cal. Passed Cal. Passed Cal. Passed Cal. CM - Up-scale Gas 39.37 49.01 506.97 11.08 10.90 SBi - Up-Scale Bias 1.40% 0.52% 0.81% 0.42% 0.46% Difference 0.8 0.5 7.7 0.1 0.1 Pass or Invalid Run Passed Cal. Passed Cal. Passed Cal. Passed Cal. Passed Cal. Calibration Drift % of Span - D=ABS(SBf - SBi) Low-Level Drift 0.00% 0.06% 0.03% 0.17% 0.04% Response Spec. Difference 0.0 0.1 0.3 0.0 0.0 3% of Span Pass or Re-Calibrate Pass Pass Pass Pass Pass Up-scale Gas Drift 0.87% 0.42% 0.42% 0.21% 0.08% Difference 1.2 0.4 4.0 0.1 0.0 Pass or Re-Calibrate Pass Pass Pass Pass Pass LFG Generator Flow & Moisture As ft^2 Pbar Pq (static) Ps Avg Ts F CO2 - FCO2 O2 N2+C Md Ms 1.72 25.39 1.30 25.49 793 10.70 8.59 80.71 30.06 28.55 Y Cp Vm cf Vlc AVG Tm F Vm std Vw std Bws S Bws 426.4031 0.9700 0.84 36.383 94.80 45 31.283 4.462 0.1248 0.9990 0.999 Load - Megawatts Avg. √∆P's Vs Qsw scfh wet Qa acfm Qsd dscfh Heat Input Btu/hr Low Mid High 1.2597 118.71 263,490 12,237 230,597.79 Enert > #1 - Times Date Point No.∆P √∆P ts F tm F (in) tm F (out) Final Vf Initial Vi 1 1.10 1.049 796 45 44 835 774 61.2 2 1.20 1.095 795 45 44 752 734 17.6 3 1.50 1.225 795 45 44 647 643 4 4 1.60 1.265 796 45 44 963 951 12 5 1.70 1.304 797 46 44 6 2.00 1.414 798 46 44 7 1.90 1.378 796 46 44 8 1.80 1.342 795 46 44 9 1.10 1.049 795 47 44 10 1.30 1.140 754 47 45 11 1.60 1.265 796 47 45 12 1.60 1.265 798 48 45 13 1.70 1.304 796 48 45 14 2.00 1.414 796 15 1.80 1.342 795 16 1.70 1.304 793 17 18 19 20 21 22 23 24 Failed Bias Dialog Failed Drift Dialog Failed Cal Error Dialog Failed Bias Dialog LFG NOx CO VOC retest Division of Air Quality Stack Test Review of Nodal Power VOC NOX CO CO2 O2 LFG Generator CS Calibration Span 60.00 99.10 950.00 23.70 24.00 Units ppm ppm ppm % % CV - Cylinder Value: VOC NOX CO CO2 O2 Low-Level 0.00 0.00 0.00 0.00 0.00 Mid-Level 40.00 50.00 500.00 10.90 10.98 High-Level 60.00 99.10 950.00 23.70 24.00 0 to 20% of Cal. Span 0.00% 0.00% 0.00% 0.00% 0.00% 40 to 60% of Cal. Span 66.7% 50.5% 52.6% 46.0% 45.8% 100% of Cal. Span 100.0% 100.0% 100.0% 100.0% 100.0% Cdir - Enter Actual Up-scale Cylinder Value Used To Correct Emission Concentration. CMA 40.00 50.00 500.00 10.90 10.98 Calibration Error Test Measured Concentration VOC NOX CO CO2 O2 Low-Level 0.04 0.05 -0.05 0.03 0.00 Mid-Level 40.21 49.53 514.71 11.18 11.01 High-Level 60.00 99.04 950.73 23.76 23.99 Enter Up-scale Analyzer Response to be used during testing. ACE Eq. 7E-1 40.21 49.53 514.71 11.18 11.01 Low-Level 0.07% 0.05% 0.01% 0.13% 0.00% ppmv Difference 0.04 0.05 0.05 0.03 0 Status Passed Cal. Passed Cal. Passed Cal. Passed Cal.Passed Cal. Mid-Level 0.35% 0.47% 1.55% 1.18% 0.12% ppmv Difference 0.21 0.47 14.71 0.28 0.03 Status Passed Cal. Passed Cal. Passed Cal. Passed Cal.Passed Cal. High-Level 0.00% 0.06% 0.08% 0.25% 0.04% ppmv Difference 0 0.06 0.73 0.06 0.01 Status Passed Cal. Passed Cal. Passed Cal. Passed Cal.Passed Cal. Pre-Test Sampling System Bias Initial Values VOC NOX CO CO2 O2 CO - Low-Level 0.04 0.53 -0.52 0.06 0.05 System Bias. SBi - Zero Bias 0.00% 0.48% 0.05% 0.13% 0.21%± 5% of Span Difference 0 0.48 0.47 0.03 0.05 Pass or Invalid Run Passed Cal. Passed Cal. Passed Cal. Passed Cal. Passed Cal. CM - Up-scale Gas 39.37 49.01 506.97 11.08 10.90 SBi - Up-Scale Bias 1.40% 0.52% 0.81% 0.42% 0.46% Difference 0.84 0.52 7.74 0.1 0.11 Pass or Invalid Run Passed Cal. Passed Cal. Passed Cal. Passed Cal. Passed Cal. Raw Test Data Time Start Stop Test Date:12/5/2023 SO2 VOC NOX CO CO2 O2 NOX 26.7 59.8 606.63 10.9 8.5 CO 44.5% 60.4% 63.9% 46.1% 35.5% CO2/O2 Post-Test System Bias 7E-2 SB=(Cs - Cdir)/CS x 100 Final Values VOC NOX CO CO2 O2 CO - Low-Level 0.05 0.06 -0.52 0.53 0.04 System Bias. SBi - Zero Bias 0.02% 0.01% 0.05% 2.11% 0.17%± 5% of Span Difference 0.0 0.0 0.5 0.5 0.0 Pass or Invalid Run Passed Cal. Passed Cal. Passed Cal. Passed Cal. Passed Cal. CM - Up-scale Gas 38.97 49.38 507.24 11.07 10.89 SBi - Up-Scale Bias 2.07% 0.15% 0.79% 0.46% 0.50% Difference 1.2 0.1 7.5 0.1 0.1 Pass or Invalid Run Passed Cal. Passed Cal. Passed Cal. Passed Cal. Passed Cal. Calibration Drift % of Span - D=ABS(SBf - SBi) Low-Level Drift 0.02% 0.47% 0.00% 1.98% 0.04% Response Spec. Difference 0.0 0.5 0.0 0.5 0.0 3% of Span Pass or Re-Calibrate Pass Pass Pass Pass Pass Up-scale Gas Drift 0.67% 0.37% 0.03% 0.04% 0.04% Difference 0.4 0.4 0.3 0.0 0.0 Pass or Re-Calibrate Pass Pass Pass Pass Pass LFG Generator Flow & Moisture As ft^2 Pbar Pq (static) Ps Avg Ts F CO2 - FCO2 O2 N2+C Md Ms 1.72 25.39 1.30 25.49 796 10.75 8.58 80.67 30.06 28.55 Y Cp Vm cf Vlc AVG Tm F Vm std Vw std Bws S Bws 433.4586 0.9700 0.84 36.418 95.40 45 31.313 4.490 0.1254 0.9990 0.999 Load - Megawatts Avg. √∆P's Vs Qsw scfh wet Qa acfm Qsd dscfh Heat Input Btu/hr Low Mid High 1.2456 117.54 260,232 12,116 227,593.33 Enert > #1 - Times Date Point No.∆P √∆P ts F tm F (in) tm F (out) Final Vf Initial Vi 1 1.00 1.000 798 46 43 843 782 60.8 2 1.20 1.095 798 46 43 770 752 18.5 3 1.40 1.183 799 46 43 651 647 4.3 4 1.60 1.265 795 46 44 975 963 11.8 5 1.80 1.342 796 46 44 6 1.90 1.378 794 47 44 7 2.00 1.414 796 47 44 8 1.60 1.265 795 47 45 9 1.10 1.049 796 47 44 10 1.10 1.049 798 47 45 11 1.50 1.225 798 47 44 12 1.60 1.265 794 46 45 13 1.80 1.342 795 46 45 14 2.00 1.414 796 15 1.90 1.378 798 16 1.60 1.265 796 17 18 19 20 21 22 23 24 Failed Bias Dialog Failed Cal Error Dialog Failed Drift Dialog Failed Bias Dialog LFG NOx CO VOC Failed Reference Methods 2, 3A, 6C, 7E, 10, & 19 Source Information Company Name Nodal Power Company Contact:Bryan Black Contact Phone No.(801) 301-8151 Stack Designation:LFG Generator Test & Review Dates Test Date:8/10/2023 & Review Date: 10/11/2023 Observer:Paul Morris Reviewer:Paul Morris Emission Limits Emission Rates VOC NOX CO VOC NOX CO g/hp-hr 0.8800 0.5000 2.5000 0.147 0.324 2.676 lbs./hr. 4.3 2.5 12.3 0.64 1.400 11.544 ppm Percent %O2 Correction as a whole #15.00 15.00 15.00 Test Information Heat Input Stack I.D. inches As ft^2 Y Dl H @ Cp Pbar Pq (static) fuel flow rate (Btu/hr.) Heat Input (Btu/hr.) 17.75 1.718 0.9920 1.86 0.811 25.47 1.33 Contractor Information Contact: #N/A Contracting Company: #N/A Address: #N/A Phone No.: #N/A Project No.: Division of Air Quality Instrumental Reference Methods - Gaseous Measurements Round Method 19 - F factors for Coal, Oil, and Gas Fd Fw Fc scf/MMBtu scf/MMBtu scf/MMBtu Diluent F factor used O2 CO2 Anthrocite 2 Bituminous 2 Lignite Natural Propane Butane 10100 COAL OIL GAS 9780 9860 9190 8710 8710 8710 10540 10640 11950 320 10610 10200 10390 1970 1800 1910 1420 1040 1190 1250 Wet CEM Correct For O2 CO2 Interference w/CO Yes Yes Yes LFG NOx CO VOC Failed Division of Air Quality NSPS Relative Accuracy Performance Specification Test - CEMS Certification Nodal Power LFG Generator Average Emission Dry VOC NOX CO g/hp-hr 0.147 0.324 2.676 Average % concentration lbs./hr.0.64 1.40 11.54 CO2 O2 ppm corrected for %O2 11.32 23.84 323.04 10.58 8.73 Run 1 Enter O2 or CO2 Dry VOC NOX CO CO2 O2 O2 Atomic Weight 44 46 28 lbs./MMBtu (O2)E=Cd x Fd x (20.9/(20.9-%O2d)) lbs./MMBtu (CO2)HP 1965 E=Cd x Fc x (100 / % CO2d) lbs./cu.ft 2.544E-06 6.019E-06 4.870E-05 lbs./hr.0.61 1.45 11.77 10.64 8.68 ppm corrected for %O2 10.75 24.33 323.41 10.70 8.59 Run 2 Dry VOC NOX CO CO2 O2 Atomic Weight 44 46 28 lbs./MMBtu (O2)E=Cd x Fd x (20.9/(20.9-%O2d)) lbs./MMBtu (CO2)HP 1954 E=Cd x Fc x (100 / % CO2d) lbs./cu.ft 2.700E-06 5.888E-06 4.845E-05 lbs./hr.0.63 1.37 11.24 10.53 8.75 ppm corrected for %O2 11.47 23.94 323.61 10.70 8.61 Raw Value Run 3 Dry VOC NOX CO CO2 O2 Atomic Weight 44 46 28 lbs./MMBtu (O2)E=Cd x Fd x (20.9/(20.9-%O2d)) lbs./MMBtu (CO2)HP 1951 E=Cd x Fc x (100 / % CO2d) lbs./cu.ft 2.755E-06 5.712E-06 4.815E-05 lbs./hr.0.67 1.38 11.62 10.57 8.77 ppm corrected for %O2 11.73 23.26 322.099 10.68 8.59 Raw Value Run 4 Dry VOC NOX CO CO2 O2 Atomic Weight 44 46 28 lbs./MMBtu (O2)E=Cd x Fd x (20.9/(20.9-%O2d)) lbs./MMBtu (CO2)E=Cd x Fc x (100 / % CO2d) lbs./cu.ft lbs./hr. ppm corrected for %O2 Raw Value Run 5 Dry VOC NOX CO CO2 O2 Atomic Weight 44 46 28 lbs./MMBtu (O2)E=Cd x Fd x (20.9/(20.9-%O2d)) lbs./MMBtu (CO2)E=Cd x Fc x (100 / % CO2d) lbs./cu.ft lbs./hr. ppm corrected for %O2 Raw Value C For Cal Drift Raw Value C For Cal Drift C For Cal Drift C For Cal Drift C For Cal Drift O2 CO2 Clear lbs./MMBTU LFG NOx CO VOC Failed Calibration Error Test Test Date August 10, 2023 O2 CS - Cal. Span 24.58 Units % Cylinder No. Expiration Date Cal. Gas CV- Certified Concentration CDir or CS - Measured Concentration Difference ACE Eq. 7E-1 Analyzer Cal. Error Status Low-level 0.00 0.10 0.10 0.41% Passed Cal. EB0078899 07/13/29 Mid-level 10.95 10.98 0.03 0.12% Passed Cal. SG9164824Bal 02/13/31 High-level 24.58 24.55 0.03 0.12% Passed Cal. % of Span Sec. 8.2.1 Cal Gas Verification 0 to 20% of CS - Cal. Span Low-Level 0.00% 40 to 60% of Cal. Span Mid-level 44.55% 100% of Cal. Span High-level 100.00% Test Date August 10, 2023 CO2 CS - Cal. Span 23.78 Units % Cylinder No. Expiration Date Cal. Gas CV- Certified Concentration CDir or CS - Measured Concentration Difference ACE Eq. 7E-1 Analyzer Cal. Error Status Low-level 0.00 0.18 0.18 0.757% Passed Cal. EB0078899 07/13/29 Mid-level 10.74 10.68 0.06 0.252% Passed Cal. SG9164824Bal 02/13/31 High-level 23.78 23.81 0.03 0.126% Passed Cal. % of Span Sec. 8.2.1 Cal Gas Verification 0 to 20% of Cal. Span Low-Level 0.00% 40 to 60% of Cal. Span Mid-level 45.16% 100% of Cal. Span High-level 100.00% Test Date August 10, 2023 VOC CS - Cal. Span 60.00 Units ppm Cylinder No. Expiration Date Cal. Gas CV- Certified Concentration CDir or CS - Measured Concentration Difference ACE Eq. 7E-1 Analyzer Cal. Error Status Low-level 0.00 0.00 0.00 0.000% Passed Cal. EB0098694 04/18/29 Mid-level 40.00 40.00 0.00 0.000% Passed Cal. High-level 60.00 60.00 0.00 0.000% Passed Cal. % of Span Sec. 8.2.1 Cal Gas Verification 0 to 20% of Cal. Span Low-Level 0.00% 40 to 60% of Cal. Span Mid-level 66.67% out of range 100% of Cal. Span High-level 100.00% Test Date August 10, 2023 NOx CS - Cal. Span 350.00 Units ppm Cylinder No. Expiration Date Cal. Gas CV- Certified Concentration CDir or CS - Measured Concentration Difference ACE Eq. 7E-1 Analyzer Cal. Error Status Low-level 0.00 0.11 0.11 0.031% Passed Cal. CC122482 02/20/31 Mid-level 200.00 202.76 2.76 0.789% Passed Cal. High-level 350.00 349.71 0.29 0.083% Passed Cal. % of Span Sec. 8.2.1 Cal Gas Verification 0 to 20% of Cal. Span Low-Level 0.00% 40 to 60% of Cal. Span Mid-level 57.14% 100% of Cal. Span High-level 100.00% Test Date August 10, 2023 CO 12.31 CS - Cal. Span 950.00 Units ppm Cylinder No. Expiration Date Cal. Gas CV- Certified Concentration CDir or CS - Measured Concentration Difference ACE Eq. 7E-1 Analyzer Cal. Error Status Low-level 0.00 0.46 0.46 0.048% Passed Cal. CC210350 03/25/27 Mid-level 500.00 482.42 17.58 1.851% Passed Cal. High-level 950.00 945.35 4.65 0.489% Passed Cal. % of Span Sec. 8.2.1 Cal Gas Verification 0 to 20% of Cal. Span Low-Level 0.00% 40 to 60% of Cal. Span Mid-level 52.63% 100% of Cal. Span High-level 100.00% Valid Cal Gas Valid Cal Gas Valid Cal Gas Valid Cal Gas Valid Cal Gas Valid Cal Gas Valid Cal Gas LFG NOx CO VOC Failed Division of Air Quality Stack Test Review of Nodal Power VOC NOX CO CO2 O2 LFG Generator CS Calibration Span 60.00 350.00 950.00 23.78 24.58 Units ppm ppm ppm % % Unprotected CV - Cylinder Value: VOC NOX CO CO2 O2 Low-Level 0.00 0.00 0.00 0.00 0.00 Mid-Level 40.00 200.00 500.00 10.74 10.95 High-Level 60.00 350.00 950.00 23.78 24.58 0 to 20% of Cal. Span 0.00% 0.00% 0.00% 0.00% 0.00% 40 to 60% of Cal. Span 66.7% 57.1% 52.6% 45.2% 44.5% 100% of Cal. Span 100.0% 100.0% 100.0% 100.0% 100.0% Cdir - Enter Actual Up-scale Cylinder Value Used To Correct Emission Concentration. CDir CMA 40.00 200.00 500.00 10.74 10.95 Calibration Error Test Cs - Measured Concentration VOC NOX CO CO2 O2 Low-Level 0.00 0.11 0.46 0.18 0.10 Mid-Level 40.00 202.76 482.42 10.68 10.98 High-Level 60.00 349.71 945.35 23.81 24.55 Enter Up-scale Analyzer Response to be used during testing. ACE Eq. 7E-1 40.00 202.76 482.42 10.68 10.98 Low-Level 0.00% 0.03% 0.05% 0.76% 0.41% ppmdv Difference 0 0.11 0.46 0.18 0.1 Status Passed Cal. Passed Cal. Passed Cal. Passed Cal.Passed Cal. Mid-Level 0.00% 0.79% 1.85% 0.25% 0.12% ppmdv Difference 0 2.76 17.58 0.06 0.03 Status Passed Cal. Passed Cal. Passed Cal. Passed Cal.Passed Cal. High-Level 0.00% 0.08% 0.49% 0.13% 0.12% ppmdv Difference 0 0.29 4.65 0.03 0.03 Status Passed Cal. Passed Cal. Passed Cal. Passed Cal.Passed Cal. Pre-Test Sampling System Bias Initial Values VOC NOX CO CO2 O2 CO - Low-Level 0.00 0.20 0.80 0.10 0.10 System Bias. SBi - Zero Bias 0.00% 0.03% 0.04% 0.34% 0.00%± 5% of Span Difference 0 0.09 0.34 0.08 0 Pass or Failed Invalid Run Passed Cal. Passed Cal. Passed Cal. Passed Cal. Passed Cal. CM - Up-scale Gas 39.70 192.80 479.40 10.80 10.90 SBi - Up-Scale Bias 0.50% 2.85% 0.32% 0.50% 0.33% Difference 0.30 9.96 3.02 0.12 0.08 Pass or Failed Invalid Run Passed Cal. Passed Cal. Passed Cal. Passed Cal. Passed Cal. Raw Test Data Time Start Stop Test Date:8/10/2023 SO2 VOC NOX CO CO2 O2 NOX 22.0 49.1 630.02 10.7 8.6 CO 36.7% 14.0% 66.3% 45.0% 34.9% CO2/O2 Post-Test System Bias 7E-2 SB=(Cs - Cdir)/CS x 100 Final Values VOC NOX CO CO2 O2 CO - Low-Level 0.00 0.70 0.60 0.10 0.00 System Bias. SBi - Zero Bias 0.00% 0.17% 0.01% 0.34% 0.41%± 5% of Span Difference 0.0 0.6 0.1 0.1 0.1 Pass or Invalid Run Passed Cal. Passed Cal. Passed Cal. Passed Cal. Passed Cal. CM - Up-scale Gas 39.30 194.30 461.50 10.80 10.80 SBi - Up-Scale Bias 1.17% 2.42% 2.20% 0.50% 0.73% Difference 0.7 8.5 20.9 0.1 0.2 Pass or Invalid Run Passed Cal. Passed Cal. Passed Cal. Passed Cal. Passed Cal. Calibration Drift % of Span - D=ABS(SBf - SBi) Low-Level Drift 0.00% 0.14% 0.02% 0.00% 0.41% Drift Difference 0.0 0.5 0.2 0.0 0.1 3% of Span Pass or Re-Calibrate Pass Pass Pass Pass Pass Up-scale Gas Drift 0.67% 0.43% 1.88% 0.00% 0.41% Difference 0.4 1.5 17.9 0.0 0.1 Pass or Re-Calibrate Pass Pass Pass Pass Pass LFG Generator Flow & Moisture As ft^2 Pbar Pq (static) Ps Avg Ts F CO2 - FCO2 O2 N2+C Md Ms 1.718 25.47 1.33 25.57 774 10.64 8.68 80.68 30.05 28.55 Y Cp Vm cf Vlc AVG Tm F Vm std Vw std Bws S Bws 383.9369 0.9920 0.81 37.782 96.00 70 31.772 4.519 0.1245 0.9990 0.999 Load - Megawatts Avg. √∆P's Vs (ft/sec.)Qsw scfh wet Qa acfm Qsd dscfh Heat Input Btu/hr Low Mid High 1.3536 122.010 275,955 12,577 241,594.75 Enert > #1 - Times Date Point No.∆P √∆P ts F tm F (in) tm F (out) Final Vf Initial Vi 1 1.20 1.095 751 82 67 846 771 74.7 2 1.50 1.225 753 85 49 759 750 9.3 3 1.70 1.304 753 86 46 623 621 2 4 1.70 1.304 768 86 46 933 923 10 5 2.00 1.414 778 87 48 6 2.10 1.449 781 87 49 7 2.20 1.483 782 88 50 8 2.20 1.483 784 88 51 9 1.50 1.225 768 89 52 10 1.60 1.265 769 90 53 11 1.80 1.342 776 90 54 12 1.90 1.378 779 91 55 13 1.90 1.378 782 91 56 14 2.10 1.449 782 15 2.00 1.414 786 16 2.10 1.449 789 17 18 19 20 21 22 23 24 Failed Bias Dialog Failed Drift Dialog Failed Cal Error Dialog CO Calibration Gas Failed Bias Dialog LFG NOx CO VOC Failed Division of Air Quality Stack Test Review of Nodal Power VOC NOX CO CO2 O2 LFG Generator CS Calibration Span 60.00 350.00 950.00 23.78 24.58 Units ppm ppm ppm % % CV - Cylinder Value: VOC NOX CO CO2 O2 Low-Level 0.00 0.00 0.00 0.00 0.00 Mid-Level 40.00 200.00 500.00 10.74 10.95 High-Level 60.00 350.00 950.00 23.78 24.58 0 to 20% of Cal. Span 0.00% 0.00% 0.00% 0.00% 0.00% 40 to 60% of Cal. Span 66.7% 57.1% 52.6% 45.2% 44.5% 100% of Cal. Span 100.0% 100.0% 100.0% 100.0% 100.0% Cdir - Enter Actual Up-scale Cylinder Value Used To Correct Emission Concentration. CMA 40.00 200.00 500.00 10.74 10.95 Calibration Error Test Measured Concentration VOC NOX CO CO2 O2 Low-Level 0.00 0.11 0.46 0.18 0.10 Mid-Level 40.00 202.76 482.42 10.68 10.98 High-Level 60.00 349.71 945.35 23.81 24.55 Enter Up-scale Analyzer Response to be used during testing. ACE Eq. 7E-1 40.00 202.76 482.42 10.68 10.98 Low-Level 0.00% 0.03% 0.05% 0.76% 0.41% ppmdv Difference 0 0.11 0.46 0.18 0.1 Status Passed Cal. Passed Cal. Passed Cal. Passed Cal.Passed Cal. Mid-Level 0.00% 0.79% 1.85% 0.25% 0.12% ppmdv Difference 0 2.76 17.58 0.06 0.03 Status Passed Cal. Passed Cal. Passed Cal. Passed Cal.Passed Cal. High-Level 0.00% 0.08% 0.49% 0.13% 0.12% ppmdv Difference 0 0.29 4.65 0.03 0.03 Status Passed Cal. Passed Cal. Passed Cal. Passed Cal.Passed Cal. Pre-Test Sampling System Bias Initial Values VOC NOX CO CO2 O2 CO - Low-Level 0.00 0.70 0.60 0.10 0.00 System Bias. SBi - Zero Bias 0.00% 0.17% 0.01% 0.34% 0.41%± 5% of Span Difference 0 0.59 0.14 0.08 0.1 Pass or Invalid Run Passed Cal. Passed Cal. Passed Cal. Passed Cal. Passed Cal. CM - Up-scale Gas 39.30 194.30 461.50 10.80 10.80 SBi - Up-Scale Bias 1.17% 2.42% 2.20% 0.50% 0.73% Difference 0.7 8.46 20.92 0.12 0.18 Pass or Invalid Run Passed Cal. Passed Cal. Passed Cal. Passed Cal. Passed Cal. Raw Test Data Time Start Stop Test Date:8/10/2023 SO2 VOC NOX CO CO2 O2 NOX 23.0 48.7 611.54 10.7 8.6 CO 38.3% 13.9% 64.4% 45.0% 35.0% CO2/O2 Post-Test System Bias 7E-2 SB=(Cs - Cdir)/CS x 100 Final Values VOC NOX CO CO2 O2 CO - Low-Level 0.10 0.20 0.40 0.00 0.00 System Bias. SBi - Zero Bias 0.17% 0.03% 0.01% 0.76% 0.41%± 5% of Span Difference 0.1 0.1 0.1 0.2 0.1 Pass or Invalid Run Passed Cal. Passed Cal. Passed Cal. Passed Cal. Passed Cal. CM - Up-scale Gas 38.40 198.20 456.40 11.00 10.80 SBi - Up-Scale Bias 2.67% 1.30% 2.74% 1.35% 0.73% Difference 1.6 4.6 26.0 0.3 0.2 Pass or Invalid Run Passed Cal. Passed Cal. Passed Cal. Passed Cal. Passed Cal. Calibration Drift % of Span - D=ABS(SBf - SBi) Low-Level Drift 0.17% 0.14% 0.01% 0.42% 0.00% Response Spec. Difference 0.1 0.5 0.2 0.1 0.0 3% of Span Pass or Re-Calibrate Pass Pass Pass Pass Pass Up-scale Gas Drift 1.50% 1.11% 0.54% 0.84% 0.00% Difference 0.9 3.9 5.1 0.2 0.0 Pass or Re-Calibrate Pass Pass Pass Pass Pass LFG Generator Flow & Moisture As ft^2 Pbar Pq (static) Ps Avg Ts F CO2 - FCO2 O2 N2+C Md Ms 1.72 25.47 1.33 25.57 789 10.53 8.75 80.72 30.04 28.53 Y Cp Vm cf Vlc AVG Tm F Vm std Vw std Bws S Bws 414.9653 0.9920 0.81 37.716 96.80 71 31.666 4.556 0.1258 0.9990 0.999 Load - Megawatts Avg. √∆P's Vs Qsw scfh wet Qa acfm Qsd dscfh Heat Input Btu/hr Low Mid High 1.3093 118.77 265,454 12,243 232,062.52 Enert > #1 - Times Date Point No.∆P √∆P ts F tm F (in) tm F (out) Final Vf Initial Vi 1 1.30 1.140 790 85 66 922 846 76.2 2 1.40 1.183 788 86 53 769 759 10.1 3 1.50 1.225 789 86 51 626 623 2.8 4 1.60 1.265 789 86 51 940 933 7.7 5 1.80 1.342 787 87 52 6 1.90 1.378 787 87 52 7 2.10 1.449 788 87 52 8 2.40 1.549 790 89 53 9 1.40 1.183 788 89 54 10 1.50 1.225 789 89 54 11 1.60 1.265 790 89 54 12 1.70 1.304 791 90 55 13 1.80 1.342 789 90 55 14 1.80 1.342 787 15 1.90 1.378 787 16 1.90 1.378 788 17 18 19 20 21 22 23 24 Failed Bias Dialog Failed Drift Dialog Failed Cal Error Dialog Failed Bias Dialog LFG NOx CO VOC Failed Division of Air Quality Stack Test Review of Nodal Power VOC NOX CO CO2 O2 LFG Generator CS Calibration Span 60.00 350.00 950.00 23.78 24.58 Units ppm ppm ppm % % CV - Cylinder Value: VOC NOX CO CO2 O2 Low-Level 0.00 0.00 0.00 0.00 0.00 Mid-Level 40.00 200.00 500.00 10.74 10.95 High-Level 60.00 350.00 950.00 23.78 24.58 0 to 20% of Cal. Span 0.00% 0.00% 0.00% 0.00% 0.00% 40 to 60% of Cal. Span 66.7% 57.1% 52.6% 45.2% 44.5% 100% of Cal. Span 100.0% 100.0% 100.0% 100.0% 100.0% Cdir - Enter Actual Up-scale Cylinder Value Used To Correct Emission Concentration. CMA 40.00 200.00 500.00 10.74 10.95 Calibration Error Test Measured Concentration VOC NOX CO CO2 O2 Low-Level 0.00 0.11 0.46 0.18 0.10 Mid-Level 40.00 202.76 482.42 10.68 10.98 High-Level 60.00 349.71 945.35 23.81 24.55 Enter Up-scale Analyzer Response to be used during testing. ACE Eq. 7E-1 40.00 202.76 482.42 10.68 10.98 Low-Level 0.00% 0.03% 0.05% 0.76% 0.41% ppmv Difference 0 0.11 0.46 0.18 0.1 Status Passed Cal. Passed Cal. Passed Cal. Passed Cal.Passed Cal. Mid-Level 0.00% 0.79% 1.85% 0.25% 0.12% ppmv Difference 0 2.76 17.58 0.06 0.03 Status Passed Cal. Passed Cal. Passed Cal. Passed Cal.Passed Cal. High-Level 0.00% 0.08% 0.49% 0.13% 0.12% ppmv Difference 0 0.29 4.65 0.03 0.03 Status Passed Cal. Passed Cal. Passed Cal. Passed Cal.Passed Cal. Pre-Test Sampling System Bias Initial Values VOC NOX CO CO2 O2 CO - Low-Level 0.10 0.20 0.40 0.00 0.00 System Bias. SBi - Zero Bias 0.17% 0.03% 0.01% 0.76% 0.41%± 5% of Span Difference 0.1 0.09 0.06 0.18 0.1 Pass or Invalid Run Passed Cal. Passed Cal. Passed Cal. Passed Cal. Passed Cal. CM - Up-scale Gas 38.40 198.20 456.40 11.00 10.80 SBi - Up-Scale Bias 2.67% 1.30% 2.74% 1.35% 0.73% Difference 1.6 4.56 26.02 0.32 0.18 Pass or Invalid Run Passed Cal. Passed Cal. Passed Cal. Passed Cal. Passed Cal. Raw Test Data Time Start Stop Test Date:8/10/2023 SO2 VOC NOX CO CO2 O2 NOX 23.1 47.9 600.85 10.7 8.6 CO 38.6% 13.7% 63.2% 44.9% 34.9% CO2/O2 Post-Test System Bias 7E-2 SB=(Cs - Cdir)/CS x 100 Final Values VOC NOX CO CO2 O2 CO - Low-Level 0.10 0.50 0.30 0.00 0.00 System Bias. SBi - Zero Bias 0.17% 0.11% 0.02% 0.76% 0.41%± 5% of Span Difference 0.1 0.4 0.2 0.2 0.1 Pass or Invalid Run Passed Cal. Passed Cal. Passed Cal. Passed Cal. Passed Cal. CM - Up-scale Gas 38.20 199.90 451.10 10.70 10.70 SBi - Up-Scale Bias 3.00% 0.82% 3.30% 0.08% 1.14% Difference 1.8 2.9 31.3 0.0 0.3 Pass or Invalid Run Passed Cal. Passed Cal. Passed Cal. Passed Cal. Passed Cal. Calibration Drift % of Span - D=ABS(SBf - SBi) Low-Level Drift 0.00% 0.09% 0.01% 0.00% 0.00% Response Spec. Difference 0.0 0.3 0.1 0.0 0.0 3% of Span Pass or Re-Calibrate Pass Pass Pass Pass Pass Up-scale Gas Drift 0.33% 0.49% 0.56% 1.26% 0.41% Difference 0.2 1.7 5.3 0.3 0.1 Pass or Re-Calibrate Pass Pass Pass Pass Pass LFG Generator Flow & Moisture As ft^2 Pbar Pq (static) Ps Avg Ts F CO2 - FCO2 O2 N2+C Md Ms 1.72 25.47 1.33 25.57 790 10.57 8.77 80.66 30.04 28.58 Y Cp Vm cf Vlc AVG Tm F Vm std Vw std Bws S Bws 417.3990 0.9920 0.81 38.093 93.80 70 32.059 4.415 0.1210 0.9990 0.999 Load - Megawatts Avg. √∆P's Vs Qsw scfh wet Qa acfm Qsd dscfh Heat Input Btu/hr Low Mid High 1.3564 122.98 274,616 12,677 241,373.69 Enert > #1 - Times Date Point No.∆P √∆P ts F tm F (in) tm F (out) Final Vf Initial Vi 1 1.40 1.183 785 88 63 798 720 78.3 2 1.50 1.225 788 88 53 768 759 9 3 1.70 1.304 791 89 47 627 626 1.8 4 1.70 1.304 792 89 46 945 940 4.7 5 1.90 1.378 792 90 46 6 2.10 1.449 792 90 47 FT``` 7 2.20 1.483 793 90 47 8 2.30 1.517 793 90 47 9 1.60 1.265 786 91 48 10 1.50 1.225 787 91 49 11 1.70 1.304 787 91 49 12 1.80 1.342 790 91 49 13 1.90 1.378 790 91 49 14 2.00 1.414 791 15 2.10 1.449 790 16 2.20 1.483 788 17 18 19 20 21 22 23 24 Failed Bias Dialog Failed Cal Error Dialog Failed Drift Dialog Failed Bias Dialog