HomeMy WebLinkAboutDRC-2010-001422 - 0901a06880161449DENISO
MINES
January 20,2010
J>h
^c- X)[o -con^:^
Denison Mines (USA) Corp.
10S017th Street, Suito 9S0
Denver, CO 8026S
USA
Tel 130) 628-7798
Fax: 303 389-4125
denisonininea.com
Mr. Dane Finerfrock, Executive Secretary
Utah Radiation Control Board
Utah Department of Environmental Quality
168 North 1950 West
P.O. Box 144810
Salt Lake City, UT 84114-4810
Dear Mr. Finerfrock:
Re: White Mesa Uranium Mill - First Round of Interrogatories From Revievy of License Amendment
Reauest and Environmental Report for Cell 4B - Referenced Documents
Enclosed please find one (1) CD containing the White Mesa Mill Tailings Cover Design Report, prepared by
Titan Environmental, dated October 1996.
Please contact Harold Roberts at (303) 389-4160 with any questions or concerns
Yours very truly,
DENISON MINES (USA) CORP.
Meredith Goble
Records Admininstrator/Paralegal
cc: Robert D. Baird, PE - URS Corporation
End.
..-...---.-.---....._-_.--.--=55 55 5=-~Environtnental
TAILINGS COVER DESIGN
White Mesa Mill
Prepared For:
Energy Fuels Nuclearl Inc.
1515 Arapahoel Suite 900
Denverl CO 80202
October 1996
By:
TITAN Environmental Corporation
7939 East Arapahoe Roadl Suite 230
Englewoodl Colorado 80112
TABLE OF CONTENTS
LIS'f.OF FIGURES
LIST APPENDICES
1.0 SOIL COVER DESIGN
1.1 Radon Flux Attenuation
1.2 Infiltration Analysis
1.3 Freeze/Thaw Evaluation
1.4 Soil Cover Erosion Protection
1.5 Slope Stability Analysis
1.5.1 Static Analysis
1.5.2 Pseudostatic Analysis (Seismicity)
1.6 Cover Material/Cover Material Volumes
FIGURES
APPENDICES
REFERENCES
1
3
5
6
7
8
9
9
9
...........--_.-.-..-.-._-_.-.----=E E E=-':=~Environtnental
Figure
1
2
3
4
Appendix
A
B
C
D
E
F
G
H
LIST OF FIGURES
Reclamation Cover Grading Plan for Cells 2,3,and 4A
Reclamation Cover Grading Plan for Cells 2 and 3
Reclamation Cover Cross Sections and Details
Reclamation Cover Cross Sections and Details
LIST APPENDICES
Laboratory Test Data
Radon Calculation
Radon Flux Measurments
HELP Model
Freeze/Thaw Evaluation
Erosion Protection
Slope Stability
Material Quantities
....-...--_.-.....-
__E Ii E~';Environmental
Page 3
The following sections describe design considerations,complete with calculations performed and
parameters utilized,in developing the tailings impoundment soil cover to meet regulatory
requirements.
1.1 Radon Flux Attenuation
The Environmental Protection Agency (EPA)rules in 40 Code ofFederal Regulation (CFR)Part
192 require that a "uranium tailings cover be designed to produce reasonable assurance that the
radon-222 release rate would not exceed 20 pCi/m2/sec for a period of 1,000 years to the extent
reasonably achievable and in any case for at least 200 years when averaged over the disposal area
over at least a one year period"(NRC,1989).NRC regulations presented in 10 CFR Part 40 also
restrict radon flux to less than 20 pCi/m2/sec.The following sections present the analyses and
design for a soil cover which meets this requirement.
1.1.1 Predictive Analysis
The soil cover for the tailings cells at White Mesa Mill was evaluated for attenuation of radon
gas using the digital computer program,RADON,presented in the NRC's Regulatory Guide 3.64
(Task WM 503-4)entitled "Calculation of Radon Flux Attenuation by Earthen Uranium Mill
Tailings Covers".The RADON model calculates radon-222 flux attenuation by multi-layered
earthen uranium mill tailings covers,and determines the minimum cover thickness required to
meet NRC and EPA standards.The RADON model uses the following soil properties in the
calculation process:
•Soil layer thickness [centimeters (cm)];
•Soil porosity (percent);
•Density [grams-per-cubic centimeter (gm/cm3)];
•Weight percent moisture (percent);
•Radium activity (piC/g);
•Radon emanation coefficient (unitless);and
C:IPROJECTS\61 II-0011R16161I1.003[9!30/96]........_-_........-
_E Ii E~~~Environtnental
Page 4
•Diffusion coefficient [square centimeters-per-second (cm2/sec)].
Physical and radiological properties for tailings and random fill were analyzed by Chen and
Associates (1987)and Rogers and Associates (1988).Clay physical data from Section 16 was
analyzed by Advanced Terra Testing (1996)and Rogers and Associates (1996).See Appendix A
for laboratory test data results.
The RADON model was performed for the following cover section (from top to bottom):
•two feet compacted random fill;
•one foot compacted clay;and
• a minimum of three feet random fill occupying the freeboard space between the
tailings and clay layer.
The three layers are compacted to 95 percent maximum dry density.The top riprap layer was not
included as part ofthe soil cover for the radon attenuation calculation.
The results ofthe RADON modeling exercise show that the uranium tailings cover configuration
will attenuate radon flux emanating from the tailings to a level of 17.6 pCi/m2/sec.This number
was conservatively calculated as it takes into account the freeze/thaw effect on the uppermost
part (6.8 inches)of the cover (Section 1.3).The soil cover and tailing parameters used to run the
RADON model,in addition to the RADON input and output data files,are presented in
Appendix B as part of the Radon Calculation brief.Based on the model results,the soil cover
design ofsix-foot thickness will meet the requirements of 40 CFR Pmi 192 and 10 CFR Part 40.
1.1.2 Empirical Data
Radon gas flux measurements have been made at the White Mesa Mill tailings piles over Cells 2
and 3 (see Appendix C).These cells are currently covered with tlu-ee to four feet ofrandom fill.
Radon flux measurements,averaged over the covered areas,were as follows (EFN,1996):
Cell 2
Cell 3
1994
7.7 pCi/m2/sec
7.5 pCi/m2/sec
1995
6.1 pCi/m2/sec
11.1 pCi/m2/sec
C:\PROJECTS\61 11·0011R16161 I1.003[1011/96]....-..._-_...-..-........_-_.-.-.--=i i i:--=~Environmental
Page 5
Empirical data suggest that the random fill cover,alone,is currently providing an effective
barrier to Radon flux.Thus,the proposed tailings cover configuration,which is thicker,moisture
adjusted,contains a clay layer and is compacted,is expected to attenuate the Radon flux to a
level below that predicted by the RADON model.The field radon flux measurements confirm
the conservatism of the cover design.This conservatism is necessary,however,to guarantee
compliance with NRC regulations under long term climatic conditions over the required design
life of 200 to 1,000 years.
1.2 Infiltration Analysis
The tailings ponds at White Mesa Mill are lined with synthetic geomembrane liners which under
certain climatic conditions,could potentially lead to the long-term accumulation of water from
infiltration of precipitation.Therefore,the soil cover was evaluated to estimate the potential
magnitude of infiltration into the capped tailings ponds.The Hydrologic Evaluation of Landfill
Performance (HELP)model,Version 3.0 (EPA,1994)was used for the analysis.HELP is a
quasi two-dimensional hydrologic model of water movement across,into,through,and out of
capped and lined impoundments.The model utilizes weather,soil,and engineering design data
as input to the model,to account for the effects ofsurface storage,snowmelt,run-off,infiltration,
evapotranspiration,vegetative growth,soil moisture storage,lateral subsurface drainage,and
unsaturated vertical drainage on the specific design,at the specified location.
The soil cover was evaluated based on a two-foot compacted random fill layer over a one-foot
thick,compacted clay layer.The soil cover layers were modeled based on material placement at
a minimum of 95 percent of the maximum dry density,and within two percent of the optimum
moisture content per American society for Testing and Materials (ASTM)requirements.The top
riprap layer and the bottom random fill layer were not included as part of the soil cover for
infiltration calculations.These two layers are not playing any role in controlling the infiltration
through the cover material.
The random fill will consist of clayey sands and silts with random amounts of gravel and rock-
size materials.The average hydraulic conductivity of several samples of random fill was
calculated,based on laboratory tests,to be 8.87x10-7 crn/sec.The hydraulic conductivity of the
clay source from Section 16 was measured in the laboratory to be 3.7x10-8 crn/sec.Geotechnical
soil properties and laboratory data are presented in Appendix A.
C:\PROJECTS\6111.001\R1616111.00J[9/JO/96].....-....._-_......-
_E iii E:'::::'~~Environmental
Page 6
Key HELP model input parameters include:
•Blanding,Utah,monthly temperature and precipitation data,and HELP model default solar
radiation,and evapotranspiration data from Grand Junction,Colorado.Grand Junction is
located north east of Blanding in similar climate and elevation;
•Soil cover configuration identifying the number of layers,layer types,layer thickness,and
the total covered surface area;
•Individual layer material characteristics identifying saturated hydraulic conductivity,
porosity,wilting point,field capacity,and percent moisture;and
•Soil Conservation Service runoff curve numbers,evaporative zone depth,maximum leaf area
index,and anticipated vegetation quality.
Water balance results,as calculated by the HELP model,indicate that precipitation would either
run-off the soil cover or be evaporated.Thus,model simulations predict zero infiltration of
surface water through the soil cover,as designed.These model results are conservative and take
into account the freeze/thaw effects on the uppermost part (6.8 inches)of the cover (Section 1.3).
The HELP model input and output for the tailings soil cover are presented in the HELP Model
calculation briefincluded as Appendix D.
1.3 Freezeffhaw Evaluation
The tailings soil cover of one foot of compacted clay covered by two feet of random fill was
evaluated for freeze/thaw impacts.Repeated freeze/thaw cycles have been shown to increase the
bulk soil permeability by breaking down the compacted soil structure.
The soil cover was evaluated for freeze/thaw effects using the modified Berggren equation as
presented in Aitken and Berg (1968)and recommended by the NRC (U.S.Department of
Energy,1988).This evaluation was based on the properties of the random fill and clay soil,and
meteorological data from both Blanding,Utah and Grand Junction,Colorado.
The results of the freeze/thaw evaluation indicate that the anticipated maximum depth of frost
penetration on the soil cover would be less than 6.8 inches.Since the random fill layer is two
feet thick,the frost depth would be confined to this layer and would not penetrate into the
C:\PROJECTS\6111-00IIRI616111.003[9/30/96].....-...--_.......-
_E Ii E~';~Environlllental
....;-
Page 7
underlying clay layer.The performance of the soil cover to attenuate radon gas flux below the
prescribed standards,and prevent surface water infiltration,would not be compromised.The
input data and results of the freeze/thaw evaluation are presented in the Effects of Freezing on
Tailings Covers Calculation briefincluded as Appendix E.
1.4 Soil Cover Erosion Protection
A riprap layer was designed for erosion protection ofthe tailings soil cover.According to NRC
guidance,the design must be adequate to protect the soil/tailings against exposure and erosion
for 200 to 1,000 years (NRC,1990).Currently,there is no standard industry practice for
stabilizing tailings for 1,000 years.However,by treating the embankment slopes as wide
channels,the hydraulic design principles and practices associated with channel design were used
to design stable slopes that will not erode.Thus,a conservative design based on NRC guidelines
was developed.Engineering details and calculations are summarized in the Erosion Protection
Calculation brief provided in Appendix F.
Riprap cover specifications for the top and side slopes were determined separately as the side
slopes are much steeper than the slope of the top of the cover.The size and thickness of the
riprap on the top ofthe cover was calculated using the Safety Factor Method (NUREG/CR-4651,
1987),while the Stephenson Method (NUREG/CR-4651,1987)was used for the side slopes.
These methodologies were chosen based on NRC recommendations (1990).
By the Safety Factor Method,riprap dimensions for the top slope were calculated in order to
achieve a slope "safety factor"of 1.1.For the top of the soil cover,with a slope of 0.2 percent,
the Safety Factor Method indicated a median diameter (Dso)riprap of 0.28 inches is required to
stabilize the top slope.However,this dimension must be modified based on the long-term
durability ofthe specific rock type to be used in construction.The suitability of rock to be used
as a protective cover must be assessed by laboratory tests to determine the physical
characteristics of the rocks.The sandstones from the confluence of Westwater and Cottonwood
Canyons require an oversizing factor of25 percent.Therefore,riprap created from this sandstone
source should have a Dso size of at least 0.34 inches and should have an overall layer thickness
of at least three inches on the top of the cover.
C:\PROJECTS\61 I I-0011R16161 II.00J[9/JO/96].....-....--_.......-
_E ;E~~~Environfilental
Page 8
Riprap dimensions for the side slopes were calculated using Stephenson Method equations.The
side slopes ofthe cover are designed at 5H:1V.At this slope,Stephenson's Method indicated the
unmodified riprap Dso of 3.24 inches is required.Again assuming that the on-site sandstone will
be used,the modified Dso size of the riprap should be at least 4.05 inches with an overall layer
thickness of at least 12 inches.
The potential of erosion damage due to overland flow,sheetflow,and channel scouring on the
top and side slopes of the cover,including the riprap layer,has been evaluated.Overland flow
calculations were performed using site meteorological data,cap design specifications, and
guidelines set by the NRC (NUREG/CR-4620,1986).These calculations are included in
Appendix F.According to the guidelines,overland flow velocity estimates are to be compared to
"permissible velocities",which have been suggested by the NRC,to determine the potential for
erosion damage.When calculated,overland flow velocity estimates exceed permissible
velocities,additional cover protection should be considered.The permissible velocity for the
tailings cover (including the riprap layer)is 5.0 to 6.0 feet-per-second (ft.lsec.)(NUREG/CR
4620).The overland flow velocity calculated for the top of the cover is less than 2.0 ft/sec.,and
the calculated velocity on the side slopes is 4.9 ft/sec.Therefore,the erosion potential of the
slopes,due to overland flow/channel scouring,is within acceptable limits and no additional
erosion protection is required.
1.5 Slope Stability Analysis
Static and pseudostatic analyses were performed to establish the stability ofthe side slopes of the
tailings soil cover.The side slopes are designed at an angle of 5H:1V.Because the side slope
along the southern section of Cell 4A is the longest and the ground elevation drops rapidly at its
base,this slope was determined to be critical and is thus the focus ofthe stability analyses.
The computer software package GSLOPE,developed by MITRE Software Corporation,has been
used for these analyses to determine the potential for slope failure.GSLOPE applies Bishop's
Method of slices to identify the critical failure surface and calculate a factor of safety (FOS).
The slope geometry and properties of the construction materials and bedrock are input into the
model.These data and drawings are included in the Stability Analysis of Side Slopes
Calculation brief included as Appendix G.For this analysis,competent bedrock is designated at
10 feet below the lowest point of the foundation [i.e.,at a 5,540-foot elevation above mean sea
C:\PROJECTS\6111-00IIRI616111.003[9/30/96)...-...--_....-..-_E ;E=~~~Environmental
Page 9
level (msl)].This is a conservative estimate,based on the borehole logs supplied by Chen and
Associates (1979),which indicate bedrock near the surface.
1.5.1 Static Analysis
For the static analysis,a FOS of 1.5 or more was used to indicate an acceptable level ofstability.
The calculated FOS is 2.91,which indicates that the slope should be stable under static
conditions.Results ofthe computer model simulations are included in Appendix G.
1.5.2 Pseudostatic Analysis (Seismicity)
The slope stability analysis described above was repeated under pseudostatic conditions in order
to estimate a FOS for the slope when a horizontal ground acceleration of 0.1 Og is applied.The
slope geometry and material properties used in this analysis are identical to those used in the
stability analysis.A FOS of 1.0 or more was used to indicate an acceptable level of stability
unqer pseudostatic conditions.The calculated FOS is 1.903,which indicates that the slope
should be stable under dynamic conditions.Details ofthe analysis and the simulation results are
included in Appendix G.
Recently,Lawrence Livermore National Laboratory (LLNL)published a report on seismiC
activity in southern Utah,in which a horizontal ground acceleration of 0.12g was proposed for
the White Mesa site.The evaluations made by LLNL were conservative to account for
tectonically active regions that exist,for example,near Moab,Utah.Although,the LLNL report
states that"...[Blanding]is located in a region known for its scarcity ofrecorded seismic events,"
the stability of the cap design slopes using the LLNL factor was evaluated.The results of a
sensitivity analysis reveal that when considering a horizontal ground acceleration of 0.12g,the
calculated FOS is 1.778 which is still above the required value of 1.0,indicating adequate safety
under pseudostatic conditions.This analysis is also included in Appendix G.
1.6 Cover Material/Cover Material Volumes
Construction materials for reclamation will be obtained from on-site locations.Fill material will
be available from the stockpiles that were generated from excavation of the cells for the tailings
facility.If required,additional materials are available locally to the west of the site.A clay
material source,identified in Section 16 at the southern end of the White Mesa Mill site,will be
C:IPROJECTSI6111-0011R1616111.003(9/30/96)~--_.......-_E Ii E~":';Environfilental
Page 10
used to construct the one-foot compacted clay layer.Riprap material will be taken from on-site
sandstone,located at the confluence of Westwater and Cottonwood Canyons.
Material quantities have been calculated for each of the components of the reclamation cover.
Volume estimates were made for the two soil cover design options,as follows:
•Option 1:an integrated soil cover which incorporates Disposal Cells 2,3,and 4A,and
•Option 2:a cover which includes Cells 2 and 3,where Cell 4A tailings have been excavated
and placed in Cell 3.
The quantity ofrandom fill required to bring the pond elevation up to the soil cover subgrade and
construct the final slope was not calculated.This layer will be a minimum of three feet in depth
and is dependent on the final tailings grade,which is not known.
For Design Option 1,construction will require the following approximate quantities ofmaterials:
Material Volume (cubic yards)
Clay 365,082
Random Fill 737,717
Riprap (top ofcover)82,762
Riprap (side slopes)41,588
For Design Option 2,construction will require the following approximate quantities ofmaterials:
Material Volume (cubic yards)
Clay 289,514
Random Fill 585,334
Riprap (top ofcover)64,984
Riprap (side slopes)35,885
Material quantities calculations are provided III Appendix H as part of the Tailings Cover
Material Volume Calculation brief.
C:\PROJECTS\6111-0011R1616111.00J[9/JO/96]~--_..-..-
_!I !~~~Environtnental
Figures
APPENDIX A
Laboratory Test Data
......._-_.......-........_-_.-.----=E E E:-':::~Environmental
-12-
Table 3.4-1
Physical Properties of Tailings
and
Proposed Cover Material
Material Type
Atterberg
Limits
LL .IT
Specific
Gravity
%Passing
No.200
Sieve
Maximum
Dry Density
(pef)
Optimum
Moisture
Content
Tail i ngs
Random Fi 11
28
22
6
1
2.85
2.61
46
48
104.0
120.2
18.1
11.8
Note:Physical Soil Data from Chen and Associates (1987).f~@
.........I .
I • I • • • •••••I •••••••••I • ,•••If ••,-•••••
•••,•••, • I ••I ••••••
••••I ••••j • ,••I ••••
18 I iii I I I 'I
,••,•••••1 • I I • ,••t •
,••,•••','I •••••••••• • I t'l ••I 11 ••••I I •••
, • , I •••••••••I ••••••,••I ••••I I I • I I • I I • 0 I •••I • I ••••••If.I •••••••I •••••••••
1614121086
I ••••••I ••••I ••••I ••••••I • f , • I I I I ••I I J ••I I I • I • I I •••'•••••
•••••••••I • I •••I •••\•••••••••,t'•••I ••••
•••••••••I ••••I ••••I •••I I ••••l ••,••••••
••••It •••I I • I ,••I ••I • I I • I •••I I ••••I • I I •
•••••••••I •••••••••,I ••I •••••1 •••••••••
42
. . . • • . ,••••,•..•I .••.••..•I I I , I I .
••I ,I ••••"""••t ••I ••••t I I I I ••I I I I • I I ••I •••I I I •••..,I I • I .,•••••••'I
, • ,•••,••\••I ••••••
.......'j'., ,.....,.
• • • I •••I ••••'·••
,(.~,.
14 1 \1 •·,··1 • •••..••• _1 • • •·1 •..•..•,".
It.••t t •••••t • • • • • •••I'
I
..........
.:::.::::.:::.:::.:::::.::::::::::::::::·1':::..:·::
• • • • •••,........• I •••I •••fl.......••••••••f I I • I ••I ••f ••••••••••••••••
16 I·..'.":"':''':''':":''':''1"':'":''':''':''':''':''':''':''':'''"':"':'":''':''':''':''':''':''':'''"':'":''':''':''':'':''':''':''':'''"':"':":'":''':'':''':'':'':''''":'':''':''::'':''':'':''':''':'''''':''':''':''':''':''':''':''':''':'''1'':"':"':''':":"':"':"':"':'"
\
...... .............'.
•••••••• • •••I •I ••••
I
............. .
•••••••••••I ••I •••••
••••••""I •• ••••••I •
I • •••• • • ••• ••"'•I •... .. ..I'I.....
···C~t.Y·'MATERI!t·...~.
• ,,..,.-I ••••••••,.•......S.lT ~1'.. .... .
• I • •.••••I I ••,••••I • ••••••••••'.
• •••• I • f •t I .,I ••••I ••..,.••••· I................. .
, • , , I , , "••••••,..••••I I I ••I I I ,1"•,.•••I • I I • I •••••••"••I ••I I ••",I I I ••••
, • • • • • ••••••f I ,••I ••••It.,.•fl.I • I I ••I I I I I I ••••I • I •••••I , • •••I •••••I ••10 1··..·..·..· ·..· •·,· • · ·..•"::-t.."..·········1·········,JsJI ,..........,.:::::::::I:::::::::::::::::::::::.::::..:::.:::::::::::::::::::::::::::::::· . . . . . ....,.....RAN 'OM Fl'·t.·. .· I.........,,..'L.• .•••••.•'1'.· '.,.....SIT'E '+2"'3'&5'. . . . .... .
, • , , • , • , , , • • • • • • •••••I • • • •.'•••••••••• I , • •,.,.__' •• I • I • •••.,..,.",
• . : : : : : ::I : ::::: :::::::::::::,::::::::::::::::::.:::::::::::::::::I ::: : : : : ::
8 I I
o
12 1..L:..r;..L.._i -····..t·,~I __ I 1 -__•··,.·•..•••,.
~
I-ZWI-Zoo
W
0:;:)
I-(f)
o
~
DATA FROM CHEN &ASSOCIATES
TENSION.BAR
SUMMARY OF CAFILLARY tv1 0ISTURE
RELATJONSHIP TEST RESULTS
WHITE MESA PROJECT...............,.....FIGURE 3.5-1 ,..\
I
I-o
I
24 :.i, ,I . . ... . ....,I • • • •••• I ••••I ••I •••t:.••••to.• • • •••••••,••••I ,..·'1',"",.,.,,,....,'.. ...,..,.,I ,
••••••••,••,••,••,••••••••••••••I ••••••••••••••••••••••••••••••"""
• t • , • , ,t....•..,•.,..•....•••••••••I....t'.• •••I.........!,.,
· . , , , . , . ,i • ,..•...'••..,••,..,•.•••',•••"••,..,••••',.."••,.".I ' , . ...", , , '..\'. , , ,,.. ,,.,.",.,,.,,...',.',.." !,...'·,....,',.'..,..,.,.",.,,.,.,."./,,.,
22 1',":''':''':''':''':''':''':''':''''''':''':''':''':'''::..,::::::::.,.::::::..::~..~..:..:_.:::~..:~~.~.~..~~..::.~..:..~.~..~:~..::..~:::::"..,.::::,..::::....,.,../,,.. , , ,'I','.'...... .':j1:.'::.:::::::::::::::::::::<:::::::::::::::i:::·..,.,...,........,I ..,..,
20 I·..•...••.•...•·····.···.···.·.··1··:··:···::-:-.···.···.···...::::..•...:•....-.··:--·-----·:t-..--t--..--·::··::-:..·..·---:-:-::--::-::.··I·.•...•...•...•...•...:...•...•...•..
:::::::::.":::::::::::::::::::::::::::":..:.......::::::::::::1:::::::::·.., , I ....,...,...CL;A.,'Y.'.ATEEiIAL '... .
, . , , . , I ..••,....................,.SITE '#;4 , . . ... .,'1', .
18 ,..:..·:..:..·:·..:..·:..·:..·:..·:..·1·:..·:..·:..·:·..:..·:..·:..·:..·..·(.:.....:...:...:...:...:...:..."'.:...:...:...:...:...:...:...:..:....":".:.":".:,,.:..:.,,:---:...:.,,:..:>:...:---:...~..:...:...:...".:".:---:.":".:".:".:".:...:."...:...::".:---:.
• • • • I • • • I •••••••I'••••••••••••••
• • • I •••:t.t'• • • ••••••••••••::::::~:::::::
• • I • I ••• I ••••••t I •••••I •••••••••••••••••••
• • • • ••••••••••••••••••••I ••I I •••••••••••••
•I I ••",•I I I I •I •I • I ••••I I I I I I I I I I "'I •••I •••
I • I I •I.I.'I •I •••••••I • I I I •••I I •I • I .,••••••
• • I I , I I I'I • I •I ,.•I ••••••I •••I ••I .,.'.,.,••
16 1":'·':"·:"':"':"':''':''':''';'''1''':''':''':''';''';'";''':''';''';'''"';"':''':''':''':'':''':''':''':'''\''':''':''':''':''':';''':''':":'""';'":''':''':''':'':''':''':''':'''...:...:...:.:...:...;...~.;...:.......:...:...:...:...;...:...:...:...:...''';''':''':''':''':''':''':":"':'"
1:::::::;:::::::::.::::.::!:::.:!!::!:.!!:::!:!!):!:
~
r-:z~zoo
W
0:~f-
(f)
o
2
14 o 2 4 6 8
TENSION,BAR
10 12 14 16
DATA FROM CHEN &ASSOCIATES;,
SU~MARY OF CAPH-l-ARY MOISTURE
RELATIONSHIP TEST RESULTS
WHITE MESA PROJECT
&•••.•-"'-•••
FIGU~.E 3.5.-g
i,--""I
I
I
I
I
I
~
I
SECTION 6
ROGERS AND ASSOCIATES ENGINEERING
CORPORATION
Letter Dated March 4,1988
Letter Dated May 9,1988
Radiological Properties
We have completed the tests ordered on the four samples shipped to JS.
The re~ults are as follows:
The samples will be shipped back to you in the next few weeks.If you have
any questions regarding the results on the samples please feel free to call.
Rogers &Associates Engineering Corporation
0.39
0.56
0.40
0.75
0.48
0.76
0.63
0.80
Saturation
C8700/22
13.2
19.1
6.5
12.5
8.1
12.6
15.4
19.3
1.45
1.44"
1.85
1.84
1.85
1.84
1.65
1.65
3Diffusion(g/cm )
Coeffic.Density Moisture
March 4,1988
Post Office Box 330
Salt Lake City,Utah 84110
(80l)263-1600
Radium Emanation
pCi /9m Fraction
981±4 0.19±0.01 2.0E-02
8.4E-03
1.6E-02
4.5£-04
1.6E-02
1.4E-03
1.1E-02
4.2£-04
R
A
E
Sam;1le
Site #4
Composite (2,3,&5)
Site #1
Tailings
Dear Hr.Sealy:
Mr.C.O.Sealy
Umetco Minerals Corporation
P.O.Box 1029
Grand Junction,CO 81502
IIi.
tIA
••..
-'..
•
Si ncerely,
~If~
Renee Y.Bowser
Lab Supervisor
III
•
RYB/b
l
•515 East 4500 South·Salt Lake City,Utah 84107
If you have any questions regarding these results please feel free to
call Dr.Kirk Nielson or me.
The tests for radium content ar)d radon emanation coefficient in the
following sdmples have been completed and the results are as follows:
C8700/22
0.19 +0.04
0.20.+0.03
0.11 +0.04
Radon
Emanation Coefficient
May 9,1988
Post Office Box 330
Salt Lake City,Utah 84110
(801)263-1600
Radium (pCi/g)
1.9 +0.1
2.2 +0.1
2.0 +0.1
~ogers &Associates Engineering,Corporation
Sample
Random (2,3 &5)
Site 1
Site 4
Si ncerely.
~~~
Renee Y.Bowser
Lab Supervisor
R
A
E
RYB:ms
Dear Mr.Sealy:
Mr.C.O.Sealy
UMETCO Minerals Corporation
P.O.Box 1029
Grand Junction,CO 81502
-I."1
I
I,
l
II
~
a-
M
•,
.~;:I
515 East 4500 South·Salt Lake City.Utah 84107
833 Parfet Street
Lakewood,Colorado 80215
(303)232-8308
ATTERBERG LIMITS TEST
ASTM D 4318
CLIENT
BORING NO.
DEPTH
SAMPLE NO.
SOIL DESCR.
TEST TYPE
Plastic Limit
Determination
Titan Env.
UT-1
ATTERBERG
1 2 3
JOB NO.2234-04
DATE SAMPLED
DATE TESTED 7-25-96 WEB,RV
Wt Dish &Wet Soil
Wt Dish &Dry Soil
Wt of Moisture
Wt of Dish
Wt of Dry Soil
Moisture Content
3.34
2.96
0.38
1.05
1.91
19.90
4.06
3.57
0.49
1.11
2.46
19.92
3.42
3.03
0.39
1.06
1.97
19.80
Liquid Limit
Determination
Device Number 0258
Number of Blows
Wt Dish &Wet Soil
Wt Dish &Dry Soil
Wt of Moisture
Wt of Dish
Wt of Dry Soil
Moisture Content
Liquid Limit
Plastic Limit
Plasticity Index
103.1
19.9
83.3
1
39
12.18
6.64
5.54
1.10
5.54
100.00
2
27
10.42
5.67
4.75
1.06
4.61
103.04
3 4 5
18 14 9
10.92 12.33 10.06
5.87 6.53 5.34
5.05 5.80 4.72
1.06 1.10 1.08
4.81 5.43 4.26
104.99 106.81 110.80
Atterberg Classification CH
Data entry b~~
Checked by:_~~~=
FileName:
NAA Date:7-26-96
Date:1 r l<f)-q~
TIGOUT1 ADVANCED TERRA TESTING,INC.
112
111
110
109
108
C 107(l)
C0 1060
(l)5 105V;·0 104~
103
102
101
100
99
Atterberg Limits,Flow Curve
•.UT-1
•~
~~
""""""."",
~
~
"'"'"""'-~
~
~
".
Number of BloWS
PLASTICITY CHART
••UT-1
25
/
/A /
/V V~/'
V ~v'/OH
//V
/~\~<:-t-<V
/CLorCL //'
.//./
/<AU r"J
//
././"'L ~L
Cl-ML
V
100
80
x(l)60uE
C·0
~m 40Q
20
o
o 50
liquid limit
l...Classification I
100 150
CLIENT:
PI")RING NO.
PTH
SAMPLE NO.
Titan Env.
UT-1
COMPACTION TEST
ASTM 01557 A
SOIL DESCR.
DATE SAMPLED
DATE TESTED
JOB NO.2234-04
7-25-96 RV
Moisture determination
1 2 3 4 5
Wt of Moisture added (ml)100.00 150.00 250.00 350.00 450.00
Wt.of soil &dish (g)384.26 393.92 291.42 244.20 281.17
Dry wt.soil &dish (g)350.60 355.61 251.40 202.69 225.04
Net loss of moisture (g)33.66 38.31 40.02 41.51 56.13
Wt.of dish (g)8.01 8.34 8.31 8.29 8.43
Net wt.of dry soil (g)342.59 347.27 243.09 194.40 216.61
Moisture Content (%)9.83 11.03 16.46 21.35 25.91
Corrected Moisture Content
Density determination
Wt of soil &mold (Ib)14.20 14.49 14.68 14.59 14.46
Wt.of mold (Ib)10.36 10.36 10.36 10.36 10.36
Net wt.of wet soil (Ib)3.84 4.13 4.32 4.23 4.10
.wt of dry soil (Ib)3.50 3.72 3.71 3.49 3.26
......f Density.(pet)104.89 111.59 111.28 104.57 97.69
Corrected Dry Density (pet)
Volume Factor 30 30 30 30 30
~'ta entered by:RV Date:7-26-96
.ia checked by:~Date:--l:1l,'tb
FileName:TIPRUT-1 ADVANCED TERRA TESTING,INC
Proctor Compaction Test
"UT-1
403020
Moisture Content (%)
10
I
-\
-\
~.\
I-\
1\Zero Air Voids CurrJe
~\...~36TeportediJe,uvv
I-
~
l-f ~\
-/0 ~\--I ~-
I -+-~--~I
f-j
I i
"'"l-
I I \85
o
90
95
100
130
135
140
125
120
C-O
0..115.........
>---'iiic
<D
0 110c:-
O
105
-Best Fit Curve o Actual Data
-Zero Air VoidsCurve @ SG:::2.70
OPTIMUM MOISTURE CONTENT =13.9 MAXIMUM DRY DENSITY =113.5
ASTM 0 1557 A,Rock correction applied?N
ADVANCED TERRA TESTING,INC.
CLIENT
PERMEABILITY DETERMINATION
FALLING HEAD
FIXED WALL
Titan Environmental JOB NO.2234-04
BORING NO.
DEPTH
SAMPLE NO.
SOIL DESCR.
SURCHARGE
UT-l
Remolded 95%Mod Pt.@ OMC
200
SAMPLED
TEST STARTED
TEST FINISHED
SETUP NO.
7-28-96 CAL
8-7-96 CAL
1
MOISTURE/DENSITY BEFORE AFTER
DATA TEST TEST
wt.Soil &Ring(s)(g)386.9 404.5
Wt.Ring(s)(g)93.0 93.0
wt.Soil (g)293.9 311.4
Wet Density PCF 122.3 120.5
Wt.Wet Soil &Pan (g)302.4 319.9
wt.Dry Soil &Pan (g)266.2 266.2
wt.Lost Moisture (g)36.2 53.8
wt.of Pan Only (g)8.5 8.5
wt.of Dry Soil (g)257.7 257.7
Moisture Content %14.1 20.9
Dry Density PCF 107.2 99.7
Max.Dry Density PCF 113.5 113.5
Percent Compaction 94.4 87.8
ELAPSED BURETTE BURETTE PERCOLATION RATE
TIME READING READING FT/YEAR CM/SEC
(MIN)hl (CC)h2 (CC)
0.2
2599 10.8 10.8 0.14 1.4E-07
1427 14.2 14.2 0.09 8.4E-08.
1440 16.8 16.8 0.07 6.5E-08
1440 18.6 18.6 0.05 4.6E-08
1440 20.2 20.2 0.04 4.1E-08
1440 21.6 21.6 0.04 3.7E-08
1469 23.0 23.0 0.04 3.6E-08
1440 24.4 0.04 3.7E-08
Data Entered By:
Date Checked By:
Filename:TIFHUTl
NAA
~
Date:
Date:
8-8-96
~e-~
ADVANCED TERRA TESTING,INC.
Rogers &Associates Engineering Corporation
Post Office Box 330
Salt Lake City,Utah 84110-0330
(80l)263-1600 •FAX (801)262-1527
September 3,1996
Pamela Anderson
Titan Environmental Corporation
7939 E.Arapahoe Rd.,Suite 230
Englewood,CO 80112
Dear Ms.Anderson:
C9600/9
Enclosed are the results from the radium content,specific gravity,and radon
emanation and diffusion coefficient measurements that were performed on the
sample sent to our laboratory.We will be returning the sample within the month.
Ifyou have any questions orif we can be of further assistance,please calL
Sincerely,;?;~g.1~
Scientist tJ
515 East 4500 South •Salt Lake City,UT 84107-2918
Additional Offices in:Idaho Falls,ID •Santa Fe,NM •Washington DC
Report Date:
Contract:
Rogers &Associates Engineering Corporation
REPORT OF RADON DIFFUSION COEFFICIENT MEASUREMENTS
(TIME-DEPENDENT DIFFUSION TEST METHOD RAE-SQAP-3.6)
913/96
C960019
By:BCR
Date Received:,_-----'S<L..<I9'-"<6
Sample Identification:Titan Environmental
Radon Diffusion Specific
Moisture Density Coefficient Saturation Gravity
SampleID (DryWt.%)(l!icm3)(cm2/s)(MpfP)(l!icm3)
UT-1 14.5%1.72 9.1E-03 0.89 2.39
RAE
Post Office Box 330
Salt Lake City •Utah 84110
(801)263·1600
Rogers &Associates Engineering Corporation
REPORT OF RADIUM CONTENT AND EMANATION
COEFFICIENT MEASUREMENTS
(LAB PROCEDURE RAE-SQAP-3.1)
Report Date:913/96
Contract:C9600/9
By:BCR
Date Received:8/96
Sample Identification:TItan Environmental
Moisture Radon Emanation Radium-226
SampieID (Dry Wt.%)Coefficient (pCi/g)Comments
UT-I 14.6%0.22 ±0.04 1.5 ±0.3
RAE
Post Office Box 330
Salt Lake City'Utah 84110
(801)263-1600
;:chen and associates,inc ..
CONSULTING ENGINEERS
roll L fOONCM,1lOt(
EHGIHHIIN'
~S.ZUNI DENVER,COLORADO a022J ~JI7«-7105
1P2'(EAST ARST STREET •CASPER,WYOMING IU01 •~712J.(.-212"i
SECTION 2
Extracted Data From
SOIL PROPERTY STUDY
EARTH LINED TAILINGS RETENTION CELLS
WHITE MESA URANIUM PROJECT
BLANDING,UTAH
Prepared for:
ENERGY FUELS NUCLEAR,INC.
PARK CENTRAL
1515 ARAPAHOE STREET
DENVER,COLORADO 80202
Job No.16,406 July 18,1978
TA8LE i
SUMMARY or LABORATORY TEST RESULTS
Page I 0'2
NATURAL MaxlmU"O Opt ItnU!I ATTE~'E~C LIXITS CRAOATIOH ANALYSIS ~CMOLDED PE~MEA8ll1 TY
Ten IMpth Dry !xolstur.Speclfl.S<>II
Hole (Ft.)Moisture Dry Dens Ity Conteot LI qu Id Plitt relty X&><Imln puslng L.u than Dry /'00 Isture Cr-vlty Ty"..
Con ~int Oensl ty LImit It·d.X SIze )f200 2M o..nt Ity Cont.nt 't./yr.ern./so••
I'/...(o.n (oef)IX)('l.l 'l.l (X)•1',(.)(pet)('l.l
2 0·5 11].5 10.8 20 3 #16 S8 19 ,11_'16 •.4 0.57 5.5xIO·7 S~ndy SII t.
3 7·8 7.2 21 6 1/16 62 Sandy Crarey
I~.l 18.S 33 /3/4 In.S6 8.2",0-8 5lIt'
5 7:\·10 8 12 '102.I 22.0 0.cA5 2.65 C~lcar~us
25 ]1116 .77
SII ty Clay
6 1-2 10.)Sandy CI~yey,S/I t
6 8:\-9 6.I 27 /8 1/4 70 S~ndy CI~y
8 5-5+I). I
HP 3/4 In.62 C~Ic.,oou,
Sandy Slit
9'0-1 8.I HP 1116 53 Sand -SIIt
10 4-6l 24 10 #4 73 Sandy Clay
/I 51-6:!14.0 26 6 #16 65 Slitston.....
'S9 6.6xI0-8 CIa.,.,tone
12 2-5 101.0 20.6 S3 ,/35 #16 88 95.0 IB.3 0.068 2.67 \loathered
Claystone
13 7-8 13.I 39 /13 liB B4 Cal c"00'"SII t Clay
14 1-2 19.)4c .'21 114 89 \loathe red
.26 /1,2"'0·B 2;64
CI"'I,tol\O
15 I:!-41-106.8 19.0 8 3/8 In.65 2]103.4 18.0 0.012 Mod.Calcarec
Sandy ClAy
17 2-3 I1.4 19 4 #8 S9 S~ndy SIlt.
t19 0·3 II].5 12.8 23 6 #16 ]0 109.9 12.4 0.035 3.4xI0·8 Sandy CI~yey
26 /
.Slit
22 1-2 13.2 10 1/4 73 Sandy Clny
12)1-)48 ./24 #30 ,87 \leathered
Claystone
;23 6-3 61 •/30 1130 96 Clayston.
,15 1-Jt I).)26 /9 114 57 Sandy CI.y
,46 41-5 '5.)41 /20 1/4 91 Veathered.Claystone
~l 0-2 12.7 28/10 3/8 In.72 'f
Sandy Clay
2-3 8.5 19 2 1/16 59 Sanely S/I t
32 8.8:!5.6 23 6 #30 73 Sondy CI~yoy
sri t
)7 0-4 118.8 11.5 23 5 #8 ]2 110.5 11.5 0.63 6.,)(10'7 Sondy C,ayey
SI It
38 5-7 111,0 16.7 29 /14 3/8 In.69 102,4 17.9 0.0'"4.~)(ro-~SdI\uy Clay
40 4-S!,10.0 16,2 26 .I 9 #8 6.4 27 106 4 16 4 o 017 I ;.In-,~c Sandy Clay
.-
TMLE
SU~Y OF lA80~~TO~Y TEST ~ESULTS
Pa90 2 0 I 2
NATURAL Max ImU'll Opt 1ll'lU1!ATTE~I[~C LIMITS C~AOATIOH ~~ALYSIS HMOLO[O ~E~M£M ILI rr
Test Depth Dry 1'01 sture Spoc/flc S¢II
Hole (F t.)l'<>Istur.Dry o.nslty Cont ellt LIquId Pia'Ilelty /WllinU'll pullng Ltll In.."Dry Mol Iturt CroyIty Type
C~ntont Oen,;~y 1%\
LIm It tnde.SIlO /1200 2"«~llty·Contont (t.lyr.",•./sH.
(:'l lod locfl 1%1 IXI (~l •(X)(per)(Xl
~~;9-9i 6.8 22 8 3/8 In.60 Sandy Clay
~2 13i·I~i 7.6 26 /10 3/8 In.13 Sandy Clay
~3 I1-12 12.I ~I /22 II~86 Claystone
~J 131·16+110.0 16.9 .4a /2~3/8 In.8S 44 10~.I IS.8 O.02~2.3.10·S 2.62 Claystone
lfll 6H 7.5 30 /11 3/8 In.•79 Calcareous
S.ndy Cloy
~6 0-2 12.3 22 6 1116 76 Sandy Clayoy
vte 30 ./
SII t
5·H 9 3/8 In.65 S.ndy Clay
v<9 5·7 110.7 15.6 25 /9 1116 71 105.2 I).9 0.33 J.2xIO·S Sandy Clay
---<9 14-15 28 ,I'5 118 55 C.lcareous
Sandy Silt
5/'0-2 12.I 2J 9 /I~.6~Sandy Clay
55 Hr 7.8 28 ,/I~/130 71 .s andy Clay
91·IOi 28 I 13 /14 71 Sandy Cley5S
v(a 5]-6 12.5 35 ./II #4 75 ~andy.Siltylay
61 0-I I I.5 2I ~#16 75 Sandy Silt
62 II·lit 8.I NP I In.34 Calcareo\l'
Sand t Si It
6;~·6 30 ./I~liS 68 S."dy Clay
65 1-2 9.0 NP 1116 ~4 Silty Sand
68 7j·8 8.6 2s1 13 #S 67 Sandy Clay
70 31.41 16.4 27 ~It In.46 Celeareoul
Sand t Silt
72 0-2 12.2 22 8 /116 59 Sandy Cley
10-II 12.4 41./25 /14 75 \leatnered
75 Cleyston<
75 12- I~~S ,I'22 1116 93 Claystone
1,110,1,06
TABLE II
LABORATORY PERHEA81LITY TEST RESULTS
Compaction
./'-...
Sample I Sol I Type I (Dry Holsture %of'Surcharge I Permeabll r ty
Dens I ty Content ASTH 0698 Pressure
(pef)(t)(ps f)(Ft/Yr)(em/
TH 2 ~0'-5 1 Sandy SII t III.6 16.4 95 500 0.57 5.5xl
TH 5 @nl-IO'Calcareous Silty Clay 102.I 22.0 101 500 0.085 8.2xl
TH 12 ~21 -5 1 ~oathered Claystone 95.0 18.3 911 I 500 I 0.068 6.6xll
Til 15 e ]!1-4!'Calcareous Sandy Clay 103.4 18.0 97 500 0.012 1.2xl (
TH 19 g 0'-3'Sandy,C}ayoy SIlt 109.9 12.4 911 500 0.035 3.IIX ](
TH 37 g 01-4'Sandy,Clayey SIlt 110.5 11.5 93 500 0.63 6.1xl (
Ifl 38 g 5'-7'Sandy Clay 102.4 17.9 92 500 0.041 II.Ox 1(
TIl 40 g ,,1-5+'Sandy Clay 106.4 16.4 97 500 0.017 I.6x 1(
Til 43 e 13!-16!'Claystone 104.I 15.8 95 500 0.024 2.3x 1(
Til li9 e 51-7'Sandy Clay 105.2 13.9 95 500 0.33 3.2x 1C
TABLE I II
RESULTS OF ATTER8ERG LIHITS
Job NO.16,'lu
SAMPLE
2 (.iJ a -5'
5 (al 7J -la'
15 (al 1t _Ir!·,
19 (al 0-3'
26 (al Irl-S'
38 (al 5 -7'
PERCENT ATTERBERG LIHITS
SOiL TYPE PASSING II qu Id PlastIc ShrInkage SHRINKAGE
NO.200 lIml t lim!t lim!t RATIO
SIEVE (%)(%)(%)
Sandy SI It 58 20 17 17.1,81
Calcareous SIlty Clay 56 33 25 25 J.62
Calcareous Sandy Clay 65 26 18 17.5 1.76
Sandy,Clayey SlIt 70 23 17 18 !.80
Weathered Claystone 91 41 2I 12 1,90
Sandy Clay 69 29 15 14 J.89
chen and associates,inc.
CONSULTING ENGINEERS
SOil L fOUNDATION !M S.ZUNI
ENGINEERIJiG
DENVER,COLOP.ADO 8022J
SECTION 3
Extracted Data From
J0317"-'-7105
Jo~No.171130
SOIL PROP:::??f SillDY
PROFDSill TAILn~GS RE7ENTIa~CELLS
YdUTE I-!ESA lBl,i-:IL1·i PROJEcr
BlANDING,liTJlR
Prepared for:
~ERGY FUELS NUCLEAR,INC.
1515 ARAPJI_'-10E STREET
D-~"VERI cx)LOIW:X)80202
January 23,1979
Job No.1'/,130
Page I 0 f 3
CHEN AND ASSOCIATES
,TABLE I
SUMMARY OF LAElORAT'ORY'TE,ST RESULTS
.--'-.
II AT URAL NATURAL DRY ATTERBERG LIMITS UNCONFINED TRIAXIAL SHEAR TESTS PERCENT
HOLE DEPTH MOISTURE DENSITY L10UID PUSTICIT'l'C.OMPRESSIVE DEVIATOR CONFINING PASSING
(F E ET)SOIL TYPE
(·I.)(perl'LIllI T IIi 0EX STREllGTH STA ESS PRESSURE NO,200
("I.)(·1.)(p SF).(p SF)(P SF).Sf EVE .-
__L~__0-1 _._lr.!2..._21 2_,__7_8 _._~,~.!1.cI.'i~lL~_.___._____.--_._------9.j,_-_IL _'!!,._4.__NP ..26 ..~.r_Lt.Y,J~.~®.-.2~_~L-.__.----.,-
--1.7 7_~L=-~8,6 30 15 --1_1_2.£l.0!IY_~L~
79 0-1 1,.I 20 5 83 .2P..n_(~I::.~J_l.t_._.._____
5 -5tL 5.5 NP I __11)_•..CpJ <':~.C~ld.~....~_q.n (N...~J .tll
110 Lf.5 -7 39 20 ___7JJ__~oJ..c_a rc o~~_~.'"-r:~L ..~.L~-_.I
[J ..8.5 10.1 1,0 20 86 \.fcnthercd claystone,-..-----_._".........-.-
81 3 ..I,6.3 26 8 61,..S.il.l'y 1._S.~r:..~Y..~1.~'y_.__~---------_.-.
83 I,_6 21,?.61,_~~n~I.I:l .~lC1.'i~.y_.~.Ul_._--_."
8LI 0-2 18 2 __..~5__..__?!:ndy.s,I.~t....__...._.__--'-9 -...9.5 2.7 NP }.]_...?IJty...s.Jf}~.___.___
86 8 -8.5 2.6 NP 12 SAndstone--._..-._-..............._-.......-.._-
87 0-1 3.1 16 I 61 _~~~.c!y'_~,I..I..S ..__._._.__.
89 o ::3 2.1_-5 66 s<3n.c!y _.~.LH.___._...._-
90 8 -8...5-_12.,9 35 15 --61 ..~\:Ie <l.~~<;r.c 9.'7.1.9Y~~,.()..n~._
92 0-1 5.9 21 5 80 Si3ndy'.:.f,~t .__,,__•___.-_._-f--''-'-
9/1 5 -5.5 13.7 27 10 68 .2~.rJ,dy _C:1.0Y_________.__.------.-_._._-
95 6 - 7 ...2L 5 62 ._$~io~y._~.11 ~.___...._
96 o -?5.2 21 L,79 ._~~n..~y ...?.!J t __.....___
8.5 -9.5 32 '6 66 •C<l1~9.r~,ou.~_~0.~Y..~_l_~.------...3.........-.:-_.}:'----_?~n.~Y_?!.i .t____._._._._.b 0 -I ._3t.L__20,-._..-
I,-1~.2-f--l~.8 .1,19 25 ...__7.6__...'i.r:;..~~11~!_~_~.~.~y.~.~oD~
99 [j -9.5 1,0 20 -89 Heathered clc1J:~_s.~:~0_c_----i
CllEN AND ASSOCIATES
TABLE I
SUMMARY OF LABORATORY TEST RESULTS
Job No.0
Pil9C 2 of 3
HOLE
103
~Q/I
105
DEPTH
(FEET)
NATURAL
MOISTURE
(%)
NATURAL OEn'ATTERBERG LIMITS UNCONFIN EalTR IAXI AL 5HEAR TESTS
DENSITY L1DUIO PLASTlCITYCOMPRESSrVE OEVIATOR COl/FINING
(per)L1lJ ITIN0E:X STRENG TH STRES S PRE SSUR E
("I.)("!o)(PSF)(PSF)(PSF)
PERCENT
PASSING
NO.200
SIEVE
SOIL TYPE
I I 1!3 3--I
-L-I I 38 16
?5 1
25 }O
I L,O 20---211 10
-I .-
I I 22 I 6
NP
22 5
24 10
"-I 25 5
I I 25 I 6
CHEN AND ASSOCIATES
TABLE I
SUMMARY OF LABORATORY TEST RESULTS
I '
Job No.J7,130
P89C 3 of 3ft•.~
NATURAL NATURI\LDRyATTERBERGLlMITS UNCONFINED TRIAXIAL SHEAR TESTS'PERCENT[
HOLE I ~EPT~MOISTURE DENSITY L10UIO PLASTICITY COMPRESSiVe:DEVIATOR CONFINING PASSING SOIL TYPE
FEET ("!o)(I'el")lIlill IHCO 'STRENGTH .STRESS PRESSURE NO,200
(0/0)(0/0)(PSF')(PSr)(PSFl SIEVE..
Lill__~!5__:JL,S 'l,O 20 , _'_~9 lr!Q...<J..t b.~r9.s.1,_f lQY~to...rl~_.
f-u.2_-_'I J ..:?_":'_2-._1_0t.2-26 .12 68 __1~.f!ciY~.9Y _
_L20 I -.}___'25 8 __§3__.?~~?Y.I-~~'t.~~~~t_
,-2...:-.~t2 15_,5 29 10 78 ..~~.~?Y.£!.9Y..,,,._
II -11.5 IJ,6 ~2 24 90 Cltlystonc
122 1,--::6-----25 8 .~£==~~~Q~Y_,~~i'u·y.-~J~~=
)/1,2 -15.6,l,26 8 '.66 S~~~r.':~Y._.._..._.__
123 1 -3 23 7 7.._1_._~9D~YJ __~!.~Yc..'t..sl.l.t_
1211 /'2---2-6,0 23 7 69 Sandy,cltlyey 51 It-.:...J ..•. _ -___._._.._
12S 0 - 1 _-.J,8 22 6 _?'.L_._.~~n?.Y._~.I.l.t __._._._._
127 5 - 6 511 311 '___?~__..~.1~y.s.t.~.~!.__
128 6 -8 41 2L'90 CI<:lystoncI---f-.----_'"-----.."--
I I I·I I ·1 1 I 1 I .,-----------
I I I I I I I I I 1..-·1--------.·-._
~I I I \-'--1-I II I +--------_._-_.
I I j I I I I I I -I I .----.--.
\I t I I r'I·f--_._-.---.-..-_._-.,--.-._-_._----._-
~I I j I I I I I I'·1-···--
--I I I' I I I r I 1---·'-------·-.---
I I I I I I I I I I·'---
\ I I I I I I I 1-----1---·_-·,----.
l I I I I I I r-I 1--'-'--1---0
-.--
\ I I I I I I I I 1-__.-'I
.E /I
LABORATORY PERMEAnILITY TEST RESULTS
CompactIon
Dry MoIsture %of Surchurgc Perme<lb 1J 1tySilll1pleClassIficatIonDensItyContentAST/1 D698 Pr~ssllrc Ft./Y r.em/Scc(pef)(%)(ps f)
Tli 80 (@ 1'-1--7'-Calcareous sandy clay 100,2 19.4 96 500 0,81 7.8xl0-'M200Q 78;LL~39;PI-20
TH [31,(al 0-2'Sandy sl It 113.8 11,7 96 500 l,.45 11.3xI0-C
-200~65;LL~18;PIR2
TH 96 (@ 8J-9}'Calcareous sandy clay 96.9 20.7 97 500 1.55 1.5x I0-1:-200.,,66;LL"32;PI",6
TH 96 (@ 8t-9t'Calcareous sandy clay 95.7 20.3 96 500 26,901'r -52.6;<10
Tf!99 (@ 8-9~'Weathered claystone
-7-200=89;LL-40;Pl a 20 99.8 18.5 95 500 0.22 2.Ix I0
Til 100 (ill 0-I I Very s II ty sand 117.5 9,?98 500 0.38 3,7x10-7
-200,,1,1,;Pl-NP
TH II"(al 0-2'Sandy,clayey 51 It I 12 .If 12,9 95 500 0.60 5.8xI0-7
-200 n58;LL~22;Plo6
Tf!120 (al 1-2'Sandy,cluyey 51 It 108.2 Jl~.7 95 500 0.1 J I.Ix I0-7
M200",69;LL~24;PinG·
TH 122 (al 1,_6'Sandy,sIlty clay 108.8 15.5 96 500 o.LJJ L'.2xI0-7
-200=66;LLa 25;PlaO
T/I 1?J ~i)I-31 Sandy,cluyey sIlt 110.9 12,G 95 500 0.5G 5.',;(1OM 7
-200"'71;LL"23;PI ..?
Til 1213 0J 6-7 1 Clnystone 92,11 23.9 93 500 O.12 1.2xl0-7
-200 ..09;LL",lll;r1"'211
Til 128 (al 6-7'Claystone 93.I 22.1 9LJ 500 O,5;U..5.0xl0-7t
-200",89;LLnll J;r/..4
*1.5 I'll sulfuric (lcld Helllor used durIng percolntlon test Intcrval,
e JJ }
:'i ~~i~U ~1nJill!U J ..U 1liillff~;;t~•••11111111ffflll1111~ffflf11!!!1111111ill1111111;11
!.~£~~a~ifllllll'11111111~lililiii1111ilffii.i!!1~1~lli.lll!~iiii5!~--~
~111:111111i fff fl!!!!I~tillill1ill11i;1~lffafff!fllii:1
~i it ~i ~
~i ttlil~lfil1ii!11flfffl!lfRil1l11111111il~iiiii;11iilil~fl~fIIII~;;ififf~!;ii;allll1~iilliilffft~i~;~;~fffff;I!III;lii l111i
Ili~iiiliiiiiliiiiiff!!1iliiiilllilliliiiiiff~··ifl.fiiiil Illil
....Z~;iE-~!ffSS!1!fl(f!111.iif51111ii1ilffffffflS!111ffI3flfSt1~lilll
~lI:i'.I!Jjl ~~"~'~,:l:m t,/:I:••••am...;;;••••"'C~;;;;;:";;;:pa;";:;:;••;;;,
j iti~~!f11i)1~fff/f1.!filii11i filii!11 ~~~;faa~f!!111 ~~1111l111 ~i~~~
I ~....../~I JIJIIJJlIlllfllllffflJJffffilflfilllllllfflllllifflllf!Jlflj;1 Jila,idlffn!~;:u!n~UddddddS:ld3ilniUa:'ddgdudddd~dddIU~~
I ··I!<e tI~.....•..1rRHZ I{Jf~$:;1;~If~Ii(lfJt,.1\~&a$!""aalt ~s:;::::12R:il;~:;~$!~8g g R-,$a;~~:l:l...gr ....~.!'"..~~.;,j..::t!=::~:;~~:;A~$;l;V~.~::l:t<l~....·~-::!e;("~~....=~fhff$lOlI!;U~:lI ......•
,.----.-.,,'",2-,/
-"--.'.:\Qqj••••••:~q~4qO......09~~~~-4f-_...~ct:r...,-.-_._..~~!'fq~4lf:~~~_..G q-Q-t--,~~ii(i'-"···"~X.J!X~~~~~~~~~~~a~~~·"~..~·:=.~t~"~.RnXl;=·:=:;~""--
~..~.~../:.~••aq~••qq~~~~~~~..e~~~e~._••_oo~~~.~~.q~e~e~~._~~_.~I·~ill "-......"·..~t!~::=~~~ft~RX.V'••~~~ft.._"..~..=:~K~.....~~~;(a~..J!~~:lI....-
Iii~UlmmmnUmmml!mn..m~mg!!!!iifmmm~••
~1S:i uun~nn~n·unnnn!nntUU~-~ijijijijniln~H'J~~~~di niillnnnninnlnnUUuu~niihinlnnUnnll~~e;!§i illil~I~~~~~~!!!~~~~~I!!!~~~~~~~~~~!~!!~}~~!!!!!!~~~~~~~!~!~iii~~t~iiii~itii~fffiriifif(iii~~ttfiiii~iitttti,tfitti~it~
!!i~!!I!!I§~~!!i!illi~&iiiii§§§§§~ii!i~§niii!iili!!i~iUIi~~1 5~~~~~~51~!~~!~1~~11~~~~~1~~~~1~1~~~!1~~~~~~~33335§1~~i5~~~
.-:.--.~-:..~.-......'-.';:-".~_...
.t·-_......."'"
502 820 2941 88%P.12
..i:
I JludlUJIJlfJldliUlllilllillhHIIIIUIII!UulmdllmUn:
aI!2 i!~!!
I a i ~f ti~~,I ~!!iii '"f l J 1 jj 111 IIIiilll~f;.~f~a.·f"""""'ff'f'f"'f""""""f······i~·i•••••••••••
~~~iK ~~i~;~~i~ffl~~~~~~~~~l~~~~1~ff~1~~11~l~~111~~i~~11f~~1E~~ff~~1111~
f'~~t.J 5 ~~~~1;~~~:~11111~1!~~~11111;~~1111~ai~;~11111~1111a;~11 a;~~1~~~
~j ~~~
~!~~~~1~~11~~111~~i~~11;11fl~~111111~~~~~1~1f~~~~111~ai~~11l~;~~:::~
~~~I 1~i~~i211ial1f~~~~~~~111~~~~11111f~~:~~~11lli~~111ff~;;11;~itt{:::
~l@~
II!~~~iiiii·~iill1~i~iI:iI~1111il~11111lll1~~lllfffilll!'!'lil!il~iii11~~-:~
......l~~~1115l~~S!3!1111~1i~i1~111111ll~~111!i11:111illl~11~5!Sl~S~~S~11!1~
~La~~;II "~~~~i~~~~~-·o~~o~~~~-;·~~~~~;~a··""~~~~~~~~"~~~~~~~-"~~~~~~~~~~~N~~~•••"~zz __~.~._~_~n'ri ~~~_~"~••~d_ft .•~~._.~_~k~_._"~_.~~
2~~---~----~-~~fi R w~"W ~~~~_N~"_____.~--"-.~~---~..
3 "rtii~!~~~~~~iiii~~11fl~f~~~~~ii~~{~t{i111~fff:~~~~~1Iitii;~li1~~ii§~i.~!!1
i 3 Qo~:i~
!i§
>f.~~lu~aa~~~:.s~a!i!!~!ggddddddddddd~B8~dddddddddd~nllldddddda:ligad~:;lid'H
5 ill ;;~!~!!~~~!5?J55~~~~;aa~~~~~~;;;~ii5~~~~~·~~=~~·~555~~~~~~!~!~!~!~~g~
~._••qqOODD__D_O__~.~~~~_~_~_~~q~~~"DDDqq~~.QD .qqqqqOOD Oq~~~~g ~~~~••~~~.~ri~~~~ti•••-H~~~~~~~~-v;~~~g~~~~X-~~1~.~~~.ri.-ri.~~~_~~~~_~!l~----~~__-N -•---ft ------~-
~~~f.~~~::~:~~:~~~::~,~~~:~::~:~~~~:::::~:~:~,q9::::::~'~~~~:::~~~::~9~i ~~t ----"""hhNR~ft~.~~__h --~~~~~--- --~"~
Iin nmmlimi!m,mmmmmmmmimm~ijijmlmm·~.
~~~i --~j~iJij~ij'ijij~ijijijijij'J!!~nijnijij!gH4~~~~~~~.,.,-_......~~~i~~~'n'~ijile~ll~ii~lilllll~!~II~!~III~IIII~.~nU!I~!li~!!I~~~~f;~~~i!Uiiil~il~~
i ~j ~~~ldiiii~~~~~~nU!UU~~~~!Un~lln~~~!~~~~~~~~~!~IIIIII~~~~~~
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~rr~~~~~~~«~~~~li~~~~~~~~~r~~i~~~~~~~rll~~~~~~~i~~~l~~~i~~~~~~~~~~~~,1IIIIIIIIi!lllliliiiiiilii!ililiiiiiili!iiiiiillllllii§§~§~~~§§ii~
AUG-09-1996 11:03
......-'~_"•.'-"':-.•-~~•.-C-:-:'•..
602 820 2941 98%P.13
~ijijlij~~¥~~.~~1}tt,t~"""t~~;~ee§H~~ijijij~~~·~~~~~~·~~~i~~~ijij'ijijijij~§ijij~lllllllllllill~lnIUlhfii£ld~I~ljj!liiiil~~I~lillliii~1~1~1~~~__~"n"""n"h ~~_~"""~~~~~~~~~~~~~~~hnhft~h""""ft"ftnnftn"n"~-~_
!~!nun~~~~~~~~~~~~~U~~~~U~!!~~!!!~U~UU~~~!!l~!i!~~~~aaa~~aa
~
!
j &;i I 11 !!jSil ~1~1~I~ifiliiilil~llfffllllllllI1~fl~l~~iiillfffll~~~~liiilillilli
S g - .
I~~~••~lffii~lfffffl!lfllI1111ffillilflill~~~111~f~ff~~flII11111III1I
U~~~
~allltlilil;lllf~fii~3Iif~fllllllllllllllflllllliii;;I;Iliiaiiiiiii
~~
§3 ;HHIUliiUU~~Ha;Hi;U~~IHiHHiHUlUUfil;11;HH~~IIH~~
II~I ~~~f~f(~~~~~~~~~I~~~~~~~~~~~~~~~~~(a~~~~~~~~iaa~~~(~~~~~~(~fff~~f
~D~f·~~~i~~HUfUIUI8HIIUUHIIIUiiigiHIHI8i1iiIU~~~1Hl~H~:H~Ill;-----£..1~~~-HIHHIUIUUUHUUiUUiHUHHUUi:HIUUUU:UUHUUU::e~. .~t Jio~~i~-~~a;i~·~~~~~a-~·-~~o~.~~-~~~~~.~.~-~..~~.~~"q~~~~~~~~~••o~~.~~_~n~.~nn••_H~N~~.~~ft_.~~~_N~ft__~_.N"~__O ~~"._._on_"H_n_
~~A -fi""---~W~_~~4~~_~_~~~_.N N~_~~~-~~_~~Hft ~-~__H~fth__
10 1 u~i~i·~~~Ifl11111il~;I~lliiiiSi~illlllllliilii~;al;;~illl1111111111ilii~;~;
!i!~----
o
S •fi ~re-
I I dlillilUIUIUUmduUiJUUUnM1JiilmnUnliUlIHUil
1 ~~d!!~~~~~d~ddddddd3d~~ddddddddd~~d~~dadddlai~5aaaaadddd~dddd~~8~u~~
f
8 w~~~~~~~~~q~~~~~~~~~=~~~~~~~~~~~~~~~~~~~~~;~=~~~=~~~~~~~~~~~~~~~~~~~il~~~~~~~~~·~j~~~~~~~~~~~~~~~~ri~~11=~~~~j~~~~~ti·-~~j~~~~~~~-j~~~~~~:~
~~~~~~~~o~eoa~909q~~~~~~~~~~~~~~~__••oo.~••~~_.o_o~e_a~~__G ••q~~~~ii~R~~~~~~~~~~~~.~.V~~R~H~RRN~H~V~.~~~~~~~~."-~-~~~~~~~~ri~-.~2~~~d~:~
,~~~_~~ooo~~_~~q~~~~~~~~.~~oo~oooO••_.__.09__··oo_o.q_9~90QQQ~~~~O-"!~!f 2:==t~.1~·~~R~~R~·~~R~~~-~~~~~;~.~~··~~~~N~~__~~~~t~~~~··~~x~x~:~~!~i~i~~~iiii~l~i!iHli~ii2i§Siiiili!!figJI~~I~'III~II~H~I,!g1IIIi!!~lill,
~~.~.;~I~~i 5!
I ~;::~
~
AUG-09-1996 11:04 602 820 2941 97%P.14
I •..1..-../
5~i~~
H hi i ~
§hi RIA I 1~a i ~n m j Iz II ~
1 J a!1 H iii ~il I I ~(ilill f;I~;I;ff~(~1~11;a~11ff'('IIll~1111111111111111111111~lIII1l1~111i
!~i~~1jI1iii('il~l;ff~~iIff(fflffl1IIIIfffl11fflffflfl1~~li11fIlft~llfl
UO
~~~~~111~~~~fllf~~~1g;~ffa~~111:11~ffl111~11ll~~1~~~1;Ifllll~fl~flI!t..
§~ff~1~1~fl~111ff~111;~a11;;~il1ill~~~11ff;fffl1;11111;~fll11l1~~~~1
~¥~B ffl1~11"ii~1;~2ill~~111111!ilf2it~I!!~lliI1fl~lal~SI~llil1~lalall
~ii~
~iif 11~fiffll§f!liiiil'!iillllfffiiai1ill'i'ffllll11~lii'!!11111{il~1~
~f;lfI1&-ffJJ1~11111~151.115!!1Iill~1~5fll11~~1~11111i~!11111~5flil~~311Sfle:.~t ilJI ~;ft~;~a~;~~~~i~~~11;;a~~;~;~~~;~;~:;a~;~i~~~i~2~::;;;:;i;~;i:~;;;~
~g~J:~2i;~~~~E;i~~;f~ifI12~~~~E;ill~~~~lfll~~~~~~~lflll~~;~~;i2a;~;~~~al
it ~~!K - --1t
§~i I :::m~jmjiUjdUJjUffjJj~djmUjjjjb!HdIlmJJuduIUJ:~I dddaa3~att~~~~~d~'dd~ddd~~I~!~~~a1~~SSdldt~ads~~3aaal~dddddlaa:~dd
loS ~~~5!~~~~~~;~i!S~i!~~!!f!55~!~~!3!2~~~~a~~~~~a=~~!g~::;;~~~!!55§;5~:~~a~
~i-
qq~~~~ooqq~~aoQqq~~~~o~_q~~~~oqq~.~~~~~~~Qq~~~~~~~.~9q~q~oqQQ~~~_~~ii ~~~~__dr •._-O···-~~······-R··d~.~.-~-~.~~~~~-..~_d~~~~_~OM~ri~..O""~~2·•••~_:::::.:::••••••••:.:•••::::::-:::•••••:.:••::•••••:::••-_:::I t~(...••.•••••..••.--.....•..•...••••••,••••••••.••.••••.-..••....••,
I m.~§§~.~U~!i~·;·lmnmnti!mmim!!ggm!ii!m.i1~mmfi~n!l~
~tl':;l -----.----.",,~mm!.n!nf~UnnUi~!~!glif~~~~~!:;.,:i~:z~~~~"~1~5I~~r:f;~f;U H tf:~~~H hn~u~I!n~~~nH~fU~~~!I~~~~~~H ~j~~HJ:~~e~H ~t
~~~~~~u~~~~~~~!!!I~lin!u~~~~~u~~~~~~~~!!~~~~~~~~U!~~~~a!~~3~~~~~
15
,I
'{'l~;;,~
602 820 2941 98%P.IS
AUG-09-1996 11 :06 602 820 2941 97%P.16
RUG-09-1996 11:06 602 820 2941 97%P.17
APPENDIXB
Radon Calculation
.........--_.-.....-...-._-_.-.-.-:=E E E:-":::~Environmental
TITANEnvironmental
By TAM Date ~Subject EFN -White Mesa Page_i_of .32-
Chkd BylttL Date~-"R~a""d"""on,-,--"=,C"",al""c"""ul,""a-",-tio,,,,-!n.L.-Proj No 6111-001
Purpose:
Method:
Results:
To detennine the required soil cover thicknesses to limit radon emissions from the
White Mesa tailings impoundments to 20 pCi/m2/sec using United States Nuclear
Regulatory Commission (NRC)approved methods and inputs.The White Mesa
Mill site is located in Blanding,Utah.
Detennine the geotechnical and radiological properties ofthe tailings and cover
materials based on NRC-accepted methods and existing database values
previously collected.Input parameters into the computer modeling program
"RADON"to detennine the radon flux values through the cover materials.A
variety ofscenarios adjusting cover thicknesses were run to detennine the
optimum thickness ofcover materials to meet NRC specifications.It was
assumed that the tailings located in the three cells at the White Mesa Mill site
(Cells 2,3,and 4A)have similar properties (Figure 1).Therefore,cover layer
configurations as determined by the RADON model are applicable to the three
tailings cells.
A 2-layer uranium mill tailings cover composed of(from top to bottom)a 2-foot
layer ofrandom fill and a I-foot compacted clay layer will meet NRC
specifications.In addition to the tailings cover materials,a minimum of3 feet of
random fill will be placed between the tailings and soil cover to fill the currently
existing freeboard.This 3 foot layer was included for modeling purposes since it
will assist in reducing the radon flux from the tailings impoundments.This layer,
however,is not considered a part ofthe actual soil cover.The resulting radon flux
exiting the top cover layer ofthe tailings impoundment will be 13.6 pCi/m2/sec
(see Appendix Al for RADON output).
As indicated in the "Effects ofFreezing on Uranium Mill Tailings Covers
Calculation Brief'(6/17/96),6.8 inches ofthe top random fill cover layer will be
effected by freeze/thaw conditions at Blanding Utah.This suggests that 6.8
inches ofthe top layer may not contribute to reductions ofradon emanation from
the tailings covers.To conservatively compensate for effects from freezing and
thawing,6.8 inches were subtracted from the top random fill cover layer.
Executing the RADON model based on this cover configuration resulted in a
radon flux emanation of 17.6 pCi/m2/sec (see Appendix A2 for RADON output).
NRC specifications (Regulatory Guide 3.64)requires that a uranium tailings cover
"..produce resonable assurance that the radon-222 release rate would not exceed
20 pCi/m2/sec for a period of 1,000 years to the extent reasonably achievable and
in any case for at least 200 years when averaged over the disposal area over at
c:\efn-whit.e\radon2.clc [9/16/96J
TITANEnvironmental
By TAM Date 9111/96 Subject ~E='.!FN~-=--W..!.L.!..!h.llite~M~e~sa±..-Page 1.---of 52-
Chkd By.Date 1\1I;\qlf Radon Calculation Proj No 6111-001
least a one-year period"(NRC,1989).Therefore,the above design with
accounting for freezing and thawing conditions is adequate.
Parameters:The RADON model requires input ofthe following parameters for all tailings and
soil cover layers:
-layer thickness (centimeter (em));
-porosity;
-mass density (g/cm3);
-radium activity (pCi/gr),source term,or ore grade percentage;
-emanation coefficient;
-weight percent moisture (long-term)(percent),and;
-diffusion coefficient (cm2/sec).
Physical and radiological properties for Tailings and Random Fill were analyzed by Chen
and Associates (1987)and Rogers and Associates (1988)respectively.See Appendix B1
for analysis results.Clay physical data input for RADON modeling are included in
Appendix B2 and were analyzed by Advanced Terra Testing (1996)and Rogers and
Associates (1996).
The following cover profile was modeled.
,'".,m .,.,_.__.,_,
\~\~\~
Random fill (2')
Clay (l')
~~~:'-".L..--£----'~-L.--.....-L_.£.--_Randomfill (3'min.)
\~Tailings [16.4'(500cm)]
' _w_0 0 co .,__~~
This cover configuration represents the actual cover layer thicknesses which would be
constructed on site.The cover profile above was adjusting for modeling purposes to
account for freezing and thawing conditions.The modeled profile is identical to the one
above with the exception ofthe top random fill layer which was reduced to 1.4 feet (2
feet minus 6.8 inches).It is assumed that 6.8 inches ofthe top cover layer effected by
freeze/thaw conditions will not contribute to reductions in radon emanation from the
tailings covers.
c:\efn-white\radon2.cle {9/16/96}
TITANEnvironmental
By TAM Date 9/11/96 Subject -"E=FN-,-,--_Wh-,-,-,-,=ite"-,,-,-M~e=sa,,,---Page~of 32-
Chkd By.Date~Radon Calculation Proj No 6111-001
Layer thicknesses
The thickness ofthe tailings was assumed to be effectively an infinitely thick radon source.In
accordance with NRC criteria (Reg.Guide 3.64,p.3.64-5)a tailings thickness greater than about
100-200 em is considered to be effectively,infinitely thick.A value of 500 em represents an
equivalent infinitely thick tailings source.The actual tailings thickness ofCell 3 at White Mesa
is approximately 28 feet (850 em),therefore,a value of500 em was used for the RADON model.
A minimum of3-feet (91.5 em)ofrandom fill will cover the tailings to fill the existing freeboard
and bring the tailings piles up to the subgrade elevation ofthe soil cover.A I-foot (30.5 em)
layer ofcompacted clay covers the random fill with an additional 2 feet (61 em)ofrandom fill
overlying the clay layer.Adjusting for freeze/thaw conditions results in a (43 em)random fill
layer overlaying the clay layer.
Porosity
Porosity is calculated from the specific gravity and dry bulk density according to the following
equations;
1.Dry bulk density =[(specific gravity)(density ofwater)]/[1 +e](Ref.:Principles &Practice
ofCivil Engineering,1996,equation 14.5.6).See Appendix C.
2.Porosity =[e /(1 +e)]x 100 (Ref.:Principles &Practice of Civil Engineering,1996,equation
14.5.4).See Appendix C.
Max.Dry Bulk Dry Specific Density of "e"porosity
Density Density Gravity Water (lb/ft3)(2)(3)
(lb/ft3)(lb/ft3)(1)
Tailings (4)104.0 98.8 2.85 62.4 0.80 44%
Clay (5)113.5 107.8 2.39 62.4 0.38 28%
Random fill (4)120.2 114.2 2.67 62.4 0.46 31.5%
Notes:
1.Bulk dry density is 95%ofthe ASTM Proctor maximum dry density for all materials.
2.Calculated using Equation 1 above where "e"is the volume ofvoids per volume ofsolids.
3.Calculated using Equation 2 above.
4.Physical tailings and random fill data from Chen and Associates (1987)included in Appendix
Bl.
5.Clay physical data from Advanced Terra Testing (1996)and Rogers and Associates (1996)
included in Appendix B2.
c;\efn-white\radon2.clc (9/16/961
TITAN Environmental
By TAM Date 9/11/96 Subject -",E"-,-FN~-_Wh~"",ite,,-M,-,-,",,,e~sa,--Page~of 3~
Chkd ByJ?il?L Date q\l\o\q\,p Radon Calculation Proj No 6III-00 I
Mass Density
Mass densities were measured by Rogers and Associates (1988 and 1996)to be (see Appendix
Bl and B2):
Tailings
Clay
Random Fill
1.45 g/cm3
=1.72 g/cm3
=1.85 g/cm3
Radium Activity,Source Term,or Ore Grade %
Radium activity values from Rogers &Associates (1988 and 1996),were input for White Mesa
tailings and cover materials (Appendix Bland B2).The radium activity values are:
Tailings =981 pCi/gm
Clay =1.5 pCi/gm
Random Fill =1.9 pCi/gm.
Emanation Coefficient
Emanation coefficient input for the tailings and cover materials are measured values from Rogers
&Associates (1988 and 1996),included in Appendix Bland B2.The coefficients are:
Tailings =0.19
Clay =0.22
Random Fill =0.19
Note:Use ofNRC's default value ofE=0.35 is not considered appropriate since laboratory
analyses ofemanation coefficients are available.
Weight Percent Moisture
Long-term moisture content (weight percent moisture)was assumed to be 6%for the tailings.
NRC Regulatory Guide 3.64 states,"ifacceptable documented alternative information is not
furnished by the applicant,the staff will use a reference value of6%for the tailings moisture
content because 6%is a lower bound for moisture in western soils"(NRC,1989).Laboratory
data does not exist to determine the actual weight percent moisture oftailings therefore,this is a
conservative assumption.
The weight percent moisture ofthe new clay source (UT-1)is also unknown therefore,it was
assumed that the average weight percent moisture from clay (site #1 and site #4)would be
equivalent to the new clay source (UT-l).This is also a conservative assumption as the new clay
c:\efn-white\radon2.clc [9/16/96]
2=0.0142 cm /sec
2=0.0091 cm /sec
2=0.0082 cm /sec
TITANEnvironmental
By TAM Date ~Subject EFN -White Mesa Page 5 of 3 2-
Chkd By QrA Date~.2o.R""a""'do""n"-C"""a....'-"-'cu"-"'a""'t.!.>,io"-'n Proj N-o-611-1--0-01
source is believed to be ofbetter quality.Weight percent moisture values for clay and random
fill were derived from the "Summary ofCapillary Moisture Relationship Test Results"figures
included in Appendix B1.Weight percent moisture values used for modeling purposes are:
Tailings =6%
Clay =14.1%
Random Fill =9.8%
Diffusion Coefficient
Diffusion coefficient input for the tailings and cover materials are measured values from Rogers
&Associates (1988 and 1996),included in Appendix Bland B2.The coefficients used for
tailings and random fill were an average ofthe two values presented.The coefficients for each
material are as follows:
Tailings
Clay
Random Fill
References:
Advanced Terra Testing,1996,Physical soil data,White Mesa Project,Blanding Utah,July 25,
1996.
Chen and Associates,1987.Physical soil data,White Mesa Project Blanding Utah.
Freeze R.Allan and Cherry,John A.,1979,"Groundwater".
Principles &Practice ofCivil Engineering,2nd Edition,1996.
Rogers and Associates Engineering Company,1988.Radiological Properties Letters to C.O.
Sealy from RY.Bowser dated March 4 and May 9,1988.
Rogers and Associates Engineering Company,1996.Report ofRadon Diffusion Coefficient
Measurements,Radium Content,and Emanation Coefficient Measurements,September
3,1996.
U.S.Nuclear Regulatory Commission (NRC),1989."Regulatory Guide 3.64 (Task WM 503-4)
Calculation of Radon Flux Attenuation by Earthen Uranium Mill Tailings Covers",
March 1989.
c:\efn-white\radon2 .clc [9/16/96)
'1(,:
WHITE MESA PROJECT
SITE 0 RAINAGE
FI(jUR..£:I
.,
(
.~. l,.~
!lI I
t.I
TITANEnvi I<J ental
By TAM Date -bE""'-FN..u---'W'-'-'h!.Ui""tec.LM!..!.:e""s""'a Page::Lof31-
Chkd By-1.ffi.-Date q \'<J Radon Calculation Proj No 61 11-001
Appendix Al
c:\efn-whit.e\radon2.clc (9/10/961
-----*****!RADON !*****-----
Version 1.2 -MAY 22,1989 -G.F.Birchard tel.#(301)492-7000
U.S.Nuclear Regulatory Commission Office of Research
RADON FLUX,CONCENTRATION AND TAILINGS COVER THICKNESS
DATE/TIME OF THIS RUN
09-10-1996/18:06:33
EFN -WHITE MESA
CONSTANTS
RADON DECAY CONSTANT
RADON WATER/AIR PARTITION COEFFICIENT
SPECIFIC GRAVITY OF COVER &TAILINGS
GENERAL INPUT PARAMETERS
LAYERS OF COVER AND TAILINGS
DESIRED RADON FLUX LIMIT
LAYER THICKNESS NOT OPTIMIZED
DEFAULT SURFACE RADON CONCENTRATION
RADON FLUX INTO LAYER 1
SURFACE FLUX PRECISION
LAYER INPUT PARAMETERS
.0000021
.26
2.65
4
20 pCi A-2 sA-1m
0 pCi lA-1
0 pCi A-2 sA-1m
.001 pCi A-2 A-1m s
LAYER 1 TAILINGS
THICKNESS
POROSITY
MEASURED MASS DENSITY
MEASURED RADIUM ACTIVITY
MEASURED EMANATION COEFFICIENT
CALCULATED SOURCE TERM CONCENTRATION
WEIGHT %MOISTURE
MOISTURE SATURATION FRACTION
MEASURED DIFFUSION COEFFICIENT
500
.44
1.45
981
.19
1.290D-03
6
.198
.0142
cm
~o
cmA2 sA-1
LAYER 2 RANDOM FILL (FILL FREEBOARD)
THICKNESS
POROSITY
MEASURED MASS DENSITY
MEASURED RADIUM ACTIVITY
MEASURED EMANATION COEFFICIENT
CALCULATED SOURCE TERM CONCENTRATION
W~IGHT %MOISTURE
~STURE SATURATION FRACTION
MEASURED DIFFUSION COEFFICIENT
91.5 cm
.315
1.85 g cmA-3
1.9 pCi/gA-1
.19
4.452D-06 pCi cm A-3 sA_1
9.800000000000001 %
.576
8.200000000000001D-03 cmA2 s"'-l
LAYER 3 CLAY (UT-1)
'l'HICKNESS
ROSITY
MEASURED MASS DENSITY
MEASURED RADIUM ACTIVITY
MEASURED EMANATION COEFFICIENT
CALCULATED SOURCE TERM CONCENTRATION
WEIGHT %MOISTURE
MOISTURE SATURATION FRACTION
MEASURED DIFFUSION COEFFICIENT
30.5
.28
1.72
1.5
.22
4.257D-06
14.1
.866
.0091
em
9 em"'-3
pCi/g"'-l
pCi em"'-3 8"'-1
%
em"'2 8"'-1
LAYER 4 RANDOM FILL
THICKNESS
POROSITY
MEASURED MASS DENSITY
MEASURED RADIUM ACTIVITY
MEASURED EMANATION COEFFICIENT
CALCULATED SOURCE TERM CONCENTRATION
WEIGHT %MOISTURE
MOISTURE SATURATION FRACTION
MEASURED DIFFUSION COEFFICIENT
61 em
.315
1.85 9 em"'-3
1.9 pCi/g"'-l
.19
4.452D-06 pCi em"'-3 8"'-1
9.800000000000001 %
.576
8.200000000000001D-03 em"'2 8"'-1
DATA SENT TO THE FILE 'RNDATA'ON DEFAULT DRIVE
N F01 CN1 ICOST CRITJ ACC
4 O.OOOD+OO O.OOOD+OO 0 2.000D+01 1.OOOD-03
LAYER DX D P Q XMS RHO
1 5.000D+02 1.420D-02 4.400D-01 1.290D-03 1.977D-01 1.450
2 9.150D+Ol 8.200D-03 3.150D-01 4.452D-06 5.756D-01 1.850
3 3.050D+01 9.100D-03 2.800D-01 4.257D-06 8.661D-01 1.720
4 6.100D+01 8.200D-03 3.150D-01 4.452D-06 5.756D-01 1.850
BARE SOURCE FLUX FROM LAYER 1:4.667D+02 pCi mA-2 sA_1
RESULTS OF THE RADON DIFFUSION CALCULATIONS
LAYER THICKNESS EXIT FLUX EXIT CONC.
(em)(pCi mA-2 sA-I)(pCi lA-I)
1 5.000D+02 1.233D+02 4.519D+05
2 9.150D+Ol 2.562D+Ol 7.892D+04
3 3.050D+Ol 1.962D+Ol 2.276D+04
4 6.100D+Ol 1.361D+Ol O.OOOD+OO
lOr-)2-
TITAN Envir9.J;\J;llental
By TAM Date ~Subject --"Eil..FN-w--_W~hju>te,,-!M~es"-'Ja,---Page~of 32--
Chkd By__Date Radon Calculation Proj No 6111-001
AppendixA2
c:\efn-white\radOn2.cle (9/10/96J
-----*****!RADON !*****-----
Version 1.2 -MAY 22,1989 -G.F.Birchard tel.#(301)492-7000
U.S.Nuclear Regulatory Commission Office of Research
RADON FLUX,CONCENTRATION AND TAILINGS COVER THICKNESS
DATE/TIME OF THIS RUN
09-10-1996/14:46:46
EFN -WHITE MESA (ACCOUNTING FOR FREEZE/THAW CONDITIONS)
CONSTANTS
RADON DECAY CONSTANT
RADON WATER/AIR PARTITION COEFFICIENT
SPECIFIC GRAVITY OF COVER &TAILINGS
GENERAL INPUT PARAMETERS
.0000021
.26
2.65
s"'-l
LAYERS OF COVER AND TAILINGS
DESIRED RADON FLUX LIMIT
LAYER THICKNESS NOT OPTIMIZED
DEFAULT SURFACE RADON CONCENTRATION
RADON FLUX INTO LAYER 1
SURFACE FLUX PRECISION
LAYER INPUT PARAMETERS
4
20 pCi '"-2 '"-1ms
0 pCi 1"'_1
0 pCi '"-2 '"-1m s
.001 pCi '"-2 '"-1ms
LAYER 1 TAILINGS
THICKNESS
POROSITY
MEASURED MASS DENSITY
MEASURED RADIUM ACTIVITY
MEASURED EMANATION COEFFICIENT
CALCULATED SOURCE TERM CONCENTRATION
WEIGHT %MOISTURE
MOISTURE SATURATION FRACTION
MEASURED DIFFUSION COEFFICIENT
500
.44
1.45
981
.19
1.290D-03
6
.198
.0142
em
g cm"'-3
pCi/g"'-l
pCi cm"'-3 s"'-l
~o
LAYER 2 RANDOM FILL
em
g cm"'-3
pCi/g"'-l
THICKNESS
POROSITY
MEASURED MASS DENSITY
MEASURED RADIUM ACTIVITY
MEASURED EMANATION COEFFICIENT
CALCULATED SOURCE TERM CONCENTRATION
~IGHT %MOISTURE
=STURE SATURATION FRACTION
M~ASURED DIFFUSION COEFFICIENT
91.5
.315
1.85
1.9
.19
4.452D-06 pCi cm"'-3
9.800000000000001
.576
8.200000000000001D-03
s"'-l
cm"'2 8"'-1
LAYER 3 CLAY
THICKNESS
ROSITY
MBASURED MASS DENSITY
MEASURED RADIUM ACTIVITY
MEASURED EMANATION COEFFICIENT
CALCULATED SOURCE TERM CONCENTRATION
WEIGHT %MOISTURE
MOISTURE SATURATION FRACTION
MEASURED DIFFUSION COEFFICIENT
30.5
.28
1.72
1.5
.22
4.257D-06
14.1
.866
.0091
em
g emA -3
pCi/gA -l
pCi em A -3 8 A -l
%
emA 2 8 A -l
LAYER 4 RANDOM FILL
THICKNESS
POROSITY
MEASURED MASS DENSITY
MEASURED RADIUM ACTIVITY
MEASURED EMANATION COEFFICIENT
CALCULATED SOURCE TERM CONCENTRATION
WEIGHT %MOISTURE
MOISTURE SATURATION FRACTION
MEASURED DIFFUSION COEFFICIENT
43 em
.315
1.85 g emA -3
1.9 pCi/gA -l
.19
4.452D-06 pCi em A -3 8 A -l
9.800000000000001 %
.576
8.200000000000001D-03 emA 2 8 A -l
DATA SENT TO THE FILE 'RNDATA'ON DEFAULT DRIVE
N FOI CNI ICOST CRITJ ACC
4 O.OOOD+OO O.OOOD+OO 0 2.000D+Ol 1.000D-03
LAYER DX D P Q XMS RHO
1 5.000D+02 1.420D-02 4.400D-Ol 1.290D-03 1.977D-Ol 1.450
2 9.150D+Ol 8.200D-03 3.150D-Ol 4.452D-06 5.756D-Ol 1.850
3 3.050D+Ol 9.100D-03 2.800D-Ol 4.257D-06 8.661D-Ol 1.720
4 4.300D+Ol 8.200D-03 3.150D-Ol 4.452D-06 5.756D-Ol 1.850
BARE SOURCE FLUX FROM LAYER 1:4.667D+02 pCi mA-2 sA-1
RESULTS OF THE RADON DIFFUSION CALCULATIONS
LAYER THICKNESS EXIT FLUX EXIT CONC.
(em)(pCi mA_2 sA_I)(pCi lA_I)
1 5.000D+02 1.237D+02 4.514D+05
2 9.150D+Ol 2.679D+Ol 7.622D+04
3 3.050D+Ol 2.123D+Ol 1.944D+04
4 4.300D+Ol 1.756D+Ol O.OOOD+OO
TITANEnvironmental
By TAM Date ~\¥fJ&Subject ....,E~FN"'-'----'-W.!--'.h.!..!Jit""'-e..uM..."e=sa"-Pagenof 11--
Chkd By__Date Radon Calculation Proj No 61 I 1-001
AppendixBl
c:\efn-white\racton2.clc 19!1O/96l
-12-
--rML.\tVftS f\:f00 ~()C#-A.f\\.-L (\LOP 'i~Tl z:..s
Table 3.4-1
Physical Properties of Tailings
and
Proposed Cover-Materials
Atterberg
Limits Specific
%Passing
No.200
Maximum
Dry Density
Optimum
Moisture
Material Type
Tailings
Random Fill
Clay
Clay
LL El Gravity
28 6 2.85
22 7 2.67
29 14 2.69
36 19 2.75
Sieve
46
48
S6
68
(pcf)
104.0
120.2
121.3
108.7
Content
18.1
11.8
12.1
18.5
1S
Note:Physical Soil Data from Chen and Associates (19~).
K
A
E
Rogers &Associates Engineering Corporation
Post Office Box330
Salt Lake City,Utah 84110
(801)263-1600
Ma rch 4,1988
Mr.C.O.Sealy
Umetco Minerals Corporation
P.O.Box 1029
Grand Junction,CO 81502
Dear Hr.Sealy:
C8700/22
We have completed the tests ordered on the four samples shipped to JS.
The re~ults are as follows:
Radium Emanation Oi ffusion (g/cm3)
Sam;11e pCi/gm Fraction Coeoffic.Density Hoisture Saturation
Tail ings 981±4 0.19±0.01 2.0£-02 1.45 13.2 0.39
8.4£-03 1.44 19.1 0.56
Composite (2,3,&5)1.6£-02 1.85 6.5 0.40
4.5£-04 1.84 12.5 0.75
Site ill 1.6£-02 1.85 8.1 0.48
1.4E-03 1.84 12.6 0.76
Site #4 1.1£-02 1.65 15.4 0.63
4.2£-04 1.65 19.3 0.80
The samples will be shipped back to you in the next few weeks.If you have
any questions regarding the results on the samples please feel free to call.
5i ncerely,
~o/~
Renee Y.Bowser
Lab Supervisor
RYB/b
515 East 4500 South·Salt Lak~City.Utah 84107
R
A
E
?""'"()
Rogers &Associates Engineering Corporation
Post Office Box 330
Salt Lake City,Utah 84110
(80l)263-1600
May 9.1988
Mr.C.O.Sealy
UMETCO Minerals Corporation
P.O.Box 1029
Grand Junction.CO 81502
Dear Mr.Sealy:
C8700/22
The tests for radium content and radon emanation coefficient in the
following sumples have been completed and the results are as follows:
Sample
Random (2.3 &5)
Site 1
Site 4
Radium (pCi/g)
1.9 +0.1
2.2 "+0.1
2.0 +0.1
Radon
Emanation Coefficient
0.19 +0.04
0.20."+0.03
0.11 +"0.04
If you have any questions regarding these results please feel free to
call Dr.Kirk Nielson or me.
Sincerely.
6!rtr~
Renee Y.Bowser
Lab Supervisor
RYB:ms
515 East 4500 South·Salt Lake City.Utah 84107
",.'r;:••
I(Xl
U1
I
."}
~~I/· . ' I I ' I I ,..
,•••••••f f ••••f •••••••••••,•••••,I ••••I •f ••••
· I , I I , I ' .·,.,.,","""..,.,.,'.,'.,.,..,",.• • , ,••,••I ••••••••,
, , • , , , ,••I • ,••••••,
·....,...;.,.....".
24 .jI. . ..........t I • • ••••,'.• • •••••••I
I
... .....!
..'.'".\. ::::':.:::::::.:..:.i,..':::..:::::.:.:'.'I
••••••I ••I •t I ••I'I •I'••••••••••I •I •••••..•
• • ,••,••••••••••• ••••••••••••••I I ••••••••t •••••••••••"I •••I ••f ••••,••, •
22 1·\...:...•··:··.·:··::·.···1·:.-:··:··.···:·..·:···..:.:..•-:..•..•..•..:-•......:-.-~..:-:-:-.:-.-:...~..:-.-:..:-~..:.:.~..!.:-..•-.:-~-:.~..~......:.•.~..~..•-.-.~:I··:··:·.-:-:····:··::···
•• ••••••••••t'••••••t'.•••I"I I••••••• • ••••• • •••,....t..••.
'....:::::::':::.:.:"::::::.:.I
•••,.••• • •" I •••••••••••I I......,....".,!..,..."
20 ,;...>:...:...:......:...:::::::...:......::,..:::.:.:::..~......:::>:..~:::......:~..:::~.~::......::>~..::::>''':''':''':''':''':''':''':''':''':'''1''':''':''':''':''':''':---:''':''':---,,.." ,,.........,.,I , .
•••••••••••t I •",••••••
•I"•••••••••""• I •••
••I..• .•••I'•••I'••"~I ••• I •••I
· . . . . . . . .. . . . : .:.'CLAY.:.ATERIAL:.·:..:....· I....."...SITE '#;4 ........ .....
18 I : : :..·:···:..,:..·:·..:··,:·..:,..:..·:·..:..·:·..:..·::,.'.::~: : : : : : : : : : :::..,:: : : : : : :;.,...I ... ..... .• I 1"7 lP
I ....: :..:.., :'I ..-.
••••••t ••••••:••,.,......, ,..' ,,..,.., ,I'.
•••••, •••••••t • ••••I ••,••"I ••••••t.•••••••••I •••••I • I ••,•••,.,.'••••••,
16 \...:...:,..:...:...:..,:...:...:...:......,:...:...:...:...:...:...:...:...:......:...:...:...:...:...:...:..~...:......:..:...:...:...:...:...:...:...:...,...:...:...:...:...:..:...:...:...:......:...:...:...:...:...:...:..:...:.,....:...:...:...:,..:...:...:...:...:......:...:...:...:...:,..:...:..:...:...
~
r-"z~zou
W
0::::>f-(J)
o
~
,'1··,···..·····,·········1·····.•••, • , •••,•••f ••,.•••••f •••,........•••••••••,••,••••,..•••••••••.,.,•••••
•••••••f f ••••I • •••• I • • • • •••••••••••• ••••••••••••••I ••,••••••••••••••••••
:::::::::I:::::::::.:::::::.:::::::::::,::::::::::.:::::::: ::.::::::::::::::::
14 o 2 4 6 8
TENSION,BAR
10 12 14 16
FIGURE 4.4-2
SUMMARY OF CAPILLARY MOISTURE
RE'LATIONSHIP TEST RESULTS
WHITE MESA PROJECT
DATA FROM CHEN &ASSOCIATES;.~
• t •'"••••
• •,t'•••••••,f ••I •••I •••••••••
•••••••••i ••••••0 ••
•••••••"t'I ••••••••t
•I •••••••I • I •••••••
••••••••I I ••••I ••••
,••,•••••I •••••I •••
•••••I •••I I • I • ,••••
8 C t I i I1I(I !I • • • . • • • • •I . . . . . . . ..\.
:::::::::I:::::::"
o •I •t • , • ,i . . . ... ..
,••••••••I •••••••••
••••••••I j •••••••••• •,•••I ••I •••••••••
••••,••••I ••,••••I •,••••••••I •••••••••
•••,•••••I •••I •••••
I
0:~I
., ,,..,.
:..:.....-r:
• I •••I •••l I ••••••••,•••••••••J ,••••••••
::::.:::::I:./ctAY::MATERlr·L:::...~::::y:::::S'ITE>~l'..:..;.:::;:'•.._ 'I • • • ••••.••',............:
•••••••••i •••••••••1 •••••••••I •••••••••I •••••••••l •••••••••
••••• • • • • I , ••• • • • • •i •• •••• ••••• • • • •I • ••~•••••• •••l • • • • • • • • •
•••••••'.I n"\,•I •I I •••,•••••••••f •••••••••,I •I ••••••J , •I I •••••I ••••I • I ••
••I ••••••l ,.,••••••I •••••••••~•••••••••~•••••••••,••••••••I I·•••I ••••I.···•••••
16 l"':"':"':"':"':"':"':"':"':"'l~":"':"':'.':'.':'.':'.':...:,.0:...1••,:,.,:..,:,..:,.,:,.,:,..:..,:,.':'••...:.u:: :~..:...:...:...:...''':''':''':''':''':''':''':''':'':.'h''~'':''':''::''':''':''~.'':..':'.....:'.':'..:'.':'..:...:'.':'..:'.':'....':'.':'.':'.':'..:'.':...:'..:'.':'..
I ....... .........:....
•t •••••••••••••••••••••••••.'.• ••• •• •............
I
....... ........
'(,. ........ .
• I • ••••••.,.• • • • ••••••••••••••••,.•
14 1'''\·'..:::::::..~l ::::::::::::::;..:::~:::..~:.:.:::::::::::::~..~..:..~..::~..::: : .
·k··::::···l ··:····:···::::··:::::::::::::::::::..:::::::..... I ... ........... ............... .
,••••I ••••.• • • • • •••.....,...• • • • • •••••••••
,.• I ••••• • • • ••••••••••••••••••••••I ••
10 I···· · ·..• • · · · ·..•_6 .~..I _}··1 '''')·........I·········~........ ...'";".q.e>•"wi)·.........N':.......-:i..=J••.•
•••I ••,•••••••••••'"I • ••••••I • I • I • I ••I,'I ••• I ••I I ••••••••I •••I.'••'•••· . . . . . ....;.RAN 'OM Flt.t.·. .
• •t •••I ••• I ••••I •••••••I •"'•••••••••••••••_..:•••••f •••I!.
:::::::::II :::::::.:::::::::::::::::::::::::~:I!~r '.:~~~:~':~~::::::::I :::>.>:::
I . • . , . ,•.".......•••••••••,I."I ••••••••••••I .I . • . • • • I I.'...I • .I . , . ,~-'.. .
8 !.o 2 4 6 8 10 12 14 \',16
12
~
I-ZUJI-
Zoo
wa:
:)
l-(/)
o
:2
~:t
FIGURE 4~4-1
SUMMARY OF CAPILLARY MOISTURE
RELATIONSHIP TEST RESULTS
WHITE MESA PROJECT
TENSION,BAR
DATA FROM CHEN &ASSOCIATES
!!T~~E:':W~:::(I-,=E'-'-FN.w....::._--'-WL.!.hJ.!.!it""-e-!.!M",,,e""-!sa=---Page1--\.of ?l...---
Chkd By__Date Radon Calculation Proj No 6111-001
Appendix B2
c;\efn~""hit.e\radon2.clc (9/10/961
--AIlVAflCcD TcRR~rI:STll1li.-inc----,833 Parte!Street
Lakewood,Colorado 80215
(303)232-8308
ATTERBERG LIMITS TEST
ASTM D 4318
CLIENT
BORING NO.
DEPTH
SAMPLE NO.
SOIL DESCR.
TEST TYPE
Plastic Limit
Determination
Titan Env.
UT-1
ATTERBERG
1 2 3
JOB NO.2234-04
DATE SAMPLED
DATE TESTED 7-25-96 WEB,RV
Wt Dish &Wet Soil
Wt Dish &Dry Soil
Wt of Moisture
Wt of Dish
Wt of Dry Soil
Moisture Content
3.34
2.96
0.38
1.05
1.91
19.90
4.06
3.57
0.49
1.11
2.46
19.92
3.42
3.03
0.39
1.06
1.97
19.80
Liquid Limit
Determination
Device Number 0258
Number of Blows
Wt Dish &Wet Soil
Wt Dish &Dry Soil
Wt of Moisture
Wt of Dish
Wt of Dry Soil
Moisture Content
Liquid Limit
Plastic Limit
Plasticity Index
103.1
19.9
83.3
1
39
12.18
6.64
5.54
1.10
5.54
100.00
2
27
10.42
5.67
4.75
1.06
4.61
103.04
3 4 5
18 14 9
10.92 12.33 10.06
5.87 6.53 5.34
5.05 5.80 4.72
1.06 1.10 1.08
4.81 5.43 4.26
104.99 106.81 110.80
Atterberg Classification CH
/'-~
Data entry b~A
Checked by:_~~~_
FileName:
NAA Date:7-26-96
Date:7~l~-qb
TIGOUT1 ADVANCED TERRA TESTING,INC.
Atterberg Limits,Flow Curve
••UT-1
112
111
110
109
108
C 107G.lC
0 1060
~105.3(J)·0 104~
103
102
101
100
99
•~
~'""'""""-
I ~
~
.~
"""'".......~
~
I~
"II
Number of Blo'NS
PLASTICITY CHART
••UT-1
25
/'
/A /
/V V~,/"'"
/~,,v,/OH
/.--/.--/
/~\~<c-\"<v
/'CLorCL /V
V /,/
/'U AL
//
/'./'...~~.~~
Cl-ML
V
100
80
xG.l 60"0E
£0~
t1l 40a::
20
o
o 50
Liquid Limit
I.A.Classification I
100 150
CLIENT:
BORING NO.
=.PTH
..:>AMPLE NO.
Titan Env.
UT-1
C !PACTION TEST
ASTM 01557 A
SOIL OESCR.
DATE SAMPLED
DATETESTEO
JOB NO.2234-04
7-25-96 RV
Moisture determination
1 2 3 4 5
Wt of Moisture added (ml)100.00 150.00 250.00 350.00 450.00
Wt.of soil &dish (g)384.26 393.92 291.42 244.20 281.17
Dry wt.soil &dish (g)350.60 355.61 251.40 202.69 225.04
Net loss of moisture (g)33.66 38.31 40.02 41.51 56.13
Wt.of dish (g)8.01 8.34 8.31 8.29 8.43
Net wt.of dry soil (g)342.59 347.27 243.09 194.40 216.61
Moisture Content (%)9.83 11.03 16.46 21.35 25.91
Corrected Moisture Content
Density determination
Wt of soil &mold (Ib)14.20 14.49 14.68 14.59 14.46
Wt.of mold (Ib)10.36 10.36 10.36 10.36 10;36
Net wt.ofwet soil (Ib)3.84 4.13 4.32 4.23 4.10
•·..,t wt of dry soil (Ib)3.50 3.72 3.71 3.49 3.26
J Density,(pet)104.89 111.59 111.28 104.57 97.69
Corrected Dry Density (pet)
Volume Factor 30 30 30 30 30
n~.ta entered by:RV Date:7-26-96
.a checked by:~Oate:--1..:I<o-%
fileName:TIPRUT-1 ADVANCED TERRA TESTING.INC
Proctor Compaction Test 1
••UT-1'------
403020
Moisture Content (%)
10
II
f-\I
-\
-\
f-\
1\Zero Air Voids CUi ~e
,\-~oC5ieporte&beIVVV......
f-
~
-(~\
f-/0 '\\
I ~-r ~
r-~
""f-
I I I85
o
90
95
100
130
135
125
140
120
C-O0.115---->.~Ul
C
OJ0 1~OC
0
105
-Best Fit Curve o Actual Data
-Zero Air VoidsCurve @ SG =2.70
OPTIMUM MOISTURE CONTENT =13.9 MAXIMUM DRY DENSI1Y =113.5
ASTM D 1557 A,Rock correction applied?N
ADVANCED TERRA TESTING,INC.
PERMEABILITY DETERMINATION
FALLING HEAD
FIXED WALL
Titan EnvironmentalCLIENT
BORING NO.
DEPTH
SAMPLE NO.
SOIL DESCR.
SURCHARGE
UT-l
Remolded 95%Mod Pt.@
200
JOB NO.2234-04
SAMPLED
TEST STARTED
TEST FINISHED
OMC SETUP NO.
7-28-96 CAL
8-7-96 CAL
1
MOISTURE/DENSITY
DATA
Wt.Soil &Ri~g(s)(g)
Wt.Ring(s)(g)
Wt.Soil (g)
Wet Density PCF
Wt.Wet Soil &Pan (g)
Wt.Dry Soil &Pan (g)
Wt.Lost Moisture (g)
Wt.of Pan Only (g)
Wt.of Dry Soil (g)
Moisture Content %
Dry Density PCF
Max.Dry Density PCF
Percent Compaction
BEFORE AFTER
TEST TEST
386.9 404.5
93.0 93.0
293.9 311.4
122.3 120.5
302.4 319.9
266.2 266.2
36.2 53.8
8.5 8.5
257.7 257.7
14.1 20.9
107.2 99.7
113.5 113.5
94.4 87.8
ELAPSED BURETTE BURETTE
TIME READING READING
(MIN)hl (CC)h2 (CC)
0.2
2599 10.8 10.8
1427 14.2 14.2
1440 16.8 16.8
1440 18.6 18.6
1440 20.2 20.2
1440 21.6 21.6
1469 23.0 23.0
1440 24.4
PERCOLATION RATE
FT/YEAR CM/SEC
0.14 1.4E-07/
0.09 8.4E-08.
0.07 6.5E-08
0.05 4.6E-08
0.04 4.1E-08
0.04 3.7E-08
0.04 3.6E-0~
0.04 3.7E-08
Data Entered By:
Date Checked By:
Filename:TIFHUTl
NAA
~
Date:
Date:
8-8-96
~5-'k.
ADVANCED TERRA TESTING,INC.
Rogers &Associates Engineering Corporation
REPORT OF RADON DIFFUSION COEFFICIENT MEASUREMgNTS
(TIME-DEPENDENT DIFFUSION TEST METHOD RAE-SQAP-3.6)
Rcpon Dale:..__WJ/lJ6
OmlrJCI;<'~.600f)
BY:.._._~.L1{
D-JIC ReedV(xl:.'0/%.
Sample Identification:TitanEnYirv.lJlncolaL
Radon Diftwdon --Specific
Moisture Density Coefficient Saturation Gravity
SampleID (DryWt.%)(sr/cm3)(cm2/s)(MpIP){(!/cm:J)
{IT-I 14.15%1.72 9.1E-03 0.89 2.:39..
-_.-...-.-
_..
-...-..--.._.
.--
.-....
----
.-._.
----.
.-
RAE
SEP-03-1996 14:16
PoatOMc()Box 330
Snlt Lake City.Utah &4110
(SOl)263·1600
8012621527 P.03
Rogers &Associates Engineering Corporation
REPORT OF RADIUM CONTENT AND EMANATION
COEFFICIENT MEASUREMENTS
(LAB PROCEDURE RAE-SQAP-3.1)
Report Dale:91JflSJ
ContrJl1:('9(j.JJf)
By:.--lK.~
D~ltc Rcccivcd:_._.8f1Q
Sample ldendfi<:ati~1ltan EoviroomentaI
-.,..-
Moisture RDdon Emanation RadIum-226......ID (Dry Wt.%)Coeflldent (pCi/sd Commt'nts
UT·l 14.6%O.22fO.04 15 ±O.3
-
-..
....-".--
-
......-
_.........-,..
'"...
.-
_...".-
_.".0
.----
-_.
RAE
SEP-03-1996 14:16
P~t Office Box:33Q
Salt Lake:City·Utah 84IlO
(SOl)263-1600
8012621527 P.04
!1T~~E~~.~~Je~tl-""E...FN-'-'-----'-W",-,h-'-"it=e-uM",-"e=sa",--Page3(Lof 52---
Chkd By__Date Radon Calculation Proj No 61 I1-001
Appendix C
c:\efn-whit:e\radOn2 .clc [9/10/96J
".,.
~,,""~--1;-:;.
...from the Professors who know it best...
PRINCIPLES &PRACTICE OF
CIVIL ENGINEERING
-2nd Edition-
The most efficient and authoritative review book
for the PE License Exam
Editor:MERLE C.POTTER,PhD,PE
Professor,Michigan State University
Authors:Mackenzie L.Davis,PhD,PE1
Richard W.Furlong,PhD,PE
David A.Hamilton,M5,PE
Ronald Harichandran,PliO,PE
Thomas L.Maleck,PhD,PE
George E.Mase,PhD
Merle C.Potter,PhD,PE
David C.Wiggert,PhD,PE
Thomas F.Wolff,PhD,PE
Water Quality
Structures
Hydrology
Structures
Transportation
Mechanics
Fluid Mechanics
Hydraulics
Soils
The authors are professors at Michigan State University,with
the exception of R.W.Furlong,who teaches at the University of
Texas at Austin and D.A.Hamilton who is employed by the
Michigan Departmentof Natural Resources.
published by:
GREAT LAKES PRESS
P.O.Box 483
Okemos,MI 48805-0483
(14.5,4)
(14.5.5)
(14.5.3)
(14.5.2)
(14.5.1)
1J"Dei ~~It.-~~,
bs ~~e(.i (,<..-6vctv~ti.s.6)
y~-.~,,51'~C+-~v
(l+w)yw
w/S+l/Gs
(1.20)(62.4)=110.2 Ib/ft3
0.2/0.6625+112.65
(l+w)yy=IU
wlS +llGs
en=---l+e
ne=--1-n
The.dIyunitweight can be obtained as
The total unit weightcan be obtained as
(G +Se)ry=$IU
l+e
The relationships between the void ratio and porosityare
For saturated soils (5 =100(10)there results
A very useful equation relating four different quantities is
Se=wGs
----I-<E-XAMPLE 14.8----------------------
=Gsyw =(2.65)(62.4)=91.9Ib/ft3
Yd 1+e 1+0.800
5 =wGJe =(.20)(2.65)/(0.800)=0.6625 or 66.3%
Rework example 14.6 using equations introduced in this section.
e 0.800
n =l+e =1+0.800 =0.444
Solution.
and
It is strongly recommended that weight-volume problems be solved using phase diagrams rather
than only formulas,as completing a phase diagram clearly indicates whether sufficient information is
known to complete the problem,whether information is insufficient and assumptions must be made,or
whether too much information is present and the problem is overconstrained.For example,it maynot be
immediatelyapparent from the informationgivenwhether a soil is saturated until all quantities are calcu-
lated.Nevertheless,following are given additional useful equations that may be used to solve certain
classes ofweight-volume problems.
14.5 Other Useful Equations for Weight-Volume
Problems
14-8 Soil Mechanics
APPENDIXC
Radon Flux Measurments
....-.._-_.......-........--_.-.-.--=iii iii E:-':=~Environtnental
III
••••••••,
-,
-,,
I
I,
I
(a)'nle mean radon flux tor e8ch region within each cell i.88 follow,,:
I
Cell 4 -Cover Area 7.'pCi/tI-.1I (bued on 2~S.882 m2 areal
•s..eh Areall 23.3 pCl/ml••(based on 41,7'1 m'l area)
Standing Liquid Area.=0 PCi!m'l.a (baaed on 2,-982 mZ are~1
i
dell 3 -Cover Araa a 7.S pCi/tI--a (baaed on 82,"2 mZ area)
•Ikach Areas I:39.7 pC1/m'l-s (based.on liJ.761 m,2 arQ3.)
•stanc11ng Liquid Areaa - 0 pCi/m'l.a (baaed on 143,335 m'l.&ru)
Note:Reference Appendix B of this report;for entire !Summary for
individual mea.ure~nt reaults and IIpacific 8&ll\Ple region mapa .
(b)ing.the data preaanted above,we have c&l~\ll.ted the total mean radon
a.tollowa:
C 11 2 -10.0 pei/ml ••
(7,')(225,882)t (21,311t"UlJt (0)(2.9UI
270.625
3 •10.8 PCi/ml-a
n.S)(82,76.)-+(39,7)(§.,'U)...{OJ (143,33S)
281,151
SEP-10-1996 11:05 32 85%P.02
(pCi/ml-s)
i (pCi/~-.)
J _ll~...,J~[-t-)•••JtA,
•At
Where:J.-Mean flux for the total pile
J.-Mean flux measur.d in region
At -Area of region i (mzl
At -Total area or the pile (m2)
The individual radon flux calculationa shall be ~de as provided in
Appendix A EPA 86(1).The mean radon flux for each region of the
pile eMU be calculated by aUlllllting all individual flux
measurements for the reqion and dividing by the total number of
flux measur~.nt.for the region.
(b)The mean radon flux for the total uranium mill tailinqs pile shall
be calculated as follows:
fPIJ:RESULTS/CALCUlATIONS
ReterenbinQ 40 eFR,Part 61,Subpart W,Appendix a,Method 115 -Monitoring tor
Radon-2k2 Emissions,Suba8ction 2.1.7 -Calculations,"the mean radon flux tor
each rebion of the pile and for the total pile shall be calculated and reported
as tOll~wS:
Ca)i
I
\
6.0
I
I
I
I
I
I
I
I
I
I
I
2.1.8 Reporting.The results of individual flux measurements,the
approximate locations on the pile,and the mean radon ~lux for each
region and the mean radon flux for the total stack [pile]ehall be
inclUded in the ~ss1on test report.Any condition or unusual
event that occurred duxinq ~.measurements that could
s10n1f1cantly affect the results should be reported."
I
I
(a)
I
I
I
I
I
11.1 pCi/m2-a (baaed on 82,762 m2 area)
44.8 pC1/~2_,(based on 62,761 mJ areal
- 0 pCi/mJ-a (based on 143,335 m2 iilr9iil)
Reference Appendix B of this·report for entire summary for
individual measur~ent results and spQcl!ic aamplQ rQgion maps.
13
I
1
SEP-10-1996
I
11:05
.--.-----..---rr---~...---_.------7-._.-
32 85%P.03
I
(bl Using the dote pruentecl above,we have calculated the total moan radon
flux for each pile (cell)a8 follows:
Cell 2·9;5 pCi/m2-a
\6.1)(225,BB21 ...(28 ••)141,761)+{O)(2,9B2)
270,625
I
II
\
I
\
I
\
P.0485%
---~~_._~-
32
-----_._--_.---,--.
Cell 3 -12.9 pCi/m2-s
I {11.1)(82,762)...(44.8)(62,761)of-(O)(H3,335)
i 288,858
iiI
\I
II
III
II
,
11:06SEP-10-1996
I
I
I
I
I
I
I
I
1
I
I,,,
I
I,,
APPENDIXD
HELP Model
....-..._--....-..-......_-----.----=E E i:--:.::-;:EnvirofilIlcntal
TITANEnvironmental
By TAM Date~,Subject EFN -White Mesa Page_I_of 34
Chkd By~Date~~H~el~p"""",M""",o-=d,,,,,e~1 Proj No 611 1-001
Purpose:
Method:
Results:
To determine the required soil cover thicknesses to minimize surface water
infiltration through the White Mesa tailings impoundments so that precipitation
will not fully penetrate the soil cover.The White Mesa Mill site is located in
Blanding,Utah.The performance ofthe tailings cover was evaluated using the
Hydrologic Evaluation ofLandfill Performance (HELP)Model.The HELP
model was developed to facilitate rapid,economical estimation of the amounts of
surface runoff,subsurface drainage,and leachate that may be expected to result
from the operation ofa wide variety ofpossible cover designs.
Determine the soil properties ofthe cover materials and climatic properties of
Blanding,Utah based on existing database values previously collected,and
acceptable default parameters.Input parameters into the computer modeling
program "HELP"to determine the percolation through the cover materials.A
variety of scenarios adjusting cover thicknesses were run to determine the
optimum thicknesses ofcover materials to eliminate percolation through the
bottom cover layer.The modeled tailings cover consists ofa compacted clay
layer over the tailings,with a random fill soil layer covering the clay.
The model was developed for Cell 3 at the White Mesa Mill since it is the largest
ofthe three cells to be covered (Cells 2,3,and 4A).Figure 1 shows the location
ofthe cells.The cover requirements determined for Cell 3 will be applied to the
remaining cells as well.This is a conservative approach since the remaining cells
are smaller in size and require less time and distance for precipitation runoff.
A two-layer uranium mill tailings cover composed ofa 2-foot layer ofrandom fill
over a I-foot compacted clay layer will reduce percolation into the tailings
material to a negligible quantity (see Appendix A for HELP results).As indicated
by the model results,precipitation will either runoffthe soil cover or be
evaporated.
The cover thicknesses recommended above were also determined to be the
minimum thickness requirements for White Mesa tailings covers based on results
from radon flux calculations (see "Calculation of Radon Flux from the White
Mesa Tailings Cover",9/11/96).As indicated in the Radon Flux calculation,to
restrict radon flux to 20 pCi/m2/sec,(Regulatory Guide 3.64),a cover consisting
of2-feet random fill and I-foot compacted clay is required.
c:\efn-white\help2.clc [9/16/96J
TITANEnvironmental
By rAM-Date 9/1 1/96 Subject ~E"",FN~_---,-Wh~it""e....,M....,e"",s-",-a Page 'L-of 11
Chkd By.Date~Help Model Proj No 6111-001
Parameters:The HELP model requires input ofthe following parameters for the cover
materials:
-Weather Data:
Evapotranspiration
Precipitation
Temperature
Solar Radiation
-Soil and Design Data:
Landfill area (area ofCell 3)
Percent ofarea where runoff is possible
Moisture content initialization
-Cover Layer Data:
Layer type
Default soil/material texture number
Runoffcurve number
Weather Data
Evapotranspiration and solar radiation data was input using the default parameters from Grand
Junction,Colorado.Grand Junction is located north east of Blanding Utah in a similar climate
and elevation.The elevation at Grand Junction is 4,600 feet and the elevation at Blanding Utah
is 5,600 feet.Figure 1 in Appendix B shows the locations ofBlanding and Grand Junction in
relation to one another.
Precipitation data from 1988 to 1993 (skipping 1989)was obtained from Utah State University
(see Appendix C).Daily precipitation values for the five years were input manually into the
HELP model.Temperature data was obtained from the Dames &Moore (1978)and is also
included in Appendix C.Daily temperature data was not available for manual entry therefore,
the computer calculated mean monthly temperatures based on the default location (Grand
Junction,Colorado).These values were then edited to match the actual mean monthly
temperatures for Blanding,Utah.
c:\efn-white\help2.cle 19/16/961
TITANEnvironmental
Subject EFN -White Mesa Page~of 34
~H......""el'¥P...J.;ML!Co"",d,,-,,eO!-I Proj No 6111-001
Soil and Design Data
The surface area ofCell 3 at the White Mesa Mill,Blanding,Utah was used for the landfill area
value.The surface area,as indicated on Figure 1,is 78.7 acres.It was assumed that runoff was
possible over 100%ofthis area and that no rain would sit on the tailings cover.
Cover Layer Data
Laver Thickness:
A two-layer cover over approximately 28 feet ofuranium mill tailings was used to run the HELP
model.Actual cover thicknesses which would be constructed on site consist of2-feet ofrandom
fill over a I-foot compacted clay layer.This cover profile was adjusted for modeling purposes to
account for freezing and thawing conditions.As indicated in the "Effects ofFreezing on
Uranium Mill Tailings Covers Calculation Brief'(6/17/96),6.8 inches ofthe top random fill
cover layer will be effected by freeze/thaw conditions at Blanding,Utah.This suggests that 6.8
inches ofthe top layer may not contribute to reductions ofinfiltration into the tailings piles.To
conservatively compensate for effects from freezing and thawing,6.8 inches were subtracted
from the top random fill cover layer.Therefore,modeled layer thicknesses consisted of 17.2
inches ofrandom fill over 12 inches ofclay.
Layer Type:
The random fill soil layer was classified as a vertical percolation layer.Vertical percolation
layers are composed ofmoderate to high permeability material that drains vertically,primarily as
unsaturated flow.The clay layer was classified as a barrier soil liner.This material consists of
low permeability soil designed to limit percolation/leakage and drains only vertically as a
saturated flow.
Moisture Storage Parameters:
Required moisture storage parameters such as;porosity,field capacity,wilting point,initial soil
water content,and permeability,are interrelated with the exception ofpermeability.The porosity
must be greater than zero but less than 1.The field capacity must be between zero and 1 but
must be smaller than the porosity.The wilting point must be greater than zero but less than the
field capacity,and the initial moisture content must be greater than or equal to the wilting point
and less than or equal to the porosity (U.S.EPA,1994).
Based on these relations,actual measured porosity and permeability values were input for
random fill (Chen and Associates,1987)and clay (Advanced Terra Testing,1996,sample UT-1).
See Appendix D for physical property data.In addition,wilting point data for the layers was set
c:\efn-white\help2.clc (9!16/961
TITANEnvironmental
By TAM Date 9111196 Subject ~E"",FN,--"-,-_--"Ww.h.....,it","e......,M,-,-,e"",s,,,-a Page~of -g4
ChkdBy~Date~Help Model ProjNo 6111-001
equal to the long-term moisture content ofthe materials and the soil water content was adjusted
to equal the optimum moisture content.Field capacity values just less than the porosity's were
assumed to maintain the interrelationship ofthe parameters.
RunoffCurve Number,
The runoffcurve number was calculated by the HELP model based on a minimum surface slope
of0.2%,slope length of 1,200 feet,soil texture ofthe top layer,and vegetation.A slope length
of 1,200 feet was assumed to be the maximum distance which precipitation would travel over the
soil cover.The top layer on the tailings cover will be minimum 3"ofrock riprap (sandstone)
therefore,no vegetation will exist.This top layer,however,was not included in the model to
determine percolation quantities.
References:
Advanced Terra Testing,1996,Physical soil data,White Mesa Project,Blanding Utah,July 25,
1996.
Chen and Associates,1987.Physical soil data,White Mesa Project,Blanding,Utah.
Dames &Moore,1978."Environmental Report,White Mesa Uranium Project,San Juan County
Utah",January 20,1978,revised May 15,1978.
Principles &Practice of Civil Engineering,2nd Edition,1996.
U.S.Environmental Protection Agency (EPA),1994."The Hydrologic Evaluation of Landfill
Performance (HELP) Model",September,1994.
Utah Climate Center,Utah State University,Daily Precipitation Values,Station #42073807,
Blanding,Utah,January 1988 through December 1993.
c:\efn-white\help2.clc {9/16/96]
I
iI~/I'l34 l
WHITE MESA PROJECT
SITE DRAINAGE
F/(jUR.£:I
TITANEnvironmental
By TAM Date ~'"Subject EFN -White Mesa Page~of~
Chkd BY---@!L-Date~.......Hc=e"-'-jlp,,"-,M=od=e-'.-I Proj No 6111-001
Appendix A
c:\ern-vhi1:.e\help2.clc (S!ll/96J
******************************************************************************
******************************************************************************
**
**
k
**
**
**
**
**
HYDROLOGIC EVALUATION OF LANDFILL PERFORMANCE
HELP MODEL VERSION 3.01 (14 OCTOBER 1994)
DEVELOPED BY ENVIRONMENTAL LABORATORY
USAE WATERWAYS EXPERIMENT STATION
FOR USEPA RISK REDUCTION ENGINEERING LABORATORY
**
**
**
**
**
**
**
**
****
******************************************************************************
******************************************************************************
PRECIPITATION DATA FILE:
TEMPERATURE DATA FILE:
SOLAR RADIATION DATA FILE:
EVAPOTRANSPIRATION DATA:
SOIL AND DESIGN DATA FILE:
OUTPUT DATA FILE:
C:\HELP3\PRECIP.D4
C:\HELP3\TEMP2.D7
C:\HELP3\SOLAR.D13
C:\HELP3\EVAP.Dl1
C:\HELP3\efn-fin2.DI0
C:\HELP3\efn-fin2.0UT
TIME:14:9 DATE:9/11/1996
,****************************************************************************
TITLE:EFN -White Mesa
******************************************************************************
NOTE:INITIAL MOISTURE CONTENT OF THE LAYERS AND SNOW WATER
WERE SPECIFIED BY THE USER.
LAYER 1
TYPE 1 -VERTICAL PERCOLATION LAYER
MATERIAL TEXTURE NUMBER 88
THICKNESS 17.20 INCHES
POROSITY 0.3150 VOL/VOL
FIELD CAPACITY 0.3140 VOL/VOL
WILTING POINT 0.0980 VOL/VOL
INITIAL SOIL WATER CONTENT 0.1180 VOL/VOL
EFFECTIVE SAT.HYD.CONDo 0.886999999000E-06 CM/SEC
LAYER 2
TYPE 3 -BARRIER
MATERIAL TEXTURE
THICKNESS
POROSITY
FIELD CAPACITY
WILTING POINT
INITIAL SOIL WATER CONTENT
EFFECTIVE SAT.HYD.CONDo
SOIL LINER
NUMBER 89
12.00 INCHES
0.2800 VOL/VOL
0.2799 VOL/VOL
0.1410 VOL/VOL
0.2800 VOL/VOL
0.369999995000E-07 CM/SEC
GENERAL DESIGN AND EVAPORATIVE ZONE DATA
NOTE:SCS RUNOFF CURVE NUMBER WAS COMPUTED FROM DEFAULT
SOIL DATA BASE USING SOIL TEXTURE #27 WITH BARE
GROUND CONDITIONS,A SURFACE SLOPE OF 0.%AND
A SLOPE LENGTH OF 1200.FEET.
SCS RUNOFF CURVE NUMBER =96.40
FRACTION OF AREA ALLOWING RUNOFF 100.0 PERCENT
AREA PROJECTED ON HORIZONTAL PLANE =78.700 ACRES
EVAPORATIVE ZONE DEPTH =17.2 INCHES
INITIAL WATER IN EVAPORATIVE ZONE =2.030 INCHES
UPPER LIMIT OF EVAPORATIVE STORAGE =5.418 INCHES
LOWER LIMIT OF EVAPORATIVE STORAGE 1.686 INCHES
INITIAL SNOW WATER 0.000 INCHES
INITIAL WATER IN LAYER MATERIALS =5.390 INCHES
TOTAL INITIAL WATER 5.390 INCHES
TOTAL SUBSURFACE INFLOW =0.00 INCHES/YEAR
EVAPOTRANSPIRATION AND WEATHER DATA
NOTE:EVAPOTRANSPIRATION DATA WAS OBTAINED FROM
GRAND JUNCTION COLORADO
MAXIMUM LEAF AREA INDEX
START OF GROWING SEASON (JULIAN DATE)
END OF GROWING SEASON (JULIAN DATE)
AVERAGE ANNUAL WIND SPEED
AVERAGE 1ST QUARTER RELATIVE HUMIDITY
AVERAGE 2ND QUARTER RELATIVE HUMIDITY
AVERAGE 3RD QUARTER RELATIVE HUMIDITY
AVERAGE 4TH QUARTER RELATIVE HUMIDITY
NOTE:PRECIPITATION DATA FOR BLANDING
WAS ENTERED BY THE USER.
0.00
109
293
8.10 MPH
60.00 %
36.00 %
36.00 %
57.00 %
UTAH
NOTE:TEMPERATURE DATA WAS SYNTHETICALLY GENERATED USING
COEFFICIENTS FOR GRAND JUNCTION COLORADO
NORMAL MEAN MONTHLY TEMPERATURE (DEGREES FAHRENHEIT)q/3~JAN/JUL FEB/AUG MAR/SEP APR/OCT MAY/NOV JUN/DEC
------------------------------------------
27.50 32.90 38.10 47.10 57.40 66.90
73.60 70.90 63.00 51.60 38.50 28.90
NOTE:SOLAR RADIATION DATA WAS SYNTHETICALLY GENERATED USING
COEFFICIENTS FOR GRAND JUNCTION COLORADO
STATION LATITUDE =39.07 DEGREES
*******************************************************************************
AVERAGE MONTHLY VALUES IN INCHES FOR YEARS 1988 THROUGH 1993
JAN/JUL FEB/AUG MAR/SEP APR/OCT MAY/NOV JUN/DEC
PRECIPITATION
TOTALS
STD.DEVIATIONS
RUNOFF
TOTALS
STD.DEVIATIONS
EVAPOTRANSPIRATION
TOTALS
STD.DEVIATIONS
2.10
1.17
1.85
0.92
1.455
0.774
1.967
0.691
0.700
0.353
0.072
0.243
1.32
1.37
1.43
0.43
0.999
0.885
1.206
0.350
0.411
0.490
0.246
0.211
0.92
1.16
0.72
0.35
0.542
0.802
0.425
0.220
0.331
0.424
0.236
0.223
0.46
1.24
0.37
0.66
0.265
0.785
0.240
0.495
0.224
0.394
0.110
0.235
1.31
1.07
0.71
0.51
0.871
0.713
0.472
0.432
0.413
0.402
0.296
0.141
0.60
1.18
0.62
0.71
0.389
0.568
0.494
0.441
0.231
0.534
0.201
0.191
PERCOLATION/LEAKAGE THROUGH LAYER 2
TOTALS
STD.DEVIATIONS
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
---------------~;~~;~;-~;-~~;~~~~-~~~;~~-~~~~~-~~~;-(~;;~~;)---------~1:~z--
-------------------------------------------------------------------------__lL __
DAILY AVERAGE HEAD ACROSS LAYER 2
-------------------------------------
AVERAGES 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
STD.DEVIATIONS 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
*******************************************************************************
*******************************************************************************
AVERAGE ANNUAL TOTALS &(STD.DEVIATIONS)FOR YEARS 1988 THROUGH 1993
INCHES
PRECIPITATION 13.90 2.614)
RUNOFF 9.048 2.4802)
EVAPOTRANSPIRATION 4.908 0.7521)
?ERCOLATION/LEAKAGE THROUGH 0.00000 0.00000)
FROM LAYER 2
AVERAGE HEAD ACROSS TOP 0.000 (0.000)
OF LAYER 2
CHANGE IN WATER STORAGE -0.054 0.1827)
CU.FEET
3971537.7
2584718.25
1402180.62
0.000
-15362.23
PERCENT
100.00
65.081
35.306
0.00000
-0.387
*******************************************************************************
******************************************************************************
PEAK DAILY VALUES FOR YEARS 1988 THROUGH 1993 Uj74-----------------------------------------------------------------------
(INCHES)(CU.FT.)
PRECIPITATION
RUNOFF
PERCOLATION/LEAKAGE THROUGH LAYER 2
AVERAGE HEAD ACROSS LAYER 2
SNOW WATER
MAXIMUM VEG.SOIL WATER (VOL/VOL)
MINIMUM VEG.SOIL WATER (VOL/VOL)
1.33
1.684
0.000000
0.000
2.96
379955.719
481108.4370
0.00000
845040.4370
0.1182
0.0962
******************************************************************************
******************************************************************************
FINAL WATER STORAGE AT END OF YEAR 1993 \~f:3t
----------------------------------------------------------------------
LAYER (INCHES)(VOL/VOL)
1
2
SNOW WATER
1.7607
3.3600
0.000
0.1024
0.2800
******************************************************************************
******************************************************************************
TITANEnvironmental
By TAM Date 9/1 1/96 Subject ......E'="FN~-_Wh.I..L.U~ite"-'M~es=a~Pagel2..-of 34
Chkd By__Date Help Model Proj No 6111-001
AppendixB
c;\efn-white\help2.clc [9/11/96)
·.0
o
{4-.;
i:~
ROIJIS TIl
THE GOLDEN CIRCLE
o-~--"~110 ~..It ,.,••
1
Or--
3est Of The West •••
tah combines the best of the West
'Ilhtn Utahs 85.000 square miles is a
)ncentrated collage of western folk-
('::scenery and history
,Eer into Utah and sample some of our
''2 national parks.seven nationalmon-
~"'"'tc::::);orl t"l.'il O::l1:t"'I.('):::l:1 rDrrp~ti(")n
eas Drive Into our 43 state parks or
ght national forests Explore the
'untry on lhis map and you'll soon
:ho :he statement first made by pio-
~er settlers to Utah:··This Is the Place:·
tVE NATIONAL PARKS
Southeastern Utah IS the place for the
world·s greatest-and most concen-
trated-repertory of stone arches
Arches National Parks ;rademark 's
Delicate Arch.although landscape
Arch is a world record-holder With a
span of 291 feet
WHITE WATER CANYONS
The Colorado River glides past Arches
and churns into Canyonlands NatIonal
Park 40 miles southwest National Geo-
graphic labels Canyonlands ··the realm
of rock and far h()ri7r.n Tho r~I~,~--'~
Eighty percent of Utah·s 1.2 millioro
people live along the foothills of the
Wasatch Mountains Salt Lake City is
not only the cultural and social hub oj
Utah.but also the international base for
the Morrr:on Church
Tho llt::::lih S:v("'f)()hnnv ~~llot WP~t 1_I!~h
Repertory Dance Theater and the Pio-
neer Memorial Theater all lend a cos-
mopolitan atmosphere to SaltlakeCity.
Professional sports are represented by
the Golden Eagles hockeyclub and the
Salt lake Gulls baseball team.
TITANEnvironmental
By TAM Date 9/11/96 Subject ....;E"",FNW..>..._-Wh...!..l-!..!.llite"-M~e",,,sa,--Page l(ofJ!
Chkd By__Date Help Model Proj No 6111-001
Appendix C
c:\efn-white\help2.clc {~/ll/96J
..J.I Oaiiy PrecipitationValuC$.Statioa1142073807.Blanding.Utah
111188 °111190 °;1/1191 °111192 °I 111193 01---'1":12I8=8;-t1--::O-~1-.I-."':1":;12I9O:.c:-:~i--0::----~112I9::'::-1'-t--::0---112192 0 :~-1-12I9'---'3.....:....--0=-----l
113188 0 !It3I9O!0.2 113191 I 0.15 --~::'-113192 0.04---rt--lOO3 0
1/4/88 0.06 I 114190 0 1/4/91 I 0.96 1/4192 0.31:1/4193 0
115188 0.19 I 115190 0 115191 I 0.08 1/5192 0.02 i I 1/5193 I 0
1/6188 0.11 I 1/6190 0 1/6191 0 1/6192 0.42 116193 I 0.34
In188 0 i Inl90 0 Inl9l 0 i Inl92 0.03 Inl93 0.36
1/10188 0 1/10190 0 i 1/10191 0 ;1/10192 0 1110193 0.51
119188 0 119190 0 ;.119191 0 119192 0 119193 0.01
1/8/88 0.01 I If8I9O 0 :118191 0,118192 0 118193 I-ii 1/11188 0 ,
:I
o
o
o
o
o
o
1.16
OA8
0.16
0.11
1119193 0.31
1118193 0.88
1120193 0
1113193 0.11
1112193 0
1111193 0.'1\
•1/17193 •0_16
•1114193 0.1
I 1/15193 0
;..1131/93 I!~
I \7fl193 I
I i 2I2f93
i :213193 i
i !2/4/93 I
I 115193
i ;2/6193 :
i i m193,
•2I8f93,2191931
I i 1/16193 0.'19
o
o
o
o
o
o
o
°
o I I lI3OI93 I 0.12
°i'1123193 i °o ,l 1122f93 ;0
o :1129193 !0
o I I 112&193 !°
o I I 11l6t93 I 0oii111.7/93 !0
o I I 1124/93 ;0
o !I 1125t93 !°
o !I 1121193 I 0
o
o
o
o
o
o
o
o
o
0.02
o
0.01
2/7192 I
2/5192 I
219192 I
2/6192 ;
213192 !
2l8I92 '
2/4192 !
211192 I
1131192 •
1130192
1128192
1/29192
1125t92 i
1127192
1123192 i
1124/92 !
1122/92 !
•1126t92
:;111.1/92
i I 1111192
1 :1/12/92..1/13192!!,
1 1/1<1192
!j 1/15192
1116192
1/17/92
!i 1/18192
!1/19192
l :1120192
0 i I 1/11191 0
0 ..1/12191 0I.
0.04 I !1/13191 0.01
0 : I 1114191 0
0.14 i i 1115191 0.02
0.03 .!1116191 0I
0.06 i ,1/17191 0
0.19 !I 1118191 0
0.32 I !1119191 0
0 i i 1I2Of91 0
0 :I 1121191 0
0 ,!II22f9I 0
0 ,1123191 0
0 I tn4/91 0
0 :i I125t91 0
0 ,i 1126191 0
0 ;1127191 f 0
0 ·I I128f91 0
0 ·i 1129191 0!
0 I I 113Of91 0
0.03 :i 1f31191 0
0.06 ·i 211191 0
0.03 ;i 2J2f91 0
0 i i 2f3I91 0
0 ;214/91 0
0 ,2/5191 !0
0 2/6191 ;0
0 217191 !0
0 :218191 0
0 ;219191 0
0 ,2/10191 I 0
0 '.2111191 i 0
0 2112191 \0
0 ;i 211319J :0
0.16 i I 21/4/91 1 0
0.06 i :2115191 :0
0.·i i 2116191 1 0.03
0 :2117191 i 0.02
0.03 .211819\I 0
0.01 ,;2119191 :0
1I30I9O
1119190
Ifl5J9O
1124190
1I20I9O
1118190
1117190
1116190
1/14190
1/15190
1/13190
1/12190
1111190
I 111.7190
I 1128190
I 1129190
:1123190
I 1122190
I 1121190
o !I 2/9190
o !.217190 !
o i 2/6190 j
o !i 2/5190 I
o 1 I 214190 •
o 1131190
o
o
o
o
o
.()
o
o
o
o
o
o
o
o
0.4 2/1190
o
o.
o
o
0.Q6 :212190
0.89
0.71
219188 I
217188 :
2181&8 !
2/6188
2/5188
214/88
2/-10188 i
2/1/88
2J3I88
l!31/88
tn9188
I12S188
lI28I&8
lI3Of88
1123188
1122188
1126188
1120188
111.4/88
11181&8
2117188 !0 i I 2/16190 •2116192 i 0.23 :2116193:0.08
1116188
2112188 i 0 :!2111190 :2111192;0.27 •2111193 0
2115188 !0 i I 2114190 ,2/14192 j 0 2/14/93'0.01
2/13188 !0 i;2112190 i "1112192:0.05 i 2112193 0
1/19188
111.1/88
·111.7188
1/17188
1112/88
1/15188
1/14188
1/13188
2121188 i 0 2120190!0.03 2/20/91 0 2/20192 :0 '2120193 0.7
2122/88 I 0 ;;2121190 i 0 2/21191.0 2/21192 !0 2121193 0
2123188 l 0 .:2/22190 I 0 2/22191 : 0 2/22192 • 0 i:2122193 !0
-'-+_.¥---:----------..
312190 0 31219'0 3/1192 0 312193_._.-
;3/3190 0 3f3191 . 0 312192 0 313193-----_._._-----3/4190 0 )14191 0 313192 0.34 3/4193
1-=2/2:.::..,:4/8.::.8::c-+~__::O-_'---i-:-;:2/2::::=:-319=o;:--:-i_--:::O_~,_2/2:-::,319=:'__-;0;-_2123192 0 2fl3193 i 0
1....::2/2..::518::=8:-;-;_-::0_-:-,_:;--::-2/2=4-:-190::::--:-:_--:::0__....:;~212=4:-:19:-:-I-'i_----;0~__2/24192 0 2124193 i 0.'1
2126188 ; 0 i;2125190 ;0 2125191 0 2125192 0 2125193;0.04
1-=2/2":::::7/'::'88:-'-;--:0...::.04c-c-......;.·-;-::-212~619::-0:-;-:---:::0---c-2/2=6f9;-::-:I-"-----;0:-_-_-_.__212c_61-'9_2-i-__0_c-c---,._.212=,.:::.:619:::::-:3~__-.::...0_-1
1-=212:..::::8I.=.88=-+!_--,,0_-;--;_.::.21.::.27:-/9-,0_:;--·__0_._.:.....:;;212:.=719-,-,-1-'---__0 -'-2127192 °,2127193 .~
.::2/2:.=91.=.88=-+'~=",0~---'._...,-=:212,:.::.819::0=---:0 -=m=819.::.I:....__0.4 Y28f92 ;0 -c2l,....2_8f9-c--3~.__0 _~-=3=/1=18::8=t1=-==-~O==;='='=:3~/1~/9~0;+==0~.0=2==~3/~1~19==1==~O:-:::9=-~'~..:~.?i29192 -'0---i 311193 0
312/88 0 0
1""':'3-/3-'/8-8-7---0 0
3/4/88 0 0
Daily Precipitation Values.Station1142073807,Bbnding.Utah
lanu31'Y.19&&throul':h Febru3J"•1994
I I I I I !:i
Date (inches)I Dalt:I (ind=l !:Dale ,(inches!Date l (inches)'Date'(inches)
3/5lll&0 3/5190!0 3/5191 0 3/4192 j 0 •3/5/93 0
3/6188 0.01 3/6190 0.01 '316191 0 315192 1 0 3/6193 0
317/88!0 i 317190 0 '317191 0 j'3/6192'0 317/93 0
3/10/88 0.01 i 3110190 0.02 ,3110191 0 319/92!0.Q3 I 3/10193 !°
3/ll/88 ° .i 3/11190 0.15 ;:3111191 0 I 3/10192 1 °':3111/93 !0
3112188 0 3/12190 0.23 I j 3112191 0 3/11/92 ° ;I 3/12193 I 0
3/131&8 0 3/13190 0.06 3/13191 0 3/12192 0 1:3/13193 1 0
3/141&8 0 3114190 0 I 3/14191 0.06 3/13192 0 1 3/14193 I 0
3/15188 0 3/15190 0 !3/15191 0.01 3/14/92 0 I I 3/15193 I 0
3/16188 0.013/16190 0 3116191 0 3/15192 0 i 3/16193 0
3/17/88 0 3/t719O 0 3/17191 0 3/16192 0 I 3/17/93 0
3/18/88 0 3/18190 0 3/18191 0 3/17/92 0 3/18193 0.19
3/19/88 0 3/19190 0 3/19191 0.03 3/18192 0 3/19/93 0
3/201&8 0 3I2Ot9O 0 3/20191 0 3/19/92 0 3/20193 0
3/21/88 0 3/21190 0 3/21191 0.14 3/20192 0 I 3/21/93 I 0
3122/88 0 3122190 0 3122191 0 3/21/92 0.03 I I 3122193 i 0
3/23/88 0 3123190 0 3123191 0 3122192 0.02!I 3123193 I 0
3/24/88 0 3/24190 0 3/24/91 0 3123192 0.05 I I 3/24/931 0
3125188 0 3125190 0 3125191 0 3/24/92 0.02 j!3I25t93 . 0
3126188 0 3126190 0 312619I 0.26 I 3125192 0 I I 3126193 I 0.06
3/27/88 0 3/27190 I 0 I 3/27191 0 I i 3126192 0 i 3/27/93 .1 0.47
3/28188 0 3128190 I 0 i 3128191 0 I'3/27in I 0.5 :I 3128193 j 0
3/29/88 0 3129190 : 0 I 1 3/29191 0 I i 3128192!0.37 ;:3129/93;om
3130188 o·i:3I30I9O.0.08 :;3/3019I I 0 :3/29/92 i 0 ,'3130193 :0
3/31/88 0 3131190 I 0 :!3/31191 I 0 1 3130192 0.13 "3/31/93!0
4/1/88 .0 I!4/119O!0 :!411191 i 0 !3/31/92 I 0.11 ;!4/1193!0
4!2188 0 I i 4/2190 i 0 i:412191 I 0 I 4/1/92 0.05'i 412193'0
4/31&8 0 I 413190 i 0 I I 41319I I 0 i 412192 0 i i 413193'0
4/4188 0.02 I I 4/4190:0 I I 4/4/9I I 0 ;413192 0 i I 4/4/93:0.03
4/5/88 0 i 4/5190!0 :I 4/5I91!0 :!4/4/92 i 0 i 4/5193 I 0.,04
4/6188 0 I 4/6190 1 0 I I 4/619I I 0 i i 4/5192 l 0 I!4/6193 l 0.5
417/88 0 I 417190 i 0.06 1:417191 I 0 I 4/6192 i 0 !:417/93;0
4/8/88 0 I 418190 I 0.11 !;4181911 0 l I 417/92 1 0 !418193 I 0
419/88 0 I 419190 i 0 i 1 4/9191 I 0 I!4I8J92 \0 !4/9/93 0
4/10/88 0 1 4/10190 I 0 1 14/10191 I 0 :I 419/92:0 i i 4/10193 :0
4/11/88 0 .j 4/11190 l 0 i·4/11191 i O!;4/10192 ;0 4111/93 I 0
4/12188 0 j 4/12190 ;0 i!4/12191 I 0 ::4/11/92 !0 4/12193 ,0
41131&8 0 i 4/13190 :0 1 14/131911 0 ;1 4/12/92 '0 4/13193 '0
41141&8 0.06 '4/14190 ;0 'i 4/14/91 !0 'i 4/13/92 I 0 4/14193 .0
4/15/88 0.2 i j 4115190 i 0 \4115/91 !0 I:4/14192 i 0 4/15193 : 0
4/16188 0.16 I:4/16190 :0 4/16191 0 ;:4/15/92;0.03 4/16193 i 0.Q1
4117/88 0.2 I;4117190 ;°l 4117/91 0 l:4/16192 j 0.G3 4/17193 ; 0
4/18/88 0.02 I'4118190 ;°i;4118191 \0 !4/17/92 :0 4/18193 ;0
4/19/88 0 \4/\9190 :0 I I 4119191 !0 !;4/18192 ;0 ,;4119/93 .~0
4/20/88 0 i 4120190 ;0 .!4120191 0 ;4/19/92 : 0 4120193 .0
4/21/88 0.01 I 4121190 i 0 1 4121191 ;0 1 4120192 : 0 4121/93 0
4/22/88 0.08!j 4122190 •°!4122191.°4121192 . 0 4122/93 0
4/23/&8'0.01 I'4123190 ;°;,4123191,0.01 4ri:lJ92 :0 4123/93 °
4/24f88!0.02 :4124190 0.48 412419\'°,4/23192 ;0 4124/93 . 0
4125188 i °!.4f15190 : 0 ';4125191 l 0 ,;4124/92 :0 4125/93 . 0
4126188 1 °:4126190 '°,:4126191 °4125/92 : 0 4126193 °
~4:;:12:.::7/~8::;:.8-+i_--=0'------'-_',-:,412=-7~19:-:0:-:-,__~O:--i 4127/91 0 ,:4126192 :0 4127/93 '0
4/28188 i °4128/90 ;0 "412819\° ;4127/92 '0 '1128/93 : 0
4129/88 I 0 4129190 0.09 4/29191 i °;4128/92 i °4/29/93 0
1=4::13:=0/::8=8:±i==0==i=,:=<l1=30=19O=:i-::=0=.06====4=13=0=/9=I='==0=~=::=412=9=/9=2=:==0===='11=30::19=3===0==1
1-----'5c:-~11~88"-'1_~0:---7-i--~5:.:::11:.:::/9:-:0~--0::::.::_=83~--,--.__;_751:::1/=9.:--1-+-_-:;0:.-_-------,'4130192'0 511/93 °
1-=5::.:nJ:::8~8:.......:-'_--=0_--:-....:....~5-:f2J-:907-_..---=-0-----,._:......:5..:1219::..:..:1-----;..'__-=-O_~__511/92'°5nJ93 °
513188 I 0 ;5f3190 0 513191!0 .:._.......=:5nJ9::::.::~2-.:.._..:0:c.....:.....:::5/~319:.:.::.3 ~1-=5::::f4:::'/8~8:...!.---=0----'--;---":5":I<l':":f907-:---0-_.5/4191!0 513/92 0 514/93 0.05
1--=5:::'/5:::'/~8g::"";'i---=0:......-.......c-1"'-:'5':-:f5.:.:'f9:-:-0-----C--·0---:-':-5/5/91 ;--0------'--..:5.:..:/4=-19:.:2'--,.'--0~.0-7--515193 05:-::-:-r--..----=::-~_...::.::::.:...........-----c-=:::=:=-..;-~~~51618g 1 0 5/6190 ....Jl__d_516191:0 515/92 ,0 516193 i 01-=5::.:n=-18::.:8:.....;.,-----'0--+~-5:.,..n-:-::/9-,-0-0 5n191 0 516192 0 5nf93 i 0.06
DailyPrccioil2.tion V:>.lucs.Sution#42013807.Blanding.Utah
January.1988 throughFebruaq.1994
!I I !i I I ;
1 ~Pr~==.:iPeii::::tal.I~·o::::n+-+'~I~Pr~CCt::::ix:pii~u::::ti::::on~:-+,+IIPr:..:.:::;CCt=.iPeii::::tal.I:::;·oo::::'+i·..f'_-co------jjt=-Pr.:..:=:;:·:.t:p.:.:iU::;l:.:io.:.:;n!~I Precipiution
Dale (inches)!Dale ,(inches)i I Dale I (inches)I:Dale I (inches)i Date I (inches)
i-=5;,:/8/8~8~_-=-O_+-+I._5I8I9O===-+_-:O_-7--<·f----:5~/S/9::::-:I-+--=-O--:-:-+-~5n-=19;;._2~1-...:0o:.;_:19_518193;0.15519f880519190j051919105/S/92!0 :I 519193 i 0
5/10188 0 i 5/10190 :0 :5/10191 0 i I 519192:0.96 ,,511M3:0
J
]
i
5111/88 0
51lm8 0
5113188 0
5114188 0
5115188 0
5116188 0
5117/88 OM
5118/88 0.3
5119/88 0.15
5120188 0
5121/88 0
5t22f88 0
5f13I88 0
5124188 0
5t2SI88 0
5t26f88 0
5127/88 0
5t28I88 0
5129/88 0.17
5130188 0.01
I 5111190 i
5112190 i
•5/13190 i
5114f90 I
511Sf90 I
5116190
5117190
5118190
5119190
5t2Ot9O 1
5121190
5n:mo
I 5124190
5t2Sf9O I
5t26I9O I
5127190
5t28I9O I
I 5129190 i
o i 5111191 i
o i 5112191 !
o ;l 51131'91
o ;I 5/14191
o I I 5/15191
o I 5116191
o !5/17191
o i 5118191
o i 5119191
o !5120191
o I 5121191
o !5/22191
o I 5123191
o !5/24191ot5t25I91
o ~Sl26l91
o i 5127191
o I 5t28f91
0.02 5129191
o !!5130191
o
o
o
o
0.06
o
o
o
oo
o
o
o
o
o
o
o
o
,5110192
I 5111192
I 5/12192 I
I 5113192 !
i 5114192
5115192
5116192
5117192
5118192
5119192
5121192
Sl22l92
i S123f92
I 5124192
5t25I92
5t26I92
5127192 I
!i 5129192
o :5111193 0
o .'5112193!0oIi5/13193 0
o •I 5114193 0
o 'i 5115193 0.02
o 511~3 0~8
o 5117193 0.35
o 5118193 0
o 5119193 0
0.06 SI2or93 0.01
0.05 I 5121193 0
0.06 I 5t22f93 0
0.36 I Sf23f93 0
om :5124193 i 0
0.2 i 5t25f93;o~
0.15 I Sl26l93 l O.H
0.13 I 5127193 i 0.19
0.05 l 5t28f93 i 0.05
o I'5129193 i 0
om i!Sl3Ot93 !0
5131188
611188
614188
615188
616188
617188
618188
619188
6110188
6111/88
6112J8g
6113188
6114188
611518&
611618&
6117/8&
6118188
6119/88
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
.5/31190 i
611190 i
612190 i
I 613190 ,
614190 i
61Sf90 I
616190 !
617190 I
I 619190 l
!6110190 j
I I 6111190 !
,~6112190 i
!I 6113190 ;
i ;6115190 (
!:6116190 !
1 •6111190 '
i (6118190 :
~i 6119190 .
o :5/31191
o i 611191 io:612191 I
o 'I 6I3f91 •
o i!614191 I
o ;i 615191 i
o I I 616191 !
o I 617191 I
o I 6I8f91 I
0.04 !619191 I
1.09 !6110191 1o .6111191 I
o ':6112191 ,
o .:61131'91 j
o ,;6114191 i
o ,~15I91 I
o i 611~1 I
o ~6117191 ,o '6118191 :
o '6119191 '
0.43 •SI3Ot92
o I 5/31192
o I 1 611192
o I I 6I3f92 :
o I I 614192 I
o I 616192 t
o 11 617192 i
o !I 6f8f92
o !i 619192o!.6110192 I
-0 ~6111192 j
o ;!6112192 :
0.05 i 6113192 :
o !6114192 i
o !6115192!
o ;1 6116192 ;
o 6111192 '
o 6118192 :
oo
o
o
o
om
om
oo
0.16
o
o
o
o
o
o
o
o
o
o
I !5131193 \
;i 611193 :
!i 6f2J93
!!613193
:;614193 ;
I 615193 i
616193 i
617193 j
6I8f93 j
1 619193 I
i .6110193 !
l :6111193 ;
;~6112193 :
6/13193 :
6114193 !
!6115193:
,6116193;
6/11193
6118193
6/19193
o
o
o
o
o
o
0~1
0.01
0.06
o
o
o
o
o
o
o
o
0.04
o
o
6120188 i 0 I;6120190 0
6121/88 0 1 i 6121190 ;0
6I22f8&0.02 i I 6I22f9O !0
6123188 0.01 j;6I23f9O :0
612418&0.05 I!6124190 ;0
6125188 0:1.7!~6I2S19O ;0
6126188 0.11 I I 6126190 .0
6127/88.052 '6127190·0
6128188 OA2 !;6128190 :0
6129188 '0 I;6129190 : 0
.6120191
:;612119\i
!!6I22f91 i
,\612319\~
:6124191 •
i 6I2S191
:6126191 :
,6127191
6128191 •
!~6129191
o
o
o
o
o
o
o
o
o
o
•6/19192 :
,6I2Of92 \
I I 6121192 i
:6122192 j
i !61231'92 ~
6124192 :
,:6I2S192 :
,:6126192
!6127192 :
,6128192 •
o
o
o
o
o
o
0.08
o
o
0.01
6120193
1 ;6121193 .
I I 6I22f93 :
:6123193
6124193
6125193
6126193
;6127193
6128193
6129193
o
o
o
o
o
o
o
o
o
o
6I30t88 0 !:6130190 :0 ;6130191 !0 i.6129192 :0 j 6130193 0
7/1f1l8 0:7/1190 0 7/1191 0 6130192 :0 7/1193 0
712188,0 '7/2190 0 7/2t91 :__0 ._.711192 0 __712193 0~7::.:t3t~1l~8:.....J.1--..::0--:-'---=7/:::3::::19~0-;----:0:-------7/J/91 0 __._.712192 _-.-2....713193 0
~7:..:./4:::/ll~8:.-....1--..::0_--:---=7/:;:;4/::::90-:-~-----:0:_____-__-:7:;=;-/4-;-;19~1:--__°713192 0 ...7/4193 0
1--,~.:.:~~::c/:::..::'--+1-----0~----:---;:~~-:::~19-:::9-=-~---:~:-------,--:~:-;~~:;-:19~:~-~~~~~~.__~·ft~~.--._=__O_O==~
1_7.:..n__/88-+i__0_-.,--_7n19O 0.78 7n191 0 7/6192 .._0__..__.7n193 0_--;
7/8188 I 0 .....-L'_.:..:7/.:::819~0,,---~...:0,-,-.7,-=-3 ,_7.---/8::..19:.:1c..-,-_0.1 7n192 ._.._0 ..7/8193 0_--1
1=7=19=t8=8=t1==O==:=~719::::/;::9~0==0=.0;2=='~'~-o-_<;J~__.'._7/8/9_2__..9.:.:..__--:-..?!?.'2l....:........_~
7/10188 \0 7/10190 .° ---ill0I91 0.01 :-ml9-2-;--O·------7110193 .--0--
DailyPrecipiutionValues.Sution #42073807,BlandinI':.Uuh
J21luary.1988 throur:h Fcbcua<Y.1994
t---i--:-:--::-...L'--l--I !! I ~I __--.:.'_---,-,--:,-'-.J-.t-I ---,-----1
PrecipiUtionl !_IPrecioiutioni i IPrecioiutioni '!Prccipiulioni I Precipiution
Date (inches).:Date I (inches)Date'(inches):Date (inches)D..te (inches)
7/11/88 I 0 .7/11190 I 0 :7/11m I 0 7110/92 ,0 __._7/11193;0
1---:'7/':.:1-='2/8=-8:--;-;---=-0--'-'7:-:7':':-/1=-:2I9O':::-:--j'--::0---:~7/:'-:1219::=-'1'-+-!--0::---;-'7""1"-11""/9'-2-'-:--0:-•7/12/93 ;0
1---::7/':.:1'='318=-8:-+---=-0--:-'0-::7':':-/l=-:3I9O':::-:--t--";;O'--.-j";:7/::'13/9=I'-+-,--0::----'--:7':':-/1=-:2/9=2-!:-·-;-1.~3 3:;---~'-::7/-::1'='319;;;3:-t---0::---l
1-'-7/:.,:1~418:,::8:-t_--=-0__+-j·--,-!-:7,:,:-/,-:14:,::19O~~-,0:::.0:.::5 ;~,-:::7/~14:::/9=-1,-+-1__0::---.-:.7:.:/1:.;:.3/9:..:.::02....;:__°.:-.0-'2"--..-----'-:::7/::-14/9-:-::-:3:-:-_-'0=----l
7/1S/88 0 i 7/15190 0 ;7115191 0 7/14/92 .0 ,7/15193 °
7/16188 0 !7/16190 0 .I 7/16191 0 ;7/15/92 ;0 I 7/16193 0
7117/88 I 0.05 !7/17190 0 I 7117m 0 '7116/92 i 0 :7/17/93 0
7118/88 !0 ;7/18190 0.01 ~7/18191 0 7/11192 !0 !7118193 0
7/19/88 I 0 ,7/19190 0 i 7/19/91 0 ~1118192;0.08 !1119/93 0
7120188 0 i 7120190 0 i 71201910.28 I 7/19192 I 0 i 112fJ193 0
7121/88 0 !7121190 O.oJ ;7121m 0 1120192 0 •7121m 0
7122188 0 I 7122190 0 :7122191 0 1121192 0 •7122J93 0
1123188 0 I 7123190 0.01 l 1123191 0.04!1122192 0.1 •7123193 0
7124J88 0 7124190 0.Q2 :7124/91 0.23 .7123192 0.08i 7124193 0.01
112S188 0 7125190 0.05 :7125191 0.08 i 7124/92 0 1 I 7fl5193 0
7126188 0.16 I 7126190 0 I 1126191 0.01 !7125192 0.11 l 7flfJJ93'0
7121/88 0 7127190 0 i 7121m 0 I 7126/92 0 j 7127/93 0
7n:u88 0 I 7128190 0.02 i 7128/91 0 !7121192 0 I 71lt193 0
1n9188 0..13 I 7129190 0 i 7tl9191 0 ~7f2S19i 0.02 I 7129/93 0
7130188 0.05 I 7130190 0.19 I 1130191 0 1129192 0 j 1130193 I 0
7131188 0.12 I l 113l19O 0 'I 713l/91 0 ,1130/92 0 I 713l.193 i 0
811188 0.13 i!811190 0 I 811m 0.03 ;713l/92 I 0 :!8/1/93 1 0
Sl2l88 0 I 8I2J9O 0.25 !Sl2l91 0.04 i 811/92,0 !8I2J93 0
813188 0 I'SI3I9O 0 :'813/91 0.08 ,SI2J92 0 813/93 i 0
8I4J88 0 i I 814190 I 0 814/91 I 0 .!813192 I 0 •i 8I4!93!0.01
8IS/88 0.38 j:815190 I 0 l 815191 0.0I i 814192 i 0'!815/93 1 0
816188 0.02 !816190 I 0 i I 816191'056 i SI5I92 1 0.Q2 i!8I6!93 .0.03
8/7/88 0 ;i 8/7190:0 •8/7/91 0 8I6/92!0.01 !:8/7/93 i 0.03
Sl8l88 0 :SI8I9O i 0 !SI8l91 0 ,8/7192!0 •&I8l93 I 0.03,
819188 0 :819190 I 0 'i 819191 I 0 :8I8/92!°i;819193 1 0.03
8110188 0 !I 81101'90 I 0 i I 8110191 0 :I 819/92 I 0.03 •j SIlOl93 I 0.01
8111188 0.04 I!8Ill19O I 0.04 :;8111191 °8110192 1 0 !I SIll./93 !°
8112/88 om i!8112190 1 0 :18112191 0.36;:8111192 I 0.04 i!SIl2193 i 0
8113188 0 :!8113190 I 0.15 !8113191 0 'i 8112/92 !0 ,I 8113193 ;0
8I14J88 I 0 i 8I14I9O!0.07 •8114/91 j 0 8I13l92 i 0 :1 SIl4!93 i 0
8115188 \0.09 I:8115190 l 0.95 ,8115191 I 0.01 8114/92 :0 SIl5/93 j 0
8116188 i 0.05 I i 8116190 I 0.24 !I 8116191 l 0 l 8/15/92 ;0 !8116193 •0
8117188 •0 !;8117190 ' 0 :8117/91 !0 8116/92 :0 ';8/17/93 ;0
8118/88 I 0 !j 8/18190 I 0 •i 8118191 I 0.06 8117/92 1 0.19 !1 SIl8l93 !0..
8119188 1 0 i 8119190 to!8119/91 ~0 ;8118/92 ' 0 ;8119/93 ~0.Q3
8120188!0.24 ;8120/90 :0 8120191 0 SIl9/92 0 8120193 .0
8121188;0.15 8121190 ~0 :8121/91 i 0 8120192 0 8121/93;0.Q2
8122188 ;0 8122190 ;0 .8122/91 °8121/92 0 8/22/93 0
8/23188 j °8f2J/9O ~0 812319\;°8122/92 0.37 8123193 °
8124188 I °8124190 i 0 8124/91 °8/23/92·0.16 8/24/93 . 0
812S188 1o!I 8125190 I 0 :i 8125/91 I 0 ;8124/92 i 0 j i 8125193 i 0.Q8
8126188 1 0 ':8126190 I 0 1 8126191 I 0 8125/92 ;0 '8/26193!0.74~812~~7/'::::88:::"+j'---=-0--+:--7:-'8I2:::.::::7:.:19O:..=.-1!--..-.-::0=--~~:'::812:"=:=7/9'::-:-'1+\--:-0.="0-\--'--:812=6/9::':':2'--'-·-O::....·-~-'8/2=7::::/9:-:'3....;.............::.:.0:..:....-l
8128/88 I 0 I!8128190 I 0 1 8128/91 I 0 8127/92 •0 ;8/28193:0.73
8129/88 0 ;8129/90 i °8129191.0 8I2SJ92 0 8/29/93 0
~8I3:.::0I=88:::....;.-..::0.:.:.1.::::8_-'--'--'8I3;:..::.::0:.:19:.:0~.'-:_-,0=--__...::813::,::-=:0/9-:-:-1+'_..,..=..o:--__..-.-::812::,:::9.:,:/9:.:2=--_-::-0'::-=-__---'_--;813:-::-=019=3__-::-0::..,;-.-----1
813\/88 0.47 8I31t90 ; 0 8131/91;0.02 8130192'0.28 8131/93,0.05
912188 0 I 912190 i 0.32 912/9\I 0 911/92 0 912/93 °91l/88 0.01 i 9/1190 i O.Ol 9/1191 i 0 &131192:0.16 911193 0
9/3/88 0',9/3/90 i 0.1 9/3/91 0 912192-•0 ,9/3/93 i °
9/4/88 °9/4190 i 0 9/4/91 °9/3192 0 i 9/4193 0
9/5188 °9/5/90'0.08 9/5191 .....,.°:--9_1_419-'--2 °:-_9/..:c5...:./9=-.3 0'----I
\-..:9~/6I8=8---7-_.__::0__--...:.9_/61...:.9:....;0'-'-0-:-.1 ..J'6I9I ~.~_9/5/92 0 .9_/6I9::.....:.;3=--_---'0'--....---j
l=9=n=/8::8=t=~0===~9n~'9~0=t::==0;=:=~:...==9~n=/=9=1==-~=0=.2=5=_==9='6I=9=2===0==.-=:_:--.-..9:::n:::I9:::3===0==1
1-..:9~/8I::.:8:.::8-+_-:-0 ....:.9/..:.8..:.19..:c0___i_-_._0.,........---918191 i __O__--.-J.!!!'!l..:........._.!l_9/8193 i °
9/9/88 0 919190:0 91919 I 0 9/8192 0 9/9193!°t---.:::..:::::::...-:...----:-':-::--.-:--.-...:.......:....:...::---"------,-------"--------'9110188 0.32 9110190 0 •9110191 i 0 919/92 °__.._9/10193 ;°~9/...:.1:::.1/:::.:88~--::0::._0.::.5---'C'--;9::-:,11190 0 9111191 0.13 9/10192 °9/11/93 ; 0~91...:.I.:.c.21""88'-T--:-O-:..5-:-8-----·..:.9-,:I...:.2J9...:..:..0~--...:.0-·----"---9ii2nl~-0"-_.-9111192-0-'---9/11193,om
o.lllyPcropiutionValtu:s.sution 1142073807.Bbndiop.Utah
January.19S5throuf!:h Fcbrua!Y.1994
I I :,-I I i
Precipitationl ;iPrecipitationi :IPrecioitationl I IPrceipiution,Precipiution
Date (inches)j i Date I (inches)!Date I (inches)!Date :--Cinches)i Date (inches)
9/1318S 0 ,9/13f90 ;0 9/13/91 !0.01 t ;9/11192 !0 .9/13193 .0.6
9/14/88 0 :9/14190 :0 9/14/91 :0 ;.9/13192 . 0 9/14193 I 0
:-,!,9/15193 I9/15/88 0 9/15190 :0 9/15191 0 9/14192 :0 ~0
9/16188 0 ::9/16190 :0 i 9/16191 I 0 i 9/15192 ~0.13 9/16193 i 0
9/17/88 0 l i 9/17190 I 0 :9/17191 !0 ;!9/16192 I 0 ;9117193 !0
9/18188 0 I !9/18190 I 0.63 ;9/18191 I 0 I :9117192 I 0 ;9/18/93 0.22,;
9/19/88 0 I 9/19190 i 0 9/19191 I 0 I 9/18192 ;0.22 I 9/19193 0
9120188 0 I I 9120190 I 0.16 !:9120191 0 i I 9/19192 !0.47 j 9120193 0
9/21/88 0.08 ;;9121190 I 0 j ;9121191 0 ;'9120192 ;0.08 9121193 I 0
9122188 0 i 9121190 i 0 ,9122191 0 ,9121/92 •0 .9122193 0
9123188 0 I 9123f9O 0.06 I I 9123191 0 I •9122192 •0 ~!9123193 0
9124/88 0 9/24190 0 :19124191 .0 I 9123192 0 ;!9/24193 0
9125188 0 9125190 0 i I 912S191 '0 I 9124/92 0 : i 912S193 0
9126188 0 9126190 0 I ;9126191 0 I 9125192 0 ;I 9/26193 0
9127/88 0.03 9/27190 0 .I 9127191 0 I 9126192 0 !19127193 0I,
912Sl88 0 9128190 0.23 1 ;9128191 0 I .9/27/92 .0 1 •9128193 I 0
9129/88 0 :912919fJ 0 j I 9129191 0 : I 912S192 0 i i 9/29193 i 0
9130188 0 9I30I9O 0 I I 9130191 0 .1 9129/92 0 ,l 9130193 0
1011/88 0 tOl119fJ 0.01 I i 1011191 0 I I 9130192 0 :I 1011193 0
1012188 0 1011190 l.l I !1012191 0 I 1011/92 0 I 10/1193 0
1013188 0 10l3I9O 0.02 1 j 1013191 0 I 1012192 0 ,10/3/93 0
1014/88 0 1014190 0 I ,1014191 0 !1013192 0 ,·1014193 0
1015188 0 1015190 I 0 .1 1015191 0 1 I 1014192 I 0 ·1015/93 0. .
1016188 0.02 I 10I6I9Q ;0 !.~1016191 0 !I 10/5192 i 0 10/6193 0.61I
1017/88 0.04 I 10I719fJ i 0.1 1017191 I 0 I i 10/6192 ;0 ;1017193 0.21,·10/8/88 0.02 I 10l8I9O;0 1 !10IS/91 I 0 'i 1017/92 I 0 j 1018193 I 0.19
1019/88 0 I lOI9I9fJ !0 ;.1019191 !0 ~;l0IS/92 I 0 .1019193 1 0,
10110188 0 1 10/10190 j 0 .I 10/10191 !0 ;I 1019192 :0 i 10/101931 0.01
10111188 0 10/1119fJ I 0 i :10/11191 !0 .110110192 !0 :I 10/11193 0.1I
10112188 0 I I 10111190i 0 1 i 101121911 0 .i 100IlI92l 0 i i 10/11193 0,
10113188 0 •10113190 I 0 !i IO/t3/91 I 0 !i 10/121921 0 j !10113193 0
10114/88 0 I 10114190 I 0 ,i 10/14191 i 0 :I 101131921 0 .'10/14193 0
10/15188 0 i 10/1519fJ i 0 i i 10/15/911 0 ;I 10114/92;0 !;10/15193.0
10116188 0 110/16I9Qi 0 !i 10/16191 i 0 !:10/151921 0 j I 10/161931 0.09
10117/88 0 I 10/1719fJ I 0 I ;10/17191 '0 i 110/161921 0 !j 10/17193 i 0.2..
10/18188 0 !1011819O!0.2 t ~10/18/91 : 0 :I 10/171921 0 i 10/18193:0.02
10/19/88 0 • i 10/1919fJ I 0.28 :10/19191 !0 I 10/18/921 0 :10119193:0
10120188 :0 i 110120190!0.11 :j 10120191 ;0 I ,10/19192 !0 ~10/20193;0
10121/881 0 !;1012119fJ'0 :10/21191 ;0 ,:10/20192 i 0 '10/21193 ;0
101221881 0 1 i 10I22I9fJ ~0 ~;10/21191 1 0.02 ;10/21192 j 0.11 •10121193 j 0
10123188 I 0 !;10l23I9O 1 0 :10/231911 0 '10121192 ;0 ;10/23193:0
10/24/88 0 i .10/24/9fJ i 0 .'IOI2.ol191 i 0.08 ;10/23192 !0 '10/24193;0,;
10125188 0 ,:1012519fJ;0 '10125191 :0 ;10/24192:0.37 ·10125193 l 0
10/26188 0 '10/26I9Q i 0 •10/26191 !0 .10/25192:0.15 10t26I93 !0
10/27/88 0 j :10/2719fJ:0 !10/27191 :0.69 :10/26192;0 ·10127193 0,
10128188 0 !;10128190!0 :j 10128/911 0.26 ,:10/27192!0.04 :10/28/931 0
10129/88 0 !;10129190:0 :10129191 :0.26 ;10128/92!0.26 ;10129193 c 0
10130188 0.02 i !10130190 i 0 i ;10130191 i 0.1 ;10/29192.0.12 10/30193 :0
10131/88,0 i i 10131190:0 10/31191 0 10130192 0.22 1Of31193 0
1111/88 j 0 .;11/1190 '0 11/1191 0 10131192 :0.19 11/1193 0
1112188 I 0 1112190 0.35 1112191 0 11/1192 0 11['JJ93 0-----_.
1113188 !0 1113190 0.37 llf3191 0 1112192 0 11/3193 :0
11/4/88 i 0 ,11/4190 .0 11/4191 0 1113192 .0 11/4193 .0---_.----
1115/88 !0 ,11/5190 .0 11/5/91 0 11/4192 0 11/5193 0--
11/6188 I 0 11/6190 om 11/6191 0 11/5192 .0 11/6193 0--.
11n/88 :
---0 IInt90 0.12 Ilnl9l 0 11/6192 0 11nt9)0---
1118188 0 11/8190 0 1118191 0 Iln/92 0 ___.__!..!./819~____0_
t --__"0 --_."-----_.-
1119188 0 1119/90 0 11/9/91 0 1118192 0 1119193 0_._--_.._-------------------
11110/88 !0 IIII0190 0 11/10/91 :0.03 1119/92 0 11/10/93'0.-'-----.---_._--~-~_._------~-'-------------
I III 1/88 ;0.56 IIII1/90 .0 11111/91 0 11/10/92 0.14 Ilfll/93·0.64 --------_.,---------------#-_._------
11112188 :0 ;I III 2190 .0 i_I~I2I91 . 0 .111l1/92 0 11/12193.0.3-_.---.--.._---
11113/88 i 0 11113/90 .0 11113191'0 11112192·0 11/13193 0_14._-
111l4/88 i 0 ,11/14/90 0 11114/91 0,49 11113192 0 11/14/93 0
11/15/88 1-025------_...._----------------.IIIl5190 0 11115191 0.95 .11/14192.0 11/15193 0
~1P.:a...s:{(1{10/..<l1
~l~~<..;-'
1--~D:!!....~·ly~Prcci~·p~i~ta~tio~n~V~,,~I,,~es~.c;S~ta~ti~on:__:4I'4~2~07~3~80~7~.B~I;::""~di:.::lnJ;g"-.U=tah::.:----.----1
Jm","Y.1988 lhroul:h February.1994
I j ,:
1--__+Pr~CCl;c.Ajp'_'_iita:;:..u'_'·o;.:.:n+-i'+....,I..:..Pr:..::CCl.=:iLPii.=t3.=:tio.;::.:n.::.I-j--__-t-Pr:..:.=.,=:;lipo.:;iiU;::l1.::..·o:..::n:;:..'__-_-I Precipiutioni i _~__..:..Pr:..::=-"i:.t:.Pii:.::(att:::·=on::t
Dale (inches),Dale (inches)!Dale (inches)D:lle I (inches);Dale (inches)
11/16188 0 :1l/16l9O!0 !111161'91 0.03 11/151921 0 ~1_~/16I93:0
11/17/88 0.02 !!11/17190:0 !1I/17191 0 '1I/16l'92 i 0 :1I/17193;01-'--11:;../;.:.:lllI8.:..::.::8-+i-~0"---'--'-i-'-I-"I/-18I9O---'--:;:..i'----0-·-'-;~i......11-/1-819-1-11·--0-:.0-1--·.-1-:-1I::17·~19::-:2::-~-·0-'·'0'1:;"/:"::18I9~3""":_....c::...0--1
11/19/88 I 0 •11/19190 i 0 :;ll/19191 !0 .lI/i8l921·'0:01--:-1-1/19193,0
111201881 0 ,:1tnOl9O:0.Q9 ::11120191 0 .11/19192 0 ;11120/93!0
Itnl/88j 0 :Itnll9O.0 '11121191 0 ;Itn0l92 0.12 ;11121193\0
11n2188 0 :1 ItnlJ90 I 0 .:1In2191 0 :IInt/92 0 I 1In2193 I 0
11nJ/88 0 i:11123/90 0 i IInJ19l 0 :1In2192 0 : I 1InJ/930
I tn4/88 0 I Itn4l9O i 0 I'11n4l91 0 !;11nJ/92 0 I IIn4/93 0
11125188 0.07 I;11125190 I 0 •.1In5191 0 •1I/24192!0 1In5193 0
11n6l88 0.11 ;t IIn6190I 0,48 11n6t91 0 i i 1In5192 0 111261931 0..
11n7/88 0 ;!11121190I 0.0I 11/27/91 0:'I 1In6t92 0 i 11127193 0
11/28/88 0 I j 11128190 i 0 Il128191 0 ;1 11127192.0 !11/28193 0
11/29/88 0 I I 11129190 I 0 11129191 0 i!11128192 0 I 11129193 0
11130188 0 !i 11I30I9O;0 11130191 0.01 j!11129192 0 11130193 0
1211/88 0.03 i!1211190,0 I 1211191 0 I I 11130192 0 !1211193 0
1212188 0 1212190 i 0 I 1212191 0 !1211192 0 12/2/93 I 0
1213188 0 I i 1213190 0 i 1213191 0 '.•1212192 to!1213193,0
1214188 0 '!1214190 0 !1214/91 0 I 1213192 0 :l 1214193:0
12151880 I 1215190 0 1215191 0 :!1214192 0.13 "1215193 j 0
1216188 0 t i 1216190 0 1216191 0 !1215192 0.81 ;i 12161'93 j 0
1217/88 0 I 1 1217190 0 1211191 0 i I 1216192 I 0 '1 1217193 j 0
1218188 0 i I 1218190 !0 1218191 I 0 ;1211192:-99999 1218193 ;0
1219/88 0 i l 1219190 I 0 I I 1219191 j 0 1218192!0.28 :1219193,0
121101880 j 12110190:0 '1 12110191 0.02 1219192 !0 'i 12110193:0
12111/881 0 !1 12111190 0 i l2IUI9I 0:26 ':12110/921 0 i i 12111193 i 0
12112188 0 i \12112190 t 0.11 !I 12112191 0 .12111192 0 :1121121931 0.07
12113188 0 ,;12113/90 i 0.04 i 12113191 0 ,121121921 0.5 .j 121131931 0
12114/88 0 !:12114190 l 0 1 12114/91 0 j 12113192'0 j i 12/14193 0
12115188 0 !i 12115190 i 0.06 !12115191 0 ;121141920 I I 12115193 0.Q7
12116188 0 j 112116190'0.11 I 12116191 0 '1 12115192 0 ;112116193 0.18.
12117/88 0 'i 12117190 i 0 12117191 0 i 12116192 i 0 !I 12117/93 0
12118/88 0 i:12I18J'}()I 0 !12118191 0.54 i 121171921 0 1 i 121lm3!0
12119/88 0 :;12119190 i 0.06 I ·12119191 0.43 ,I 121181921 0.1 II 12119193 i 0
12120188 0.05 ;i 12120190 i 0.36 I 12120191 • 0 i 121191921 0 !!121201931 0
12121/88 0.38 •i 12I2119O!0 l 12121191:0 ;121201921 0 I 121211931 0
12/22188 0 i 12122190 ~0 i I 12122191 I 0 !12I21/92!0 :j 12122193 I 0
12123188 0.1 ';12123190 j 0 1!12123191 to;121221921 0 .;12123193:0
12124/88 I 0_13 :.12124190 j 0 I 121241911 0 12123192:0 :12I24193!0
1212S188 j O.m_12125190;0 i 121251911 0 .12124/92'0 ;12125193·0
12126188 I 0 :12126190:0 \:12126191:0 12125192 0 12126193 0
12127/88;0 12121190;0 i 12121191 i 0 121261'92 i 0 '12127193 0.1
12128188 j 0 12128190:0 !!12128191:0 12127192;0 :12128193 0
12129/88 !0 12129190 :0 :.1212919 (i 0.05 12128/92 :0.3 •12129193 0
12I3OI88i 0 ;12130190,0 !12I30/91!0.11 .12129/92;0 !12130193:0
!'i 12131192 ~0
12I31/88!0 :;12I3119O!0 I 112131191 j 0.02 ;121301921 0.07 ;12131193 i 0
Nof.CS:ISource:Utah Qime(CcnlCf.Utah Slate Ullivenity.U>l!an.UT.
P'"'O'c ,ol ,
I
I
j
I
I
I
I
)
I
I
I
,
I
IAf7LE 2-
MONTHLY MEANS AND EXTREMES
OF TEMPERATURES
BLANDING,UTAH
40
ANNUAL MEAN:9.9°C
30
"0 20
°'J
Wc::
::>
I-<:
0:w 10a:.
~w
I-
o
·t(C)~
(D)!
MONTH JAN f
£
EXTREME •MAX.16 18 2.4 2.7 33 38 38 37 34 2.9 2.1 15 ~
tMEAN3.2 6.9 10.9 16.3 22.8 28.7 31.9 30.2 2.6.0 18.8 10.2.4.5 {MAX.r
MEAN -2..5 0.5 3.4 8.4 14.1 19.4 23.1 2.1.6 17.2.10.9 3.6 -1.7 E•MEAN MIN.-8.8 5.4 8.4 -3.2 -7.8 ~-5.9 -3.2.0.4 10.1 14.2 13.1 2.9 ~
tEXTREME,
MIN.-2.9 -22.-15 -II -6 -I 8 3 -5 -12 -19 -22.
I
I
(A)MEAN DAILY MAXIMUM
(B)MEAN MONTHLY
(C)MEAN OA.ILY MINIMUM
(0)FREEZE DATES
?LATI:.2.7-2
TITAN Environmental
By TAM Date 9111/96 Subject ....JE'='!FN~-.:.....W.ll..ll.hl~·te"'-'M~esllia~Pagenof--2.L
Chkd By__Date Help Model Proj No 6111-001
Appendix D
c:\efn-white\help2.clc (9/11/96J
-12-
\ML-\(()(.':;~\2.A10bOJ-.~ft'LL (~o{J~TlLj
Table 3.4-1
Physical Properties of Tailings
and
Proposed Cover-Materials
Atterberg
limits Specific
%Passing
No.200
Maximum
Dry Density
Optimum
Moisture
Mater;a1 Type Ll PI Gravity Sieve (pcf)Content
Tail ings 28 6 2.85 46 104.0 18.1
L:andomFill ,22 7 2.67 48 120.2 ill)-
Clay 29 14 2.69 56 121.3 12.1
Clay 36 192.75 68 108.7 18.5
Note:Physical Soil Data from Chen and Associates (1987).
--ADYAHCI:D TcRR~TE~TIHG-,nc---"833 Partet Street
Lakewood,Colorado 80215
(303)232-8308
~---------;1'--------------'~~'------------~
Proctor Compaction Test ]
••UT-1'-------
40
•
3020
Moisture Content (%)
10
f--\
I-\
I-\
\I-1\Zero Air Voids Cu fie
~\~.@ S<3IeportediJe'vvv
~
r-
~
l-f ~\
-/e ~\
I ~-~
I-~
""l-
I I I85
o
90
95
100
125
130
135
140
120
c-U0-115........
>-~<nc
Q)
0 110~
0
105
-Best FitCuNe @ Actual Data
-Zero Air VoidsCuNe @ SG =2.70
1\/
f
L.L,..II {
OPTIMUM MOISTURE CONTENT =13.9 MAXIMUM DRY DENSITY =113.5
ASTM 0 1557 A,Rock correction applied?N
ADVANCED TERRA TESTING,INC.
CLIENT
PERMEhoILITY DETERMINATION
FALLING HEAD
FIXED WALL
Titan Environmental JOB NO.2234-04
BORING NO.
DEPTH
SAMPLE NO.
SOIL DESCR.
SURCHARGE
UT-1
Remolded 95%Mod Pt.@ OMC
200
SAMPLED
TEST STARTED
TEST FINISHED
SETUP NO.
7-28-96 CAL
8-7-96 CAL
1
MOISTURE/DENSITY
DATA
wt.Soil &Ri~g(s)(g)
wt.Ring(s)(g)
Wt.Soil (g)
Wet Density PCF
wt.Wet Soil &Pan (g)
wt.Dry Soil &Pan (g)
wt.Lost Moisture (g)
wt.of Pan Only (g)
wt.of Dry Soil (g)
Moisture Content %
Dry Density PCF
Max.Dry Density PCF
Percent Compaction
BEFORE AFTER
TEST TEST
386.9 404.5
93.0 93.0
293.9 311.4
122.3 120.5
302.4 319.9
266.2 266.2
36.2 53.8
8.5 8.5
257.7 257.7
14.1 20.9
107.2 99.7
113.5 113.5
94.4 87.8
PERCOLATION RATE
FT/YEAR CH/SEC
ELAPSED BURETTE BURETTE
TIME READING READING
(MIN)hI (eC)h2 (CC)
0.2
2599 10.8 10.8
1427 14.2 14.2
1440 16.8 16.8
1440 18.6 18.6
1440 20.2 20.2
1440 21.6 21.6
1469 23.0 23.0
1440 24.4
0.14
0.09
0.07
0.05
0.04
0.04
0.04
0.04
1.4E...,07-
8.4E-08.
6.5E-08
4.6E-08
4.1E-08
3.7E-08
3.6E-0~
3.7E-08 .=
Data Entered By:
Date Checked By:
Filename:TIFHUT1
NAA
&tL
Date:
Date:
8-8-96
£r8-'k
ADVANCED TERRA TESTING,INC.
~.'-.'''~''''''l..,f"I,,\,:",'.''_I~'
,i•,'t
."
•t'••
·,',
" '..,
"..'.
".
ii
\........,....t..........f,, ,'I ',,..I ....,.".,..."......,.,.,......"."I
.}• • • •••I'.......,l '0"I • •••••••••••• ••••••••••••••••••••••••••••••••••••
• , • • • • •••t.I •••••I I ••t ••t •I •••I • • ••••••••••••••••••••,•••••••••••••••• •....................................,-",.
24
22
~
'...........
"
•••••••••••••I I j ,..,1 (,~i,"li h :i , ,1 .
.....................1 ;1 U I i ,I l i i ',
'..
I0:>U1I
'j':)
17..lP
......
.....
.'.
••...
I ••••I •••..,••"...••••••••••••'••••••I ••••••••I I ••••••,••
,'~".....,.....CL'A'V'ATEI"')IA":
I ••••I'••••••••i'\I.'.'r.1 L...
••••••••,I • • • ••••••••• •SIT·E','-..Ji·A •.••I •••I ••••••I •••••••••••
t ••t • • • • •• • •••••••••.trH •••••••••••••••••••••••.••..','..........................................~.
• • t •••••I •••••••••I'...."'I •••••••••
• • • • • • •••..,......••••0 • , I .,•••,.,0 ,.••••••
, •I ,.I
,..
16
18
20
~zt~~6\-'U,
IW
...1'0:j~
o
2
"'.,"'0..-;
"
.,,.·"
I ',""
16141210
FIGURE 4.4-2
SUMMARY OF CAPILLARY MOISTURE
RELATIONSHIP TEST RESULTS
WHITE MESA PROJECT
8
TENSION,BAR
4 6
(~\t.-ll'\~"'r\k..t.<t{)
CJM~.r 0\.<JJ.--;r
2
G..V QJ.IfAty-q,~6
\(fV\~.kiV\'('AD\~V"(.
o14
\AS-<.
kw-
DATA FROM CHEN &ASSbCIATES;~~
-:.·F ••
18 ,••••I ••t.•
1:7:,
•J
.'.
I ••
•,I .•••.
•i
••i •••••
• j
• I
.........
....
••••t'
·....
·....,....
."
• I
.~..
•-i •~I
• I
i •••I ..I ••••••I 0 •I't'16 1.••••••••t••u•••••h ••u.,,f~,·..· •..·u'I I•••••h ,·.i I.."..,d ~.h ~~"~t ,I l.·••••·u .
~
,
co-PoI
\i"~,9...~"J.J~•
l~,("
4·~:q.~
,.
• I
......J ,.~I'l.,••",~l ,•••••••.
. . . .;-.RANP:OM FIt.l:.:
s:ITEIs :~2;:3,:&.15 ..
t •
.'.
'.'
..
.....................1·..•..•..• • •••..·1·· ·..·..· · ..:~:.:..:::-c·~~·..y·:..·:·iJ1·Arii{Fii!A·t:·:..·..··..··,·· .
. ....S'IT·.• '...t t •
,)~••t t t.~1". , , .
".
•••1.1 11 l u II ,'I ~t }o I••••••,.·••••••••••••••,.14
12
10
r-zUJ~~~.0r-0
'w~a:o :::>.Jf-(/)
o
:2
..
8 o 2 4 6 8 10 1'2 14 16
~~
-S;:-.
FIGURE 4A-1·
SUMMARY OF CAPILLARY MOISTURE
RELATIONSHIP TEST RESULTS
WHITE MESA PROJECT
TENSION,BAR
DATA FROM CHEN &ASSOCIATES
Porosity
Porosity is calculated from the specific gravity and dry bulk density according to the following
equations;
1.Dry bulk density =[(specific gravity)(density ofwater)]/[I +e](Ref:Principles &Practice of
Civil Engineering,1996).See Appendix C.
2.Porosity ==[e I (l+e)]x 100 (Ref:Principles &Practice ofCivil Engineering,1996).See
AppendixC.
Max.Dry Dry Bulk Specific Density of ue"porosity
Density Density Gravity (1)Water (lb/ft3)(3)(4)
(lb/ft3)(1)(lb/ft3)(2)
Tailings 104.0 93.6 2.85 62.4 0.90 47%
Clay (5)115.0 103.5 2.72 62.4 0.64 39%
Random fill 120.2 108.2 2.67 62.4 0.54 35%
Notes:
1.Physical soildatafrom Chen and Associates(1987)included in Appendix B.
2.Bulk dry density is 90%ofthe ASTM Proctor maximum dry density for all materials.
3.Calculated using Equation 1 above.
4.Calculated using Equation 2 above."
5.Clay physical data are average values from site #1 and site #4"c1ay stockpiles as given by
Umetco Minerals Corp.1988.
7.1 K to -7
</.2 II.'10-7
1.'1.J(10-7
S:.lJ X 10-7
Ae-<.::2.12 ~/<1 -'7
1/5"x 1/5"
23
3.~K
7.8 y
I.s-x
~i~2 X 0 -8 e.-.h
6.0 (0-8
I.K 10 -F
.K (;;I-I>
J('I ...,,-g
'CJ -y
-F
(()7
(0
jj~.~~i>&'1 ~(GX.I.)
~~~~..;(..
AUG-09-1996
(f/Z]/i<f)
P.08
TABLE I
SUKMARY OF LABO~AT6RY TEST RESULTS
---,--,-~~I ~.-~I.~~-'.,.'.,.?:;---:-r---,
Pag.I of 2
HATURAL Max r/TIlJ'1l Opt 1/TlU'Il ATT£Rt£RQ LIMITS CRAOATIOH ANALYSIS H.'\OLOEO HRMEA!III TY
Test ~pth Dry """Jsturf
SpHlflc ~II
Hole (Ft ,)MoIsture Dry Dens Ity Content LI qu Id »Iut Iclty IWcll!\lI'!l PassIng L.lI th.n Dry /'101 stOr.CrAvlty Typ.
co~~)~t Oensl ty l ~~~t .'(~~Slu 1:200 2,l(~nllty co(~tent (t.I,/,•
(pcf)10 cfl IXI xl •IXI (perl Xl
Ctn.lSlC.
2 0-5 I17.5 10.8 20 3 HI6 58 19 III.'16.,~0.57 5.5xI0-7 SAndy SII t.
3 H 7.2 21 6 #16 62 Sanely Crayey
I~,.l 18.S )3/B 3/~In.S6 12 8.2><10-8 SII r ..
5 71'10
'102.1 22.0 0.OR5 .2.65 Ca Iear&<lu,.I
2S 7 #16 .77
S/I ty C1AY'-
6 I-2 '0.J
Sandy Cliy
:./
5II t .
6 8H 6.I 27 8 #~70 Sandy Clay
8 H·f I). 1
NP 3/"In.62 CAl Clr'ous
/116
SAnely Slit
9'0,'8.I NP S3 S'nd.SI It
10 4-6t 2"10 II~73 Sandy ClAy.
II 5Hi 14,0 26 6 HI6 6S Siltstone.,..
88 'S9 6.6xIO·8 ClAys tone
12 2·5 101.0 20.6 5)./)S #16 95.0 18.)0.068 2.67 lIoHh".d
)9 /8~
CIAyston.
I)7·8 I).1 I)118 C.I careous
40 //14 89
SlltCI.y
I~I·2 19,)21 lI.ath.red
.26 /
."1,2x1O·8 CI >'f'tone
15 11·41 106,8 19.0 8 318 In.6S 27 10)."18.0 0.012 2;64 Mod.Calcar.e
Sandy CI.y
17 2-)11.4 19 ~#8 S9 SAndy SIlt
119 0·)117.5 12.8 23 6 #16 70 109.9 12.4 0.035 3,4x10·8 SAndy Clay~"
26 /
.,sri t
22 1·2 I), 2
10 114 73 Sandy CIDy ,
/23 I·)1.8 /2~11)0 ,87 lleath.red ,
61 ./
Clay,tone
113 6.a )0 #)0 96 Clayston.
~5 I·3t 1J.)26 /9 114 57 Sandy Cloy
;i6 4H 15,)41 /20 #4 91 1I00th".d
:A
28 /
Clayston.
0·2 12.7 10 3/8 In.72 .Sandy Clay
"
H 8,5 19 2 1116 S9 S'nJy SIlt
)2 8.8t 5,6 23 6 H30 7)Sandy Clay.y
SI It
37 0-4 118,8 II .5 2)5 ,.,8 72 110.5 11.5 0,6)6,Ix 10'7 Sandy Clayey
SIlt
38 5·7 II 1.0 16,7 29 -j 14 )/8 In.69 102.4 :?.9 0'~'11 I 4,~.ro-~Sandy Clay
40 4·sl 110,0 16,2 26 9 #8 64 27 106 4 6 4 n n 7 I ;.In°,~~S.ndy Clay
,._--
~-+-
-~tt8 ..--•..,~~
..-.........~4/S111'.....-~~-~~
TMLE
SU~Y or lABO~~TO~Y TEST ~ESULTS
P09-2 01 2
NATURAL 1I..11!\U'l\Opt 1/lIU'l\AiTr"'JE~C LIMITS C~AOATIOH ~HALYSI$H."JOLO£O ,r"'XEMllI rr
relt Oo~th Ory 1'.0 Is tur-Sp.clllc Soli
Hole (F t . )"'.Ii \tur'Ory 04nll ty Corit _11 t LIquid \>Iuticlty k-U1"'1i1\'u11n9 Llls th."Cry Xci"tl/r.eUv/ly Typo
(ont.nt Oens Ity L~I!\It Indu .Slz.11200 2,l(7 1W'Co<'Itont (t,/yr,Un,/IOC,
-ill_-lli!L (pcl)(Xl Xl IXI (:tl •(Xl (pel (Xl
40 ;9-9!6.8 22 8 3/8 In.60 Sjndy CI~y
..
42 IH-14!7.6 26 /10 3/8 In.13 S~nely Cloy
43 1I·,2 12.I 41/22 114 86 Clay I tor ,
")131-161-110.0 16.9 .4()/24 3/8 In,8S 4lt 104.I 15.8 0.02"2.),10-8 2.62 (1 ~ylton'
I.J,6J -7 7.5 30 /II 3/8 In.79 C~lc.,eoul'
76
S.nuy Cl.y
46 0-2 12.)22 6 1116 Sonely CI~y.~
via 30 /
S11 t
S-5!9 3/8 In.6S sondy CI 'Y
V<9 5·7 II 0.7 15.6 25 /9 1116 71 105.2 1),9 0,33 ),2<10.8 Sondy Cloy
A9 14-15 28 /5 118 SS c~lcarooul
Sondy Slit
5/1 0-2 12.I 23 9 IIH .64 Sonely Cley
55 5·5!7.8 28 ./14 1130 71 ;,en ely CI~y
55 9J-10!28 /13 1/4 71 Sendy CI.y
v(a 5H 12.5 35/II /;4 75 Undy,Silty,.y
61 0-I I I.5 2I "1116 7S Sendy S11 t
62 II-IIt 8.,NP 1 In.34 C~IC.,eOlli·
S.nd r.;''-'')
6)"-6 30 /14 1/8 68 Sandy C......·
65 1-2 9,0 NP #16 44 SI Ity S )
,,..''
68 7J-8 8,6 28/13 1/8 67 S.ndy Cl~y
70 )1-4j 16.4 27 4 It In.46 Calcareous
S~nd r.Slit
72 0-2 12.2 22 8 #16 59 Sandy CI.y
75 10-II 12.4 41/25 #4 7S \loath'red
Cl.yHon.
75 12 -I""S ./22 1116 93 CI·Yitori-
1116,1'06 ~~-s.
LABORATORY PERHEA8lLITY TEST RESULTS
...,.",..,II!!I!IIt .m ....-'~.~,~......
TABLE II
.~....~.",-~~:.~-~~.-::.~)'~.,~~.'.I ,..~._..''"-t'~
CompactIon
./"...
SAmple I 5011 Typo I r Dry Hoi s'turo %of \Surcharge I Permeabll tty
Donslty Content A5TH 0698 Pressure
(pef)(%)(ps f)(Ft/Yr)(Cm/S
TI1 2 ~01 -5 1 ISandy S11 t 111.6 16.~95 500 0.57 5.5'""\
Tf!5 @Hi-IO I Calcareous 51 Ity CI~y 102.1 22.0 101 500 I 0.085 8.2),
TH 12 e 2'-5 1 ~eathered Claystone 95.0 18.3 911 500 I 0.068 6.6xl0
Til 15 Q q'-Ij!'Calcareous Sandy Clay 103.4 18.0 97 500 I 0.012 1.2x 10
TH 19 Q 0'-3'I Sandy,Clayey SlIt 109.9 12.4 911 500 I 0.035 3.ljxl0
"'-..ITH37Q0'-4'I Sandy,Clayey S11 t 110:5 11.5 93 SOD 0.63 6.1 xl0
Tf!38 Q 5'-7'I Sandy Clay I 102.4 17.9 92 500 I 0.041 II.Oxl 0-
TH 40 g II I -5t 'I Sandy CI.'ly I 106.4 16.4 97 500 0.017 1.6xl 0
Tf!1,3 g 13~-16t'l Claystone I 104.1 15.8 95 500 0.024 2.3x 1O-
Til 119 e 5'-7'I Sandy Clay 105.2 13.9 95 500 I -
I 0.33 3.2>lIJ
'-.N
~
~
APPENDIXE
Freezeffhaw Evaluation
....-...._--........-......_--.-.----=E E E:-":::~Environm.ental
TITAN Environmental
By JFL Date 6/17/96 Subject -"E~FN..LL.-_W.!..!...-'-'.h,-"ite",-M~e"-,,sa,---Page_\_of.Ji
Chkd By~Date '\J \\\jlp Effect ofFreezing on Tailings Cover Proj No 6111-001
Purpose:
Method:
To determine iffreeze/thaw conditions will impact the performance ofthe White
Mesa uranium mill tailings cover.This calculation briefpredicts the depth of
frost which may be anticipated at the mill site.Only frost depth is evaluated since
this would have the greatest impact on cover integrity (i.e.increasing permeability
or damage by frost heave).
A digital computer program ofthe modified Berggren equation for calculating the
depth offreeze or thaw in a multi-layered soil system was used for purposes
presented in this calculation.This method,used for determining the frost depth,is
considered adequate for Uranium Mill Tailings Remedial Action (UMTRA)
Projects by the U.S.Department ofEnergy for the following reasons:
•It calculates depth offrost based on a zero degrees Celsius isotherm,whereas
the frozen front occurs some distance above this line.
•Extrapolation ofcurrent weather records beyond 200 years is not reliable.
•Extreme changes in temperatures for the 1,000 year design life are not
anticipated based on geomorphic evidence.
Parameters for the cover materials based on accepted methods and existing
database values previously collected,were input into the computer modeling
program to determine the depth offrost penetration.A cover thickness of2 feet
random fill over 1 foot ofcompacted clay (as determined by HELP and RADON
computer modeling)was used.
Assumptions:The model assumes:
•One-dimensional heat flow with the entire soil mass at its mean annual
temperature prior to the start ofthe freezing season.
•At the start ofthe freezing season,the surface temperature changes suddenly
from the mean annual temperature to a temperature below freezing and
remains at this temperature throughout the entire freezing season.
•The effect of latent heat is considered as a heat sink at the moving frost line.
•Soil freezes at a temperature of 32 degrees Fahrenheit.
c:\efn··""hit.e\freeze2.clc 19/11/96J
TITANEnvironmental
By JFL Date 6/17/96 Subject """"E~F......N-,--_W.!..!...!..!h-"-,ite~M.."e"",sa,,,--Page~ofJL
Chkd B~Dateq(\\jqv Effect ofFreezing on Tailings Cover Proj No 6111-001
Results:The total frost penetration depth is less than 6.8 inches.Therefore,the 2-foot
layer ofrandom fill will provide adequate protection to the underlying 1-foot clay
layer.See Appendix A for computer modeling results.
Parameters:The computer program requires input of the following parameters for the soil
cover layers:
-freezing index (degree);
-length ofseason (days);
-mean annual temperature (degrees Fahrenheit);
-n-factor;
-layer thickness'(inches);
-water content (percent);
-dry unit weight (lbs/cubic foot);
-heat capacity (Btu/cubic foot-deg F);
-thermal conductivity (Btulfoot-hour-deg F),and;
-latent heat offusion (Btu/cubic foot).
Freezing IndexlLength ofSeason/Mean Annual Temperature
Default values from Grand Junction,Colorado were used for the freezing index and length of
season.Grand Junction,Colorado was used for default parameters since it is similar in elevation
and climate to Blanding Utah.An actual mean annual temperature for Blanding Utah from
Dames &Moore (1978)was used for modeling purposes (see Appendix B).
N-factor
A default n-factor of 0.70 for sand and gravel surface type was used as per recommended in the
freeze/thaw model guidelines (Aitken and Berg,1968).
Soil type
Soil type was considered to be fine grained soil for both cover layers.Soil type number is 5.
c:\efn-white\freeze2.cle {9/12!96J
TITAN Environmental
By JFL Date 6/1 7/96 Subject ~E""-F-,-N,--_W..!.!..L!h,,-,it,,,-e.L!M~e"",-sa,,-_________Page~ofl.t
Chkd B~Date11\\I'll,Effect of Freezing on Tailings Cover Proj No 61 I 1-001
Layer thickness'
The thickness ofthe cover materials were determined by infiltration and radon flux modeling
programs to be 2 feet ofrandom fill over 1 foot ofclay.For this calculation,a single 36-inch
layer was used.This was used because the random fill and clay soil have very similar properties.
Moisture Content
1K
Optimum moisture content from Chen and Associates (1987)and Advanced Terra Testing (1996)
was used for the random fill and the clay (UT-l)layer respectively.This data is included in
AppendixB.
Optimum moisture content:
random fill
clay
=11.8%
=13.9%
A weighted averaged moisture content of 12.5 percent was used for this analysis.
Soil Density
Soil dry density was determined from Chen and Associates (1987)for random fill and Advanced
Terra Testing (1996)for clay.The maximum dry density for the random fill was measured to be
120.2 pounds per cubic foot (pet)and the maximum dry density for the clay was measured to be
113.5 pcf.Assuming the soil will be compacted to 95 percent ofthe maximum density,the
weighted average bulk soil density would be 112 pef.
Heat Capacity
Based on the nomographs presented in Aitken and Berg (1968)and included herein as Figure 1,
using an average soil density of 112 Pef and an average moisture content of 12.5 percent yields a
heat capacity of30 Btu/fe 0 F.
Thermal Conductivity
Thermal conductivity ofthe soil cover was assumed to be similar to that for a dry sand.The
thermal conductivity ofa dry sand is reported to be 0.19 Btu!hr.ft OF (Perry,Robert H.et aI.,
1984)(see Table 1).
c:\efn-white\fr-eeze2.de {9/11/961
TITANEnvironmental
By JFL Date 6/17/96 Subject ..AE""-F~N,--_W.ll.U.h-,-"ite"-M~e",,,,sa,,---________Page~ofK
Chkd BYJ2tMDate 1!h /qtp Effect of Freezing on Tailings Cover Proj No 6111-001
Latent Heat
Based on the nomographs presented in Aitken and Berg (1968)and included herein as Figure 1,
using an average soil density of 112 pcfand an average moisture content of 12.5 percent yields a
Latent Heat of2000 Btu!fe .
References:
Advanced Terra Testing,1996.Physical soil data,White Mesa Project,Blanding Utah,July 25,
1996.
Aitken,George W.and Berg,Richard L.,1968,"Digital Solution ofModified Berggren Equation
to Calculate Depths ofFreeze or Thaw in Multilayered Systems",October,1968.
Chen and Associates,1987.Physical soil data,White Mesa Project Blanding Utah.
Dames &Moore,1978."Environmental Report,White Mesa Uranium Project,San Juan
County,Utah,January 20,1978,revised May 15,1978.
Perry,Robert H.et aI.,1984."Perry's Chemical Engineers'Handbook,Sixth Edition",McGraw
Hill Book Company,1984.
U.S.Department ofEnergy,1988,"Effect of Freezing and Thawing on UMTRA Covers"
Albuquerque,New Mexico,October 1988.
c;\efn-white\freeze2.cle [9/12/96)
.026.096.064
.022
.1l6
.270.~.097
0.16
.028.~.O~
0.025-{).030.12./1.087.10.062
20-4020
30o
~87150
I,"C.
..38
2+-127
30~o100
2121
3030
3015
5015
15
60
o100
5002009021~
"30
212020-976-100
30~
30 .02530.026
30 .025
38 .036~.082.040~.074
871 :~
14.8
43
8.8
12
~.7
7-ll51.5~.7KO-40.018.1
0.88
10
510
8.19.420.020.017.217.226.026.0
3820.61~.880.5
61.861.8167
.16.23
1.0
0.100·~.750.03
.028.27.0972.0
i39'"JG:75 O.H.730.63
0·3-0.610.3-0.~1.6-2.395.
0.104.25
.0211.3
20 0.020-40 .038
'6iX '~2
103 "i4 :~
30 .OS~7 .3521O,~
20 .32....1.2-1.7
50 ~0.25....\1.033-0.059.~30 0.0225
19.7 30 .02~.07S.H3.~
2.9
0.88
.17
.I~.015o.067211:1~.
21 ".uJ'>-IJ.092.20 0.19--:>
21 0:03
.30'"
7817
57.5
ApP&rent
density
p.lb.lcu.
ft••t
roomtempera_
ture
M.t<rw
fine {Note 2).
Cottoo ...001 ..•.•...
Corl:board .
Corl:(r<grAnulated).. .
(groand).. . . . . ...'.'..
Diatolll&teOUS carth powder.roar.e(Note 2)..
P.per .
Puaflin wax .
Petroleumtol:e .
molded pipe covering (Note 2).." .
~vol.wtinedearth.nd I vol.cement,poured
.Dd fired (Note 1).................•.....
Dolomite .Ehonite .En&n1e1.silicate .Fdt,...001...........•,....•................Fiberinsulatingboard .Fiber.red,•................................(with hinder.hUed).Gas carboo .Glass ,.Borosilicate type.......•....•.............Windo...rla-ss ,...............•.......Boda«lass .Granite .
Graphite.1on£itudinal...powdered,UJrOUlth 100 mesh .G~(molded aDd dry).Hairfelt (perpendicular to fibers).
Ice..••....................................Iofusorw earth,oee diatomaceous earth .Kapol:..I.e.mphlaeL .1£"".
Leather.sole..".Limestone (/5.3 vol.%!LO)......•..........linen .tt::~t:.~~)·.::::::::::::::::::~esium oxide (compressed)..........•....
Marble .
Mica (perpendi<:ular to planes).Mill.na:.;ng..
Minerd wool .
60080010001200I~
30
t."C.
120 0.013
290 .026
20 .43
51 .096
0 .087
60 .114
-200 .~30.0900.087
100 .111200.120~.129-200 .0900.135
38 .025In.0386-100 .~I20.43
~27 1.813152.78000.621100.6320.~3.0200.676SO•8513151.0
~0.051871.077
~.081871.106~.H871.18
~.H871.19
200 .131000.~
200 .58600.851000.95I~1.02
500 0.15IISO:26200.050
760 .113
~2.2
6SO 1.612001.1
27
27
19
19
27.7
27.7
27.7
27.7
38
38
~2.3~2.3
37
37
8.5
120
55.5112112
29.3
29.33636
3636~3.5~3.5
0.2
i3i""
jif"
115
'%'"
84.6132
77.9
158
158
158
129
129
129
129
129
162
~=;t
p.lh./cu.rt.atroomtempera-ture
M.terw
'\At>L6--1-
Thermal Conductivities of Some Building and Insulating Materials'
k =Btuf(h·ft2)(OFfft)
.CAl AND CHEMICAL DATAPI
Kaolin insuIatinc brick:(Note:l).••••••••••.
K.t.oIin insuIatinc firebricl:(Note~)•..••..••.
M~eoite (1l6.8%MaO.6.3%FeA 3%
C.O.2.6%Bio,by wt.).
~~.~.~~~:::::::::::::::::::::::'%:7"
Chrome hrid:(32%Ct.o,bywt.)........ . . .200
200200
SiliconcarbideIrick,recryataIIised (Note3)..
Diatomaeeous earth.natun1,&a"OOIl atrata(Note 2).
Diatomaceous,natmaI,parrJlel to atrata(Note 2).
Diatomaeeousearth,moldedandfired (Note 2)
Diatomaeeous earth aDd clay,molded and
fired (Note2).
Diatomaeeous earth,high burn.larce poreo(Note3)..............•............•...
Faeclay(Miooouri).
Aerogel..iliea.opacified __ .
Ashestoo-c<ment hoard...Asbcstoo sheets.Ashestoo slate
Asbco!too .
Aluminnm foil (7 airspaceo per 2.5 in.)••.••••.
Ash..,wood .~J;!~~(N~i,;ij:·.:::::::::::::::::::Bricb:
Alumina ~2--99%Al.o,bywt.)fuoed.••...•Alumina 6-4-65%Al,o,bywt.).
{See aIoo rieb,fire clay).
C.Itiumcarbonate.natural....••...,.•.." " .
White marble....•......•.•......•.....•..
Ch.Il:......•.............................
Cdtiumlu!fate (~fuO).ar1lJitial...•.•........plaster (artifitial).
(building).~~~e~~~~::::::::::::::::::::::
Carbon atoel:............•......••.........
Clinker (granular).
Col:e.petroleum..........•.•.•.........•...
PorceWn.••••..............................
Por1hDdcement,oee c:oncnte.......•.........
Pumice atolle..'.
Pyroxylin pIasti",.
10.7 Rubber.~~::::::::::::::::::::::::::::::74.8
9.2 (Ba"d(ary).................................'H.b~:g Sa...dust.•::·.:·.:::::::::::::::::::::::::::::'12
6.3 ScoJe (Note I).
1.3 Sille.....6.3
1.7 nrnished................•......'".
O.~SIa&bIa.tfurnace .
-40 .22 Bag 001 .
75 .~3 Slate.......................•..........
25 .25 Sno .lJ--~2:~1 SuUur lrl::e1~)..::::::::::::::::::::·.94".-IM 0.55 Will board.Wnlatingtype .
( 0 3.6 W.II bo..-d,Iltillpaste board .8:fful~.~~·,,:::::::::::::::::::::'87:3""30 0:~~7 ~=<:'~~i:···················
Clw-to.IfiaIi:...................11.9 80 .~3 Balsa .
15 80 .051 Oak.................•.•.•.•...•.........~~,:f ~~l':.;.hiie".·.:::::::::::::::::::::::::::::
500 2:9 Teak... .. .. .. . . .. ......COl:e.petrnleum(2lJ...l00mesh).............•.62 ~0.55 Whitefir..•....................•.........Col:e (powdered)............................lJ--100.1I Wood (\lll-Nllel to grain):concrete~t:t;:·:·:·:·:::::::::::::::::::::::~W~e~~::::::::::::::::::::::::::'"~:~1\:~I
•Marb,"MechAnit.IEnrin..,.,,'Handbook,"~th ed,McGraw-Hili,New York,1941...Inlern.ation.ICtitit.IT.bles,"McGraw-HilI,1929,IUld otheraoorteo.For oMition.I<!at..oee pp.~~59.
Note 1:B.Kamp [Z.I«h.PAIIriJ;,11,30(1931)1 shows theeffectofincr....ooporositrindecreasing therlIlA!conducti:nty ofhoiler scale.Partridge[UDiveroit1
of MitlUgan,E"Il.RatartA Bull.15.1930J boo puhlished a 170-page treatise On F=tlOn and Properties of Boiler Stde.Note 1,ToWllOhend .Dd WillWns,Chen.&:Ma,39,219 (1932).
Note 3:Norton,"Refractori.....2d ed"McGraw-HilI,New York,1~2.Note~:NOrlon.pri""te commuDicatioo.
?c;UY'.s Cl-\-tMIC.J\L CrJC,INc£R-S'H!\I,-X>13001C.,tq~YI
~\l;t tOiTION_
-:lA8l£!l 929
3-260
20
10
.30
.40
w
50
c
~.3
W C
0)Btu/cu ft-F
50
KEY 40
~\(..\vdLe i
DIGITAL SOLUTION OF MODIFIED BERGGREN EQUATION8
,45
,40
'.30
'20
110
Yd 100Ib/cu ft
~90
20
60 .6 5
70
NOTE Sp«;I;c It~ol of sciI solids CSS4PnM fo ""O./T Btu /6;.-F
Figure 8.Average volumetric heal capaci!y {or soils (aUer Aldrich and Paynter.195.'1/.
FI~ure '-I.Vvlumelflc larenl heal lor soIls (;lller Aldnch Jnd Pa.yMer.1953).
TITANEnvironmental
By JFL Date 6/17/96 Subject 2,E~F-,-NL..-_W!..!...Uh,-"ite",-,Mu.=e"",sa,--Page--J.-of~
Chkd BY~M.Dateq {\\h(,..Effect ofFreezing on Tailings Cover Proj No 6111-001
Appendix A
c;\efn-whit.e\freeze2.clc [9/11/961
WEATHER STATIONS in Colorado:
Length
Design Mean of
Freezing Annual Freezing
Index Temp.Season
Station Location C'F days)(of)(days)
-------------------------------------------------
1 =Alamosa 2271 11.3 159
2 =Buckley ANGB 577 50.3 88
3 =Colorado Springs 633 18.7 67
'1 =Denver 629 50.3 71
5 =Grand Junction 1101 52.6 86
6 =Pueblo 676 52.3 65
Enter the number representing the data you want;
(0 to input your own data):
LOCATlON and WEATHER DATA
Input weather data for your location in Colorado:
DESIGN AIR FREEZING Index (F-Days):1101
MEAN ANNUAL TEMPERATURE (F):19.8
LENGTH of FREEZING SEASON (Days):86
CHOOSE an APPROPRIATE N-FACTOR
Surface Type
1=Portland;CeMent (snow-free)
2 =Aspr<rli ..(snow-free)
3"=Snot<i%.\'
1"=Sand~~'(lnd.r'Grave I (snow-free)5'i~Tur£~\;('Show-free);:;::fQ~f·::~l(:f:'
0"=To /.i~P~t your own N-Factor
Enter ypur*option:~
;~j.:;-~~,;,7\1:~~·."
N-Factor *
(Freezing)
0.75
0.70
1.00
0.70
0.50
*N-Factor uaries1with Iattitude,wind speed,cloud cover,and other
cI iMatic conditions.
INFORMATION for'liVER 1:
Choose the appropriate soil type for this layer --
1 =Portland Cement stabilized layer
Z =Asphalt stabilized layer
3 =Snow
<1 =Course-grained soil
5 =Fine-grained soil
6 =Insulating layer
7 =Organic soil
Enter your option:5
LA~ER PARAMETERS
ParaMeters for Lfl~ER L Fine-grained
Layer Th iclmess (inches )
Moisture Content (%dry weight)
Dry Unit Weight,'Clbs/cubic foot)
",":.";-"
Hea1;Capac ityOftu':kcub ic foot of)
TherMal Conductioity (Btu/foot hour OF)
Latent Heat ofFus~on (Btu/cubic foot)
Default
Values
12.0
17.0
122.0
*29.5
*0.90
*2016.0
Values
Used
36.0
12.5
112.0
30.0
0.19
2000
*recalculated based upon new MOISTURE CONTENT/WEIGHT ualue(s).
. . .<return>for DeL."I t Values _..
Summary:MODIFIED BERGGREN SOLUTION
Design Freezing Index (AIR)
Design Freezing Index (SURFACE)
Mean Annual Temperature
Length of Freezing Season
=1101 F-days
=771 F-days
=1'3.8 of
=86 Days
14S
Each Layer
FREEZING INDEX DISTRIBUTION
<6.8
LAVER
THICKNESS
(inches)
LAVER
tt:Type
1:Fine-grained
Accum Berwrren
------Cdlculations
....could not
converge
Surf(l.ce DF I
-----------End of Frost Penetration ----------------
TOTAL FROST PENETRATION =6.8 inches
Do you want a hard copy of this data (V or default N)?
TITANEnvironmental
By JFL Date 6/17/96 Subject -""E"""-FN~----,W,-,-h......i=te,--"M.:....e"",s,,,,,-a PageJ:LofJt
Chkd B~Date C:t/"I'll.?Effect ofFreezing on Tailings Cover Proj No 6111-001
Appendix B
c:\efn-white\freeze2.clc [9/11/96)
--••!
a...
••••.,
•.'•••••I:
.'
(
•<
40
30
......
0 20
°.....
W
0::
::J.-
<l:
0::
W 10Q
~
w.-
(A)
(B)
(C)
(D)
MONTHLY MEANS AND EXTREMES
OF TEMPERATURES
BLANDING,UTAH
ANNUAL MEAN:9.9°C
MEAN DAILY MAXIMUM
MEAN MONTHLY
MEAN Ofi.IL Y MINIMUM
FREEZE DATES
pu.n 2.7-2
-12-
I A\L-\toc{':)f\;i00 Q.frtSUCM-"-f\\...L -?(2.0{)2-~U f-S
Table 3.4-1
Physical Properties of Tailings
and
Proposed Cover Materials
Atterberg
Limits Specific
%Passing
No.200
Maximum
Dry Density
Optimum
Moisture
Material Type lL El Gravity Sieve (pcf)Content
Tailings 28 6 2.85 46 104.0 18.1
~om FIll 22 7 2.67 48 120.2 1l.8~
Clay 29 14 2.69 56 121.3 12.1
Clay 36 19 2.75 68 108.7 18.5
Note:Physical Soil Data from Chen and Associates (1987).
833 Partet Street
Lakewood.Colorado 80215
(303)232-8308
Proctor Compaction Test
••UT-1
403020
Moisture Content (%)
10
f-\
-\
-\
f-\
1\Zero Air Voids Cu ~e
~\.....@ 361eporteQ--beIVVV
I-
~
-(~\
c-/e ~~
I ~l-
I
~
-~i
"'"-
I I I85
o
90
95
100
125
130
135
140
120
C-o
0..115'-"
>-~
(f)c(])
0 110e:-
O
105
-Best Fit Curve o Actual Data
-Zero Air VoidsCurve @ SG =2.70
?f OPTIMUM MOISTURE CONTENT:=13.9 MAXIMUM DRY DENSITY:=113.5
ASTM D 1557A,Rock correction applied?N
ADVANCED TERRA TESTING,INC.
APPENDIXF
Erosion Protection
......._-_-......._-_-.--=E E E:-~-;;Environlllental
TITAN Environmental
By ..KQ..Date ~Subject EFN White Mesa Mill Tailings Cover
Chkd By.Date~Design ofRiprap for Cover of Mill Tailings
PURPOSE:
Page_l_of_8_
Proj No 6111-001
Design ofErosion Protection layer ofRiprap for the Cover of Uranium Tailings
An erosion protection layer of rock riprap is required to protect the soil cover for the uranium mill
tailings at Blanding,Utah.The cover is supposed to have a design life of 1000 years according to
requirements set by U.S.Nuclear Regulatory Commission [Ref:"Final Staff Technical Position -
Design ofErosion Protection Covers for Stabilization of Uranium Mill Tailings Sites",1990;U.S.
Nuclear Regulatory Commission (U.S.N.R.C.)].Hence the erosion protection layer should be
designed accordingly.A design for the stone size and overall riprap thickness required for erosion
protection is provided in this document.
METHODOLOGY:
The design for rock riprap for protection of top and side slopes of the cover is based on the
guidelines provided by the following documents:
a)"Methodologies for Evaluating Long-Term Stabilization Designs of Uranium Mill Tailings
Impoundments"(NUREG/CR-4620),1986;U.S.Nuclear Regulatory Commission
b)"Final Staff Technical Position -Design of Erosion Protection Covers for Stabilization of
Uranium Mill Tailings Sites",1990;U.S.Nuclear Regulatory Commission (U.S.N.R.C.)
c)"Development of Riprap Design Criteria by Riprap Testing in Flumes"(NUREG/CR-4651),
1987;U.S.Nuclear Regulatory Commission
The top of the cover and the side slopes will be designed separately as the side slopes are much
steeper than the top of the cover.Overland flow calculations will be determined based on the
guidelines set by Nuclear Regulatory Commission and the site data.The size ofthe riprap placed on
top of the tailings cover will be determined using the Safety Factor method (NUREG/CR-465l),
while the Stephenson method (NUREG/CR-4651)will be applied for those placed along the side
slopes.
TITAN Environmental
By ..Kfr.Date ~Xp~)ect EFN White Mesa Mill Tailings Cover
Chkd By.Date~Design ofRiprap for Cover of Mill Tailings
A:Overland Flow Calculations
Page_2_of_8_
Proj No 61 I 1-001
The methods for overland flow calculations are same for top and side slopes of the cover.The
results have been tabulated under Table lA and 2A respectively.The formulas,methodologies and
equations used for overland flow calculations are discussed in this part of the document.The
calculations are based on unit width ofdrainage area.
Average Slope'S'and Length of drainage basin 'L':Figure 1 shows the direction of drainage for
cells 2,3 &4.Table lA calculates the flow parameters by varying slopes and slope lengths ofcells
2,3 &4.Runoff and flow calculations have been provided for slopes ranging from 0.001 to 0.008
for cells 2 and 4 and from 0.001 to 0.005 for cell 3.As the slopes are very gentle,for each cell the
drainage length varies negligibly and hence has been considered constant for calculation purpose.
The drainage lengths have been measured from the site map.For erosion protection design of the
side slopes,a side slope of 5H:1V and the maximum value of drainage lengths for cells 2,3 &4
have been considered (Table 2A).
Probable Maximum Precipitation (PMP):The I-hour local storm PMP for White Mesa is 7.76
inches (data from NOAA,1977).
Time ofConcentration ofRainfall.T~:
LO.??LO.??
Tc =0.00013 S0.385 hours =0.00013 SO.385 x 60mins (Ref:Equation 4.44 in NUREG/CR-4620)
where,S =average slope ofdrainage basin and L =length ofdrainage basin in feet
The percentage of I-hour precipitation is obtained by interpolating from Table 2.1 ofNUREG/CR-
4620.The minimum value ofTe used inthis table is 2.5 minutes.
%PMP:The percentage for I-hour precipitation (PMP)is obtained by interpolating from table 2.1
ofNUREG/CR-4620.
Rainfall Depth:
Precipitation Amount (inches)=%PMP x PMP =%of I-hour precipitation x PMP (Ref:Eqn.2.1,
NUREG/CR-4620).
Precipitation intensity,'i':
Precipitation intensity in inches/hour can be computed as (Ref:Eqn.2.2,NUREG/CR-4620):
i =rainfall depth (inches)x [60 I {rainfall duration Tc (minute)}]
Runoff Coefficient,C:Runoff coefficient depends on climatic conditions,the type of terrain,
permeability,and storage potential of the basin.Runoff Coefficient has been assumed to be 0.8 for
TITAN Environmental
By -.KG-Date 6/96 _~p~ject EFN White Mesa Mill Tailings Cover
Chkd By~Date~Design ofRiprap for Cover ofMill Tailings
Page_3_of_8_
Proj No 6111-001
the top of cover and the side slopes (Ref:Appendix D,section 2.4 (Example)in "Final Staff
Technical Position",U.S.N.R.C.).
Unit Area,A:Area of I-ft wide drainage basin
A =Length ofdrainage basin (ft.)x width (ft.)=LxI sq.ft.=[Lxll(43560)]Acres
Peak discharge per unit width for the drainage basin,q:
By Rational method,q =CiA,where C,i &A have their usual meanings [q in cu.ft./sec (cfs),i in
incheslhour and A in acres](Ref:Eqns.4.42 and 4.43,NUREG/CR-4620).
Flow Concentration Factor:
From section 4.9 ofNUREG/CR-4620,"...it is reasonable to assume that values between 2 and 3
are attainable with only a slight evolutionary change in cover."Thus,a flow concentration factor of
3 and 2 have been assumed for top and side slopes respectively (as the top ofcover is flatter than the
side slopes,it has been assumed that concentration of flow will be higher on the top than along the
side slopes).
Concentrated discharge per unit width for the drainage basin,qc:
qc (cu.ft./sec)=q x flow concentration factor
Manning's Roughness coefficient,n:
Assumed n =0.03 for graded loam to cobbles (Ref:table 4.2,NUREG/CR-4620)
Depth ofwater,D:
3
Depth ofwater in ft.,D =[qc x~]5 (Ref:Eqn.4.46,NUREG/CR-4620),where qc is in cu.ft./sec
1.486 S
Permissible Velocity:
The cover permissible velocity is between 5 to 6 ft./sec (Ref:section 4.11.3,NUREG/CR-4620)
Flow Velocity,V:
Using continuity equation,
discharge =velocity x cross-sectional area
:.qc =V x (D x unit width)=V x D x 1
:.Vein ft./sec)=~Dx 1
For all the calculations provided in Table IA and 2A for top ofcover and side slopes respectively,
Vdeveloped <V pennissiblc
TITAN Environmental
By ..Kfr.Date ~Subject EFN White Mesa Mill Tailings Cover
Chkd By~Date.Design of Riprap for Cover ofMill Tailings
Page_4 of__8_
Proj No 6111-001
B:Calculation for Preliminary Size roso)of Rock Riprap used for Erosion Protection
B.]Preliminary Size (Dso)ofRiprap along Top ofCover
According to recommendations by U.S.N.R.C.[Ref:Appendix D,section 2.2 (step 5),"Final Staff
Technical Position"],recent studies have indicated that Safety Factor method is more applicable for
designing rock for slopes less than 10%.The slopes along top ofthe cover for all the cells 2,3 and 4
do not exceed 10%.Hence the Safety Factor method has been adopted to calculate the median
diameter Dso ofthe rock particles used for riprap.
According to the Safety Factor method for determination ofstone size,if the Safety Factor (S.F.)is
greater than unity,the riprap is considered to be safe from failure (Ref:Section 3.4.I ,"Development
of Riprap Design Criteria by Riprap Testing in Flumes",NUREG/CR-4651).For calculations to
determine the riprap size for top of cover,a safety factor of 1.1 has been assumed and the Dso
corresponding to this safety factor has been computed.Table IB tabulates the results for the safety
factor method.
The equations 3.5 through 3.9 of NUREG/CR-465I (see appendix)for Safety Factor method are
provided below :
cose tan~SF = , ..eqn.Al (eqn.3.5 ofNUREG/CR-465I)
11 tan~+sme cosp
I [I +sin(I-+P)]11 =11 2 eqn.BI (eqn.3.6 ofNUREG/CR-465I)
2ho f /11 =eqn.C I (eqn.3.70 NUREG CR-465I)
(Gs -l)y w x D50
'to =Y wDS eqn.DI (eqn.3.8 ofNUREG/CR-465I)
p =tan-I cosI-
2 sine .'1--+smJ\,
11 tan~
...................eqn.EI (eqn 3.9 ofNUREG/CR-465I)
where,
I-=angle between a horizontal line and the velocity vector compoment measured in the plane
ofside slope (refer to fig.3.1ofNUREG/CR-4651)
e =side slope angle
S =side slope =tan e
~=angle ofrepose (friction angle)ofrock
TITAN Environmental
By KG Date 6/96 ~ect EFN White Mesa Mill Tailings Cover
Chkd By--Wt-Date Design of Riprap for Cover of Mill Tailings
Page_5_of_8_
Proj No 6111-001
=bed shear stress
=representative stone size
=Specific gravity or relative density of the rock
=depth offlow
=specific weight ofthe liquid (in this case,water)
=stability numbers
=angle between vector component ofthe weight,Ws,directed down the side slope and the
direction ofparticle movement
For top ofthe cover,as slopes are very gentle,for all practical purposes,A can be considered to be
equal to zero (Ref:pg 22,NUREG/CR-465I)
Thus for A=0:cos A=I,sin A=O.
Hence,equation 3.9 ofNUREG/CR-4651 can be reduced to
-1[11 tan~]p =tan . .eqn E2 (eqn 3.10 ofNUREG/CR-465I)2sm8
Also,equation 3.6 ofNUREG/CR-465I can be reduced to
11'=11[1 +~inp]eqn.B2
=40°(see Table 3)
=2.48 (see Table 3)
3Yw=62.4 lb.lft
The values for depth of water 'D'have been computed in Table IA.Table IB provides the
preliminary Dso size for each of cells 2,3 &4 by varying the slope and the length ofthe drainage
basin.
D2Q calculated by CSU method
According to CSU method (Ref:NUREG/CR-465I,Phase-II),
Dso =5.23 x (slope)0.43 x (discharge)o.s6
The results of Dso computed by CSU method have been included in table IB (values of discharge
have been computed in table IA to compare with those obtained by Safety Factor method.
TITAN Environmental
By KG Date 6/96 s~~~ct EFN White Mesa Mill Tailings Cover
Chkd By~Date .Design of Riprap for Cover ofMill Tailings
S,2 Preliminary Size (Dso)ofRiorap along Side Slopes
Page_6_of_8_
ProjNo 6111-001
According to recommendations by U.S.N.R.C.(Ref:Appendix D,section 2.2 (step 5),"Final Staff
Technical Position"),recent studies have indicated that Stephenson method is more applicable for
designing rock for slopes less than 10%.As the side slopes (5H:1V)have a value ofS =1/5 =0.2 =
20%(>10%),the Stephenson method (Ref:"Development of Riprap Design Criteria by Riprap
Testing in Flumes",NUREG/CR-4651)will be most appropriate.
By Stephenson method,the median size for rock,Dso is given by the following equation (Ref:eqn.
3,15,NUREG/CR-4651):
=Concentrated discharge in cu.ft./sec
=Slope angle =tan-I (S)=tan-I (0.2)=11,31 0
=Friction angle ofthe rock =400 (see Table 3)
=Relative Density ofthe rock =2.48 (see Table 3)
=Acceleration due to gravity =32.2 ft.lsec2
=Porosity ofthe rock =0,30 (for sandstone)[Ref:(a)"Origin of Sedimentary
Rocks"and (b)Table 3
C =Empirical factor [0.22 for gravel/pebble and 0.27 for crushed granite]
Also,K =Oliver's constant [1.2 for gravel and 1.8 for crushed rock]
The results for qc from table 2A have been substituted into the above equation and the solution
tabulated in table 2B.The value of Dso has been multiplied by the Oliver's constant K to insure
stability.
D~calculated by CSU method
According to CSU method (Ref:NUREG/CR-4651,Phase-II),
Dso =5.23 x (slope)0.43 x (discharge)o.s6
The results of Dso computed by CSU method have been included in table 2B to compare with those
obtained by Stephenson method.
TITAN Environmental
By KG Date..M!JfL.Svbject EFN White Mesa Mill Tailings Cover
Chkd By~Date~Design ofRiprap for Cover ofMill Tailings
Page_7_of_8_
Proj No 6111-001
c:Oversizing ofRiprap based on durability and Overall Riprap Thickness
C.l Modification o.fSize (»50)ofRiprap based on Durability
Tables 3 and 4 include the properties of the rock to be used as protective cover material.Based on
these values and according to the scoring criteria set by U.S.N.R.C.(Ref:Appendix D,sections 6.2,
6.2.1,6.2.2 and table D-1 in "Final Staff Technical Position"),a rock rating analysis has been
provided in Table 4.The results show a rock rating of 55.74%,which according to U.S.N.R.C.can
be used for non critical areas like top slopes and side slopes.
Thus the oversizing required =80-55.74 =24.26%
[ref:(a)Appendix D,section 6.2.2B,"Final Staff Technical Position";U.S.N.R.C.(oversizing
required based on a 80-rating),(b)Appendix D,section 6.4 (example),"Final Staff Technical
Position"and (c)Table 4.
However a oversizing factor of 25 %has been used.Thus the nominal diameter Dso obtained in
tables 1B and 2B has been multiplied with 1.25 to obtain a modified rock size Dso (tables 1C and
2C).
C.2 Overall Riprap Thickness
According to the Safety Factor method,it is recommended that the riprap thickness be at least 1.5
times the Dso value whereas according to the Stephenson method the riprap thickness should be at
least 2 times the Dso value.The results based on the above recommendations are shown in tables 1C
and 2C respectively.
RESULTS:
Results ofthe calculations have been tabulated under tables lA,1B,1C,2A,2B,2C respectively.
TITAN Environmental
By -.KG..Date 6/96 Subject EFN White Mesa Mill Tailings Cover
Chkd By__Date Design ofRiprap for Cover ofMill Tailings
REFERENCE:
Page_8_of_8_
Proj No 6111-001
a)"Final Staff Technical Position -Design of Erosion Protection Covers for Stabilization of
Uranium Mill Tailings Sites",1990;U.S.Nuclear Regulatory Commission (U.S.N.R.C.)
b)Methodologies for Evaluating Long-Term Stabilization Designs of Uranium Mill Tailings
Impoundments"(NUREG/CR-4620),1986;U.S.Nuclear Regulatory Commission
c)"Development of Riprap Design Criteria by Riprap Testing in Flumes"(NUREG/CR-4651),
1987;U.S.Nuclear Regulatory Commission
d)National Oceanic and Atmospheric Administration (NOAA),1977.
Precipitation Estimates,Colorado River and Great Basin Drainages.
Report (HMR)No.49.
Probable Maximum
Hydrometeorological
e)"Origin of Sedimentary Rocks",second edition;Harvey Blatt,Gerard Middleton and Raymond
Murray
TITAN Environmental
By KG.Rate 6/96 Subject
Chkd ByJ2lL Date 1j~
EFN White Mesa Mill Tailings Cover
Design ofRiprap for Cover ofMill Tailings
TABLES
Page__of__
Proj No 6104-001
TITAN ENVIRONMENTAL
Project #:
Client:
Location:
Overland Flow Calculation.for Top Portion of the Cover
Table 1A:Calculation ror Runoffand FlOW parameters
6111-001
EFN,WMe Me.a
Blanding,Utah
Date:June 1996
Prepared by:KG
Checked by:
Maximum A....eraglt DraJnage Area Manning'.1·hour Oetlgn Tlmoof Peak Concentrated
Length ''L''Slope pern.run Roughn...precipitation Storm Concenlrltlon,Tc %PMP Rainfall PrecIpitation Runoff Flow D1.cha~e Discharge Depth of Flow Permissible
Cell No 01 Drainage "S"A:c Lx 1n.eoamelent amount Caloulatedvalue Minimum V.lue •%of 1..hour Oeplh Inten,rty Coe1'rlclent Concontra·peruntt per uott wafer,"0"Veloclty,V:c Veloclty
Basin n (using Eqn.4.044.v.'uetb.,ed u.ed precipitation "r "C"ion n.width n.v.<dlh (eqn.4.046,Dlsch.rgtt
(appx.)NUREG .620)on table2.1,(T.bl.2.1,Factor q.CIA q,NUREG.620)c.s.Area
NUREG 4620 NUREG 4620nn.m.sq.n Acres Inches minute. minute.minute.Inche.Inches/hr.CU.n.lseC.cu.n.J,ec.n.n.llec.ft.l,ec
1350 0.0080 1350 0.0310 0.03 7.76 PMP 12.88 2.5 12.88 68.90 5.35 24.92 0.8 3 0.62 1.85 0.593 3.13
1350 0.0072 1350 0.0310 0.03 7.76 PMP 13.41 2.5 13.41 70.18 5.45 24.37 0.8 3 0.60 1.81 0.604 3.00
2 1350 0.0070 1350 0.0310 0.03 7.76 PMP 13.55 2.5 13.55 70.53 6.47 24.23 0.8 3 0.60 1.80 0.607 2.97
1350 0.0060 1350 0.0310 0.03 7.76 PMP 14.38 2.5 14.38 72.52 5.63 23.48 0.8 3 0.58 1.75 0.624 2.80
1350 0.0050 1350 0.0310 0.03 7,76 PMP 15.43 2.5 15.43 74.69 5.80 22.54 0.8 3 0.56 1.68 0.643 2.61
1350 0.0040 1350 0.0310 0.Q3 7.76 PMP 16.81 2.5 16.81 76.90 5.97 21,30 0.8 3 0.63 1.58 0.664 2.38
1350 00030 1350 0.0310 0.03 7.76 PMP 18.78 2.5 18.78 80.05 6.21 19.84 0.8 3 0.49 1.48 0.694 2.13
1350 0.0020 1350 0.0310 0.03 7.76 PMP 21.96 2.5 21.96 83,37 6.47 17.68 0.8 3 0.44 1.31 0.731 1.80
1350 0.0010 1350 0.0310 0.03 7.76 PMP 28.67 2.5 28.67 88.07 6.83 14.30 0.6 3 0.35 1.06 0.793 1.34
1100 0.0050 1100 0.0253 0.03 7.76 PMP 13.18 2.6 13.18 69.63 5.40 24.60 0.8 3 0.50 1.49 0.599 2.49
1100 0.0040 lIDO 0.0253 0.03 7.76 PMP 14.36 2.5 14.36 72.47 5.62 23.49 0.8 3 0.47 1.42 0.623 2.29 5-6
3 1100 00030 1100 00253 0.03 7.76 PMP 16.04 2.5 16.04 75.67 5.87 21.96 0.8 3 0.44 1.33 0.652 2.04
1100 0.0020 1100 0.0253 0.03 7.76 PMP 18.75 2.5 18.75 80.DO 6.21 19,86 0.8 3 0.40 1.20 0.694 1.74
1100 0.0013 1100 0.0253 0.03 7.76 PMP 22.14 2.5 22.14 83.50 6.48 17.56 0.8 3 0.35 1.06 0.733 1.45
1100 0.0010 1100 0.0253 0.03 7.76 PMP 24.49 2.5 24.49 85,14 6.61 16.19 0.8 3 0.33 0.98 0.755 1.30
1250 0.0080 1250 0.0287 0.03 7.76 PMP 12.13 2.5 12.13 67.12 5.21 25.75 0.8 3 0.69 1.77 0.577 3.07
1250 0.0070 1250 0.0287 0.03 7.76 PMP 12.77 2.5 12.77 68.66 5.33 25.02 0.8 3 0.57 1.72 0.591 2.92
4 1250 0.0060 1250 0.0287 0.03 7.76 PMP 13.56 2.5 13.56 70.53 5.47 24.23 0.8 3 0.56 1.67 0.607 2.75
1250 0.0057 1250 0.0287 0.03 7.76 PMP 13.83 2.5 13.83 71.18 5.52 23.97 0.8 3 0.55 1.65 0.612 2.70
1250 0.0050 1250 0.0287 0.03 7.76 PMP 14.54 2.5 14.54 72.90 5.66 23.34 0.8 3 0.54 1.61 0.627 257
1250 0.0040 1250 0.0287 0.03 7.76 PMP 15.85 2.5 15.85 75.35 5.85 22.14 0.8 3 0.51 1.52 0.649 2.35
1250 0.0030 1250 0.0287 0.03 7.76 PMP 17.70 2.5 17.70 78.32 6.08 20.60 0.8 3 0.47 1.42 0.678 209
1250 0.0020 1250 0.0287 0.03 7.76 PMP 20.69 2.5 20.69 82.48 6.40 18.56 0.8 3 0.43 1.28 0.719 178
1250 0.0010 1250 0.0287 0.03 7.76 PMP 27.02 2.5 27.02 86.92 6.74 14.98 0.8 3 0.34 1.03 0.778 1.33
Rainfall %of1-hr.
Duration preclplta~on
(min.)
2.5 27.5
5 '5
10 62
15 7'
20 82
30 80
'5 05
60 100
Table 2.1 of NUREG4820
WMARMOR2.XLS
~
~
..s::.
~
TITAN ENVIRONMENTAL
ProJtlct':&111·001
Client EFN.'.'\tllte Me..
Locltlan:Blanding,Utah
Ode:June 1PQa
Preplredby:KG
Cheeked by:
Rlprap OulgntorTop portIon ofthe Cover
Table 1B:Calcula~on forpreliminary sizing 01 fiprl?,050
Specilic Sod ROOk D..
Slope ofChannel Depthof Wtiptllol Shur SpeCific Angle of ""Safety byCSU
Cell No.S ,ftow,O wOW Stre..Greyly friction A COt&•1n8 co."tinA tan•
Safety Fa~mothod "tanp p COIlJ ".Fa_method,.to·Y..OS G.•~~AI."'or,e!~.!bleu.1I bl'<l II ""~.t (jf,nfet."""a ..Inc:h"•
0.0080 0.458 0.693 82.'0.296 2.49 '0 0 1.000 0.009 1.000 0.000 0.939 0.99 0.074 0.907 47.692 99.796 0.021 0.907 1.10 0.93
0.0072 0.413 O.eo..62.4 0.271 2.49 '0 0 1.000 0.007 1.000 0.000 0.839 0.82 0.069 0.909 62.920 99.917 0,019 0.909 1.10 0.87
2 0.0070 0,401 0.607 62.4 0.266 2.49 '0 0 1.000 0.007 1.000 0.000 0.939 0.90 0.De9 0.910 64.620 88.D4Sl 0.019 0.910 1.10 0.96
0.0060 0.3"0.82-4 62.4 0.233 2.49 '0 0 1.000 0.006 1.000 0.000 0.839 0.70 0.069 0.910 83,8304 99.100 0.016 0.910 1.10 0.79
0.0060 02S6 0.843 82."0.201 2.49 40 0 1.000 0.006 1.000 0.000 0.939 0.60 0.060 0.812 76.619 99261 0.013 0.912 1.10 0.72
0.0040 0.229 0.eS4 62.4 0.166 2.49 40 0 1.000 0.004 1.000 0.000 0.B39 0.60 0.041 0.912 96.961 99.401 0.010 0.912 1.10 0.63
0.0030 0.172 0.e;4 62.4 0.130 2.49 '0 0 1.000 0.003 1.000 0.000 0.939 0.39 0.033 0_127.126 99.6'9 0.009 0.909 1.10 0.63
0.0020 0.115 0.731 62.'0.091 2.49 '0 0 1.000 0.002 1.000 0.000 0.839 0.29 O.O~0.906 199.976 9U99 0.006 0.906 1.10 0....2
0.0010 0.057 0.793 152.4 0.04;2.48 40 0 1.000 0.001 1.000 0.000 0.939 0.16 0.012 0.912 392.676 99.960 0.003 0.912 1.10 0.28
0.0060 0.286 0.699 62.4 0.187 2.49 '0 0 1.000 0.00.1.000 ,0.000 0.63"0.••~:g~~0.911 6.415 99.260 0.013 0.91 1.10 0.6
0.00040 0.229 0.1523 82.4 0.166 2.49 '0 0 1.000 0.004 1.000 0.000 0.939 0.'7 0.913 96.721 99.401 0.010 0.913 1.10 0.69
3 0.0030 0.172 0.662 92.'0.122 2.49 '0 0 1.000 0.003 1.000 0.000 0.939 0.37 0.030 0.913 127.991 99.661 0.009 0.913 1.10 0.60
0.0020 0.116 0.894 62,4 0.087 2.48 40 0 1.000 0.002 1.000 0.000 0.939 026 0.022 0.909 190.697 99.999 0.006 0.909 1.10 0.40
0.0013 0.0701 0.733 62.01 0.069 2.49 40 0 1.000 0.001 1.000 0.000 0.939 0.19 0.015 0.912 294.199 99.905 0.003 0.912 1.10 0.31
0.0010 0.057 0.765 62.01 0.0017 2.48 40 0 1.000 0.001 1.000 0.000 0.830 O.U 0.012 0.909 379.944 89.840 0.003 0.909 1.10 0.27
0.0090 0.458 0.677 62,01 0.299 2.48 '0 0 1.000 0.008 1.000 0.000 0.939 O.Or ~:~~0.909 4 .996 89J99 g:~;~0.909 1.10 0.00
0.0070 0.401 0.591 62.4 0.269 2.49 40 0 1.000 0.007 1.000 0.000 0.939 0.78 0.909 54.460 99.949 0.909 1.10 0.94,o.ooeo 0,344 0.607 62.4 0.227 2.48 40 0 1.000 0.006 1.000 0.000 0.939 0.99 0.067 0.812 93.742 89.101 0.016 0.812 1.10 0.77
0.0057 0.327 0.912 62.4 0.219 2.49 40 0 1.000 0.009 1.000 0.000 0.839 0.99 0.066 0.907 64.776 89.142 0.016 0.901 1.10 0.16
0.0060 0.2M 0.627 62.4 0.196 2.48 40 0 1.000 0.005 1.000 0.000 0.939 0.69 0.049 0.912 79.531 99.261 0.013 0.912 1.10 0.70
0.0040 0.229 0.649 62.4 0.192 2.'9 '0 0 1.000 0.004 1.000 0.000 0.839 0.49 0.040 0.912 96,624 88.401 0.010 0.912 1.10 0.92
0.0030 0.172 0.678 62.4 0.127 2.49 40 0 1.000 0.003 1.000 0.000 0.839 0.38 0.032 0."1 127.413 89.6&0 0.009 0.911 1.10 0.62
0.0020 0.115 0.719 62.4 0.090 2.49 '0 0 1.000 0.002 ,.000 0.000 0.839 0.21 0.023 0.907 190.227 89.699 0.006 0.907 1.10 0.41
0.0010 0.057 0.778 92.'0.049 2.49 40 0 1.000 0.001 1.000 0.000 0.939 0.16 0.012 0.908 390.192 89.960 0.003 0.909 1.10 0.27
~
f Rlprap__IT!,?d!hd based ondurability,and Overall R.lprap ThicknessTable1C:01~",,,,.~.~---
D~Overtl.tlng Modified Thlckne.Overall
Slope of buodon Factorb.1.edon DIO of Rlprap Rlprap
Con No.channel S.11ory RockQuality al':er layer Thlckneu
S Factor (from previous overs!:1ng ·1.5xO~.uggested
Method report)
•AI Inche•Inche.inches Inche.
o.ooao 0.99 1.25 1.11 Ul7
0.0072 0.82 1.25 1.02 1.63
0.0070 0.90 1.25 0.99 1.49
2 0.0090 0.70 1.26 0.88 1.31
0.0060 0.60 1.25 0.76 1.13
0.0040 0.60 1.25 0.82 0.93
0.0030 0.39 1.25 0.48 0.73
0.0020 0.28 1.25 0.34 0.62
0.0010 0.15 1.25 0.19 0.29
O,OOSO 0.68 1.25 0.70 1.06
0.0040 0.47 126 0.68 0~7
3 0.0030 0.37 1.25 0.46 0.68 3
0.0020 0.26 1.25 0.33 0.49
0.0013 0.18 1.25 0.22 0.33
0.0010 0,14 1.25 0.19 0.27
0.0080 0.87 1.25 1.08 1.62
0.0070 0.79 1.26 0.97 1.015
0.0080 0.68 1.25 0.96 1.28
0.0067 0.66 1.25 0.82 1.23,0.0050 0.&9 1.25 0.73 1.10
0.0040 0.49 1.25 0.61 0.91
0.0030 0.38 1.25 0.018 0.71
0.0020 0.27 1.25 0.34 0,51
0.0010 0.15 1.25 0.19 0.27
--1
-:s)
~
~ARMOR2.XLS
TITAN ENVIRONMENTAL
Overfand FlowCalculations for Side Slopes ofthe Cover
Table 2A:Calculation for Runoff and Flow parameters
Project#:
Client:
Location:
6111-001
EFN,'Nhite Mesa
Blanding,Utah
Date:June 1996
Prepared by:KG
Checked by:
Maximum Average Time of %PMP Precipitation Precipitation Runoff Flow Peak Concentrated Depth of Flow Permissible
Length,"L"Slope Drainage Area Manning's 1-hour Design Concentration,Tc %of 1-hour Amount intensity Coefficient Concentra-Discharge Discharge water,"0"Velocity,V =Velocity
ofDrainage "5"perft.run Roughness precipitation storm Calculated value Minimum value Value precipitation "j""CO tion perunll perunil (eqn.4.46,pischarge (,ec.4.11.3 of
Basin A=Lxln.Coefficient amount (u,ing Eqn.4.44,ba'edon table 2.1,used (Teble 2.1,Factor n.width n.width NUREG 4620)c.s.Area (NUREG 4620)
(appx)n NUREG 4620)NUREG4620 NUREG 4620 qllCiA q.,
ft.ft.lft.sq.ft.Acres inches minutes minutes minutes Inches incheslhr.cu.fL/sec.cu.ft./sec.n.ft.lsec.ft.lsec.
275 0.2000 275 0.0063 0.03 7.76 PMP 1.10 2.5 2.5 27.5 2.13 51.22 0.8 2 0.26 0.52 0.105 4.93 5-6
Rainfall %of1·hr.
Duration precipitation
(min.)
2.5 27.5
5 45
10 62
15 74
20 82
30 69
45 95
60 100
WMARMOR2.XLS
~~<.;>.:>
~
TITAN ENVIRONMENTAL
Project #:6111-001
Client:EFN,White Mesa
Location:Blanding,Utah
Riprap Design for Side Slopes ofthe Cover
Table 2B'Calculation for preliminary sizing of riprap D50
Date:June 1996
Prepared by:KG
Checked by:
Slope ofChannel Angle of friction Concentrated Relative density Stephenson 050 by Stephenson Method Olivers Modified 050 based
for rock discharge per afRack Porosity Type of Constant tan 8 cos 8 tan $(Eqn.4.28 of Constant 050 on CSU
S 8 $unit ft.width,qc G.np Riprap C NUREG 4620)K method
ft.lft.degrees degrees cu.ft.lsec ft.inches inches ft.
0.200 11.310 40 0.52 2.48 0.3 gravel/pebbles 0.22 0.200 0.981 0.839 0.22 2.70 1.2 3.235 1.81
0.200 11.310 40 0.52 2.48 0.3 crushed granite 0.27 0.200 0.981 0.839 0.20 2.35 1.8 4.234 1.81
Table 2C:Diameter ofRicrac modified based on durability and Overall Ricrac Thickness
D50 Oversizing Modified Thickness Overall
Slope of based on Factor based on D50 of Riprap Riprap Type of
channel Stephenson Rock Quality after layer Thickness Rlprap
S Method (from previous oversizing =2 X D50 suggested
report)
ft.lft.inches inches inches inches
0.200 3.235 1.25 4.04 8.09 12 gravei/pebbles
0.200 4.234 1.25 5.29 10.58 12 crushed granite
VVMARMOR2.XLS
~.~~
TIlI3LE 3
14.88"
12.6"
WITH 24%
OVERSIZE
2.48
12.03 INCHES
8.02 INCHES
0-100 (BASED ON 1.5xD50)
0-50
SPECIFIC GRAVITY OF ROCK
0-100 (BASED ON 1.25xD50)
0-50
WHITE MESA CHANNEL B ROCK APRON
RIPRAP SIZING -STEPHENSON'S METHOD
ENTER
3.26 CFS/FT
~
11.3 DEGREES
40 DEGREES
SPECIFIC GRAVITY OF ROCK
UNIT FLOW RATE "q"
ROCKFILL POROSITY -n
SLOPE ANGLE
FRICTION ANGLE
UNIT FLOW RATE "q"
ROCKFILL POROSITY - n
SLOPE ANGLE
FRICTION ANGLE
WHITE MESA CHANNEL A ROCK APRON
RIPRAP SIZING -STEPHENSON'S METHOD
ENTER
4.27 CFS/FT
0.3
11.3 DEGREES
~EGR§§~
B
12.00 INCHES
9:60 INCHES
I'
••I
I
I
I
I
I
I
I
I
I,,
,
l
,
I
Non-Critical Areas-OVERSIZING REQUIRED
Oversizing,%=24
TfJ!3LE'I
NRC SCORING CRITERIA FOR DETERMINING ROCK QUALITY
WHITE MESA ROCK PROTECTION
RATING ANALYSIS:
Critical Areas-REJECTED
Oversizing,%=
60.00
50.00
30.00
80.00
0.00
0.00
MAX.
SCORE
27.60
17.50
30.00
47.53
0.00
0.00
6
5
3
8
13
4
4.60
3.50
10.00
5.94
0.00
0.00
SCORE *
SCORE WEIGHT WEIGHT
2]
55.74 1
TEST
RESULT
2.48
1.75
0.60
8.40
0.00
0.00
ROCK1YPE
Umestone =1
Sandstone =2
Igneous =3
LASaRATORY TEST
ROCK RATING.%
Specific Gravity
Absorption,%
Sodium Sulfate,%
UAAbrasion (100 revs),%
Schmidt Hammer
Tensile Strength,psi
TITAN Environmental
By KG pjte 6/96 ju~ect
Chkd By_k1_'t\-Date ~
EFN White Mesa Mill Tailings Cover
Design ofRiprap for Cover ofMill Tailings
FIGURE
Page__of__
Proj No 6104-001
WHITE MESA PROJECT
SITE DRAINAGE
Pl(jV!<..£:/
,I
.!l
I
TITAN Environmental
By KG Date 6/96 _.~?ject EFN White Mesa Mill Tailings Cover
Chkd By QW.r Date~Design ofRiprap for Cover ofMill Tailings
APPENDIX
Page__of__
Proj No 6104-001
FINAL
STAFF TECHNlCAF.'POSITIOf{:...,
DESIGN OF ·ERasION·;PROTEarION COVERS FOR .
STABILIZATIOH OF URANIUM KI(L.,'1"AILINGS SItE$.':.
U.S."H~ear'Regu3atory CoclalissioO'-.
FINAL
STAFF TECHNICAL POSITION
DESIGN OF EROSION PROTECTION COVERS FOR
STABILIZATION OF URANIUM MILL TAILINGS SITES
1.INTRODUCTION
Criteria and standards for environmental protection may be found in the
·Uranium Mill Tailings Radiation Control Act (UHTRCA)of 1978 (PL 95-604)(see
Ref.1)and 10 CFR Section 20.106,IIRadioactivity in Effluents to Unrestricted
Areas.II In 1983,t~U.S.Envirorunental Protection Agency (EPA)established
standards (40 CFR Part 192)for the final stabilization of uranium .i11
tailings for inactive (Title 1)and active (Title II)sites.In 1980,the
United States Nuclear Regulato~Commission (NRC)promulgated regulations (10
CFR Part 40.Appendix A)for active sites and later revised Appendix A to
conform to the standards in 40 CFR Part 192.These standards and regulations
establish the criteria to be met in providing long-te:"m stabilization.
These regulations also prescribe criteria for control of tailings.For
the purpose of this staff technical position (STP),control of tailings is
defined as providing an adequate cover to protect against exposure or erosion
of the tail i ngs.To help 1i censees and app1icants meet Federa.lguide1i nes ,
this STP describes design·practices the NRC staff has found acceptable for
providing such protection for 200 to 1000 years and focuses principally on the
design of tailings covers to provide that protection.
Presently,ve~1ittle infonsation exists on designing covers to remai n
effective for 1000 years.Numerous exaaples can be cited where covers for
protection of tail ings ftlbankments and other applications have experi.enced
significant erosion over relatively short periods (le:ss than 50 years).
Experience with recla.ation of coal-.ini"9 projects,Tor example,indicates
that·it is usually necessary to provide relatively flat slopes to mai ntai n
overall site stability (Wells and Jercinovic,1983,see Ref.2).
Because of the basic lack of design experience and techn1calinfortlation
in this area,this position attempts to adapt"standard hydraulic design methods
and empirical data to the design of erosion protection covers.The design
methods discussed here are based either Qn:(1)the use of doc~nted
hydraulic procedures that are generally applicable in any area of hydraulic
design;or (2)the use of procedures developed by technical assistance
contractors specifically for long-ter=stability applications.
It should be emphasized that a standard industry practice for stabilizing
tailings for 1000 years does not currently exist.However.standard practice
does exist for providing stable channel sections.This practice is widely used
to design drainage channels that do not erode when subjected to design flood
flows.Since an embanKment slope can be treated as a wide channel.the staff
concludes that the hydraulic design principles and practice associated with
1
2.1.2 long-Term Stability
As required by 40 eFR 192.02 and 10 eFR Part 40,Appendix A,Criterion 6•stabilization designs must provide reasonable assurance of control of
radiological hazards for a 1000-year period,to the extent practicable,but in
any case,for a .inieu.200-year period•.The NRC staff has concluded that the
risks frOG tailings could be accoa=odated by a design standard that requires
that there be reasonable assurance that the tailings remain stable for a period
of 1000 (or at least 200)years,preferably with reliance placed on passive
_controls (such as earth and rock.covers),rather than routine maintenance.
2.1.3 Design for Minimal Haintenance
Criteria for tailings stabilization,with minimal reliance placed on
active maintenance,are established in 40 CFR Part 192 and 10 CFR Part 4:0,
Appendix A,Criteria 1 and 12.Criterion 1 of 10 CFR Part 40,Appendix A
specifically states that:IITailings should be disposed of in a manner [such]
that no active maintenance is required to preserve conditions of the site.1I
Criterion 12 states that:liThe final disposition of tailings or wastes at
milling sites should be such that ongoing active llIa-intenance is not necessary
to preserve isolation.1I
It is evident that remedial action designs are intended-to last f-or a long
time,without the need for active aaintenance.Therefore,in accordance with
regulatory requiretlents,the NRC staff has concluded that the goal of any
design for 10ng-te~stabilization ~o ~et applicable design criteria should be
to provide overall site stabil ity for very long tiM periods t with no reliance
placed on active maintenance.
For the purposes of this STP,active aaintenance is defined as any
lIlaintenance that h needed to assure that the design will aeet specifi~
longevity requi-re.ents.Such aaintanance includes even .inor Mintenance,such
as the addition of soil to saallri11s and gullies.The question that lIust be
answered is whether longevity_is dependent on the aaintanance.If it is
necessary to repair gullies,for exupl.,to prevent their growth and ulticate
erosion into ta11 i ngs t ttan that lila.i ntenance is consi dered to be act1ve
ma i ntenance.
Titles 4{)CFR 192.02 and 10 CFR Part 40,Appendix A require that earthen
covers be placed over tailings at the end of .1111ng operations to li.it
releases of radon-222 ~not -are than an aver~ge of 29 picocuri.~per square
-meter per second (pCi/.s),when averaged over the entire surface of the
disposal site and over at least a one-year period,for the control period of
200 to 1000 years.Before plac~nt of the cover,radon release -rates are
calculated in designing the protective covers and barriers for uranium mill
tailings.Additionally,recent regulations promulgated under the Clean Air Act
3
design follows the procedure for a soil cover,becaus~the layer is
predominantly soil,rather than rock.
2.2 Design Procedures
A step-by-step procedure for designing riprap for the top and side slopes
of a reclaimed pile is presented below:
Step 1.Determine the drainage areas for both the top slope and the side
slope.These drainage areas are normally computed on a unit-width
basis.
Step 2.'Determine time of concentration (tc).
Thetc is usually a difficult parameter to estimate in the design of
a ~ck layer.Based on a review of the various methods for
calculating tc.the NRC staff concludes that a IIlethod such as the
Kirpich method.as discussed by Nelson.~t ale (1986,see Ref.02),
should be used.The tc may be calculated using the formula:
whe~l =drainage length (in miles)
Step 3.
H =elevation difference (in feet)
O~tenaine Probable HaxilllUtll Flo Jd (P~F)and Probable Maximum
Precipitation (PMP).
Techniques for PHP determinations have been developed for the entire
United States,primarily by the National Oceanographic and
Atmospheric Administration,1n the form of hydrome~orological
reports for specific r~g;ons.These tQchniques are c~nly accepted
and provide straightforward procedures for asses~ing rainfall
po~ential,with minimal variability.Acceptable methods for
0-3
determining the total magnitude of the PH?and various PHP
intensities for specific times of concentration are given by Nelson,
et al.(1986.see Ref.02.Section 2.1).
Step 4.Calculate peak flow rate.
The Rational Formula.as discussed by Nelson et ale (1986.see Ref.
02).may be used to calculate peak flow rates for these small
drainage areas.Other methods that are more precise are also
acceptable;the Rational Formula was chosen for its simplicity and
ease of computation:
Step 5.Oetermine rock size.
Using the peak flow rate calculated in Step 4.the required 050 may
be determined.'Recent studies performed for the NRC staff (Abt,
et al .•1988.see Ref.03)have indicated that the Safety Factors
Method is IlOre applicable for cesigning N?ck for slopes less than 10
percent and that the Stephenson Method is mq.re applicable for slopes
greater than 10 percent.Other methods may also be used,if properly
justified.
2.3 Recommendations
Since it 1s unlikely that clogging of the riprap voids will not occur over
a long period of time.it is suggested that no credit be taKen for flow through
the riprap voids.Even if the voids become clogged.it is unliKely that
stability will be affected.as indicated by tests performed for the NRC staff
by Abt.et ale (1987,see Ref.04).
If rounded rather than angular rocK is used.some incr~ase in the average
rocK size may be necessary,since the rOcK will not be as stable.
Computational models,such as the Safety Factors Kethod,provide stability
0-4
coefficients for different angles of repose of the material.The need for
oversizing of rounded rOCK is further discussed by Abt,et al.(1987,see Ref.
04 ).
2.4 Example of Procedu~Application
Determine the riprap requirements for a tailings pile top slope with a
length of 1000 feet and a slope of 0.02 and for the side slope with an
additional length of 250 feet and a slope of 0.2 (20 percent).
Step 1.The drainage areas for the top slope (AI)and the side slope
(A2)on a unit-width basis are computed as follows·:
Al =(1000)(1)/43560 =0.023 acres
A2 =(1000 +250)(1)/43560 =0.029 acres.
Step 2.The tcs are individually computed for the top and side
slopes,using the Kirpich Hetho~,as discussed by Nelson,et al.
(1986,see Ref.02).
te =[(11.9)(L)3/H]_385
For L =1000 feet and H =20 fe~t,
tc =0.12 hours =7.2 minutes for the top slope
For L =250 feet and H =50 feet,
tc =1.0 minut~for the side slope.
0-5
Step 3.
Step 4.
Therefore,the total tc tor the side slope is equal to 7.2 +1.0,or
8.2 minutes.
The rainfall intensity is determined using procedures discussed
by Nelson.et al.(1986.see R~~.02).based on a 7.2-minute PMP of
4.2 inches for the top slope and an 8.2-minute PMP of approximately
4.5 inches for the side slope.These incremental PHPs are based on a
one-hour PM?of 8.0 inches for northwestern NN Mexico and were
derived using procedures discussed by Nelson.et al.(1986.see Ref.
02).
Rainfall intensities.for use io the Rational Formula.are computed
as follows:
i1 =(60)(4.2)/7.2 =35 inches/hr for the top slope
12 =(60)(4.5)/8.2 =33 inches/hr for the side slope.
Assuming a runoff coefficient (C)of 0.8.the peak flow rates are
calculated using the Rational Formula.as follows:
Ql =(0.8)(35)(0.023)=0.64 cfs/ft.
Q2 ~(0.8)(33)(0.029)=0.77 cfs/ft.
for the top slope.and
for the side slope.
Step 5.Usill9 th4 Safety Factors Kethod,the require<i rock size for the
pile top slope is calculated to be:
0so =0.6 inches.
Using the Stephenson Method,the required rocK size for the side
slopes is calculated to be:
0-6
050 =3.1 inches.
2.5 Limitations
The use of the aforementioned procedures is widely applicable.The
Stephenson Method is an empirical approach and is not applicable to gentle
.slopes.The Safety Factors Method is conservative for steep slopes.Other
methods may also be used,if properly justified.
3.RIPRAP DESIGN FOR DIVERSION CHANNELS
3.1 Technical Basis
The Safety Factors Method or other shear stress methods are generally
accepted as reliable eethods for determining riprap requirements for channels.
These methods are based on a comParison of the stresses exerted by the flood
flows with the allowable stress permitted by the ~ck..Ooc~nted methods are
readily available for determining flow depths and Hanning Itn"values.
3.2 Design Procedures
In designing the riprap for a diver.ionchannel whe~there a~no
particularly difficult erosion considerations,the design of the erosion
protection is relatively straightforward.
1.The Safety factors Method or other sh~ar stress ~ethods ~~y be used
to determine the riprap requirements.
Z.The peak she~r stress should be used for design purposes and can be
dete~ined ty substituting the value of the depth of flow (y)in thQ shear
0-7
6.OVERSIZING OF MARGINAL-QUALITY EROSION PROTECTION
6.1 Technical Basis
The ability of some rock to surviv~without significant degradation for
long time periods is we1l-.documented by archaeological and hlstoric evidence
(lindsey.et al .•1982,see Ref.013).However,ve~little information is
available to quantitatively assess the quality of rock needed to survive for
long periods,based on its physical properties.
In assessing the long-term durQbi1ity of erosion protection materi~ls.the
N~C staff has relied principally on the results of durability tests at several
sites and on information.analyses,and methodology presented in HUREG/CR-4620
(Nelson,'et a1.,see Ref.02).This document provides a quantitative method
for determining the oversizing requirements for a particular rock type to be
placed at specific locations on or near a remediated uranium mill tailings
pile.
Staff review of actual field data from several tailings sites has
indicated that the methodology ~ay not be sufficiently flexible to allow the
use of "borderline"quality rod.•where a particular type of rock fails to meet
minimum qualifications for placement in a specific zone.but fails to qualify
by only a small amount.This ~ay be very i~ortant,since the selection of a
particular roc~type and roc~size depends on its quality and where it will be
placed on the ecbank»ent.
Based on NRC staff revi~of the actual field data.the methodology
previously derived has been lJl(Jdified to incorporate additional flexibility.
These revisions include modifications to the quality ratings required for use
in a particular placement zone,re-classification of the placement ranes,
reassessment of weighting factors based on the rock type,and more detailed
procedures for computing roc~quality and the ~ount of oversiring required.
0-23
Based on an examination of the actual field performance of various types
and quality of rock (Esmiol,1967,see Ref.014),the NRC staff considers it
important to determine roCK properties with a petrographic examination.The
case histo~data indicated that the singlemost important factor in rock
deterioration was the presence of smecti-~s and expanding lattice clay
minerals.Therefore,if a petrographic examination indicates the presence of
·such minerals,the rock will not be suitable for long-term applications.
6.2 Design Procedures
Design procedures and criteria have been developed by the NRC staff for
use in selecting and evaluating rock for use as riprap to survive long time
periods.The methods are considered to be flexible enough to accommodate a
wide range of roCK types and a wide range of rock quality for use in various
long-term stability applications.
The first step in the design process is to determine the quality of the
rock,based on its physical properties.The second step is to determine the
amount of oversizing needed,if the rock is not of good quality.Various com-
binations of good-quality rock and oversized marginal-quality rock may also be
considered in the design,if necessary.
6.2.1 Procedures for Assessing Rock Quality
The suitability of roCK to be used as a protective cover should be
assessed by laboratory tests to determine the physical Characteristics of th~
rocks.Several durability tests should be perfo~d to classify the rock as
being of poor,fair (intermediate),or good quality.For each rock source
under consideration,the quality ratings should be based on the results of
about three to tour different durability test methods for initial screening and
about six test methods for final sizing of the rock(s)selected for inclusion
in the design.Procedures for determining the rock quality and determining a
rock quality "scor~u are developed in Table 01.
0-24
6.2.2 Oversizing Criteria
Oversizing criteria va~.depending on the location where the rock will be
placed.Areas that are frequently saturated are generally more vulnerable to
weathering than occasionally-saturated .area'where freeze/thaw and 'Wet/dry
cycles occur less frequently.The amount'of overshing to be applied will also
·depend on where the rock will be placed and its importanc.to the overall
performance of the reclamation design.For the purposes of rock oversizing.
the following criteria have been developed:
A.Critical Areas.
Rating
80-100
65-80
These areas include,as a mini~~,frequently-
saturated areas,all channels,poorly-drained toes and
aprons,control structures,and energy dissipation
areas.
No Overs1zing Heeded
Oversize using factor of (80-Rating),expressed as the
percent increas«in rock diameter.For example,a rock with
a rating of 70 will require oversizing of 10 percent.(See
exa.ple of procedure application,given in Section 6.4,p.
0-28)
Less than 65 -Reject
B.Non-Critical Are~fi.
r---~--------------------
These areas include occasionally-saturated
a~~as.top ~lop~~.side slopes,and ~ll-drained
"-..~----'-.....-
toes and aprons.
0-25
Rating
80-100
50-80
No Oversizing Heeded
Oversize using facto.r of (SO-Rating),expressed as the
percent increase in rocK diameter
Less than 50 -Reject
0-26
'l"ol.E U1
Scoring Criteria'for Oeteri1irling Rock Quality
ScoreWeightingFactor109 8 7-----0 ------o-----r--,'..,3 2 1 0
[l~stone SandstoNe Igneous Good Fair PoorLaboratory
Test
2.75 2.70 2.65 2.60 2.55'2.50·2.45 2.40 2.35 2.40 2.25
1.0 3.0 5.0 6.7 8.3 10.0 12.5 15.0 20.0 25.0 30.0
1.0 3.0 5.0 6.7 8.3 10.0 12.5 15.0 20.0 25.0 30.0
70.0 65.0 60.0 54.0 47.0 40.0 32.0 24.0 16.0 8.0 0.0
Sp.Grav 1ty
Absorption.~
Sodiull
Sulfate.%
l/A Abrasion
(100 revs).%
Schr1i dt Hanoe r
12
13
-4
1
11
6
5
3
8
13
9
2
11
1
?.
.1 .3 .5 .67 .83 1.0 1.5 2.0 2.5 3.0 3.,
Tensile Strength.
psi 6 4 10 1400 1200 1000 833 666 500 400 300 200 100 o
1.Scores were derived fr~Tables 6.2.6.5.and 6.7 of HUREG/CR-2642 -NLong-Tenn Survivability of Riprap for Annoring
Uranlull\Hill Tailings and Covers:A LiterAture'Review.-19,82 (see Ref.013).
weighting Factors are derived fro~Table 7 of ·Petrographic Investigations of Rock Durability and Co~par1sons of
Various Test Procedures.by G.W.DUPUY.En~ineering",GeOlo9.l.July.1965 (see Ref.015).Weighting factors are
based on inverse of ranking of test ~thOdS or eacn rock type.Other tests ~y be used;weighting factors for'
these tests ~y be derived using Table 7.by counting upward fro~the botto~of the table./
Test ~thods should be standard1z~.if a standard test is available and ,should be those used 1n HUREG/CR-2642/(see
Ref.D13).so that proper correlations can be ~de.This is particularly f~portant for the tensile strength test.
where several methods ~be used.the ~thod discussed by Hilsson (1962.see Ref.016)for tensile strength was
used in the scoring procedure.
2.
3.
0-27
6.3 Recommendations
Based on the performance histories of various rock types and the
overall intent of achieving long-t~rm stability,the following recommenda-
tions should be considered in assessing rock quality and determining
riprap i"equi rements for a .particula·r design.
1.The rock that is to be used should first be qualitatively rated at least
Ilf.airll in a petrographic examination conducted by a geologist or.engineer
experienced ;-n petrographic analysis.See NUREG/CR-4620,Table 6.4 (see
Ref.02),for general guidance on Qualitative petrographic ratings.In
addition,if a rock contains smectites or expanding lattice clay minerals,
it will not be acceptable.
2.An occasionally-saturated area is defined as an area with underlying
filter blankets and slopes that provide good drainage and are steep enough
to preclude ponding,considering differential settlement,and are located
well above normal groundwater levelS;otherwise,the area is classified as
frequently-saturated.Natural channels and relatively flat man-made
diversion channels should be classified as frequently-saturated.
Generally,any toe or apron located belGw grade should be classified as
frequently-saturated;such toes and aprons are considered to be
poorly-drained in IIOst cases.
3.Using the scoring criteria given in Table 01,the results of a durability
test determines the score;this score is then multiplied by the weighting
factor for the particular rock type.The final rating should be
calculated as the percentage of the maximum possible score for all
durability tests that were performed.See example of procedure
application for additional guidance on determining final rating.
4.For final selection and oversizing,the rating may be based on the
durability tests indicated in the scoring criteria.Other tests may also
D-28
be substituted or added,~s appropriat~,depending on rock type and site-
specific factors.The durability tests given in Table 01 are not intended
to be all-inclusive.They represent some of the more c~nly-used tests
or tests where data may be published or readil~availabl..Designers may
wish to use other tests than those presented;such an approach is
acceptable.Scoring criteria maybe developed for other tests,using
procedures and references recocmended in Table 01.Further,if a rock
type barely fails to meetminim~criteria tor placement in a particular
area.with proper justification and documentation.it may be feasible to
throw out the results of a test that may not be particularly applicable
and substitute one or more tests with higher weighting (actors,depending
on the rock type or site location.In such cases.consideration should be
given to performing several additional tests.The additional tests should.
be those that are among the most applicable tests for a specific rock
type.as indicated by the highest weighting factors given in the scoring
criteria for that rock type.
5.The percentage increase of oversizing should ~applied to the diameter of
the rock.
6.The oversizing.calculations represent .inieum increases.Rock sizes as
"large as practicable should be provided.(It is assUMed,for example,
that a 12-inch layer of 4-inch rock costs the sa-e as a 12-inch layer of
6-inch rock.)The thickness of the rock layer should be base<!on the con-
structability of the l~er,but should b.at least 1.5 x 05J"Thicknesses
of le~s than 6 inches aay be difficult to construct,unless the rock siz~
is relatively small.
6.4 Example of Procedure Application
It is proposed that a sandstone rock source will be used.The rocK has been
rated "fair"in l\petrographic ",xa1ltinat~on.R2presentative ust result~<!.r~
given.Compute the amount of Qversizing necessary.
0-29
Using the scoring criteria in Table 01.the following ratings are computed:
lab Test Result Score Weight Score x Weight Max.Score
Sp~Gr.2.61 7 6 42 60
Absorp••X 1.22 4 5 20 50
Sad.Sulf.•X 6.90 6 3 18 30
L.A.Abr.•%8.70 5 8 40 80
Sch.Ham.51 6 13 78 130
Tens.Str.•psi 670 6 4 24 40
.Totals 390
The final rating is computed ta be ':'~21390 or 57 percent.As discussed in
Section 6.2.the rock is not suitable for use in frequently-saturated areas.
but is suitable for use in occasionally-saturated areas.if oversized.The
oversizing needed is equal to (80 -57).or a 23 percent increase in rock
diameter.
6.5 limitations
The procedure previously presented is intended to provide an approximate
quantitative method of assessing rock quality and rock durability.Although
the procedure should provide rock of reasonable quality.additional data and
studies are needed to estab1ish performance hi staries of roCK typfllS that have a
score of a specific magnitude.It should be emphasized that the procedure is
only a more quantitative estimate of rock quality,based on USSR classification
standards.
0-30
It should also be recognized that durability tests are not generally
intended to determine if rocK will actually deteriorate enough to adversely
affect the stability of a reclaimed tailings pile for a design life of 200 to
1000 years.These tests are primarily 1ntended to determine acceptability of
rock for various construction purposes for design lifetimes much shorter than
1000 years.Therefore,although higher;scores give a higher ~egree of
.confidence that significant deterioration will not occur,there is not complete
assurance that deterioration will not occur.Further,typical construction
projects rely on planned maintenance to correct deficiencies.It follows,
then,that there is also less assurance that the oversizing methodology will
actually result in rock that will on~y deteriorate a given amount in a
specified time period.The amount of overs1zing resulting from these
calculations is based on the engineering judgment of the NRC staff,with the
assistange of contractors.However,in keeping with the Management Position
(USNRC,1989,see Ref.017).the staff considers that this methodology '«'ill
provide reasonable assurance of the effectiveness of the rock over the design
lifetime of the project.
0-31
7.REFERENCES
01.Nelson et al.,"O~sign Considerations for long-Term Stabilization of
Uranium Mill Tailings Impoundments."NUREG/CR-3397 (ORNl-5979),U.S.
Nuclp.ar Regulatory Coaxnission,Washington,D.C.,1983.
02.Nelson,et al.,IIHethodologi~s for Evaluating long-Tena Stabilization
Designs of Uranium Hill Tailing Impoundments.1I NUREG/CR-4620,1986.
03.Abt.S.R••et al..1I0evelopment of Riprap Oesign Criteria by Riprap
Testing in Flumes:Phase II,·'NUREG/CR-4651,Vol.2,1988.
04.Abt•..S.R.,et al.,1I0evelopment of Riprap Design Criteria .by Riprap
Testing in Flumes:Phase I,"NUREGlCR-4651.Vol.1.1987.
05.U.S.Army Corps of Engineers (USCOE).IIHydraulic Design of Flood Control
Channels.1I EM lllO-2-1601.Office of the Chief of Engineers.Washington,
D.C.,1970.
06.Chow,V.T••Open-Channel Hydraulics.McGraw-Hill Book Company.Inc.•New
YorK.H.Y.•1959.
07.U.S.Army Corps of Engineers (USCOE).Hydrologic Engineering Center.
"Water Surfa.ce Profiles,HEC-2,"continuously updated and rev;sed.
08.U.S.Oepart.aent of Transportation (USOOT),"Hydraulic Design of Energy
Dissipaters for Culverts and Channels,"Hydraulic Engineering Circular No.
14,1983.
09.U.S.Bureau of Reclamation (USBR).Design of Small Dams.1977.
0-32
Methodologies for Evaluating
Long-Term Stabilization
Designs of Uranium Mill
Tailings Impoundments
Manuscript Completed:May 1986
Date Published:June 1986
Prepared by
J.D.Nelson,S.R.Abt,R.L.Volpe,D.van ZyI,Colorado State University
N.E.Hinkle,W.P.Staub,Oak Ridge National Laboratory
Colorado State University
Fort Collins,CO 80523
Under Contract to:
Oak Ridge National Laboratory
Oak Ridge,TN 37831
Prepared for
Division of Waste Management
Office of Nuclear Material Safety and Safeguards
U.S.Nuclear Regulatory Commission
Washington,D.C.20555
NRC FIN 80279
NUREG/CR-4620
ORNL/TM-10067
12
The rainfall depth for a specific site is estimated by determining the
rainfall duration and/or appropriate time of concentration.The resulting
rainfall depth in inches,is
PMP rainfall depth =(%PMP)x (PMP)(2.1 )
where the percent PMP is obtained from Table 2.1 and the PMP is obtained
from the appropriate PMP design storm presented in Section 2.1.1.
The rainfall intensity.i.in inches per hour can be computed as
=rainfall depth (inches)x
60
rainfall duration (minutes)
(2.2)
The rainfall intensity determined from Equation 2.2 is generally a conser-
vative value and represents the peak rainfall intensity of the design
storm.
To compute the rainfall intensity for any rainfall duration.it is
recommended that a rainfall intensity versus rainfall duration curve be
plotted on semi logarithmic paper.Because of the extremely conservative
rainfall intensity values obtained for short durations.it is recommended
that the minimum rainfall duration be 2.5 minutes.Rainfall depths should
be extracted from the appropriate Hydrometeorological Report.
2.2 PMP COMPARISON STORMS
A comparison of estimates of the PMP with greatest observed rainfall
and estimates of the 100-year events for areas both east and west of the
1050 meridian was prepared (NWS.1980).Information from 6500 precipita-
tion reporting stations in the eastern U.S.and about 2100 stations in the
west was used.Including storm durations of 6 to 72 hours.the study indi-
cated that 177 separate storm events have been recorded in whi ch the rai n-
fall was greater than or equal to 50 percent of the PMP for stations east
of the 1050 meridian.Only 66 separate storm events were recorded west of
the 1050 meridian where rainfalls were greater than or equal to 50 percent
of the PMP.
The National Weather Service also reported the number of storm events
which met or exceeded the 100-year rainfall values and compared them with
the regional PMP values (NWS,1980).Table 2.2 sumarizes these rainfall
events for 6 and 24-hour storms occurring over a 10 square mile area.It
is interesting to note that a storm has not been officially recorded west
of the Continental Divide that exceeds 90%of the PMP value.However,it
is evident that a number of storms approach the PMP values,thereby sub-
stantiating that the prescribed PMP values are not extremely conservative.
41
4.1.5.6 Gully Width
The width of the gully across the top of the gully at the point of
maximum depth can be estimated from Figure 4.5.Having computed the maxi-
mum depth,~ax'and knowing the uniformity coefficient,Cu,the top
width is estlmated to be approximately 5.6 feet.However,the gully width
will widen over time to where the gully side wall stands at an angle less
than the angle of repose of the cover material.
4.2 EMBANKMENT AND SLOPE STABILIZATION USING RIPRAP
Rock riprap is one of the most economical materials that is commonly
used to provide for cover and slope protection.Factors to consider when
designing rock riprap are:(1)rock durability,density,size,shape,
angularity,and angle of -repose;(2)water velocity,depth,shear stress,
and flow direction near the riprap;and (3)the slope of the embankment or
cover to be protected.Through the proper sizi ng and pl acenent of ri prap
on any impoundment cover,rill and gully erosion can be minimized to ensure
long term stabil ization.
The primary failure mechanism of concern is the renoval of material
fran the impoundment due to shear forces developed by water fl owi ng paral-
lel and/or adjacent to the cover as described by Nelson et a1.(1983).One
purpose of the cover is to expedite the removal of precipitation and tribu-
tary waters away from the cover to minimize seepage and percolation.
However,when surface waters are not properly managed,extreme erosion may
result and endanger the impoundment stability.For example,slopes are
often designed and constructed to develop sheet flow conditions.After
many years of exposure,sheet and rill erosion,and localized settlement,
the hydraul ic conditions have significantly altered causing flows to merge
or concentrate into drainage channels.The greater the concentration of
flow into the drainage channels,the greater the erosion potential.
4.2.1 Zone Protection
The design requirements for placing riprap rocK on a cover vary
depending upon cover location.It is suggested that four areas exist on
the cover in which different failure mechanisms can result from tributary
drainage.The four areas or zones of concern are presented in Figure 4.6
and include:
1.Zone I:This zone is considered the toe-of-the-slope of the
reclaimed impoundment.The riprap protecting the slope toe must
be si zed to stabi 1i ze the slope due to fl oodi n9 in the major
watersheds and dissipate energy as the flow transitions from the
impoundment slope into the natural terrain.Zone I is considered
a zone of frequent saturation.
2.Zone II:This is the area along the side slope which renains in
the major watershed flood plain (PMF).The rock protection must
resist not only the flow off the cover,but also floods.The
!it.",
.:'
.i .
• •j"
42
Zone
ill
Zone
I
Fig.4.6..Zones of a reclaimed impoundment requiring riprap protection.
43
riprap must serve as embankment protection similar to river and
canal banks.Zone II is considered a zone of occasional satura-
tion.
3.Zone III:Riprap should be designed to protect steep slopes and
embankments from potential high overtopping velocities and exces-
sive erosion.Flows in Zone III are derived from tributary
drainage and direct runoff from the reclaimed site.Zone III is
considered a seldom saturated zone.
4.Zone IV:Rock protection for Zone IV is generally designed for
flows from mild slopes.Zone IV will usually be characterized by
sheet flow with low flow velocities.Zone IV is considered a zone
of seldom saturation.
Si nce the rock protection requi rements are si gni ficantly different on
various locations on the cover,it should be apparent that each riprap
design procedure available was formulated to address a specific applica-
tion.Since a single riprapdesign procedure does not necessarily meet all
of the cover protection requirements,recommendations will be made indicat-
ing which zone(s)each riprap design procedure best addresses.
Because the frequency of wetting or saturation varies by zone,the
durability requirements of the riprap may vary by zone.The concept of
durability and oversizing will be addressed in Chapter 6 of this report.
4.2.2 Design Procedures
Presently,several methods are available to assist the designer in
determining the appropriate rock size for protection of impoundment covers,
embankments and unprotected slopes from the impact of drainage waters.
Alternative riprap design methods summarized herein are
,1.Safety Factors Method
2.The Stephenson Method
3.Corps of Engineers Method
4.The U.S.Bureau of Reclamation Method
These riprap design procedures are but examples of the many methods
available.
4.2.2.1 Safety Factors Method
The Safety Factors Method (Richardson et al.,1975)for slzlng rock
riprap is quite versatile in that it allows the designer to evaluate rock
stability from flow parallel to the cover and adjacent to the cover.The
Safety Factors Method can be used by assuming a rock size and then
calculating the safety factor (S.F.)or allowing the designer to determine
a S.F.and then computing the corresponding rock size.If the S.F.is
greater than unity,the riprap is considered safe from failure;if the S.F.
is unity,the rock is at the condition of incipient motion;and if S.F.is
less than unity,the riprap will fail.
60
where d50 is the mean rock size in feet.A graphical representation
for determining n is presented in Figures 4.12 and 4.13.However,these
values were developed for uniform flow condition over submerged riprap.
When overtopping flows on steep slopes begin to cascade,n value~will
increase and may range from 0.07 to 0.09 or higher.(Abt and Ruff,1985
and COE,1970).
Table 4.2.Manning Coefficient,n.
Channel Material Manning Coefficient,n
Fine sand,colloidal
Sandy loam,non-colloidal
Silt loam,non-colloidal
Alluvial silts,non-colloidal
Ordinary firm loam
Volcanic ash
Stiff clay,very colloidal
Alluvial silts,colloidal
Sha1e~and hardpans
Fine gravel
Graded loam to cobbles,non-colloidal
Graded silts to cobbles,colloidal
Coarse gravel,non-colloidal
Cobbles and shingles
Source:Morris and Wiggert,1972.
4.8 COVER EROSION RESISTANCE EVALUATION
0.020
0.020
0.020
0.020
0.020
0.020
0.025
0.025
0.025
0.020
0.030
0.030
0.025
0.035
The cover design should be evaluated to determine if the unprotected
slopes(s)can withstand overland or sheet flow with a minimum of erosion.
Based upon the site-specific cover and precipitation parameters,the design
sheet flow velocity should be estimated.A comparison of the design flow
velocity with the cover permissible flow velocity can be performed.
Furthermore,the design velocity can be used to determine the sediment
discharge using the Universal Soil Loss Equation (Chapter 5)and for sizing
stone protection (Section 4.2).
The design velocity will usually be determined from the peak discharge
generated from the Probable Maximum Flood (PMF).The PMF can be estimated
by
(a)Using computer models,i.e.,HEC-1 (CaE,1974),that are widely
accepted by the engineering profession.
64
(b)Applying the Rational Method for tributary areas that are less
than approximately one square mile in area.
The Rational fonnul a is conmonly expressed as
Q =CiA (4.42)
where Q is the maximum or design discharge in cfs,C is a runoff coeffi-
cient dependent upon the characterization of the drainage basin,i is the
rainfall intensity expressed in inches per hour and A is the tributary area
expressed in acres.When a unit width approach is taken,the area flw is
the slope{s)length times the unit width.Therefore,Equation 4.42 would
be presented as
q =CiJ'lw
for a unit width anal ysi s.
4.8.1 Runoff Coefficient
(4.43)
The runoff coefficient,C,is rel ated to the c1 imatic conditions and
type of terrain characteristic of the watershed including soil materials,
permeabil ity and storage potential.Val ues of the coefficient Care
presented in Table 4.4 (Lindsley et al.,1958),Table 4.5 (Chow,1964),and
Table 4.6 (ASCE,1970 and Seelye,1960).
Table 4.4.Values of Coefficient C.
Type Area Va1ue of C
Flat cultivated land,open sandy soil
Rolling cultivated land,clay-loam soil
Hill land,forested,clay loam soil
/S1:eep,impervious slope
Source:Lindsley,et al,1958.
0.20
0.50
0.50
0.95
The selection of a coefficient value requires considerable judgment as
it is a tangible aspect of using the rational formula.It is recommended
65
that a conservative value of C be applied for PMF estimation since infil-
tration and storage comprise a low percentage of the runoff.Furthermore,
the C values presented were derived for storms of 5-100 year frequencies.
Therefore,less frequent,higher intensity storms will require the use of a
higher C value (Chow,1964).It is recommended that a runoff coefficient
of 1.0 be used for PMF applications in very small watersheds since the
effects of localized storage and infiltration will be small.
Table 4.5.Values of C for Use in Rational Formula.
Watershed Cover
!
Soil Type Cultivated
With above-average infiltration rates;0.20
usually sandy or gravelly
With average infiltration rates;no 0.40
clay pans;loams and similar soils
With below-average infiltration rates;0.50
heavy clay soils or soils with a clay
pan near the surface;shallow soils
above impervi ous rock
Source:Chow,1964.
4.8.2 Rainfall Intensity
Pasture Woodlands
0.15 0.10
0.35 0.30
0.45 0.40
In order to determine the rainfall intensity,i,the time of concen-
tration,t must be estimated.The time of concentration can be,approximated by:
(a)Applying one of the many accepted empirical formulae such as
0.00013
L0.77
SO.385
(4.44)
where L is the length of the basin in feet measured along the
watercourse from the upper end of the watercourse to the drainage
basin outlet and S is the average slope of the basin.Time of
concentration is expressed in hours.This procedure is not
applicable to rock covered slopes.This expression was
66
Table 4.6.Values of runoff coefficient C.
Runoff Coefficients
Character of Surface
Pavement--asphalt or concrete
Gravel.from clean and loose to
clayey and compact
Roofs
Lawns (irrigated)sandy soil
Fl at.2 percent
Average.2 to 7 percent
Steep.7 percent or more
Lawns (irrigated)heavy soil
F1 at.2 percent
Average.2 to 7 percent
Steep.7 percent
Pasture and non-irrigated lawns
Sand
Bare
Light vegetation
Loam
Bare
Light vegetation
Clay
Bare
light vegetation
Composite areas
Urban
Single-family.4-6 units/acre
Multi-family,>6 units/acre
Rural (mostly non-irrigated lawn area)
(1/2 acre -1 acre
1 acre -3 acres
Industrial
Light
Heavy
Business
Downtown
Neighborhood
Parks
Source:ASCE,1970 and Seelye,1960.
Range Recoomended
0.70-0.95 0.90
0.25-0.70 0.50
0.70-0.95 0.90
0.05-0.15 0.10
0.15-0.20 0.17
0.20-0.30 0.25
0.13-0.17 0.15
0.18-0.22 0.20
0.25-0.35 0.30
0.15-0.50 0.30
0.10-0.40 0.25
0.20.:.0.60 0.40
0.10-0.45 0.30
0.30-0.75 0.50
0.20-0.60 0.40
0.25-0.50 0.40
0.50-0.75 0.60
0.20-0.50 0.35
0.15-0.50 0.30
0.50-0.80 0.65
0.60-0.90 0.75
0.70-0.95 0.85
0.50-0.70 0.60
0.10-0.40 0.20
67
designed for and applicable to small drainage basins (Kirpich,
1940).
(b)Using the Soil Conservation Service (SCS)Triangular Hydrograph
Theory (001,1977»the time of concentration is
01.9 L~~)..tu2.-USNRC \1'\,,-3'1
t c H '-\f=~S{4-t \~<--l_(4.45).r~1>~~~~r~~~~~~~T~
where L is the length (miles)of the longest wa ercourse from the ~{_.
point of interest to the tributary divide,H is the difference in C.l~~"O\
elevation (feet)between the point of interest and the tributary J
divide.The time of concentration will be expressed in hours.
The SCS procedure is most applicable to drainage basins of at
least 10 square miles.
Once the rainfall duration or time of concentration is determined,the
rainfall depth can be computed based on the PMP intensity values estimated
in Section 2.1.2.
4.8.3 Tributary Area
The tributary area may be expressed in a unit width format for design
of rock protection on an embankment.Therefore,the area is the length of
the longest expected or measured water course multi pl ied by the unit width.
This procedure is primarily applicable to Zones I,II,and III and is not
applicable for drainage ditch design.It should be noted that a unit width
approach to drainage and diversion ditch design is not effective.Ditch
design requires an entire basin analysis in Which,a composite inflow hydro-
graph is determined and is routed along the channel.From the inflow
hydrograph,water surface profiles (i.e.,HEC-2)can be estimated to deter-
mine flow depth and velocities for riprap design (COE,1982).
4.8.4 Sheet Flow Velocity
The design velocity for sheet flow on an enbankment slope can be esti-
mated by solving the Manning fonnula presented in Equation 4.39.It is
assumed that the hydraulic radius,R,is approximately equal to the flow
depth,y,and that the design discharge is equal to that estimated by the
Rational Method.Therefore,the depth of flow is
[
Q ]3[5Y_n
-1.486 Sl/2
(4.46)
where Q is the discharge,S is the slope,and n 1S the Manning coefficient.
68
Therefore,the design velocity can be estimated as
.j,
VOesign =Q/A (feet/sec)
where A is the cross-sectional area of flow.
4.9 FLOW CONCENTRATIONS
(4.47)
Despite the extensive efforts of the impoundment reclamation designer,
reviewer,contractor and inspector,the topographic features of the cover
will al ter over time wi thout continual rna intenance (Powl edge and Dodge,
1985).Cover modifications will result fran differential settlement,
collapsing soils,marginal quality control in cover placement,erosion,
major hydrologic events and monitoring disturbance.Because of these
unpredictable and generally uncontrollable events,tributary drainage areas
evolve that were not originally designed or constructed.The result is
that the peak discharge and volume of runoff exceed design levels and
increase the erosion potential.
Abt and Ruff (1985)conducted a series of fl ume experiments on a IV:5H
prototype embankment protected by riprap with median rock sizes of 2 inches
to 6 inches in diameter.It was observd that 2-4 inch diameter riprap ~re
highly susceptible to sheet flows converging along the face of the embank-
ment into channels.The discharge in the channel(s)was canpared to the
total discharge over the embankment by
1
CF =-----
1 -(Qc -Q)
(4.48)
where CF is the concentration factor,Qc is the discharge in the channel
and Q is the total discharge over the embankment.The concentration
factors ranged from 1.1 to 3.2 where flows were less than the failure dis-
charge.These preliminary results indicate that riprap designed for sheet
flow conditions may be subjected to flow channelizations that concentrate 3
times the discharge in a single location.
The peak discharge along a crest or at a design point is a function of
the amount of precipitation,the tributary drainage area,the slope of the
drainage basin,the basin contouring,the cover mater~al and cover protec-
tion.Any modification in one or more of these parameters can impact the
outlet peak discharge.The cover design must account for these potential
changes in the form of a concentration or safety factor.Therefore,a flow
concentration factor may be incorporated into the design process to
adequately evaluate the soil resistance to erosion,to adequately select
and evaluate alternative protective measures and to size riprap when
warranted .
(4.47)
esigner,
cover
jge,
t,
ion,
ie
Ie areas
:is
ld
a IV:5H
~inches
ap \eremr".
t
l.48}
mel
.di s-
sheet
rate 3
ion of
f the
)tec-
the
t i a1
I fl ow
'ct
69
It is difficult to accurately predict the value of the flow Concen-
tration factor since limited information is currently available to substan-
tiate design limits.However,it is reasonable to assume that values
between 2 and 3 are attainable with only a slight evolutionary change in
cover.unless-it can be shown that desi gn procedures such as overbui ldi ng
can compensate for differential settlement,it is recommended that a
conservative concentration factor be used until additional research can
justify a more reasonable range of values.
To incorporate the flow concentration factor into the stone SlZlng
procedure of any riprap design method,multiply the design peak discharge
by the flow concentration factor.All subsequent computations,i.e.,
velocity and depth estimate,stone size determination,etc.,will reflect
the influence of the flow concentration.
4.10 PERMISSIBLE VELOCITIES
Evaluation of proposed reclamation alternatives should include an
analysis of the critical erosion potential of the cover material.Erosion
potential can be determined based Upon the properties of the reclamation
materials as well as the degree of compaction in which the material is
placed.The permissible velocity approach consists of specifying a
velocity criterion that will not erode the cover or channel and will pre-
vent scour.A comparison of the actual or design flow velocities to the
permissible velocities associated with overland flows,sheetflows or chan-
nel flows determines the erosion potential.When the design flow velocity
meets or exceeds the permissible velocity,cover protection should be
considered.
The permissible velocity values presented were developed from experi-
ments performed primarily in canals and stream beds.Therefore,the fol-
lowing permissible velocities should provide a conservative estimate for
evaluating the erosion resistance of the reclaimed covers over long term
periods.In cases where a range of permissible velocities are presented,
it is recommended that the lower velocity be used for determining erosion
potential •
A series of permissible maximum canal velocities was developed by
Fortier and Scobey (1926)and adapted by Lane (1955).The maximum
permissible velocities presented in Table 4.7 are applicable to colloidal
silts.These velocity values were developed for channels without
sinuosity.Lane recommended a reduction of the velocities in Table 4.7 by
13 percent if the canal/channel is moderately sinuous.The maximum
allowable velocities for sandy-based materials are given in Table 4.8.
Table 4.9 provides limiting velocities for cohesive materials according to
compactness for materials with less than 50 percent sand content.The Soil
Conservation Service maximum permissible velocities (SCS,1984)for well
maintained grass covers are presented in Table 4.10.
It is important to recognize that limited information is available
pertaining to permissible velocities on covers under sheet flow conditions.
Table 4.8.Maximum allowable velocities in sand-based material.
Table 4.7.Maximum permissible velocities in erodible channels.
6.00 to 8.00
(ftjsec)
Velocity
0.75 to 1.00
1.00 to 1.50
1.50 to 2.00
2.00 to 2.50
2.50 to 2.75
2.75 to 3.00
3.00 to 3.75
4.00 to 5.00
5.00 to 6.00
2.50
2.50
3.00
3.50
3.50
3.50
5.00
5.00
6.00
5.00
5.00
5.50
6.00
5.50
v (ftjsec)
Water Transporting
Colloidal Silts
Source:Lane 1955.
Channe1 Materi a1
Fine sand,colloidal
Sandy loam,non-colloidal
Silty loam,non-colloidal
Alluvial silts,non-colloidal
Firm loam
Volcanic ash
Stiff clay,colloidal
Alluvial silts,colloidal
Shales and hardpans
Fi ne gravel
Graded loam to cobbles,non-colloidal
Graded silts to cobble,colloidal
Coarse gravel,non-colloidal
Cobbles and shingles
Material
Source:Lane,1955.
Very light sand of quicksand character
Very light loose sand
Coarse sand to light sandy soil
Sandy soi 1
Sandy loam
Average loam,alluvial soil,volcanic ash
Firm loam,clay loam
Stiff clay soil,gravel soil
Coarse gravel,cobbles and shingles
Conglo~erate,cemented gravel,soft slate,
tough hardpan,soft sedimentary rock
"';!itw';:
.'';,'70
LWtCS
71
Therefore,the permissible velocities developed for channels is usually
extended to overland flow situations.When design velocities reach Or
exceed those indicated in Tables 4.7 through 4.10,protection is warranted.
Table 4.9.Limiting Velocities in Cohesive Materials.
Compactness of Bed
Fairly Very
Loose Compact Compact Coopact
Principle Cohesive velocit)VelOCit)Velocity Velocity
Material (ft/sec (ft/sec (ft/sec)(ft/sec)
Sandy clay 1.48 2.95 4.26 5.90
Heavy clayey soil s 1.31 2.79 4.10 5.58
Clays 1.15 2.62 3.94 5.41
Lean clayey soil s 1.05 2.30 3.44 4.43
Source:Lane,1955.
The materials presented in Tables 4.7 through 4.9 can be referenced to
the Uni fi ed Soil Cl assification System as presented by Wagner (l957 ).An
engineering analysis of the cover material can provide an approximation of
the permissible velocities that the alternative cover materials may with-
stand without supplemental protection.
4.11 PERMISSIBLE VELOCITY EXAMPLE
A tailings disposal site located in the northwest corner of New Mexico
has prepared a reclamation plan for review.The reclamation plan indicates
that a 10 foot thick cap will be placed atop the tailings at a slope of
2.4%with a compaction of 95%of optimum.The cap will be graded as shown
in Figure 4.14 and shall transition into side slopes of IV:10H.It is
proposed that the cap will be COOlPOSed of a sandy clay with a coarse gravel
cover.Along the crest,a 12 inch thick layer of riprap will be placed for
at least 8 feet upslope and downslope of the crest to stabilize the
transition.The riprap will have a median stone size of 6 inches.The
gravel cover will have a median rock size of 1.5 inches.The design
reviewer must verify that the gravel cover will resist the potential
velocities that may result on the cap.
74
In order to assess the stabilization of the cap again~t erosion due to
overland flow,information provided in Sections 4.6 through 4.10 of this
report must be utilized.One alternative means of reviewing the design is
presented in the fol~owing analysis.
4.11.1 Estimation of Peak Runoff
The peak runoff can be estimated using the Rational formula presented
in Equation 4.43.The three components of the Rational formula that
require consideration are:the runoff coefficient,C;the rainfall inten-
sity.i;and the tributary area,A.
The runoff coefficient can be estimated by examlnlng Tables 4.4
through 4.6.Since the cap will be composed of a compacted clay,the
infiltration and localized storage will be low.The peak runoff is a
direct function of the estimated localized PMF.Therefore,a reasonable C
value is 1.0.
The rainfall intensity can be estimated by determining the I-hr,
I-mi 2 local storm PMP value and adjusting the rainfall depth in ac~or
dance with the percentages presented in Table 2.1.For northwest New
Mexico,the I-hr,I-mi 2 PMP is estimated to be 9.5 inches after the
appropriate elevation and area adjustments are performed.
The time of concentration,t c 'should be estimated.Using Equation
4.44,the t c can be estimated where the longest flow path is approxi-
mately 450 feet as
t c 0.00013
(450)0.77
=
(0.024)°·385
and
t c 0.06 hrs =3.62 minutes
(4.49)
(4.50)
The rainfall depth for variable rainfall durations can be estimated
using the values presented in Table 2.1 which are applicable to northwest
New Mexico.Since the time of concentration is 3.6 minutes,the percent of
the 1-hr PMP can be interpolated to be approximately 35 percent.The
rainfall depth is computed using Equation 2.1 to be
Rainfall depth =(0.35)x 9.5 inch =3.33 inches (4.51)
75
A conservative estimate of the rainfall intensity is determined by
applying Equation 2.2.
60=3.33 inches x ---=55.5 inches/hr
3.6
(4.52)
.~
The tributary area.A.can be estimated using a unit width approach
presented in Section 4.8.Since the longest flow path is 450 feet with a
unit width of one foot.the tributary area is 450 square feet.The
tri butary area can be converted to acres by di vi di ng by 43.560 square
feet/acre resulting in an area of 0.0103 acres.
The peak sheet flow unit discharge at the transition can be computed
by using the Rational formula presented in Equation 4.43.
q =(l.O)(55.5)(0.0103)=0.57 cfs
4.11.2 Sheet Flow Velocity
(4.53)
The sheet flow design velocity can be estimated by first determining
the depth of flow.The depth of flow.y.can be calculated using Equation
4.46.However.the Manning surface roughness coefficient.n.must be
determined.From Equation 4.41.the Manning n value can be calculated as
rfl::o.o~~s-(cl..:so)Y.c
n =0~0395 (0.125)1/6 =0.028 (4.54)
The depth of flow is then computed to be
or
y ( 0•57)0•028
1.486 (0.024)1/2
3/5
0.202 feet (4.55)
y =(0.202 ft)(12 in/ft)2.42 inches (4.56)
The design sheet flow velocity is calculated uSlng Equation 4.47.
v
0.57
(1.0)(0.20)
2.82 feet/sec (4.57)
The permi ssib 1 ci t for th ravel has been
determln to be ~0-6.Q feet/sec as presented in Table 4.8.Since the
<1eslgn sheet flow velocity was calculated to be 2.9 feet/sec,the cover
should be able to withstand the design flow.
76
~.::=:,"\'.:<~;~fo:'57'is the unit discharge,1.0 is the width of flow
id";';'is the depth of flow in feet.It should be noted that the
.tion factor was not incorporated into this conputation.
4.11.3 Cover Permissible Velocity
in feet and 0.20
fl ow concentra_
Development of
Riprap Design Criteria by
Riprap Testing in Flumes:
.Phase I
Manuscript Completed:October 1986
Date Published:May 1987
Prepared by
S.R.Abt,M.S.Khattak,J.D.Nelson,J.F.Ruff,
A.Shaikh,R.J.Wittler,Colorado State University
D.W.lee,N.E.Hinkle,Oak Ridge National laboratory
Colorado State University
Fort Collins,CO 80523
Under Contract to:
Oak Ridge National laboratory
Oak Ridge,TN 37831
Prepared for
Uranium Recove.rv Field Office
Region IV -Box 25325
U.S.Nuclear Regulatory Commission
DenverI CO 80401
and
Division of Waste Management
Office of Nuclear Material Safety and Safeguards
U.S.Nuclear Regulatory Commission
Washington,DC 20555
NRC FIN A9350
NUREG/CR-4651
ORNL/TM-l0l00
or embankment where the flow has a non-horizontal (downslope)velocity
allows the designer to evaluate rock stability from flow parallel to the
(3.5)SF
1)'tan ¢+sin 8 cos {3
cos 8 tan ¢
where
vector.The safety factor,Sr,is:
A summary of each method will be presented.
The following equations are provided for riprap placed on a side slope
The Safety Factors Method (Richardson et al.,1975)for sizing riprap
2.The Stephenson Method (STEPH)
3.The U.S.Army Corps of Engineers Method (COE)
4.The U.S.Bureau of Reclamation Method (USBR)
18
1.Safety Factors Method (SF)
motion;and if SF is less than unity,the riprap will fail.
allowing the designer to determine a SF and then computing the corresponding
stone size.If the SF is greater than unity,the riprap is considered safe
from failure;if the SF is unity,the rock is at the condition of incipient
cover and adjacent to the cover.The Safety Factors Method can be used by
assuming a stone size and then calculating the safety factor (SF)or
3.4.1 Safety Factors Method
embankments,channel and unprotected slopes from the impact of flowing
waters.Four riprap design procedures which will be referenced are:
,..•and
19
"'""[_[_l+_Si_n_~_A_+_f3_)_lJ
21 TO11= _
( Gs-1)l'050
TO =l'OS
-l[COS A Jf3=tan
(2 sine)/(11tanc1J)+sin A
The angle,A,is shown in Figure 3.1 and is the angle between a
(3.6)
(3.7)
(3.8)
(3.9)
horizontal line and the velocity vector component measured in the plane of
the side slope.The angle,e,is the side slope angle shown in Figure 3.1
and f3 is the angle between the vector component of the weight,Ws,
directed down the side slope and the direction of particle movement.The
angle,<t>,is the angle of repose of the riprap,TO is the bed shear stress
(Simons and Senturk,1977),050 is the representative stone size,
Gs is the specific gravity of the rock,0 is the depth of flow,Y is the
specific weight of the liquid,S is the slope of the channel,and lJ'and 1)
are stability numbers.In Figure 3.1,the forces F1 and Fd are the lift
and drag forces,and the moment arms of the various forces are indicated by
the value ei as i =1 through 4.Figure 3.2 illustrates the angle of
repose for riprap material sizes.
Riprap is often placed along side slopes where the flow direction is
close to horizontal or the angularity of the velocity component with the
If':!20
/Horizontal Line
/ P ,Direct ion of Velocity,vr
I I '
I I '/~e _-'§)~~_///I,_..-------.1::--...--"'""...---~-----
Water~
Surface --
-;----,-Ow
(a)General View
StreamlineVA
R,Direction of
Particle Movement
W sin
(b)View Normal to the S ide Slope (c)Sec fion A - A
Fig.3.1.Riprap stability conditions as described in the Safety Factors
Method.
22
hori zontal is small (i.e.,A 0).For this case,the above equations
reduce to:
~tan cP (3.10)tan {3
2 sin e
and
[ 2
(SF)2
]cos 8
Sm -(3.11)"7 =
(SF)(S~)
where
tan cP (3.12)Sm =tan e
The term Sm is the safety factor of the rock particles against rolling
down the slope with no flow.The safety factor,SF,for horizontal flow may
be expressed as:
SF =Sot [S2 i sec2 e +4)0.5 -S ."7 sec oJ2mm (3.13)
-.'
l'
Riprap may also be placed on the cover or side slope.For a cover
sloping in the downstream direction at an angle,a.with the horizontal,the
equations reduce to:
SF cos a tan cP
"7 tan <1>sin a
(3.14)
23
Historic use of the Safety Factors Method has indicated that a minimum
SF of 1.5 for non-PMF applications (i.e.lOa-year events)provides a side
slope with reliable stability and protection (Simons and Senturk,1977).
However,a SF of slightly greater than 1.0 is recommended for PMF or maximum
credible flood circumstances.It is recommended that the riprap thickness
be a minimum of 1.5 times the 050.Also,a bedding or filter layer
should underlay the rock riprap.The filter layer should minimally range
from 6 inches to 12 inches in thickness.In cases where the Safety Factors
Method is used to design riprap along embankments or slopes steeper than
4H:1V,it is recommended that the toe be firmly stabilized.
3.4.2 Stephenson Method
The Stephenson Method for sizing rockfill to stabilize slopes and
embankments is an empirically derived procedure developed for emerging flows
(Stephenson,1979).The procedure is applicable to a relatively even layer
of rockfill acting as a resistance to through and surface flow.It is
ideally suited for the design and/or evaluation of embankment gradients and
rockfi~l protection for flows parallel to the embankments,cover or slope.
The sizing of the stable stone or rock requires the designer to
determine the maximum flow rate per unit width (q),the rockfill porosity
(n p),the acceleration of gravity (g),the relative density of the rock~_.-
(G s ),the angle of the slope measured from the horizontal (8),the angle
of friction (<t>),and the empirical factor (C).-----.-,.
24
The stone or rock size,050,is expressed by Stephenson as
r 7/6 1/6 lq(tan 8)np 2/3
050 =-C--------------ta-n-e-)-J-5/--:-3g1/2 [1-np )(Gs-1)cos e (tan ~(3.15)
!'
where the factor C varies from 9~?2 for gravel and pebbles to 0.27 for
crushed granite.The stone size calculated in Equation 3.15 is the
representati ve di ameter,050,at whi ch rock movement is expect~di~'r::,.-,....
unit discharge,q.The representative median stone diameter (050):~,is'
I '".~.
then multi pl i ed by 01 i vi ers'constant,K,to insure stability.01 i vi ers'.',;-.,
constants are 1.2 for gravel and 1.8 for crushed rock.The rockfi',ll layer>~;:::.:,.;,.;".-:.
should be well graded and at least two times the 050 in thickrie~~.A
bedding layer or filter should be placed under the rockfill.
'..-.The Stephenson Method does not account for upl itt of·the stones due to
;.--'~"
emerging flow.This procedure was developed for flow over and through
rockfill on steep slopes.Therefore,it is reco~ended that the Stephenson
Method be applied as an embankment stabilization for overNow or sheetflow
conditions.Alternative riprap rockfill design procedures should be
considered for toe and stream bank stabilization.
3.4.3 U.S.Army Corps of Engineers Method
The U.S.Army Corps of Engineers has developed perhaps the most
comprehensive methods and procedures for sizing riprap revetment.Their
criteria are based on extensive field experience and practice (COE,1970 and
./
.~
SECOND EDITION
ORIGIN OF
SEDIMENTARY ROCKS
HARVEY BLAIT
University of Oklahoma
GERARD MIDDLETON
McMaster University
RAYMOND MURRAY
University of Montana
Prentice-Hall,Inc,Englewood Cliffs,New Jersey 07632
••"•....~~.:•.-..~•..,I
PcnncabiJitlcs to watcr or morc than SOO darclcs have be<::n measured in modern
river sands;in ancient rocks pcnneabilitics to air range from a high ofseveral
darcies in coarser sandstones to a measured low or 10-11 darcy in a shale.The
median permeability of petroleum r-cscrvoirs is on the order of0.1 darcy(100 md).
Permeability is normally determined in the laboratory by sealing the:side
ofthecylindriC31 rock COre.removinganyoil inthecorewith a solvent,and forcing
air longitudinallythrough thecorc.Thus pennc.abilittcsordinarily r-cponcd incore
analysis refer to the permeability to dry a.ir at atmospheric pressure.The per-
meability to freshwater,brine..or pctrokum may be much less.depending on thc
mineral compositionofthe rock.,partteularly the amount and typeofclay minerals
itcontains(secbelow).Unfortunately,the:a.ccuracyofcoreanalysis fordd.crmining
pcrmea.bility is somewhat illusory.Whcn a core is removed from the subsurface.
all confining forces arc removed and lhc rock matrix.expands in aU directions.
partiallychanging the pore radii and lIuid 1I0w paths inside the core.Increases in
permeability of more than loo/.have been doeumen.ed (Fait and Davis.1952).
Presumably the pereenl>.ge incre.ascdepends largely onthedepthatwhichthe core
~taken-and on the mineralcomposition of the core.particularly its content of
clay and mica.
Subsurfacemeasurementsofpermeabilitycan bemadc byusingscmiempirical
clcdriclogging techniques,butenors of loo/.arepossible.A bettermethodinusc
in petroliferous rocl:s is todetermine tbc output ofa well undera I:nown pressure
dn.wdown or to interpret pressure buildup dalll during a drill-stcm test.The
drill-stcm test has the advanlllge thaI it represents the effective permeability of a
luge volume ofrock under in situ conditions.
Depositional permeability is greatest in a direction either parallel to the bed•
ding or at a small angle to it because ofgrain oricnllltions.mieaeeous folia.ions
produced during deposition of tbc scdimen..and vertical changes in grain size
within tbc rocl:uniLJohnsonand Hughes(1948)examined 33 Devonian 6i1 sands
in New Yorl:and Pennsylvania and found variations in pecmeability averaging
30/.inthe planeoftbcbedding.with diffcrcnecs beinglesspronouncedinsands of
higher permcabilities.Griffiths (1949)observed that sand grains are normally
imbricated at a low angle to the bedding and,thc«forc.planes parallel to the
bedding are projections ofsections through the individual grains on a plane that
lies atvaryingangles tovaryingimbrications.Smallvariationsingrainshapewould
resultinlargedifferences on the projection plane.Hefound greatestpcrmcabilities
in th=coresa.a lowangle '0 the beddingandattributed.heresul.totheexistence
ofgrain imbrication in thesandstones.Mast and Potter (1963)studied permcab.ili-
ties in the bedding plane of 13 Carboniferous sandstones and concluded.that
variationsin permeability as a result offabric ware cxmmely small."Ocarlyitis
dilliaJlt to generalize about directional permeability beyond the statement that it
is Icast ina direction approximately normal to bedding.
In some:units~however.jointing oc miaofaulting can increase permeability
pcrpeodieular to bedding by orders of magnitude (Nelson and Handin.1977).
fig.12....POflXlty.bur~deP'd\.acw:f:abund.ncc of quartz ~__
qu«ttuftdstonesIrom the-Dow«betI..
(JurusicJ.wea;G~.fOf ~:
ala cf.c.pth 011000In 1tMI poroe.ity.31~;
qu.M1.z:~fOt'I'ft1%of thctoQ..--'911_30"1;"'...........,.
q.....u ~hnoc ~hs..(Fro.
H~~.1967.Proc.7'"WOIi:t .
Prt Cong_M.xico Citr.2.354.0Md.
by ~of tnc ~Sd.lmtif1C :P"".Co.)
.,...
O<SSO!..VEO AN()R(PREoPtTATEO
O€TRITAL QUARTZ
Ovofll Q<~...;Ifl ~~Q'o.~
o ~~~~~OO~
by"lllrdingpressuresolutionand .he form...ion ofquam0>'ergT0V01hs.fluid lIow •
•hroug~sa~.ones tna.yalsocnhanc<:porosi.y bydissolvingcarlier-formcdttmeals :or detntal mineral ~ns.
12.4 PERMEABIUTY
.Pennabili.yis a ~sure of.hecase wi.h which a fluid flows .hrougha rod.
illS~fined~yanemp'ncalrelationshipfirst recognized bytheFrench hydrologist ~
Hen"DaIl:)'In 1856and may be wrilten
whc1e V =apparent velocity (cm/s)
Q =discharge (em'/s)
A =cross-sectionalarea (an~)
k =.penoeability (dareies=em'X 10")
JL =fluid viseoiity (ecntipoises,gm/ems X 10")
I=distanceofflow (em)
p =pressure (dynes/em');'his term consists d.'
both a Iluid pressure term and a gravitational
acceleration term.
.'...._._'.:.._...,.~..'........'
.'.'..
Authigenesis
latalayu water is removed completely,k:.avint ooly I few percent ofpore water
in the mudrod.
OCt<SlTY q/em'
Authigenic:minerals in sandstones arc dominantlycak.itc and quartzcements
but may also beclay minerals (Chap.9).Authigenesis in both sands and muds is
favored by inereasing t<>mpaetion,temperature,and salinity,all of which attorn-
pony increased depth of burial.The relationship betWttll burial depth and the
formation ofse<:<>ndary growths on detrital quartz trains is illustrated for some
Mesozoic sandstones by Fikhthauer (1967)(Fig.12-8).In some rods,however,
authigenesis may preserve rather then destroy porosity.Lumsden et aI.(1971)
found that authigenic chlorite toatingson detrital quartz grains in the'Spiro and
FosterSands(Pennsylvanian,Oklahoma)preserve the bulkofdepositional porosity
F"tog.12~7 Vwtion of dtoe butt.dcnsCty
of ~with drqJth in $e't'«M sedi-~b..sans.(ftom H. H.Rteb.III.
~G.V.0WnQw.197.(.Co~tion
_~~[l:KYietrvb.
Co..p.3-(.Used by ~of the
Dt-WScieftUf.c Pvb.Co.)
>0..
>-~on 200or0"-
to
F"1g.1Z-4 ~amongpotOSity.~~..-denvi·
~101 dcpoc:itionof JUC'MSie ~in the North See .....(From
fLC.$<thy.197a.Jow.CHI.Soc_135.126.Used by ~of the
~Sodo<y~
QUARTZ CQf\lTENT ~
40°;------------.:;""r:------------::;
in the sand and undercompaction ofthe mud (Scc..S.12).Theeffectofdayminer-
alogy on t<>mpaction ofmuds an be madprimarilytotbe pr=neeofunectiles
or interlayered smectite-iUite days.Smectiticdays t<>ntain more water than iUitic
or boliniticclays and resistt<>mpaction ofthe mud.
Bum(1969)has suggested thatthe t<>mpaction ofclaysprooeeds inthreemain
stages.In the first.pore-waterandwater interlayers beyond twoare remO\'ed bythe
aetion of overburden pressure.At the time of deposition muds may have water
t<>ntenls on the orderof70 to 9OY..After a few thousand feet of burial the mud
retains onlyaboutJOy'water by volume.of which 20 to 2Sy'is interlayer water
and S to lOY.is residual pore water.In the se<:<>nd stage.p<essUre is relatively
ineffective as a dehydratingar;cnt.Dehydration prooeeds byheating.whichremoves
anothe<10 to ISY.ofthe water.inc:second stage beginsat temperatures doseto
8O"C and may be att<>mparUcd bydiagenetic changes in clay mineralogy.Sina:
this is alsothelemperat!'£Catwhichorganicmatter maturestopetroleum (Scc..9.2),
is possible thatcxplusion ofwaterduring the third stage ofday recrystallization
also theeause ofthe-primary-migration ofpetroleum fromsouree to reservoir
rods.Thethird st&ge ofdchydration is also <:ontrolled by temperature butappar-
ently is also very slow,requiring tens to hundreds of years to reach t<>mpletion.
0'-----------------------'"'o'ccrVdostte.....,
'.'-.'.:...~.....-
....,.';'
p •••-:::."..
40202."2.8 32.
Av(RAG(PQROSlTY lPo«:""
12
2000
'000
rtQ 12.5 rocosicv va..~(_)Sou'th ~T«(ia(y sands;17.367~(FtomG.I.~..aftdL(.M......'965.~fM.;~~
1or-..ch"'OOOfLint"""');(b)G.....v.acv~aondT~aands:"5~(FcomO.L~.endJ.H.Spom..1978.AIIMI.AI:s:oC.hc..Gc<JI.
afIJII~c.z..".;(el CC.Cauc.asus.U.s.s.R.:'3aampIa..(From a.L ftos:hIy.
at.ov.1960.trans..by~T.a...S«v_~H.J_1565.p.3.1
Thecompactionofmuds isconsiderably morecompkxthanthatofsandstones,
asMeade(1%6)hasdescribed.Intheearlystages.co~~ctionmay ~.strongly
ral factors in addition todepthofburial:graIn stU,rateofdeposll1on.clayo~seve10 content of organic matter.and tc<><bemical factors (O>apter 1.1).
mvI~f:Y:theseparametcrs causewidevariations in theamountofcompaet1on
anatlons to .(Fi 12 7)Coarser .~in sizesufferedbydifferentmudsatthesamebunaldepthIE-- .:---.
I ·th increased quarlZ/cIay ratio and hence reduced compactIOn.H~corrcates W1 •f c1J.-seals'"hove sand UDlts.,ratcs ofdeposition can result in the formation 0 y.a
which destroyvcrticalpermeability a.nd cause the formation ofexcess percpressure
.,9
c .~.~i i --...~"&E~.u .::i f:::"3£
--1Onq<nI'"
-'-'-L0n9----~It
418
Rtg.12-4 ~~cS.pchandt\'Pe0(.ain c:ontaain.....-..of.....of..__..w,o.ning.I_J T .
1950.Am«".Aaoc..htI...GHl.6f111t_M.715.Used by ~of ..."'""""""Aaoc.r_Goologlsu,l
may have resultedsimply from cilberan ioacase in paoenlage of elongate rod::
fragments withdepth oran ioacasein clay C>OQlentofthesandstones.
The presenceofdetritalclayina sandstone hasthesameeffect asthe presence
ofductile fragments but ioacases the rate ofcompaction.Mud has a very low
bearing strength and noticeable compaction of clayey sandstones <an occur at
depths ofonly a few meters.
Increased compaction causes a ·deaease in primary porosity,a feature
observed in seven.!field studies.Data relating porosity toburial depthhave been
collected from lart<numbers 0(.subsurface cores in different sedimentary basins
(Fig.12-S),andit wasfoundthatporositycandeaeaseeitherlinearlyornonlinearly
withdepthand at ueallydiffc:ring rates.PetrograplUcstudies are needed to detc:r-
mine thecausesofthescdifferenoes.Theintcrn:lationsbipsamongporosity,testural
maturity,and mineralogic composition are weI1 illustrated by Selley (197S)in a
study ofthe occurrence ofoil in Jurassic sandstones in!he North Sea area (Fig.
12~.Volcaniclastic sandsareeasilyalt<:fed cbanieally during diagenesis to,pro-
ducefine-grained matrix.Nearly purequartzsandstonessuffer leastfromdiagenetic
effects.Arkoses occupyan intcnnediatc position with respect to diagenc:tic effca.s...
With respect to texture.the:situation in the:Jurassic rocks is equally dear.with
shallowenvironmentsbeingmost texturallymature.distalturbidite:stheleast.
/---~<;<-;~--;.-y.::.
OL---SOO~:-·----:Kl()O:!;,;::----"I5OO""'---2=:OOO:!;,;::::..~.....,2::500'=--.....,3000,.,J·
O€PTH Iml
.----s..t..<<d
--~ofcontocts
to
20
00
'"-
oQO r-----.-----::--..----=----..---=--::--,--..,,----,.O
'o;;~--'----'---'--.----r--~
7•,
0·01;;0--:2t.O)-:4()~---iGO~---;;OO~---::1OO!::----.J
PERCENT (tolof por~$pOCe e-tatc'fedl
'17
(0 0.01 pm or less at a depth ofJOOO ro.These values arc an orderor magnitude
'mailer than thos<:typical orundstone,(=Fig.12-3).
l"he quantitative significance of the soning of s.and grains on porosity of a
sandstone was studied experimentally by Beard and Weyl (1973)for gaussian
distributions.Porosity was essentially independent of grain size but dttrc:ued
seq~nli.ally as sorting dcacascd (com .(2..(~porosity in extremely we:II-s.ortcd
sands to 27.9/;in very poorly sorted s.ands "'ith no clay matrix.This result seems
quire reasonable because smallergrains will lodge betwccn the larger oocs.Pryor
(1973)found no significant change in the porosityofriver,beach,and dune unds
with change in 'tandard deviation from0.34>to l.~,but his coresamples,unlike
thos<:in the Beard and Weylstudy,werenot homogeneous.Pryor'sCOres consisted
ofmany thin,individually wcll~ed laminaeSO that although porositywould be
exccllcnl,thesediment sorting<ktcrminedinthe laboratory mightbe goodorpoor
for the core as a uniL
The porosity ofa san<lstone depends on postdepositional factors as well as
thos<:present at the time and site of deposition.AJ;noted,the most important
.facton duringdepositionareclaycontentand the sorting ofthe und fraction of
the sediment.Of ksscr importance are initial grain pacl::ing,sand mineralogy.
mean grain siz<:(assuming 'COlUlant sorting),and grain angularity.Important
postdcpositiooal or diagenetic factors arc degnoc ofcompaction and the formation
ofauthigenic miocals.
Compaction
Upon burial.sandscompact muchkss thanmudrods.Tbc ksscrcompaction
ofsandsresults from two factors.First,theaveragesan<lstonc is composedIugcly
or quartz grains,and these grains arc undeformable under most sedimentary
conditions.Secondly,the fiitcr particles that predominate in mudrods arc
deposited with initially higher _ter contents and this_rcr is quic1:Jyexpelled.
Many investigators have:compactedquartzunds in the laboratorywiththe result
thatthethicknessofthe aggregate bas deetcascd only 10 to ISX dueto rearrange-
mentorgrains and chipping ofgrain corners.
The amount of compaction increases ,ignificantly with the proportion or
ductile rocl::fragcncnts inthe detritalfraction ofthesand.Such panicks asshalc,
slate.pbyllite.and schist deform easily at shallowdepth,decreasing porosity (sec
below)and thinningthestratigraphicsection.Thisdccrcascinporosityis noticeable
in well logs and .....first studied in thin sections ofsubsurface cores by Taylor
(1950).Shefound that the proportions ofthe fourdifferent typesofinlCfgranular
contacts cbangcd with depth ofburial (Fig.12~).Tangential cootacts dcacascd
rapidly in abundance with depth,whereas the other three types.showed marl::ed
inc:rcascs.GrainsWClC being pushed close together as burial depth ~
Unfortunately,Taylordid not lcepa closecbed:onchanges in mineralcomposi·
tion with depth;so we cannot hecertain how muchofthe increased clos<:ncss of
grains was due to plasticdeformationofelongate ductile fragmentsand howmuch
or
lance.Torauosiay in &undstonc is usually be(ween landJ;in 100$(:scdimcna ia is
lpproximaacly one-half&s l.ar~.The trc.aaer the 10rluosilY.lhe.slowcr the flow of
luid through the pore system.
The physical principle on which the mercury injection method is hued is
that liquids forming contact angles on solid surfao=s ofmore tnan 90-(i.c..non-
welling ftuids)cannot pc.netf2tc into small pores unlcs.s the fnj«:tion pressure
cxC«ds (he capillary pressurc.The higher the injeaion pressurc.the smaller the
pores(hatcanbe penetrated bytheliquid.Incircular poreswith radius r the surface
tension q acts along the ,x:rimcacr of the cirdc with the (orce.-2xro.1be force
coun(cr.teting the intrusion ofthe liquid paralkl ao the axisofthe pore is -2xra
COS 1.where 1 is the angle of contact.The [orce a.uscd by tbe injection pressure
p is ~rp.For equilibrium.we obtain
-~acos1 =-.rIp
20"cos.lr=----p
lbe surface:tensionofmercuryis ~84.2 dylld{cmat!Soc,and th<:angkofcontact
of mercury on silicate mincm surfaces has been determined cxpcrimcnUlly to
approximate 141.3°.Usingthcsc ruucs,
7.6r=-p
wbcn pressure is measured in bars and pocc:radii in micrometers (Fig.12-2).
Using this relationship,rncrcury injectionofa core yields th<:volume percentage
ofpore throats ofany givenme in the rod:sample (Fig.12.3).
lbe poCO$ity ofmudrod:s varies over essentiaJly th<:same range as in sand-
stones,from zero toabout ~Yo,butth<:definition ofporosityin a mudred:is not
ascIcar-<:Ut asin th<:=-graincdrod:s.Indeed.theddinitionandmcasurcmcnt
ofporosity in mudrocks present probkms not encounta"cd in undstoncs.In a
undstonc composed primarily of quartz and similar minerals.th<:boundary
between porespace:and grain is rcasotl1b1y ""'"dclincd.Forcxampk.ifth<:pore
space is 61kd with water.th<:n this frce or movable water rcprcscnts th<:porosity.
lbe proportion ofadsorbed or bound water is usually ncgligihk because the
specificsurface:ofsuch mineralsasquartzis only I to 2 m'/gofsediment.(Compare
with clay minerals below.)In subsurface:studies,Iouing methods that measure
total hydrogen concwtsatio...such.as neutron logging,etreetivcly measure the
porosity.But mudrod:s present a .rnon:complcx problem.Many of th<:clay
mineralscontain water as part of their strveturc.and this water certainly should
be considered part of·the solid rather than part ofth<:pore lpace.In addition,
u~lcr adsorbedon thesurface:ofthe claylIales nocmaJly is notfree to move,and
....tcr may form a large percentage of the total waterhctwccn clay fIa«'in
.udrod:.This lituation occurs because the lpCCiJic lurr"",ofday mincrns
IS very large,On th<:order of tens o(squarc meters pcr gram.Within th<:space
between the grains and thcir adsorbed wake.-howcver.there exists free water
,..
lQO~~---r--,---,.-----,--r-'--'---'-"-----"l•~.
2 .
'0•
,
2
0.01L.L--!IO~.L-,20;;!;-""~30;\-;-.......loo~~:IO~..L-'i"'~~"'70
o IN.£CTOOH Pll(SSlJR(c;F HQ (-.1
fig 12-2 Relc~~~~or~it'CO.aweat>d
\he~ofpole~1hat....~
. .ved b compaction.Thus when we speak
capahk of moving or being<aSlly rcmo.L _y ta-of th<:total volumeof the
ud -_L ·ty we usually mean U~pcreen b-ofm rug.poros.,It.uallymeasuredby mechan-rod:thatcontainsfrcc oreasilymo....bIe.water.IS us f n id removed or the.th<:ed:and rncasunng th<:amount 0 ujcaJJycompactingr.These methodsare atbest.an approximationof
percentageofvolume red':::;:th<:possibility ofal;ering th<:watercontcat ofthe
thctrUe pore volurnc bea •th<:nalysis
clay flakes orthe amount of.adsorbed water~u~ngbe~sandstones and mud-
lbe cri~1d~~~~CC:=larlYinfissile m~droa:s (shales).~arcm=flalcsthatfOOD 60Yo ofth<:mineralgrainsarconcntedon pa=
y..tI tabular FurthctmOCC.beaus<IIatandhenceporespacesaredoml~y uch·smaller Heling (1970)studied ~he
can be vcrydoscly pad::cd,pore sacs~re m.that ~buried to depths up to
fabric ofTertiary shales from the Rhincgraben f 004pm at a depth of 100 m
l400 m.Pore radii dcc:r'eaSed from an avcna.g<::0 ..,5
'.'..,.'..'.£',.:t..',.,.,..',:..,.'!.........-:.(. ,'<,~~~
Line of travers.e
T0noen1iol contoct
Sutured CC)fttoct
G Matril
Iliil'i!l Cement
Oll'e-o>nvex contact
Totol nvrnbef'ofOroiM ~tered •K>
Totol ~ofcontocts enc.ountend -.q
PoctdnO proll:imity -40 %.
f\n;,-q denSity -0.8
F"'Q.12.'Ocf\Ntion of Il"MI ~typa and ~ptOximity.(Aft_
J.M.TeyCor.lsso.~.Jln.oc:.hr.GtIOI.8v1t..:J.C.p.711. 712.~J.S.
l:ahn.1956.~.WoI_K p..393).
grain volume;and cffcetiw:porosity.lite ratio ofinterconnected void volume to
10tl.Irod:volume.In dclrii.alsiliclIe rods.effective porosilyis usually onlyslightly
k:ss than lolal porosily.
Methods of Measurement
Cores o[rods used [or porosily determinalion are normally cylinders one
inch long and one ind>in diamct<r.n.e porositycan beeasily dClermined by ps
expansion.using Boyle's.law.Alletnalively.tbe vcain densily can be assumed
(2.65)and tbe porosily dctermined by weighing a sample salurated wilh a fluid
orknown densiry.11lCse experimentl.l mcthods aresuitl.b1y a=rate and are tbe
standards[orcalibralionorall other porosily-<lClerminingmethod.s.suchas poinl
-auntsin rod:Ihin sectionsorsubsunaa:logging lechniques.An importl.nlpoinl
i:cepin mind.however,is thaItbe.porosilyor13em'orroci:maynOl be repre-
Altl.tive ora rod:unit millions ortimes larger in volume,panicularly because
field obscPlalions ~lhal porosilicscanvaryueatlyover small distana:s wilh
such factors asclay mineral or rock fragmentcontent.
~12
The uSC ofsubsurface logging techniques (sonic.density.neutron)can SOme-
limes produce porosity values within 1,%o(the value obtained On the same rocl
in a cores.amplc.Theadvanlagc-1 oflogging methodSOvt:r coreanalysis(orporosity
dctermination lie in the much larger volume ofrock."'s.amplcd.-perhaps 100 times
larger than thc laboratory core,and 1n the fact that the measurement is madc
in situ,before overburden pressure is removed.In addition,there is thc mattcr of
cost.Ekctriclogs are madeofall 'Wctls,butcores arc taken in relativelyfew.
In most sandstones the bulk.of pore space has diameters less than the JO pm
thid:ness of a standard thin section and so is difficult or impossibk to detcct
during examination of the slide unless special techniques arc used.The usual
techniquc is [0 vacuum-impregnatc tM:rock slice with a colored epoxy before
thin sectioning so thatcve:n extremely narrow pores that intersect the plane ofthe
thin sectton become visible in uncrossed nicols.This technique,now standard in
industry ~boralories,also mal:esil possible 10 distinguishbelween pores produa:d
by diagenetic dissolulion or delrital trains and pseudopores produa:d by gnin
pluckingduring grindingof the thin section.
Pore Sizes..Geometry..and Measurement
Poraarc irregularlyshapedcavitiesina rock;thereforeanydefinitionoftheir
"size"is an approximation based on the musuremcnt technique used to deter-
mine it.In some cases.it is possible to vacuum-impregnate a porous rock with
eilhcra mollen plasticormctI.l andthendissolve tberocl:by usingsuitablereagents
10 produa:a "negative image"or lbe rocl:-1hal is,ils Ihree-<limensional pore
nClwori:(Swa~.1919).This technique.allhough userul forsome research pur-
poses.is impractical asa stl.ndard method.n.e distribution or pore sizes in a rocl:sample is determined generally by
injection or mercury inlo tbe rocl:.n.e sizes orpores determined in Ihis way are
actually lbesizesortbe pore""lhroalS"ornarrow connectionsbetween~rge pores.
II is lbesizes orthe Ihroats thaI conlrol the flow orfluid through rocb,whether
the 60w is or mercury during measurement or porosity or is water.petrokum.
or nalural ps in tbe subsunaa:.Onedcticien<:y ofthe mercuryinjeaion technique
is lhal ira large pore,such as a vug.is enlerc<l by fluid Ihrough a narrowthroat.
lhe large vug will be included wilhin the volume or porespace represenled by the
throal size.A second deficiency is lhal nol aU pores can be invadedbytbe mercury
because they may be shiclded by olher smaller pores whose displaa:menlpressure
is notacceded.n.e individualporemay betubular lil:e a capillary lube;oril maybe nodu~r
and fcalber oul inlo the bounding conslrietions belween nodules;or il may be
a thin.inlercrystallinetabularopeni",thaI is SO 10 100 timesas wide as itis thic\:.n.e wall ortbe pore maybecleanquartz.reldspar.or calcile;oritmaybecoated
wilh day mineral panicles.platcy accessory minerals,or roci:fragmenlS.The
crooi:ednessortbe pore patlem,called the torruosity,is Ihe raliobetween tbedis-
tl.na:between two points bywayorthe conneaed pores and tbe straighl-linedis-
I
I
I:
\,
CHAPTER 12
POROSITY AND PERMEABILITY
OF DETRiTAL ROCKS
12.1 INTRODUCTION
The porosityand pe~abili(~ofsandstones and mudrocks have been gcnccvallyneglectedbyacade'nte geologists.Mostofour knowledge in this area comes
from the petroleum industryas part of its etrort to locate reserves of oil and gas
It IS strange ~t.few geolo~istsoutside ofindustry h.;.ve investigated the porosil~
'";d permc:abdltles of ~etntal rods,for these variables conlrol most diagenetic
p ocesses.In rods.Without adequate permeability to water there ean be linleClC~ta(lOn.o~sand,tones..diagenettealterationofheavy mincrals~conversion of
Smect.te to dhte,or the myriad ofotber processes that affect rock af'er burial
Pore spaceandpermeabilityarebasicaspecu ofrock fabric and should be studied
as a nonnal part of a petrologic investigation.
12.2 FABRIC
~termfabric is rcS(:rvcd for "the manocr ofmutual arrangement in space
of tbe ,:?mponents of a rock body and of the boundaries between lhese COm.
ponents (IntcrnDttonal Tectonics Dictionary).It thus indudes both the pack.ing
.'0
and ortentation of grains.Grain pacL.:inC strongly affects both porosity and per-
meabilityand grain orientation affects the permeability(Sec.12.4).
The kaSl-studicd aspect of fa.bric is packing."the spacing or density paucrn
of mineral grains in a rock-(AGt Glossary).The meaning of packing and its
distinction from olhcr aspects offabric.such as orientation.is most clearly seen
for the case of a sediment composed of pcrfcc(spheres uniform in size.Even in
this highly idealized ~sc it has been shown that there arc six different systematic
ways ofarranging the spheres so that each sphere is in contact with-rour ormore
adjacent spheres and there arc no vacant positions.The arrangements vary from
the "loosest"cubic packing witha porosity of47.6%tothe""tightest"rhombohed-
ral packing wilh a porosity of 26.0%.The six regular packingsdo not exhaust the
numberofways that sphcra may.in fact,be:pad::cd bcausc in natureaninfinite
number ofcombinations ofthe sixand of "n.ndom-padings may also be devel-
oped.
Kahn (1956)devised two numerical measurc-s for usc:in thin section studies.
I.Thepackirlg densi'y is the ratio ofthe sumofthelengths ofgrainintercepts
to the total kngth_of the traverse across tbe thin section.It is a measure
oftbe:porosityofa cement-and matrix..(rcc sand orofthe "matrix<:cmcnt-
free porosity"ofa sandstone that has some matrix and cement.
2.Thepackingproximityis t11<:ratioofthe Dumberof&ain-to-graincontacts
(encountered in a traverse across the thin seaion)to the total number of
contaet1 of all kinds encountered in the same traverse (Fig.12-1).Ifthe
grainshave onlysmallareasofcontact witheachother.mostoftbecontaet1
observed in a thin section will be conUets between a grain and matrix or
cement;so the packing proximity win be small.In a rock in which there
has been compaction without the introduction of much ce:ntent.most of
the grain contacts observed will be grain-to-grain contacts andthe pad:ing
proximilywill be large.
The type ofcontact bctwcc:n grains canalso be studied in thin $CClion.Inthe
ideal case ofpacked spheres.the onlyobserved contaet1 between grains would be
tangential OACS.But in the ca~of nonspherical grains or where compaction has
taken place,threeotber types ofcontaet1 can beobserved(Taylor.1950).Thefour
possible typesofcontaet1are(a)tangential(b)long-:hatis,a contactthatappears
as a straight line in the plane ofsection.(e)concavoeonvex,and(d)sutured.The
frequency ofeoncavoeonvex and sutured contaCts relative to that ofother types
ofcontacts has beenusedas a measure oftbeintensityofcompaaionofsands.
12.3.POROSI1Y
Several tcrms arc widely used to indicate theamount of pore spacein a rock.
The most common arc porosity,the ralio ofvoid volume to total rock volume
(multiplied by 100 to form .a pcrcentagc::);void ratio,the ratioofpore volume to
.-~
..-.-
..:.
APPENDIXG
Slope Stability
~--_...-.-......---_.-.-.--=E E E=~~Environmental
TITAN Environmental
By .-KG:..Date.J..!!J..fL Subject Ern White Mesa Mill Tailings Cover
Chkd ByJ:rtL Date~Stability Analysis ofSide Slopes ofthe Cover
PURPOSE:
Stability Analysis ofthe Side Slopes ofthe Cover
Page_l_of_2_
Proj No 6111-001
The purpose of this calculation brief is to evaluate stability of the side slopes of the cover for the
uranium tailings impoundments.The sides of the covers are sloped at 5H:1V.From the old
drawings as published by UMETCO (section B-B),the side slope for Cell 4 is the tallest.Also,
along the southern section of Cell 4,the ground elevation drops rapidly.Hence the side slopes of
the cover located along the southern side of Cell 4 are assumed to be critical and considered for
stability analysis.
METHODOLOGY:
Static and pseudostatic slope stability analyses have been performed for the slope geometry as
shown in Figure 1.The limit equilibrium slope stability code GSLOPE,developed by MITRE
Software Corporation has been used for these analyes.The Bishop's method of slices has been
applied.
Geometry and Material Properties
Along the southern end of Cell 4,the topography drops at a rate of approximately 5.5%(Figure 2).
The material properties as provided by Dames and Moore,1978,have been used for these analyses.
The material properties have been listed in Table 1,below.
Material Type of Unit weight,y Cohesion,c Angle of
No.Material friction,~
(pct)(pst)(degrees)
1 Earthfill 123 0 30
2 Tailings 62.4 0 0
3 ~Dike 123 0 30
4 Foundation 120 0 28
5 Bedrock 130 10,000 45
Table 1:Matenal PropertIes
The surface of the bedrock has been determined from the bore-logs as supplied by Chen and
Associates,1978.But as this bedrock surface almost coincides with that of the foundation,
assuming the bedrock layer to be about 10ft.below the lowest point of the foundation surface,will
D:\PROJECTS\6111-001\STABLITY.DOC
TITAN Environmental
By -.KG.-Date..l..!!lfL Subject EFN White Mesa Mill Tailings Cover
Chkd BylfiL-Date~Stability Analysis ofSide Slopes ofthe Cover
Page_2_of_2_
Proj No 61 11-001
give conservative results.Thus,for the stability analysis,the surface ofcompetent bedrock has been
assumed to be at an elevation of+5540 ft.above mean sea level (MSL).
Factor of Safety and Horizontal Acceleration required for analysis:
A factor of safety of 1.5 and 1.0 are respectively acceptable for static and pseudostatic analyses.
Pseudostatic slope stability analysis has been performed for a maximum seismic coefficient of0.1 g.
RESULTS:
Results ofthe stability analyses have been presented in this calculation document.
Results for Static case:For static analysis,the maximum Factor of Safety calculated is 2.91 (>1.5).
Results for Pseudostatic case:For pseudostatic analysis,the maximum Factor of Safety calculated
is 1.903 (>1.0)for a ground acceleration of O.lg.
Hence the side slopes are stable.
REFERENCE:
a)Chen and Associates,Inc.,1978.Soil Property Study,Earth Lined Tailings Retention Cells,
White Mesa Uranium Project,Blanding,Utah.
b)Dames and Moore,1978.Site Selection and Design Study -Tailing Retention and Mill
Facilities,White Mesa Uranium Project,January 17,1978.
c)"GSLOPE Limit Equilibrium Slope Stability Analysis",Mitre Software Corporation,
Alberta,Canada
O:\PROJEc-TS\6111-001\STABLITY.DOC
TITAN Environmental
By KG Date 7/96 Subject EFN White Mesa Mill Tailings Cover
Chkd By~Date~Stability Analysis ofSide Slopes ofthe Cover
Page__of__
Proj No 6104-001
RESULTS OF RUN BY "GSLOPE"ANALYSIS
Material Un it Wt C Phi Piezo Ru Titan Environmental -Bozeman MT
pcf psf deg Surf.5111.001
Earthfill 123 0 30 0 0 EFN White Mesa Slope StabilityTailings62.4 0 0 0 0
Dike 123 0 30 0 0 7/1996
Foundation 120 0 28 0 0 Static Analysis
Bedrock 130 10000 45 0 0
WHTMESA 1.GSL
+
F =2.91
5600 ~.S;;:5600
Io
I
100
I
200
I
300
I
400
I
500
I
500
I
700
I
800
I
900
DATA FILE NAME.'."C:\STABLITY\GSLOPE\WHTMESA1.GSL
,T-"No.
le
Date
Label A
Label B
Max Slice Width
Set Neg.Normals to zero
No.of Materials
Seismic Acceleration
External Forces
Piezometric Surfaces
Unit Wt.of Pore Fluid
6111.001
EFN White Mesa Slope Stability
7/1996
Static Analysis
10
Y
5
o
o
o
62.4
Material Unit Wt Cohesion Friction Piezo Ru
Angle Surface Value
#1 -Earthfill 123 0 30 0 0
#2 -Tailings 62.4 0 0 0 0
#3 -Dike 123 0 30 0 0
#4 -Foundation 120 0 28 0 0
#5 -Bedrock 130 10000 45 0 0
Upper Surface of Material #1 (Earthfill)
X-Coord Y-Coord
0 5550.5
310 5568
480 5602
900 5605
Upper Surface of Material #2 (Tailings)
X-Coord Y-Coord
0 5550.5
310 5568
390 5568
480 5598
495 5598
500 5596.5
900 5598
Upper Surface of Material #3 (Dike)
X-Coord Y-Coord
(1 5550.5
5568
390 5568
480 5598
495 5598
500
620
900
5596.5
5557.5
5560
P-~er Surface of Material #4 (Foundation)
X-Coord
o
310
390
620
900
Y-Coord
5550.5
5568
5568
5557.5
5560
Upper Surface of Material #5 (Bedrock)
X-Coord
o
900
Y-Coord
5540
5540
There are no explicit external forces in the data set.
GSLOPE 3.26a
LIMIT EQUILIBRIUM SLOPE STABILITY ANALYSIS
Licensed by MITRE Software Corporation,Edmonton,Canada for use at:-
Titan Environmental -Bozeman MT
Results are for Bishop's Modified Method unless otherwise noted.
File C:\STABLITY\GSLOPE\WHTMESA1.GSL Output dated 07-03-1996 at 11:55:05
Material Unit Wt Cohesion Friction Piezo Ru
Angle Surface Value
#1 -Earthfill 123 0 30 0 0
#2 -Tailings 62.4 0 0 0 0
#3 -Dike 123 0 30 0 0
#4 -Foundation 120 0 28 0 0
#5 -Bedrock 130 10000 45 0 0
X-centre Y-centre Radius Factor Iterations Slices M Alpha
of Safety Warnings
322.60 5732.50 165.50 2.9103 4 11 0
22.91 5732.50 165.50 2.9101 4 11 0
..>23.23 5732.50 165.50 2.9164 4 12 0
322.60 5733.13 166.13 2.9101 4 11 0
322.91 5733.13 166.13 2.9159 4 12 0
323.23 5733.13 166.13 2.9164 4 12 0
322.60 5733.75 166.75 2.9099 4 11 0
322.91 5733.75 166.75 2.9160 4 12 0
323.23 5733.75 166.75 2.9164 4 12 0
Minimum Bishop Factor of Safety this run:
322.60 5733.75 166.75 2.9099 4 11 0
Material Un it Wt C Phi Piezo Ru Titan Environmental -Bozeman MT
pcf psf deg Surf.6111.001
Earthfi 11 123 0 30 a a EFN White Mesa Slope StabilityTailings62.L1 0 0 0 0
Dike 123 a 30 0 a 7/1996
Foundation 120 0 28 0 0 Pseudostatic Analysis
Bedrock 130 10000 L15 0 0
Seismic coefficient =.1 ground accln.=0.1g
WHTMESA2.GSL
+
F =1.903
5600 ~~5600
I
a
I
100
I
200
I
300
I
L100
I
500
I
600
I
700
I
800
I
900
DATA FILE NAME .....C:\STABLITY\GSLOPE\WHTMESA2.GSL
""No.
le
Date
Label A
Label B
Max Slice Width
Set Neg.Normals to zero
No.of Materials
Seismic Acceleration
External Forces
Piezometric Surfaces
Unit Wt.of Pore Fluid
6111.001
EFN White Mesa Slope Stability
7/1996
Pseudostatic Analysis
ground accln.=O.lg
10
Y
5
.1
o
o
62.4
Material Unit Wt Cohesion Friction Piezo Ru
Angle Surface Value
#1 -Earthfill 123 0 30 0 0
#2 -Tailings 62.4 0 0 0 0
#3 -Dike 123 0 30 0 0
#4 -Foundation 120 0 28 0 0
#5 -Bedrock 130 10000 45 0 0
Upper Surface of Material #1 (Earthfill)
X-Coord Y-Coord
0 5550.5
310 5568
480 5602
900 5605
Upper Surface of Material #2 (Tailings)
X-Coord Y-Coord
0 5550.5
310 5568
390 5568
480 5598
495 5598
500 5596 .5
900 5598
Upper Surface of Material #3 (Dike)
X-Coord Y-Coord
('5550.5
5568
390 5568
480 5598
495 5598
500
620
900
5596.5
5557.5
5560
r''er Surface of Material #4 (Foundation)
X-Coord
o
310
390
620
900
Y-Coord
5550.5
5568
5568
5557.5
5560
Upper Surface of Material #5 (Bedrock)
X-Coord
o
900
Y-Coord
5540
5540
There are no explicit external forces in the data set.
GSLOPE 3.26a
LIMIT EQUILIBRIUM SLOPE STABILITY ANALYSIS
Licensed by MITRE Software Corporation,Edmonton,Canada for use at:-
Titan Environmental -Bozeman MT
Results are for Bishop's Modified Method unless otherwise noted.
File C:\STABLITY\GSLOPE\WHTMESA2.GSL Output dated 07-03-1996 at 12:14:06
Material Unit Wt Cohesion Friction Piezo Ru
Angle Surface Value
#1 -Earthfill 123 0 30 0 0
#2 -Tailings 62.4 0 0 0 0
#3 -Dike 123 0 30 0 0
#4 -Foundation 120 0 28 0 0
#5 -Bedrock 130 10000 45 0 0
X-centre Y-centre Radius Factor Iterations Slices M Alpha
of Safety Warnings
22.60 5732.50 165.50 1.9036 4 11 0
322.60 5732.50 166.13 1.9067 4 12 0
322.60 5732.50 164.88 1.9160 4 11 0
MIN THIS CENTRE 1.903
322.91 5732.50 165.50 1.9037 4 11 0
322.91 5732.50 166.13 1.9067 4 12 0
322.91 5732.50 164.88 1.9163 4 11 0
MIN THIS CENTRE 1.903
323.23 5732.50 165.50 1.9066 4 12 0
323.23 5732.50 166.13 1.9068 4 12 0
323.23 5732.50 164.88 1.9165 4 11 0
MIN THIS CENTRE 1.906
322.60 5733.13 166.13 1.9035 4 11 0
322.60 5733.13 166.75 1.9067 4 12 0
322.60 5733.13 165.50 1.9160 4 11 0
MIN THIS CENTRE 1.903
322.91 5733.13 166.13 1.9062 4 12 0
122.91 5733.13 166.75 1.9067 4 12 0
322.91 5733.13 165.50 1.9162 4 11 0
MIN THIS CENTRE 1.906
323.23 5733.13 166.13 1.9066 4 12 0
323.23 5733.13 166.75 1.9067 4 12 0
323.23 5733.13 165.50 1.9164 4 11 0
MIN THIS CENTRE 1.906
322.60 5733.75 166.75 1.9034 4 11 0
322.60 5733.75 167.38 1.9067 4 12 0
322.60 5733.75 166.13 1.9159 4 11 0
MIN THIS CENTRE 1.903
322.91 5733.75 166.75 1.9062 4 12 0
322.91 5733.75 167.38 1.9067 4 12 0
322.91 5733.75 166.13 1.9161 4 11 0
MIN THIS CENTRE 1.906
323.23 5733.75 166.75 1.9066 4 12 0
323.23 5733.75 167.38 1.9066 4 12 0
323.23 5733.75 166.13 1.9163 4 11 0
MIN THIS CENTRE 1.906
Minimum Bishop Factor of Safety this run:
322.60 5733.75 166.75 1.9034 4 11 o
TITAN Environmental
By -.KG...Date.J..I!2Q....Subject EFN White Mesa Mill Tailings Cover
Chkd By PtA-Date~Stability Analysis of Side Slopes ofthe Cover
PURPOSE:
Page_l_of_2_
Proj No 6111-001
Pseudostatic Slope Stability Analysis of the Side Slopes of the Cover for horizontal
acceleration of O.12g
The purpose of this calculation brief is to evaluate pseudostatic stability of the side slopes of the
cover for the uranium tailings impoundments for a horizontal ground acceleration of 0.12g.The
sides ofthe covers are sloped at 5H:IV.From the old drawings as published by UMETCO (section
B-B),the side slope for Cell 4 is the tallest.Also,along the southern section ofCell 4,the ground
elevation drops rapidly.Hence the side slopes ofthe cover located along the southern side ofCell 4
are assumed to be critical and considered for stability analysis.
METHODOLOGY:
Pseudostatic slope stability analyses have been performed for the slope geometry as shown in
Figure 1.The limit equilibrium slope stability code GSLOPE,developed by MITRE Software
Corporation has been used for these analyes.The Bishop's method ofslices has been applied.
Geometry and Material Properties
Along the southern end of Cell 4,the topography drops at a rate of approximately 5.5%(Figure 2).
The material properties as provided by Dames and Moore,1978,have been used for these analyses.
The material properties have been listed in Table 1,below.
Material Type of Unit weight,y Cohesion,c Angle of
No.Material friction,~
(pet)(pst)(degrees)
1 Earthfill 123 0 30
2 Tailings 62.4 0 0
3 Dike 123 0 30
4 Foundation 120 0 28
5 Bedrock 130 10,000 45
Table 1:MaterIal PropertIes
The surface of the bedrock has been determined from the bore-logs as supplied by Chen and
Associates,1978.But as this bedrock surface almost coincides with that of the foundation,
assuming the bedrock layer to be about lOft.below the lowest point ofthe foundation surface,will
D:\PROJECTS\6111--001\STABLTY2.DOC
TITAN Environmental
By ..KG-Date ~Subject EFN White Mesa Mill Tailings Cover
Chkd ByA Date.Stability Analysis ofSide Slopes ofthe Cover
Page_2_of_2_
ProjNo 6111-001
give conservative results.Thus,for the stability analysis,the surface ofcompetent bedrock has been
assumed to be at an elevation of+5540 ft.above mean sea level (MSL).
Factor of Safety and Horizontal Acceleration required for analysis:
A factor of safety of 1.0 is acceptable for pseudostatic.Pseudostatic slope stability analysis has
been performed for a maximum seismic coefficient of 0.12g as recommended by the Lawrence
Livermore National Laboratory.
RESULTS:
Results for Pseudostatic case:For pseudostatic analysis,the maximum Factor of Safety calculated
is 1.778 (>1.0)for a ground acceleration of 0.12g.
Hence the side slopes are stable.
REFERENCE:
a)Chen and Associates,Inc.,1978.Soil Property Study,Earth Lined Tailings Retention Cells,
White Mesa Uranium Project,Blanding,Utah.
b)Dames and Moore,1978.Site Selection and Design Study -Tailing Retention and Mill
Facilities,White Mesa Uranium Project,January 17,1978.
c)Report by "Lawrence Livermore Natioal Laboratory"
d)"GSLOPE Limit Equilibrium Slope Stability Analysis",Mitre Software Corporation,
Alberta,Canada
0:\PROJECTS\6111~OOI\STABLTY2.DOC
Material unit me Phi Piezo Ru Titan Environmental -Bozeman
pef psf deg Surf.611L001
Earthfill 123 0 30 0 0 EFN White Mesa Slope StabilityTailings62.4 0 0 0 0
Dike 123 0 30 0 0
7/1996
Foundation 120 0 28 0 0 Pseudostatie Analysis
Bedrock 130 10000 45 0 0
Seismic coefficient =.12 ground aeeln.=0.12g
WHTMESA4.GSL
+
F =1.778
5600-~~-5600
I I I I I I I I I I
0 100 200 300 400 500 600 700 800 900
DATA FILE NAMIl.....C:\STABLITY\GSLOPIl\•...~MIlSA4.GSL
Job ~.~1\\fl\0~itle q",'1"
Date'
6111.001
IlFN White Mesa Slope Stability
7/1996
L
'.A
.L B
Pseudostatic Analysis
ground accln.=0.12g
Max Slice width
Set Neg.Normals to zero
No.of Materials
seismic Acceleration
Ilxternal Forces
Piezometric Surfaces
unit Wt.of Pore Fluid
10
Y
5
.12
o
o
62.4
Material Unit wt Cohesion Friction piezo Ru
Angle Surface Value
#1 -Ilarthfill 123 0 30 0 0
#2 -Tailings 62.4 0 0 0 0
#3 -Dike 123 0 30 0 0
#4 -Foundation 120 0 28 0 0
#5 -Bedrock 130 10000 45 0 0
Surface of Material #1 (Ilarthfill)
X-Coord
o
310
480
900
Y-Coord
5550.5
5568
5602
5605
Upper Surface of Material #2
X-Coord Y-Coord
0 5550.5
310 5568
390 5568
480 5598
495 5598
500 5596.5
900 5598
Upper Surface of Material #3
(Tailings)
(Dike)
X-Coord
o
310
390
500
620
900
Y-Coord
5550.5
5568
5568
5598
5598
5596.5
5557.5
5560
upper sur~ace ot Mater1al #4 (Founda'-~.-,,)
X-Coord Y-Coord
0 5550.5
310 5568
390 5568
5557.5
5560
Upper Surface of Material II 5 (Bedrock)
X-Coord
o
900
Y-Coord
5540
5540
There are no explicit external forces in the data set.
GSLOPE 3.26a
LIMIT EQUILIBRIUM SLOPE STABILITY ANALYSIS
Licensed by MITRE Software Corporation,Edmonton,Canada for use at:-
Titan Environmental -Bozeman MT
Results are for Bishop's Modified Method unless otherwise noted.
File C:\STABLITY\GSLOPE\WHTMESA4.GSL Output dated 08-28-1996 at 13:09:05
Material Unit Wt Cohesion Friction Piezo Ru
Angle Surface Value
#1 -Earthfill 123 0 30 0 0
#2 -Tailings 62.4 0 0 0 0
#3 -Dike 123 0 30 0 0
#4 -Foundation 120 0 28 0 0
#5 -Bedrock 130 10000 45 0 0
X-centre Y-centre Radius Factor Iterations Slices M Alpha
of Safety Warnings
322.60 5732.50 165.50 1.7777 4 11 0
22.91 5732.50 165.50 1.7778 4 11 0
323.23 5732.50 165.50 1.7804 4 12 0
322.60 5733.13 166.13 1.7777 4 11 0
322.91 5733.13 166.13 1.7801 4 12 0
323.23 5733.13 166.13 1.7804 4 12 0
322.60 5733.75 166.75 1.7776 4 11 0
322.91 5733.75 166.75 1.7801 4 12 0
323.23 5733.75 166.75 1.7804 4 12 0
Minimum Bishop Factor of Safety this run:
322.60 5733.75 166.75 1.7776 4 11 0
TITAN Environmental
By KG Date 7/96 Subject --=E=FN--"-,-Wh~=ite=-.o.;M=e=s=a-"-,M=i=Il-,T=aI=·I=in",,,g=s--,,C=o,-,-v=er,---_
Chkd By__Date___Stability Analysis ofSide Slopes ofthe Cover
FIGURES
Page__of__
Proj No 6104-001
t
.....,.....\',_.
"",.....1 ....I
0 0 0 Q 0 (}'0()<;)ty}II:)t})N I -.r
5500 -
eta 0),S.(.US),
j
I1f
S-7 -32 <r
C;Y'-:;-G
-~~~~
ALON CELL-:1 :DIKE
,It I'l 0 F BEDI(oCl<
I _''SS2D-,f't":bA-Y£R'·#ssulJrn
\J ,:POR'ANALYSiS
-:'..
;iI
i I
SLOPE $TA 13 fL tTY l\NALY $IS
(SECTION B-B By UM}f-TC.O)",--
TI=-~+~c
5"'2.0'",.
------------
.-..:'.'"'--~\;:"'-,;.--.-':'"....'
---f-"\,--.1)j',"\CA,v v .'_.,..
)
5575.2+
+5609.2
\'--'(
\W.L.5606.8 )'------..,//'~//~./~/
!"\....,/
TITAN Environmental
By KG Date.7/96 Subject ---==E=P.::-N,-Wh-,-,-==it",-e=M=e=sa=.cM=il=1~T=ai=li=noOgs,,-=C=ov-,-,e=r _
Chkd By__Date___Stability Analysis of Side Slopes ofthe Cover
APPENDIX
Page__of__
Proj No 6104-00 I
I
$I ,:chen and associates,inc.
CONSULTING ENGINEERS
I rotL t fOOtaMiJOtI ~S.ZUNI DENVER.COLORADO 10223 JaJI74+7105
[NGINEERING 1~'(EAST ARST STREET •CASPER.WYOMING .2S01 .Ja712J.4-212fISECTION2
I Extracted Data From
SOIL PROPERTY STUDY
I EARTH LINED TAILINGS RETENTION CELLS
WHITE MESA URANIUM PROJECT
BLANDING,UTAH
I
I
I
I
I
j
Ii1
II
Prepared for:
Et~ERGY FUELS NUCLEAR,INC.
PARK CENTRAL
1515 ARAPAHOE STREET
DENVER,COLORADO 80202
Job No.16,406 July 18,1978
f=u.
:~~H:....
...:z::::t
::::~......«.~S->
::::~
:::~
"*i~
i
.............._;~___••_•••_••_••••••_-1 _••••••
I...I.I
..1:::
"I
..!
·:::::I'::::::::l'::::::·:j:':::::::::':::::::·l'·:::::::}'::::::::I';:::::::J::::::j:::;.':1 '":1>............................................................',.......!. . ,
"i." : .i•••;:::::::••,,:::":;".":;;1';:::::I...,;:"::::BOio ~:: ::;Ii":~:,ii;:.::!"';'i~,.~L~S.61lliJJill'::.:.::~:~S:607.: : :..: : .tI.:-S60 ::.:.:.El'jSlil2:~r~··-S61~: :I'~'::~~:~~9)~:.:.~.:..:!~i ..S60A."·~··_·f··:l..,m~.i ...I
.:1<•••••••••/11/•••·.....I>!I J:.II J d illiliililillJJ I ITO ill,··I!·.'..~....·-·..·..---··t·-·-..···-:-:-8~~::,=j...,-...:::'-:-+':.::::..:I:::':::':I::.~i;::.:::'I::::::.:/-::-:....:·_·:-~~··_·__·-:..·~~·:-..·i·~..·-·_···-_.j.......-..............m~
..I ..•.••..••1......... ......." ,..,.......l;we...J......,....;. . .i.
'1 :.::.::..:::::::':I:::::;:.:,;:::i .:::::i :i :::':.::::;::i ;II ;.::~~rn >..}::::.:;i:'.:!.'.,!.
::. .-200":53.........I.................,...1......I ••, • •..,..i ..,,. ....
: I ,'...'.i ....... . . .....I .-~OQ".s~...PI-1'"..,../......,..,i I·:::;:;:::::;:::::.I~;~~;:I::::::::;;::::J .:..;;::I .i.::J.,.!'
..I ~'",~:::::......·1 · I ..I I
_...··_..···_·~r ..:·...:..~_..~...._-:··.:..:ft·~ob ;;;:..'::;;::'+~:r:+;;-~+:.:~:::::I:;:.;;;':I :~~':::.:r~';..WC~ii.r::~..~:~·I ..-··~·_·..~i!:-..·..-·-_...._·
!..i .::.Jd •"'''::::•::::::::::.,:::::::.:..:.:.::::::::'j:::'::,:I'.;'20o-'6r : : : : : : . :i ..:.:..'-200-73·
-----J.--L •••i.-F.,••••·:••••••.••••••'•••••••••1•••••••••1••••••.•:.1--••-.1/rt •••••H------i~~J
...I·::....·1.................·1 ........./I.....~1 . ......J ......I"..i lIb-a.l·...
.......................:-=.--~\;d+~~~~~:::.':::::I :~::::~~:~::.:~J :::::.::'·_:~-~~-·-4 :"~.;~~..: :__:..~.~:::1::':..pr~POslld.cell.aouom.····I ·I ,I J ....I'"I·
I /·1..·'··1···1 ·1.......,..·1·,I ..·'.'"
=~~~~~~:~~=~~~~~~~
..::I::::::..I .....:.::i:::::.::.i:::::::::.!:::::::::I:::::::::!::::.:::...!....... .FIGURe 2
.:i,::::'.i.::::::',:::::::::::::.!..LOGS OF EXPLORATORY BORINGS:.
, ...(CHEN.&ASSOCIATESJ .
WHITE MESA PROJECT
····5585..
.........-5~
·······-·-5605·
········-56·1~
....·559<r·
.........-56+5-
"""1-.
UJ.
UJ.u;;·····56M-·.........,.
z·0:
I-«....>..-579
UJ.....I.
UJ'
i...'","··,t
5570-
...551S·':':·
.~6<ie..:-
~:::I:::::::::I::::: .::i:::::::::!::::::::T ::.
"'56&
\:::::T:;;:.::<\<:.,:::\>::l:«::J:::::<!':::::<:ti:::T:}:::::::::I:.:::::::i'::::::':jI ::::1',,:i '.
::lfoldli 'l .::Ii~l.:i:.....Iidl.:ij:'::::'lIoi~:14:::·:::lioi.:b::::.::::liol:':i,:::::Boi~:l~::':::::i1':i8:·::'I'aO~~:i~'"'"::i!oi :20.i,. I .,•.....•..••..',...,•...•.••.••....••..••.•..•..•I ..•I.,•.•..I
....46i~,£1.1"5529:L .~~.-~~~:..::.~~-l-.5610 .....:~~~~~9~::::::~l~~S~8:::::::It~~-~~~~::':.~~~~58~:_:: . ::~~rS~90..:.!::::.S.~~~~~..U·~I~78..'_..'..1. : : .i~..1.........1 ·..,·1 ··\1 ::I:'C::·..'::.'::.:::::'::':::1 :.:::::.:·..:·:::1 :·:·:::':.':',:,'"..I .'.I . ...'....\,·1 ·..·1..I"I'
._._j ---J.-.-~~--.:-:~~-~~-------:.-L---j---~.L--+_C--+--------i~--j-.----I-.-----,-------H";.c
. i ,I L200-.8..."tlie-rJ..\.,....·1 ....I... .1 ....,'... .i ......I','I IV.~~3:.::.: :~~~o-:8E:::.'.:::..:.::.'.:::"':I.::::::...:.......;...:..I'"I'. :
..,..!':...:I l~~~~:::.:~I.LL:39 :::::±.:.:.:.:::::.:..:.:..:I : : . : :..: :,..:.:.. I :.:...i ..I. I 'I .........•1.I.:Pl.U . . . ....,...,..., ...,.,'I
•• "•••••~.••••••••••;::.•••••••,••••••,.••••••••• ••••••••••••••..,••••••••••••.,••••• •••••I I............................-..J.-"......L -'-'---'~..,--_.--L---J---..:.L.------L ..--.-""..-.(--..----1".--.-..-: ...i·..:.·'·:~:::::..1<:::::::::::::::::::~:..::'.:::.:::::..:.:..'.'::::::::.:..:...:1.:..I .i ."'j''j'"·..1··..1·"'''1''",j ·1.':..::::::::">:i J..C ii.3::::.;:::::::::.:'::.':::'.::::::.::::::::''':.::I'..T .!:.:..
. ,....I ..•. I "'2rO-89'...._~OO-6S-·······. . .....,"....,.··1 ...I :...:.~.:.~.i..-:-:.:.~.-!-:..:....-:"'U,40:::.:..:.-:-!:~:8':::.~..:..:..::..1 :..:..:.:..-:.-:-~•.:.;._:••:..:-..-~-.:-,1-.-:.:.~..:..:..~.---"-,.-'.!:_.-:-.:--:.;_'~"""':":"~»~.s...:..:
lie-~4'.0"i . . .I . . , . . . , . ...l'l H . . .... ,j.........I.....\...'.,..I'
--:>~~~r----~---•••1•••••••.••.•••'•.••••••••••.•1•••iii ii.1 i••iii.i•••••••••••••••••••••i •••••iI••••.••••i ~.-.4--.+•••~
.:".:i".':::::..::::::J:::::::::::::::::::::::::::::::::::::i'::::::::::··4....::::::::::::::::I:::::::::I:::::::::::::::~I . .... .,... . ...I 1:.1.1:....... . . . .....,,-
I ,Proposed'fill Bolfum':::::::::::::::::::::::.::::••'::...:::::. .Z~O-S?::::1 • : : •::::::.::.:I ::i . : : . , , : : : : : :~
-------,---T-~:r ::::::-:.-i •••::•r'~:~:::::~:~::;'::::I::::-:.-..r':·":~:i-:'-:-:-"~-~-'.::::::ti
.:1 1 1 ·1 ·1 J !··u
I
· "I·,.....1 · '·,·..I .,."I .., ," ,·\::·1 ·i·..
___...-~----0--<~:t~<hkJldb~-+-----Hi~
.T:::::::l::::::::l:::.:':l::-:'::i.:.:I:."'.1 :.::.,'.. .
.I....1 ......,.........1·I ......I'.'.",.'.,
:Ii:! . ....:i !.LOGS OF EXPLORATORY BORINGS'
..............."(CHEN&.ASSOClAT.ESl
WHITE MESA PROJECT.
··....:s-soo-
.......:S5.~S-
-·....-55?~..
.:...:....:~..
,....
i-'
W'w"1.1;;'-559&.....,...,
ZOo,,"0:"":'
i-:.«..
"'>'''-5-58S-w..J..w '
~5-15-''''
'-557l>---
0$597--'"
-5567--'
..·5600--"
'''5~~
.'z.:::0
::::;:::.....""5~e5->:::::w........I
::::::~
::':P...UJ......UJ:-5~~
·....~S·75-
···..·..."8&-
~.r-UJ::UJ ..u;;"-?~ge..........
z·0:::....c(..
·->·-55850-
UJ : :...J ..
U!: :
"--"'-'?~9so·-J·-·....·..·······..········..·..··!·..·..
.:::..I...:.:"::::>lli-'::::':T:<:::::I:::::::T :>::>~'::::::::~I:::::>::<:~:::<><1<:::·:1·::::'::ji::::..:::!.:.:.::::
. :.::1'80i~:il:.: :::Hol.2:'.::"::801..:2:3::::~::ilcii':2 :::::::aOi.:is:::::::::!k>i~:~:::::::80i.#: ::::::::B~l~:28 :I:::::::H~i :29:·::::Bi':3Q::..::::;:1"""'0:::..::8l''''s::::..:£t.""":;::;8l'"'';:::::<1.,"": : ::::",,,,,,;::::::"'"on:::;:::::t'':'ll'":::::"";'73:.: :"L",. , .=J T 1-.....I_m1jj2 .........:::.:::::::::::I~-.::~:-~':'-:-:-:T'7'~~O:-:-:-
-,,00-~
.---..-_...."i"-I~:--:l-:--::--:--:"'---l-,,-:.I'. '.. ...,..1 .........I ........I..·..·......".........1 ......"'''''1
i.....I:..:.'..:::-:::1>::::::'':'..::::':::.'.:::.':::::.1:.::::..:::::::::,'....,
i I.,..............I IIC-13 ::1'I "I ..I ....I'.,.
:::I ...:::::::::::::::::::::::l ~t9~;:7::.::::::::::::::::I:::::::::::::::::I >.::::::i ....:I :::
:.:i::. .:::I .:.~.::::::::::::.:::::::::::::::::~~:~:::::v.j :::::::::~::::;:::::::::::::::::::::.I.:::::I ::::.:····1 fl.·········1·l/......·1·,.....:...:::.~*::;~/•••••••••:.,y\~I;~~.+,\-----1-----,
......1..........·1·. .n.1Q......I ·1 I .:::I:::::::::::::::::::::::::::.::::::::!:::..:.::::::::::::::::::::::::::I'::::::::I: ::!............................... ..........................'1".........................,.......!
••,••••••••••••••••••••••••••••••••••••••.••••••I ••••••••••••••••••••••••.••••.••...•I·..I",I·,....:......!
....--------:-7:-'1::::..::.:::.::::::::::::::.:::::1::'::::~.:::::::1:::::::::1 ..··::.:I-:":~'-'",.\:,"'1""I \~'~".
!«i,i <•<ii'1~:b7i '~~;;,.~.-....1......:.:..:......._.....,-.__.__._:.....-.-;...-------r.._....··..·.._---·_..J.·-....-·_-----1'.'--'-"'--.,....-....-·....fl..~;._'ll~lq.._....!P~~i..··:'.::-'.:j'.::j.':::'J:::"::1"';::"::"":':l ..:'::!:::I·
I ::I .:...I'·..·::•,.1·..··'.···1 ..,.......,../.,
. I . . . . ....I:.:..::::I..:.:..:i ~Pr9posad Call.~OtlOm.'. , .1 . . . . . .• ..'".'....••.•.
,,
.\
.'!·,.!.
·I...
· I .
FIGURE"
LOGS OF EXPLORATORY BORINGS
............_..........__.._,_.................._._..".._....__...CCHEN &.ASSOClATES).
. . . . : . . : : ::. . . . : ::: .. . . .WHITE MESA PROJECT
.:I·
:'1
5565
......·..-~~·7()·
~.. . ... ..
00--'...,.".
....z::::::~
-55*--;:::.."::::w.....J..·w....,...
.:.".....:::::t:
~.~~-
...,. .,.
-5615---
iI
i
..!.'"1'''..···1·"..'''I /,..........,...,..,,..I·······,·.,:.':::,::::::::::::I::·::::::::::::::::::::::::...,,"".
·:1i~1~1 ::::::::>~:33:::::<i1oi~:3:71::::::1i';1~1 3S::::::::1i~1.:39::
·tl..-S6 t loI"S5!l2..'."l:.l.'!'5SB:3 ."E:lo.-ps t1~·30001..
"'X:':::::::.'::':::U:iTiY::::'.:i :.:T:::(:.T:~'!!!:T::.,.~,\p .....:::.....::::::::::::::::::::::::::::::::::::::::::::: :::::::::
"'''--''1-':--:-''-:-'':'''-'.,,;-I'..":""'-..'-:-'i"~"':-:-:-:"':-:'-:-"\''':-:--'':'-:-:-:-',.-:-:--:-:--:-:.-:-.,-;---:-":-:-:-:-..".....-.-......_-·1 ::::::.:::::::::I::::::::.::::::::::::::::::::::::::::::::::::
I
·....,.·.,,. .
.._.•._--,.'-'-
.......i·..··\..,. \................I ...
:::::::::::::::::::::::;,I::::::::.:.,':.;..",...Hole.4 '.,..,..Bole .41,. ...,I,·Hol.·42 ",80l.o.'3 ., .'''1 .561 .,.,....,'.·600'"...I'''1',560~,I...."1 ."~'".•••1:0 ••-••••••"'.L,.~,)•..••..•.....-2.....•"'"•.~"""'~"'4.
.........,•.·••••·.i ••••••·.·.I ••••·•••r••••.••[.
........·1 ..·..·..·, ..···1..·."1'..·..'U··"..·.........',.......
j~7~~~I·~~~..:..~7..:·":..I..:·~.."·:,,:..-:..:·":..·r:··:-.."·:~..:..:..!:"".":,,.~,,:...:~..,.,~........I..·..·...j·..·1...j..................".....J .....!
I I ·IF L .J 't....""'"''-::r'''·....~·:~I··..~":·"0:J-·~:::-:··::::::::::I::~':.::I::::::~:"~:::.:::":~:0"0":'~":::::-'.::""1'"'j'"
._.J ~:_.••iH+••••I I~:lb-++r-P-t ••_.•r'-~.-~-t•••..•,.
-----,--•••1.:__••·•••+4-••-.••••••••I••••••••r .....d'+c.fb-+-P:---I--cci~ccc"~h;E
..I-.....-_.-...if"''"....-.---._.....--..·1·-..-..1 ...-.-..-I ....1 .....···1·-
,Ii..i'". : : :I ' ::::..':::.:::::I:...,:!...:LOGS ·OF EXPLORATORY BORINGS:'
....1..: :"""..:...~.........."..".......CCHEN.&ASSOCIATES)..
f •,i .i WHITE MESA PROJECT5570
······556$·..
"::'''558tl''
···",,·-*to-
.....-."?{,OO..........
"-"":-'~M .
·...._·-·S·5·75..
..,.,.I 'H~it :31
: : : : : :.: :ItLioS6r4:
""~.-:-1-:--..-..-..
z·.0::.
i=:<...>-5'$~
W
..JW·
,....
i;j.
w··lJ;;--.H9""".....
.5590:-:-:-
.,.
. : : : : : :Eo-....u........u.
~~~
. i
.'~i.".1....'"i"••••••,.Ll .•.,.d-U.,{H.L;i,Li •••••1.....;1 i ••,.,.J...,t ;i •.1 ...:::.:!':9:~..:..':.:..•.:....Xl.'!'5:91.i:1.'!s:sB9 ..1 !l.'!'SSS:S u.5S9:8:.•..J.:tl.-:S~OI ..''':..£1.-)90 W·~55S~..:...:..:..:::.~:~.9.:.tq-:m5 ..:_":".:..!e.s...:...
...j ,iJilJJ ·.1 ·l ····1·,..I ..L:·..__-..__....-:--.-.··:-:-~r--:-~-~'":_-;-:-:---._-.-~.._.-:'_-r:?~r:-
..::::::::::::::I:::::::::I:::::::::I ~~'.:::::::::::::::::::::::::I::::::.i.I'
.....••.•••.......•••..••••.•..••.I i"t 9·········1 ..·..· .i...........,.....I..·····+Pr+--+~,,'f!••••j.•--••..•~---+•pH-F-~.+--~--.;....
::.:::::::::::::. :::::::::::::::::':::..:::::::.i::::::::::::::::I::..:::::.:':.n.'~;r -200-79"........l 'ill--I·,'1'"'"..,"..,...,"I . . . . .I·......·1·..c~·.:LL~i~..:..~..~....._~..~_~~+>:::::_::::::::::::~.::::::;~:.;~:::',:-~,O~5~::::.;:::::::f~-:.~~!::..:......:.._+.~~..:..:-_.._:_.;',....:...:..:...:..:_.
El .~.......'..'I loIC..~.;1"'.I ..,..,F '.1'I .5,, ..r .I ..;;.I . ...*.1 .:I ..'..::::J .~2~~tj ~:.:..::::::.:I ..: : : : : : :I::: :.:I:::::.:.:.:.::.::II':.I ..:...' : . :I .:..:2....,....j>i~'·r l ....
...Proposed'C."aouam !I 'I·,I.······1 '"..!I
::I::·:····,..:·:::::i:::·::::::.:.:::..i:::::>::i:::·::::·!::"·.;..\:,.'.....;......i FIGURe tS
.:!.:........!LOGS OF EXPLORATORY BORINGS'
.......................(CHEN .&.ASSOCIATES)..
WHITE MESA PROJECT
'-'-?~95-'
····_·-5SH·
'"'~.
UJ.
UJl;5':-'S58
.~~.
·..·····~~~S··
··....S5~()·
:···:-:··ss~..
z·'0:,..,.«."'>--5seo-UJ:.
..J ...
UJ:
Soo--
i
'.10"••;..••0...1....TL.i ••.,;"';;I L;.1L"I•••U.l.·.....,1 10 ,i ••••1....,.1.•...,.1.,....
£1.:-SSSO '1 ::~£1~-3S~: : : : :!1 -3:511:. ::::!l~-:5S7I::::::£l~-:S~88:: : : : : :IU.:-S511.:::::U~;'5S6:B ::::::.:0 ';'S560:...i:£1~-SS79 .!::..:U.:-Sf82 :'." .
.:::.·-r-:·---.1·-••··•'·'..••...•..•..•..:[.···•··•C ••.•!:•••••••.,~•••.••••..•••••i··'-r-·.--......'1'......---.r ....-·_·--·-·r--5596-
I'.:·..1 ··..1··I..·..· /''1''''''-:--:~--~-i--.c--l-f-£+·•••.••__:::--••••J :••±--~-:Li ••--4---{c~:I-~~-+-C.--H5,T-
.. I ..;.I ..,I...T:·..·1..... ...I..·I....!...:.I !.:~~b:-'"L,.:,.+••.--lH.:.4 ••••-..••~~;;~.':.k-••4••7!-~------;~~:-+~---_.'J_....._
.J u·r~\.-200"'11 ·1·········.·1·"8"'j".I····lIe"rx 6"P~.":::.I:;t:~~~:::::::'::'::.:;:T:<T:<<>:.:;:':Y:<:;:T:::::>:<:..::~:.:::-:I.:.1t~:~~:'.......
...1 +..__...____..__..,----.-------..-------..---.......-.--r--.------.._~~H_"~Hr.r-
_:~?:TI'TT ........./1-:•••••••••.........="illM.'~,._._.•.~.-!
----rEi':.~I ..m..·..r·..,·1 ~
. .:: :.::::::..:-::::::..::::::::::::::::::::::::::::::::....:::::::::::::::::::::::::::::::::I:::::::::-::::::~
LOPOSGd :.....:..: . . ...'"..,::::::::::::::::::::::::.:::::::",.:::::::::::.:::::::::: : :I::::l:.::..:...::::::;:
.---..--...-..~g!!I1_.~.~~.!!!•.!....._.::::t..::::::::...:::I ::::: : ::::::::::::,-:: : : : : : : .'11l1': : : :::: : : : : : : :i":::.:: :.1·-~~-"":"·:~1-·---.--'.-~~-.'5-S~8
'.::::'::'1 ..::i<::iT:::::::~:;:::::::<:>:::::::::::~.:::::~::}:::::::-:l::·.·..I'.,.":.::~
..·1 I 1 I 1·..···/I '..----.--.----.~-~.~-~-~~~;E:::::I:::::::::I::::::::'l:':::::::,:~~.I .:.~~r'·.-::-------~..'--'-"---'::~~~~...: . .I . .I.. ...'.......'j'..,..I '-200-7~..
--:1··---1 •••----I·.··.-1=-.-r-;---~·-f-~~--,:__~~1~_+-....-..--!.•...••.~..;~
cc-+__~--••+.--••1••••••---4-+••H-+:B-+--~••b+-+-----r--,-----..--L,>~
..i .. .I . . .i . . . . . . . . . . . . ...-........!.....!...:..FIGURe 7 . ..i .i::...i:::;:::::.:::::::.:i:::::::::/..::::.::i::····.....'L'O'GS 'O'F EX'·PL·ORATOR·Y BOR'/NGS':::.,.{.!..........., .!...I'I
........:..L _~..:.~_:.___..i__..:..~..._.._._"•••_..l._.__:..:___::___..._.......-.............(CHEN..&.ASSOClATESJ.. ..i i ;,:i :.::::..."::::..:::I : : : :.•::::: .. .WHITE MESA PROJECT
'''S555''
......·......~S50
...:.":"':'S:~~'
..-._~~
·-"·5~6e...
......-..·..HSo-
....-..~~.;.s-
.....t-'-.W:
W..~·-.-,.S'·1.........,....
z·o~..
·>--5-S65-w-I.w·
..•..._~
····--S5-1G-
,.:»6~:
: : : : :u
......':"
......:;
..:::::<:
:::::::~
':...m~....::iJ
i::".
.::::::f.......~
·.---":":"':'..1.•5569 .~
. i,i
I,
,
I,.....
t-"W.
W'LL;'-S5.....,.....
z0:
t-"'«'>-5w-J ...W:'
···--5S&
"5~
......·S550-·
....-S54;-
·•..·-·..·S540
12-incb,a
approximltely 40-50%Silt,
FIGURE 9
LOGS OF EXPLORATORY BORINGS
{CHEN &ASSOCIATESL ..
WHITE MESA PROJECT
Slndltone bedrock,veil eemented vith depth,fin.to .edium grained,tan to
gray.
Clayetone-Iandltone bedrock,ligbtly ce.ented.rougbly atratified,fine to
mediua grained,Ireenilh Iray.
Clayltone,bedrock,Ilightly moilt,greenilh gray.
Clay (CL),highly calcareoul,landy to lilty,spproximately 50-75%lov
plalticity finel,Icattered very hard leCl.l/layer,dry to Ilightly moilt,
light tan to vhite.
lI..thered clayltone (CL-CB),approximately 90%medium to high plasticity
fin..,.oilt,·gray-brown.
Clay,lilty to landy lilt (CL-HL),approximately 60-75%lov to non-plastic
fin..,fine to medium land liu,llightly to moderattly celcareoul vith
depth,Ilightly aolat,light brovn•
Silt (MI.),sandy,approximately 60-70%lilt,fine to .edium land aize,
Ilightly calcareoul vith depth,Ilightly moist to moilt,reddilh brove to
light brown.
Sand,lilty to satldy lilt (SM-MI..),Une to medium grained.spproximately
50-60%lilt,alightly aoilt to aoilt,reddilh brown.
Sand (SM),lilty,fine to .edium Irained.
Ilightly moilt to moilt,reddilh brove.
!:i·!, .I ..r·
••.•..•.__.•.l...•
I!
1.:.::.:·.'1'::..::·:·::::::;::·.;::>iIT:::::::I<:.:::l:::'<::::::::::1':<:::::1:':::'>1\'::::::11:>.IIio'la :74'.::B~i':7.S:::::::::::~::::::::::::::::I:::::::::I:::::::::::::::::::::::::::I:::::::::::::::.::.::::'
·n.-.m9:'l');1'':5560'·1·········L·····3····
.,____. ._.-S5ll-.2:_.----f ~
...(...~~~tz~:::::::.::::::~::::::::;I ::::::: : : .:::~u..I...I ,..2bo.,9::l.. . ....>..!.:.:..:...J...:..-~~F~:::.LL...:::Tj.ilUJl:::.lLi..:::.i.1LlJ ~
I"!'......·........1........· ·..·..·..1···'
!:'.::.\:::::::.::::::::::I ::::::::::::::::::!::::i [:J
'''j l ..·..... , /..
..........._:_~..L..""''':-~-'-r'::'..=~::.5~~:::I~::..~~i..~::::':::::L~~~I ..:....1 II Pl
1 ::\::::::::':::::::::::'::::::G<::::}::>~..I··ldddg l ~
______1-.·-i--•••••••••.•.•••1••••••••-•••••••••i•••••;'~:"~'b",'."'Q,l,.
...!:::::::::c::::::::::::::I::::::::J:::'(1)Test hol..vert drilling on H.ly 17 and 18,1978 vith......:---:-:-.r:--..-.--:--.-.-..,....~....I..-:-.-.-.-.-.I ..,..,.-:j-:-:--:--:dngle-flight,pover augar •
: : I : : : : : ::::.:':::::,::::'::::I:::::::::'::::(2)thvationl art approximate and taken fro.contours Ihove on Fig.1...,'j""I'.........·1·...(3)No fru vater VII found in tilt hol..at the time of dr1ll1ng.
::::I:::::::::::::::::: :::::.:::I:::::::::I::::(4)lie·lIater ConUnt (%);.:.i .:::: :,:..::::::::::::.::I:::::::::I::::-200 •Percent PUling No.200 Sine;
....I I / I I . . . .LL •Liquid Liait (%);"'-:-~"-:-·i."""~-:-":"·:--"""""~"'1-:--.-.-.~"-:-:--':"'l.'"~-.-.-.~'-:-:-':--7'['-'-'.-.-.-.-.;-:-~-:-PI •Pluticity Index (%). I .:':':"I.:.::..:.I::::::::::.::::::::I:.:.NP •Non-Plutic.
!I .:........:.....j .....",......,, ....._..._....-.............................:..l..:.·..:~..~:.~LL..~.~.~.~.~L..l~..:..~..::..~..:..j ...~..:_:..~..:...·_:_:..~...I.:...:...~~..:...:~~L.:..~:....._......:.
..1:....:1::::·::::1:·::·::·:,....·:\"''1:
. . . . i .
..........·.......·--·-T
II
i!
zo
~.<:>..
W..J ..
W
'"'.r"-.w.w ..~--554........,.
:~.sS~
.---5~
··":":"·~Y.5
··..:..~55-~..
SECTION 4
Extracted Data From
REPORT
SITE SELECTION AND DESIGN STUDY
TAILING RET£::.;rlON AND MILL FACILITIES
WHITE XESA URANIUM PROJECT
BLANDING,UTA~1
FOR E~tRGY FUELS NUCLEAR,INC.
Dam~s and Moore
January 17,1978
09973-015-14
I
I
I
I
I
I
I
I
I
I
I
I
t
I
-25-
3.8"'St~bTlTfy'-~~".
3.8.1 Sl{)pe Stabili-ty ..··--
The 'external dikes formed by cover placement OhCe1l2'wilr 'bi-exTended
t.()a reclaimed slope of 5(H)to1(V)butmay-exist"un'an'''rnlenm-fjasTs
as.~~.L to.-l·(V}s-lup-es"unffr'finar"-recTa'-maIrori:"-"A'sraDTrrty~'-an-alysis
was_~e-r·f{)rme-d-uslng··thej\H)··..to-itV1--slopes...-rhe--rnax.:Hnum--section 'of the
~.:H+--tr<1Vea 15 -fOOf\;ri'de--ber-m...at--i.:t-s-·ba:se.The soil strength
parameters used in the analysis are those developed by Dames &Moore
(1978a)and are as follows:
Soil Parameters
for
Slope Stability Analysis
Density C
Section (Pcf)(Degrees)ill.fl
Embankment 123 30 0
Tail ings 62.4 0 0
Foundation Soil s 120 28 0
Bedrock 130 45 10,000
BORING NO.
EL.5629.0 FT.
BORING NO.5
EL.5632.9 FT.
o -----r.""""-,."S""'M..,..,r-RE-D-_-B-RO-W-N-F-I-N-E-S-A-NO-A-NO-S-IL-T-.-
ML MtDIUH DENSE
HOLE COMPLETED 9/10/77
NO GROUND WATER ENCOUNTERED
GRE£.'I TO BROWN.FI:;c.;-GRAINED S.\.'Io-
STONE:LAYERED ItEDIUft TO WELL CE-M£.'lTED WITH LITTLE POORLY CE.~ENTED
RED-BROWN FIIlE SAND AND SILT.MEDIUH DENSE
GRADING CALCAREOUS WITH CAL-CITE STRINGERS
~OS
,.SM/
ML
20------
...wwlL=10
:l:.."-w0
15
CRAor:-rc CALCAREOUS ;.,rTH C;L-
CITE STRINGERS
LIGHT BROWN.SILTY CLAY.1iA....(WEATHERED CLAYG1UNE)
MEDIUM BROWN.VERY FINE-GRAINEOSANDSTONE;INTERLAYERED WELL-C~~ED AND THIN.PooRLY-CE.'II'.:NTED llANOS
HOLE COMPLETED 9/10/77
NO GROU:.ID WATER E:;COU:ITEREn
CL
SOS
20
75
SO/
___~r;l~3::'·_L-..1.--""
20
6.0\-1I8
...
'"'"lL
?;10
:l:..."-'"0
IS
BORING NO.2
EL.5634.3 FT.
BORING NO.6
EL.5633.5 FT.
20 _
0 <SM/RED-BROWN FIlIE SAND AND SILT.r MEllIUM DE:4S1:
SO/GRADING CALCAREOUS WITH CAL-.5'"CITE STRINGERS5
90/1...s.-,'"'"lL
?;GREEN-BROWN SILTY CLAY (WtATHERED
i=CLAYSTONE)•HARD
"-•88
'"150
GREENISH-B~~.FINE-GRAINED SANO-
STONE;INTERLAYERED WELL CEH."lITEDANDPOORLY-C£''II'.:NTED SANDS
o
..'"'"to.
?;5.
i="-'"0
IS
SM/RED-BROWN FINE SAND AND SILT.
ML M£DIl;~1 DENSE
GRADES CALCAREOUS WITH CAL-
r;l 39 CITE STRINGERS AND OCCASlm'
ZONES OF MASSIVE CALCITE CE
MtNTATION
6\-108 .~~~1I
LIG/lT BROWN TO GREEN CLAY
.82 (WEATHERED CLAYSTONE).lIARD
~.CL.'O,'O,'O-I!".I"\!".OFF-WlIITE SANDSTONE,VERY WELL
HOLE COMPL~ED 9/18/77
110 GROUND \;ATER ENCOUNTERED
BORING NO.4
EL.5623.2 FT.
25-----HOLE COMPLETED'9/10/77
NO GROUND WATER ENCOUNTERED
A-a •~
DC
lSI C
KEY
INDICATES DEPTH AT WHICH U~~ISTURBED SAMPLE WAS EX-TRACTED USING DAMES ,MOORE SAMPlER
INDICATES DEPTH AT WHICH DISTURBED SAMPLE WAS EXTRACTED
USING DAMES ,HOORE SAMPLER
INDICATES SAMPLE ATT£.~T WITH NO RECOVERY
INDICATES DEPTH AT WHICH DISTURBED SAMPLE WAS-EXTRACTEDUSINGSTANDARDP£''lETRATION TEST SAMPLER
BLOWS/FT OF PENETRATION USI:lC A HO-LB HA.~RDROPPING)0 INCHES
INDICATES NC CORE RUN
o PERCENT OF CORE RECO'f£RY
E RQO·
F PER~ILITY MEASURED BY SrNGL£PACKER TEST t~FT/YR
B DRY DENSITY EXPRESSED IN LaS/CO FT
A FIELD MOISTURE EXPRESSED AS A PERCENTAGE OF THE DRY
WEICHT OF SOIL
NA NOT APPLICABLE (USED FOR RQD IN CLAYS OR M£CHANICAL~YFRACTUREDZONES)
NOTE,ELEVATIONS PROVIDED BY ~'lERCY FUELS NUCLEAR.INC.
T
I r1
HOLE COMPLETED 9/10/77
~o GROUND WATER ~~COUNTERED
0 rSM/REO-BROWN FINE SAND A!m SIL1",
ML :iEDIUl1 DENSE
GRADING CALCAREOUS WITH CAL-
CITE STRINGERS
.1\-107.70
lUi:
501 sos GRCEN FIIlE-GRAINED SA"nSTO~E;IN
TERL.;YERED WELL CEMENTED AlIOlIil2'POORLY-CE:-lENTED BANDS
r;ls~/:~
15-s---"!"-
...wwlL
?;
:x:..
"-wa
•ROCK QUALITY OESIC~ATION --PERCENTAGE OF'CORE R£COVEP~D !~LENGTHS GREATER THAN •INC~ES
LOG OF BORINGS
DAMES e.MOORE
PI AT!='A-~
BORING NO.3
EL.5634.4 FT.
MATCH LINE
DRILLING I~DICA1ES UNFRACTUlU:D.
iol£:":"CE."ol£l-"'·a:o s.:.scSro:-:E
LIGUT GRAY,FI:lE-GRAINED S~~D
STONE,POQ;u.y CEXE"TE:D IN PARTS
HOLE CO/olPLEOCO 9/IV77
IlfttRLAYElU:D £..\....DS OF SANDY.GREEN
CLAYSTONE AND PALL:BROWN SANDSTONE
L:t;HT BROWN TO PA:J::GRAY.FINE:':'0
~OICM-GaArNtD SJ~~CSTON£
85 -r----C~::,f'
lJO..,..----j';;
145-----
90
I
T
I 71
95 15
1
100
110
...OJOJ...
l!;US
i=0
0.OJ
1,8Q
120 173
125
ORILLIHG INDICATES GENERALLY
WELL-CEMENTED SANDSTONE >lITH
MINuR CDNGWMERATE BANes
GRADES TUROUGH WHITE SILTS":'O:l£
TO A GREEN CLAYSTONE
YELLOW,K£OIUM-GRAINE:D SANDSTONE
GROUND WATER LEVEL 56.8 FT
11/4/77
WELL CEtl£NTU>
CONGLOMERATE IN LIGHT GRAY,FINE
SAND MATRIX FROM 62.4 TO 63 FT
RED-BRO~.FINE SAND ~~D SILT.
LOOSE
GRADING CALCArtEOUS WITH MI~R
CALCI~E STRINGERS
LICHT TO KZOIUM CR££:~-8ROYiN•
MEDIUM TO ~ARSE-GRAINED SAND-
STONE
LIGHT GRAY./tEDIUI<GRAI:lED.WELL
CD~~ED S~NDSTONE WITH O~~GE
LIMONITE STAINED BANDS
BROWN SILTY CLAY (WEATHERED CLAY-
STONE),HARD
DARK CRAY.FI~~CaAI~tO.SILTY
SANDSTONE WITH YELLOW B~IO*HOSTLY
WELL CEKEYrEO ~UT WITH SOMe THIN,
SOFT,CLAYE.a;~"DS
MATCH LINE
.82/10·
70-'-------1''',,'',,1
7.6;-1007.0\-109 .35
50-'------1'~"""'1
0-----r.'!:r.=:-:7~------------Ii!Mr'-1;1
tsllJ !10------lli1!
1m
80~----.Jo~
20-----
25
85
43,..
30 98
I 56D 72
I
T
35..OJ 2.8OJ...
?:40
:z:..0.OJQ
45
LOG OF BORINGS
DAMES &MOO~E
PLATE A-4
BORING NO.7
EL.5656.9 FT.
BORING NO.8
EL.5668.4 FT.
RED-BROWN FI:lE SAND AND SILT,
DEliSE
GRADING CALCAREOUS WITtI CAL-
CITE STRINGERS
GRADING TO MASS IVE CALCITE
CE:HE:NTATION
GRADES TO VERY HARD
DARK GRAY,SILTY CLAYSTONE,
WU.11lER.EO WITH YEI.LOW-QRA.'IGE IRON
STAINING,GE~ERALLY VE:RY DRY
GR.EE:l.>U:DlUH TO COARSE GRAINED,
wEATHEReO SA~OSTONE
•__CLS
SO/_a 2~·-_••-.
---....--f-:.--
C>l 37 :::
10
............
?i 15
:r..."-...0
20
E
REO
HOLE COHPLL~EO 9/13/77
NO GROUIlD WATeR E:NCOUllTEREO
,~~RED-BRO.<N FINE SAND AND SILT,
XEDIUlt DEliSE
~O/GRADI:lG CALCAREOUS WITH CALCIT
STRING~AND OCCASIONAL ZONES9\-10).11'OF MASSIVE C~~17E C~~~~ATIOS
rtf"I
91/ISDS PAW:BROWN,FINE GRAINED,WEATtlE
!Sl10·SANDSTONE.GRADING HARDER
;)/DARl(BROWN TO DARl(GRAY,FINE TOflJ~.nEDIu."GRAINED,WEATHERED SA.'IDSTO
GRADES HARDER AND TA.'I COLORED
I NTERBWDED HARD AI'D VERY HARD~
LIGUT GRAY S;<-,/DSTO..:E
20-----
J.
............
?i 10
:r..."-....
0
15
REO-BROWN FINE SAIID AND SILT
GRAD :NG CALCAREOUS WITH CAL-
CITE STRIN~ERS AND SOME ZONES
OF MASSIVE CALCITE CE:H£:lTATION
LICHT 8~N,FINE GRAINED,
WEATHE:RED SAI'DSTONE
HOLE COIlPLETED 9/19/77
NO GROUIID WATER ENCOU:lTE~ED
DARK GRAY,H£OlUH-GRAINED SANDSTONE.
:U:i..,,;-:IV£~¥t,.,ncuv.:"N'T1::i.J
OFF-WHITE,MEDIUM-CRAINED SANDSTONE,
~LL C£H£NTEO
II
FT•
SMI
ML
BORING NO.
EL.5677.8
)0-----
25
0
...ww...
:
i="-...100
TO
HOLE:CaiPLETED 9/19/~7
NO GROUND WATE:R £llCOUNTE:RED
10
FT.
BORING NO.
EL.5690.9
JSMI RED-BROWN TINE S~NO ANO SILTvMLDENSE
85/GRADING CALCAREOUS WITtI CAL-7\-106 ·10'CITE:STRINGERS
GRADING VERY CALCAREOUS ANO
VERY DENSE
!Sl 84/a'
'"70 ,:,:SOS YELLOW TO GREE:l,FIll/;TO HEDIUIi
i!!~·:!l GRAINED,WEATtlERED SANDSTONE
'GRADING lIARD,GREEN.IlE:DIUli
COArSE-GRAINED SANDSTONE
20-----
0
6.
.............
?i 10
i="-....0
15
GRADI:lG WELL C~~llTED
HOLE COliPLETED 9/18/77
NO GROUND WA':'ER ENCOUNTt:RED
15-----
14
FT.
BORING NO.
EL.5597.5
13
FT.
BORING NO.
EL.5602.4
0
..............
:
i=......0
10
RED·B~1 FINE SAND A.'ID SILT,
K£DIUIi DENSE
PALE:GREEN,MEDIUM-GRAINED SANDSTONE
BECOMES VERY WELL-C£H£NTED
HOLE COMPLETED 9/18/77
NO GROUND WATER ENCOUNTERED
0
).~\-I~5 •<2...5......lL
?i
i="-10...0
SMI
ML RED-BROWN FIl<E SA.'ID AND 5ILT.
XEDIUM DENSE
C;RADING CALCAREOUS WITH CAL-
C:n:STRI:lGERS
LIGK7 GRAY TO OFF-WHITE.HEDIU~
TO COARSE-GRAINED SANDSTONE.VERY
WE~L C£.~"'T£O
COLOn GRADES TO YELLOW-TAN
15-----
HOL£CO~PLETEO 9/18/77
NO CiIDlJ:-lO ~ATER ENCOUNTERED
LOG OF BORINGS
DA....ES e ....OORE
GRAY-BROWI/.:!EDICK GRAINED.MODER-
ATELY TO ?OORLY-C£:u:rITED SANDSTONE.
HIGHLY FRACTURED BY DISKI~G PERPEll-olCULAR TO CORE AXIS
MATCH LINE
~D--;--+--1 .-t85
90
9
FT.
RED-BROWN fINE S.\.'<D AND SILT
MOTTLED OFF-WHI~·£MD GREL".wEATdLaEO SILTY ~LAYSTO~E
OFF-WHITE TO GREE~.CLAYEY.
WEATIlERED SANDSTONE
BORING NO.
EL.5679.3
0
f ~M/ML
82/
•9~'::-:CLS
------
SDS
lSl 7810
HOLE CO:~LETED 9/27/77
GROUND WATER L£VEL 99.8 FT.11/4/71
PALE GREEN.MEilIUIi GRAINED.HARD.
SILICIFIEil SAl<DSTONL
PALE GREElI.SAl<DY CLAYSTONE FROH
101.1 TO 108.2 FT
DARK GREE~.MEUIUK GRAINED.CLAn:y
SANDSTONE.MODERATELY HARD WITH MINOR
IllCLlJSIONS OF ilAR~BRO'I:!,ANGULAR
CAA\-C!..-SIZ£O Cil£a::
...
ii[.~l:l~y-
100
89
-'-
1.1
0.3
I
-i-----ti
.1.~;;.;.L.--'
95
115
100
130
135
125
120
........III ....•.•..
"105 -:------1
'"I
r.:I
a.I....
Q I
110 I
I
I
I
CRADES dAROER TO CR££~StU~~$TONE
OCCASIONAL.THIN.CARBONACEOUS
BANDS C::'N'l':NUE
GREE~.FINE TO MEDILM-GRAI~ED.
WEATHERED,CLAYEY SANDSTONE
BI~C~.HIGHLY WEATHLRED.SOFT.
LAMINhTED CtAYSTO~I'WITH ORANGI'
LIMONITE-STAINED LAYERS
MEDIUH BROWN.FINE TO MEDIUM-GRAINED
SANDSTONE:VARIES FROM MODERATELY
CEH£NTED TO VERY POORLY-CEMENTED
MF.DIUH GRAY.rl~VEV SILTSTONF.
~~I~~-uRA!NED SANOSTONE.HOOEaA7£LY
CE:l1:IITEO.WITH lRO~STAINING ALO"G
HORIZONTAL F~RE
BANDED.LIGHT TO MEDIUM GREEN SILT-
STONE.CLAYEY AND SOFT IN PART
DARA GRAY TO BUCK.HEDIUM GRAIliEIl.
WELL C£K£llTt:D.CARBOtIACEO(JS SANDSTONI'
WITH SOME SOFT.BLACK.CLAn;y dAl<DS
2.0
I
I
1
I
T
f
15
35
I,
I
5S -'1...----1
f
I
I
20
50
~40lU..
::
......60
93
S6 .
VERY WELL CE.'lE"TED.LIGHT GRAY TO OFF-
WHITE.HEDIUI<-GRAI~EDS.\."DSTONE
65
POORLY-CE.'lE."TED PEBBLE CONG~RAT£
IN BRO~I.S~IDY MATRIX.SDH£UNCEHLNTED
SANOY BANOS
HODERATELY-CO<EIITED TO POORLY-CEI<£NT£D
S~IDSTONE
0.7
70 GRADES WELL C£H£::T£D
80
MATCH LINE
LOG OF BORINGS
DA"'ES e "'OORE
PLATE A-6
BORING NO.12
EL.5648.1 FT.
54/
§ll 6"
CIRCU~TION LOST,STILL APPEARS
WELL CE:.\iC:~TEO
GROU~D WATER ~LVEL 81.3 FT,11/4/77
80 ----r--r'''C,':'I~
I
+
IGRADINGCALCAREOvSWITHTHIll
LAYERS OF VLay CALCAREOGS
MATERIAL
RZD-SROWN FI~L SA~O AND SILT.
DENSE.,f.~~/
t----;Mlj t
I.
o
88/
6.2\-104 •C"
90 --'------i':::':':'1
BECOMES LESS CEMENTED
SO!tE CIRCULATION REGAINED BUTSTILLLAaCEWATEaLOSSES
HOLE CDkPLETED 9/29/77
WELL-CE.~</TEO S""~DSTONE
POORLY-C~~NTEDSANDSTONE
POORLY-ct::tE:~ED SA.~DSTONE
WELL-C~</TED SANDSTONE
POORLY-C~iENTED,POSSIBLY CONCLOIF
ERATE OR FRACTt:RED SA.~DSTONE
HODERA1'ELY-CEMLHTED SANDSTONE
POORLY-CE;'!£NTED SANDSTONE
WELL-CEKENTED SAlmSTONE
HOLE C~~PLETED 9/17/77
::;:~::t:;!..-:::l :;.-\:':::~:::::.:Ct::::::::U::J
t.iSt2S"..FIN.i:.TO MEOIUli-CRA1Nt:U
S,\.~DSTONE
GRADES WELL CEMENTED
R£o-BROWN FINE SAND AND SILT,
XEDIUM DE.'lSE
CRADING CAI.C.\REOUS WITH CALCITE
STRINGERS
G 81
l ~~/
•63-----:.-1-::'-::-::-CLS
15-----
I
I 10.7
I
100
BORING NO.15
EL.5600.7 FT.
I
..L
lJ5
ll5
125
130
120 ·------'L'~~~~:1
0
......IU..
3
r:"-IU 10<>
..
::;105..
3
i="-~10
BECOH<:,;LLS~CLAYEY;HOST
CIRCULATION LOST
wELL-CElU:NTEO S,"\NDSTONE,APPAR-
ENTLY WITH OCCASIONAL FlW:TUREu
ZONES
LIGHT BROWN.MED!l!l+-GRAINED SAND-
STONE,MODERATEL.Y CEMENTED,GRADING
WELL CEMENTED
WELL-CEME:~CD S~~DSTONE
GREEN AND YELLOW.FlC<L TO MEDIUM
CRAINED.~CATH~R£D SANDSTONE
GENERALLY MODERATELY-C~~ENTED
SAUDSTONE
VERY LIGHT d~N TO GRAY,MEDIUM-
GRAINED SANJSTONE WITH SOME ORANGE
STAINING;MODERATELY TO WELL
CEIiENTED AT TOP.BECOKES POOi<~f
C~'iENTLD AT)5 FT
GRE~~.FINE G~I~ED.CLAYEY.
~EA.TKER£O S.ulOS70~t.WI"!!YCLLOW
AND RED I~N STAINING
I
I
I
I 79.2
I
I -I
I 100
J 67
J.-I
I
I
I
I
1.4
I
I
I
75 -'--,-----1
I
I
I
80 I
70 --'-----t
45 I
I 0.9
'1
50 I
1
I ,...
I 100
55 N)\
I
+
I
60 I
I
I
I
6S
so/GI 2"
15 r
I -
I 5.1 1'020N.\I
T
I
25
35
30
r:"-...c
............
:!:40
LOG OF BORINGS
DA....ES e.....OORE
PI ATE A-7
BORING NO.17
EL.5582.0 FT.
NO.16
FT.
BORING
EL.5597.5
20-----
BORING NO.21
EL.5584.5 FT.
LAYERED WELL-CEMENTED AND VERYWELL-C£I1£NTED
HOLE COMPL£7ED 9/17/77
NO GROUNO WAT~R £.XCOUNTERED
RED-BROW..FINE SAND AND SILT
GRADING CALCAREOUS WITH CAL-
CITE STRINGERS AND INCLUSIONS
CJ:U:E~.FINE TO ~IUM-CR..\IUEO
SANDSTONE,INIITALLY WEATHERED,
GaADING WELL C£.'1EIITED
LAYERED POORLY-C£I1ENTED ANDWELL-C£.'I£NTED.POSSIBLY 50/1£CLAY-
STONE LAYERS
SMI
ML
5.5\-105 •76
15-----
....w......
:!:
:c>-
::;10 --_....::~=--I·•••••d<>
GAAD0:5 DENSE
HOLE COMPLETED 9/10/77
.W GROUND WATER ~COlmTERED
PALE GREE~TO WHITE.FINE TO
COARSE-GRAINED S~~DSTONE.ALTER-
NA'I~G WELL-CEMENTED AND POORLY-
CE;i£NTED BANDS
BECQH£S COiiTINUOUSLY WELL-C£.'1ENT£D
RED-BRDON FINE SAND AND SILT.
){EDlUM DENSE
GRADING CALCAREOUS wITH CAL-
CITE STRINGERS
M
ML
SOS
l ..9C/,l'
79
6.3\-104
o
>-ww...
::!:10
:c....o.....<>
15
25
5CV :-:-::;.
fll 4'-::;.:-:
RED-BROWN FINE SAbiD AND SILT
GRADING CALCAREOUS WITH CAL-
CITE STRINGERS
HOLE COMPLETED 9/17/77
NO GROUND WATER ~L~TERED
BECOMES WELL-CDiE;iTED
RED-BRlY.<N FINE SAND AND SILT,
LOOSE TO /1£Dlmt DENSE
GRE~,FINE GRAINED,WEATHERED
SANDSTONE
GREEN CLAY WITH SOI1E GYPSUM
CRYSTALS.(WEATHERED CLAYSTONE)
STIFF TO VERY STIFF
SM/
Ml
'SMI
Ml
:-:-:=CLS
fllS6/6~'
BORING NO.22
EL.5585.3 FT.
0------,.
73/
12.5\-llS.101(
0
>-...w...
:!:
~o..10'"<>
15
GREEN,WEATHERED CLAYSTONE WITH
O""r<G>;111011 STAINING
GRE~SANDSTONE
OFF-WHITE.POORLY C£I1£NTED.WEATHERED SANDSTONE WITH LAYERSOFWEATHEREDCLAYSTONE
BORING NO.18
EL.5608.5 FT.
o --"""f1"""""""'11..SMML /...".-----1 RED-BR~'FINE SAND AND SILT,MCDIUM DENSE
93/GRADING CALCAREOUS WITH CAL-
.11'CITE STRINGERS
:11111111 sos
iii~]~;10 ""H
>-ww SO...I:iil S'::!:15
:c....o..w<>
'"lS,6~20
BORING NO.20
EL.5570.4 FT.
SO/------00'"'-_--_---......_...
30-----
0
>-ww...
::!:
~o..'"<>
10
HOLE COMPLETED 9/17/77NOGROUNDWATERDCOUNTERED
RED-BROWN FINE SAND AND SILT.
LOOSE TO /1£DIUM DCNSt.
LIGHT BROWN.FINE TO H£DIUM-GRAINED SANDSTONE,GRADING WELL-C£M£.'1TED
HOLE COMPLETED 9/17(77
NO GROuND WATER ENCOUNTERED
>-10'"......
::!:
:c>-o..w 15<>
20
25------
GP.AOES CLAYIER
LIGHT BROWN TO OFF-WHITE,SILTY
CLAY
C~~.FI~~CaftI~EO,~TH~REO .SANDSTONE WITH HIGH CLAY CONT£IIT,
POORLY-CEI1£NTED
BECOHES WELL-cDi£NT£D
HOLE COXPLETED 9/17/77NOGROUIIDWATERENCOUNTERED
LOG OF BORINGS
DA"'ES e."'OORE
PLATE A-a
BORING NO.19
EL.5600.3 FT.
93/
12.4\-92 •U"
943
VERY WELL-CEH£NTEO SANDSTONE
VERY POORLY-CEH£NTED SANDSTONE
VERY :<ELL-CE!<ENTED SANDSTONE
HOLE COMPLETED 9/25/77
BECOMES LESS CEH£NTED AND CLAYEY
POORLY-CCiCNTED SANDSTONE WITH
OCCASIOllAL BA~;oS OF GRAVEL OR
CONGLOMERATE
GRADING LESS CE~E~rrED
VER¥POORLY-C~'I£NTED SANDSTONE
MODERATELY-CE..'I£NTED CLAYSTONE
POORLY-CE~"TED SANDSTONE WITHMINORHARDLENSLS
HODERATEL¥-CEH£~~EO SANDSTONE
GRADES LESS CE..~ENTED
APPEARS CU¥EY
HODERATELY-CEH£~TED S...."DSTONE
HQDERATELY WELL-CEMENTED CDNG~ERATE
OR FRl\CTURZD SAtIOSTONE..GaADING BETTER
CE..'I£llTED
GROUND WATER LEVEL liD FT.11/4/71
85 ------i
120 -----\:;:',:;,,,\
115 ------t':::~~:1
80 -----C::;p
110 -----k::::;:r
100 -----+::::::;:,
95 -----+::;':::.1
"'lOS------+::;:;:':1
i=....wo
...w'oJ...
RED-aROWN FINE SAND AND SILT.MEDIUM DENSE
GRADING CALCAREOUS WTIH
CALCITE STRINGERS
GAAOES VER¥CA'-CAREOUS AND
VER¥DENSE
GREEN,FINE TO H£DIUH-GRAINED
SANDSTONE,~TIlLRED,WITH SOME
ORA."GE ...."0 YELLO;;IRON STAINI:lG
BECOM£S VERY LOOSE,POSSIBLY:.lITIl VOI.)S
BECOMES DEliSE
BROWN-YELLO<i,COARSE-GRAINLa SANDSTONE
FINE CRAVEL CONCLOH£RATE WITIl CONSID-
£RABLE COARSE-GRAINED SAND AND CAL-CAREOUS XATRIX
GRAY-GREEN,FINE TO MEDIUM GRAINLD,
WEATHERED,CLAYEY SANDSTONE Wlnl
ORANGE AND YELLOW IRON STAINIlK:
BECOH£S LESS WEATHERED WITH LESSCLAY.PREOOMlli......-rLY GRAY WITIlORANGEIRONS1AININC.MOOERATELYCEMENTEO,MEDIUM GRAINED
BROWN TO YELLOW,COARSE-cRAINED SAND-
STONE WITH CONSIOERABLE NEAR HORI-
ZONTAL FRACTURING ...."0 SOH£ORANGE
IRON STAININC.HOOERATELY CEMENTED
.[.,
sos
I
I 7.0
I
I
95/
fJ 9"
SO/..&~~"
:'\l 10
I
1
I ::.;".::CGL
-:,__+-:8_5;:;:::::::,SOS
I 8
I
I
I
20
35
30
10
25
15
45
...w...Ii.
'"40i=....wo
50
55
I
J.-
78n
WATER RETURN COMPLETELY LOST
LICHT GRAY.H£OIUM TO COARSE-GRAINED
SANOSTONE:HICHLY FRACTURED ALONG
HORIZONTAL BEDDING.CONSIDERABLE
LIMONITE STAINING ALONG BEDDINGFRACTURES:HODERATELY CEH£NTEO TO
UNCEMENTED.CORE LOSSES ASSUMED
DUE TO WASHING AWAY OF UNCEH£NTED
ZONES
130-----
60
LIMITED WATER RETURN
80 5.ill1~
65
70
-----Illlil
BECOH£S VERY UNCEH1:llTED,WATER
RETURN LOST
HOLE LOST AT 72 FT,HOLE 19ADRILLED15FTSOUTHOFHOLE19:NO WATER RETURN OBTAINED:NO
S~LING POSSIBLE:HOLE LOGGED
FRC~~RI~~:~C PRQCR£SS
VERY WELL-CEt1ENTED SANOSTONE (72 FTl
MODERATELY-CEMENTED SANDSTONE (73 FTl
LOG OF BORINGS
PLATE A-9
BORING NO.23
EL.5555.9 FT.
BORING NO.27
El.5555.0 FT.
RCD-Bk~W~FINE SAND AND SILT.
LOOSE TO MEDIUM DENSE
GRADING C~CAREOUS WITH CAL-
CITE:STRIN~£RS
___...JL5_2-J~~~~~Dl1~g~~G~~~E~DTO
,nilT£o\NO YELLOW
t-YELLOW TO LIGHT BROWN.11£DIUM TO
W COARSC:-GRAINEO SAND (WEATHERED~SAtlilSTOlIE)
~10 --_.Jl!...-l;:ig;lg.;Z;g;;;~~;;S:<:;;O;;:S3Cl~~~H~JU:~H~~y~~~DCLAY
t mmm OFF-WHITE TO ¥ELLOW BROWN*~Dtu~~69/mmm ~N~~i:~-C~ci·w~R~~~~~EOtSll0~'';,;;,,"•
15-----1
HOLE COMPLL~ED 9/10/77
NO GROUND WATER El/COUNTERED
a£O-9RO~FINE s~~o AND SIL'.
LOOSE TO MEDIU:~Dt='SE
GRADING C.\LCA!l.tOUS "'lTH CALCITE
S7RIlIGERS
Ca.::!:;ISH.FLa.:-:0 :-!£:>ri.i;';-Ga.;I~E:>
S~:DS70NZ,Vr:RY "'ELL-Ct.'l£lITED
HOL£COMPLET=D 9/17/77
lIO GROUND WATER E~CDUNTERED
10
BORING NO.29
EL.5655.0 FT.(APPROXJ
20------
GRADES HEDleH OE;;SE
HOLE COMPLETED 9/3J/77
lIO GROUND WATER £;;COUNTEREO
RED-BROWN FINE SA;;O AND SILT,
lo'll:7E TO SLIGHTLY To\,"SANDSTONE
BECOMES WELL-Ce....C:lTEO
:':::5E
SM/it MLII.
10
i:0-IUQ
t-IU.....
?i
:'IGIlT BRQ;m,FItIE TO K£DIUIl GRAINED,
~£LL-cD~lTEDSANDSTONE
;101.:::Co.~LETED 9/17/77
NO GROUND WATER ENCOUN7£RED
REO-BROWN FINE SAND AND SILT.
LOOSE TO 11£OIU11 DEliSE
GRADING CALCAREOUS wIm CALCITE
STRWGERS
OFF-WHITE.FINE GRAINED.WEATHERED
SANDSTONE.GRADES WELL-C£~NTCD
OFF-WHITE.FINE TO 11I:DIU11 GRAINED.
MODERATELY WELL-cOlENTED SANDSTONE
'SMI
ML
/iil58/6'
BORING NO.24
EL.5573.4 FT
0
t-W.....
~
~0-10...Q
15
NO.26
FT.
BORING
EL.5578.3
t-IU.....
?i
~0-IUQ
10
RED-BR~1 FINE SAND AND SILT.
LOOSE TO HJ:DIUH D£."SE
GRADING CALCAREOUS wlm CALCIT£
STRINGERS
OFF-UHITE,FINE TO MEDIUH-GRAINEO
SANDSTONE,WEATHE!l.£D,GRADING WELL-
CEMENTED
VERY WELL CEMEllTEO
HOLE COMPLETED 9/17/77
NO GROUND WATER ENCOUNTERED
LOG OF BORINGS
50
BORING NO.28
EL.5547.6 FT.
LI(;HT GRAY,WELL-cE.'U:.~TED SA.~DSTONE
LIGHT GRAY.MEDIUM GRAINED.WELL-
C~NTED SAiIDSTONE:FRACTURES
C£1IERALLY NEAR HORIZONTAL
HOW:COiiPLETED 9/21/77
GRADES D.'RKER GRAY
LIGHT GRAY TO OFF-WHITE,FIlIE TO
H£OIUM-CRAI:-lE:O SANC3TONE.WELL
CE.'IOITED
GilAVEL AND PEBBLE CONGLO:ol£RATE WITH
SANOY ~\TRIX IN PLACES CNC~~ENTEO
GE:IERALLY LIGHT GRAY SANOSTONE WITH
OCCASIONAL 3ANDS OF aRC'iN,CLAYIER
SA:IOSTONE
MATCH LINE
90 -'-[::::::"1
80 -----...,.,.~::'
95 -'-----1',,::,::,\
as
100 -1.-1",::::::1
115....1..----L':A
ElOS -J'---II",'::'::I
lL
~
LIGHT GREEN.FINE-GRAINED SAKC~
STONE WITt!LAYlRS OF GREEN CLAY-
STONE UP TO 4 INCHES THICK
Bi:CQMES LOOSE
GlU\DES LIGHT BROWN AND VERY DENSE
MEDIUM TO LIGHT Br.o«N.MEDIUM TO
COARSE GRAIN;;:D.WLLL-CE:<ENTED SANo-
STONE,IRON STAINING EVIDENT AT
CONTACT WITH OVERLYIlIG FI~ca
GRAINED SANDSTONE
LIGHT GREZNIZH-GRAY.FINE TO
MEDIUM-GRAINCO S,>.t;DSTQNE WITH
SOME GRAVEL TO PEBBLE-SIZED IN-
CLl;SIONS:SQiIE !HKOR U!«)NlTE
STAIIIIIIG:FR.'CTURlS IlOl\IZOllTAL
BECO~IES Vl:RY DENSE
ORANGE TO YELLOW.MEDlUM TO <INE
';RAINEO.SILTY SAlID (WEATHERED
SANDSTONEJ
RED-B~FINE SN~O A~O SILT~
HJ;DIUM DENSE
GRADING C;~ARLOUS WITH
CALCI7'E S7RIWG.E.:RS
76/
I<l "10
1'\11515
f;j50/
20 2\"
-r-
25 94I081
1
T -'-
30
0
35
...-,--'"'"...
::!:40 ;lOO
i=80...-'-'"Cl
45
55-----1 135-----
CIRCULATION LOST-....
60 -+..:2~
o
'-
LIGHT GRAY,MEDIUM TO COARSE-
GRAINED SANDSTONE WITH SECTIO,'S OF
VERY POORLY-CEMENTED SANDSTONE
INTERLAYEaED.POORLY-C~~.TED~<D
WELL-CE:<£NTED SANDSTO~E AND CON-
GLOMERATE
65------1
70
CA,ING INSTALLED TO 74 FT
7S------I
T
1
80_,-,I__~.JillJ ~
GROUND WATER LEVEL 75.7 FT,11/4/77
MATCH LINE
LOG OF BORINGS
DA...es e ...oone
PLATE A-"
."C()(2)ft (2)-,..I'M 1'1/1 17,11 IY,I(
S......~l I ;:z .3 4-.8...,-,,:TRIAXIAL COMPRESSION TESTS et:~T"Irt(TI .e",,-~,e.....'k ,e",u"
"'.../3·3 1~.2 13·3 13·1
ON SILTY FINE SAND COMPACTED TO 95%~Y4""C,III./I II.Z./1/.//1/·:1
!"o·nJ--0.S1.7 ".~z.r o.-S2.~
OF AASHTO T-99 MAXIMUM DRY DENSITY ,s ~'J'7-'J'X r:...Yo c 7 "I..
v •../8.2 Il·~N•.7 1<:.1
~T,."U Ilfl·i II}.I I',?-O 1Z0·~.~-~"0.491 o·f:;o ".<lU 0'1'0",~-
"S ~~100 Y./00 "ICC 'J'100 -I;
10 IACx P'ft(SSJlI\C ff'SlI 6'15·1 72 .).N.r Ij<;;
STIU,I"f UT[.oo0.r!3 .00<>035 .000e'GOrl",eHU I "'!HUTI!I .t:)Oc:J ?;~EFFECTIVE STRES£,
--TOTAL STRESS :..:$C )-'f t(f -t(I'.~sr"tss D D"ll"Ill"0-,.,.,
COHOITtO",I...~~·v ..B ...·~;,t .•·
I •..11·~9 5'.5(;2o.oc lo..~·t:~./,,:/.Zo.,,_.<;.';'<-
U.m~l~H.l ~?:<,;$lSo:.~~~.,)"':...!H::L ~~(J)
:<:::;;:-~;--if..-=.00 ."7;;;'t ..."...!'.~')~j'•.,.,
en 6 ~a.·as ''Z''1~..L-.88 s·l.r 4.n ~.~.:..f7 //.'9 ·-".1,';..f-'-.-./.17(J);a,.}(".'4·~8 J.88 9.~t 1/./2 1(J.J.l.19.~~:f;.3··
w ~-33·C-O ~~!'MI4-(J.'N·';.i'{.1.Z"~_%:.:,5.fr1..·.Gd0:..-~·2·'N~ila,'a)1 ,.!~b.it;;.ry t-U 17.I¢-II.'"(J)
• I t-t6,'0.71./.a,?/.CI J·f4-4..·'r <t.:u2.1'';'·°9
0:-At -/10',"'<7')1:>2.,..rJ,5,7 e,2t "'.~It c'lf'.:>:11 (J.'7 "...~<~-w ---...-41-14'C-300 PSF I •..J!.0f'9 5.5~z...oo 10.'f1i'IJ.C;'J f·'1 ~•.:>5·.,J:,:x:~~/:::-~~--.%0 37t.14:v 710 /"2'-,t~~I<Z4.'13.(f)--"-·II•.1("'/·28 (J.'l~Z.3°/oR!'1.1';.!l ~.:'7 /.~/·w
"-«II,'''./..f',f $'·(.S <t.ro;4.!'"P II.'-~7·Jj~2·H ,fofz.·~~~--~~_.1'.7"Z.N i,"7 ....,(0 ,.lk ,.ott JS"-?r 1.21'...........2
?/'"/\E~,.·a-·,.!,I.2~"·14 ,z.[{.~".l:;2.J'~_L~9 5.If J.~.t'\S~,'Il.'!2.~'/.,;$.2.3 -i:!!-'T-!r 4..3 '.Sf ~..:.u
--....-/j\\\•.110,:<>·71.I·~i /.'-I 2·11 J:~...,/.'1;~.:J9-.','
'.'/I~"C,'0.'7 o.~·.oze ~.;ii·,...-D.~:"'7 .:J....;\0.71"-\ I I I \\"v",z·'N.'/.0/I i.~g J.::'1.'.).01.-""'1 0:;;'
0
0 2 4 6 B 10 12 14 16 IINORMALSTRESS.KSF I(MAXIMUM EFFECTIVE STRESS RATIO)TRIAXIAL COMPRESSION TEST REPORT
TYPE OF TEST£?ft~#t;;!"H:;/{'::I9R:-~8,<>[::/:;;f,(l;~"
TYPE MATERIAL CO""I"AC"~D C9t"'e
I SAMPLE DESCRIPTION
CLASSIFICATION .p~I>()'SH ·.<r....OWl'.CC"IYeY S"l.,"
LIOUIO LIMIT_-_PLASTIC LIMIT_-_SPECIFIC GRAVITY,G,;;:;"0 (A tJ.\
P~OJECT j e-N'!:'R~y P"c cS
LOCATION oc:-......V{C?R-fJOBNO."'(1)'O/S·Nt PREPARED BY •/0 I lZI T',CHECKED BY 1<2#./~'I Z2.
Pt..ATE:8-1 1
;
~H".L·,_"
----¢-'3.5"0-0
5
04
u.
(I)
:.:
en 3
(I)wcr
/-
(I)
cr«2w
::I:
(I)
MULTI PHASE TRIAXIAL COMPRESSION TESTS
ON SILTY FINE SAND AT NATURAL DENSITY
EFFECTIVE STRESS
TOTAL STRESS
/~-2B"0-0
--....--::::::::----/--;/-,/"-V '\
I \\
\\
~
~~
..-c:Jt:I"lil:(S$,..t'II(''''1
Sf"...,,,,IIArr
1,,..eMU I MI"'Uf[I
~I ~I ~I ~I ~I ~IT.."I;;~;,~~~
COfIfOITIO",..=~5'I'l ~Wr;~;t!;
e~!:..~-p=~~~~I-=~+=
~~!-:.!--+Jl.LL.+
i 1..J.2.....:.!..:.-1~UO!4
1.11 .~b'\.q,~
"1....tl ~
2 3 04 5 6 7 B 9 10
NORMAL STRESS.KSF
(MAXIMUM EFFECTIVE STRESS RATIO)TRIAXIAL COMPRESSION TEST REPORT
TYPE OF TEST Th·C\l -PP
TYPE MATERIAL e>,.....S"lt \F.S/I!.IA
,SAMPLE DESCRIPTION
CLASSIFICAT10N-""S'-Mu/wM......",t-=----:-::::__
LIOUID LIMIT.t4iL ~STIC LIMIT~iLSPECIFICGRAVITY,G.~v~
PROJECT i:N E p.r.'!c;.'l~LOCATlON~LA...!JJlJ.t.ul~·"'"'t"""'_\U)~I:~._
JOB NO.;.5'17 ~'Otr=u\PREPARED BY LWc..•II I Un)
CHECKED BY '-'-
PLATE B-I 2
APPENDIXH
Material Quantities
..-...--_..-.....-.-.-.--_.-.----=il il il:-":=~Environmental
TITANEnvironmental
By TAM Date 7/5/96 Subject -",E=FN"""""-,--_W~h....,it=e....,M....,e""s,,,,-a Page~of~
Chkd BY~Date 0/11/1&Tailings Cover Material Volume Calc.Proj No 61 11-001
Purpose:
Method:
To determine the volume ofriprap,clay,and random fill materials required to
construct the uranium mill tailings cover at White Mesa Mill in Blanding,Utah.
Material volumes were calculated for two construction options:
•An integrated soil cover over Disposal Cells 2,3,and 4A,and
• A cover over Cells 2 and 3,where Ce1l4A tailings are excavated and placed in
Cell 3.
Standard geometric equations,as shown below,were used to determine the
required material volumes.
Volume ofa rectangle
Volume ofa trapezoid
=base *height *length
=1/2 *height *(base)+base 2)
Assumptions:
Surface area calculations for the tops ofCells 2,3,and 4A are shown in Figure 1,
and material volumes are calculated in Table 1.
The method for calculating material volumes on the side slopes is shown in Figure
2.The 5H:1V slopes have been divided into several zones which are indicated on
Figure 1.The slopes have been categorized based on the average height they
attain over a certain length.The height ofthe cover above the ground surface,
along each side,was estimated using the cross sections in Figures 3 -5.
Calculations are presented in Table 2.
•Random fill will be used to fill the existing freeboard space between the
tailings and clay layer ofthe cover and bring the tailings pile elevations up to
the berm elevations.This will create a smooth surface with a slope matching
that ofthe cover.The random fill thickness between the clay and tailings
surface will be a minimum ofthree feet.This random fill volume was not
calculated due to the lack ofinformation ofthe current topography in the
tailings piles.
•The 0.2 percent slope on the tailings piles will be created using random fill
materials beneath the clay layer ofthe cover.Cover materials will consist of
one foot ofclay under two feet of random fill.The top,riprap layer will
consist ofa minimum three inches on the top ofthe cover,and one foot on the
side slopes.
d:\projects\6111.001\volume.clc 9/16/96
TITANEnvironmental
By TAM Date 7/5/96 Subject -""E....FN-"-'----'W'-'-'h!.!..!i.."te'--LMu:e""'s""-a Page Z-of-L
Chkd BYkfj Date g/W~Tailings Cover Material Volume Calc.Proj No 6111-001
Results:
Option 1:(Cover on Cells 2,3,and 4A):
Total volume (Clay):=9,857,221 ft3
Total volume (Random fill):=19,918,351 ft3
Total volume (Riprap -top cover):=2,234,563 ft3
Total volume (Riprap -side slopes):=1,122,881 ft3
Option 2:(Cover on Cells 2 and 3):
Total volume (Clay):=7,816,884 ft3
Total volume (Random fill):=15,804,024 ft3
Total volume (Riprap -top cover):=1,754,563 ft3
Total volume (Riprap -side slopes):=968,890 ft3
d:\projects\6111_001\volume.clc 9/16/96
=365,082 yd3
=737,717 yd3
=82,762 yd3
=41,588 yd3
=289,514 yd3
=585,334 yd3
=64,984 yd3
=35,885 yd3
TABLE 1
Volume of materials for top of cover:
Cell #surface area Th (riprap)Th (fill)Th (clay)V (riprap)V(fill)V(clay)
ftA2 inches feet feet ft.A3 ft.A3 ft.A3
2 3237500 3 2 1 809375 6475000 3237500
3 3780750 3 2 1 945188 7561500 3780750
4A 1920000 3 2 1 480000 3840000 1920000
Option 1 Total (Cells 2,3,and 4A):2234563 17876500 8938250
Option 2 Total (Cells 2 and 3):1754563 14036500 7018250
TABLE 2
Volume of materials forside slopes:
Slope #total h h(riprap)h (fill)h (clay)L'(riprap)L'(fill)L'(clay)Length Th (riprap)Th (fill)Th (clay)V(riprap)"V(fill)"V(clay)"
ft.ft.ft.ft.ft. ft.ft.ft.feet feet feet ft.A3 ft.A3 ft.A3
1 16 15.5 14.0 12.5 79.0 71.4 63.7 3500 1 2 1 276622 499704 223082
2 6 5.5 4.0 2.5 28.0 20.4 12.7 500 1 2 1 14022 20396 6374
3 6 5.5 4.0 2.5 28.0 20.4 12.7 1180 1 2 1 33093 48135 15042
4 20 19.5 18.0 16.5 99.4 91.8 84.1 1900 1 2 1 188919 348773 159854
5 43 42.5 41.0 39.5 216.7 209.1 201.4 1750 1 2 1 379240 731709 352470
6 10 9.5 8.0 6.5 48.4 40.8 33.1 950 1 2 1 46019 77505 31486
7 5 4.5 3.0 1.5 22.9 15.3 7.6 1350 1 2 1 30977 41302 10326
8 27 26.5 25.0 23.5 135.1 127.5 119.8 1200 1 2 1 162149 305941 143792
9 35 34.5 33.0 31.5 175.9 168.3 160.6 1450 1 2 1 255078 487976 232898
10 18 17.5 16.0 14.5 89.2 81.6 73.9 1300 1 2 1 116003 212119 96117
Option 1 Total (Slopes 1,2,3,4,6,7,8,9,and 10):1122881 2041851 918971
Option 2 Total (Slopes 1,2,3,4,5,6,and 7):968890 1767524 798634
TABLE 3
Total Material Volumes for the Cover
Option 1:
rlprap (top of cover)2234563 ft'82762 yd'
riprap (side slopes)1122881 ft"41588 yd
random fill 19918351 ft'737717 vd'
clay 9857221 ft°365082vd:r
Option 2:
rlprap (top of cover)1754563 ft'64984vd'
rlprap (side slopes)968890 ft"35885 yd'
random fill 15804024 ft'585334 yd'
clay 7816884 ft 289514 yd'
Notes:
Riprap on top and sides of cover are of different dimensions,and are therefore caluculated separately.
Total h =the average height along the slope length.
Th =Thickness ofthe layer ofmaterial.
V =Total volume ofthe material
L'=Length of the layer down the side slope,Calculated as (h(material»I (cos 78.7).The slope Is 5H:1V.
Length =Horizontal length ofthe side slope.
(1)Volume calculated as (surface area)x (layer thickness).
(2)Volume calculated as (L'x Th x Length),
d:lproject.\6111,001\VOL_CLC,XLS8/14/96
5~
\~.....,..,.,;1'
\.f\J
~
oQ
:5 ~5~-::':E.I~ironmental 0 'f ~
By ~%A Date Subject Sheet No _of_
Chkd bY~Date <6f l Y Proj No,_
G .~-At.toeS ot ~s 1/5"x 115"1N
A6t-II}L '(/j6'W -
Slo~*I/'
eel13
3500'
Cdl2
1\
~
<)
'J
V)-~~
~
z\:II
l/).-q:.....->--\S)§/'CJ-1\\I ~('l)~-6::?<
V)II <J"-..JIJ!-
<'J
\:I tj:Lv1)V(»
(rIP.!JO)t(~
c Vr!/Lf~
(i~-f/~r)If-7
....-}1............--===~-.-..-====='=='·=Envlrontnenta-=-==::...--...._/....--
!::J «Sheet No _of_MDA-Date.Subject _
By ~Q<.(1'1 Proj No._
Chkd bY~Date ~----------115"x 115"
V\
0
VJ
~.--..n
0~~v."<J~-V)
-B ~-.
"-:2..~'--l-~<;:)--
if'
<:l~r--
-:::>ex:,-r-.<)
~t
,~~
5620
5580
5640
5600
5560
g5540
~~g
N,.,~§
N
g
'"N
g.,.
N*N~g
~§~~~g
'"§~~
f fRANDO"f'1LL (2 rT.!}fIC.)r-OETAIL 2
OETAl I //;V~i<NOOI.I FILL All >:;;U~~NOS (M~~u~J.,n,IC')/orrAl I +~F or e "M
OETAl ~APPR XIMAT(SURrA I,.MOVEO
,,/.I.,l...~0.2:\I r'I Ir'[LDEIl2--\T.&JUN S 1
~l~XI T1N~~1 IN'",~,~l?£STIN§1 CE II D Y IIAIlINGCEL1~t"c ,7.LL 2 BER
CEl 1Nt'!CEl 4'1 I BE M 1\\..APPR XlMA,T!Bono,or C(L-l
BE M 6,.,...,",
\....APPR XIMAT(011'OM or c£
6
t;
t::'560
I
Z52 558<~556
554
562
56
£6 ~g
V!:RnCAL SCALE (FtET)
~~-~
HORIZONTAL SCALE (rErr)
SECTION A-A'(WITH COVER ON CEllS 2.3 &4A)
ovr
556
0<
-=+
5640
5520
5580
5600
5560
~5540
,.,~
fut;W1.Q4
g
N,.,6~~~~N~N~
8 <5 8 --8__"l
HORIZONTAL SCALE (rEET)
6§~~
~<5 ~---S
VERnCAL SCAlE (FtET)
~
SECTION A-A'(WITH COVER ON CELLS 2 &3)
~6as6o'"~~
';-R""OOM rILL (2 rT,!}fIC')r-OCiAIL 2---~----_.
OETAII 1 //'/j)IANOOM ~LL All V!:TA/I.NCS (MNIt,(~~J.,n.TIel<)/'~DrTAl 1 ~;..or B RM
APPR XIMATE NUNO SuR'",E ,".MOVEO
-;;z ~"'~='\TNUN S ~V Ul 1
j ~L...~1
'I>AlU""'{Itt STINC\~'CE )Y."CEll /Ll 1
t'ri".,Ll 2 BER
/EXI ING\l eEL 41:\c~L J '\\..APPR BOTTO_L-lCE4RMXIMATEorC(
BE M ....~..'.-..'~.....<0,
\J APPRqxr~TE ~TTO"or CE,.,I I..
6
562
56<1
554
t;
t::'560
§558~w
r
~
REFERENCES
Advanced Terra Testing,1996,Physical soil data,White Mesa Mill,Blanding,Utah,July
25,1996.
Aitken,George W.and R.L.Berg,1968,"Digital Solution of Modified Berggren Equa-
tion to Calculate Depths of Freeze or Thaw in Multilayered Systems",Special
Report 122,October.
Chen and Associates,1978,"Soil Property Study Earth Lined Tailings Retention Cells
White Mesa Uranium Project,Blanding,Utah",July 18.
Chen and Associates,1979,"Soil Property Study Proposed Tailings Retention Cells
White Mesa Uranium Project,Blanding,Utah",January 23.
Dames and Moore,1978,"Environmental Report,White Mesa Uranium Project,San
Juan County,Utah",January 30.
Energy Fuels Nuclear,Inc., 1996,radon flux measurements for 1994 and 1995.
Environmental Protection Agency (EPA),1994,"The Hydrologic Evaluation of Landfill
Performance (HELP)Model,Version 3",EPAl6001R-941168b,September.
Freeze,R.Allan and 1.A.Cherry,1979,"Groundwater".
Mitre Software Corporation,1990,"GSLOPE Limit Equilibrium Slope Stability
Analysis",Alberta,Canada,June 1.
Nuclear Regulatory Commission (NRC),1989,"Regulatory Guide 3.64 (Task WM-503-
4)Calculation of Radon Flux Attenuation by Earthen Uranium Mill Tailings
Covers",March.
NRC,1990,"Final Staff Technical Position Design of Erosion Protection Covers for
Stabilization ofUranium Mill Tailings Sites",August.
NUREG/CR-4620,Nelson,J.D.,Abt,S.R.,et aI,1986,"Methodologies for Evaluating
Long-Term Stabilization Designs of Uranium Mill Tailings Impoundments",
June.
NUREG/CR-4651,1987,"Development of Riprap Design Criteria by Riprap Testing in
Flumes:Phase 1",May.
Perry,Robert H.et aI,1984,"Perry's Chemical Engineers'Handbook",McGraw-Hill,
Inc.
C:\PROJECTS\6111-00I\REFERENC.DOC [27-Sep-96]...-....--_.......-
_!i !=::.~,;Environlllental
Page R2
Principles &Practice ofCivil Engineering,2nd Edition,1996.
Rogers and Associates Engineering Company,1988,Radiological Properties Letters to
e.O.Sealy from R.Y.Bowser dated March 4 and May 9.
Rogers and Associates Engineering Company,1996,Report of Radiological Property
Measurements,September 3,1996.
U.S.Department ofEnergy,1988,"Effect ofFreezing and Thawing on UMTRA Covers"
Albuquerque,New Mexico,October.
~--_..~-_E i E~~~Environmental