Loading...
HomeMy WebLinkAboutDRC-2010-001422 - 0901a06880161449DENISO MINES January 20,2010 J>h ^c- X)[o -con^:^ Denison Mines (USA) Corp. 10S017th Street, Suito 9S0 Denver, CO 8026S USA Tel 130) 628-7798 Fax: 303 389-4125 denisonininea.com Mr. Dane Finerfrock, Executive Secretary Utah Radiation Control Board Utah Department of Environmental Quality 168 North 1950 West P.O. Box 144810 Salt Lake City, UT 84114-4810 Dear Mr. Finerfrock: Re: White Mesa Uranium Mill - First Round of Interrogatories From Revievy of License Amendment Reauest and Environmental Report for Cell 4B - Referenced Documents Enclosed please find one (1) CD containing the White Mesa Mill Tailings Cover Design Report, prepared by Titan Environmental, dated October 1996. Please contact Harold Roberts at (303) 389-4160 with any questions or concerns Yours very truly, DENISON MINES (USA) CORP. Meredith Goble Records Admininstrator/Paralegal cc: Robert D. Baird, PE - URS Corporation End. ..-...---.-.---....._-_.--.--=55 55 5=-~Environtnental TAILINGS COVER DESIGN White Mesa Mill Prepared For: Energy Fuels Nuclearl Inc. 1515 Arapahoel Suite 900 Denverl CO 80202 October 1996 By: TITAN Environmental Corporation 7939 East Arapahoe Roadl Suite 230 Englewoodl Colorado 80112 TABLE OF CONTENTS LIS'f.OF FIGURES LIST APPENDICES 1.0 SOIL COVER DESIGN 1.1 Radon Flux Attenuation 1.2 Infiltration Analysis 1.3 Freeze/Thaw Evaluation 1.4 Soil Cover Erosion Protection 1.5 Slope Stability Analysis 1.5.1 Static Analysis 1.5.2 Pseudostatic Analysis (Seismicity) 1.6 Cover Material/Cover Material Volumes FIGURES APPENDICES REFERENCES 1 3 5 6 7 8 9 9 9 ...........--_.-.-..-.-._-_.-.----=E E E=-':=~Environtnental Figure 1 2 3 4 Appendix A B C D E F G H LIST OF FIGURES Reclamation Cover Grading Plan for Cells 2,3,and 4A Reclamation Cover Grading Plan for Cells 2 and 3 Reclamation Cover Cross Sections and Details Reclamation Cover Cross Sections and Details LIST APPENDICES Laboratory Test Data Radon Calculation Radon Flux Measurments HELP Model Freeze/Thaw Evaluation Erosion Protection Slope Stability Material Quantities ....-...--_.-.....- __E Ii E~';Environmental Page 3 The following sections describe design considerations,complete with calculations performed and parameters utilized,in developing the tailings impoundment soil cover to meet regulatory requirements. 1.1 Radon Flux Attenuation The Environmental Protection Agency (EPA)rules in 40 Code ofFederal Regulation (CFR)Part 192 require that a "uranium tailings cover be designed to produce reasonable assurance that the radon-222 release rate would not exceed 20 pCi/m2/sec for a period of 1,000 years to the extent reasonably achievable and in any case for at least 200 years when averaged over the disposal area over at least a one year period"(NRC,1989).NRC regulations presented in 10 CFR Part 40 also restrict radon flux to less than 20 pCi/m2/sec.The following sections present the analyses and design for a soil cover which meets this requirement. 1.1.1 Predictive Analysis The soil cover for the tailings cells at White Mesa Mill was evaluated for attenuation of radon gas using the digital computer program,RADON,presented in the NRC's Regulatory Guide 3.64 (Task WM 503-4)entitled "Calculation of Radon Flux Attenuation by Earthen Uranium Mill Tailings Covers".The RADON model calculates radon-222 flux attenuation by multi-layered earthen uranium mill tailings covers,and determines the minimum cover thickness required to meet NRC and EPA standards.The RADON model uses the following soil properties in the calculation process: •Soil layer thickness [centimeters (cm)]; •Soil porosity (percent); •Density [grams-per-cubic centimeter (gm/cm3)]; •Weight percent moisture (percent); •Radium activity (piC/g); •Radon emanation coefficient (unitless);and C:IPROJECTS\61 II-0011R16161I1.003[9!30/96]........_-_........- _E Ii E~~~Environtnental Page 4 •Diffusion coefficient [square centimeters-per-second (cm2/sec)]. Physical and radiological properties for tailings and random fill were analyzed by Chen and Associates (1987)and Rogers and Associates (1988).Clay physical data from Section 16 was analyzed by Advanced Terra Testing (1996)and Rogers and Associates (1996).See Appendix A for laboratory test data results. The RADON model was performed for the following cover section (from top to bottom): •two feet compacted random fill; •one foot compacted clay;and • a minimum of three feet random fill occupying the freeboard space between the tailings and clay layer. The three layers are compacted to 95 percent maximum dry density.The top riprap layer was not included as part ofthe soil cover for the radon attenuation calculation. The results ofthe RADON modeling exercise show that the uranium tailings cover configuration will attenuate radon flux emanating from the tailings to a level of 17.6 pCi/m2/sec.This number was conservatively calculated as it takes into account the freeze/thaw effect on the uppermost part (6.8 inches)of the cover (Section 1.3).The soil cover and tailing parameters used to run the RADON model,in addition to the RADON input and output data files,are presented in Appendix B as part of the Radon Calculation brief.Based on the model results,the soil cover design ofsix-foot thickness will meet the requirements of 40 CFR Pmi 192 and 10 CFR Part 40. 1.1.2 Empirical Data Radon gas flux measurements have been made at the White Mesa Mill tailings piles over Cells 2 and 3 (see Appendix C).These cells are currently covered with tlu-ee to four feet ofrandom fill. Radon flux measurements,averaged over the covered areas,were as follows (EFN,1996): Cell 2 Cell 3 1994 7.7 pCi/m2/sec 7.5 pCi/m2/sec 1995 6.1 pCi/m2/sec 11.1 pCi/m2/sec C:\PROJECTS\61 11·0011R16161 I1.003[1011/96]....-..._-_...-..-........_-_.-.-.--=i i i:--=~Environmental Page 5 Empirical data suggest that the random fill cover,alone,is currently providing an effective barrier to Radon flux.Thus,the proposed tailings cover configuration,which is thicker,moisture adjusted,contains a clay layer and is compacted,is expected to attenuate the Radon flux to a level below that predicted by the RADON model.The field radon flux measurements confirm the conservatism of the cover design.This conservatism is necessary,however,to guarantee compliance with NRC regulations under long term climatic conditions over the required design life of 200 to 1,000 years. 1.2 Infiltration Analysis The tailings ponds at White Mesa Mill are lined with synthetic geomembrane liners which under certain climatic conditions,could potentially lead to the long-term accumulation of water from infiltration of precipitation.Therefore,the soil cover was evaluated to estimate the potential magnitude of infiltration into the capped tailings ponds.The Hydrologic Evaluation of Landfill Performance (HELP)model,Version 3.0 (EPA,1994)was used for the analysis.HELP is a quasi two-dimensional hydrologic model of water movement across,into,through,and out of capped and lined impoundments.The model utilizes weather,soil,and engineering design data as input to the model,to account for the effects ofsurface storage,snowmelt,run-off,infiltration, evapotranspiration,vegetative growth,soil moisture storage,lateral subsurface drainage,and unsaturated vertical drainage on the specific design,at the specified location. The soil cover was evaluated based on a two-foot compacted random fill layer over a one-foot thick,compacted clay layer.The soil cover layers were modeled based on material placement at a minimum of 95 percent of the maximum dry density,and within two percent of the optimum moisture content per American society for Testing and Materials (ASTM)requirements.The top riprap layer and the bottom random fill layer were not included as part of the soil cover for infiltration calculations.These two layers are not playing any role in controlling the infiltration through the cover material. The random fill will consist of clayey sands and silts with random amounts of gravel and rock- size materials.The average hydraulic conductivity of several samples of random fill was calculated,based on laboratory tests,to be 8.87x10-7 crn/sec.The hydraulic conductivity of the clay source from Section 16 was measured in the laboratory to be 3.7x10-8 crn/sec.Geotechnical soil properties and laboratory data are presented in Appendix A. C:\PROJECTS\6111.001\R1616111.00J[9/JO/96].....-....._-_......- _E iii E:'::::'~~Environmental Page 6 Key HELP model input parameters include: •Blanding,Utah,monthly temperature and precipitation data,and HELP model default solar radiation,and evapotranspiration data from Grand Junction,Colorado.Grand Junction is located north east of Blanding in similar climate and elevation; •Soil cover configuration identifying the number of layers,layer types,layer thickness,and the total covered surface area; •Individual layer material characteristics identifying saturated hydraulic conductivity, porosity,wilting point,field capacity,and percent moisture;and •Soil Conservation Service runoff curve numbers,evaporative zone depth,maximum leaf area index,and anticipated vegetation quality. Water balance results,as calculated by the HELP model,indicate that precipitation would either run-off the soil cover or be evaporated.Thus,model simulations predict zero infiltration of surface water through the soil cover,as designed.These model results are conservative and take into account the freeze/thaw effects on the uppermost part (6.8 inches)of the cover (Section 1.3). The HELP model input and output for the tailings soil cover are presented in the HELP Model calculation briefincluded as Appendix D. 1.3 Freezeffhaw Evaluation The tailings soil cover of one foot of compacted clay covered by two feet of random fill was evaluated for freeze/thaw impacts.Repeated freeze/thaw cycles have been shown to increase the bulk soil permeability by breaking down the compacted soil structure. The soil cover was evaluated for freeze/thaw effects using the modified Berggren equation as presented in Aitken and Berg (1968)and recommended by the NRC (U.S.Department of Energy,1988).This evaluation was based on the properties of the random fill and clay soil,and meteorological data from both Blanding,Utah and Grand Junction,Colorado. The results of the freeze/thaw evaluation indicate that the anticipated maximum depth of frost penetration on the soil cover would be less than 6.8 inches.Since the random fill layer is two feet thick,the frost depth would be confined to this layer and would not penetrate into the C:\PROJECTS\6111-00IIRI616111.003[9/30/96].....-...--_.......- _E Ii E~';~Environlllental ....;- Page 7 underlying clay layer.The performance of the soil cover to attenuate radon gas flux below the prescribed standards,and prevent surface water infiltration,would not be compromised.The input data and results of the freeze/thaw evaluation are presented in the Effects of Freezing on Tailings Covers Calculation briefincluded as Appendix E. 1.4 Soil Cover Erosion Protection A riprap layer was designed for erosion protection ofthe tailings soil cover.According to NRC guidance,the design must be adequate to protect the soil/tailings against exposure and erosion for 200 to 1,000 years (NRC,1990).Currently,there is no standard industry practice for stabilizing tailings for 1,000 years.However,by treating the embankment slopes as wide channels,the hydraulic design principles and practices associated with channel design were used to design stable slopes that will not erode.Thus,a conservative design based on NRC guidelines was developed.Engineering details and calculations are summarized in the Erosion Protection Calculation brief provided in Appendix F. Riprap cover specifications for the top and side slopes were determined separately as the side slopes are much steeper than the slope of the top of the cover.The size and thickness of the riprap on the top ofthe cover was calculated using the Safety Factor Method (NUREG/CR-4651, 1987),while the Stephenson Method (NUREG/CR-4651,1987)was used for the side slopes. These methodologies were chosen based on NRC recommendations (1990). By the Safety Factor Method,riprap dimensions for the top slope were calculated in order to achieve a slope "safety factor"of 1.1.For the top of the soil cover,with a slope of 0.2 percent, the Safety Factor Method indicated a median diameter (Dso)riprap of 0.28 inches is required to stabilize the top slope.However,this dimension must be modified based on the long-term durability ofthe specific rock type to be used in construction.The suitability of rock to be used as a protective cover must be assessed by laboratory tests to determine the physical characteristics of the rocks.The sandstones from the confluence of Westwater and Cottonwood Canyons require an oversizing factor of25 percent.Therefore,riprap created from this sandstone source should have a Dso size of at least 0.34 inches and should have an overall layer thickness of at least three inches on the top of the cover. C:\PROJECTS\61 I I-0011R16161 II.00J[9/JO/96].....-....--_.......- _E ;E~~~Environfilental Page 8 Riprap dimensions for the side slopes were calculated using Stephenson Method equations.The side slopes ofthe cover are designed at 5H:1V.At this slope,Stephenson's Method indicated the unmodified riprap Dso of 3.24 inches is required.Again assuming that the on-site sandstone will be used,the modified Dso size of the riprap should be at least 4.05 inches with an overall layer thickness of at least 12 inches. The potential of erosion damage due to overland flow,sheetflow,and channel scouring on the top and side slopes of the cover,including the riprap layer,has been evaluated.Overland flow calculations were performed using site meteorological data,cap design specifications, and guidelines set by the NRC (NUREG/CR-4620,1986).These calculations are included in Appendix F.According to the guidelines,overland flow velocity estimates are to be compared to "permissible velocities",which have been suggested by the NRC,to determine the potential for erosion damage.When calculated,overland flow velocity estimates exceed permissible velocities,additional cover protection should be considered.The permissible velocity for the tailings cover (including the riprap layer)is 5.0 to 6.0 feet-per-second (ft.lsec.)(NUREG/CR 4620).The overland flow velocity calculated for the top of the cover is less than 2.0 ft/sec.,and the calculated velocity on the side slopes is 4.9 ft/sec.Therefore,the erosion potential of the slopes,due to overland flow/channel scouring,is within acceptable limits and no additional erosion protection is required. 1.5 Slope Stability Analysis Static and pseudostatic analyses were performed to establish the stability ofthe side slopes of the tailings soil cover.The side slopes are designed at an angle of 5H:1V.Because the side slope along the southern section of Cell 4A is the longest and the ground elevation drops rapidly at its base,this slope was determined to be critical and is thus the focus ofthe stability analyses. The computer software package GSLOPE,developed by MITRE Software Corporation,has been used for these analyses to determine the potential for slope failure.GSLOPE applies Bishop's Method of slices to identify the critical failure surface and calculate a factor of safety (FOS). The slope geometry and properties of the construction materials and bedrock are input into the model.These data and drawings are included in the Stability Analysis of Side Slopes Calculation brief included as Appendix G.For this analysis,competent bedrock is designated at 10 feet below the lowest point of the foundation [i.e.,at a 5,540-foot elevation above mean sea C:\PROJECTS\6111-00IIRI616111.003[9/30/96)...-...--_....-..-_E ;E=~~~Environmental Page 9 level (msl)].This is a conservative estimate,based on the borehole logs supplied by Chen and Associates (1979),which indicate bedrock near the surface. 1.5.1 Static Analysis For the static analysis,a FOS of 1.5 or more was used to indicate an acceptable level ofstability. The calculated FOS is 2.91,which indicates that the slope should be stable under static conditions.Results ofthe computer model simulations are included in Appendix G. 1.5.2 Pseudostatic Analysis (Seismicity) The slope stability analysis described above was repeated under pseudostatic conditions in order to estimate a FOS for the slope when a horizontal ground acceleration of 0.1 Og is applied.The slope geometry and material properties used in this analysis are identical to those used in the stability analysis.A FOS of 1.0 or more was used to indicate an acceptable level of stability unqer pseudostatic conditions.The calculated FOS is 1.903,which indicates that the slope should be stable under dynamic conditions.Details ofthe analysis and the simulation results are included in Appendix G. Recently,Lawrence Livermore National Laboratory (LLNL)published a report on seismiC activity in southern Utah,in which a horizontal ground acceleration of 0.12g was proposed for the White Mesa site.The evaluations made by LLNL were conservative to account for tectonically active regions that exist,for example,near Moab,Utah.Although,the LLNL report states that"...[Blanding]is located in a region known for its scarcity ofrecorded seismic events," the stability of the cap design slopes using the LLNL factor was evaluated.The results of a sensitivity analysis reveal that when considering a horizontal ground acceleration of 0.12g,the calculated FOS is 1.778 which is still above the required value of 1.0,indicating adequate safety under pseudostatic conditions.This analysis is also included in Appendix G. 1.6 Cover Material/Cover Material Volumes Construction materials for reclamation will be obtained from on-site locations.Fill material will be available from the stockpiles that were generated from excavation of the cells for the tailings facility.If required,additional materials are available locally to the west of the site.A clay material source,identified in Section 16 at the southern end of the White Mesa Mill site,will be C:IPROJECTSI6111-0011R1616111.003(9/30/96)~--_.......-_E Ii E~":';Environfilental Page 10 used to construct the one-foot compacted clay layer.Riprap material will be taken from on-site sandstone,located at the confluence of Westwater and Cottonwood Canyons. Material quantities have been calculated for each of the components of the reclamation cover. Volume estimates were made for the two soil cover design options,as follows: •Option 1:an integrated soil cover which incorporates Disposal Cells 2,3,and 4A,and •Option 2:a cover which includes Cells 2 and 3,where Cell 4A tailings have been excavated and placed in Cell 3. The quantity ofrandom fill required to bring the pond elevation up to the soil cover subgrade and construct the final slope was not calculated.This layer will be a minimum of three feet in depth and is dependent on the final tailings grade,which is not known. For Design Option 1,construction will require the following approximate quantities ofmaterials: Material Volume (cubic yards) Clay 365,082 Random Fill 737,717 Riprap (top ofcover)82,762 Riprap (side slopes)41,588 For Design Option 2,construction will require the following approximate quantities ofmaterials: Material Volume (cubic yards) Clay 289,514 Random Fill 585,334 Riprap (top ofcover)64,984 Riprap (side slopes)35,885 Material quantities calculations are provided III Appendix H as part of the Tailings Cover Material Volume Calculation brief. C:\PROJECTS\6111-0011R1616111.00J[9/JO/96]~--_..-..- _!I !~~~Environtnental               Figures APPENDIX A Laboratory Test Data ......._-_.......-........_-_.-.----=E E E:-':::~Environmental -12- Table 3.4-1 Physical Properties of Tailings and Proposed Cover Material Material Type Atterberg Limits LL .IT Specific Gravity %Passing No.200 Sieve Maximum Dry Density (pef) Optimum Moisture Content Tail i ngs Random Fi 11 28 22 6 1 2.85 2.61 46 48 104.0 120.2 18.1 11.8 Note:Physical Soil Data from Chen and Associates (1987).f~@ .........I . I • I • • • •••••I •••••••••I • ,•••If ••,-••••• •••,•••, • I ••I •••••• ••••I ••••j • ,••I •••• 18 I iii I I I 'I ,••,•••••1 • I I • ,••t • ,••,•••','I •••••••••• • I t'l ••I 11 ••••I I ••• , • , I •••••••••I ••••••,••I ••••I I I • I I • I I • 0 I •••I • I ••••••If.I •••••••I ••••••••• 1614121086 I ••••••I ••••I ••••I ••••••I • f , • I I I I ••I I J ••I I I • I • I I •••'••••• •••••••••I • I •••I •••\•••••••••,t'•••I •••• •••••••••I ••••I ••••I •••I I ••••l ••,•••••• ••••It •••I I • I ,••I ••I • I I • I •••I I ••••I • I I • •••••••••I •••••••••,I ••I •••••1 ••••••••• 42 . . . • • . ,••••,•..•I .••.••..•I I I , I I . ••I ,I ••••"""••t ••I ••••t I I I I ••I I I I • I I ••I •••I I I •••..,I I • I .,•••••••'I , • ,•••,••\••I •••••• .......'j'., ,.....,. • • • I •••I ••••'·•• ,(.~,. 14 1 \1 •·,··1 • •••..••• _1 • • •·1 •..•..•,". It.••t t •••••t • • • • • •••I' I .......... .:::.::::.:::.:::.:::::.::::::::::::::::·1':::..:·:: • • • • •••,........• I •••I •••fl.......••••••••f I I • I ••I ••f •••••••••••••••• 16 I·..'.":"':''':''':":''':''1"':'":''':''':''':''':''':''':''':'''"':"':'":''':''':''':''':''':''':'''"':'":''':''':''':'':''':''':''':'''"':"':":'":''':'':''':'':'':''''":'':''':''::'':''':'':''':''':'''''':''':''':''':''':''':''':''':''':'''1'':"':"':''':":"':"':"':"':'" \ ...... .............'. •••••••• • •••I •I •••• I ............. . •••••••••••I ••I ••••• ••••••""I •• ••••••I • I • •••• • • ••• ••"'•I •... .. ..I'I..... ···C~t.Y·'MATERI!t·...~. • ,,..,.-I ••••••••,.•......S.lT ~1'.. .... . • I • •.••••I I ••,••••I • ••••••••••'. • •••• I • f •t I .,I ••••I ••..,.••••· I................. . , • , , I , , "••••••,..••••I I I ••I I I ,1"•,.•••I • I I • I •••••••"••I ••I I ••",I I I •••• , • • • • • ••••••f I ,••I ••••It.,.•fl.I • I I ••I I I I I I ••••I • I •••••I , • •••I •••••I ••10 1··..·..·..· ·..· •·,· • · ·..•"::-t.."..·········1·········,JsJI ,..........,.:::::::::I:::::::::::::::::::::::.::::..:::.:::::::::::::::::::::::::::::::· . . . . . ....,.....RAN 'OM Fl'·t.·. .· I.........,,..'L.• .•••••.•'1'.· '.,.....SIT'E '+2"'3'&5'. . . . .... . , • , , • , • , , , • • • • • • •••••I • • • •.'•••••••••• I , • •,.,.__' •• I • I • •••.,..,.", • . : : : : : ::I : ::::: :::::::::::::,::::::::::::::::::.:::::::::::::::::I ::: : : : : :: 8 I I o 12 1..L:..r;..L.._i -····..t·,~I __ I 1 -__•··,.·•..•••,. ~ I-ZWI-Zoo W 0:;:) I-(f) o ~ DATA FROM CHEN &ASSOCIATES TENSION.BAR SUMMARY OF CAFILLARY tv1 0ISTURE RELATJONSHIP TEST RESULTS WHITE MESA PROJECT...............,.....FIGURE 3.5-1 ,..\ I I-o I 24 :.i, ,I . . ... . ....,I • • • •••• I ••••I ••I •••t:.••••to.• • • •••••••,••••I ,..·'1',"",.,.,,,....,'.. ...,..,.,I , ••••••••,••,••,••,••••••••••••••I ••••••••••••••••••••••••••••••""" • t • , • , ,t....•..,•.,..•....•••••••••I....t'.• •••I.........!,., · . , , , . , . ,i • ,..•...'••..,••,..,•.•••',•••"••,..,••••',.."••,.".I ' , . ...", , , '..\'. , , ,,.. ,,.,.",.,,.,,...',.',.." !,...'·,....,',.'..,..,.,.",.,,.,.,."./,,., 22 1',":''':''':''':''':''':''':''':''''''':''':''':''':'''::..,::::::::.,.::::::..::~..~..:..:_.:::~..:~~.~.~..~~..::.~..:..~.~..~:~..::..~:::::"..,.::::,..::::....,.,../,,.. , , ,'I','.'...... .':j1:.'::.:::::::::::::::::::::<:::::::::::::::i:::·..,.,...,........,I ..,.., 20 I·..•...••.•...•·····.···.···.·.··1··:··:···::-:-.···.···.···...::::..•...:•....-.··:--·-----·:t-..--t--..--·::··::-:..·..·---:-:-::--::-::.··I·.•...•...•...•...•...:...•...•...•.. :::::::::.":::::::::::::::::::::::::::":..:.......::::::::::::1:::::::::·.., , I ....,...,...CL;A.,'Y.'.ATEEiIAL '... . , . , , . , I ..••,....................,.SITE '#;4 , . . ... .,'1', . 18 ,..:..·:..:..·:·..:..·:..·:..·:..·:..·1·:..·:..·:..·:·..:..·:..·:..·:..·..·(.:.....:...:...:...:...:...:..."'.:...:...:...:...:...:...:...:..:....":".:.":".:,,.:..:.,,:---:...:.,,:..:>:...:---:...~..:...:...:...".:".:---:.":".:".:".:".:...:."...:...::".:---:. • • • • I • • • I •••••••I'•••••••••••••• • • • I •••:t.t'• • • ••••••••••••::::::~::::::: • • I • I ••• I ••••••t I •••••I ••••••••••••••••••• • • • • ••••••••••••••••••••I ••I I ••••••••••••• •I I ••",•I I I I •I •I • I ••••I I I I I I I I I I "'I •••I ••• I • I I •I.I.'I •I •••••••I • I I I •••I I •I • I .,•••••• • • I I , I I I'I • I •I ,.•I ••••••I •••I ••I .,.'.,.,•• 16 1":'·':"·:"':"':"':''':''':''';'''1''':''':''':''';''';'";''':''';''';'''"';"':''':''':''':'':''':''':''':'''\''':''':''':''':''':';''':''':":'""';'":''':''':''':'':''':''':''':'''...:...:...:.:...:...;...~.;...:.......:...:...:...:...;...:...:...:...:...''';''':''':''':''':''':''':":"':'" 1:::::::;:::::::::.::::.::!:::.:!!::!:.!!:::!:!!):!: ~ r-:z~zoo W 0:~f- (f) o 2 14 o 2 4 6 8 TENSION,BAR 10 12 14 16 DATA FROM CHEN &ASSOCIATES;, SU~MARY OF CAPH-l-ARY MOISTURE RELATIONSHIP TEST RESULTS WHITE MESA PROJECT &•••.•-"'-••• FIGU~.E 3.5.-g i,--""I I I I I I ~ I SECTION 6 ROGERS AND ASSOCIATES ENGINEERING CORPORATION Letter Dated March 4,1988 Letter Dated May 9,1988 Radiological Properties We have completed the tests ordered on the four samples shipped to JS. The re~ults are as follows: The samples will be shipped back to you in the next few weeks.If you have any questions regarding the results on the samples please feel free to call. Rogers &Associates Engineering Corporation 0.39 0.56 0.40 0.75 0.48 0.76 0.63 0.80 Saturation C8700/22 13.2 19.1 6.5 12.5 8.1 12.6 15.4 19.3 1.45 1.44" 1.85 1.84 1.85 1.84 1.65 1.65 3Diffusion(g/cm ) Coeffic.Density Moisture March 4,1988 Post Office Box 330 Salt Lake City,Utah 84110 (80l)263-1600 Radium Emanation pCi /9m Fraction 981±4 0.19±0.01 2.0E-02 8.4E-03 1.6E-02 4.5£-04 1.6E-02 1.4E-03 1.1E-02 4.2£-04 R A E Sam;1le Site #4 Composite (2,3,&5) Site #1 Tailings Dear Hr.Sealy: Mr.C.O.Sealy Umetco Minerals Corporation P.O.Box 1029 Grand Junction,CO 81502 IIi. tIA ••.. -'.. • Si ncerely, ~If~ Renee Y.Bowser Lab Supervisor III • RYB/b l •515 East 4500 South·Salt Lake City,Utah 84107 If you have any questions regarding these results please feel free to call Dr.Kirk Nielson or me. The tests for radium content ar)d radon emanation coefficient in the following sdmples have been completed and the results are as follows: C8700/22 0.19 +0.04 0.20.+0.03 0.11 +0.04 Radon Emanation Coefficient May 9,1988 Post Office Box 330 Salt Lake City,Utah 84110 (801)263-1600 Radium (pCi/g) 1.9 +0.1 2.2 +0.1 2.0 +0.1 ~ogers &Associates Engineering,Corporation Sample Random (2,3 &5) Site 1 Site 4 Si ncerely. ~~~ Renee Y.Bowser Lab Supervisor R A E RYB:ms Dear Mr.Sealy: Mr.C.O.Sealy UMETCO Minerals Corporation P.O.Box 1029 Grand Junction,CO 81502 -I."1 I I, l II ~ a- M •, .~;:I 515 East 4500 South·Salt Lake City.Utah 84107 833 Parfet Street Lakewood,Colorado 80215 (303)232-8308 ATTERBERG LIMITS TEST ASTM D 4318 CLIENT BORING NO. DEPTH SAMPLE NO. SOIL DESCR. TEST TYPE Plastic Limit Determination Titan Env. UT-1 ATTERBERG 1 2 3 JOB NO.2234-04 DATE SAMPLED DATE TESTED 7-25-96 WEB,RV Wt Dish &Wet Soil Wt Dish &Dry Soil Wt of Moisture Wt of Dish Wt of Dry Soil Moisture Content 3.34 2.96 0.38 1.05 1.91 19.90 4.06 3.57 0.49 1.11 2.46 19.92 3.42 3.03 0.39 1.06 1.97 19.80 Liquid Limit Determination Device Number 0258 Number of Blows Wt Dish &Wet Soil Wt Dish &Dry Soil Wt of Moisture Wt of Dish Wt of Dry Soil Moisture Content Liquid Limit Plastic Limit Plasticity Index 103.1 19.9 83.3 1 39 12.18 6.64 5.54 1.10 5.54 100.00 2 27 10.42 5.67 4.75 1.06 4.61 103.04 3 4 5 18 14 9 10.92 12.33 10.06 5.87 6.53 5.34 5.05 5.80 4.72 1.06 1.10 1.08 4.81 5.43 4.26 104.99 106.81 110.80 Atterberg Classification CH Data entry b~~ Checked by:_~~~= FileName: NAA Date:7-26-96 Date:1 r l<f)-q~ TIGOUT1 ADVANCED TERRA TESTING,INC. 112 111 110 109 108 C 107(l) C0 1060 (l)5 105V;·0 104~ 103 102 101 100 99 Atterberg Limits,Flow Curve •.UT-1 •~ ~~ """"""."", ~ ~ "'"'"""'-~ ~ ~ ". Number of BloWS PLASTICITY CHART ••UT-1 25 / /A / /V V~/' V ~v'/OH //V /~\~<:-t-<V /CLorCL //' .//./ /<AU r"J // ././"'L ~L Cl-ML V 100 80 x(l)60uE C·0 ~m 40Q 20 o o 50 liquid limit l...Classification I 100 150 CLIENT: PI")RING NO. PTH SAMPLE NO. Titan Env. UT-1 COMPACTION TEST ASTM 01557 A SOIL DESCR. DATE SAMPLED DATE TESTED JOB NO.2234-04 7-25-96 RV Moisture determination 1 2 3 4 5 Wt of Moisture added (ml)100.00 150.00 250.00 350.00 450.00 Wt.of soil &dish (g)384.26 393.92 291.42 244.20 281.17 Dry wt.soil &dish (g)350.60 355.61 251.40 202.69 225.04 Net loss of moisture (g)33.66 38.31 40.02 41.51 56.13 Wt.of dish (g)8.01 8.34 8.31 8.29 8.43 Net wt.of dry soil (g)342.59 347.27 243.09 194.40 216.61 Moisture Content (%)9.83 11.03 16.46 21.35 25.91 Corrected Moisture Content Density determination Wt of soil &mold (Ib)14.20 14.49 14.68 14.59 14.46 Wt.of mold (Ib)10.36 10.36 10.36 10.36 10.36 Net wt.of wet soil (Ib)3.84 4.13 4.32 4.23 4.10 .wt of dry soil (Ib)3.50 3.72 3.71 3.49 3.26 ......f Density.(pet)104.89 111.59 111.28 104.57 97.69 Corrected Dry Density (pet) Volume Factor 30 30 30 30 30 ~'ta entered by:RV Date:7-26-96 .ia checked by:~Date:--l:1l,'tb FileName:TIPRUT-1 ADVANCED TERRA TESTING,INC Proctor Compaction Test "UT-1 403020 Moisture Content (%) 10 I -\ -\ ~.\ I-\ 1\Zero Air Voids CurrJe ~\...~36TeportediJe,uvv I- ~ l-f ~\ -/0 ~\--I ~- I -+-~--~I f-j I i "'"l- I I \85 o 90 95 100 130 135 140 125 120 C-O 0..115......... >---'iiic <D 0 110c:- O 105 -Best Fit Curve o Actual Data -Zero Air VoidsCurve @ SG:::2.70 OPTIMUM MOISTURE CONTENT =13.9 MAXIMUM DRY DENSITY =113.5 ASTM 0 1557 A,Rock correction applied?N ADVANCED TERRA TESTING,INC. CLIENT PERMEABILITY DETERMINATION FALLING HEAD FIXED WALL Titan Environmental JOB NO.2234-04 BORING NO. DEPTH SAMPLE NO. SOIL DESCR. SURCHARGE UT-l Remolded 95%Mod Pt.@ OMC 200 SAMPLED TEST STARTED TEST FINISHED SETUP NO. 7-28-96 CAL 8-7-96 CAL 1 MOISTURE/DENSITY BEFORE AFTER DATA TEST TEST wt.Soil &Ring(s)(g)386.9 404.5 Wt.Ring(s)(g)93.0 93.0 wt.Soil (g)293.9 311.4 Wet Density PCF 122.3 120.5 Wt.Wet Soil &Pan (g)302.4 319.9 wt.Dry Soil &Pan (g)266.2 266.2 wt.Lost Moisture (g)36.2 53.8 wt.of Pan Only (g)8.5 8.5 wt.of Dry Soil (g)257.7 257.7 Moisture Content %14.1 20.9 Dry Density PCF 107.2 99.7 Max.Dry Density PCF 113.5 113.5 Percent Compaction 94.4 87.8 ELAPSED BURETTE BURETTE PERCOLATION RATE TIME READING READING FT/YEAR CM/SEC (MIN)hl (CC)h2 (CC) 0.2 2599 10.8 10.8 0.14 1.4E-07 1427 14.2 14.2 0.09 8.4E-08. 1440 16.8 16.8 0.07 6.5E-08 1440 18.6 18.6 0.05 4.6E-08 1440 20.2 20.2 0.04 4.1E-08 1440 21.6 21.6 0.04 3.7E-08 1469 23.0 23.0 0.04 3.6E-08 1440 24.4 0.04 3.7E-08 Data Entered By: Date Checked By: Filename:TIFHUTl NAA ~ Date: Date: 8-8-96 ~e-~ ADVANCED TERRA TESTING,INC. Rogers &Associates Engineering Corporation Post Office Box 330 Salt Lake City,Utah 84110-0330 (80l)263-1600 •FAX (801)262-1527 September 3,1996 Pamela Anderson Titan Environmental Corporation 7939 E.Arapahoe Rd.,Suite 230 Englewood,CO 80112 Dear Ms.Anderson: C9600/9 Enclosed are the results from the radium content,specific gravity,and radon emanation and diffusion coefficient measurements that were performed on the sample sent to our laboratory.We will be returning the sample within the month. Ifyou have any questions orif we can be of further assistance,please calL Sincerely,;?;~g.1~ Scientist tJ 515 East 4500 South •Salt Lake City,UT 84107-2918 Additional Offices in:Idaho Falls,ID •Santa Fe,NM •Washington DC Report Date: Contract: Rogers &Associates Engineering Corporation REPORT OF RADON DIFFUSION COEFFICIENT MEASUREMENTS (TIME-DEPENDENT DIFFUSION TEST METHOD RAE-SQAP-3.6) 913/96 C960019 By:BCR Date Received:,_-----'S<L..<I9'-"<6 Sample Identification:Titan Environmental Radon Diffusion Specific Moisture Density Coefficient Saturation Gravity SampleID (DryWt.%)(l!icm3)(cm2/s)(MpfP)(l!icm3) UT-1 14.5%1.72 9.1E-03 0.89 2.39 RAE Post Office Box 330 Salt Lake City •Utah 84110 (801)263·1600 Rogers &Associates Engineering Corporation REPORT OF RADIUM CONTENT AND EMANATION COEFFICIENT MEASUREMENTS (LAB PROCEDURE RAE-SQAP-3.1) Report Date:913/96 Contract:C9600/9 By:BCR Date Received:8/96 Sample Identification:TItan Environmental Moisture Radon Emanation Radium-226 SampieID (Dry Wt.%)Coefficient (pCi/g)Comments UT-I 14.6%0.22 ±0.04 1.5 ±0.3 RAE Post Office Box 330 Salt Lake City'Utah 84110 (801)263-1600 ;:chen and associates,inc .. CONSULTING ENGINEERS roll L fOONCM,1lOt( EHGIHHIIN' ~S.ZUNI DENVER,COLORADO a022J ~JI7«-7105 1P2'(EAST ARST STREET •CASPER,WYOMING IU01 •~712J.(.-212"i SECTION 2 Extracted Data From SOIL PROPERTY STUDY EARTH LINED TAILINGS RETENTION CELLS WHITE MESA URANIUM PROJECT BLANDING,UTAH Prepared for: ENERGY FUELS NUCLEAR,INC. PARK CENTRAL 1515 ARAPAHOE STREET DENVER,COLORADO 80202 Job No.16,406 July 18,1978 TA8LE i SUMMARY or LABORATORY TEST RESULTS Page I 0'2 NATURAL MaxlmU"O Opt ItnU!I ATTE~'E~C LIXITS CRAOATIOH ANALYSIS ~CMOLDED PE~MEA8ll1 TY Ten IMpth Dry !xolstur.Speclfl.S<>II Hole (Ft.)Moisture Dry Dens Ity Conteot LI qu Id Plitt relty X&><Imln puslng L.u than Dry /'00 Isture Cr-vlty Ty".. Con ~int Oensl ty LImit It·d.X SIze )f200 2M o..nt Ity Cont.nt 't./yr.ern./so•• I'/...(o.n (oef)IX)('l.l 'l.l (X)•1',(.)(pet)('l.l 2 0·5 11].5 10.8 20 3 #16 S8 19 ,11_'16 •.4 0.57 5.5xIO·7 S~ndy SII t. 3 7·8 7.2 21 6 1/16 62 Sandy Crarey I~.l 18.S 33 /3/4 In.S6 8.2",0-8 5lIt' 5 7:\·10 8 12 '102.I 22.0 0.cA5 2.65 C~lcar~us 25 ]1116 .77 SII ty Clay 6 1-2 10.)Sandy CI~yey,S/I t 6 8:\-9 6.I 27 /8 1/4 70 S~ndy CI~y 8 5-5+I). I HP 3/4 In.62 C~Ic.,oou, Sandy Slit 9'0-1 8.I HP 1116 53 Sand -SIIt 10 4-6l 24 10 #4 73 Sandy Clay /I 51-6:!14.0 26 6 #16 65 Slitston..... 'S9 6.6xI0-8 CIa.,.,tone 12 2-5 101.0 20.6 S3 ,/35 #16 88 95.0 IB.3 0.068 2.67 \loathered Claystone 13 7-8 13.I 39 /13 liB B4 Cal c"00'"SII t Clay 14 1-2 19.)4c .'21 114 89 \loathe red .26 /1,2"'0·B 2;64 CI"'I,tol\O 15 I:!-41-106.8 19.0 8 3/8 In.65 2]103.4 18.0 0.012 Mod.Calcarec Sandy ClAy 17 2-3 I1.4 19 4 #8 S9 S~ndy SIlt. t19 0·3 II].5 12.8 23 6 #16 ]0 109.9 12.4 0.035 3.4xI0·8 Sandy CI~yey 26 / .Slit 22 1-2 13.2 10 1/4 73 Sandy Clny 12)1-)48 ./24 #30 ,87 \leathered Claystone ;23 6-3 61 •/30 1130 96 Clayston. ,15 1-Jt I).)26 /9 114 57 Sandy CI.y ,46 41-5 '5.)41 /20 1/4 91 Veathered.Claystone ~l 0-2 12.7 28/10 3/8 In.72 'f Sandy Clay 2-3 8.5 19 2 1/16 59 Sanely S/I t 32 8.8:!5.6 23 6 #30 73 Sondy CI~yoy sri t )7 0-4 118.8 11.5 23 5 #8 ]2 110.5 11.5 0.63 6.,)(10'7 Sondy C,ayey SI It 38 5-7 111,0 16.7 29 /14 3/8 In.69 102,4 17.9 0.0'"4.~)(ro-~SdI\uy Clay 40 4-S!,10.0 16,2 26 .I 9 #8 6.4 27 106 4 16 4 o 017 I ;.In-,~c Sandy Clay .- TMLE SU~Y OF lA80~~TO~Y TEST ~ESULTS Pa90 2 0 I 2 NATURAL Max ImU'll Opt 1ll'lU1!ATTE~I[~C LIMITS C~AOATIOH ~~ALYSIS HMOLO[O ~E~M£M ILI rr Test Depth Dry 1'01 sture Spoc/flc S¢II Hole (F t.)l'<>Istur.Dry o.nslty Cont ellt LIquId Pia'Ilelty /WllinU'll pullng Ltll In.."Dry Mol Iturt CroyIty Type C~ntont Oen,;~y 1%\ LIm It tnde.SIlO /1200 2"«~llty·Contont (t.lyr.",•./sH. (:'l lod locfl 1%1 IXI (~l •(X)(per)(Xl ~~;9-9i 6.8 22 8 3/8 In.60 Sandy Clay ~2 13i·I~i 7.6 26 /10 3/8 In.13 Sandy Clay ~3 I1-12 12.I ~I /22 II~86 Claystone ~J 131·16+110.0 16.9 .4a /2~3/8 In.8S 44 10~.I IS.8 O.02~2.3.10·S 2.62 Claystone lfll 6H 7.5 30 /11 3/8 In.•79 Calcareous S.ndy Cloy ~6 0-2 12.3 22 6 1116 76 Sandy Clayoy vte 30 ./ SII t 5·H 9 3/8 In.65 S.ndy Clay v<9 5·7 110.7 15.6 25 /9 1116 71 105.2 I).9 0.33 J.2xIO·S Sandy Clay ---<9 14-15 28 ,I'5 118 55 C.lcareous Sandy Silt 5/'0-2 12.I 2J 9 /I~.6~Sandy Clay 55 Hr 7.8 28 ,/I~/130 71 .s andy Clay 91·IOi 28 I 13 /14 71 Sandy Cley5S v(a 5]-6 12.5 35 ./II #4 75 ~andy.Siltylay 61 0-I I I.5 2I ~#16 75 Sandy Silt 62 II·lit 8.I NP I In.34 Calcareo\l' Sand t Si It 6;~·6 30 ./I~liS 68 S."dy Clay 65 1-2 9.0 NP 1116 ~4 Silty Sand 68 7j·8 8.6 2s1 13 #S 67 Sandy Clay 70 31.41 16.4 27 ~It In.46 Celeareoul Sand t Silt 72 0-2 12.2 22 8 /116 59 Sandy Cley 10-II 12.4 41./25 /14 75 \leatnered 75 Cleyston< 75 12- I~~S ,I'22 1116 93 Claystone 1,110,1,06 TABLE II LABORATORY PERHEA81LITY TEST RESULTS Compaction ./'-... Sample I Sol I Type I (Dry Holsture %of'Surcharge I Permeabll r ty Dens I ty Content ASTH 0698 Pressure (pef)(t)(ps f)(Ft/Yr)(em/ TH 2 ~0'-5 1 Sandy SII t III.6 16.4 95 500 0.57 5.5xl TH 5 @nl-IO'Calcareous Silty Clay 102.I 22.0 101 500 0.085 8.2xl TH 12 ~21 -5 1 ~oathered Claystone 95.0 18.3 911 I 500 I 0.068 6.6xll Til 15 e ]!1-4!'Calcareous Sandy Clay 103.4 18.0 97 500 0.012 1.2xl ( TH 19 g 0'-3'Sandy,C}ayoy SIlt 109.9 12.4 911 500 0.035 3.IIX ]( TH 37 g 01-4'Sandy,Clayey SIlt 110.5 11.5 93 500 0.63 6.1xl ( Ifl 38 g 5'-7'Sandy Clay 102.4 17.9 92 500 0.041 II.Ox 1( TIl 40 g ,,1-5+'Sandy Clay 106.4 16.4 97 500 0.017 I.6x 1( Til 43 e 13!-16!'Claystone 104.I 15.8 95 500 0.024 2.3x 1( Til li9 e 51-7'Sandy Clay 105.2 13.9 95 500 0.33 3.2x 1C TABLE I II RESULTS OF ATTER8ERG LIHITS Job NO.16,'lu SAMPLE 2 (.iJ a -5' 5 (al 7J -la' 15 (al 1t _Ir!·, 19 (al 0-3' 26 (al Irl-S' 38 (al 5 -7' PERCENT ATTERBERG LIHITS SOiL TYPE PASSING II qu Id PlastIc ShrInkage SHRINKAGE NO.200 lIml t lim!t lim!t RATIO SIEVE (%)(%)(%) Sandy SI It 58 20 17 17.1,81 Calcareous SIlty Clay 56 33 25 25 J.62 Calcareous Sandy Clay 65 26 18 17.5 1.76 Sandy,Clayey SlIt 70 23 17 18 !.80 Weathered Claystone 91 41 2I 12 1,90 Sandy Clay 69 29 15 14 J.89 chen and associates,inc. CONSULTING ENGINEERS SOil L fOUNDATION !M S.ZUNI ENGINEERIJiG DENVER,COLOP.ADO 8022J SECTION 3 Extracted Data From J0317"-'-7105 Jo~No.171130 SOIL PROP:::??f SillDY PROFDSill TAILn~GS RE7ENTIa~CELLS YdUTE I-!ESA lBl,i-:IL1·i PROJEcr BlANDING,liTJlR Prepared for: ~ERGY FUELS NUCLEAR,INC. 1515 ARAPJI_'-10E STREET D-~"VERI cx)LOIW:X)80202 January 23,1979 Job No.1'/,130 Page I 0 f 3 CHEN AND ASSOCIATES ,TABLE I SUMMARY OF LAElORAT'ORY'TE,ST RESULTS .--'-. II AT URAL NATURAL DRY ATTERBERG LIMITS UNCONFINED TRIAXIAL SHEAR TESTS PERCENT HOLE DEPTH MOISTURE DENSITY L10UID PUSTICIT'l'C.OMPRESSIVE DEVIATOR CONFINING PASSING (F E ET)SOIL TYPE (·I.)(perl'LIllI T IIi 0EX STREllGTH STA ESS PRESSURE NO,200 ("I.)(·1.)(p SF).(p SF)(P SF).Sf EVE .- __L~__0-1 _._lr.!2..._21 2_,__7_8 _._~,~.!1.cI.'i~lL~_.___._____.--_._------9.j,_-_IL _'!!,._4.__NP ..26 ..~.r_Lt.Y,J~.~®.-.2~_~L-.__.----.,- --1.7 7_~L=-~8,6 30 15 --1_1_2.£l.0!IY_~L~ 79 0-1 1,.I 20 5 83 .2P..n_(~I::.~J_l.t_._.._____ 5 -5tL 5.5 NP I __11)_•..CpJ <':~.C~ld.~....~_q.n (N...~J .tll 110 Lf.5 -7 39 20 ___7JJ__~oJ..c_a rc o~~_~.'"-r:~L ..~.L~-_.I [J ..8.5 10.1 1,0 20 86 \.fcnthercd claystone,-..-----_._".........-.- 81 3 ..I,6.3 26 8 61,..S.il.l'y 1._S.~r:..~Y..~1.~'y_.__~---------_.-. 83 I,_6 21,?.61,_~~n~I.I:l .~lC1.'i~.y_.~.Ul_._--_." 8LI 0-2 18 2 __..~5__..__?!:ndy.s,I.~t....__...._.__--'-9 -...9.5 2.7 NP }.]_...?IJty...s.Jf}~.___.___ 86 8 -8.5 2.6 NP 12 SAndstone--._..-._-..............._-.......-.._- 87 0-1 3.1 16 I 61 _~~~.c!y'_~,I..I..S ..__._._.__. 89 o ::3 2.1_-5 66 s<3n.c!y _.~.LH.___._...._- 90 8 -8...5-_12.,9 35 15 --61 ..~\:Ie <l.~~<;r.c 9.'7.1.9Y~~,.()..n~._ 92 0-1 5.9 21 5 80 Si3ndy'.:.f,~t .__,,__•___.-_._-f--''-'- 9/1 5 -5.5 13.7 27 10 68 .2~.rJ,dy _C:1.0Y_________.__.------.-_._._- 95 6 - 7 ...2L 5 62 ._$~io~y._~.11 ~.___...._ 96 o -?5.2 21 L,79 ._~~n..~y ...?.!J t __.....___ 8.5 -9.5 32 '6 66 •C<l1~9.r~,ou.~_~0.~Y..~_l_~.------...3.........-.:-_.}:'----_?~n.~Y_?!.i .t____._._._._.b 0 -I ._3t.L__20,-._..- I,-1~.2-f--l~.8 .1,19 25 ...__7.6__...'i.r:;..~~11~!_~_~.~.~y.~.~oD~ 99 [j -9.5 1,0 20 -89 Heathered clc1J:~_s.~:~0_c_----i CllEN AND ASSOCIATES TABLE I SUMMARY OF LABORATORY TEST RESULTS Job No.0 Pil9C 2 of 3 HOLE 103 ~Q/I 105 DEPTH (FEET) NATURAL MOISTURE (%) NATURAL OEn'ATTERBERG LIMITS UNCONFIN EalTR IAXI AL 5HEAR TESTS DENSITY L1DUIO PLASTlCITYCOMPRESSrVE OEVIATOR COl/FINING (per)L1lJ ITIN0E:X STRENG TH STRES S PRE SSUR E ("I.)("!o)(PSF)(PSF)(PSF) PERCENT PASSING NO.200 SIEVE SOIL TYPE I I 1!3 3--I -L-I I 38 16 ?5 1 25 }O I L,O 20---211 10 -I .- I I 22 I 6 NP 22 5 24 10 "-I 25 5 I I 25 I 6 CHEN AND ASSOCIATES TABLE I SUMMARY OF LABORATORY TEST RESULTS I ' Job No.J7,130 P89C 3 of 3ft•.~ NATURAL NATURI\LDRyATTERBERGLlMITS UNCONFINED TRIAXIAL SHEAR TESTS'PERCENT[ HOLE I ~EPT~MOISTURE DENSITY L10UIO PLASTICITY COMPRESSiVe:DEVIATOR CONFINING PASSING SOIL TYPE FEET ("!o)(I'el")lIlill IHCO 'STRENGTH .STRESS PRESSURE NO,200 (0/0)(0/0)(PSF')(PSr)(PSFl SIEVE.. Lill__~!5__:JL,S 'l,O 20 , _'_~9 lr!Q...<J..t b.~r9.s.1,_f lQY~to...rl~_. f-u.2_-_'I J ..:?_":'_2-._1_0t.2-26 .12 68 __1~.f!ciY~.9Y _ _L20 I -.}___'25 8 __§3__.?~~?Y.I-~~'t.~~~~t_ ,-2...:-.~t2 15_,5 29 10 78 ..~~.~?Y.£!.9Y..,,,._ II -11.5 IJ,6 ~2 24 90 Cltlystonc 122 1,--::6-----25 8 .~£==~~~Q~Y_,~~i'u·y.-~J~~= )/1,2 -15.6,l,26 8 '.66 S~~~r.':~Y._.._..._.__ 123 1 -3 23 7 7.._1_._~9D~YJ __~!.~Yc..'t..sl.l.t_ 1211 /'2---2-6,0 23 7 69 Sandy,cltlyey 51 It-.:...J ..•. _ -___._._.._ 12S 0 - 1 _-.J,8 22 6 _?'.L_._.~~n?.Y._~.I.l.t __._._._._ 127 5 - 6 511 311 '___?~__..~.1~y.s.t.~.~!.__ 128 6 -8 41 2L'90 CI<:lystoncI---f-.----_'"-----.."-- I I I·I I ·1 1 I 1 I .,----------- I I I I I I I I I 1..-·1--------.·-._ ~I I I \-'--1-I II I +--------_._-_. I I j I I I I I I -I I .----.--. \I t I I r'I·f--_._-.---.-..-_._-.,--.-._-_._----._- ~I I j I I I I I I'·1-···-- --I I I' I I I r I 1---·'-------·-.--- I I I I I I I I I I·'--- \ I I I I I I I 1-----1---·_-·,----. l I I I I I I r-I 1--'-'--1---0 -.-- \ I I I I I I I I 1-__.-'I .E /I LABORATORY PERMEAnILITY TEST RESULTS CompactIon Dry MoIsture %of Surchurgc Perme<lb 1J 1tySilll1pleClassIficatIonDensItyContentAST/1 D698 Pr~ssllrc Ft./Y r.em/Scc(pef)(%)(ps f) Tli 80 (@ 1'-1--7'-Calcareous sandy clay 100,2 19.4 96 500 0,81 7.8xl0-'M200Q 78;LL~39;PI-20 TH [31,(al 0-2'Sandy sl It 113.8 11,7 96 500 l,.45 11.3xI0-C -200~65;LL~18;PIR2 TH 96 (@ 8J-9}'Calcareous sandy clay 96.9 20.7 97 500 1.55 1.5x I0-1:-200.,,66;LL"32;PI",6 TH 96 (@ 8t-9t'Calcareous sandy clay 95.7 20.3 96 500 26,901'r -52.6;<10 Tf!99 (@ 8-9~'Weathered claystone -7-200=89;LL-40;Pl a 20 99.8 18.5 95 500 0.22 2.Ix I0 Til 100 (ill 0-I I Very s II ty sand 117.5 9,?98 500 0.38 3,7x10-7 -200,,1,1,;Pl-NP TH II"(al 0-2'Sandy,clayey 51 It I 12 .If 12,9 95 500 0.60 5.8xI0-7 -200 n58;LL~22;Plo6 Tf!120 (al 1-2'Sandy,cluyey 51 It 108.2 Jl~.7 95 500 0.1 J I.Ix I0-7 M200",69;LL~24;PinG· TH 122 (al 1,_6'Sandy,sIlty clay 108.8 15.5 96 500 o.LJJ L'.2xI0-7 -200=66;LLa 25;PlaO T/I 1?J ~i)I-31 Sandy,cluyey sIlt 110.9 12,G 95 500 0.5G 5.',;(1OM 7 -200"'71;LL"23;PI ..? Til 1213 0J 6-7 1 Clnystone 92,11 23.9 93 500 O.12 1.2xl0-7 -200 ..09;LL",lll;r1"'211 Til 128 (al 6-7'Claystone 93.I 22.1 9LJ 500 O,5;U..5.0xl0-7t -200",89;LLnll J;r/..4 *1.5 I'll sulfuric (lcld Helllor used durIng percolntlon test Intcrval, e JJ } :'i ~~i~U ~1nJill!U J ..U 1liillff~;;t~•••11111111ffflll1111~ffflf11!!!1111111ill1111111;11 !.~£~~a~ifllllll'11111111~lililiii1111ilffii.i!!1~1~lli.lll!~iiii5!~--~ ~111:111111i fff fl!!!!I~tillill1ill11i;1~lffafff!fllii:1 ~i it ~i ~ ~i ttlil~lfil1ii!11flfffl!lfRil1l11111111il~iiiii;11iilil~fl~fIIII~;;ififf~!;ii;allll1~iilliilffft~i~;~;~fffff;I!III;lii l111i Ili~iiiliiiiiliiiiiff!!1iliiiilllilliliiiiiff~··ifl.fiiiil Illil ....Z~;iE-~!ffSS!1!fl(f!111.iif51111ii1ilffffffflS!111ffI3flfSt1~lilll ~lI:i'.I!Jjl ~~"~'~,:l:m t,/:I:••••am...;;;••••"'C~;;;;;:";;;:pa;";:;:;••;;;, j iti~~!f11i)1~fff/f1.!filii11i filii!11 ~~~;faa~f!!111 ~~1111l111 ~i~~~ I ~....../~I JIJIIJJlIlllfllllffflJJffffilflfilllllllfflllllifflllf!Jlflj;1 Jila,idlffn!~;:u!n~UddddddS:ld3ilniUa:'ddgdudddd~dddIU~~ I ··I!<e tI~.....•..1rRHZ I{Jf~$:;1;~If~Ii(lfJt,.1\~&a$!""aalt ~s:;::::12R:il;~:;~$!~8g g R-,$a;~~:l:l...gr ....~.!'"..~~.;,j..::t!=::~:;~~:;A~$;l;V~.~::l:t<l~....·~-::!e;("~~....=~fhff$lOlI!;U~:lI ......• ,.----.-.,,'",2-,/ -"--.'.:\Qqj••••••:~q~4qO......09~~~~-4f-_...~ct:r...,-.-_._..~~!'fq~4lf:~~~_..G q-Q-t--,~~ii(i'-"···"~X.J!X~~~~~~~~~~~a~~~·"~..~·:=.~t~"~.RnXl;=·:=:;~""-- ~..~.~../:.~••aq~••qq~~~~~~~..e~~~e~._••_oo~~~.~~.q~e~e~~._~~_.~I·~ill "-......"·..~t!~::=~~~ft~RX.V'••~~~ft.._"..~..=:~K~.....~~~;(a~..J!~~:lI....- Iii~UlmmmnUmmml!mn..m~mg!!!!iifmmm~•• ~1S:i uun~nn~n·unnnn!nntUU~-~ijijijijniln~H'J~~~~di niillnnnninnlnnUUuu~niihinlnnUnnll~~e;!§i illil~I~~~~~~!!!~~~~~I!!!~~~~~~~~~~!~!!~}~~!!!!!!~~~~~~~!~!~iii~~t~iiii~itii~fffiriifif(iii~~ttfiiii~iitttti,tfitti~it~ !!i~!!I!!I§~~!!i!illi~&iiiii§§§§§~ii!i~§niii!iili!!i~iUIi~~1 5~~~~~~51~!~~!~1~~11~~~~~1~~~~1~1~~~!1~~~~~~~33335§1~~i5~~~ .-:.--.~-:..~.-......'-.';:-".~_... .t·-_......."'" 502 820 2941 88%P.12 ..i: I JludlUJIJlfJldliUlllilllillhHIIIIUIII!UulmdllmUn: aI!2 i!~!! I a i ~f ti~~,I ~!!iii '"f l J 1 jj 111 IIIiilll~f;.~f~a.·f"""""'ff'f'f"'f""""""f······i~·i••••••••••• ~~~iK ~~i~;~~i~ffl~~~~~~~~~l~~~~1~ff~1~~11~l~~111~~i~~11f~~1E~~ff~~1111~ f'~~t.J 5 ~~~~1;~~~:~11111~1!~~~11111;~~1111~ai~;~11111~1111a;~11 a;~~1~~~ ~j ~~~ ~!~~~~1~~11~~111~~i~~11;11fl~~111111~~~~~1~1f~~~~111~ai~~11l~;~~:::~ ~~~I 1~i~~i211ial1f~~~~~~~111~~~~11111f~~:~~~11lli~~111ff~;;11;~itt{::: ~l@~ II!~~~iiiii·~iill1~i~iI:iI~1111il~11111lll1~~lllfffilll!'!'lil!il~iii11~~-:~ ......l~~~1115l~~S!3!1111~1i~i1~111111ll~~111!i11:111illl~11~5!Sl~S~~S~11!1~ ~La~~;II "~~~~i~~~~~-·o~~o~~~~-;·~~~~~;~a··""~~~~~~~~"~~~~~~~-"~~~~~~~~~~~N~~~•••"~zz __~.~._~_~n'ri ~~~_~"~••~d_ft .•~~._.~_~k~_._"~_.~~ 2~~---~----~-~~fi R w~"W ~~~~_N~"_____.~--"-.~~---~.. 3 "rtii~!~~~~~~iiii~~11fl~f~~~~~ii~~{~t{i111~fff:~~~~~1Iitii;~li1~~ii§~i.~!!1 i 3 Qo~:i~ !i§ >f.~~lu~aa~~~:.s~a!i!!~!ggddddddddddd~B8~dddddddddd~nllldddddda:ligad~:;lid'H 5 ill ;;~!~!!~~~!5?J55~~~~;aa~~~~~~;;;~ii5~~~~~·~~=~~·~555~~~~~~!~!~!~!~~g~ ~._••qqOODD__D_O__~.~~~~_~_~_~~q~~~"DDDqq~~.QD .qqqqqOOD Oq~~~~g ~~~~••~~~.~ri~~~~ti•••-H~~~~~~~~-v;~~~g~~~~X-~~1~.~~~.ri.-ri.~~~_~~~~_~!l~----~~__-N -•---ft ------~- ~~~f.~~~::~:~~:~~~::~,~~~:~::~:~~~~:::::~:~:~,q9::::::~'~~~~:::~~~::~9~i ~~t ----"""hhNR~ft~.~~__h --~~~~~--- --~"~ Iin nmmlimi!m,mmmmmmmmimm~ijijmlmm·~. ~~~i --~j~iJij~ij'ijij~ijijijijij'J!!~nijnijij!gH4~~~~~~~.,.,-_......~~~i~~~'n'~ijile~ll~ii~lilllll~!~II~!~III~IIII~.~nU!I~!li~!!I~~~~f;~~~i!Uiiil~il~~ i ~j ~~~ldiiii~~~~~~nU!UU~~~~!Un~lln~~~!~~~~~~~~~!~IIIIII~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~rr~~~~~~~«~~~~li~~~~~~~~~r~~i~~~~~~~rll~~~~~~~i~~~l~~~i~~~~~~~~~~~~,1IIIIIIIIi!lllliliiiiiilii!ililiiiiiili!iiiiiillllllii§§~§~~~§§ii~ AUG-09-1996 11:03 ......-'~_"•.'-"':-.•-~~•.-C-:-:'•.. 602 820 2941 98%P.13 ~ijijlij~~¥~~.~~1}tt,t~"""t~~;~ee§H~~ijijij~~~·~~~~~~·~~~i~~~ijij'ijijijij~§ijij~lllllllllllill~lnIUlhfii£ld~I~ljj!liiiil~~I~lillliii~1~1~1~~~__~"n"""n"h ~~_~"""~~~~~~~~~~~~~~~hnhft~h""""ft"ftnnftn"n"~-~_ !~!nun~~~~~~~~~~~~~U~~~~U~!!~~!!!~U~UU~~~!!l~!i!~~~~aaa~~aa ~ ! j &;i I 11 !!jSil ~1~1~I~ifiliiilil~llfffllllllllI1~fl~l~~iiillfffll~~~~liiilillilli S g - . I~~~••~lffii~lfffffl!lfllI1111ffillilflill~~~111~f~ff~~flII11111III1I U~~~ ~allltlilil;lllf~fii~3Iif~fllllllllllllllflllllliii;;I;Iliiaiiiiiii ~~ §3 ;HHIUliiUU~~Ha;Hi;U~~IHiHHiHUlUUfil;11;HH~~IIH~~ II~I ~~~f~f(~~~~~~~~~I~~~~~~~~~~~~~~~~~(a~~~~~~~~iaa~~~(~~~~~~(~fff~~f ~D~f·~~~i~~HUfUIUI8HIIUUHIIIUiiigiHIHI8i1iiIU~~~1Hl~H~:H~Ill;-----£..1~~~-HIHHIUIUUUHUUiUUiHUHHUUi:HIUUUU:UUHUUU::e~. .~t Jio~~i~-~~a;i~·~~~~~a-~·-~~o~.~~-~~~~~.~.~-~..~~.~~"q~~~~~~~~~••o~~.~~_~n~.~nn••_H~N~~.~~ft_.~~~_N~ft__~_.N"~__O ~~"._._on_"H_n_ ~~A -fi""---~W~_~~4~~_~_~~~_.N N~_~~~-~~_~~Hft ~-~__H~fth__ 10 1 u~i~i·~~~Ifl11111il~;I~lliiiiSi~illlllllliilii~;al;;~illl1111111111ilii~;~; !i!~---- o S •fi ~re- I I dlillilUIUIUUmduUiJUUUnM1JiilmnUnliUlIHUil 1 ~~d!!~~~~~d~ddddddd3d~~ddddddddd~~d~~dadddlai~5aaaaadddd~dddd~~8~u~~ f 8 w~~~~~~~~~q~~~~~~~~~=~~~~~~~~~~~~~~~~~~~~~;~=~~~=~~~~~~~~~~~~~~~~~~~il~~~~~~~~~·~j~~~~~~~~~~~~~~~~ri~~11=~~~~j~~~~~ti·-~~j~~~~~~~-j~~~~~~:~ ~~~~~~~~o~eoa~909q~~~~~~~~~~~~~~~__••oo.~••~~_.o_o~e_a~~__G ••q~~~~ii~R~~~~~~~~~~~~.~.V~~R~H~RRN~H~V~.~~~~~~~~."-~-~~~~~~~~ri~-.~2~~~d~:~ ,~~~_~~ooo~~_~~q~~~~~~~~.~~oo~oooO••_.__.09__··oo_o.q_9~90QQQ~~~~O-"!~!f 2:==t~.1~·~~R~~R~·~~R~~~-~~~~~;~.~~··~~~~N~~__~~~~t~~~~··~~x~x~:~~!~i~i~~~iiii~l~i!iHli~ii2i§Siiiili!!figJI~~I~'III~II~H~I,!g1IIIi!!~lill, ~~.~.;~I~~i 5! I ~;::~ ~ AUG-09-1996 11:04 602 820 2941 97%P.14 I •..1..-../ 5~i~~ H hi i ~ §hi RIA I 1~a i ~n m j Iz II ~ 1 J a!1 H iii ~il I I ~(ilill f;I~;I;ff~(~1~11;a~11ff'('IIll~1111111111111111111111~lIII1l1~111i !~i~~1jI1iii('il~l;ff~~iIff(fflffl1IIIIfffl11fflffflfl1~~li11fIlft~llfl UO ~~~~~111~~~~fllf~~~1g;~ffa~~111:11~ffl111~11ll~~1~~~1;Ifllll~fl~flI!t.. §~ff~1~1~fl~111ff~111;~a11;;~il1ill~~~11ff;fffl1;11111;~fll11l1~~~~1 ~¥~B ffl1~11"ii~1;~2ill~~111111!ilf2it~I!!~lliI1fl~lal~SI~llil1~lalall ~ii~ ~iif 11~fiffll§f!liiiil'!iillllfffiiai1ill'i'ffllll11~lii'!!11111{il~1~ ~f;lfI1&-ffJJ1~11111~151.115!!1Iill~1~5fll11~~1~11111i~!11111~5flil~~311Sfle:.~t ilJI ~;ft~;~a~;~~~~i~~~11;;a~~;~;~~~;~;~:;a~;~i~~~i~2~::;;;:;i;~;i:~;;;~ ~g~J:~2i;~~~~E;i~~;f~ifI12~~~~E;ill~~~~lfll~~~~~~~lflll~~;~~;i2a;~;~~~al it ~~!K - --1t §~i I :::m~jmjiUjdUJjUffjJj~djmUjjjjb!HdIlmJJuduIUJ:~I dddaa3~att~~~~~d~'dd~ddd~~I~!~~~a1~~SSdldt~ads~~3aaal~dddddlaa:~dd loS ~~~5!~~~~~~;~i!S~i!~~!!f!55~!~~!3!2~~~~a~~~~~a=~~!g~::;;~~~!!55§;5~:~~a~ ~i- qq~~~~ooqq~~aoQqq~~~~o~_q~~~~oqq~.~~~~~~~Qq~~~~~~~.~9q~q~oqQQ~~~_~~ii ~~~~__dr •._-O···-~~······-R··d~.~.-~-~.~~~~~-..~_d~~~~_~OM~ri~..O""~~2·•••~_:::::.:::••••••••:.:•••::::::-:::•••••:.:••::•••••:::••-_:::I t~(...••.•••••..••.--.....•..•...••••••,••••••••.••.••••.-..••....••, I m.~§§~.~U~!i~·;·lmnmnti!mmim!!ggm!ii!m.i1~mmfi~n!l~ ~tl':;l -----.----.",,~mm!.n!nf~UnnUi~!~!glif~~~~~!:;.,:i~:z~~~~"~1~5I~~r:f;~f;U H tf:~~~H hn~u~I!n~~~nH~fU~~~!I~~~~~~H ~j~~HJ:~~e~H ~t ~~~~~~u~~~~~~~!!!I~lin!u~~~~~u~~~~~~~~!!~~~~~~~~U!~~~~a!~~3~~~~~ 15 ,I '{'l~;;,~ 602 820 2941 98%P.IS AUG-09-1996 11 :06 602 820 2941 97%P.16 RUG-09-1996 11:06 602 820 2941 97%P.17 APPENDIXB Radon Calculation .........--_.-.....-...-._-_.-.-.-:=E E E:-":::~Environmental TITANEnvironmental By TAM Date ~Subject EFN -White Mesa Page_i_of .32- Chkd BylttL Date~-"R~a""d"""on,-,--"=,C"",al""c"""ul,""a-",-tio,,,,-!n.L.-Proj No 6111-001 Purpose: Method: Results: To detennine the required soil cover thicknesses to limit radon emissions from the White Mesa tailings impoundments to 20 pCi/m2/sec using United States Nuclear Regulatory Commission (NRC)approved methods and inputs.The White Mesa Mill site is located in Blanding,Utah. Detennine the geotechnical and radiological properties ofthe tailings and cover materials based on NRC-accepted methods and existing database values previously collected.Input parameters into the computer modeling program "RADON"to detennine the radon flux values through the cover materials.A variety ofscenarios adjusting cover thicknesses were run to detennine the optimum thickness ofcover materials to meet NRC specifications.It was assumed that the tailings located in the three cells at the White Mesa Mill site (Cells 2,3,and 4A)have similar properties (Figure 1).Therefore,cover layer configurations as determined by the RADON model are applicable to the three tailings cells. A 2-layer uranium mill tailings cover composed of(from top to bottom)a 2-foot layer ofrandom fill and a I-foot compacted clay layer will meet NRC specifications.In addition to the tailings cover materials,a minimum of3 feet of random fill will be placed between the tailings and soil cover to fill the currently existing freeboard.This 3 foot layer was included for modeling purposes since it will assist in reducing the radon flux from the tailings impoundments.This layer, however,is not considered a part ofthe actual soil cover.The resulting radon flux exiting the top cover layer ofthe tailings impoundment will be 13.6 pCi/m2/sec (see Appendix Al for RADON output). As indicated in the "Effects ofFreezing on Uranium Mill Tailings Covers Calculation Brief'(6/17/96),6.8 inches ofthe top random fill cover layer will be effected by freeze/thaw conditions at Blanding Utah.This suggests that 6.8 inches ofthe top layer may not contribute to reductions ofradon emanation from the tailings covers.To conservatively compensate for effects from freezing and thawing,6.8 inches were subtracted from the top random fill cover layer. Executing the RADON model based on this cover configuration resulted in a radon flux emanation of 17.6 pCi/m2/sec (see Appendix A2 for RADON output). NRC specifications (Regulatory Guide 3.64)requires that a uranium tailings cover "..produce resonable assurance that the radon-222 release rate would not exceed 20 pCi/m2/sec for a period of 1,000 years to the extent reasonably achievable and in any case for at least 200 years when averaged over the disposal area over at c:\efn-whit.e\radon2.clc [9/16/96J TITANEnvironmental By TAM Date 9111/96 Subject ~E='.!FN~-=--W..!.L.!..!h.llite~M~e~sa±..-Page 1.---of 52- Chkd By.Date 1\1I;\qlf Radon Calculation Proj No 6111-001 least a one-year period"(NRC,1989).Therefore,the above design with accounting for freezing and thawing conditions is adequate. Parameters:The RADON model requires input ofthe following parameters for all tailings and soil cover layers: -layer thickness (centimeter (em)); -porosity; -mass density (g/cm3); -radium activity (pCi/gr),source term,or ore grade percentage; -emanation coefficient; -weight percent moisture (long-term)(percent),and; -diffusion coefficient (cm2/sec). Physical and radiological properties for Tailings and Random Fill were analyzed by Chen and Associates (1987)and Rogers and Associates (1988)respectively.See Appendix B1 for analysis results.Clay physical data input for RADON modeling are included in Appendix B2 and were analyzed by Advanced Terra Testing (1996)and Rogers and Associates (1996). The following cover profile was modeled. ,'".,m .,.,_.__.,_, \~\~\~ Random fill (2') Clay (l') ~~~:'-".L..--£----'~-L.--.....-L_.£.--_Randomfill (3'min.) \~Tailings [16.4'(500cm)] ' _w_0 0 co .,__~~ This cover configuration represents the actual cover layer thicknesses which would be constructed on site.The cover profile above was adjusting for modeling purposes to account for freezing and thawing conditions.The modeled profile is identical to the one above with the exception ofthe top random fill layer which was reduced to 1.4 feet (2 feet minus 6.8 inches).It is assumed that 6.8 inches ofthe top cover layer effected by freeze/thaw conditions will not contribute to reductions in radon emanation from the tailings covers. c:\efn-white\radon2.cle {9/16/96} TITANEnvironmental By TAM Date 9/11/96 Subject -"E=FN-,-,--_Wh-,-,-,-,=ite"-,,-,-M~e=sa,,,---Page~of 32- Chkd By.Date~Radon Calculation Proj No 6111-001 Layer thicknesses The thickness ofthe tailings was assumed to be effectively an infinitely thick radon source.In accordance with NRC criteria (Reg.Guide 3.64,p.3.64-5)a tailings thickness greater than about 100-200 em is considered to be effectively,infinitely thick.A value of 500 em represents an equivalent infinitely thick tailings source.The actual tailings thickness ofCell 3 at White Mesa is approximately 28 feet (850 em),therefore,a value of500 em was used for the RADON model. A minimum of3-feet (91.5 em)ofrandom fill will cover the tailings to fill the existing freeboard and bring the tailings piles up to the subgrade elevation ofthe soil cover.A I-foot (30.5 em) layer ofcompacted clay covers the random fill with an additional 2 feet (61 em)ofrandom fill overlying the clay layer.Adjusting for freeze/thaw conditions results in a (43 em)random fill layer overlaying the clay layer. Porosity Porosity is calculated from the specific gravity and dry bulk density according to the following equations; 1.Dry bulk density =[(specific gravity)(density ofwater)]/[1 +e](Ref.:Principles &Practice ofCivil Engineering,1996,equation 14.5.6).See Appendix C. 2.Porosity =[e /(1 +e)]x 100 (Ref.:Principles &Practice of Civil Engineering,1996,equation 14.5.4).See Appendix C. Max.Dry Bulk Dry Specific Density of "e"porosity Density Density Gravity Water (lb/ft3)(2)(3) (lb/ft3)(lb/ft3)(1) Tailings (4)104.0 98.8 2.85 62.4 0.80 44% Clay (5)113.5 107.8 2.39 62.4 0.38 28% Random fill (4)120.2 114.2 2.67 62.4 0.46 31.5% Notes: 1.Bulk dry density is 95%ofthe ASTM Proctor maximum dry density for all materials. 2.Calculated using Equation 1 above where "e"is the volume ofvoids per volume ofsolids. 3.Calculated using Equation 2 above. 4.Physical tailings and random fill data from Chen and Associates (1987)included in Appendix Bl. 5.Clay physical data from Advanced Terra Testing (1996)and Rogers and Associates (1996) included in Appendix B2. c;\efn-white\radon2.clc (9/16/961 TITAN Environmental By TAM Date 9/11/96 Subject -",E"-,-FN~-_Wh~"",ite,,-M,-,-,",,,e~sa,--Page~of 3~ Chkd ByJ?il?L Date q\l\o\q\,p Radon Calculation Proj No 6III-00 I Mass Density Mass densities were measured by Rogers and Associates (1988 and 1996)to be (see Appendix Bl and B2): Tailings Clay Random Fill 1.45 g/cm3 =1.72 g/cm3 =1.85 g/cm3 Radium Activity,Source Term,or Ore Grade % Radium activity values from Rogers &Associates (1988 and 1996),were input for White Mesa tailings and cover materials (Appendix Bland B2).The radium activity values are: Tailings =981 pCi/gm Clay =1.5 pCi/gm Random Fill =1.9 pCi/gm. Emanation Coefficient Emanation coefficient input for the tailings and cover materials are measured values from Rogers &Associates (1988 and 1996),included in Appendix Bland B2.The coefficients are: Tailings =0.19 Clay =0.22 Random Fill =0.19 Note:Use ofNRC's default value ofE=0.35 is not considered appropriate since laboratory analyses ofemanation coefficients are available. Weight Percent Moisture Long-term moisture content (weight percent moisture)was assumed to be 6%for the tailings. NRC Regulatory Guide 3.64 states,"ifacceptable documented alternative information is not furnished by the applicant,the staff will use a reference value of6%for the tailings moisture content because 6%is a lower bound for moisture in western soils"(NRC,1989).Laboratory data does not exist to determine the actual weight percent moisture oftailings therefore,this is a conservative assumption. The weight percent moisture ofthe new clay source (UT-1)is also unknown therefore,it was assumed that the average weight percent moisture from clay (site #1 and site #4)would be equivalent to the new clay source (UT-l).This is also a conservative assumption as the new clay c:\efn-white\radon2.clc [9/16/96] 2=0.0142 cm /sec 2=0.0091 cm /sec 2=0.0082 cm /sec TITANEnvironmental By TAM Date ~Subject EFN -White Mesa Page 5 of 3 2- Chkd By QrA Date~.2o.R""a""'do""n"-C"""a....'-"-'cu"-"'a""'t.!.>,io"-'n Proj N-o-611-1--0-01 source is believed to be ofbetter quality.Weight percent moisture values for clay and random fill were derived from the "Summary ofCapillary Moisture Relationship Test Results"figures included in Appendix B1.Weight percent moisture values used for modeling purposes are: Tailings =6% Clay =14.1% Random Fill =9.8% Diffusion Coefficient Diffusion coefficient input for the tailings and cover materials are measured values from Rogers &Associates (1988 and 1996),included in Appendix Bland B2.The coefficients used for tailings and random fill were an average ofthe two values presented.The coefficients for each material are as follows: Tailings Clay Random Fill References: Advanced Terra Testing,1996,Physical soil data,White Mesa Project,Blanding Utah,July 25, 1996. Chen and Associates,1987.Physical soil data,White Mesa Project Blanding Utah. Freeze R.Allan and Cherry,John A.,1979,"Groundwater". Principles &Practice ofCivil Engineering,2nd Edition,1996. Rogers and Associates Engineering Company,1988.Radiological Properties Letters to C.O. Sealy from RY.Bowser dated March 4 and May 9,1988. Rogers and Associates Engineering Company,1996.Report ofRadon Diffusion Coefficient Measurements,Radium Content,and Emanation Coefficient Measurements,September 3,1996. U.S.Nuclear Regulatory Commission (NRC),1989."Regulatory Guide 3.64 (Task WM 503-4) Calculation of Radon Flux Attenuation by Earthen Uranium Mill Tailings Covers", March 1989. c:\efn-white\radon2 .clc [9/16/96) '1(,: WHITE MESA PROJECT SITE 0 RAINAGE FI(jUR..£:I ., ( .~. l,.~ !lI I t.I TITANEnvi I<J ental By TAM Date -bE""'-FN..u---'W'-'-'h!.Ui""tec.LM!..!.:e""s""'a Page::Lof31- Chkd By-1.ffi.-Date q \'<J Radon Calculation Proj No 61 11-001 Appendix Al c:\efn-whit.e\radon2.clc (9/10/961 -----*****!RADON !*****----- Version 1.2 -MAY 22,1989 -G.F.Birchard tel.#(301)492-7000 U.S.Nuclear Regulatory Commission Office of Research RADON FLUX,CONCENTRATION AND TAILINGS COVER THICKNESS DATE/TIME OF THIS RUN 09-10-1996/18:06:33 EFN -WHITE MESA CONSTANTS RADON DECAY CONSTANT RADON WATER/AIR PARTITION COEFFICIENT SPECIFIC GRAVITY OF COVER &TAILINGS GENERAL INPUT PARAMETERS LAYERS OF COVER AND TAILINGS DESIRED RADON FLUX LIMIT LAYER THICKNESS NOT OPTIMIZED DEFAULT SURFACE RADON CONCENTRATION RADON FLUX INTO LAYER 1 SURFACE FLUX PRECISION LAYER INPUT PARAMETERS .0000021 .26 2.65 4 20 pCi A-2 sA-1m 0 pCi lA-1 0 pCi A-2 sA-1m .001 pCi A-2 A-1m s LAYER 1 TAILINGS THICKNESS POROSITY MEASURED MASS DENSITY MEASURED RADIUM ACTIVITY MEASURED EMANATION COEFFICIENT CALCULATED SOURCE TERM CONCENTRATION WEIGHT %MOISTURE MOISTURE SATURATION FRACTION MEASURED DIFFUSION COEFFICIENT 500 .44 1.45 981 .19 1.290D-03 6 .198 .0142 cm ~o cmA2 sA-1 LAYER 2 RANDOM FILL (FILL FREEBOARD) THICKNESS POROSITY MEASURED MASS DENSITY MEASURED RADIUM ACTIVITY MEASURED EMANATION COEFFICIENT CALCULATED SOURCE TERM CONCENTRATION W~IGHT %MOISTURE ~STURE SATURATION FRACTION MEASURED DIFFUSION COEFFICIENT 91.5 cm .315 1.85 g cmA-3 1.9 pCi/gA-1 .19 4.452D-06 pCi cm A-3 sA_1 9.800000000000001 % .576 8.200000000000001D-03 cmA2 s"'-l LAYER 3 CLAY (UT-1) 'l'HICKNESS ROSITY MEASURED MASS DENSITY MEASURED RADIUM ACTIVITY MEASURED EMANATION COEFFICIENT CALCULATED SOURCE TERM CONCENTRATION WEIGHT %MOISTURE MOISTURE SATURATION FRACTION MEASURED DIFFUSION COEFFICIENT 30.5 .28 1.72 1.5 .22 4.257D-06 14.1 .866 .0091 em 9 em"'-3 pCi/g"'-l pCi em"'-3 8"'-1 % em"'2 8"'-1 LAYER 4 RANDOM FILL THICKNESS POROSITY MEASURED MASS DENSITY MEASURED RADIUM ACTIVITY MEASURED EMANATION COEFFICIENT CALCULATED SOURCE TERM CONCENTRATION WEIGHT %MOISTURE MOISTURE SATURATION FRACTION MEASURED DIFFUSION COEFFICIENT 61 em .315 1.85 9 em"'-3 1.9 pCi/g"'-l .19 4.452D-06 pCi em"'-3 8"'-1 9.800000000000001 % .576 8.200000000000001D-03 em"'2 8"'-1 DATA SENT TO THE FILE 'RNDATA'ON DEFAULT DRIVE N F01 CN1 ICOST CRITJ ACC 4 O.OOOD+OO O.OOOD+OO 0 2.000D+01 1.OOOD-03 LAYER DX D P Q XMS RHO 1 5.000D+02 1.420D-02 4.400D-01 1.290D-03 1.977D-01 1.450 2 9.150D+Ol 8.200D-03 3.150D-01 4.452D-06 5.756D-01 1.850 3 3.050D+01 9.100D-03 2.800D-01 4.257D-06 8.661D-01 1.720 4 6.100D+01 8.200D-03 3.150D-01 4.452D-06 5.756D-01 1.850 BARE SOURCE FLUX FROM LAYER 1:4.667D+02 pCi mA-2 sA_1 RESULTS OF THE RADON DIFFUSION CALCULATIONS LAYER THICKNESS EXIT FLUX EXIT CONC. (em)(pCi mA-2 sA-I)(pCi lA-I) 1 5.000D+02 1.233D+02 4.519D+05 2 9.150D+Ol 2.562D+Ol 7.892D+04 3 3.050D+Ol 1.962D+Ol 2.276D+04 4 6.100D+Ol 1.361D+Ol O.OOOD+OO lOr-)2- TITAN Envir9.J;\J;llental By TAM Date ~Subject --"Eil..FN-w--_W~hju>te,,-!M~es"-'Ja,---Page~of 32-- Chkd By__Date Radon Calculation Proj No 6111-001 AppendixA2 c:\efn-white\radOn2.cle (9/10/96J -----*****!RADON !*****----- Version 1.2 -MAY 22,1989 -G.F.Birchard tel.#(301)492-7000 U.S.Nuclear Regulatory Commission Office of Research RADON FLUX,CONCENTRATION AND TAILINGS COVER THICKNESS DATE/TIME OF THIS RUN 09-10-1996/14:46:46 EFN -WHITE MESA (ACCOUNTING FOR FREEZE/THAW CONDITIONS) CONSTANTS RADON DECAY CONSTANT RADON WATER/AIR PARTITION COEFFICIENT SPECIFIC GRAVITY OF COVER &TAILINGS GENERAL INPUT PARAMETERS .0000021 .26 2.65 s"'-l LAYERS OF COVER AND TAILINGS DESIRED RADON FLUX LIMIT LAYER THICKNESS NOT OPTIMIZED DEFAULT SURFACE RADON CONCENTRATION RADON FLUX INTO LAYER 1 SURFACE FLUX PRECISION LAYER INPUT PARAMETERS 4 20 pCi '"-2 '"-1ms 0 pCi 1"'_1 0 pCi '"-2 '"-1m s .001 pCi '"-2 '"-1ms LAYER 1 TAILINGS THICKNESS POROSITY MEASURED MASS DENSITY MEASURED RADIUM ACTIVITY MEASURED EMANATION COEFFICIENT CALCULATED SOURCE TERM CONCENTRATION WEIGHT %MOISTURE MOISTURE SATURATION FRACTION MEASURED DIFFUSION COEFFICIENT 500 .44 1.45 981 .19 1.290D-03 6 .198 .0142 em g cm"'-3 pCi/g"'-l pCi cm"'-3 s"'-l ~o LAYER 2 RANDOM FILL em g cm"'-3 pCi/g"'-l THICKNESS POROSITY MEASURED MASS DENSITY MEASURED RADIUM ACTIVITY MEASURED EMANATION COEFFICIENT CALCULATED SOURCE TERM CONCENTRATION ~IGHT %MOISTURE =STURE SATURATION FRACTION M~ASURED DIFFUSION COEFFICIENT 91.5 .315 1.85 1.9 .19 4.452D-06 pCi cm"'-3 9.800000000000001 .576 8.200000000000001D-03 s"'-l cm"'2 8"'-1 LAYER 3 CLAY THICKNESS ROSITY MBASURED MASS DENSITY MEASURED RADIUM ACTIVITY MEASURED EMANATION COEFFICIENT CALCULATED SOURCE TERM CONCENTRATION WEIGHT %MOISTURE MOISTURE SATURATION FRACTION MEASURED DIFFUSION COEFFICIENT 30.5 .28 1.72 1.5 .22 4.257D-06 14.1 .866 .0091 em g emA -3 pCi/gA -l pCi em A -3 8 A -l % emA 2 8 A -l LAYER 4 RANDOM FILL THICKNESS POROSITY MEASURED MASS DENSITY MEASURED RADIUM ACTIVITY MEASURED EMANATION COEFFICIENT CALCULATED SOURCE TERM CONCENTRATION WEIGHT %MOISTURE MOISTURE SATURATION FRACTION MEASURED DIFFUSION COEFFICIENT 43 em .315 1.85 g emA -3 1.9 pCi/gA -l .19 4.452D-06 pCi em A -3 8 A -l 9.800000000000001 % .576 8.200000000000001D-03 emA 2 8 A -l DATA SENT TO THE FILE 'RNDATA'ON DEFAULT DRIVE N FOI CNI ICOST CRITJ ACC 4 O.OOOD+OO O.OOOD+OO 0 2.000D+Ol 1.000D-03 LAYER DX D P Q XMS RHO 1 5.000D+02 1.420D-02 4.400D-Ol 1.290D-03 1.977D-Ol 1.450 2 9.150D+Ol 8.200D-03 3.150D-Ol 4.452D-06 5.756D-Ol 1.850 3 3.050D+Ol 9.100D-03 2.800D-Ol 4.257D-06 8.661D-Ol 1.720 4 4.300D+Ol 8.200D-03 3.150D-Ol 4.452D-06 5.756D-Ol 1.850 BARE SOURCE FLUX FROM LAYER 1:4.667D+02 pCi mA-2 sA-1 RESULTS OF THE RADON DIFFUSION CALCULATIONS LAYER THICKNESS EXIT FLUX EXIT CONC. (em)(pCi mA_2 sA_I)(pCi lA_I) 1 5.000D+02 1.237D+02 4.514D+05 2 9.150D+Ol 2.679D+Ol 7.622D+04 3 3.050D+Ol 2.123D+Ol 1.944D+04 4 4.300D+Ol 1.756D+Ol O.OOOD+OO TITANEnvironmental By TAM Date ~\¥fJ&Subject ....,E~FN"'-'----'-W.!--'.h.!..!Jit""'-e..uM..."e=sa"-Pagenof 11-- Chkd By__Date Radon Calculation Proj No 61 I 1-001 AppendixBl c:\efn-white\racton2.clc 19!1O/96l -12- --rML.\tVftS f\:f00 ~()C#-A.f\\.-L (\LOP 'i~Tl z:..s Table 3.4-1 Physical Properties of Tailings and Proposed Cover-Materials Atterberg Limits Specific %Passing No.200 Maximum Dry Density Optimum Moisture Material Type Tailings Random Fill Clay Clay LL El Gravity 28 6 2.85 22 7 2.67 29 14 2.69 36 19 2.75 Sieve 46 48 S6 68 (pcf) 104.0 120.2 121.3 108.7 Content 18.1 11.8 12.1 18.5 1S Note:Physical Soil Data from Chen and Associates (19~). K A E Rogers &Associates Engineering Corporation Post Office Box330 Salt Lake City,Utah 84110 (801)263-1600 Ma rch 4,1988 Mr.C.O.Sealy Umetco Minerals Corporation P.O.Box 1029 Grand Junction,CO 81502 Dear Hr.Sealy: C8700/22 We have completed the tests ordered on the four samples shipped to JS. The re~ults are as follows: Radium Emanation Oi ffusion (g/cm3) Sam;11e pCi/gm Fraction Coeoffic.Density Hoisture Saturation Tail ings 981±4 0.19±0.01 2.0£-02 1.45 13.2 0.39 8.4£-03 1.44 19.1 0.56 Composite (2,3,&5)1.6£-02 1.85 6.5 0.40 4.5£-04 1.84 12.5 0.75 Site ill 1.6£-02 1.85 8.1 0.48 1.4E-03 1.84 12.6 0.76 Site #4 1.1£-02 1.65 15.4 0.63 4.2£-04 1.65 19.3 0.80 The samples will be shipped back to you in the next few weeks.If you have any questions regarding the results on the samples please feel free to call. 5i ncerely, ~o/~ Renee Y.Bowser Lab Supervisor RYB/b 515 East 4500 South·Salt Lak~City.Utah 84107 R A E ?""'"() Rogers &Associates Engineering Corporation Post Office Box 330 Salt Lake City,Utah 84110 (80l)263-1600 May 9.1988 Mr.C.O.Sealy UMETCO Minerals Corporation P.O.Box 1029 Grand Junction.CO 81502 Dear Mr.Sealy: C8700/22 The tests for radium content and radon emanation coefficient in the following sumples have been completed and the results are as follows: Sample Random (2.3 &5) Site 1 Site 4 Radium (pCi/g) 1.9 +0.1 2.2 "+0.1 2.0 +0.1 Radon Emanation Coefficient 0.19 +0.04 0.20."+0.03 0.11 +"0.04 If you have any questions regarding these results please feel free to call Dr.Kirk Nielson or me. Sincerely. 6!rtr~ Renee Y.Bowser Lab Supervisor RYB:ms 515 East 4500 South·Salt Lake City.Utah 84107 ",.'r;:•• I(Xl U1 I ."} ~~I/· . ' I I ' I I ,.. ,•••••••f f ••••f •••••••••••,•••••,I ••••I •f •••• · I , I I , I ' .·,.,.,","""..,.,.,'.,'.,.,..,",.• • , ,••,••I ••••••••, , , • , , , ,••I • ,••••••, ·....,...;.,.....". 24 .jI. . ..........t I • • ••••,'.• • •••••••I I ... .....! ..'.'".\. ::::':.:::::::.:..:.i,..':::..:::::.:.:'.'I ••••••I ••I •t I ••I'I •I'••••••••••I •I •••••..• • • ,••,••••••••••• ••••••••••••••I I ••••••••t •••••••••••"I •••I ••f ••••,••, • 22 1·\...:...•··:··.·:··::·.···1·:.-:··:··.···:·..·:···..:.:..•-:..•..•..•..:-•......:-.-~..:-:-:-.:-.-:...~..:-.-:..:-~..:.:.~..!.:-..•-.:-~-:.~..~......:.•.~..~..•-.-.~:I··:··:·.-:-:····:··::··· •• ••••••••••t'••••••t'.•••I"I I••••••• • ••••• • •••,....t..••. '....:::::::':::.:.:"::::::.:.I •••,.••• • •" I •••••••••••I I......,....".,!..,..." 20 ,;...>:...:...:......:...:::::::...:......::,..:::.:.:::..~......:::>:..~:::......:~..:::~.~::......::>~..::::>''':''':''':''':''':''':''':''':''':'''1''':''':''':''':''':''':---:''':''':---,,.." ,,.........,.,I , . •••••••••••t I •",•••••• •I"•••••••••""• I ••• ••I..• .•••I'•••I'••"~I ••• I •••I · . . . . . . . .. . . . : .:.'CLAY.:.ATERIAL:.·:..:....· I....."...SITE '#;4 ........ ..... 18 I : : :..·:···:..,:..·:·..:··,:·..:,..:..·:·..:..·:·..:..·::,.'.::~: : : : : : : : : : :::..,:: : : : : : :;.,...I ... ..... .• I 1"7 lP I ....: :..:.., :'I ..-. ••••••t ••••••:••,.,......, ,..' ,,..,.., ,I'. •••••, •••••••t • ••••I ••,••"I ••••••t.•••••••••I •••••I • I ••,•••,.,.'••••••, 16 \...:...:,..:...:...:..,:...:...:...:......,:...:...:...:...:...:...:...:...:......:...:...:...:...:...:...:..~...:......:..:...:...:...:...:...:...:...:...,...:...:...:...:...:..:...:...:...:......:...:...:...:...:...:...:..:...:.,....:...:...:...:,..:...:...:...:...:......:...:...:...:...:,..:...:..:...:... ~ r-"z~zou W 0::::>f-(J) o ~ ,'1··,···..·····,·········1·····.•••, • , •••,•••f ••,.•••••f •••,........•••••••••,••,••••,..•••••••••.,.,••••• •••••••f f ••••I • •••• I • • • • •••••••••••• ••••••••••••••I ••,•••••••••••••••••• :::::::::I:::::::::.:::::::.:::::::::::,::::::::::.:::::::: ::.:::::::::::::::: 14 o 2 4 6 8 TENSION,BAR 10 12 14 16 FIGURE 4.4-2 SUMMARY OF CAPILLARY MOISTURE RE'LATIONSHIP TEST RESULTS WHITE MESA PROJECT DATA FROM CHEN &ASSOCIATES;.~ • t •'"•••• • •,t'•••••••,f ••I •••I ••••••••• •••••••••i ••••••0 •• •••••••"t'I ••••••••t •I •••••••I • I ••••••• ••••••••I I ••••I •••• ,••,•••••I •••••I ••• •••••I •••I I • I • ,•••• 8 C t I i I1I(I !I • • • . • • • • •I . . . . . . . ..\. :::::::::I:::::::" o •I •t • , • ,i . . . ... .. ,••••••••I ••••••••• ••••••••I j •••••••••• •,•••I ••I ••••••••• ••••,••••I ••,••••I •,••••••••I ••••••••• •••,•••••I •••I ••••• I 0:~I ., ,,..,. :..:.....-r: • I •••I •••l I ••••••••,•••••••••J ,•••••••• ::::.:::::I:./ctAY::MATERlr·L:::...~::::y:::::S'ITE>~l'..:..;.:::;:'•.._ 'I • • • ••••.••',............: •••••••••i •••••••••1 •••••••••I •••••••••I •••••••••l ••••••••• ••••• • • • • I , ••• • • • • •i •• •••• ••••• • • • •I • ••~•••••• •••l • • • • • • • • • •••••••'.I n"\,•I •I I •••,•••••••••f •••••••••,I •I ••••••J , •I I •••••I ••••I • I •• ••I ••••••l ,.,••••••I •••••••••~•••••••••~•••••••••,••••••••I I·•••I ••••I.···••••• 16 l"':"':"':"':"':"':"':"':"':"'l~":"':"':'.':'.':'.':'.':...:,.0:...1••,:,.,:..,:,..:,.,:,.,:,..:..,:,.':'••...:.u:: :~..:...:...:...:...''':''':''':''':''':''':''':''':'':.'h''~'':''':''::''':''':''~.'':..':'.....:'.':'..:'.':'..:...:'.':'..:'.':'....':'.':'.':'.':'..:'.':...:'..:'.':'.. I ....... .........:.... •t •••••••••••••••••••••••••.'.• ••• •• •............ I ....... ........ '(,. ........ . • I • ••••••.,.• • • • ••••••••••••••••,.• 14 1'''\·'..:::::::..~l ::::::::::::::;..:::~:::..~:.:.:::::::::::::~..~..:..~..::~..::: : . ·k··::::···l ··:····:···::::··:::::::::::::::::::..:::::::..... I ... ........... ............... . ,••••I ••••.• • • • • •••.....,...• • • • • ••••••••• ,.• I ••••• • • • ••••••••••••••••••••••I •• 10 I···· · ·..• • · · · ·..•_6 .~..I _}··1 '''')·........I·········~........ ...'";".q.e>•"wi)·.........N':.......-:i..=J••.• •••I ••,•••••••••••'"I • ••••••I • I • I • I ••I,'I ••• I ••I I ••••••••I •••I.'••'•••· . . . . . ....;.RAN 'OM Flt.t.·. . • •t •••I ••• I ••••I •••••••I •"'•••••••••••••••_..:•••••f •••I!. :::::::::II :::::::.:::::::::::::::::::::::::~:I!~r '.:~~~:~':~~::::::::I :::>.>::: I . • . , . ,•.".......•••••••••,I."I ••••••••••••I .I . • . • • • I I.'...I • .I . , . ,~-'.. . 8 !.o 2 4 6 8 10 12 14 \',16 12 ~ I-ZUJI- Zoo wa: :) l-(/) o :2 ~:t FIGURE 4~4-1 SUMMARY OF CAPILLARY MOISTURE RELATIONSHIP TEST RESULTS WHITE MESA PROJECT TENSION,BAR DATA FROM CHEN &ASSOCIATES !!T~~E:':W~:::(I-,=E'-'-FN.w....::._--'-WL.!.hJ.!.!it""-e-!.!M",,,e""-!sa=---Page1--\.of ?l...--- Chkd By__Date Radon Calculation Proj No 6111-001 Appendix B2 c;\efn~""hit.e\radon2.clc (9/10/961 --AIlVAflCcD TcRR~rI:STll1li.-inc----,833 Parte!Street Lakewood,Colorado 80215 (303)232-8308 ATTERBERG LIMITS TEST ASTM D 4318 CLIENT BORING NO. DEPTH SAMPLE NO. SOIL DESCR. TEST TYPE Plastic Limit Determination Titan Env. UT-1 ATTERBERG 1 2 3 JOB NO.2234-04 DATE SAMPLED DATE TESTED 7-25-96 WEB,RV Wt Dish &Wet Soil Wt Dish &Dry Soil Wt of Moisture Wt of Dish Wt of Dry Soil Moisture Content 3.34 2.96 0.38 1.05 1.91 19.90 4.06 3.57 0.49 1.11 2.46 19.92 3.42 3.03 0.39 1.06 1.97 19.80 Liquid Limit Determination Device Number 0258 Number of Blows Wt Dish &Wet Soil Wt Dish &Dry Soil Wt of Moisture Wt of Dish Wt of Dry Soil Moisture Content Liquid Limit Plastic Limit Plasticity Index 103.1 19.9 83.3 1 39 12.18 6.64 5.54 1.10 5.54 100.00 2 27 10.42 5.67 4.75 1.06 4.61 103.04 3 4 5 18 14 9 10.92 12.33 10.06 5.87 6.53 5.34 5.05 5.80 4.72 1.06 1.10 1.08 4.81 5.43 4.26 104.99 106.81 110.80 Atterberg Classification CH /'-~ Data entry b~A Checked by:_~~~_ FileName: NAA Date:7-26-96 Date:7~l~-qb TIGOUT1 ADVANCED TERRA TESTING,INC. Atterberg Limits,Flow Curve ••UT-1 112 111 110 109 108 C 107G.lC 0 1060 ~105.3(J)·0 104~ 103 102 101 100 99 •~ ~'""'""""- I ~ ~ .~ """'".......~ ~ I~ "II Number of Blo'NS PLASTICITY CHART ••UT-1 25 /' /A / /V V~,/"'" /~,,v,/OH /.--/.--/ /~\~<c-\"<v /'CLorCL /V V /,/ /'U AL // /'./'...~~.~~ Cl-ML V 100 80 xG.l 60"0E £0~ t1l 40a:: 20 o o 50 Liquid Limit I.A.Classification I 100 150 CLIENT: BORING NO. =.PTH ..:>AMPLE NO. Titan Env. UT-1 C !PACTION TEST ASTM 01557 A SOIL OESCR. DATE SAMPLED DATETESTEO JOB NO.2234-04 7-25-96 RV Moisture determination 1 2 3 4 5 Wt of Moisture added (ml)100.00 150.00 250.00 350.00 450.00 Wt.of soil &dish (g)384.26 393.92 291.42 244.20 281.17 Dry wt.soil &dish (g)350.60 355.61 251.40 202.69 225.04 Net loss of moisture (g)33.66 38.31 40.02 41.51 56.13 Wt.of dish (g)8.01 8.34 8.31 8.29 8.43 Net wt.of dry soil (g)342.59 347.27 243.09 194.40 216.61 Moisture Content (%)9.83 11.03 16.46 21.35 25.91 Corrected Moisture Content Density determination Wt of soil &mold (Ib)14.20 14.49 14.68 14.59 14.46 Wt.of mold (Ib)10.36 10.36 10.36 10.36 10;36 Net wt.ofwet soil (Ib)3.84 4.13 4.32 4.23 4.10 •·..,t wt of dry soil (Ib)3.50 3.72 3.71 3.49 3.26 J Density,(pet)104.89 111.59 111.28 104.57 97.69 Corrected Dry Density (pet) Volume Factor 30 30 30 30 30 n~.ta entered by:RV Date:7-26-96 .a checked by:~Oate:--1..:I<o-% fileName:TIPRUT-1 ADVANCED TERRA TESTING.INC Proctor Compaction Test 1 ••UT-1'------ 403020 Moisture Content (%) 10 II f-\I -\ -\ f-\ 1\Zero Air Voids CUi ~e ,\-~oC5ieporte&beIVVV...... f- ~ -(~\ f-/0 '\\ I ~-r ~ r-~ ""f- I I I85 o 90 95 100 130 135 125 140 120 C-O0.115---->.~Ul C OJ0 1~OC 0 105 -Best Fit Curve o Actual Data -Zero Air VoidsCurve @ SG =2.70 OPTIMUM MOISTURE CONTENT =13.9 MAXIMUM DRY DENSI1Y =113.5 ASTM D 1557 A,Rock correction applied?N ADVANCED TERRA TESTING,INC. PERMEABILITY DETERMINATION FALLING HEAD FIXED WALL Titan EnvironmentalCLIENT BORING NO. DEPTH SAMPLE NO. SOIL DESCR. SURCHARGE UT-l Remolded 95%Mod Pt.@ 200 JOB NO.2234-04 SAMPLED TEST STARTED TEST FINISHED OMC SETUP NO. 7-28-96 CAL 8-7-96 CAL 1 MOISTURE/DENSITY DATA Wt.Soil &Ri~g(s)(g) Wt.Ring(s)(g) Wt.Soil (g) Wet Density PCF Wt.Wet Soil &Pan (g) Wt.Dry Soil &Pan (g) Wt.Lost Moisture (g) Wt.of Pan Only (g) Wt.of Dry Soil (g) Moisture Content % Dry Density PCF Max.Dry Density PCF Percent Compaction BEFORE AFTER TEST TEST 386.9 404.5 93.0 93.0 293.9 311.4 122.3 120.5 302.4 319.9 266.2 266.2 36.2 53.8 8.5 8.5 257.7 257.7 14.1 20.9 107.2 99.7 113.5 113.5 94.4 87.8 ELAPSED BURETTE BURETTE TIME READING READING (MIN)hl (CC)h2 (CC) 0.2 2599 10.8 10.8 1427 14.2 14.2 1440 16.8 16.8 1440 18.6 18.6 1440 20.2 20.2 1440 21.6 21.6 1469 23.0 23.0 1440 24.4 PERCOLATION RATE FT/YEAR CM/SEC 0.14 1.4E-07/ 0.09 8.4E-08. 0.07 6.5E-08 0.05 4.6E-08 0.04 4.1E-08 0.04 3.7E-08 0.04 3.6E-0~ 0.04 3.7E-08 Data Entered By: Date Checked By: Filename:TIFHUTl NAA ~ Date: Date: 8-8-96 ~5-'k. ADVANCED TERRA TESTING,INC. Rogers &Associates Engineering Corporation REPORT OF RADON DIFFUSION COEFFICIENT MEASUREMgNTS (TIME-DEPENDENT DIFFUSION TEST METHOD RAE-SQAP-3.6) Rcpon Dale:..__WJ/lJ6 OmlrJCI;<'~.600f) BY:.._._~.L1{ D-JIC ReedV(xl:.'0/%. Sample Identification:TitanEnYirv.lJlncolaL Radon Diftwdon --Specific Moisture Density Coefficient Saturation Gravity SampleID (DryWt.%)(sr/cm3)(cm2/s)(MpIP){(!/cm:J) {IT-I 14.15%1.72 9.1E-03 0.89 2.:39.. -_.-...-.- _.. -...-..--.._. .-- .-.... ---- .-._. ----. .- RAE SEP-03-1996 14:16 PoatOMc()Box 330 Snlt Lake City.Utah &4110 (SOl)263·1600 8012621527 P.03 Rogers &Associates Engineering Corporation REPORT OF RADIUM CONTENT AND EMANATION COEFFICIENT MEASUREMENTS (LAB PROCEDURE RAE-SQAP-3.1) Report Dale:91JflSJ ContrJl1:('9(j.JJf) By:.--lK.~ D~ltc Rcccivcd:_._.8f1Q Sample ldendfi<:ati~1ltan EoviroomentaI -.,..- Moisture RDdon Emanation RadIum-226......ID (Dry Wt.%)Coeflldent (pCi/sd Commt'nts UT·l 14.6%O.22fO.04 15 ±O.3 - -.. ....-".-- - ......- _.........-,.. '"... .- _...".- _.".0 .---- -_. RAE SEP-03-1996 14:16 P~t Office Box:33Q Salt Lake:City·Utah 84IlO (SOl)263-1600 8012621527 P.04 !1T~~E~~.~~Je~tl-""E...FN-'-'-----'-W",-,h-'-"it=e-uM",-"e=sa",--Page3(Lof 52--- Chkd By__Date Radon Calculation Proj No 61 I1-001 Appendix C c:\efn-whit:e\radOn2 .clc [9/10/96J ".,. ~,,""~--1;-:;. ...from the Professors who know it best... PRINCIPLES &PRACTICE OF CIVIL ENGINEERING -2nd Edition- The most efficient and authoritative review book for the PE License Exam Editor:MERLE C.POTTER,PhD,PE Professor,Michigan State University Authors:Mackenzie L.Davis,PhD,PE1 Richard W.Furlong,PhD,PE David A.Hamilton,M5,PE Ronald Harichandran,PliO,PE Thomas L.Maleck,PhD,PE George E.Mase,PhD Merle C.Potter,PhD,PE David C.Wiggert,PhD,PE Thomas F.Wolff,PhD,PE Water Quality Structures Hydrology Structures Transportation Mechanics Fluid Mechanics Hydraulics Soils The authors are professors at Michigan State University,with the exception of R.W.Furlong,who teaches at the University of Texas at Austin and D.A.Hamilton who is employed by the Michigan Departmentof Natural Resources. published by: GREAT LAKES PRESS P.O.Box 483 Okemos,MI 48805-0483 (14.5,4) (14.5.5) (14.5.3) (14.5.2) (14.5.1) 1J"Dei ~~It.-~~, bs ~~e(.i (,<..-6vctv~ti.s.6) y~-.~,,51'~C+-~v (l+w)yw w/S+l/Gs (1.20)(62.4)=110.2 Ib/ft3 0.2/0.6625+112.65 (l+w)yy=IU wlS +llGs en=---l+e ne=--1-n The.dIyunitweight can be obtained as The total unit weightcan be obtained as (G +Se)ry=$IU l+e The relationships between the void ratio and porosityare For saturated soils (5 =100(10)there results A very useful equation relating four different quantities is Se=wGs ----I-<E-XAMPLE 14.8---------------------- =Gsyw =(2.65)(62.4)=91.9Ib/ft3 Yd 1+e 1+0.800 5 =wGJe =(.20)(2.65)/(0.800)=0.6625 or 66.3% Rework example 14.6 using equations introduced in this section. e 0.800 n =l+e =1+0.800 =0.444 Solution. and It is strongly recommended that weight-volume problems be solved using phase diagrams rather than only formulas,as completing a phase diagram clearly indicates whether sufficient information is known to complete the problem,whether information is insufficient and assumptions must be made,or whether too much information is present and the problem is overconstrained.For example,it maynot be immediatelyapparent from the informationgivenwhether a soil is saturated until all quantities are calcu- lated.Nevertheless,following are given additional useful equations that may be used to solve certain classes ofweight-volume problems. 14.5 Other Useful Equations for Weight-Volume Problems 14-8 Soil Mechanics APPENDIXC Radon Flux Measurments ....-.._-_.......-........--_.-.-.--=iii iii E:-':=~Environtnental III ••••••••, -, -,, I I, I (a)'nle mean radon flux tor e8ch region within each cell i.88 follow,,: I Cell 4 -Cover Area 7.'pCi/tI-.1I (bued on 2~S.882 m2 areal •s..eh Areall 23.3 pCl/ml••(based on 41,7'1 m'l area) Standing Liquid Area.=0 PCi!m'l.a (baaed on 2,-982 mZ are~1 i dell 3 -Cover Araa a 7.S pCi/tI--a (baaed on 82,"2 mZ area) •Ikach Areas I:39.7 pC1/m'l-s (based.on liJ.761 m,2 arQ3.) •stanc11ng Liquid Areaa - 0 pCi/m'l.a (baaed on 143,335 m'l.&ru) Note:Reference Appendix B of this report;for entire !Summary for individual mea.ure~nt reaults and IIpacific 8&ll\Ple region mapa . (b)ing.the data preaanted above,we have c&l~\ll.ted the total mean radon a.tollowa: C 11 2 -10.0 pei/ml •• (7,')(225,882)t (21,311t"UlJt (0)(2.9UI 270.625 3 •10.8 PCi/ml-a n.S)(82,76.)-+(39,7)(§.,'U)...{OJ (143,33S) 281,151 SEP-10-1996 11:05 32 85%P.02 (pCi/ml-s) i (pCi/~-.) J _ll~...,J~[-t-)•••JtA, •At Where:J.-Mean flux for the total pile J.-Mean flux measur.d in region At -Area of region i (mzl At -Total area or the pile (m2) The individual radon flux calculationa shall be ~de as provided in Appendix A EPA 86(1).The mean radon flux for each region of the pile eMU be calculated by aUlllllting all individual flux measurements for the reqion and dividing by the total number of flux measur~.nt.for the region. (b)The mean radon flux for the total uranium mill tailinqs pile shall be calculated as follows: fPIJ:RESULTS/CALCUlATIONS ReterenbinQ 40 eFR,Part 61,Subpart W,Appendix a,Method 115 -Monitoring tor Radon-2k2 Emissions,Suba8ction 2.1.7 -Calculations,"the mean radon flux tor each rebion of the pile and for the total pile shall be calculated and reported as tOll~wS: Ca)i I \ 6.0 I I I I I I I I I I I 2.1.8 Reporting.The results of individual flux measurements,the approximate locations on the pile,and the mean radon ~lux for each region and the mean radon flux for the total stack [pile]ehall be inclUded in the ~ss1on test report.Any condition or unusual event that occurred duxinq ~.measurements that could s10n1f1cantly affect the results should be reported." I I (a) I I I I I 11.1 pCi/m2-a (baaed on 82,762 m2 area) 44.8 pC1/~2_,(based on 62,761 mJ areal - 0 pCi/mJ-a (based on 143,335 m2 iilr9iil) Reference Appendix B of this·report for entire summary for individual measur~ent results and spQcl!ic aamplQ rQgion maps. 13 I 1 SEP-10-1996 I 11:05 .--.-----..---rr---~...---_.------7-._.- 32 85%P.03 I (bl Using the dote pruentecl above,we have calculated the total moan radon flux for each pile (cell)a8 follows: Cell 2·9;5 pCi/m2-a \6.1)(225,BB21 ...(28 ••)141,761)+{O)(2,9B2) 270,625 I II \ I \ I \ P.0485% ---~~_._~- 32 -----_._--_.---,--. Cell 3 -12.9 pCi/m2-s I {11.1)(82,762)...(44.8)(62,761)of-(O)(H3,335) i 288,858 iiI \I II III II , 11:06SEP-10-1996 I I I I I I I I 1 I I,,, I I,, APPENDIXD HELP Model ....-..._--....-..-......_-----.----=E E i:--:.::-;:EnvirofilIlcntal TITANEnvironmental By TAM Date~,Subject EFN -White Mesa Page_I_of 34 Chkd By~Date~~H~el~p"""",M""",o-=d,,,,,e~1 Proj No 611 1-001 Purpose: Method: Results: To determine the required soil cover thicknesses to minimize surface water infiltration through the White Mesa tailings impoundments so that precipitation will not fully penetrate the soil cover.The White Mesa Mill site is located in Blanding,Utah.The performance ofthe tailings cover was evaluated using the Hydrologic Evaluation ofLandfill Performance (HELP)Model.The HELP model was developed to facilitate rapid,economical estimation of the amounts of surface runoff,subsurface drainage,and leachate that may be expected to result from the operation ofa wide variety ofpossible cover designs. Determine the soil properties ofthe cover materials and climatic properties of Blanding,Utah based on existing database values previously collected,and acceptable default parameters.Input parameters into the computer modeling program "HELP"to determine the percolation through the cover materials.A variety of scenarios adjusting cover thicknesses were run to determine the optimum thicknesses ofcover materials to eliminate percolation through the bottom cover layer.The modeled tailings cover consists ofa compacted clay layer over the tailings,with a random fill soil layer covering the clay. The model was developed for Cell 3 at the White Mesa Mill since it is the largest ofthe three cells to be covered (Cells 2,3,and 4A).Figure 1 shows the location ofthe cells.The cover requirements determined for Cell 3 will be applied to the remaining cells as well.This is a conservative approach since the remaining cells are smaller in size and require less time and distance for precipitation runoff. A two-layer uranium mill tailings cover composed ofa 2-foot layer ofrandom fill over a I-foot compacted clay layer will reduce percolation into the tailings material to a negligible quantity (see Appendix A for HELP results).As indicated by the model results,precipitation will either runoffthe soil cover or be evaporated. The cover thicknesses recommended above were also determined to be the minimum thickness requirements for White Mesa tailings covers based on results from radon flux calculations (see "Calculation of Radon Flux from the White Mesa Tailings Cover",9/11/96).As indicated in the Radon Flux calculation,to restrict radon flux to 20 pCi/m2/sec,(Regulatory Guide 3.64),a cover consisting of2-feet random fill and I-foot compacted clay is required. c:\efn-white\help2.clc [9/16/96J TITANEnvironmental By rAM-Date 9/1 1/96 Subject ~E"",FN~_---,-Wh~it""e....,M....,e"",s-",-a Page 'L-of 11 Chkd By.Date~Help Model Proj No 6111-001 Parameters:The HELP model requires input ofthe following parameters for the cover materials: -Weather Data: Evapotranspiration Precipitation Temperature Solar Radiation -Soil and Design Data: Landfill area (area ofCell 3) Percent ofarea where runoff is possible Moisture content initialization -Cover Layer Data: Layer type Default soil/material texture number Runoffcurve number Weather Data Evapotranspiration and solar radiation data was input using the default parameters from Grand Junction,Colorado.Grand Junction is located north east of Blanding Utah in a similar climate and elevation.The elevation at Grand Junction is 4,600 feet and the elevation at Blanding Utah is 5,600 feet.Figure 1 in Appendix B shows the locations ofBlanding and Grand Junction in relation to one another. Precipitation data from 1988 to 1993 (skipping 1989)was obtained from Utah State University (see Appendix C).Daily precipitation values for the five years were input manually into the HELP model.Temperature data was obtained from the Dames &Moore (1978)and is also included in Appendix C.Daily temperature data was not available for manual entry therefore, the computer calculated mean monthly temperatures based on the default location (Grand Junction,Colorado).These values were then edited to match the actual mean monthly temperatures for Blanding,Utah. c:\efn-white\help2.cle 19/16/961 TITANEnvironmental Subject EFN -White Mesa Page~of 34 ~H......""el'¥P...J.;ML!Co"",d,,-,,eO!-I Proj No 6111-001 Soil and Design Data The surface area ofCell 3 at the White Mesa Mill,Blanding,Utah was used for the landfill area value.The surface area,as indicated on Figure 1,is 78.7 acres.It was assumed that runoff was possible over 100%ofthis area and that no rain would sit on the tailings cover. Cover Layer Data Laver Thickness: A two-layer cover over approximately 28 feet ofuranium mill tailings was used to run the HELP model.Actual cover thicknesses which would be constructed on site consist of2-feet ofrandom fill over a I-foot compacted clay layer.This cover profile was adjusted for modeling purposes to account for freezing and thawing conditions.As indicated in the "Effects ofFreezing on Uranium Mill Tailings Covers Calculation Brief'(6/17/96),6.8 inches ofthe top random fill cover layer will be effected by freeze/thaw conditions at Blanding,Utah.This suggests that 6.8 inches ofthe top layer may not contribute to reductions ofinfiltration into the tailings piles.To conservatively compensate for effects from freezing and thawing,6.8 inches were subtracted from the top random fill cover layer.Therefore,modeled layer thicknesses consisted of 17.2 inches ofrandom fill over 12 inches ofclay. Layer Type: The random fill soil layer was classified as a vertical percolation layer.Vertical percolation layers are composed ofmoderate to high permeability material that drains vertically,primarily as unsaturated flow.The clay layer was classified as a barrier soil liner.This material consists of low permeability soil designed to limit percolation/leakage and drains only vertically as a saturated flow. Moisture Storage Parameters: Required moisture storage parameters such as;porosity,field capacity,wilting point,initial soil water content,and permeability,are interrelated with the exception ofpermeability.The porosity must be greater than zero but less than 1.The field capacity must be between zero and 1 but must be smaller than the porosity.The wilting point must be greater than zero but less than the field capacity,and the initial moisture content must be greater than or equal to the wilting point and less than or equal to the porosity (U.S.EPA,1994). Based on these relations,actual measured porosity and permeability values were input for random fill (Chen and Associates,1987)and clay (Advanced Terra Testing,1996,sample UT-1). See Appendix D for physical property data.In addition,wilting point data for the layers was set c:\efn-white\help2.clc (9!16/961 TITANEnvironmental By TAM Date 9111196 Subject ~E"",FN,--"-,-_--"Ww.h.....,it","e......,M,-,-,e"",s,,,-a Page~of -g4 ChkdBy~Date~Help Model ProjNo 6111-001 equal to the long-term moisture content ofthe materials and the soil water content was adjusted to equal the optimum moisture content.Field capacity values just less than the porosity's were assumed to maintain the interrelationship ofthe parameters. RunoffCurve Number, The runoffcurve number was calculated by the HELP model based on a minimum surface slope of0.2%,slope length of 1,200 feet,soil texture ofthe top layer,and vegetation.A slope length of 1,200 feet was assumed to be the maximum distance which precipitation would travel over the soil cover.The top layer on the tailings cover will be minimum 3"ofrock riprap (sandstone) therefore,no vegetation will exist.This top layer,however,was not included in the model to determine percolation quantities. References: Advanced Terra Testing,1996,Physical soil data,White Mesa Project,Blanding Utah,July 25, 1996. Chen and Associates,1987.Physical soil data,White Mesa Project,Blanding,Utah. Dames &Moore,1978."Environmental Report,White Mesa Uranium Project,San Juan County Utah",January 20,1978,revised May 15,1978. Principles &Practice of Civil Engineering,2nd Edition,1996. U.S.Environmental Protection Agency (EPA),1994."The Hydrologic Evaluation of Landfill Performance (HELP) Model",September,1994. Utah Climate Center,Utah State University,Daily Precipitation Values,Station #42073807, Blanding,Utah,January 1988 through December 1993. c:\efn-white\help2.clc {9/16/96] I iI~/I'l34 l WHITE MESA PROJECT SITE DRAINAGE F/(jUR.£:I TITANEnvironmental By TAM Date ~'"Subject EFN -White Mesa Page~of~ Chkd BY---@!L-Date~.......Hc=e"-'-jlp,,"-,M=od=e-'.-I Proj No 6111-001 Appendix A c:\ern-vhi1:.e\help2.clc (S!ll/96J ****************************************************************************** ****************************************************************************** ** ** k ** ** ** ** ** HYDROLOGIC EVALUATION OF LANDFILL PERFORMANCE HELP MODEL VERSION 3.01 (14 OCTOBER 1994) DEVELOPED BY ENVIRONMENTAL LABORATORY USAE WATERWAYS EXPERIMENT STATION FOR USEPA RISK REDUCTION ENGINEERING LABORATORY ** ** ** ** ** ** ** ** **** ****************************************************************************** ****************************************************************************** PRECIPITATION DATA FILE: TEMPERATURE DATA FILE: SOLAR RADIATION DATA FILE: EVAPOTRANSPIRATION DATA: SOIL AND DESIGN DATA FILE: OUTPUT DATA FILE: C:\HELP3\PRECIP.D4 C:\HELP3\TEMP2.D7 C:\HELP3\SOLAR.D13 C:\HELP3\EVAP.Dl1 C:\HELP3\efn-fin2.DI0 C:\HELP3\efn-fin2.0UT TIME:14:9 DATE:9/11/1996 ,**************************************************************************** TITLE:EFN -White Mesa ****************************************************************************** NOTE:INITIAL MOISTURE CONTENT OF THE LAYERS AND SNOW WATER WERE SPECIFIED BY THE USER. LAYER 1 TYPE 1 -VERTICAL PERCOLATION LAYER MATERIAL TEXTURE NUMBER 88 THICKNESS 17.20 INCHES POROSITY 0.3150 VOL/VOL FIELD CAPACITY 0.3140 VOL/VOL WILTING POINT 0.0980 VOL/VOL INITIAL SOIL WATER CONTENT 0.1180 VOL/VOL EFFECTIVE SAT.HYD.CONDo 0.886999999000E-06 CM/SEC LAYER 2 TYPE 3 -BARRIER MATERIAL TEXTURE THICKNESS POROSITY FIELD CAPACITY WILTING POINT INITIAL SOIL WATER CONTENT EFFECTIVE SAT.HYD.CONDo SOIL LINER NUMBER 89 12.00 INCHES 0.2800 VOL/VOL 0.2799 VOL/VOL 0.1410 VOL/VOL 0.2800 VOL/VOL 0.369999995000E-07 CM/SEC GENERAL DESIGN AND EVAPORATIVE ZONE DATA NOTE:SCS RUNOFF CURVE NUMBER WAS COMPUTED FROM DEFAULT SOIL DATA BASE USING SOIL TEXTURE #27 WITH BARE GROUND CONDITIONS,A SURFACE SLOPE OF 0.%AND A SLOPE LENGTH OF 1200.FEET. SCS RUNOFF CURVE NUMBER =96.40 FRACTION OF AREA ALLOWING RUNOFF 100.0 PERCENT AREA PROJECTED ON HORIZONTAL PLANE =78.700 ACRES EVAPORATIVE ZONE DEPTH =17.2 INCHES INITIAL WATER IN EVAPORATIVE ZONE =2.030 INCHES UPPER LIMIT OF EVAPORATIVE STORAGE =5.418 INCHES LOWER LIMIT OF EVAPORATIVE STORAGE 1.686 INCHES INITIAL SNOW WATER 0.000 INCHES INITIAL WATER IN LAYER MATERIALS =5.390 INCHES TOTAL INITIAL WATER 5.390 INCHES TOTAL SUBSURFACE INFLOW =0.00 INCHES/YEAR EVAPOTRANSPIRATION AND WEATHER DATA NOTE:EVAPOTRANSPIRATION DATA WAS OBTAINED FROM GRAND JUNCTION COLORADO MAXIMUM LEAF AREA INDEX START OF GROWING SEASON (JULIAN DATE) END OF GROWING SEASON (JULIAN DATE) AVERAGE ANNUAL WIND SPEED AVERAGE 1ST QUARTER RELATIVE HUMIDITY AVERAGE 2ND QUARTER RELATIVE HUMIDITY AVERAGE 3RD QUARTER RELATIVE HUMIDITY AVERAGE 4TH QUARTER RELATIVE HUMIDITY NOTE:PRECIPITATION DATA FOR BLANDING WAS ENTERED BY THE USER. 0.00 109 293 8.10 MPH 60.00 % 36.00 % 36.00 % 57.00 % UTAH NOTE:TEMPERATURE DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR GRAND JUNCTION COLORADO NORMAL MEAN MONTHLY TEMPERATURE (DEGREES FAHRENHEIT)q/3~JAN/JUL FEB/AUG MAR/SEP APR/OCT MAY/NOV JUN/DEC ------------------------------------------ 27.50 32.90 38.10 47.10 57.40 66.90 73.60 70.90 63.00 51.60 38.50 28.90 NOTE:SOLAR RADIATION DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR GRAND JUNCTION COLORADO STATION LATITUDE =39.07 DEGREES ******************************************************************************* AVERAGE MONTHLY VALUES IN INCHES FOR YEARS 1988 THROUGH 1993 JAN/JUL FEB/AUG MAR/SEP APR/OCT MAY/NOV JUN/DEC PRECIPITATION TOTALS STD.DEVIATIONS RUNOFF TOTALS STD.DEVIATIONS EVAPOTRANSPIRATION TOTALS STD.DEVIATIONS 2.10 1.17 1.85 0.92 1.455 0.774 1.967 0.691 0.700 0.353 0.072 0.243 1.32 1.37 1.43 0.43 0.999 0.885 1.206 0.350 0.411 0.490 0.246 0.211 0.92 1.16 0.72 0.35 0.542 0.802 0.425 0.220 0.331 0.424 0.236 0.223 0.46 1.24 0.37 0.66 0.265 0.785 0.240 0.495 0.224 0.394 0.110 0.235 1.31 1.07 0.71 0.51 0.871 0.713 0.472 0.432 0.413 0.402 0.296 0.141 0.60 1.18 0.62 0.71 0.389 0.568 0.494 0.441 0.231 0.534 0.201 0.191 PERCOLATION/LEAKAGE THROUGH LAYER 2 TOTALS STD.DEVIATIONS 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 ---------------~;~~;~;-~;-~~;~~~~-~~~;~~-~~~~~-~~~;-(~;;~~;)---------~1:~z-- -------------------------------------------------------------------------__lL __ DAILY AVERAGE HEAD ACROSS LAYER 2 ------------------------------------- AVERAGES 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 STD.DEVIATIONS 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 ******************************************************************************* ******************************************************************************* AVERAGE ANNUAL TOTALS &(STD.DEVIATIONS)FOR YEARS 1988 THROUGH 1993 INCHES PRECIPITATION 13.90 2.614) RUNOFF 9.048 2.4802) EVAPOTRANSPIRATION 4.908 0.7521) ?ERCOLATION/LEAKAGE THROUGH 0.00000 0.00000) FROM LAYER 2 AVERAGE HEAD ACROSS TOP 0.000 (0.000) OF LAYER 2 CHANGE IN WATER STORAGE -0.054 0.1827) CU.FEET 3971537.7 2584718.25 1402180.62 0.000 -15362.23 PERCENT 100.00 65.081 35.306 0.00000 -0.387 ******************************************************************************* ****************************************************************************** PEAK DAILY VALUES FOR YEARS 1988 THROUGH 1993 Uj74----------------------------------------------------------------------- (INCHES)(CU.FT.) PRECIPITATION RUNOFF PERCOLATION/LEAKAGE THROUGH LAYER 2 AVERAGE HEAD ACROSS LAYER 2 SNOW WATER MAXIMUM VEG.SOIL WATER (VOL/VOL) MINIMUM VEG.SOIL WATER (VOL/VOL) 1.33 1.684 0.000000 0.000 2.96 379955.719 481108.4370 0.00000 845040.4370 0.1182 0.0962 ****************************************************************************** ****************************************************************************** FINAL WATER STORAGE AT END OF YEAR 1993 \~f:3t ---------------------------------------------------------------------- LAYER (INCHES)(VOL/VOL) 1 2 SNOW WATER 1.7607 3.3600 0.000 0.1024 0.2800 ****************************************************************************** ****************************************************************************** TITANEnvironmental By TAM Date 9/1 1/96 Subject ......E'="FN~-_Wh.I..L.U~ite"-'M~es=a~Pagel2..-of 34 Chkd By__Date Help Model Proj No 6111-001 AppendixB c;\efn-white\help2.clc [9/11/96) ·.0 o {4-.; i:~ ROIJIS TIl THE GOLDEN CIRCLE o-~--"~110 ~..It ,.,•• 1 Or-- 3est Of The West ••• tah combines the best of the West 'Ilhtn Utahs 85.000 square miles is a )ncentrated collage of western folk- ('::scenery and history ,Eer into Utah and sample some of our ''2 national parks.seven nationalmon- ~"'"'tc::::);orl t"l.'il O::l1:t"'I.('):::l:1 rDrrp~ti(")n eas Drive Into our 43 state parks or ght national forests Explore the 'untry on lhis map and you'll soon :ho :he statement first made by pio- ~er settlers to Utah:··This Is the Place:· tVE NATIONAL PARKS Southeastern Utah IS the place for the world·s greatest-and most concen- trated-repertory of stone arches Arches National Parks ;rademark 's Delicate Arch.although landscape Arch is a world record-holder With a span of 291 feet WHITE WATER CANYONS The Colorado River glides past Arches and churns into Canyonlands NatIonal Park 40 miles southwest National Geo- graphic labels Canyonlands ··the realm of rock and far h()ri7r.n Tho r~I~,~--'~ Eighty percent of Utah·s 1.2 millioro people live along the foothills of the Wasatch Mountains Salt Lake City is not only the cultural and social hub oj Utah.but also the international base for the Morrr:on Church Tho llt::::lih S:v("'f)()hnnv ~~llot WP~t 1_I!~h Repertory Dance Theater and the Pio- neer Memorial Theater all lend a cos- mopolitan atmosphere to SaltlakeCity. Professional sports are represented by the Golden Eagles hockeyclub and the Salt lake Gulls baseball team. TITANEnvironmental By TAM Date 9/11/96 Subject ....;E"",FNW..>..._-Wh...!..l-!..!.llite"-M~e",,,sa,--Page l(ofJ! Chkd By__Date Help Model Proj No 6111-001 Appendix C c:\efn-white\help2.clc {~/ll/96J ..J.I Oaiiy PrecipitationValuC$.Statioa1142073807.Blanding.Utah 111188 °111190 °;1/1191 °111192 °I 111193 01---'1":12I8=8;-t1--::O-~1-.I-."':1":;12I9O:.c:-:~i--0::----~112I9::'::-1'-t--::0---112192 0 :~-1-12I9'---'3.....:....--0=-----l 113188 0 !It3I9O!0.2 113191 I 0.15 --~::'-113192 0.04---rt--lOO3 0 1/4/88 0.06 I 114190 0 1/4/91 I 0.96 1/4192 0.31:1/4193 0 115188 0.19 I 115190 0 115191 I 0.08 1/5192 0.02 i I 1/5193 I 0 1/6188 0.11 I 1/6190 0 1/6191 0 1/6192 0.42 116193 I 0.34 In188 0 i Inl90 0 Inl9l 0 i Inl92 0.03 Inl93 0.36 1/10188 0 1/10190 0 i 1/10191 0 ;1/10192 0 1110193 0.51 119188 0 119190 0 ;.119191 0 119192 0 119193 0.01 1/8/88 0.01 I If8I9O 0 :118191 0,118192 0 118193 I-ii 1/11188 0 , :I o o o o o o 1.16 OA8 0.16 0.11 1119193 0.31 1118193 0.88 1120193 0 1113193 0.11 1112193 0 1111193 0.'1\ •1/17193 •0_16 •1114193 0.1 I 1/15193 0 ;..1131/93 I!~ I \7fl193 I I i 2I2f93 i :213193 i i !2/4/93 I I 115193 i ;2/6193 : i i m193, •2I8f93,2191931 I i 1/16193 0.'19 o o o o o o o ° o I I lI3OI93 I 0.12 °i'1123193 i °o ,l 1122f93 ;0 o :1129193 !0 o I I 112&193 !° o I I 11l6t93 I 0oii111.7/93 !0 o I I 1124/93 ;0 o !I 1125t93 !° o !I 1121193 I 0 o o o o o o o o o 0.02 o 0.01 2/7192 I 2/5192 I 219192 I 2/6192 ; 213192 ! 2l8I92 ' 2/4192 ! 211192 I 1131192 • 1130192 1128192 1/29192 1125t92 i 1127192 1123192 i 1124/92 ! 1122/92 ! •1126t92 :;111.1/92 i I 1111192 1 :1/12/92..1/13192!!, 1 1/1<1192 !j 1/15192 1116192 1/17/92 !i 1/18192 !1/19192 l :1120192 0 i I 1/11191 0 0 ..1/12191 0I. 0.04 I !1/13191 0.01 0 : I 1114191 0 0.14 i i 1115191 0.02 0.03 .!1116191 0I 0.06 i ,1/17191 0 0.19 !I 1118191 0 0.32 I !1119191 0 0 i i 1I2Of91 0 0 :I 1121191 0 0 ,!II22f9I 0 0 ,1123191 0 0 I tn4/91 0 0 :i I125t91 0 0 ,i 1126191 0 0 ;1127191 f 0 0 ·I I128f91 0 0 ·i 1129191 0! 0 I I 113Of91 0 0.03 :i 1f31191 0 0.06 ·i 211191 0 0.03 ;i 2J2f91 0 0 i i 2f3I91 0 0 ;214/91 0 0 ,2/5191 !0 0 2/6191 ;0 0 217191 !0 0 :218191 0 0 ;219191 0 0 ,2/10191 I 0 0 '.2111191 i 0 0 2112191 \0 0 ;i 211319J :0 0.16 i I 21/4/91 1 0 0.06 i :2115191 :0 0.·i i 2116191 1 0.03 0 :2117191 i 0.02 0.03 .211819\I 0 0.01 ,;2119191 :0 1I30I9O 1119190 Ifl5J9O 1124190 1I20I9O 1118190 1117190 1116190 1/14190 1/15190 1/13190 1/12190 1111190 I 111.7190 I 1128190 I 1129190 :1123190 I 1122190 I 1121190 o !I 2/9190 o !.217190 ! o i 2/6190 j o !i 2/5190 I o 1 I 214190 • o 1131190 o o o o o .() o o o o o o o o 0.4 2/1190 o o. o o 0.Q6 :212190 0.89 0.71 219188 I 217188 : 2181&8 ! 2/6188 2/5188 214/88 2/-10188 i 2/1/88 2J3I88 l!31/88 tn9188 I12S188 lI28I&8 lI3Of88 1123188 1122188 1126188 1120188 111.4/88 11181&8 2117188 !0 i I 2/16190 •2116192 i 0.23 :2116193:0.08 1116188 2112188 i 0 :!2111190 :2111192;0.27 •2111193 0 2115188 !0 i I 2114190 ,2/14192 j 0 2/14/93'0.01 2/13188 !0 i;2112190 i "1112192:0.05 i 2112193 0 1/19188 111.1/88 ·111.7188 1/17188 1112/88 1/15188 1/14188 1/13188 2121188 i 0 2120190!0.03 2/20/91 0 2/20192 :0 '2120193 0.7 2122/88 I 0 ;;2121190 i 0 2/21191.0 2/21192 !0 2121193 0 2123188 l 0 .:2/22190 I 0 2/22191 : 0 2/22192 • 0 i:2122193 !0 -'-+_.¥---:----------.. 312190 0 31219'0 3/1192 0 312193_._.- ;3/3190 0 3f3191 . 0 312192 0 313193-----_._._-----3/4190 0 )14191 0 313192 0.34 3/4193 1-=2/2:.::..,:4/8.::.8::c-+~__::O-_'---i-:-;:2/2::::=:-319=o;:--:-i_--:::O_~,_2/2:-::,319=:'__-;0;-_2123192 0 2fl3193 i 0 1....::2/2..::518::=8:-;-;_-::0_-:-,_:;--::-2/2=4-:-190::::--:-:_--:::0__....:;~212=4:-:19:-:-I-'i_----;0~__2/24192 0 2124193 i 0.'1 2126188 ; 0 i;2125190 ;0 2125191 0 2125192 0 2125193;0.04 1-=2/2":::::7/'::'88:-'-;--:0...::.04c-c-......;.·-;-::-212~619::-0:-;-:---:::0---c-2/2=6f9;-::-:I-"-----;0:-_-_-_.__212c_61-'9_2-i-__0_c-c---,._.212=,.:::.:619:::::-:3~__-.::...0_-1 1-=212:..::::8I.=.88=-+!_--,,0_-;--;_.::.21.::.27:-/9-,0_:;--·__0_._.:.....:;;212:.=719-,-,-1-'---__0 -'-2127192 °,2127193 .~ .::2/2:.=91.=.88=-+'~=",0~---'._...,-=:212,:.::.819::0=---:0 -=m=819.::.I:....__0.4 Y28f92 ;0 -c2l,....2_8f9-c--3~.__0 _~-=3=/1=18::8=t1=-==-~O==;='='=:3~/1~/9~0;+==0~.0=2==~3/~1~19==1==~O:-:::9=-~'~..:~.?i29192 -'0---i 311193 0 312/88 0 0 1""':'3-/3-'/8-8-7---0 0 3/4/88 0 0 Daily Precipitation Values.Station1142073807,Bbnding.Utah lanu31'Y.19&&throul':h Febru3J"•1994 I I I I I !:i Date (inches)I Dalt:I (ind=l !:Dale ,(inches!Date l (inches)'Date'(inches) 3/5lll&0 3/5190!0 3/5191 0 3/4192 j 0 •3/5/93 0 3/6188 0.01 3/6190 0.01 '316191 0 315192 1 0 3/6193 0 317/88!0 i 317190 0 '317191 0 j'3/6192'0 317/93 0 3/10/88 0.01 i 3110190 0.02 ,3110191 0 319/92!0.Q3 I 3/10193 !° 3/ll/88 ° .i 3/11190 0.15 ;:3111191 0 I 3/10192 1 °':3111/93 !0 3112188 0 3/12190 0.23 I j 3112191 0 3/11/92 ° ;I 3/12193 I 0 3/131&8 0 3/13190 0.06 3/13191 0 3/12192 0 1:3/13193 1 0 3/141&8 0 3114190 0 I 3/14191 0.06 3/13192 0 1 3/14193 I 0 3/15188 0 3/15190 0 !3/15191 0.01 3/14/92 0 I I 3/15193 I 0 3/16188 0.013/16190 0 3116191 0 3/15192 0 i 3/16193 0 3/17/88 0 3/t719O 0 3/17191 0 3/16192 0 I 3/17/93 0 3/18/88 0 3/18190 0 3/18191 0 3/17/92 0 3/18193 0.19 3/19/88 0 3/19190 0 3/19191 0.03 3/18192 0 3/19/93 0 3/201&8 0 3I2Ot9O 0 3/20191 0 3/19/92 0 3/20193 0 3/21/88 0 3/21190 0 3/21191 0.14 3/20192 0 I 3/21/93 I 0 3122/88 0 3122190 0 3122191 0 3/21/92 0.03 I I 3122193 i 0 3/23/88 0 3123190 0 3123191 0 3122192 0.02!I 3123193 I 0 3/24/88 0 3/24190 0 3/24/91 0 3123192 0.05 I I 3/24/931 0 3125188 0 3125190 0 3125191 0 3/24/92 0.02 j!3I25t93 . 0 3126188 0 3126190 0 312619I 0.26 I 3125192 0 I I 3126193 I 0.06 3/27/88 0 3/27190 I 0 I 3/27191 0 I i 3126192 0 i 3/27/93 .1 0.47 3/28188 0 3128190 I 0 i 3128191 0 I'3/27in I 0.5 :I 3128193 j 0 3/29/88 0 3129190 : 0 I 1 3/29191 0 I i 3128192!0.37 ;:3129/93;om 3130188 o·i:3I30I9O.0.08 :;3/3019I I 0 :3/29/92 i 0 ,'3130193 :0 3/31/88 0 3131190 I 0 :!3/31191 I 0 1 3130192 0.13 "3/31/93!0 4/1/88 .0 I!4/119O!0 :!411191 i 0 !3/31/92 I 0.11 ;!4/1193!0 4!2188 0 I i 4/2190 i 0 i:412191 I 0 I 4/1/92 0.05'i 412193'0 4/31&8 0 I 413190 i 0 I I 41319I I 0 i 412192 0 i i 413193'0 4/4188 0.02 I I 4/4190:0 I I 4/4/9I I 0 ;413192 0 i I 4/4/93:0.03 4/5/88 0 i 4/5190!0 :I 4/5I91!0 :!4/4/92 i 0 i 4/5193 I 0.,04 4/6188 0 I 4/6190 1 0 I I 4/619I I 0 i i 4/5192 l 0 I!4/6193 l 0.5 417/88 0 I 417190 i 0.06 1:417191 I 0 I 4/6192 i 0 !:417/93;0 4/8/88 0 I 418190 I 0.11 !;4181911 0 l I 417/92 1 0 !418193 I 0 419/88 0 I 419190 i 0 i 1 4/9191 I 0 I!4I8J92 \0 !4/9/93 0 4/10/88 0 1 4/10190 I 0 1 14/10191 I 0 :I 419/92:0 i i 4/10193 :0 4/11/88 0 .j 4/11190 l 0 i·4/11191 i O!;4/10192 ;0 4111/93 I 0 4/12188 0 j 4/12190 ;0 i!4/12191 I 0 ::4/11/92 !0 4/12193 ,0 41131&8 0 i 4/13190 :0 1 14/131911 0 ;1 4/12/92 '0 4/13193 '0 41141&8 0.06 '4/14190 ;0 'i 4/14/91 !0 'i 4/13/92 I 0 4/14193 .0 4/15/88 0.2 i j 4115190 i 0 \4115/91 !0 I:4/14192 i 0 4/15193 : 0 4/16188 0.16 I:4/16190 :0 4/16191 0 ;:4/15/92;0.03 4/16193 i 0.Q1 4117/88 0.2 I;4117190 ;°l 4117/91 0 l:4/16192 j 0.G3 4/17193 ; 0 4/18/88 0.02 I'4118190 ;°i;4118191 \0 !4/17/92 :0 4/18193 ;0 4/19/88 0 \4/\9190 :0 I I 4119191 !0 !;4/18192 ;0 ,;4119/93 .~0 4/20/88 0 i 4120190 ;0 .!4120191 0 ;4/19/92 : 0 4120193 .0 4/21/88 0.01 I 4121190 i 0 1 4121191 ;0 1 4120192 : 0 4121/93 0 4/22/88 0.08!j 4122190 •°!4122191.°4121192 . 0 4122/93 0 4/23/&8'0.01 I'4123190 ;°;,4123191,0.01 4ri:lJ92 :0 4123/93 ° 4/24f88!0.02 :4124190 0.48 412419\'°,4/23192 ;0 4124/93 . 0 4125188 i °!.4f15190 : 0 ';4125191 l 0 ,;4124/92 :0 4125/93 . 0 4126188 1 °:4126190 '°,:4126191 °4125/92 : 0 4126193 ° ~4:;:12:.::7/~8::;:.8-+i_--=0'------'-_',-:,412=-7~19:-:0:-:-,__~O:--i 4127/91 0 ,:4126192 :0 4127/93 '0 4/28188 i °4128/90 ;0 "412819\° ;4127/92 '0 '1128/93 : 0 4129/88 I 0 4129190 0.09 4/29191 i °;4128/92 i °4/29/93 0 1=4::13:=0/::8=8:±i==0==i=,:=<l1=30=19O=:i-::=0=.06====4=13=0=/9=I='==0=~=::=412=9=/9=2=:==0===='11=30::19=3===0==1 1-----'5c:-~11~88"-'1_~0:---7-i--~5:.:::11:.:::/9:-:0~--0::::.::_=83~--,--.__;_751:::1/=9.:--1-+-_-:;0:.-_-------,'4130192'0 511/93 ° 1-=5::.:nJ:::8~8:.......:-'_--=0_--:-....:....~5-:f2J-:907-_..---=-0-----,._:......:5..:1219::..:..:1-----;..'__-=-O_~__511/92'°5nJ93 ° 513188 I 0 ;5f3190 0 513191!0 .:._.......=:5nJ9::::.::~2-.:.._..:0:c.....:.....:::5/~319:.:.::.3 ~1-=5::::f4:::'/8~8:...!.---=0----'--;---":5":I<l':":f907-:---0-_.5/4191!0 513/92 0 514/93 0.05 1--=5:::'/5:::'/~8g::"";'i---=0:......-.......c-1"'-:'5':-:f5.:.:'f9:-:-0-----C--·0---:-':-5/5/91 ;--0------'--..:5.:..:/4=-19:.:2'--,.'--0~.0-7--515193 05:-::-:-r--..----=::-~_...::.::::.:...........-----c-=:::=:=-..;-~~~51618g 1 0 5/6190 ....Jl__d_516191:0 515/92 ,0 516193 i 01-=5::.:n=-18::.:8:.....;.,-----'0--+~-5:.,..n-:-::/9-,-0-0 5n191 0 516192 0 5nf93 i 0.06 DailyPrccioil2.tion V:>.lucs.Sution#42013807.Blanding.Utah January.1988 throughFebruaq.1994 !I I !i I I ; 1 ~Pr~==.:iPeii::::tal.I~·o::::n+-+'~I~Pr~CCt::::ix:pii~u::::ti::::on~:-+,+IIPr:..:.:::;CCt=.iPeii::::tal.I:::;·oo::::'+i·..f'_-co------jjt=-Pr.:..:=:;:·:.t:p.:.:iU::;l:.:io.:.:;n!~I Precipiution Dale (inches)!Dale ,(inches)i I Dale I (inches)I:Dale I (inches)i Date I (inches) i-=5;,:/8/8~8~_-=-O_+-+I._5I8I9O===-+_-:O_-7--<·f----:5~/S/9::::-:I-+--=-O--:-:-+-~5n-=19;;._2~1-...:0o:.;_:19_518193;0.15519f880519190j051919105/S/92!0 :I 519193 i 0 5/10188 0 i 5/10190 :0 :5/10191 0 i I 519192:0.96 ,,511M3:0 J ] i 5111/88 0 51lm8 0 5113188 0 5114188 0 5115188 0 5116188 0 5117/88 OM 5118/88 0.3 5119/88 0.15 5120188 0 5121/88 0 5t22f88 0 5f13I88 0 5124188 0 5t2SI88 0 5t26f88 0 5127/88 0 5t28I88 0 5129/88 0.17 5130188 0.01 I 5111190 i 5112190 i •5/13190 i 5114f90 I 511Sf90 I 5116190 5117190 5118190 5119190 5t2Ot9O 1 5121190 5n:mo I 5124190 5t2Sf9O I 5t26I9O I 5127190 5t28I9O I I 5129190 i o i 5111191 i o i 5112191 ! o ;l 51131'91 o ;I 5/14191 o I I 5/15191 o I 5116191 o !5/17191 o i 5118191 o i 5119191 o !5120191 o I 5121191 o !5/22191 o I 5123191 o !5/24191ot5t25I91 o ~Sl26l91 o i 5127191 o I 5t28f91 0.02 5129191 o !!5130191 o o o o 0.06 o o o oo o o o o o o o o ,5110192 I 5111192 I 5/12192 I I 5113192 ! i 5114192 5115192 5116192 5117192 5118192 5119192 5121192 Sl22l92 i S123f92 I 5124192 5t25I92 5t26I92 5127192 I !i 5129192 o :5111193 0 o .'5112193!0oIi5/13193 0 o •I 5114193 0 o 'i 5115193 0.02 o 511~3 0~8 o 5117193 0.35 o 5118193 0 o 5119193 0 0.06 SI2or93 0.01 0.05 I 5121193 0 0.06 I 5t22f93 0 0.36 I Sf23f93 0 om :5124193 i 0 0.2 i 5t25f93;o~ 0.15 I Sl26l93 l O.H 0.13 I 5127193 i 0.19 0.05 l 5t28f93 i 0.05 o I'5129193 i 0 om i!Sl3Ot93 !0 5131188 611188 614188 615188 616188 617188 618188 619188 6110188 6111/88 6112J8g 6113188 6114188 611518& 611618& 6117/8& 6118188 6119/88 o o o o o o o o o o o o o o o o o o .5/31190 i 611190 i 612190 i I 613190 , 614190 i 61Sf90 I 616190 ! 617190 I I 619190 l !6110190 j I I 6111190 ! ,~6112190 i !I 6113190 ; i ;6115190 ( !:6116190 ! 1 •6111190 ' i (6118190 : ~i 6119190 . o :5/31191 o i 611191 io:612191 I o 'I 6I3f91 • o i!614191 I o ;i 615191 i o I I 616191 ! o I 617191 I o I 6I8f91 I 0.04 !619191 I 1.09 !6110191 1o .6111191 I o ':6112191 , o .:61131'91 j o ,;6114191 i o ,~15I91 I o i 611~1 I o ~6117191 ,o '6118191 : o '6119191 ' 0.43 •SI3Ot92 o I 5/31192 o I 1 611192 o I I 6I3f92 : o I I 614192 I o I 616192 t o 11 617192 i o !I 6f8f92 o !i 619192o!.6110192 I -0 ~6111192 j o ;!6112192 : 0.05 i 6113192 : o !6114192 i o !6115192! o ;1 6116192 ; o 6111192 ' o 6118192 : oo o o o om om oo 0.16 o o o o o o o o o o I !5131193 \ ;i 611193 : !i 6f2J93 !!613193 :;614193 ; I 615193 i 616193 i 617193 j 6I8f93 j 1 619193 I i .6110193 ! l :6111193 ; ;~6112193 : 6/13193 : 6114193 ! !6115193: ,6116193; 6/11193 6118193 6/19193 o o o o o o 0~1 0.01 0.06 o o o o o o o o 0.04 o o 6120188 i 0 I;6120190 0 6121/88 0 1 i 6121190 ;0 6I22f8&0.02 i I 6I22f9O !0 6123188 0.01 j;6I23f9O :0 612418&0.05 I!6124190 ;0 6125188 0:1.7!~6I2S19O ;0 6126188 0.11 I I 6126190 .0 6127/88.052 '6127190·0 6128188 OA2 !;6128190 :0 6129188 '0 I;6129190 : 0 .6120191 :;612119\i !!6I22f91 i ,\612319\~ :6124191 • i 6I2S191 :6126191 : ,6127191 6128191 • !~6129191 o o o o o o o o o o •6/19192 : ,6I2Of92 \ I I 6121192 i :6122192 j i !61231'92 ~ 6124192 : ,:6I2S192 : ,:6126192 !6127192 : ,6128192 • o o o o o o 0.08 o o 0.01 6120193 1 ;6121193 . I I 6I22f93 : :6123193 6124193 6125193 6126193 ;6127193 6128193 6129193 o o o o o o o o o o 6I30t88 0 !:6130190 :0 ;6130191 !0 i.6129192 :0 j 6130193 0 7/1f1l8 0:7/1190 0 7/1191 0 6130192 :0 7/1193 0 712188,0 '7/2190 0 7/2t91 :__0 ._.711192 0 __712193 0~7::.:t3t~1l~8:.....J.1--..::0--:-'---=7/:::3::::19~0-;----:0:-------7/J/91 0 __._.712192 _-.-2....713193 0 ~7:..:./4:::/ll~8:.-....1--..::0_--:---=7/:;:;4/::::90-:-~-----:0:_____-__-:7:;=;-/4-;-;19~1:--__°713192 0 ...7/4193 0 1--,~.:.:~~::c/:::..::'--+1-----0~----:---;:~~-:::~19-:::9-=-~---:~:-------,--:~:-;~~:;-:19~:~-~~~~~~.__~·ft~~.--._=__O_O==~ 1_7.:..n__/88-+i__0_-.,--_7n19O 0.78 7n191 0 7/6192 .._0__..__.7n193 0_--; 7/8188 I 0 .....-L'_.:..:7/.:::819~0,,---~...:0,-,-.7,-=-3 ,_7.---/8::..19:.:1c..-,-_0.1 7n192 ._.._0 ..7/8193 0_--1 1=7=19=t8=8=t1==O==:=~719::::/;::9~0==0=.0;2=='~'~-o-_<;J~__.'._7/8/9_2__..9.:.:..__--:-..?!?.'2l....:........_~ 7/10188 \0 7/10190 .° ---ill0I91 0.01 :-ml9-2-;--O·------7110193 .--0-- DailyPrecipiutionValues.Sution #42073807,BlandinI':.Uuh J21luary.1988 throur:h Fcbcua<Y.1994 t---i--:-:--::-...L'--l--I !! I ~I __--.:.'_---,-,--:,-'-.J-.t-I ---,-----1 PrecipiUtionl !_IPrecioiutioni i IPrecioiutioni '!Prccipiulioni I Precipiution Date (inches).:Date I (inches)Date'(inches):Date (inches)D..te (inches) 7/11/88 I 0 .7/11190 I 0 :7/11m I 0 7110/92 ,0 __._7/11193;0 1---:'7/':.:1-='2/8=-8:--;-;---=-0--'-'7:-:7':':-/1=-:2I9O':::-:--j'--::0---:~7/:'-:1219::=-'1'-+-!--0::---;-'7""1"-11""/9'-2-'-:--0:-•7/12/93 ;0 1---::7/':.:1'='318=-8:-+---=-0--:-'0-::7':':-/l=-:3I9O':::-:--t--";;O'--.-j";:7/::'13/9=I'-+-,--0::----'--:7':':-/1=-:2/9=2-!:-·-;-1.~3 3:;---~'-::7/-::1'='319;;;3:-t---0::---l 1-'-7/:.,:1~418:,::8:-t_--=-0__+-j·--,-!-:7,:,:-/,-:14:,::19O~~-,0:::.0:.::5 ;~,-:::7/~14:::/9=-1,-+-1__0::---.-:.7:.:/1:.;:.3/9:..:.::02....;:__°.:-.0-'2"--..-----'-:::7/::-14/9-:-::-:3:-:-_-'0=----l 7/1S/88 0 i 7/15190 0 ;7115191 0 7/14/92 .0 ,7/15193 ° 7/16188 0 !7/16190 0 .I 7/16191 0 ;7/15/92 ;0 I 7/16193 0 7117/88 I 0.05 !7/17190 0 I 7117m 0 '7116/92 i 0 :7/17/93 0 7118/88 !0 ;7/18190 0.01 ~7/18191 0 7/11192 !0 !7118193 0 7/19/88 I 0 ,7/19190 0 i 7/19/91 0 ~1118192;0.08 !1119/93 0 7120188 0 i 7120190 0 i 71201910.28 I 7/19192 I 0 i 112fJ193 0 7121/88 0 !7121190 O.oJ ;7121m 0 1120192 0 •7121m 0 7122188 0 I 7122190 0 :7122191 0 1121192 0 •7122J93 0 1123188 0 I 7123190 0.01 l 1123191 0.04!1122192 0.1 •7123193 0 7124J88 0 7124190 0.Q2 :7124/91 0.23 .7123192 0.08i 7124193 0.01 112S188 0 7125190 0.05 :7125191 0.08 i 7124/92 0 1 I 7fl5193 0 7126188 0.16 I 7126190 0 I 1126191 0.01 !7125192 0.11 l 7flfJJ93'0 7121/88 0 7127190 0 i 7121m 0 I 7126/92 0 j 7127/93 0 7n:u88 0 I 7128190 0.02 i 7128/91 0 !7121192 0 I 71lt193 0 1n9188 0..13 I 7129190 0 i 7tl9191 0 ~7f2S19i 0.02 I 7129/93 0 7130188 0.05 I 7130190 0.19 I 1130191 0 1129192 0 j 1130193 I 0 7131188 0.12 I l 113l19O 0 'I 713l/91 0 ,1130/92 0 I 713l.193 i 0 811188 0.13 i!811190 0 I 811m 0.03 ;713l/92 I 0 :!8/1/93 1 0 Sl2l88 0 I 8I2J9O 0.25 !Sl2l91 0.04 i 811/92,0 !8I2J93 0 813188 0 I'SI3I9O 0 :'813/91 0.08 ,SI2J92 0 813/93 i 0 8I4J88 0 i I 814190 I 0 814/91 I 0 .!813192 I 0 •i 8I4!93!0.01 8IS/88 0.38 j:815190 I 0 l 815191 0.0I i 814192 i 0'!815/93 1 0 816188 0.02 !816190 I 0 i I 816191'056 i SI5I92 1 0.Q2 i!8I6!93 .0.03 8/7/88 0 ;i 8/7190:0 •8/7/91 0 8I6/92!0.01 !:8/7/93 i 0.03 Sl8l88 0 :SI8I9O i 0 !SI8l91 0 ,8/7192!0 •&I8l93 I 0.03, 819188 0 :819190 I 0 'i 819191 I 0 :8I8/92!°i;819193 1 0.03 8110188 0 !I 81101'90 I 0 i I 8110191 0 :I 819/92 I 0.03 •j SIlOl93 I 0.01 8111188 0.04 I!8Ill19O I 0.04 :;8111191 °8110192 1 0 !I SIll./93 !° 8112/88 om i!8112190 1 0 :18112191 0.36;:8111192 I 0.04 i!SIl2193 i 0 8113188 0 :!8113190 I 0.15 !8113191 0 'i 8112/92 !0 ,I 8113193 ;0 8I14J88 I 0 i 8I14I9O!0.07 •8114/91 j 0 8I13l92 i 0 :1 SIl4!93 i 0 8115188 \0.09 I:8115190 l 0.95 ,8115191 I 0.01 8114/92 :0 SIl5/93 j 0 8116188 i 0.05 I i 8116190 I 0.24 !I 8116191 l 0 l 8/15/92 ;0 !8116193 •0 8117188 •0 !;8117190 ' 0 :8117/91 !0 8116/92 :0 ';8/17/93 ;0 8118/88 I 0 !j 8/18190 I 0 •i 8118191 I 0.06 8117/92 1 0.19 !1 SIl8l93 !0.. 8119188 1 0 i 8119190 to!8119/91 ~0 ;8118/92 ' 0 ;8119/93 ~0.Q3 8120188!0.24 ;8120/90 :0 8120191 0 SIl9/92 0 8120193 .0 8121188;0.15 8121190 ~0 :8121/91 i 0 8120192 0 8121/93;0.Q2 8122188 ;0 8122190 ;0 .8122/91 °8121/92 0 8/22/93 0 8/23188 j °8f2J/9O ~0 812319\;°8122/92 0.37 8123193 ° 8124188 I °8124190 i 0 8124/91 °8/23/92·0.16 8/24/93 . 0 812S188 1o!I 8125190 I 0 :i 8125/91 I 0 ;8124/92 i 0 j i 8125193 i 0.Q8 8126188 1 0 ':8126190 I 0 1 8126191 I 0 8125/92 ;0 '8/26193!0.74~812~~7/'::::88:::"+j'---=-0--+:--7:-'8I2:::.::::7:.:19O:..=.-1!--..-.-::0=--~~:'::812:"=:=7/9'::-:-'1+\--:-0.="0-\--'--:812=6/9::':':2'--'-·-O::....·-~-'8/2=7::::/9:-:'3....;.............::.:.0:..:....-l 8128/88 I 0 I!8128190 I 0 1 8128/91 I 0 8127/92 •0 ;8/28193:0.73 8129/88 0 ;8129/90 i °8129191.0 8I2SJ92 0 8/29/93 0 ~8I3:.::0I=88:::....;.-..::0.:.:.1.::::8_-'--'--'8I3;:..::.::0:.:19:.:0~.'-:_-,0=--__...::813::,::-=:0/9-:-:-1+'_..,..=..o:--__..-.-::812::,:::9.:,:/9:.:2=--_-::-0'::-=-__---'_--;813:-::-=019=3__-::-0::..,;-.-----1 813\/88 0.47 8I31t90 ; 0 8131/91;0.02 8130192'0.28 8131/93,0.05 912188 0 I 912190 i 0.32 912/9\I 0 911/92 0 912/93 °91l/88 0.01 i 9/1190 i O.Ol 9/1191 i 0 &131192:0.16 911193 0 9/3/88 0',9/3/90 i 0.1 9/3/91 0 912192-•0 ,9/3/93 i ° 9/4/88 °9/4190 i 0 9/4/91 °9/3192 0 i 9/4193 0 9/5188 °9/5/90'0.08 9/5191 .....,.°:--9_1_419-'--2 °:-_9/..:c5...:./9=-.3 0'----I \-..:9~/6I8=8---7-_.__::0__--...:.9_/61...:.9:....;0'-'-0-:-.1 ..J'6I9I ~.~_9/5/92 0 .9_/6I9::.....:.;3=--_---'0'--....---j l=9=n=/8::8=t=~0===~9n~'9~0=t::==0;=:=~:...==9~n=/=9=1==-~=0=.2=5=_==9='6I=9=2===0==.-=:_:--.-..9:::n:::I9:::3===0==1 1-..:9~/8I::.:8:.::8-+_-:-0 ....:.9/..:.8..:.19..:c0___i_-_._0.,........---918191 i __O__--.-J.!!!'!l..:........._.!l_9/8193 i ° 9/9/88 0 919190:0 91919 I 0 9/8192 0 9/9193!°t---.:::..:::::::...-:...----:-':-::--.-:--.-...:.......:....:...::---"------,-------"--------'9110188 0.32 9110190 0 •9110191 i 0 919/92 °__.._9/10193 ;°~9/...:.1:::.1/:::.:88~--::0::._0.::.5---'C'--;9::-:,11190 0 9111191 0.13 9/10192 °9/11/93 ; 0~91...:.I.:.c.21""88'-T--:-O-:..5-:-8-----·..:.9-,:I...:.2J9...:..:..0~--...:.0-·----"---9ii2nl~-0"-_.-9111192-0-'---9/11193,om o.lllyPcropiutionValtu:s.sution 1142073807.Bbndiop.Utah January.19S5throuf!:h Fcbrua!Y.1994 I I :,-I I i Precipitationl ;iPrecipitationi :IPrecioitationl I IPrceipiution,Precipiution Date (inches)j i Date I (inches)!Date I (inches)!Date :--Cinches)i Date (inches) 9/1318S 0 ,9/13f90 ;0 9/13/91 !0.01 t ;9/11192 !0 .9/13193 .0.6 9/14/88 0 :9/14190 :0 9/14/91 :0 ;.9/13192 . 0 9/14193 I 0 :-,!,9/15193 I9/15/88 0 9/15190 :0 9/15191 0 9/14192 :0 ~0 9/16188 0 ::9/16190 :0 i 9/16191 I 0 i 9/15192 ~0.13 9/16193 i 0 9/17/88 0 l i 9/17190 I 0 :9/17191 !0 ;!9/16192 I 0 ;9117193 !0 9/18188 0 I !9/18190 I 0.63 ;9/18191 I 0 I :9117192 I 0 ;9/18/93 0.22,; 9/19/88 0 I 9/19190 i 0 9/19191 I 0 I 9/18192 ;0.22 I 9/19193 0 9120188 0 I I 9120190 I 0.16 !:9120191 0 i I 9/19192 !0.47 j 9120193 0 9/21/88 0.08 ;;9121190 I 0 j ;9121191 0 ;'9120192 ;0.08 9121193 I 0 9122188 0 i 9121190 i 0 ,9122191 0 ,9121/92 •0 .9122193 0 9123188 0 I 9123f9O 0.06 I I 9123191 0 I •9122192 •0 ~!9123193 0 9124/88 0 9/24190 0 :19124191 .0 I 9123192 0 ;!9/24193 0 9125188 0 9125190 0 i I 912S191 '0 I 9124/92 0 : i 912S193 0 9126188 0 9126190 0 I ;9126191 0 I 9125192 0 ;I 9/26193 0 9127/88 0.03 9/27190 0 .I 9127191 0 I 9126192 0 !19127193 0I, 912Sl88 0 9128190 0.23 1 ;9128191 0 I .9/27/92 .0 1 •9128193 I 0 9129/88 0 :912919fJ 0 j I 9129191 0 : I 912S192 0 i i 9/29193 i 0 9130188 0 9I30I9O 0 I I 9130191 0 .1 9129/92 0 ,l 9130193 0 1011/88 0 tOl119fJ 0.01 I i 1011191 0 I I 9130192 0 :I 1011193 0 1012188 0 1011190 l.l I !1012191 0 I 1011/92 0 I 10/1193 0 1013188 0 10l3I9O 0.02 1 j 1013191 0 I 1012192 0 ,10/3/93 0 1014/88 0 1014190 0 I ,1014191 0 !1013192 0 ,·1014193 0 1015188 0 1015190 I 0 .1 1015191 0 1 I 1014192 I 0 ·1015/93 0. . 1016188 0.02 I 10I6I9Q ;0 !.~1016191 0 !I 10/5192 i 0 10/6193 0.61I 1017/88 0.04 I 10I719fJ i 0.1 1017191 I 0 I i 10/6192 ;0 ;1017193 0.21,·10/8/88 0.02 I 10l8I9O;0 1 !10IS/91 I 0 'i 1017/92 I 0 j 1018193 I 0.19 1019/88 0 I lOI9I9fJ !0 ;.1019191 !0 ~;l0IS/92 I 0 .1019193 1 0, 10110188 0 1 10/10190 j 0 .I 10/10191 !0 ;I 1019192 :0 i 10/101931 0.01 10111188 0 10/1119fJ I 0 i :10/11191 !0 .110110192 !0 :I 10/11193 0.1I 10112188 0 I I 10111190i 0 1 i 101121911 0 .i 100IlI92l 0 i i 10/11193 0, 10113188 0 •10113190 I 0 !i IO/t3/91 I 0 !i 10/121921 0 j !10113193 0 10114/88 0 I 10114190 I 0 ,i 10/14191 i 0 :I 101131921 0 .'10/14193 0 10/15188 0 i 10/1519fJ i 0 i i 10/15/911 0 ;I 10114/92;0 !;10/15193.0 10116188 0 110/16I9Qi 0 !i 10/16191 i 0 !:10/151921 0 j I 10/161931 0.09 10117/88 0 I 10/1719fJ I 0 I ;10/17191 '0 i 110/161921 0 !j 10/17193 i 0.2.. 10/18188 0 !1011819O!0.2 t ~10/18/91 : 0 :I 10/171921 0 i 10/18193:0.02 10/19/88 0 • i 10/1919fJ I 0.28 :10/19191 !0 I 10/18/921 0 :10119193:0 10120188 :0 i 110120190!0.11 :j 10120191 ;0 I ,10/19192 !0 ~10/20193;0 10121/881 0 !;1012119fJ'0 :10/21191 ;0 ,:10/20192 i 0 '10/21193 ;0 101221881 0 1 i 10I22I9fJ ~0 ~;10/21191 1 0.02 ;10/21192 j 0.11 •10121193 j 0 10123188 I 0 !;10l23I9O 1 0 :10/231911 0 '10121192 ;0 ;10/23193:0 10/24/88 0 i .10/24/9fJ i 0 .'IOI2.ol191 i 0.08 ;10/23192 !0 '10/24193;0,; 10125188 0 ,:1012519fJ;0 '10125191 :0 ;10/24192:0.37 ·10125193 l 0 10/26188 0 '10/26I9Q i 0 •10/26191 !0 .10/25192:0.15 10t26I93 !0 10/27/88 0 j :10/2719fJ:0 !10/27191 :0.69 :10/26192;0 ·10127193 0, 10128188 0 !;10128190!0 :j 10128/911 0.26 ,:10/27192!0.04 :10/28/931 0 10129/88 0 !;10129190:0 :10129191 :0.26 ;10128/92!0.26 ;10129193 c 0 10130188 0.02 i !10130190 i 0 i ;10130191 i 0.1 ;10/29192.0.12 10/30193 :0 10131/88,0 i i 10131190:0 10/31191 0 10130192 0.22 1Of31193 0 1111/88 j 0 .;11/1190 '0 11/1191 0 10131192 :0.19 11/1193 0 1112188 I 0 1112190 0.35 1112191 0 11/1192 0 11['JJ93 0-----_. 1113188 !0 1113190 0.37 llf3191 0 1112192 0 11/3193 :0 11/4/88 i 0 ,11/4190 .0 11/4191 0 1113192 .0 11/4193 .0---_.---- 1115/88 !0 ,11/5190 .0 11/5/91 0 11/4192 0 11/5193 0-- 11/6188 I 0 11/6190 om 11/6191 0 11/5192 .0 11/6193 0--. 11n/88 : ---0 IInt90 0.12 Ilnl9l 0 11/6192 0 11nt9)0--- 1118188 0 11/8190 0 1118191 0 Iln/92 0 ___.__!..!./819~____0_ t --__"0 --_."-----_.- 1119188 0 1119/90 0 11/9/91 0 1118192 0 1119193 0_._--_.._------------------- 11110/88 !0 IIII0190 0 11/10/91 :0.03 1119/92 0 11/10/93'0.-'-----.---_._--~-~_._------~-'------------- I III 1/88 ;0.56 IIII1/90 .0 11111/91 0 11/10/92 0.14 Ilfll/93·0.64 --------_.,---------------#-_._------ 11112188 :0 ;I III 2190 .0 i_I~I2I91 . 0 .111l1/92 0 11/12193.0.3-_.---.--.._--- 11113/88 i 0 11113/90 .0 11113191'0 11112192·0 11/13193 0_14._- 111l4/88 i 0 ,11/14/90 0 11114/91 0,49 11113192 0 11/14/93 0 11/15/88 1-025------_...._----------------.IIIl5190 0 11115191 0.95 .11/14192.0 11/15193 0 ~1P.:a...s:{(1{10/..<l1 ~l~~<..;-' 1--~D:!!....~·ly~Prcci~·p~i~ta~tio~n~V~,,~I,,~es~.c;S~ta~ti~on:__:4I'4~2~07~3~80~7~.B~I;::""~di:.::lnJ;g"-.U=tah::.:----.----1 Jm","Y.1988 lhroul:h February.1994 I j ,: 1--__+Pr~CCl;c.Ajp'_'_iita:;:..u'_'·o;.:.:n+-i'+....,I..:..Pr:..::CCl.=:iLPii.=t3.=:tio.;::.:n.::.I-j--__-t-Pr:..:.=.,=:;lipo.:;iiU;::l1.::..·o:..::n:;:..'__-_-I Precipiutioni i _~__..:..Pr:..::=-"i:.t:.Pii:.::(att:::·=on::t Dale (inches),Dale (inches)!Dale (inches)D:lle I (inches);Dale (inches) 11/16188 0 :1l/16l9O!0 !111161'91 0.03 11/151921 0 ~1_~/16I93:0 11/17/88 0.02 !!11/17190:0 !1I/17191 0 '1I/16l'92 i 0 :1I/17193;01-'--11:;../;.:.:lllI8.:..::.::8-+i-~0"---'--'-i-'-I-"I/-18I9O---'--:;:..i'----0-·-'-;~i......11-/1-819-1-11·--0-:.0-1--·.-1-:-1I::17·~19::-:2::-~-·0-'·'0'1:;"/:"::18I9~3""":_....c::...0--1 11/19/88 I 0 •11/19190 i 0 :;ll/19191 !0 .lI/i8l921·'0:01--:-1-1/19193,0 111201881 0 ,:1tnOl9O:0.Q9 ::11120191 0 .11/19192 0 ;11120/93!0 Itnl/88j 0 :Itnll9O.0 '11121191 0 ;Itn0l92 0.12 ;11121193\0 11n2188 0 :1 ItnlJ90 I 0 .:1In2191 0 :IInt/92 0 I 1In2193 I 0 11nJ/88 0 i:11123/90 0 i IInJ19l 0 :1In2192 0 : I 1InJ/930 I tn4/88 0 I Itn4l9O i 0 I'11n4l91 0 !;11nJ/92 0 I IIn4/93 0 11125188 0.07 I;11125190 I 0 •.1In5191 0 •1I/24192!0 1In5193 0 11n6l88 0.11 ;t IIn6190I 0,48 11n6t91 0 i i 1In5192 0 111261931 0.. 11n7/88 0 ;!11121190I 0.0I 11/27/91 0:'I 1In6t92 0 i 11127193 0 11/28/88 0 I j 11128190 i 0 Il128191 0 ;1 11127192.0 !11/28193 0 11/29/88 0 I I 11129190 I 0 11129191 0 i!11128192 0 I 11129193 0 11130188 0 !i 11I30I9O;0 11130191 0.01 j!11129192 0 11130193 0 1211/88 0.03 i!1211190,0 I 1211191 0 I I 11130192 0 !1211193 0 1212188 0 1212190 i 0 I 1212191 0 !1211192 0 12/2/93 I 0 1213188 0 I i 1213190 0 i 1213191 0 '.•1212192 to!1213193,0 1214188 0 '!1214190 0 !1214/91 0 I 1213192 0 :l 1214193:0 12151880 I 1215190 0 1215191 0 :!1214192 0.13 "1215193 j 0 1216188 0 t i 1216190 0 1216191 0 !1215192 0.81 ;i 12161'93 j 0 1217/88 0 I 1 1217190 0 1211191 0 i I 1216192 I 0 '1 1217193 j 0 1218188 0 i I 1218190 !0 1218191 I 0 ;1211192:-99999 1218193 ;0 1219/88 0 i l 1219190 I 0 I I 1219191 j 0 1218192!0.28 :1219193,0 121101880 j 12110190:0 '1 12110191 0.02 1219192 !0 'i 12110193:0 12111/881 0 !1 12111190 0 i l2IUI9I 0:26 ':12110/921 0 i i 12111193 i 0 12112188 0 i \12112190 t 0.11 !I 12112191 0 .12111192 0 :1121121931 0.07 12113188 0 ,;12113/90 i 0.04 i 12113191 0 ,121121921 0.5 .j 121131931 0 12114/88 0 !:12114190 l 0 1 12114/91 0 j 12113192'0 j i 12/14193 0 12115188 0 !i 12115190 i 0.06 !12115191 0 ;121141920 I I 12115193 0.Q7 12116188 0 j 112116190'0.11 I 12116191 0 '1 12115192 0 ;112116193 0.18. 12117/88 0 'i 12117190 i 0 12117191 0 i 12116192 i 0 !I 12117/93 0 12118/88 0 i:12I18J'}()I 0 !12118191 0.54 i 121171921 0 1 i 121lm3!0 12119/88 0 :;12119190 i 0.06 I ·12119191 0.43 ,I 121181921 0.1 II 12119193 i 0 12120188 0.05 ;i 12120190 i 0.36 I 12120191 • 0 i 121191921 0 !!121201931 0 12121/88 0.38 •i 12I2119O!0 l 12121191:0 ;121201921 0 I 121211931 0 12/22188 0 i 12122190 ~0 i I 12122191 I 0 !12I21/92!0 :j 12122193 I 0 12123188 0.1 ';12123190 j 0 1!12123191 to;121221921 0 .;12123193:0 12124/88 I 0_13 :.12124190 j 0 I 121241911 0 12123192:0 :12I24193!0 1212S188 j O.m_12125190;0 i 121251911 0 .12124/92'0 ;12125193·0 12126188 I 0 :12126190:0 \:12126191:0 12125192 0 12126193 0 12127/88;0 12121190;0 i 12121191 i 0 121261'92 i 0 '12127193 0.1 12128188 j 0 12128190:0 !!12128191:0 12127192;0 :12128193 0 12129/88 !0 12129190 :0 :.1212919 (i 0.05 12128/92 :0.3 •12129193 0 12I3OI88i 0 ;12130190,0 !12I30/91!0.11 .12129/92;0 !12130193:0 !'i 12131192 ~0 12I31/88!0 :;12I3119O!0 I 112131191 j 0.02 ;121301921 0.07 ;12131193 i 0 Nof.CS:ISource:Utah Qime(CcnlCf.Utah Slate Ullivenity.U>l!an.UT. P'"'O'c ,ol , I I j I I I I ) I I I , I IAf7LE 2- MONTHLY MEANS AND EXTREMES OF TEMPERATURES BLANDING,UTAH 40 ANNUAL MEAN:9.9°C 30 "0 20 °'J Wc:: ::> I-<: 0:w 10a:. ~w I- o ·t(C)~ (D)! MONTH JAN f £ EXTREME •MAX.16 18 2.4 2.7 33 38 38 37 34 2.9 2.1 15 ~ tMEAN3.2 6.9 10.9 16.3 22.8 28.7 31.9 30.2 2.6.0 18.8 10.2.4.5 {MAX.r MEAN -2..5 0.5 3.4 8.4 14.1 19.4 23.1 2.1.6 17.2.10.9 3.6 -1.7 E•MEAN MIN.-8.8 5.4 8.4 -3.2 -7.8 ~-5.9 -3.2.0.4 10.1 14.2 13.1 2.9 ~ tEXTREME, MIN.-2.9 -22.-15 -II -6 -I 8 3 -5 -12 -19 -22. I I (A)MEAN DAILY MAXIMUM (B)MEAN MONTHLY (C)MEAN OA.ILY MINIMUM (0)FREEZE DATES ?LATI:.2.7-2 TITAN Environmental By TAM Date 9111/96 Subject ....JE'='!FN~-.:.....W.ll..ll.hl~·te"'-'M~esllia~Pagenof--2.L Chkd By__Date Help Model Proj No 6111-001 Appendix D c:\efn-white\help2.clc (9/11/96J -12- \ML-\(()(.':;~\2.A10bOJ-.~ft'LL (~o{J~TlLj Table 3.4-1 Physical Properties of Tailings and Proposed Cover-Materials Atterberg limits Specific %Passing No.200 Maximum Dry Density Optimum Moisture Mater;a1 Type Ll PI Gravity Sieve (pcf)Content Tail ings 28 6 2.85 46 104.0 18.1 L:andomFill ,22 7 2.67 48 120.2 ill)- Clay 29 14 2.69 56 121.3 12.1 Clay 36 192.75 68 108.7 18.5 Note:Physical Soil Data from Chen and Associates (1987). --ADYAHCI:D TcRR~TE~TIHG-,nc---"833 Partet Street Lakewood,Colorado 80215 (303)232-8308 ~---------;1'--------------'~~'------------~ Proctor Compaction Test ] ••UT-1'------- 40 • 3020 Moisture Content (%) 10 f--\ I-\ I-\ \I-1\Zero Air Voids Cu fie ~\~.@ S<3IeportediJe'vvv ~ r- ~ l-f ~\ -/e ~\ I ~-~ I-~ ""l- I I I85 o 90 95 100 125 130 135 140 120 c-U0-115........ >-~<nc Q) 0 110~ 0 105 -Best FitCuNe @ Actual Data -Zero Air VoidsCuNe @ SG =2.70 1\/ f L.L,..II { OPTIMUM MOISTURE CONTENT =13.9 MAXIMUM DRY DENSITY =113.5 ASTM 0 1557 A,Rock correction applied?N ADVANCED TERRA TESTING,INC. CLIENT PERMEhoILITY DETERMINATION FALLING HEAD FIXED WALL Titan Environmental JOB NO.2234-04 BORING NO. DEPTH SAMPLE NO. SOIL DESCR. SURCHARGE UT-1 Remolded 95%Mod Pt.@ OMC 200 SAMPLED TEST STARTED TEST FINISHED SETUP NO. 7-28-96 CAL 8-7-96 CAL 1 MOISTURE/DENSITY DATA wt.Soil &Ri~g(s)(g) wt.Ring(s)(g) Wt.Soil (g) Wet Density PCF wt.Wet Soil &Pan (g) wt.Dry Soil &Pan (g) wt.Lost Moisture (g) wt.of Pan Only (g) wt.of Dry Soil (g) Moisture Content % Dry Density PCF Max.Dry Density PCF Percent Compaction BEFORE AFTER TEST TEST 386.9 404.5 93.0 93.0 293.9 311.4 122.3 120.5 302.4 319.9 266.2 266.2 36.2 53.8 8.5 8.5 257.7 257.7 14.1 20.9 107.2 99.7 113.5 113.5 94.4 87.8 PERCOLATION RATE FT/YEAR CH/SEC ELAPSED BURETTE BURETTE TIME READING READING (MIN)hI (eC)h2 (CC) 0.2 2599 10.8 10.8 1427 14.2 14.2 1440 16.8 16.8 1440 18.6 18.6 1440 20.2 20.2 1440 21.6 21.6 1469 23.0 23.0 1440 24.4 0.14 0.09 0.07 0.05 0.04 0.04 0.04 0.04 1.4E...,07- 8.4E-08. 6.5E-08 4.6E-08 4.1E-08 3.7E-08 3.6E-0~ 3.7E-08 .= Data Entered By: Date Checked By: Filename:TIFHUT1 NAA &tL Date: Date: 8-8-96 £r8-'k ADVANCED TERRA TESTING,INC. ~.'-.'''~''''''l..,f"I,,\,:",'.''_I~' ,i•,'t ." •t'•• ·,', " '.., "..'. ". ii \........,....t..........f,, ,'I ',,..I ....,.".,..."......,.,.,......"."I .}• • • •••I'.......,l '0"I • •••••••••••• •••••••••••••••••••••••••••••••••••• • , • • • • •••t.I •••••I I ••t ••t •I •••I • • ••••••••••••••••••••,•••••••••••••••• •....................................,-",. 24 22 ~ '........... " •••••••••••••I I j ,..,1 (,~i,"li h :i , ,1 . .....................1 ;1 U I i ,I l i i ', '.. I0:>U1I 'j':) 17..lP ...... ..... .'. ••... I ••••I •••..,••"...••••••••••••'••••••I ••••••••I I ••••••,•• ,'~".....,.....CL'A'V'ATEI"')IA": I ••••I'••••••••i'\I.'.'r.1 L... ••••••••,I • • • ••••••••• •SIT·E','-..Ji·A •.••I •••I ••••••I ••••••••••• t ••t • • • • •• • •••••••••.trH •••••••••••••••••••••••.••..','..........................................~. • • t •••••I •••••••••I'...."'I ••••••••• • • • • • • •••..,......••••0 • , I .,•••,.,0 ,.•••••• , •I ,.I ,.. 16 18 20 ~zt~~6\-'U, IW ...1'0:j~ o 2 "'.,"'0..-; " .,,.·" I ',"" 16141210 FIGURE 4.4-2 SUMMARY OF CAPILLARY MOISTURE RELATIONSHIP TEST RESULTS WHITE MESA PROJECT 8 TENSION,BAR 4 6 (~\t.-ll'\~"'r\k..t.<t{) CJM~.r 0\.<JJ.--;r 2 G..V QJ.IfAty-q,~6 \(fV\~.kiV\'('AD\~V"(. o14 \AS-<. kw- DATA FROM CHEN &ASSbCIATES;~~ -:.·F •• 18 ,••••I ••t.• 1:7:, •J .'. I •• •,I .•••. •i ••i ••••• • j • I ......... .... ••••t' ·.... ·....,.... ." • I .~.. •-i •~I • I i •••I ..I ••••••I 0 •I't'16 1.••••••••t••u•••••h ••u.,,f~,·..· •..·u'I I•••••h ,·.i I.."..,d ~.h ~~"~t ,I l.·••••·u . ~ , co-PoI \i"~,9...~"J.J~• l~,(" 4·~:q.~ ,. • I ......J ,.~I'l.,••",~l ,•••••••. . . . .;-.RANP:OM FIt.l:.: s:ITEIs :~2;:3,:&.15 .. t • .'. '.' .. .....................1·..•..•..• • •••..·1·· ·..·..· · ..:~:.:..:::-c·~~·..y·:..·:·iJ1·Arii{Fii!A·t:·:..·..··..··,·· . . ....S'IT·.• '...t t • ,)~••t t t.~1". , , . ". •••1.1 11 l u II ,'I ~t }o I••••••,.·••••••••••••••,.14 12 10 r-zUJ~~~.0r-0 'w~a:o :::>.Jf-(/) o :2 .. 8 o 2 4 6 8 10 1'2 14 16 ~~ -S;:-. FIGURE 4A-1· SUMMARY OF CAPILLARY MOISTURE RELATIONSHIP TEST RESULTS WHITE MESA PROJECT TENSION,BAR DATA FROM CHEN &ASSOCIATES Porosity Porosity is calculated from the specific gravity and dry bulk density according to the following equations; 1.Dry bulk density =[(specific gravity)(density ofwater)]/[I +e](Ref:Principles &Practice of Civil Engineering,1996).See Appendix C. 2.Porosity ==[e I (l+e)]x 100 (Ref:Principles &Practice ofCivil Engineering,1996).See AppendixC. Max.Dry Dry Bulk Specific Density of ue"porosity Density Density Gravity (1)Water (lb/ft3)(3)(4) (lb/ft3)(1)(lb/ft3)(2) Tailings 104.0 93.6 2.85 62.4 0.90 47% Clay (5)115.0 103.5 2.72 62.4 0.64 39% Random fill 120.2 108.2 2.67 62.4 0.54 35% Notes: 1.Physical soildatafrom Chen and Associates(1987)included in Appendix B. 2.Bulk dry density is 90%ofthe ASTM Proctor maximum dry density for all materials. 3.Calculated using Equation 1 above. 4.Calculated using Equation 2 above." 5.Clay physical data are average values from site #1 and site #4"c1ay stockpiles as given by Umetco Minerals Corp.1988. 7.1 K to -7 </.2 II.'10-7 1.'1.J(10-7 S:.lJ X 10-7 Ae-<.::2.12 ~/<1 -'7 1/5"x 1/5" 23 3.~K 7.8 y I.s-x ~i~2 X 0 -8 e.-.h 6.0 (0-8 I.K 10 -F .K (;;I-I> J('I ...,,-g 'CJ -y -F (()7 (0 jj~.~~i>&'1 ~(GX.I.) ~~~~..;(.. AUG-09-1996 (f/Z]/i<f) P.08 TABLE I SUKMARY OF LABO~AT6RY TEST RESULTS ---,--,-~~I ~.-~I.~~-'.,.'.,.?:;---:-r---, Pag.I of 2 HATURAL Max r/TIlJ'1l Opt 1/TlU'Il ATT£Rt£RQ LIMITS CRAOATIOH ANALYSIS H.'\OLOEO HRMEA!III TY Test ~pth Dry """Jsturf SpHlflc ~II Hole (Ft ,)MoIsture Dry Dens Ity Content LI qu Id »Iut Iclty IWcll!\lI'!l PassIng L.lI th.n Dry /'101 stOr.CrAvlty Typ. co~~)~t Oensl ty l ~~~t .'(~~Slu 1:200 2,l(~nllty co(~tent (t.I,/,• (pcf)10 cfl IXI xl •IXI (perl Xl Ctn.lSlC. 2 0-5 I17.5 10.8 20 3 HI6 58 19 III.'16.,~0.57 5.5xI0-7 SAndy SII t. 3 H 7.2 21 6 #16 62 Sanely Crayey I~,.l 18.S )3/B 3/~In.S6 12 8.2><10-8 SII r .. 5 71'10 '102.1 22.0 0.OR5 .2.65 Ca Iear&<lu,.I 2S 7 #16 .77 S/I ty C1AY'- 6 I-2 '0.J Sandy Cliy :./ 5II t . 6 8H 6.I 27 8 #~70 Sandy Clay 8 H·f I). 1 NP 3/"In.62 CAl Clr'ous /116 SAnely Slit 9'0,'8.I NP S3 S'nd.SI It 10 4-6t 2"10 II~73 Sandy ClAy. II 5Hi 14,0 26 6 HI6 6S Siltstone.,.. 88 'S9 6.6xIO·8 ClAys tone 12 2·5 101.0 20.6 5)./)S #16 95.0 18.)0.068 2.67 lIoHh".d )9 /8~ CIAyston. I)7·8 I).1 I)118 C.I careous 40 //14 89 SlltCI.y I~I·2 19,)21 lI.ath.red .26 / ."1,2x1O·8 CI >'f'tone 15 11·41 106,8 19.0 8 318 In.6S 27 10)."18.0 0.012 2;64 Mod.Calcar.e Sandy CI.y 17 2-)11.4 19 ~#8 S9 SAndy SIlt 119 0·)117.5 12.8 23 6 #16 70 109.9 12.4 0.035 3,4x10·8 SAndy Clay~" 26 / .,sri t 22 1·2 I), 2 10 114 73 Sandy CIDy , /23 I·)1.8 /2~11)0 ,87 lleath.red , 61 ./ Clay,tone 113 6.a )0 #)0 96 Clayston. ~5 I·3t 1J.)26 /9 114 57 Sandy Cloy ;i6 4H 15,)41 /20 #4 91 1I00th".d :A 28 / Clayston. 0·2 12.7 10 3/8 In.72 .Sandy Clay " H 8,5 19 2 1116 S9 S'nJy SIlt )2 8.8t 5,6 23 6 H30 7)Sandy Clay.y SI It 37 0-4 118,8 II .5 2)5 ,.,8 72 110.5 11.5 0,6)6,Ix 10'7 Sandy Clayey SIlt 38 5·7 II 1.0 16,7 29 -j 14 )/8 In.69 102.4 :?.9 0'~'11 I 4,~.ro-~Sandy Clay 40 4·sl 110,0 16,2 26 9 #8 64 27 106 4 6 4 n n 7 I ;.In°,~~S.ndy Clay ,._-- ~-+- -~tt8 ..--•..,~~ ..-.........~4/S111'.....-~~-~~ TMLE SU~Y or lABO~~TO~Y TEST ~ESULTS P09-2 01 2 NATURAL 1I..11!\U'l\Opt 1/lIU'l\AiTr"'JE~C LIMITS C~AOATIOH ~HALYSI$H."JOLO£O ,r"'XEMllI rr relt Oo~th Ory 1'.0 Is tur-Sp.clllc Soli Hole (F t . )"'.Ii \tur'Ory 04nll ty Corit _11 t LIquid \>Iuticlty k-U1"'1i1\'u11n9 Llls th."Cry Xci"tl/r.eUv/ly Typo (ont.nt Oens Ity L~I!\It Indu .Slz.11200 2,l(7 1W'Co<'Itont (t,/yr,Un,/IOC, -ill_-lli!L (pcl)(Xl Xl IXI (:tl •(Xl (pel (Xl 40 ;9-9!6.8 22 8 3/8 In.60 Sjndy CI~y .. 42 IH-14!7.6 26 /10 3/8 In.13 S~nely Cloy 43 1I·,2 12.I 41/22 114 86 Clay I tor , ")131-161-110.0 16.9 .4()/24 3/8 In,8S 4lt 104.I 15.8 0.02"2.),10-8 2.62 (1 ~ylton' I.J,6J -7 7.5 30 /II 3/8 In.79 C~lc.,eoul' 76 S.nuy Cl.y 46 0-2 12.)22 6 1116 Sonely CI~y.~ via 30 / S11 t S-5!9 3/8 In.6S sondy CI 'Y V<9 5·7 II 0.7 15.6 25 /9 1116 71 105.2 1),9 0,33 ),2<10.8 Sondy Cloy A9 14-15 28 /5 118 SS c~lcarooul Sondy Slit 5/1 0-2 12.I 23 9 IIH .64 Sonely Cley 55 5·5!7.8 28 ./14 1130 71 ;,en ely CI~y 55 9J-10!28 /13 1/4 71 Sendy CI.y v(a 5H 12.5 35/II /;4 75 Undy,Silty,.y 61 0-I I I.5 2I "1116 7S Sendy S11 t 62 II-IIt 8.,NP 1 In.34 C~IC.,eOlli· S.nd r.;''-'') 6)"-6 30 /14 1/8 68 Sandy C......· 65 1-2 9,0 NP #16 44 SI Ity S ) ,,..'' 68 7J-8 8,6 28/13 1/8 67 S.ndy Cl~y 70 )1-4j 16.4 27 4 It In.46 Calcareous S~nd r.Slit 72 0-2 12.2 22 8 #16 59 Sandy CI.y 75 10-II 12.4 41/25 #4 7S \loath'red Cl.yHon. 75 12 -I""S ./22 1116 93 CI·Yitori- 1116,1'06 ~~-s. LABORATORY PERHEA8lLITY TEST RESULTS ...,.",..,II!!I!IIt .m ....-'~.~,~...... TABLE II .~....~.",-~~:.~-~~.-::.~)'~.,~~.'.I ,..~._..''"-t'~ CompactIon ./"... SAmple I 5011 Typo I r Dry Hoi s'turo %of \Surcharge I Permeabll tty Donslty Content A5TH 0698 Pressure (pef)(%)(ps f)(Ft/Yr)(Cm/S TI1 2 ~01 -5 1 ISandy S11 t 111.6 16.~95 500 0.57 5.5'""\ Tf!5 @Hi-IO I Calcareous 51 Ity CI~y 102.1 22.0 101 500 I 0.085 8.2), TH 12 e 2'-5 1 ~eathered Claystone 95.0 18.3 911 500 I 0.068 6.6xl0 Til 15 Q q'-Ij!'Calcareous Sandy Clay 103.4 18.0 97 500 I 0.012 1.2x 10 TH 19 Q 0'-3'I Sandy,Clayey SlIt 109.9 12.4 911 500 I 0.035 3.ljxl0 "'-..ITH37Q0'-4'I Sandy,Clayey S11 t 110:5 11.5 93 SOD 0.63 6.1 xl0 Tf!38 Q 5'-7'I Sandy Clay I 102.4 17.9 92 500 I 0.041 II.Oxl 0- TH 40 g II I -5t 'I Sandy CI.'ly I 106.4 16.4 97 500 0.017 1.6xl 0 Tf!1,3 g 13~-16t'l Claystone I 104.1 15.8 95 500 0.024 2.3x 1O- Til 119 e 5'-7'I Sandy Clay 105.2 13.9 95 500 I - I 0.33 3.2>lIJ '-.N ~ ~ APPENDIXE Freezeffhaw Evaluation ....-...._--........-......_--.-.----=E E E:-":::~Environm.ental TITAN Environmental By JFL Date 6/17/96 Subject -"E~FN..LL.-_W.!..!...-'-'.h,-"ite",-M~e"-,,sa,---Page_\_of.Ji Chkd By~Date '\J \\\jlp Effect ofFreezing on Tailings Cover Proj No 6111-001 Purpose: Method: To determine iffreeze/thaw conditions will impact the performance ofthe White Mesa uranium mill tailings cover.This calculation briefpredicts the depth of frost which may be anticipated at the mill site.Only frost depth is evaluated since this would have the greatest impact on cover integrity (i.e.increasing permeability or damage by frost heave). A digital computer program ofthe modified Berggren equation for calculating the depth offreeze or thaw in a multi-layered soil system was used for purposes presented in this calculation.This method,used for determining the frost depth,is considered adequate for Uranium Mill Tailings Remedial Action (UMTRA) Projects by the U.S.Department ofEnergy for the following reasons: •It calculates depth offrost based on a zero degrees Celsius isotherm,whereas the frozen front occurs some distance above this line. •Extrapolation ofcurrent weather records beyond 200 years is not reliable. •Extreme changes in temperatures for the 1,000 year design life are not anticipated based on geomorphic evidence. Parameters for the cover materials based on accepted methods and existing database values previously collected,were input into the computer modeling program to determine the depth offrost penetration.A cover thickness of2 feet random fill over 1 foot ofcompacted clay (as determined by HELP and RADON computer modeling)was used. Assumptions:The model assumes: •One-dimensional heat flow with the entire soil mass at its mean annual temperature prior to the start ofthe freezing season. •At the start ofthe freezing season,the surface temperature changes suddenly from the mean annual temperature to a temperature below freezing and remains at this temperature throughout the entire freezing season. •The effect of latent heat is considered as a heat sink at the moving frost line. •Soil freezes at a temperature of 32 degrees Fahrenheit. c:\efn··""hit.e\freeze2.clc 19/11/96J TITANEnvironmental By JFL Date 6/17/96 Subject """"E~F......N-,--_W.!..!...!..!h-"-,ite~M.."e"",sa,,,--Page~ofJL Chkd B~Dateq(\\jqv Effect ofFreezing on Tailings Cover Proj No 6111-001 Results:The total frost penetration depth is less than 6.8 inches.Therefore,the 2-foot layer ofrandom fill will provide adequate protection to the underlying 1-foot clay layer.See Appendix A for computer modeling results. Parameters:The computer program requires input of the following parameters for the soil cover layers: -freezing index (degree); -length ofseason (days); -mean annual temperature (degrees Fahrenheit); -n-factor; -layer thickness'(inches); -water content (percent); -dry unit weight (lbs/cubic foot); -heat capacity (Btu/cubic foot-deg F); -thermal conductivity (Btulfoot-hour-deg F),and; -latent heat offusion (Btu/cubic foot). Freezing IndexlLength ofSeason/Mean Annual Temperature Default values from Grand Junction,Colorado were used for the freezing index and length of season.Grand Junction,Colorado was used for default parameters since it is similar in elevation and climate to Blanding Utah.An actual mean annual temperature for Blanding Utah from Dames &Moore (1978)was used for modeling purposes (see Appendix B). N-factor A default n-factor of 0.70 for sand and gravel surface type was used as per recommended in the freeze/thaw model guidelines (Aitken and Berg,1968). Soil type Soil type was considered to be fine grained soil for both cover layers.Soil type number is 5. c:\efn-white\freeze2.cle {9/12!96J TITAN Environmental By JFL Date 6/1 7/96 Subject ~E""-F-,-N,--_W..!.!..L!h,,-,it,,,-e.L!M~e"",-sa,,-_________Page~ofl.t Chkd B~Date11\\I'll,Effect of Freezing on Tailings Cover Proj No 61 I 1-001 Layer thickness' The thickness ofthe cover materials were determined by infiltration and radon flux modeling programs to be 2 feet ofrandom fill over 1 foot ofclay.For this calculation,a single 36-inch layer was used.This was used because the random fill and clay soil have very similar properties. Moisture Content 1K Optimum moisture content from Chen and Associates (1987)and Advanced Terra Testing (1996) was used for the random fill and the clay (UT-l)layer respectively.This data is included in AppendixB. Optimum moisture content: random fill clay =11.8% =13.9% A weighted averaged moisture content of 12.5 percent was used for this analysis. Soil Density Soil dry density was determined from Chen and Associates (1987)for random fill and Advanced Terra Testing (1996)for clay.The maximum dry density for the random fill was measured to be 120.2 pounds per cubic foot (pet)and the maximum dry density for the clay was measured to be 113.5 pcf.Assuming the soil will be compacted to 95 percent ofthe maximum density,the weighted average bulk soil density would be 112 pef. Heat Capacity Based on the nomographs presented in Aitken and Berg (1968)and included herein as Figure 1, using an average soil density of 112 Pef and an average moisture content of 12.5 percent yields a heat capacity of30 Btu/fe 0 F. Thermal Conductivity Thermal conductivity ofthe soil cover was assumed to be similar to that for a dry sand.The thermal conductivity ofa dry sand is reported to be 0.19 Btu!hr.ft OF (Perry,Robert H.et aI., 1984)(see Table 1). c:\efn-white\fr-eeze2.de {9/11/961 TITANEnvironmental By JFL Date 6/17/96 Subject ..AE""-F~N,--_W.ll.U.h-,-"ite"-M~e",,,,sa,,---________Page~ofK Chkd BYJ2tMDate 1!h /qtp Effect of Freezing on Tailings Cover Proj No 6111-001 Latent Heat Based on the nomographs presented in Aitken and Berg (1968)and included herein as Figure 1, using an average soil density of 112 pcfand an average moisture content of 12.5 percent yields a Latent Heat of2000 Btu!fe . References: Advanced Terra Testing,1996.Physical soil data,White Mesa Project,Blanding Utah,July 25, 1996. Aitken,George W.and Berg,Richard L.,1968,"Digital Solution ofModified Berggren Equation to Calculate Depths ofFreeze or Thaw in Multilayered Systems",October,1968. Chen and Associates,1987.Physical soil data,White Mesa Project Blanding Utah. Dames &Moore,1978."Environmental Report,White Mesa Uranium Project,San Juan County,Utah,January 20,1978,revised May 15,1978. Perry,Robert H.et aI.,1984."Perry's Chemical Engineers'Handbook,Sixth Edition",McGraw Hill Book Company,1984. U.S.Department ofEnergy,1988,"Effect of Freezing and Thawing on UMTRA Covers" Albuquerque,New Mexico,October 1988. c;\efn-white\freeze2.cle [9/12/96) .026.096.064 .022 .1l6 .270.~.097 0.16 .028.~.O~ 0.025-{).030.12./1.087.10.062 20-4020 30o ~87150 I,"C. ..38 2+-127 30~o100 2121 3030 3015 5015 15 60 o100 5002009021~ "30 212020-976-100 30~ 30 .02530.026 30 .025 38 .036~.082.040~.074 871 :~ 14.8 43 8.8 12 ~.7 7-ll51.5~.7KO-40.018.1 0.88 10 510 8.19.420.020.017.217.226.026.0 3820.61~.880.5 61.861.8167 .16.23 1.0 0.100·~.750.03 .028.27.0972.0 i39'"JG:75 O.H.730.63 0·3-0.610.3-0.~1.6-2.395. 0.104.25 .0211.3 20 0.020-40 .038 '6iX '~2 103 "i4 :~ 30 .OS~7 .3521O,~ 20 .32....1.2-1.7 50 ~0.25....\1.033-0.059.~30 0.0225 19.7 30 .02~.07S.H3.~ 2.9 0.88 .17 .I~.015o.067211:1~. 21 ".uJ'>-IJ.092.20 0.19--:> 21 0:03 .30'" 7817 57.5 ApP&rent density p.lb.lcu. ft••t roomtempera_ ture M.t<rw fine {Note 2). Cottoo ...001 ..•.•... Corl:board . Corl:(r<grAnulated).. . (groand).. . . . . ...'.'.. Diatolll&teOUS carth powder.roar.e(Note 2).. P.per . Puaflin wax . Petroleumtol:e . molded pipe covering (Note 2).." . ~vol.wtinedearth.nd I vol.cement,poured .Dd fired (Note 1).................•..... Dolomite .Ehonite .En&n1e1.silicate .Fdt,...001...........•,....•................Fiberinsulatingboard .Fiber.red,•................................(with hinder.hUed).Gas carboo .Glass ,.Borosilicate type.......•....•.............Windo...rla-ss ,...............•.......Boda«lass .Granite . Graphite.1on£itudinal...powdered,UJrOUlth 100 mesh .G~(molded aDd dry).Hairfelt (perpendicular to fibers). Ice..••....................................Iofusorw earth,oee diatomaceous earth .Kapol:..I.e.mphlaeL .1£"". Leather.sole..".Limestone (/5.3 vol.%!LO)......•..........linen .tt::~t:.~~)·.::::::::::::::::::~esium oxide (compressed)..........•.... Marble . Mica (perpendi<:ular to planes).Mill.na:.;ng.. Minerd wool . 60080010001200I~ 30 t."C. 120 0.013 290 .026 20 .43 51 .096 0 .087 60 .114 -200 .~30.0900.087 100 .111200.120~.129-200 .0900.135 38 .025In.0386-100 .~I20.43 ~27 1.813152.78000.621100.6320.~3.0200.676SO•8513151.0 ~0.051871.077 ~.081871.106~.H871.18 ~.H871.19 200 .131000.~ 200 .58600.851000.95I~1.02 500 0.15IISO:26200.050 760 .113 ~2.2 6SO 1.612001.1 27 27 19 19 27.7 27.7 27.7 27.7 38 38 ~2.3~2.3 37 37 8.5 120 55.5112112 29.3 29.33636 3636~3.5~3.5 0.2 i3i"" jif" 115 '%'" 84.6132 77.9 158 158 158 129 129 129 129 129 162 ~=;t p.lh./cu.rt.atroomtempera-ture M.terw '\At>L6--1- Thermal Conductivities of Some Building and Insulating Materials' k =Btuf(h·ft2)(OFfft) .CAl AND CHEMICAL DATAPI Kaolin insuIatinc brick:(Note:l).••••••••••. K.t.oIin insuIatinc firebricl:(Note~)•..••..••. M~eoite (1l6.8%MaO.6.3%FeA 3% C.O.2.6%Bio,by wt.). ~~.~.~~~:::::::::::::::::::::::'%:7" Chrome hrid:(32%Ct.o,bywt.)........ . . .200 200200 SiliconcarbideIrick,recryataIIised (Note3).. Diatomaeeous earth.natun1,&a"OOIl atrata(Note 2). Diatomaceous,natmaI,parrJlel to atrata(Note 2). Diatomaeeousearth,moldedandfired (Note 2) Diatomaeeous earth aDd clay,molded and fired (Note2). Diatomaeeous earth,high burn.larce poreo(Note3)..............•............•... Faeclay(Miooouri). Aerogel..iliea.opacified __ . Ashestoo-c<ment hoard...Asbcstoo sheets.Ashestoo slate Asbco!too . Aluminnm foil (7 airspaceo per 2.5 in.)••.••••. Ash..,wood .~J;!~~(N~i,;ij:·.:::::::::::::::::::Bricb: Alumina ~2--99%Al.o,bywt.)fuoed.••...•Alumina 6-4-65%Al,o,bywt.). {See aIoo rieb,fire clay). C.Itiumcarbonate.natural....••...,.•.." " . White marble....•......•.•......•.....•.. Ch.Il:......•............................. Cdtiumlu!fate (~fuO).ar1lJitial...•.•........plaster (artifitial). (building).~~~e~~~~:::::::::::::::::::::: Carbon atoel:............•......••......... Clinker (granular). Col:e.petroleum..........•.•.•.........•... PorceWn.••••.............................. Por1hDdcement,oee c:oncnte.......•......... Pumice atolle..'. Pyroxylin pIasti",. 10.7 Rubber.~~::::::::::::::::::::::::::::::74.8 9.2 (Ba"d(ary).................................'H.b~:g Sa...dust.•::·.:·.:::::::::::::::::::::::::::::'12 6.3 ScoJe (Note I). 1.3 Sille.....6.3 1.7 nrnished................•......'". O.~SIa&bIa.tfurnace . -40 .22 Bag 001 . 75 .~3 Slate.......................•.......... 25 .25 Sno .lJ--~2:~1 SuUur lrl::e1~)..::::::::::::::::::::·.94".-IM 0.55 Will board.Wnlatingtype . ( 0 3.6 W.II bo..-d,Iltillpaste board .8:fful~.~~·,,:::::::::::::::::::::'87:3""30 0:~~7 ~=<:'~~i:··················· Clw-to.IfiaIi:...................11.9 80 .~3 Balsa . 15 80 .051 Oak.................•.•.•.•...•.........~~,:f ~~l':.;.hiie".·.::::::::::::::::::::::::::::: 500 2:9 Teak... .. .. .. . . .. ......COl:e.petrnleum(2lJ...l00mesh).............•.62 ~0.55 Whitefir..•....................•.........Col:e (powdered)............................lJ--100.1I Wood (\lll-Nllel to grain):concrete~t:t;:·:·:·:·:::::::::::::::::::::::~W~e~~::::::::::::::::::::::::::'"~:~1\:~I •Marb,"MechAnit.IEnrin..,.,,'Handbook,"~th ed,McGraw-Hili,New York,1941...Inlern.ation.ICtitit.IT.bles,"McGraw-HilI,1929,IUld otheraoorteo.For oMition.I<!at..oee pp.~~59. Note 1:B.Kamp [Z.I«h.PAIIriJ;,11,30(1931)1 shows theeffectofincr....ooporositrindecreasing therlIlA!conducti:nty ofhoiler scale.Partridge[UDiveroit1 of MitlUgan,E"Il.RatartA Bull.15.1930J boo puhlished a 170-page treatise On F=tlOn and Properties of Boiler Stde.Note 1,ToWllOhend .Dd WillWns,Chen.&:Ma,39,219 (1932). Note 3:Norton,"Refractori.....2d ed"McGraw-HilI,New York,1~2.Note~:NOrlon.pri""te commuDicatioo. ?c;UY'.s Cl-\-tMIC.J\L CrJC,INc£R-S'H!\I,-X>13001C.,tq~YI ~\l;t tOiTION_ -:lA8l£!l 929 3-260 20 10 .30 .40 w 50 c ~.3 W C 0)Btu/cu ft-F 50 KEY 40 ~\(..\vdLe i DIGITAL SOLUTION OF MODIFIED BERGGREN EQUATION8 ,45 ,40 '.30 '20 110 Yd 100Ib/cu ft ~90 20 60 .6 5 70 NOTE Sp«;I;c It~ol of sciI solids CSS4PnM fo ""O./T Btu /6;.-F Figure 8.Average volumetric heal capaci!y {or soils (aUer Aldrich and Paynter.195.'1/. FI~ure '-I.Vvlumelflc larenl heal lor soIls (;lller Aldnch Jnd Pa.yMer.1953). TITANEnvironmental By JFL Date 6/17/96 Subject 2,E~F-,-NL..-_W!..!...Uh,-"ite",-,Mu.=e"",sa,--Page--J.-of~ Chkd BY~M.Dateq {\\h(,..Effect ofFreezing on Tailings Cover Proj No 6111-001 Appendix A c;\efn-whit.e\freeze2.clc [9/11/961 WEATHER STATIONS in Colorado: Length Design Mean of Freezing Annual Freezing Index Temp.Season Station Location C'F days)(of)(days) ------------------------------------------------- 1 =Alamosa 2271 11.3 159 2 =Buckley ANGB 577 50.3 88 3 =Colorado Springs 633 18.7 67 '1 =Denver 629 50.3 71 5 =Grand Junction 1101 52.6 86 6 =Pueblo 676 52.3 65 Enter the number representing the data you want; (0 to input your own data): LOCATlON and WEATHER DATA Input weather data for your location in Colorado: DESIGN AIR FREEZING Index (F-Days):1101 MEAN ANNUAL TEMPERATURE (F):19.8 LENGTH of FREEZING SEASON (Days):86 CHOOSE an APPROPRIATE N-FACTOR Surface Type 1=Portland;CeMent (snow-free) 2 =Aspr<rli ..(snow-free) 3"=Snot<i%.\' 1"=Sand~~'(lnd.r'Grave I (snow-free)5'i~Tur£~\;('Show-free);:;::fQ~f·::~l(:f:' 0"=To /.i~P~t your own N-Factor Enter ypur*option:~ ;~j.:;-~~,;,7\1:~~·." N-Factor * (Freezing) 0.75 0.70 1.00 0.70 0.50 *N-Factor uaries1with Iattitude,wind speed,cloud cover,and other cI iMatic conditions. INFORMATION for'liVER 1: Choose the appropriate soil type for this layer -- 1 =Portland Cement stabilized layer Z =Asphalt stabilized layer 3 =Snow <1 =Course-grained soil 5 =Fine-grained soil 6 =Insulating layer 7 =Organic soil Enter your option:5 LA~ER PARAMETERS ParaMeters for Lfl~ER L Fine-grained Layer Th iclmess (inches ) Moisture Content (%dry weight) Dry Unit Weight,'Clbs/cubic foot) ",":.";-" Hea1;Capac ityOftu':kcub ic foot of) TherMal Conductioity (Btu/foot hour OF) Latent Heat ofFus~on (Btu/cubic foot) Default Values 12.0 17.0 122.0 *29.5 *0.90 *2016.0 Values Used 36.0 12.5 112.0 30.0 0.19 2000 *recalculated based upon new MOISTURE CONTENT/WEIGHT ualue(s). . . .<return>for DeL."I t Values _.. Summary:MODIFIED BERGGREN SOLUTION Design Freezing Index (AIR) Design Freezing Index (SURFACE) Mean Annual Temperature Length of Freezing Season =1101 F-days =771 F-days =1'3.8 of =86 Days 14S Each Layer FREEZING INDEX DISTRIBUTION <6.8 LAVER THICKNESS (inches) LAVER tt:Type 1:Fine-grained Accum Berwrren ------Cdlculations ....could not converge Surf(l.ce DF I -----------End of Frost Penetration ---------------- TOTAL FROST PENETRATION =6.8 inches Do you want a hard copy of this data (V or default N)? TITANEnvironmental By JFL Date 6/17/96 Subject -""E"""-FN~----,W,-,-h......i=te,--"M.:....e"",s,,,,,-a PageJ:LofJt Chkd B~Date C:t/"I'll.?Effect ofFreezing on Tailings Cover Proj No 6111-001 Appendix B c:\efn-white\freeze2.clc [9/11/96) --••! a... ••••., •.'•••••I: .' ( •< 40 30 ...... 0 20 °..... W 0:: ::J.- <l: 0:: W 10Q ~ w.- (A) (B) (C) (D) MONTHLY MEANS AND EXTREMES OF TEMPERATURES BLANDING,UTAH ANNUAL MEAN:9.9°C MEAN DAILY MAXIMUM MEAN MONTHLY MEAN Ofi.IL Y MINIMUM FREEZE DATES pu.n 2.7-2 -12- I A\L-\toc{':)f\;i00 Q.frtSUCM-"-f\\...L -?(2.0{)2-~U f-S Table 3.4-1 Physical Properties of Tailings and Proposed Cover Materials Atterberg Limits Specific %Passing No.200 Maximum Dry Density Optimum Moisture Material Type lL El Gravity Sieve (pcf)Content Tailings 28 6 2.85 46 104.0 18.1 ~om FIll 22 7 2.67 48 120.2 1l.8~ Clay 29 14 2.69 56 121.3 12.1 Clay 36 19 2.75 68 108.7 18.5 Note:Physical Soil Data from Chen and Associates (1987). 833 Partet Street Lakewood.Colorado 80215 (303)232-8308 Proctor Compaction Test ••UT-1 403020 Moisture Content (%) 10 f-\ -\ -\ f-\ 1\Zero Air Voids Cu ~e ~\.....@ 361eporteQ--beIVVV I- ~ -(~\ c-/e ~~ I ~l- I ~ -~i "'"- I I I85 o 90 95 100 125 130 135 140 120 C-o 0..115'-" >-~ (f)c(]) 0 110e:- O 105 -Best Fit Curve o Actual Data -Zero Air VoidsCurve @ SG =2.70 ?f OPTIMUM MOISTURE CONTENT:=13.9 MAXIMUM DRY DENSITY:=113.5 ASTM D 1557A,Rock correction applied?N ADVANCED TERRA TESTING,INC. APPENDIXF Erosion Protection ......._-_-......._-_-.--=E E E:-~-;;Environlllental TITAN Environmental By ..KQ..Date ~Subject EFN White Mesa Mill Tailings Cover Chkd By.Date~Design ofRiprap for Cover of Mill Tailings PURPOSE: Page_l_of_8_ Proj No 6111-001 Design ofErosion Protection layer ofRiprap for the Cover of Uranium Tailings An erosion protection layer of rock riprap is required to protect the soil cover for the uranium mill tailings at Blanding,Utah.The cover is supposed to have a design life of 1000 years according to requirements set by U.S.Nuclear Regulatory Commission [Ref:"Final Staff Technical Position - Design ofErosion Protection Covers for Stabilization of Uranium Mill Tailings Sites",1990;U.S. Nuclear Regulatory Commission (U.S.N.R.C.)].Hence the erosion protection layer should be designed accordingly.A design for the stone size and overall riprap thickness required for erosion protection is provided in this document. METHODOLOGY: The design for rock riprap for protection of top and side slopes of the cover is based on the guidelines provided by the following documents: a)"Methodologies for Evaluating Long-Term Stabilization Designs of Uranium Mill Tailings Impoundments"(NUREG/CR-4620),1986;U.S.Nuclear Regulatory Commission b)"Final Staff Technical Position -Design of Erosion Protection Covers for Stabilization of Uranium Mill Tailings Sites",1990;U.S.Nuclear Regulatory Commission (U.S.N.R.C.) c)"Development of Riprap Design Criteria by Riprap Testing in Flumes"(NUREG/CR-4651), 1987;U.S.Nuclear Regulatory Commission The top of the cover and the side slopes will be designed separately as the side slopes are much steeper than the top of the cover.Overland flow calculations will be determined based on the guidelines set by Nuclear Regulatory Commission and the site data.The size ofthe riprap placed on top of the tailings cover will be determined using the Safety Factor method (NUREG/CR-465l), while the Stephenson method (NUREG/CR-4651)will be applied for those placed along the side slopes. TITAN Environmental By ..Kfr.Date ~Xp~)ect EFN White Mesa Mill Tailings Cover Chkd By.Date~Design ofRiprap for Cover of Mill Tailings A:Overland Flow Calculations Page_2_of_8_ Proj No 61 I 1-001 The methods for overland flow calculations are same for top and side slopes of the cover.The results have been tabulated under Table lA and 2A respectively.The formulas,methodologies and equations used for overland flow calculations are discussed in this part of the document.The calculations are based on unit width ofdrainage area. Average Slope'S'and Length of drainage basin 'L':Figure 1 shows the direction of drainage for cells 2,3 &4.Table lA calculates the flow parameters by varying slopes and slope lengths ofcells 2,3 &4.Runoff and flow calculations have been provided for slopes ranging from 0.001 to 0.008 for cells 2 and 4 and from 0.001 to 0.005 for cell 3.As the slopes are very gentle,for each cell the drainage length varies negligibly and hence has been considered constant for calculation purpose. The drainage lengths have been measured from the site map.For erosion protection design of the side slopes,a side slope of 5H:1V and the maximum value of drainage lengths for cells 2,3 &4 have been considered (Table 2A). Probable Maximum Precipitation (PMP):The I-hour local storm PMP for White Mesa is 7.76 inches (data from NOAA,1977). Time ofConcentration ofRainfall.T~: LO.??LO.?? Tc =0.00013 S0.385 hours =0.00013 SO.385 x 60mins (Ref:Equation 4.44 in NUREG/CR-4620) where,S =average slope ofdrainage basin and L =length ofdrainage basin in feet The percentage of I-hour precipitation is obtained by interpolating from Table 2.1 ofNUREG/CR- 4620.The minimum value ofTe used inthis table is 2.5 minutes. %PMP:The percentage for I-hour precipitation (PMP)is obtained by interpolating from table 2.1 ofNUREG/CR-4620. Rainfall Depth: Precipitation Amount (inches)=%PMP x PMP =%of I-hour precipitation x PMP (Ref:Eqn.2.1, NUREG/CR-4620). Precipitation intensity,'i': Precipitation intensity in inches/hour can be computed as (Ref:Eqn.2.2,NUREG/CR-4620): i =rainfall depth (inches)x [60 I {rainfall duration Tc (minute)}] Runoff Coefficient,C:Runoff coefficient depends on climatic conditions,the type of terrain, permeability,and storage potential of the basin.Runoff Coefficient has been assumed to be 0.8 for TITAN Environmental By -.KG-Date 6/96 _~p~ject EFN White Mesa Mill Tailings Cover Chkd By~Date~Design ofRiprap for Cover ofMill Tailings Page_3_of_8_ Proj No 6111-001 the top of cover and the side slopes (Ref:Appendix D,section 2.4 (Example)in "Final Staff Technical Position",U.S.N.R.C.). Unit Area,A:Area of I-ft wide drainage basin A =Length ofdrainage basin (ft.)x width (ft.)=LxI sq.ft.=[Lxll(43560)]Acres Peak discharge per unit width for the drainage basin,q: By Rational method,q =CiA,where C,i &A have their usual meanings [q in cu.ft./sec (cfs),i in incheslhour and A in acres](Ref:Eqns.4.42 and 4.43,NUREG/CR-4620). Flow Concentration Factor: From section 4.9 ofNUREG/CR-4620,"...it is reasonable to assume that values between 2 and 3 are attainable with only a slight evolutionary change in cover."Thus,a flow concentration factor of 3 and 2 have been assumed for top and side slopes respectively (as the top ofcover is flatter than the side slopes,it has been assumed that concentration of flow will be higher on the top than along the side slopes). Concentrated discharge per unit width for the drainage basin,qc: qc (cu.ft./sec)=q x flow concentration factor Manning's Roughness coefficient,n: Assumed n =0.03 for graded loam to cobbles (Ref:table 4.2,NUREG/CR-4620) Depth ofwater,D: 3 Depth ofwater in ft.,D =[qc x~]5 (Ref:Eqn.4.46,NUREG/CR-4620),where qc is in cu.ft./sec 1.486 S Permissible Velocity: The cover permissible velocity is between 5 to 6 ft./sec (Ref:section 4.11.3,NUREG/CR-4620) Flow Velocity,V: Using continuity equation, discharge =velocity x cross-sectional area :.qc =V x (D x unit width)=V x D x 1 :.Vein ft./sec)=~Dx 1 For all the calculations provided in Table IA and 2A for top ofcover and side slopes respectively, Vdeveloped <V pennissiblc TITAN Environmental By ..Kfr.Date ~Subject EFN White Mesa Mill Tailings Cover Chkd By~Date.Design of Riprap for Cover ofMill Tailings Page_4 of__8_ Proj No 6111-001 B:Calculation for Preliminary Size roso)of Rock Riprap used for Erosion Protection B.]Preliminary Size (Dso)ofRiprap along Top ofCover According to recommendations by U.S.N.R.C.[Ref:Appendix D,section 2.2 (step 5),"Final Staff Technical Position"],recent studies have indicated that Safety Factor method is more applicable for designing rock for slopes less than 10%.The slopes along top ofthe cover for all the cells 2,3 and 4 do not exceed 10%.Hence the Safety Factor method has been adopted to calculate the median diameter Dso ofthe rock particles used for riprap. According to the Safety Factor method for determination ofstone size,if the Safety Factor (S.F.)is greater than unity,the riprap is considered to be safe from failure (Ref:Section 3.4.I ,"Development of Riprap Design Criteria by Riprap Testing in Flumes",NUREG/CR-4651).For calculations to determine the riprap size for top of cover,a safety factor of 1.1 has been assumed and the Dso corresponding to this safety factor has been computed.Table IB tabulates the results for the safety factor method. The equations 3.5 through 3.9 of NUREG/CR-465I (see appendix)for Safety Factor method are provided below : cose tan~SF = , ..eqn.Al (eqn.3.5 ofNUREG/CR-465I) 11 tan~+sme cosp I [I +sin(I-+P)]11 =11 2 eqn.BI (eqn.3.6 ofNUREG/CR-465I) 2ho f /11 =eqn.C I (eqn.3.70 NUREG CR-465I) (Gs -l)y w x D50 'to =Y wDS eqn.DI (eqn.3.8 ofNUREG/CR-465I) p =tan-I cosI- 2 sine .'1--+smJ\, 11 tan~ ...................eqn.EI (eqn 3.9 ofNUREG/CR-465I) where, I-=angle between a horizontal line and the velocity vector compoment measured in the plane ofside slope (refer to fig.3.1ofNUREG/CR-4651) e =side slope angle S =side slope =tan e ~=angle ofrepose (friction angle)ofrock TITAN Environmental By KG Date 6/96 ~ect EFN White Mesa Mill Tailings Cover Chkd By--Wt-Date Design of Riprap for Cover of Mill Tailings Page_5_of_8_ Proj No 6111-001 =bed shear stress =representative stone size =Specific gravity or relative density of the rock =depth offlow =specific weight ofthe liquid (in this case,water) =stability numbers =angle between vector component ofthe weight,Ws,directed down the side slope and the direction ofparticle movement For top ofthe cover,as slopes are very gentle,for all practical purposes,A can be considered to be equal to zero (Ref:pg 22,NUREG/CR-465I) Thus for A=0:cos A=I,sin A=O. Hence,equation 3.9 ofNUREG/CR-4651 can be reduced to -1[11 tan~]p =tan . .eqn E2 (eqn 3.10 ofNUREG/CR-465I)2sm8 Also,equation 3.6 ofNUREG/CR-465I can be reduced to 11'=11[1 +~inp]eqn.B2 =40°(see Table 3) =2.48 (see Table 3) 3Yw=62.4 lb.lft The values for depth of water 'D'have been computed in Table IA.Table IB provides the preliminary Dso size for each of cells 2,3 &4 by varying the slope and the length ofthe drainage basin. D2Q calculated by CSU method According to CSU method (Ref:NUREG/CR-465I,Phase-II), Dso =5.23 x (slope)0.43 x (discharge)o.s6 The results of Dso computed by CSU method have been included in table IB (values of discharge have been computed in table IA to compare with those obtained by Safety Factor method. TITAN Environmental By KG Date 6/96 s~~~ct EFN White Mesa Mill Tailings Cover Chkd By~Date .Design of Riprap for Cover ofMill Tailings S,2 Preliminary Size (Dso)ofRiorap along Side Slopes Page_6_of_8_ ProjNo 6111-001 According to recommendations by U.S.N.R.C.(Ref:Appendix D,section 2.2 (step 5),"Final Staff Technical Position"),recent studies have indicated that Stephenson method is more applicable for designing rock for slopes less than 10%.As the side slopes (5H:1V)have a value ofS =1/5 =0.2 = 20%(>10%),the Stephenson method (Ref:"Development of Riprap Design Criteria by Riprap Testing in Flumes",NUREG/CR-4651)will be most appropriate. By Stephenson method,the median size for rock,Dso is given by the following equation (Ref:eqn. 3,15,NUREG/CR-4651): =Concentrated discharge in cu.ft./sec =Slope angle =tan-I (S)=tan-I (0.2)=11,31 0 =Friction angle ofthe rock =400 (see Table 3) =Relative Density ofthe rock =2.48 (see Table 3) =Acceleration due to gravity =32.2 ft.lsec2 =Porosity ofthe rock =0,30 (for sandstone)[Ref:(a)"Origin of Sedimentary Rocks"and (b)Table 3 C =Empirical factor [0.22 for gravel/pebble and 0.27 for crushed granite] Also,K =Oliver's constant [1.2 for gravel and 1.8 for crushed rock] The results for qc from table 2A have been substituted into the above equation and the solution tabulated in table 2B.The value of Dso has been multiplied by the Oliver's constant K to insure stability. D~calculated by CSU method According to CSU method (Ref:NUREG/CR-4651,Phase-II), Dso =5.23 x (slope)0.43 x (discharge)o.s6 The results of Dso computed by CSU method have been included in table 2B to compare with those obtained by Stephenson method. TITAN Environmental By KG Date..M!JfL.Svbject EFN White Mesa Mill Tailings Cover Chkd By~Date~Design ofRiprap for Cover ofMill Tailings Page_7_of_8_ Proj No 6111-001 c:Oversizing ofRiprap based on durability and Overall Riprap Thickness C.l Modification o.fSize (»50)ofRiprap based on Durability Tables 3 and 4 include the properties of the rock to be used as protective cover material.Based on these values and according to the scoring criteria set by U.S.N.R.C.(Ref:Appendix D,sections 6.2, 6.2.1,6.2.2 and table D-1 in "Final Staff Technical Position"),a rock rating analysis has been provided in Table 4.The results show a rock rating of 55.74%,which according to U.S.N.R.C.can be used for non critical areas like top slopes and side slopes. Thus the oversizing required =80-55.74 =24.26% [ref:(a)Appendix D,section 6.2.2B,"Final Staff Technical Position";U.S.N.R.C.(oversizing required based on a 80-rating),(b)Appendix D,section 6.4 (example),"Final Staff Technical Position"and (c)Table 4. However a oversizing factor of 25 %has been used.Thus the nominal diameter Dso obtained in tables 1B and 2B has been multiplied with 1.25 to obtain a modified rock size Dso (tables 1C and 2C). C.2 Overall Riprap Thickness According to the Safety Factor method,it is recommended that the riprap thickness be at least 1.5 times the Dso value whereas according to the Stephenson method the riprap thickness should be at least 2 times the Dso value.The results based on the above recommendations are shown in tables 1C and 2C respectively. RESULTS: Results ofthe calculations have been tabulated under tables lA,1B,1C,2A,2B,2C respectively. TITAN Environmental By -.KG..Date 6/96 Subject EFN White Mesa Mill Tailings Cover Chkd By__Date Design ofRiprap for Cover ofMill Tailings REFERENCE: Page_8_of_8_ Proj No 6111-001 a)"Final Staff Technical Position -Design of Erosion Protection Covers for Stabilization of Uranium Mill Tailings Sites",1990;U.S.Nuclear Regulatory Commission (U.S.N.R.C.) b)Methodologies for Evaluating Long-Term Stabilization Designs of Uranium Mill Tailings Impoundments"(NUREG/CR-4620),1986;U.S.Nuclear Regulatory Commission c)"Development of Riprap Design Criteria by Riprap Testing in Flumes"(NUREG/CR-4651), 1987;U.S.Nuclear Regulatory Commission d)National Oceanic and Atmospheric Administration (NOAA),1977. Precipitation Estimates,Colorado River and Great Basin Drainages. Report (HMR)No.49. Probable Maximum Hydrometeorological e)"Origin of Sedimentary Rocks",second edition;Harvey Blatt,Gerard Middleton and Raymond Murray TITAN Environmental By KG.Rate 6/96 Subject Chkd ByJ2lL Date 1j~ EFN White Mesa Mill Tailings Cover Design ofRiprap for Cover ofMill Tailings TABLES Page__of__ Proj No 6104-001 TITAN ENVIRONMENTAL Project #: Client: Location: Overland Flow Calculation.for Top Portion of the Cover Table 1A:Calculation ror Runoffand FlOW parameters 6111-001 EFN,WMe Me.a Blanding,Utah Date:June 1996 Prepared by:KG Checked by: Maximum A....eraglt DraJnage Area Manning'.1·hour Oetlgn Tlmoof Peak Concentrated Length ''L''Slope pern.run Roughn...precipitation Storm Concenlrltlon,Tc %PMP Rainfall PrecIpitation Runoff Flow D1.cha~e Discharge Depth of Flow Permissible Cell No 01 Drainage "S"A:c Lx 1n.eoamelent amount Caloulatedvalue Minimum V.lue •%of 1..hour Oeplh Inten,rty Coe1'rlclent Concontra·peruntt per uott wafer,"0"Veloclty,V:c Veloclty Basin n (using Eqn.4.044.v.'uetb.,ed u.ed precipitation "r "C"ion n.width n.v.<dlh (eqn.4.046,Dlsch.rgtt (appx.)NUREG .620)on table2.1,(T.bl.2.1,Factor q.CIA q,NUREG.620)c.s.Area NUREG 4620 NUREG 4620nn.m.sq.n Acres Inches minute. minute.minute.Inche.Inches/hr.CU.n.lseC.cu.n.J,ec.n.n.llec.ft.l,ec 1350 0.0080 1350 0.0310 0.03 7.76 PMP 12.88 2.5 12.88 68.90 5.35 24.92 0.8 3 0.62 1.85 0.593 3.13 1350 0.0072 1350 0.0310 0.03 7.76 PMP 13.41 2.5 13.41 70.18 5.45 24.37 0.8 3 0.60 1.81 0.604 3.00 2 1350 0.0070 1350 0.0310 0.03 7.76 PMP 13.55 2.5 13.55 70.53 6.47 24.23 0.8 3 0.60 1.80 0.607 2.97 1350 0.0060 1350 0.0310 0.03 7.76 PMP 14.38 2.5 14.38 72.52 5.63 23.48 0.8 3 0.58 1.75 0.624 2.80 1350 0.0050 1350 0.0310 0.03 7,76 PMP 15.43 2.5 15.43 74.69 5.80 22.54 0.8 3 0.56 1.68 0.643 2.61 1350 0.0040 1350 0.0310 0.Q3 7.76 PMP 16.81 2.5 16.81 76.90 5.97 21,30 0.8 3 0.63 1.58 0.664 2.38 1350 00030 1350 0.0310 0.03 7.76 PMP 18.78 2.5 18.78 80.05 6.21 19.84 0.8 3 0.49 1.48 0.694 2.13 1350 0.0020 1350 0.0310 0.03 7.76 PMP 21.96 2.5 21.96 83,37 6.47 17.68 0.8 3 0.44 1.31 0.731 1.80 1350 0.0010 1350 0.0310 0.03 7.76 PMP 28.67 2.5 28.67 88.07 6.83 14.30 0.6 3 0.35 1.06 0.793 1.34 1100 0.0050 1100 0.0253 0.03 7.76 PMP 13.18 2.6 13.18 69.63 5.40 24.60 0.8 3 0.50 1.49 0.599 2.49 1100 0.0040 lIDO 0.0253 0.03 7.76 PMP 14.36 2.5 14.36 72.47 5.62 23.49 0.8 3 0.47 1.42 0.623 2.29 5-6 3 1100 00030 1100 00253 0.03 7.76 PMP 16.04 2.5 16.04 75.67 5.87 21.96 0.8 3 0.44 1.33 0.652 2.04 1100 0.0020 1100 0.0253 0.03 7.76 PMP 18.75 2.5 18.75 80.DO 6.21 19,86 0.8 3 0.40 1.20 0.694 1.74 1100 0.0013 1100 0.0253 0.03 7.76 PMP 22.14 2.5 22.14 83.50 6.48 17.56 0.8 3 0.35 1.06 0.733 1.45 1100 0.0010 1100 0.0253 0.03 7.76 PMP 24.49 2.5 24.49 85,14 6.61 16.19 0.8 3 0.33 0.98 0.755 1.30 1250 0.0080 1250 0.0287 0.03 7.76 PMP 12.13 2.5 12.13 67.12 5.21 25.75 0.8 3 0.69 1.77 0.577 3.07 1250 0.0070 1250 0.0287 0.03 7.76 PMP 12.77 2.5 12.77 68.66 5.33 25.02 0.8 3 0.57 1.72 0.591 2.92 4 1250 0.0060 1250 0.0287 0.03 7.76 PMP 13.56 2.5 13.56 70.53 5.47 24.23 0.8 3 0.56 1.67 0.607 2.75 1250 0.0057 1250 0.0287 0.03 7.76 PMP 13.83 2.5 13.83 71.18 5.52 23.97 0.8 3 0.55 1.65 0.612 2.70 1250 0.0050 1250 0.0287 0.03 7.76 PMP 14.54 2.5 14.54 72.90 5.66 23.34 0.8 3 0.54 1.61 0.627 257 1250 0.0040 1250 0.0287 0.03 7.76 PMP 15.85 2.5 15.85 75.35 5.85 22.14 0.8 3 0.51 1.52 0.649 2.35 1250 0.0030 1250 0.0287 0.03 7.76 PMP 17.70 2.5 17.70 78.32 6.08 20.60 0.8 3 0.47 1.42 0.678 209 1250 0.0020 1250 0.0287 0.03 7.76 PMP 20.69 2.5 20.69 82.48 6.40 18.56 0.8 3 0.43 1.28 0.719 178 1250 0.0010 1250 0.0287 0.03 7.76 PMP 27.02 2.5 27.02 86.92 6.74 14.98 0.8 3 0.34 1.03 0.778 1.33 Rainfall %of1-hr. Duration preclplta~on (min.) 2.5 27.5 5 '5 10 62 15 7' 20 82 30 80 '5 05 60 100 Table 2.1 of NUREG4820 WMARMOR2.XLS ~ ~ ..s::. ~ TITAN ENVIRONMENTAL ProJtlct':&111·001 Client EFN.'.'\tllte Me.. Locltlan:Blanding,Utah Ode:June 1PQa Preplredby:KG Cheeked by: Rlprap OulgntorTop portIon ofthe Cover Table 1B:Calcula~on forpreliminary sizing 01 fiprl?,050 Specilic Sod ROOk D.. Slope ofChannel Depthof Wtiptllol Shur SpeCific Angle of ""Safety byCSU Cell No.S ,ftow,O wOW Stre..Greyly friction A COt&•1n8 co."tinA tan• Safety Fa~mothod "tanp p COIlJ ".Fa_method,.to·Y..OS G.•~~AI."'or,e!~.!bleu.1I bl'<l II ""~.t (jf,nfet."""a ..Inc:h"• 0.0080 0.458 0.693 82.'0.296 2.49 '0 0 1.000 0.009 1.000 0.000 0.939 0.99 0.074 0.907 47.692 99.796 0.021 0.907 1.10 0.93 0.0072 0.413 O.eo..62.4 0.271 2.49 '0 0 1.000 0.007 1.000 0.000 0.839 0.82 0.069 0.909 62.920 99.917 0,019 0.909 1.10 0.87 2 0.0070 0,401 0.607 62.4 0.266 2.49 '0 0 1.000 0.007 1.000 0.000 0.939 0.90 0.De9 0.910 64.620 88.D4Sl 0.019 0.910 1.10 0.96 0.0060 0.3"0.82-4 62.4 0.233 2.49 '0 0 1.000 0.006 1.000 0.000 0.839 0.70 0.069 0.910 83,8304 99.100 0.016 0.910 1.10 0.79 0.0060 02S6 0.843 82."0.201 2.49 40 0 1.000 0.006 1.000 0.000 0.939 0.60 0.060 0.812 76.619 99261 0.013 0.912 1.10 0.72 0.0040 0.229 0.eS4 62.4 0.166 2.49 40 0 1.000 0.004 1.000 0.000 0.B39 0.60 0.041 0.912 96.961 99.401 0.010 0.912 1.10 0.63 0.0030 0.172 0.e;4 62.4 0.130 2.49 '0 0 1.000 0.003 1.000 0.000 0.939 0.39 0.033 0_127.126 99.6'9 0.009 0.909 1.10 0.63 0.0020 0.115 0.731 62.'0.091 2.49 '0 0 1.000 0.002 1.000 0.000 0.839 0.29 O.O~0.906 199.976 9U99 0.006 0.906 1.10 0....2 0.0010 0.057 0.793 152.4 0.04;2.48 40 0 1.000 0.001 1.000 0.000 0.939 0.16 0.012 0.912 392.676 99.960 0.003 0.912 1.10 0.28 0.0060 0.286 0.699 62.4 0.187 2.49 '0 0 1.000 0.00.1.000 ,0.000 0.63"0.••~:g~~0.911 6.415 99.260 0.013 0.91 1.10 0.6 0.00040 0.229 0.1523 82.4 0.166 2.49 '0 0 1.000 0.004 1.000 0.000 0.939 0.'7 0.913 96.721 99.401 0.010 0.913 1.10 0.69 3 0.0030 0.172 0.662 92.'0.122 2.49 '0 0 1.000 0.003 1.000 0.000 0.939 0.37 0.030 0.913 127.991 99.661 0.009 0.913 1.10 0.60 0.0020 0.116 0.894 62,4 0.087 2.48 40 0 1.000 0.002 1.000 0.000 0.939 026 0.022 0.909 190.697 99.999 0.006 0.909 1.10 0.40 0.0013 0.0701 0.733 62.01 0.069 2.49 40 0 1.000 0.001 1.000 0.000 0.939 0.19 0.015 0.912 294.199 99.905 0.003 0.912 1.10 0.31 0.0010 0.057 0.765 62.01 0.0017 2.48 40 0 1.000 0.001 1.000 0.000 0.830 O.U 0.012 0.909 379.944 89.840 0.003 0.909 1.10 0.27 0.0090 0.458 0.677 62,01 0.299 2.48 '0 0 1.000 0.008 1.000 0.000 0.939 O.Or ~:~~0.909 4 .996 89J99 g:~;~0.909 1.10 0.00 0.0070 0.401 0.591 62.4 0.269 2.49 40 0 1.000 0.007 1.000 0.000 0.939 0.78 0.909 54.460 99.949 0.909 1.10 0.94,o.ooeo 0,344 0.607 62.4 0.227 2.48 40 0 1.000 0.006 1.000 0.000 0.939 0.99 0.067 0.812 93.742 89.101 0.016 0.812 1.10 0.77 0.0057 0.327 0.912 62.4 0.219 2.49 40 0 1.000 0.009 1.000 0.000 0.839 0.99 0.066 0.907 64.776 89.142 0.016 0.901 1.10 0.16 0.0060 0.2M 0.627 62.4 0.196 2.48 40 0 1.000 0.005 1.000 0.000 0.939 0.69 0.049 0.912 79.531 99.261 0.013 0.912 1.10 0.70 0.0040 0.229 0.649 62.4 0.192 2.'9 '0 0 1.000 0.004 1.000 0.000 0.839 0.49 0.040 0.912 96,624 88.401 0.010 0.912 1.10 0.92 0.0030 0.172 0.678 62.4 0.127 2.49 40 0 1.000 0.003 1.000 0.000 0.839 0.38 0.032 0."1 127.413 89.6&0 0.009 0.911 1.10 0.62 0.0020 0.115 0.719 62.4 0.090 2.49 '0 0 1.000 0.002 ,.000 0.000 0.839 0.21 0.023 0.907 190.227 89.699 0.006 0.907 1.10 0.41 0.0010 0.057 0.778 92.'0.049 2.49 40 0 1.000 0.001 1.000 0.000 0.939 0.16 0.012 0.908 390.192 89.960 0.003 0.909 1.10 0.27 ~ f Rlprap__IT!,?d!hd based ondurability,and Overall R.lprap ThicknessTable1C:01~",,,,.~.~--- D~Overtl.tlng Modified Thlckne.Overall Slope of buodon Factorb.1.edon DIO of Rlprap Rlprap Con No.channel S.11ory RockQuality al':er layer Thlckneu S Factor (from previous overs!:1ng ·1.5xO~.uggested Method report) •AI Inche•Inche.inches Inche. o.ooao 0.99 1.25 1.11 Ul7 0.0072 0.82 1.25 1.02 1.63 0.0070 0.90 1.25 0.99 1.49 2 0.0090 0.70 1.26 0.88 1.31 0.0060 0.60 1.25 0.76 1.13 0.0040 0.60 1.25 0.82 0.93 0.0030 0.39 1.25 0.48 0.73 0.0020 0.28 1.25 0.34 0.62 0.0010 0.15 1.25 0.19 0.29 O,OOSO 0.68 1.25 0.70 1.06 0.0040 0.47 126 0.68 0~7 3 0.0030 0.37 1.25 0.46 0.68 3 0.0020 0.26 1.25 0.33 0.49 0.0013 0.18 1.25 0.22 0.33 0.0010 0,14 1.25 0.19 0.27 0.0080 0.87 1.25 1.08 1.62 0.0070 0.79 1.26 0.97 1.015 0.0080 0.68 1.25 0.96 1.28 0.0067 0.66 1.25 0.82 1.23,0.0050 0.&9 1.25 0.73 1.10 0.0040 0.49 1.25 0.61 0.91 0.0030 0.38 1.25 0.018 0.71 0.0020 0.27 1.25 0.34 0,51 0.0010 0.15 1.25 0.19 0.27 --1 -:s) ~ ~ARMOR2.XLS TITAN ENVIRONMENTAL Overfand FlowCalculations for Side Slopes ofthe Cover Table 2A:Calculation for Runoff and Flow parameters Project#: Client: Location: 6111-001 EFN,'Nhite Mesa Blanding,Utah Date:June 1996 Prepared by:KG Checked by: Maximum Average Time of %PMP Precipitation Precipitation Runoff Flow Peak Concentrated Depth of Flow Permissible Length,"L"Slope Drainage Area Manning's 1-hour Design Concentration,Tc %of 1-hour Amount intensity Coefficient Concentra-Discharge Discharge water,"0"Velocity,V =Velocity ofDrainage "5"perft.run Roughness precipitation storm Calculated value Minimum value Value precipitation "j""CO tion perunll perunil (eqn.4.46,pischarge (,ec.4.11.3 of Basin A=Lxln.Coefficient amount (u,ing Eqn.4.44,ba'edon table 2.1,used (Teble 2.1,Factor n.width n.width NUREG 4620)c.s.Area (NUREG 4620) (appx)n NUREG 4620)NUREG4620 NUREG 4620 qllCiA q., ft.ft.lft.sq.ft.Acres inches minutes minutes minutes Inches incheslhr.cu.fL/sec.cu.ft./sec.n.ft.lsec.ft.lsec. 275 0.2000 275 0.0063 0.03 7.76 PMP 1.10 2.5 2.5 27.5 2.13 51.22 0.8 2 0.26 0.52 0.105 4.93 5-6 Rainfall %of1·hr. Duration precipitation (min.) 2.5 27.5 5 45 10 62 15 74 20 82 30 69 45 95 60 100 WMARMOR2.XLS ~~<.;>.:> ~ TITAN ENVIRONMENTAL Project #:6111-001 Client:EFN,White Mesa Location:Blanding,Utah Riprap Design for Side Slopes ofthe Cover Table 2B'Calculation for preliminary sizing of riprap D50 Date:June 1996 Prepared by:KG Checked by: Slope ofChannel Angle of friction Concentrated Relative density Stephenson 050 by Stephenson Method Olivers Modified 050 based for rock discharge per afRack Porosity Type of Constant tan 8 cos 8 tan $(Eqn.4.28 of Constant 050 on CSU S 8 $unit ft.width,qc G.np Riprap C NUREG 4620)K method ft.lft.degrees degrees cu.ft.lsec ft.inches inches ft. 0.200 11.310 40 0.52 2.48 0.3 gravel/pebbles 0.22 0.200 0.981 0.839 0.22 2.70 1.2 3.235 1.81 0.200 11.310 40 0.52 2.48 0.3 crushed granite 0.27 0.200 0.981 0.839 0.20 2.35 1.8 4.234 1.81 Table 2C:Diameter ofRicrac modified based on durability and Overall Ricrac Thickness D50 Oversizing Modified Thickness Overall Slope of based on Factor based on D50 of Riprap Riprap Type of channel Stephenson Rock Quality after layer Thickness Rlprap S Method (from previous oversizing =2 X D50 suggested report) ft.lft.inches inches inches inches 0.200 3.235 1.25 4.04 8.09 12 gravei/pebbles 0.200 4.234 1.25 5.29 10.58 12 crushed granite VVMARMOR2.XLS ~.~~ TIlI3LE 3 14.88" 12.6" WITH 24% OVERSIZE 2.48 12.03 INCHES 8.02 INCHES 0-100 (BASED ON 1.5xD50) 0-50 SPECIFIC GRAVITY OF ROCK 0-100 (BASED ON 1.25xD50) 0-50 WHITE MESA CHANNEL B ROCK APRON RIPRAP SIZING -STEPHENSON'S METHOD ENTER 3.26 CFS/FT ~ 11.3 DEGREES 40 DEGREES SPECIFIC GRAVITY OF ROCK UNIT FLOW RATE "q" ROCKFILL POROSITY -n SLOPE ANGLE FRICTION ANGLE UNIT FLOW RATE "q" ROCKFILL POROSITY - n SLOPE ANGLE FRICTION ANGLE WHITE MESA CHANNEL A ROCK APRON RIPRAP SIZING -STEPHENSON'S METHOD ENTER 4.27 CFS/FT 0.3 11.3 DEGREES ~EGR§§~ B 12.00 INCHES 9:60 INCHES I' ••I I I I I I I I I I,, , l , I Non-Critical Areas-OVERSIZING REQUIRED Oversizing,%=24 TfJ!3LE'I NRC SCORING CRITERIA FOR DETERMINING ROCK QUALITY WHITE MESA ROCK PROTECTION RATING ANALYSIS: Critical Areas-REJECTED Oversizing,%= 60.00 50.00 30.00 80.00 0.00 0.00 MAX. SCORE 27.60 17.50 30.00 47.53 0.00 0.00 6 5 3 8 13 4 4.60 3.50 10.00 5.94 0.00 0.00 SCORE * SCORE WEIGHT WEIGHT 2] 55.74 1 TEST RESULT 2.48 1.75 0.60 8.40 0.00 0.00 ROCK1YPE Umestone =1 Sandstone =2 Igneous =3 LASaRATORY TEST ROCK RATING.% Specific Gravity Absorption,% Sodium Sulfate,% UAAbrasion (100 revs),% Schmidt Hammer Tensile Strength,psi TITAN Environmental By KG pjte 6/96 ju~ect Chkd By_k1_'t\-Date ~ EFN White Mesa Mill Tailings Cover Design ofRiprap for Cover ofMill Tailings FIGURE Page__of__ Proj No 6104-001 WHITE MESA PROJECT SITE DRAINAGE Pl(jV!<..£:/ ,I .!l I TITAN Environmental By KG Date 6/96 _.~?ject EFN White Mesa Mill Tailings Cover Chkd By QW.r Date~Design ofRiprap for Cover ofMill Tailings APPENDIX Page__of__ Proj No 6104-001 FINAL STAFF TECHNlCAF.'POSITIOf{:..., DESIGN OF ·ERasION·;PROTEarION COVERS FOR . STABILIZATIOH OF URANIUM KI(L.,'1"AILINGS SItE$.':. U.S."H~ear'Regu3atory CoclalissioO'-. FINAL STAFF TECHNICAL POSITION DESIGN OF EROSION PROTECTION COVERS FOR STABILIZATION OF URANIUM MILL TAILINGS SITES 1.INTRODUCTION Criteria and standards for environmental protection may be found in the ·Uranium Mill Tailings Radiation Control Act (UHTRCA)of 1978 (PL 95-604)(see Ref.1)and 10 CFR Section 20.106,IIRadioactivity in Effluents to Unrestricted Areas.II In 1983,t~U.S.Envirorunental Protection Agency (EPA)established standards (40 CFR Part 192)for the final stabilization of uranium .i11 tailings for inactive (Title 1)and active (Title II)sites.In 1980,the United States Nuclear Regulato~Commission (NRC)promulgated regulations (10 CFR Part 40.Appendix A)for active sites and later revised Appendix A to conform to the standards in 40 CFR Part 192.These standards and regulations establish the criteria to be met in providing long-te:"m stabilization. These regulations also prescribe criteria for control of tailings.For the purpose of this staff technical position (STP),control of tailings is defined as providing an adequate cover to protect against exposure or erosion of the tail i ngs.To help 1i censees and app1icants meet Federa.lguide1i nes , this STP describes design·practices the NRC staff has found acceptable for providing such protection for 200 to 1000 years and focuses principally on the design of tailings covers to provide that protection. Presently,ve~1ittle infonsation exists on designing covers to remai n effective for 1000 years.Numerous exaaples can be cited where covers for protection of tail ings ftlbankments and other applications have experi.enced significant erosion over relatively short periods (le:ss than 50 years). Experience with recla.ation of coal-.ini"9 projects,Tor example,indicates that·it is usually necessary to provide relatively flat slopes to mai ntai n overall site stability (Wells and Jercinovic,1983,see Ref.2). Because of the basic lack of design experience and techn1calinfortlation in this area,this position attempts to adapt"standard hydraulic design methods and empirical data to the design of erosion protection covers.The design methods discussed here are based either Qn:(1)the use of doc~nted hydraulic procedures that are generally applicable in any area of hydraulic design;or (2)the use of procedures developed by technical assistance contractors specifically for long-ter=stability applications. It should be emphasized that a standard industry practice for stabilizing tailings for 1000 years does not currently exist.However.standard practice does exist for providing stable channel sections.This practice is widely used to design drainage channels that do not erode when subjected to design flood flows.Since an embanKment slope can be treated as a wide channel.the staff concludes that the hydraulic design principles and practice associated with 1 2.1.2 long-Term Stability As required by 40 eFR 192.02 and 10 eFR Part 40,Appendix A,Criterion 6•stabilization designs must provide reasonable assurance of control of radiological hazards for a 1000-year period,to the extent practicable,but in any case,for a .inieu.200-year period•.The NRC staff has concluded that the risks frOG tailings could be accoa=odated by a design standard that requires that there be reasonable assurance that the tailings remain stable for a period of 1000 (or at least 200)years,preferably with reliance placed on passive _controls (such as earth and rock.covers),rather than routine maintenance. 2.1.3 Design for Minimal Haintenance Criteria for tailings stabilization,with minimal reliance placed on active maintenance,are established in 40 CFR Part 192 and 10 CFR Part 4:0, Appendix A,Criteria 1 and 12.Criterion 1 of 10 CFR Part 40,Appendix A specifically states that:IITailings should be disposed of in a manner [such] that no active maintenance is required to preserve conditions of the site.1I Criterion 12 states that:liThe final disposition of tailings or wastes at milling sites should be such that ongoing active llIa-intenance is not necessary to preserve isolation.1I It is evident that remedial action designs are intended-to last f-or a long time,without the need for active aaintenance.Therefore,in accordance with regulatory requiretlents,the NRC staff has concluded that the goal of any design for 10ng-te~stabilization ~o ~et applicable design criteria should be to provide overall site stabil ity for very long tiM periods t with no reliance placed on active maintenance. For the purposes of this STP,active aaintenance is defined as any lIlaintenance that h needed to assure that the design will aeet specifi~ longevity requi-re.ents.Such aaintanance includes even .inor Mintenance,such as the addition of soil to saallri11s and gullies.The question that lIust be answered is whether longevity_is dependent on the aaintanance.If it is necessary to repair gullies,for exupl.,to prevent their growth and ulticate erosion into ta11 i ngs t ttan that lila.i ntenance is consi dered to be act1ve ma i ntenance. Titles 4{)CFR 192.02 and 10 CFR Part 40,Appendix A require that earthen covers be placed over tailings at the end of .1111ng operations to li.it releases of radon-222 ~not -are than an aver~ge of 29 picocuri.~per square -meter per second (pCi/.s),when averaged over the entire surface of the disposal site and over at least a one-year period,for the control period of 200 to 1000 years.Before plac~nt of the cover,radon release -rates are calculated in designing the protective covers and barriers for uranium mill tailings.Additionally,recent regulations promulgated under the Clean Air Act 3 design follows the procedure for a soil cover,becaus~the layer is predominantly soil,rather than rock. 2.2 Design Procedures A step-by-step procedure for designing riprap for the top and side slopes of a reclaimed pile is presented below: Step 1.Determine the drainage areas for both the top slope and the side slope.These drainage areas are normally computed on a unit-width basis. Step 2.'Determine time of concentration (tc). Thetc is usually a difficult parameter to estimate in the design of a ~ck layer.Based on a review of the various methods for calculating tc.the NRC staff concludes that a IIlethod such as the Kirpich method.as discussed by Nelson.~t ale (1986,see Ref.02), should be used.The tc may be calculated using the formula: whe~l =drainage length (in miles) Step 3. H =elevation difference (in feet) O~tenaine Probable HaxilllUtll Flo Jd (P~F)and Probable Maximum Precipitation (PMP). Techniques for PHP determinations have been developed for the entire United States,primarily by the National Oceanographic and Atmospheric Administration,1n the form of hydrome~orological reports for specific r~g;ons.These tQchniques are c~nly accepted and provide straightforward procedures for asses~ing rainfall po~ential,with minimal variability.Acceptable methods for 0-3 determining the total magnitude of the PH?and various PHP intensities for specific times of concentration are given by Nelson, et al.(1986.see Ref.02.Section 2.1). Step 4.Calculate peak flow rate. The Rational Formula.as discussed by Nelson et ale (1986.see Ref. 02).may be used to calculate peak flow rates for these small drainage areas.Other methods that are more precise are also acceptable;the Rational Formula was chosen for its simplicity and ease of computation: Step 5.Oetermine rock size. Using the peak flow rate calculated in Step 4.the required 050 may be determined.'Recent studies performed for the NRC staff (Abt, et al .•1988.see Ref.03)have indicated that the Safety Factors Method is IlOre applicable for cesigning N?ck for slopes less than 10 percent and that the Stephenson Method is mq.re applicable for slopes greater than 10 percent.Other methods may also be used,if properly justified. 2.3 Recommendations Since it 1s unlikely that clogging of the riprap voids will not occur over a long period of time.it is suggested that no credit be taKen for flow through the riprap voids.Even if the voids become clogged.it is unliKely that stability will be affected.as indicated by tests performed for the NRC staff by Abt.et ale (1987,see Ref.04). If rounded rather than angular rocK is used.some incr~ase in the average rocK size may be necessary,since the rOcK will not be as stable. Computational models,such as the Safety Factors Kethod,provide stability 0-4 coefficients for different angles of repose of the material.The need for oversizing of rounded rOCK is further discussed by Abt,et al.(1987,see Ref. 04 ). 2.4 Example of Procedu~Application Determine the riprap requirements for a tailings pile top slope with a length of 1000 feet and a slope of 0.02 and for the side slope with an additional length of 250 feet and a slope of 0.2 (20 percent). Step 1.The drainage areas for the top slope (AI)and the side slope (A2)on a unit-width basis are computed as follows·: Al =(1000)(1)/43560 =0.023 acres A2 =(1000 +250)(1)/43560 =0.029 acres. Step 2.The tcs are individually computed for the top and side slopes,using the Kirpich Hetho~,as discussed by Nelson,et al. (1986,see Ref.02). te =[(11.9)(L)3/H]_385 For L =1000 feet and H =20 fe~t, tc =0.12 hours =7.2 minutes for the top slope For L =250 feet and H =50 feet, tc =1.0 minut~for the side slope. 0-5 Step 3. Step 4. Therefore,the total tc tor the side slope is equal to 7.2 +1.0,or 8.2 minutes. The rainfall intensity is determined using procedures discussed by Nelson.et al.(1986.see R~~.02).based on a 7.2-minute PMP of 4.2 inches for the top slope and an 8.2-minute PMP of approximately 4.5 inches for the side slope.These incremental PHPs are based on a one-hour PM?of 8.0 inches for northwestern NN Mexico and were derived using procedures discussed by Nelson.et al.(1986.see Ref. 02). Rainfall intensities.for use io the Rational Formula.are computed as follows: i1 =(60)(4.2)/7.2 =35 inches/hr for the top slope 12 =(60)(4.5)/8.2 =33 inches/hr for the side slope. Assuming a runoff coefficient (C)of 0.8.the peak flow rates are calculated using the Rational Formula.as follows: Ql =(0.8)(35)(0.023)=0.64 cfs/ft. Q2 ~(0.8)(33)(0.029)=0.77 cfs/ft. for the top slope.and for the side slope. Step 5.Usill9 th4 Safety Factors Kethod,the require<i rock size for the pile top slope is calculated to be: 0so =0.6 inches. Using the Stephenson Method,the required rocK size for the side slopes is calculated to be: 0-6 050 =3.1 inches. 2.5 Limitations The use of the aforementioned procedures is widely applicable.The Stephenson Method is an empirical approach and is not applicable to gentle .slopes.The Safety Factors Method is conservative for steep slopes.Other methods may also be used,if properly justified. 3.RIPRAP DESIGN FOR DIVERSION CHANNELS 3.1 Technical Basis The Safety Factors Method or other shear stress methods are generally accepted as reliable eethods for determining riprap requirements for channels. These methods are based on a comParison of the stresses exerted by the flood flows with the allowable stress permitted by the ~ck..Ooc~nted methods are readily available for determining flow depths and Hanning Itn"values. 3.2 Design Procedures In designing the riprap for a diver.ionchannel whe~there a~no particularly difficult erosion considerations,the design of the erosion protection is relatively straightforward. 1.The Safety factors Method or other sh~ar stress ~ethods ~~y be used to determine the riprap requirements. Z.The peak she~r stress should be used for design purposes and can be dete~ined ty substituting the value of the depth of flow (y)in thQ shear 0-7 6.OVERSIZING OF MARGINAL-QUALITY EROSION PROTECTION 6.1 Technical Basis The ability of some rock to surviv~without significant degradation for long time periods is we1l-.documented by archaeological and hlstoric evidence (lindsey.et al .•1982,see Ref.013).However,ve~little information is available to quantitatively assess the quality of rock needed to survive for long periods,based on its physical properties. In assessing the long-term durQbi1ity of erosion protection materi~ls.the N~C staff has relied principally on the results of durability tests at several sites and on information.analyses,and methodology presented in HUREG/CR-4620 (Nelson,'et a1.,see Ref.02).This document provides a quantitative method for determining the oversizing requirements for a particular rock type to be placed at specific locations on or near a remediated uranium mill tailings pile. Staff review of actual field data from several tailings sites has indicated that the methodology ~ay not be sufficiently flexible to allow the use of "borderline"quality rod.•where a particular type of rock fails to meet minimum qualifications for placement in a specific zone.but fails to qualify by only a small amount.This ~ay be very i~ortant,since the selection of a particular roc~type and roc~size depends on its quality and where it will be placed on the ecbank»ent. Based on NRC staff revi~of the actual field data.the methodology previously derived has been lJl(Jdified to incorporate additional flexibility. These revisions include modifications to the quality ratings required for use in a particular placement zone,re-classification of the placement ranes, reassessment of weighting factors based on the rock type,and more detailed procedures for computing roc~quality and the ~ount of oversiring required. 0-23 Based on an examination of the actual field performance of various types and quality of rock (Esmiol,1967,see Ref.014),the NRC staff considers it important to determine roCK properties with a petrographic examination.The case histo~data indicated that the singlemost important factor in rock deterioration was the presence of smecti-~s and expanding lattice clay minerals.Therefore,if a petrographic examination indicates the presence of ·such minerals,the rock will not be suitable for long-term applications. 6.2 Design Procedures Design procedures and criteria have been developed by the NRC staff for use in selecting and evaluating rock for use as riprap to survive long time periods.The methods are considered to be flexible enough to accommodate a wide range of roCK types and a wide range of rock quality for use in various long-term stability applications. The first step in the design process is to determine the quality of the rock,based on its physical properties.The second step is to determine the amount of oversizing needed,if the rock is not of good quality.Various com- binations of good-quality rock and oversized marginal-quality rock may also be considered in the design,if necessary. 6.2.1 Procedures for Assessing Rock Quality The suitability of roCK to be used as a protective cover should be assessed by laboratory tests to determine the physical Characteristics of th~ rocks.Several durability tests should be perfo~d to classify the rock as being of poor,fair (intermediate),or good quality.For each rock source under consideration,the quality ratings should be based on the results of about three to tour different durability test methods for initial screening and about six test methods for final sizing of the rock(s)selected for inclusion in the design.Procedures for determining the rock quality and determining a rock quality "scor~u are developed in Table 01. 0-24 6.2.2 Oversizing Criteria Oversizing criteria va~.depending on the location where the rock will be placed.Areas that are frequently saturated are generally more vulnerable to weathering than occasionally-saturated .area'where freeze/thaw and 'Wet/dry cycles occur less frequently.The amount'of overshing to be applied will also ·depend on where the rock will be placed and its importanc.to the overall performance of the reclamation design.For the purposes of rock oversizing. the following criteria have been developed: A.Critical Areas. Rating 80-100 65-80 These areas include,as a mini~~,frequently- saturated areas,all channels,poorly-drained toes and aprons,control structures,and energy dissipation areas. No Overs1zing Heeded Oversize using factor of (80-Rating),expressed as the percent increas«in rock diameter.For example,a rock with a rating of 70 will require oversizing of 10 percent.(See exa.ple of procedure application,given in Section 6.4,p. 0-28) Less than 65 -Reject B.Non-Critical Are~fi. r---~-------------------- These areas include occasionally-saturated a~~as.top ~lop~~.side slopes,and ~ll-drained "-..~----'-.....- toes and aprons. 0-25 Rating 80-100 50-80 No Oversizing Heeded Oversize using facto.r of (SO-Rating),expressed as the percent increase in rocK diameter Less than 50 -Reject 0-26 'l"ol.E U1 Scoring Criteria'for Oeteri1irling Rock Quality ScoreWeightingFactor109 8 7-----0 ------o-----r--,'..,3 2 1 0 [l~stone SandstoNe Igneous Good Fair PoorLaboratory Test 2.75 2.70 2.65 2.60 2.55'2.50·2.45 2.40 2.35 2.40 2.25 1.0 3.0 5.0 6.7 8.3 10.0 12.5 15.0 20.0 25.0 30.0 1.0 3.0 5.0 6.7 8.3 10.0 12.5 15.0 20.0 25.0 30.0 70.0 65.0 60.0 54.0 47.0 40.0 32.0 24.0 16.0 8.0 0.0 Sp.Grav 1ty Absorption.~ Sodiull Sulfate.% l/A Abrasion (100 revs).% Schr1i dt Hanoe r 12 13 -4 1 11 6 5 3 8 13 9 2 11 1 ?. .1 .3 .5 .67 .83 1.0 1.5 2.0 2.5 3.0 3., Tensile Strength. psi 6 4 10 1400 1200 1000 833 666 500 400 300 200 100 o 1.Scores were derived fr~Tables 6.2.6.5.and 6.7 of HUREG/CR-2642 -NLong-Tenn Survivability of Riprap for Annoring Uranlull\Hill Tailings and Covers:A LiterAture'Review.-19,82 (see Ref.013). weighting Factors are derived fro~Table 7 of ·Petrographic Investigations of Rock Durability and Co~par1sons of Various Test Procedures.by G.W.DUPUY.En~ineering",GeOlo9.l.July.1965 (see Ref.015).Weighting factors are based on inverse of ranking of test ~thOdS or eacn rock type.Other tests ~y be used;weighting factors for' these tests ~y be derived using Table 7.by counting upward fro~the botto~of the table./ Test ~thods should be standard1z~.if a standard test is available and ,should be those used 1n HUREG/CR-2642/(see Ref.D13).so that proper correlations can be ~de.This is particularly f~portant for the tensile strength test. where several methods ~be used.the ~thod discussed by Hilsson (1962.see Ref.016)for tensile strength was used in the scoring procedure. 2. 3. 0-27 6.3 Recommendations Based on the performance histories of various rock types and the overall intent of achieving long-t~rm stability,the following recommenda- tions should be considered in assessing rock quality and determining riprap i"equi rements for a .particula·r design. 1.The rock that is to be used should first be qualitatively rated at least Ilf.airll in a petrographic examination conducted by a geologist or.engineer experienced ;-n petrographic analysis.See NUREG/CR-4620,Table 6.4 (see Ref.02),for general guidance on Qualitative petrographic ratings.In addition,if a rock contains smectites or expanding lattice clay minerals, it will not be acceptable. 2.An occasionally-saturated area is defined as an area with underlying filter blankets and slopes that provide good drainage and are steep enough to preclude ponding,considering differential settlement,and are located well above normal groundwater levelS;otherwise,the area is classified as frequently-saturated.Natural channels and relatively flat man-made diversion channels should be classified as frequently-saturated. Generally,any toe or apron located belGw grade should be classified as frequently-saturated;such toes and aprons are considered to be poorly-drained in IIOst cases. 3.Using the scoring criteria given in Table 01,the results of a durability test determines the score;this score is then multiplied by the weighting factor for the particular rock type.The final rating should be calculated as the percentage of the maximum possible score for all durability tests that were performed.See example of procedure application for additional guidance on determining final rating. 4.For final selection and oversizing,the rating may be based on the durability tests indicated in the scoring criteria.Other tests may also D-28 be substituted or added,~s appropriat~,depending on rock type and site- specific factors.The durability tests given in Table 01 are not intended to be all-inclusive.They represent some of the more c~nly-used tests or tests where data may be published or readil~availabl..Designers may wish to use other tests than those presented;such an approach is acceptable.Scoring criteria maybe developed for other tests,using procedures and references recocmended in Table 01.Further,if a rock type barely fails to meetminim~criteria tor placement in a particular area.with proper justification and documentation.it may be feasible to throw out the results of a test that may not be particularly applicable and substitute one or more tests with higher weighting (actors,depending on the rock type or site location.In such cases.consideration should be given to performing several additional tests.The additional tests should. be those that are among the most applicable tests for a specific rock type.as indicated by the highest weighting factors given in the scoring criteria for that rock type. 5.The percentage increase of oversizing should ~applied to the diameter of the rock. 6.The oversizing.calculations represent .inieum increases.Rock sizes as "large as practicable should be provided.(It is assUMed,for example, that a 12-inch layer of 4-inch rock costs the sa-e as a 12-inch layer of 6-inch rock.)The thickness of the rock layer should be base<!on the con- structability of the l~er,but should b.at least 1.5 x 05J"Thicknesses of le~s than 6 inches aay be difficult to construct,unless the rock siz~ is relatively small. 6.4 Example of Procedure Application It is proposed that a sandstone rock source will be used.The rocK has been rated "fair"in l\petrographic ",xa1ltinat~on.R2presentative ust result~<!.r~ given.Compute the amount of Qversizing necessary. 0-29 Using the scoring criteria in Table 01.the following ratings are computed: lab Test Result Score Weight Score x Weight Max.Score Sp~Gr.2.61 7 6 42 60 Absorp••X 1.22 4 5 20 50 Sad.Sulf.•X 6.90 6 3 18 30 L.A.Abr.•%8.70 5 8 40 80 Sch.Ham.51 6 13 78 130 Tens.Str.•psi 670 6 4 24 40 .Totals 390 The final rating is computed ta be ':'~21390 or 57 percent.As discussed in Section 6.2.the rock is not suitable for use in frequently-saturated areas. but is suitable for use in occasionally-saturated areas.if oversized.The oversizing needed is equal to (80 -57).or a 23 percent increase in rock diameter. 6.5 limitations The procedure previously presented is intended to provide an approximate quantitative method of assessing rock quality and rock durability.Although the procedure should provide rock of reasonable quality.additional data and studies are needed to estab1ish performance hi staries of roCK typfllS that have a score of a specific magnitude.It should be emphasized that the procedure is only a more quantitative estimate of rock quality,based on USSR classification standards. 0-30 It should also be recognized that durability tests are not generally intended to determine if rocK will actually deteriorate enough to adversely affect the stability of a reclaimed tailings pile for a design life of 200 to 1000 years.These tests are primarily 1ntended to determine acceptability of rock for various construction purposes for design lifetimes much shorter than 1000 years.Therefore,although higher;scores give a higher ~egree of .confidence that significant deterioration will not occur,there is not complete assurance that deterioration will not occur.Further,typical construction projects rely on planned maintenance to correct deficiencies.It follows, then,that there is also less assurance that the oversizing methodology will actually result in rock that will on~y deteriorate a given amount in a specified time period.The amount of overs1zing resulting from these calculations is based on the engineering judgment of the NRC staff,with the assistange of contractors.However,in keeping with the Management Position (USNRC,1989,see Ref.017).the staff considers that this methodology '«'ill provide reasonable assurance of the effectiveness of the rock over the design lifetime of the project. 0-31 7.REFERENCES 01.Nelson et al.,"O~sign Considerations for long-Term Stabilization of Uranium Mill Tailings Impoundments."NUREG/CR-3397 (ORNl-5979),U.S. Nuclp.ar Regulatory Coaxnission,Washington,D.C.,1983. 02.Nelson,et al.,IIHethodologi~s for Evaluating long-Tena Stabilization Designs of Uranium Hill Tailing Impoundments.1I NUREG/CR-4620,1986. 03.Abt.S.R••et al..1I0evelopment of Riprap Oesign Criteria by Riprap Testing in Flumes:Phase II,·'NUREG/CR-4651,Vol.2,1988. 04.Abt•..S.R.,et al.,1I0evelopment of Riprap Design Criteria .by Riprap Testing in Flumes:Phase I,"NUREGlCR-4651.Vol.1.1987. 05.U.S.Army Corps of Engineers (USCOE).IIHydraulic Design of Flood Control Channels.1I EM lllO-2-1601.Office of the Chief of Engineers.Washington, D.C.,1970. 06.Chow,V.T••Open-Channel Hydraulics.McGraw-Hill Book Company.Inc.•New YorK.H.Y.•1959. 07.U.S.Army Corps of Engineers (USCOE).Hydrologic Engineering Center. "Water Surfa.ce Profiles,HEC-2,"continuously updated and rev;sed. 08.U.S.Oepart.aent of Transportation (USOOT),"Hydraulic Design of Energy Dissipaters for Culverts and Channels,"Hydraulic Engineering Circular No. 14,1983. 09.U.S.Bureau of Reclamation (USBR).Design of Small Dams.1977. 0-32 Methodologies for Evaluating Long-Term Stabilization Designs of Uranium Mill Tailings Impoundments Manuscript Completed:May 1986 Date Published:June 1986 Prepared by J.D.Nelson,S.R.Abt,R.L.Volpe,D.van ZyI,Colorado State University N.E.Hinkle,W.P.Staub,Oak Ridge National Laboratory Colorado State University Fort Collins,CO 80523 Under Contract to: Oak Ridge National Laboratory Oak Ridge,TN 37831 Prepared for Division of Waste Management Office of Nuclear Material Safety and Safeguards U.S.Nuclear Regulatory Commission Washington,D.C.20555 NRC FIN 80279 NUREG/CR-4620 ORNL/TM-10067 12 The rainfall depth for a specific site is estimated by determining the rainfall duration and/or appropriate time of concentration.The resulting rainfall depth in inches,is PMP rainfall depth =(%PMP)x (PMP)(2.1 ) where the percent PMP is obtained from Table 2.1 and the PMP is obtained from the appropriate PMP design storm presented in Section 2.1.1. The rainfall intensity.i.in inches per hour can be computed as =rainfall depth (inches)x 60 rainfall duration (minutes) (2.2) The rainfall intensity determined from Equation 2.2 is generally a conser- vative value and represents the peak rainfall intensity of the design storm. To compute the rainfall intensity for any rainfall duration.it is recommended that a rainfall intensity versus rainfall duration curve be plotted on semi logarithmic paper.Because of the extremely conservative rainfall intensity values obtained for short durations.it is recommended that the minimum rainfall duration be 2.5 minutes.Rainfall depths should be extracted from the appropriate Hydrometeorological Report. 2.2 PMP COMPARISON STORMS A comparison of estimates of the PMP with greatest observed rainfall and estimates of the 100-year events for areas both east and west of the 1050 meridian was prepared (NWS.1980).Information from 6500 precipita- tion reporting stations in the eastern U.S.and about 2100 stations in the west was used.Including storm durations of 6 to 72 hours.the study indi- cated that 177 separate storm events have been recorded in whi ch the rai n- fall was greater than or equal to 50 percent of the PMP for stations east of the 1050 meridian.Only 66 separate storm events were recorded west of the 1050 meridian where rainfalls were greater than or equal to 50 percent of the PMP. The National Weather Service also reported the number of storm events which met or exceeded the 100-year rainfall values and compared them with the regional PMP values (NWS,1980).Table 2.2 sumarizes these rainfall events for 6 and 24-hour storms occurring over a 10 square mile area.It is interesting to note that a storm has not been officially recorded west of the Continental Divide that exceeds 90%of the PMP value.However,it is evident that a number of storms approach the PMP values,thereby sub- stantiating that the prescribed PMP values are not extremely conservative. 41 4.1.5.6 Gully Width The width of the gully across the top of the gully at the point of maximum depth can be estimated from Figure 4.5.Having computed the maxi- mum depth,~ax'and knowing the uniformity coefficient,Cu,the top width is estlmated to be approximately 5.6 feet.However,the gully width will widen over time to where the gully side wall stands at an angle less than the angle of repose of the cover material. 4.2 EMBANKMENT AND SLOPE STABILIZATION USING RIPRAP Rock riprap is one of the most economical materials that is commonly used to provide for cover and slope protection.Factors to consider when designing rock riprap are:(1)rock durability,density,size,shape, angularity,and angle of -repose;(2)water velocity,depth,shear stress, and flow direction near the riprap;and (3)the slope of the embankment or cover to be protected.Through the proper sizi ng and pl acenent of ri prap on any impoundment cover,rill and gully erosion can be minimized to ensure long term stabil ization. The primary failure mechanism of concern is the renoval of material fran the impoundment due to shear forces developed by water fl owi ng paral- lel and/or adjacent to the cover as described by Nelson et a1.(1983).One purpose of the cover is to expedite the removal of precipitation and tribu- tary waters away from the cover to minimize seepage and percolation. However,when surface waters are not properly managed,extreme erosion may result and endanger the impoundment stability.For example,slopes are often designed and constructed to develop sheet flow conditions.After many years of exposure,sheet and rill erosion,and localized settlement, the hydraul ic conditions have significantly altered causing flows to merge or concentrate into drainage channels.The greater the concentration of flow into the drainage channels,the greater the erosion potential. 4.2.1 Zone Protection The design requirements for placing riprap rocK on a cover vary depending upon cover location.It is suggested that four areas exist on the cover in which different failure mechanisms can result from tributary drainage.The four areas or zones of concern are presented in Figure 4.6 and include: 1.Zone I:This zone is considered the toe-of-the-slope of the reclaimed impoundment.The riprap protecting the slope toe must be si zed to stabi 1i ze the slope due to fl oodi n9 in the major watersheds and dissipate energy as the flow transitions from the impoundment slope into the natural terrain.Zone I is considered a zone of frequent saturation. 2.Zone II:This is the area along the side slope which renains in the major watershed flood plain (PMF).The rock protection must resist not only the flow off the cover,but also floods.The !it.", .:' .i . • •j" 42 Zone ill Zone I Fig.4.6..Zones of a reclaimed impoundment requiring riprap protection. 43 riprap must serve as embankment protection similar to river and canal banks.Zone II is considered a zone of occasional satura- tion. 3.Zone III:Riprap should be designed to protect steep slopes and embankments from potential high overtopping velocities and exces- sive erosion.Flows in Zone III are derived from tributary drainage and direct runoff from the reclaimed site.Zone III is considered a seldom saturated zone. 4.Zone IV:Rock protection for Zone IV is generally designed for flows from mild slopes.Zone IV will usually be characterized by sheet flow with low flow velocities.Zone IV is considered a zone of seldom saturation. Si nce the rock protection requi rements are si gni ficantly different on various locations on the cover,it should be apparent that each riprap design procedure available was formulated to address a specific applica- tion.Since a single riprapdesign procedure does not necessarily meet all of the cover protection requirements,recommendations will be made indicat- ing which zone(s)each riprap design procedure best addresses. Because the frequency of wetting or saturation varies by zone,the durability requirements of the riprap may vary by zone.The concept of durability and oversizing will be addressed in Chapter 6 of this report. 4.2.2 Design Procedures Presently,several methods are available to assist the designer in determining the appropriate rock size for protection of impoundment covers, embankments and unprotected slopes from the impact of drainage waters. Alternative riprap design methods summarized herein are ,1.Safety Factors Method 2.The Stephenson Method 3.Corps of Engineers Method 4.The U.S.Bureau of Reclamation Method These riprap design procedures are but examples of the many methods available. 4.2.2.1 Safety Factors Method The Safety Factors Method (Richardson et al.,1975)for slzlng rock riprap is quite versatile in that it allows the designer to evaluate rock stability from flow parallel to the cover and adjacent to the cover.The Safety Factors Method can be used by assuming a rock size and then calculating the safety factor (S.F.)or allowing the designer to determine a S.F.and then computing the corresponding rock size.If the S.F.is greater than unity,the riprap is considered safe from failure;if the S.F. is unity,the rock is at the condition of incipient motion;and if S.F.is less than unity,the riprap will fail. 60 where d50 is the mean rock size in feet.A graphical representation for determining n is presented in Figures 4.12 and 4.13.However,these values were developed for uniform flow condition over submerged riprap. When overtopping flows on steep slopes begin to cascade,n value~will increase and may range from 0.07 to 0.09 or higher.(Abt and Ruff,1985 and COE,1970). Table 4.2.Manning Coefficient,n. Channel Material Manning Coefficient,n Fine sand,colloidal Sandy loam,non-colloidal Silt loam,non-colloidal Alluvial silts,non-colloidal Ordinary firm loam Volcanic ash Stiff clay,very colloidal Alluvial silts,colloidal Sha1e~and hardpans Fine gravel Graded loam to cobbles,non-colloidal Graded silts to cobbles,colloidal Coarse gravel,non-colloidal Cobbles and shingles Source:Morris and Wiggert,1972. 4.8 COVER EROSION RESISTANCE EVALUATION 0.020 0.020 0.020 0.020 0.020 0.020 0.025 0.025 0.025 0.020 0.030 0.030 0.025 0.035 The cover design should be evaluated to determine if the unprotected slopes(s)can withstand overland or sheet flow with a minimum of erosion. Based upon the site-specific cover and precipitation parameters,the design sheet flow velocity should be estimated.A comparison of the design flow velocity with the cover permissible flow velocity can be performed. Furthermore,the design velocity can be used to determine the sediment discharge using the Universal Soil Loss Equation (Chapter 5)and for sizing stone protection (Section 4.2). The design velocity will usually be determined from the peak discharge generated from the Probable Maximum Flood (PMF).The PMF can be estimated by (a)Using computer models,i.e.,HEC-1 (CaE,1974),that are widely accepted by the engineering profession. 64 (b)Applying the Rational Method for tributary areas that are less than approximately one square mile in area. The Rational fonnul a is conmonly expressed as Q =CiA (4.42) where Q is the maximum or design discharge in cfs,C is a runoff coeffi- cient dependent upon the characterization of the drainage basin,i is the rainfall intensity expressed in inches per hour and A is the tributary area expressed in acres.When a unit width approach is taken,the area flw is the slope{s)length times the unit width.Therefore,Equation 4.42 would be presented as q =CiJ'lw for a unit width anal ysi s. 4.8.1 Runoff Coefficient (4.43) The runoff coefficient,C,is rel ated to the c1 imatic conditions and type of terrain characteristic of the watershed including soil materials, permeabil ity and storage potential.Val ues of the coefficient Care presented in Table 4.4 (Lindsley et al.,1958),Table 4.5 (Chow,1964),and Table 4.6 (ASCE,1970 and Seelye,1960). Table 4.4.Values of Coefficient C. Type Area Va1ue of C Flat cultivated land,open sandy soil Rolling cultivated land,clay-loam soil Hill land,forested,clay loam soil /S1:eep,impervious slope Source:Lindsley,et al,1958. 0.20 0.50 0.50 0.95 The selection of a coefficient value requires considerable judgment as it is a tangible aspect of using the rational formula.It is recommended 65 that a conservative value of C be applied for PMF estimation since infil- tration and storage comprise a low percentage of the runoff.Furthermore, the C values presented were derived for storms of 5-100 year frequencies. Therefore,less frequent,higher intensity storms will require the use of a higher C value (Chow,1964).It is recommended that a runoff coefficient of 1.0 be used for PMF applications in very small watersheds since the effects of localized storage and infiltration will be small. Table 4.5.Values of C for Use in Rational Formula. Watershed Cover ! Soil Type Cultivated With above-average infiltration rates;0.20 usually sandy or gravelly With average infiltration rates;no 0.40 clay pans;loams and similar soils With below-average infiltration rates;0.50 heavy clay soils or soils with a clay pan near the surface;shallow soils above impervi ous rock Source:Chow,1964. 4.8.2 Rainfall Intensity Pasture Woodlands 0.15 0.10 0.35 0.30 0.45 0.40 In order to determine the rainfall intensity,i,the time of concen- tration,t must be estimated.The time of concentration can be,approximated by: (a)Applying one of the many accepted empirical formulae such as 0.00013 L0.77 SO.385 (4.44) where L is the length of the basin in feet measured along the watercourse from the upper end of the watercourse to the drainage basin outlet and S is the average slope of the basin.Time of concentration is expressed in hours.This procedure is not applicable to rock covered slopes.This expression was 66 Table 4.6.Values of runoff coefficient C. Runoff Coefficients Character of Surface Pavement--asphalt or concrete Gravel.from clean and loose to clayey and compact Roofs Lawns (irrigated)sandy soil Fl at.2 percent Average.2 to 7 percent Steep.7 percent or more Lawns (irrigated)heavy soil F1 at.2 percent Average.2 to 7 percent Steep.7 percent Pasture and non-irrigated lawns Sand Bare Light vegetation Loam Bare Light vegetation Clay Bare light vegetation Composite areas Urban Single-family.4-6 units/acre Multi-family,>6 units/acre Rural (mostly non-irrigated lawn area) (1/2 acre -1 acre 1 acre -3 acres Industrial Light Heavy Business Downtown Neighborhood Parks Source:ASCE,1970 and Seelye,1960. Range Recoomended 0.70-0.95 0.90 0.25-0.70 0.50 0.70-0.95 0.90 0.05-0.15 0.10 0.15-0.20 0.17 0.20-0.30 0.25 0.13-0.17 0.15 0.18-0.22 0.20 0.25-0.35 0.30 0.15-0.50 0.30 0.10-0.40 0.25 0.20.:.0.60 0.40 0.10-0.45 0.30 0.30-0.75 0.50 0.20-0.60 0.40 0.25-0.50 0.40 0.50-0.75 0.60 0.20-0.50 0.35 0.15-0.50 0.30 0.50-0.80 0.65 0.60-0.90 0.75 0.70-0.95 0.85 0.50-0.70 0.60 0.10-0.40 0.20 67 designed for and applicable to small drainage basins (Kirpich, 1940). (b)Using the Soil Conservation Service (SCS)Triangular Hydrograph Theory (001,1977»the time of concentration is 01.9 L~~)..tu2.-USNRC \1'\,,-3'1 t c H '-\f=~S{4-t \~<--l_(4.45).r~1>~~~~r~~~~~~~T~ where L is the length (miles)of the longest wa ercourse from the ~{_. point of interest to the tributary divide,H is the difference in C.l~~"O\ elevation (feet)between the point of interest and the tributary J divide.The time of concentration will be expressed in hours. The SCS procedure is most applicable to drainage basins of at least 10 square miles. Once the rainfall duration or time of concentration is determined,the rainfall depth can be computed based on the PMP intensity values estimated in Section 2.1.2. 4.8.3 Tributary Area The tributary area may be expressed in a unit width format for design of rock protection on an embankment.Therefore,the area is the length of the longest expected or measured water course multi pl ied by the unit width. This procedure is primarily applicable to Zones I,II,and III and is not applicable for drainage ditch design.It should be noted that a unit width approach to drainage and diversion ditch design is not effective.Ditch design requires an entire basin analysis in Which,a composite inflow hydro- graph is determined and is routed along the channel.From the inflow hydrograph,water surface profiles (i.e.,HEC-2)can be estimated to deter- mine flow depth and velocities for riprap design (COE,1982). 4.8.4 Sheet Flow Velocity The design velocity for sheet flow on an enbankment slope can be esti- mated by solving the Manning fonnula presented in Equation 4.39.It is assumed that the hydraulic radius,R,is approximately equal to the flow depth,y,and that the design discharge is equal to that estimated by the Rational Method.Therefore,the depth of flow is [ Q ]3[5Y_n -1.486 Sl/2 (4.46) where Q is the discharge,S is the slope,and n 1S the Manning coefficient. 68 Therefore,the design velocity can be estimated as .j, VOesign =Q/A (feet/sec) where A is the cross-sectional area of flow. 4.9 FLOW CONCENTRATIONS (4.47) Despite the extensive efforts of the impoundment reclamation designer, reviewer,contractor and inspector,the topographic features of the cover will al ter over time wi thout continual rna intenance (Powl edge and Dodge, 1985).Cover modifications will result fran differential settlement, collapsing soils,marginal quality control in cover placement,erosion, major hydrologic events and monitoring disturbance.Because of these unpredictable and generally uncontrollable events,tributary drainage areas evolve that were not originally designed or constructed.The result is that the peak discharge and volume of runoff exceed design levels and increase the erosion potential. Abt and Ruff (1985)conducted a series of fl ume experiments on a IV:5H prototype embankment protected by riprap with median rock sizes of 2 inches to 6 inches in diameter.It was observd that 2-4 inch diameter riprap ~re highly susceptible to sheet flows converging along the face of the embank- ment into channels.The discharge in the channel(s)was canpared to the total discharge over the embankment by 1 CF =----- 1 -(Qc -Q) (4.48) where CF is the concentration factor,Qc is the discharge in the channel and Q is the total discharge over the embankment.The concentration factors ranged from 1.1 to 3.2 where flows were less than the failure dis- charge.These preliminary results indicate that riprap designed for sheet flow conditions may be subjected to flow channelizations that concentrate 3 times the discharge in a single location. The peak discharge along a crest or at a design point is a function of the amount of precipitation,the tributary drainage area,the slope of the drainage basin,the basin contouring,the cover mater~al and cover protec- tion.Any modification in one or more of these parameters can impact the outlet peak discharge.The cover design must account for these potential changes in the form of a concentration or safety factor.Therefore,a flow concentration factor may be incorporated into the design process to adequately evaluate the soil resistance to erosion,to adequately select and evaluate alternative protective measures and to size riprap when warranted . (4.47) esigner, cover jge, t, ion, ie Ie areas :is ld a IV:5H ~inches ap \eremr". t l.48} mel .di s- sheet rate 3 ion of f the )tec- the t i a1 I fl ow 'ct 69 It is difficult to accurately predict the value of the flow Concen- tration factor since limited information is currently available to substan- tiate design limits.However,it is reasonable to assume that values between 2 and 3 are attainable with only a slight evolutionary change in cover.unless-it can be shown that desi gn procedures such as overbui ldi ng can compensate for differential settlement,it is recommended that a conservative concentration factor be used until additional research can justify a more reasonable range of values. To incorporate the flow concentration factor into the stone SlZlng procedure of any riprap design method,multiply the design peak discharge by the flow concentration factor.All subsequent computations,i.e., velocity and depth estimate,stone size determination,etc.,will reflect the influence of the flow concentration. 4.10 PERMISSIBLE VELOCITIES Evaluation of proposed reclamation alternatives should include an analysis of the critical erosion potential of the cover material.Erosion potential can be determined based Upon the properties of the reclamation materials as well as the degree of compaction in which the material is placed.The permissible velocity approach consists of specifying a velocity criterion that will not erode the cover or channel and will pre- vent scour.A comparison of the actual or design flow velocities to the permissible velocities associated with overland flows,sheetflows or chan- nel flows determines the erosion potential.When the design flow velocity meets or exceeds the permissible velocity,cover protection should be considered. The permissible velocity values presented were developed from experi- ments performed primarily in canals and stream beds.Therefore,the fol- lowing permissible velocities should provide a conservative estimate for evaluating the erosion resistance of the reclaimed covers over long term periods.In cases where a range of permissible velocities are presented, it is recommended that the lower velocity be used for determining erosion potential • A series of permissible maximum canal velocities was developed by Fortier and Scobey (1926)and adapted by Lane (1955).The maximum permissible velocities presented in Table 4.7 are applicable to colloidal silts.These velocity values were developed for channels without sinuosity.Lane recommended a reduction of the velocities in Table 4.7 by 13 percent if the canal/channel is moderately sinuous.The maximum allowable velocities for sandy-based materials are given in Table 4.8. Table 4.9 provides limiting velocities for cohesive materials according to compactness for materials with less than 50 percent sand content.The Soil Conservation Service maximum permissible velocities (SCS,1984)for well maintained grass covers are presented in Table 4.10. It is important to recognize that limited information is available pertaining to permissible velocities on covers under sheet flow conditions. Table 4.8.Maximum allowable velocities in sand-based material. Table 4.7.Maximum permissible velocities in erodible channels. 6.00 to 8.00 (ftjsec) Velocity 0.75 to 1.00 1.00 to 1.50 1.50 to 2.00 2.00 to 2.50 2.50 to 2.75 2.75 to 3.00 3.00 to 3.75 4.00 to 5.00 5.00 to 6.00 2.50 2.50 3.00 3.50 3.50 3.50 5.00 5.00 6.00 5.00 5.00 5.50 6.00 5.50 v (ftjsec) Water Transporting Colloidal Silts Source:Lane 1955. Channe1 Materi a1 Fine sand,colloidal Sandy loam,non-colloidal Silty loam,non-colloidal Alluvial silts,non-colloidal Firm loam Volcanic ash Stiff clay,colloidal Alluvial silts,colloidal Shales and hardpans Fi ne gravel Graded loam to cobbles,non-colloidal Graded silts to cobble,colloidal Coarse gravel,non-colloidal Cobbles and shingles Material Source:Lane,1955. Very light sand of quicksand character Very light loose sand Coarse sand to light sandy soil Sandy soi 1 Sandy loam Average loam,alluvial soil,volcanic ash Firm loam,clay loam Stiff clay soil,gravel soil Coarse gravel,cobbles and shingles Conglo~erate,cemented gravel,soft slate, tough hardpan,soft sedimentary rock "';!itw';: .'';,'70 LWtCS 71 Therefore,the permissible velocities developed for channels is usually extended to overland flow situations.When design velocities reach Or exceed those indicated in Tables 4.7 through 4.10,protection is warranted. Table 4.9.Limiting Velocities in Cohesive Materials. Compactness of Bed Fairly Very Loose Compact Compact Coopact Principle Cohesive velocit)VelOCit)Velocity Velocity Material (ft/sec (ft/sec (ft/sec)(ft/sec) Sandy clay 1.48 2.95 4.26 5.90 Heavy clayey soil s 1.31 2.79 4.10 5.58 Clays 1.15 2.62 3.94 5.41 Lean clayey soil s 1.05 2.30 3.44 4.43 Source:Lane,1955. The materials presented in Tables 4.7 through 4.9 can be referenced to the Uni fi ed Soil Cl assification System as presented by Wagner (l957 ).An engineering analysis of the cover material can provide an approximation of the permissible velocities that the alternative cover materials may with- stand without supplemental protection. 4.11 PERMISSIBLE VELOCITY EXAMPLE A tailings disposal site located in the northwest corner of New Mexico has prepared a reclamation plan for review.The reclamation plan indicates that a 10 foot thick cap will be placed atop the tailings at a slope of 2.4%with a compaction of 95%of optimum.The cap will be graded as shown in Figure 4.14 and shall transition into side slopes of IV:10H.It is proposed that the cap will be COOlPOSed of a sandy clay with a coarse gravel cover.Along the crest,a 12 inch thick layer of riprap will be placed for at least 8 feet upslope and downslope of the crest to stabilize the transition.The riprap will have a median stone size of 6 inches.The gravel cover will have a median rock size of 1.5 inches.The design reviewer must verify that the gravel cover will resist the potential velocities that may result on the cap. 74 In order to assess the stabilization of the cap again~t erosion due to overland flow,information provided in Sections 4.6 through 4.10 of this report must be utilized.One alternative means of reviewing the design is presented in the fol~owing analysis. 4.11.1 Estimation of Peak Runoff The peak runoff can be estimated using the Rational formula presented in Equation 4.43.The three components of the Rational formula that require consideration are:the runoff coefficient,C;the rainfall inten- sity.i;and the tributary area,A. The runoff coefficient can be estimated by examlnlng Tables 4.4 through 4.6.Since the cap will be composed of a compacted clay,the infiltration and localized storage will be low.The peak runoff is a direct function of the estimated localized PMF.Therefore,a reasonable C value is 1.0. The rainfall intensity can be estimated by determining the I-hr, I-mi 2 local storm PMP value and adjusting the rainfall depth in ac~or­ dance with the percentages presented in Table 2.1.For northwest New Mexico,the I-hr,I-mi 2 PMP is estimated to be 9.5 inches after the appropriate elevation and area adjustments are performed. The time of concentration,t c 'should be estimated.Using Equation 4.44,the t c can be estimated where the longest flow path is approxi- mately 450 feet as t c 0.00013 (450)0.77 = (0.024)°·385 and t c 0.06 hrs =3.62 minutes (4.49) (4.50) The rainfall depth for variable rainfall durations can be estimated using the values presented in Table 2.1 which are applicable to northwest New Mexico.Since the time of concentration is 3.6 minutes,the percent of the 1-hr PMP can be interpolated to be approximately 35 percent.The rainfall depth is computed using Equation 2.1 to be Rainfall depth =(0.35)x 9.5 inch =3.33 inches (4.51) 75 A conservative estimate of the rainfall intensity is determined by applying Equation 2.2. 60=3.33 inches x ---=55.5 inches/hr 3.6 (4.52) .~ The tributary area.A.can be estimated using a unit width approach presented in Section 4.8.Since the longest flow path is 450 feet with a unit width of one foot.the tributary area is 450 square feet.The tri butary area can be converted to acres by di vi di ng by 43.560 square feet/acre resulting in an area of 0.0103 acres. The peak sheet flow unit discharge at the transition can be computed by using the Rational formula presented in Equation 4.43. q =(l.O)(55.5)(0.0103)=0.57 cfs 4.11.2 Sheet Flow Velocity (4.53) The sheet flow design velocity can be estimated by first determining the depth of flow.The depth of flow.y.can be calculated using Equation 4.46.However.the Manning surface roughness coefficient.n.must be determined.From Equation 4.41.the Manning n value can be calculated as rfl::o.o~~s-(cl..:so)Y.c n =0~0395 (0.125)1/6 =0.028 (4.54) The depth of flow is then computed to be or y ( 0•57)0•028 1.486 (0.024)1/2 3/5 0.202 feet (4.55) y =(0.202 ft)(12 in/ft)2.42 inches (4.56) The design sheet flow velocity is calculated uSlng Equation 4.47. v 0.57 (1.0)(0.20) 2.82 feet/sec (4.57) The permi ssib 1 ci t for th ravel has been determln to be ~0-6.Q feet/sec as presented in Table 4.8.Since the <1eslgn sheet flow velocity was calculated to be 2.9 feet/sec,the cover should be able to withstand the design flow. 76 ~.::=:,"\'.:<~;~fo:'57'is the unit discharge,1.0 is the width of flow id";';'is the depth of flow in feet.It should be noted that the .tion factor was not incorporated into this conputation. 4.11.3 Cover Permissible Velocity in feet and 0.20 fl ow concentra_ Development of Riprap Design Criteria by Riprap Testing in Flumes: .Phase I Manuscript Completed:October 1986 Date Published:May 1987 Prepared by S.R.Abt,M.S.Khattak,J.D.Nelson,J.F.Ruff, A.Shaikh,R.J.Wittler,Colorado State University D.W.lee,N.E.Hinkle,Oak Ridge National laboratory Colorado State University Fort Collins,CO 80523 Under Contract to: Oak Ridge National laboratory Oak Ridge,TN 37831 Prepared for Uranium Recove.rv Field Office Region IV -Box 25325 U.S.Nuclear Regulatory Commission DenverI CO 80401 and Division of Waste Management Office of Nuclear Material Safety and Safeguards U.S.Nuclear Regulatory Commission Washington,DC 20555 NRC FIN A9350 NUREG/CR-4651 ORNL/TM-l0l00 or embankment where the flow has a non-horizontal (downslope)velocity allows the designer to evaluate rock stability from flow parallel to the (3.5)SF 1)'tan ¢+sin 8 cos {3 cos 8 tan ¢ where vector.The safety factor,Sr,is: A summary of each method will be presented. The following equations are provided for riprap placed on a side slope The Safety Factors Method (Richardson et al.,1975)for sizing riprap 2.The Stephenson Method (STEPH) 3.The U.S.Army Corps of Engineers Method (COE) 4.The U.S.Bureau of Reclamation Method (USBR) 18 1.Safety Factors Method (SF) motion;and if SF is less than unity,the riprap will fail. allowing the designer to determine a SF and then computing the corresponding stone size.If the SF is greater than unity,the riprap is considered safe from failure;if the SF is unity,the rock is at the condition of incipient cover and adjacent to the cover.The Safety Factors Method can be used by assuming a stone size and then calculating the safety factor (SF)or 3.4.1 Safety Factors Method embankments,channel and unprotected slopes from the impact of flowing waters.Four riprap design procedures which will be referenced are: ,..•and 19 "'""[_[_l+_Si_n_~_A_+_f3_)_lJ 21 TO11= _ ( Gs-1)l'050 TO =l'OS -l[COS A Jf3=tan (2 sine)/(11tanc1J)+sin A The angle,A,is shown in Figure 3.1 and is the angle between a (3.6) (3.7) (3.8) (3.9) horizontal line and the velocity vector component measured in the plane of the side slope.The angle,e,is the side slope angle shown in Figure 3.1 and f3 is the angle between the vector component of the weight,Ws, directed down the side slope and the direction of particle movement.The angle,<t>,is the angle of repose of the riprap,TO is the bed shear stress (Simons and Senturk,1977),050 is the representative stone size, Gs is the specific gravity of the rock,0 is the depth of flow,Y is the specific weight of the liquid,S is the slope of the channel,and lJ'and 1) are stability numbers.In Figure 3.1,the forces F1 and Fd are the lift and drag forces,and the moment arms of the various forces are indicated by the value ei as i =1 through 4.Figure 3.2 illustrates the angle of repose for riprap material sizes. Riprap is often placed along side slopes where the flow direction is close to horizontal or the angularity of the velocity component with the If':!20 /Horizontal Line / P ,Direct ion of Velocity,vr I I ' I I '/~e _-'§)~~_///I,_..-------.1::--...--"'""...---~----- Water~ Surface -- -;----,-Ow (a)General View StreamlineVA R,Direction of Particle Movement W sin (b)View Normal to the S ide Slope (c)Sec fion A - A Fig.3.1.Riprap stability conditions as described in the Safety Factors Method. 22 hori zontal is small (i.e.,A 0).For this case,the above equations reduce to: ~tan cP (3.10)tan {3 2 sin e and [ 2 (SF)2 ]cos 8 Sm -(3.11)"7 = (SF)(S~) where tan cP (3.12)Sm =tan e The term Sm is the safety factor of the rock particles against rolling down the slope with no flow.The safety factor,SF,for horizontal flow may be expressed as: SF =Sot [S2 i sec2 e +4)0.5 -S ."7 sec oJ2mm (3.13) -.' l' Riprap may also be placed on the cover or side slope.For a cover sloping in the downstream direction at an angle,a.with the horizontal,the equations reduce to: SF cos a tan cP "7 tan <1>sin a (3.14) 23 Historic use of the Safety Factors Method has indicated that a minimum SF of 1.5 for non-PMF applications (i.e.lOa-year events)provides a side slope with reliable stability and protection (Simons and Senturk,1977). However,a SF of slightly greater than 1.0 is recommended for PMF or maximum credible flood circumstances.It is recommended that the riprap thickness be a minimum of 1.5 times the 050.Also,a bedding or filter layer should underlay the rock riprap.The filter layer should minimally range from 6 inches to 12 inches in thickness.In cases where the Safety Factors Method is used to design riprap along embankments or slopes steeper than 4H:1V,it is recommended that the toe be firmly stabilized. 3.4.2 Stephenson Method The Stephenson Method for sizing rockfill to stabilize slopes and embankments is an empirically derived procedure developed for emerging flows (Stephenson,1979).The procedure is applicable to a relatively even layer of rockfill acting as a resistance to through and surface flow.It is ideally suited for the design and/or evaluation of embankment gradients and rockfi~l protection for flows parallel to the embankments,cover or slope. The sizing of the stable stone or rock requires the designer to determine the maximum flow rate per unit width (q),the rockfill porosity (n p),the acceleration of gravity (g),the relative density of the rock~_.- (G s ),the angle of the slope measured from the horizontal (8),the angle of friction (<t>),and the empirical factor (C).-----.-,. 24 The stone or rock size,050,is expressed by Stephenson as r 7/6 1/6 lq(tan 8)np 2/3 050 =-C--------------ta-n-e-)-J-5/--:-3g1/2 [1-np )(Gs-1)cos e (tan ~(3.15) !' where the factor C varies from 9~?2 for gravel and pebbles to 0.27 for crushed granite.The stone size calculated in Equation 3.15 is the representati ve di ameter,050,at whi ch rock movement is expect~di~'r::,.-,.... unit discharge,q.The representative median stone diameter (050):~,is' I '".~. then multi pl i ed by 01 i vi ers'constant,K,to insure stability.01 i vi ers'.',;-., constants are 1.2 for gravel and 1.8 for crushed rock.The rockfi',ll layer>~;:::.:,.;,.;".-:. should be well graded and at least two times the 050 in thickrie~~.A bedding layer or filter should be placed under the rockfill. '..-.The Stephenson Method does not account for upl itt of·the stones due to ;.--'~" emerging flow.This procedure was developed for flow over and through rockfill on steep slopes.Therefore,it is reco~ended that the Stephenson Method be applied as an embankment stabilization for overNow or sheetflow conditions.Alternative riprap rockfill design procedures should be considered for toe and stream bank stabilization. 3.4.3 U.S.Army Corps of Engineers Method The U.S.Army Corps of Engineers has developed perhaps the most comprehensive methods and procedures for sizing riprap revetment.Their criteria are based on extensive field experience and practice (COE,1970 and ./ .~ SECOND EDITION ORIGIN OF SEDIMENTARY ROCKS HARVEY BLAIT University of Oklahoma GERARD MIDDLETON McMaster University RAYMOND MURRAY University of Montana Prentice-Hall,Inc,Englewood Cliffs,New Jersey 07632 ••"•....~~.:•.-..~•..,I PcnncabiJitlcs to watcr or morc than SOO darclcs have be<::n measured in modern river sands;in ancient rocks pcnneabilitics to air range from a high ofseveral darcies in coarser sandstones to a measured low or 10-11 darcy in a shale.The median permeability of petroleum r-cscrvoirs is on the order of0.1 darcy(100 md). Permeability is normally determined in the laboratory by sealing the:side ofthecylindriC31 rock COre.removinganyoil inthecorewith a solvent,and forcing air longitudinallythrough thecorc.Thus pennc.abilittcsordinarily r-cponcd incore analysis refer to the permeability to dry a.ir at atmospheric pressure.The per- meability to freshwater,brine..or pctrokum may be much less.depending on thc mineral compositionofthe rock.,partteularly the amount and typeofclay minerals itcontains(secbelow).Unfortunately,the:a.ccuracyofcoreanalysis fordd.crmining pcrmea.bility is somewhat illusory.Whcn a core is removed from the subsurface. all confining forces arc removed and lhc rock matrix.expands in aU directions. partiallychanging the pore radii and lIuid 1I0w paths inside the core.Increases in permeability of more than loo/.have been doeumen.ed (Fait and Davis.1952). Presumably the pereenl>.ge incre.ascdepends largely onthedepthatwhichthe core ~taken-and on the mineralcomposition of the core.particularly its content of clay and mica. Subsurfacemeasurementsofpermeabilitycan bemadc byusingscmiempirical clcdriclogging techniques,butenors of loo/.arepossible.A bettermethodinusc in petroliferous rocl:s is todetermine tbc output ofa well undera I:nown pressure dn.wdown or to interpret pressure buildup dalll during a drill-stcm test.The drill-stcm test has the advanlllge thaI it represents the effective permeability of a luge volume ofrock under in situ conditions. Depositional permeability is greatest in a direction either parallel to the bed• ding or at a small angle to it because ofgrain oricnllltions.mieaeeous folia.ions produced during deposition of tbc scdimen..and vertical changes in grain size within tbc rocl:uniLJohnsonand Hughes(1948)examined 33 Devonian 6i1 sands in New Yorl:and Pennsylvania and found variations in pecmeability averaging 30/.inthe planeoftbcbedding.with diffcrcnecs beinglesspronouncedinsands of higher permcabilities.Griffiths (1949)observed that sand grains are normally imbricated at a low angle to the bedding and,thc«forc.planes parallel to the bedding are projections ofsections through the individual grains on a plane that lies atvaryingangles tovaryingimbrications.Smallvariationsingrainshapewould resultinlargedifferences on the projection plane.Hefound greatestpcrmcabilities in th=coresa.a lowangle '0 the beddingandattributed.heresul.totheexistence ofgrain imbrication in thesandstones.Mast and Potter (1963)studied permcab.ili- ties in the bedding plane of 13 Carboniferous sandstones and concluded.that variationsin permeability as a result offabric ware cxmmely small."Ocarlyitis dilliaJlt to generalize about directional permeability beyond the statement that it is Icast ina direction approximately normal to bedding. In some:units~however.jointing oc miaofaulting can increase permeability pcrpeodieular to bedding by orders of magnitude (Nelson and Handin.1977). fig.12....POflXlty.bur~deP'd\.acw:f:abund.ncc of quartz ~__ qu«ttuftdstonesIrom the-Dow«betI.. (JurusicJ.wea;G~.fOf ~: ala cf.c.pth 011000In 1tMI poroe.ity.31~; qu.M1.z:~fOt'I'ft1%of thctoQ..--'911_30"1;"'...........,. q.....u ~hnoc ~hs..(Fro. H~~.1967.Proc.7'"WOIi:t . Prt Cong_M.xico Citr.2.354.0Md. by ~of tnc ~Sd.lmtif1C :P"".Co.) .,... O<SSO!..VEO AN()R(PREoPtTATEO O€TRITAL QUARTZ Ovofll Q<~...;Ifl ~~Q'o.~ o ~~~~~OO~ by"lllrdingpressuresolutionand .he form...ion ofquam0>'ergT0V01hs.fluid lIow • •hroug~sa~.ones tna.yalsocnhanc<:porosi.y bydissolvingcarlier-formcdttmeals :or detntal mineral ~ns. 12.4 PERMEABIUTY .Pennabili.yis a ~sure of.hecase wi.h which a fluid flows .hrougha rod. illS~fined~yanemp'ncalrelationshipfirst recognized bytheFrench hydrologist ~ Hen"DaIl:)'In 1856and may be wrilten whc1e V =apparent velocity (cm/s) Q =discharge (em'/s) A =cross-sectionalarea (an~) k =.penoeability (dareies=em'X 10") JL =fluid viseoiity (ecntipoises,gm/ems X 10") I=distanceofflow (em) p =pressure (dynes/em');'his term consists d.' both a Iluid pressure term and a gravitational acceleration term. .'...._._'.:.._...,.~..'........' .'.'.. Authigenesis latalayu water is removed completely,k:.avint ooly I few percent ofpore water in the mudrod. OCt<SlTY q/em' Authigenic:minerals in sandstones arc dominantlycak.itc and quartzcements but may also beclay minerals (Chap.9).Authigenesis in both sands and muds is favored by inereasing t<>mpaetion,temperature,and salinity,all of which attorn- pony increased depth of burial.The relationship betWttll burial depth and the formation ofse<:<>ndary growths on detrital quartz trains is illustrated for some Mesozoic sandstones by Fikhthauer (1967)(Fig.12-8).In some rods,however, authigenesis may preserve rather then destroy porosity.Lumsden et aI.(1971) found that authigenic chlorite toatingson detrital quartz grains in the'Spiro and FosterSands(Pennsylvanian,Oklahoma)preserve the bulkofdepositional porosity F"tog.12~7 Vwtion of dtoe butt.dcnsCty of ~with drqJth in $e't'«M sedi-~b..sans.(ftom H. H.Rteb.III. ~G.V.0WnQw.197.(.Co~tion _~~[l:KYietrvb. Co..p.3-(.Used by ~of the Dt-WScieftUf.c Pvb.Co.) >0.. >-~on 200or0"- to F"1g.1Z-4 ~amongpotOSity.~~..-denvi· ~101 dcpoc:itionof JUC'MSie ~in the North See .....(From fLC.$<thy.197a.Jow.CHI.Soc_135.126.Used by ~of the ~Sodo<y~ QUARTZ CQf\lTENT ~ 40°;------------.:;""r:------------::; in the sand and undercompaction ofthe mud (Scc..S.12).Theeffectofdayminer- alogy on t<>mpaction ofmuds an be madprimarilytotbe pr=neeofunectiles or interlayered smectite-iUite days.Smectiticdays t<>ntain more water than iUitic or boliniticclays and resistt<>mpaction ofthe mud. Bum(1969)has suggested thatthe t<>mpaction ofclaysprooeeds inthreemain stages.In the first.pore-waterandwater interlayers beyond twoare remO\'ed bythe aetion of overburden pressure.At the time of deposition muds may have water t<>ntenls on the orderof70 to 9OY..After a few thousand feet of burial the mud retains onlyaboutJOy'water by volume.of which 20 to 2Sy'is interlayer water and S to lOY.is residual pore water.In the se<:<>nd stage.p<essUre is relatively ineffective as a dehydratingar;cnt.Dehydration prooeeds byheating.whichremoves anothe<10 to ISY.ofthe water.inc:second stage beginsat temperatures doseto 8O"C and may be att<>mparUcd bydiagenetic changes in clay mineralogy.Sina: this is alsothelemperat!'£Catwhichorganicmatter maturestopetroleum (Scc..9.2), is possible thatcxplusion ofwaterduring the third stage ofday recrystallization also theeause ofthe-primary-migration ofpetroleum fromsouree to reservoir rods.Thethird st&ge ofdchydration is also <:ontrolled by temperature butappar- ently is also very slow,requiring tens to hundreds of years to reach t<>mpletion. 0'-----------------------'"'o'ccrVdostte....., '.'-.'.:...~.....- ....,.';' p •••-:::.".. 40202."2.8 32. Av(RAG(PQROSlTY lPo«:"" 12 2000 '000 rtQ 12.5 rocosicv va..~(_)Sou'th ~T«(ia(y sands;17.367~(FtomG.I.~..aftdL(.M......'965.~fM.;~~ 1or-..ch"'OOOfLint"""');(b)G.....v.acv~aondT~aands:"5~(FcomO.L~.endJ.H.Spom..1978.AIIMI.AI:s:oC.hc..Gc<JI. afIJII~c.z..".;(el CC.Cauc.asus.U.s.s.R.:'3aampIa..(From a.L ftos:hIy. at.ov.1960.trans..by~T.a...S«v_~H.J_1565.p.3.1 Thecompactionofmuds isconsiderably morecompkxthanthatofsandstones, asMeade(1%6)hasdescribed.Intheearlystages.co~~ctionmay ~.strongly ral factors in addition todepthofburial:graIn stU,rateofdeposll1on.clayo~seve10 content of organic matter.and tc<><bemical factors (O>apter 1.1). mvI~f:Y:theseparametcrs causewidevariations in theamountofcompaet1on anatlons to .(Fi 12 7)Coarser .~in sizesufferedbydifferentmudsatthesamebunaldepthIE-- .:---. I ·th increased quarlZ/cIay ratio and hence reduced compactIOn.H~corrcates W1 •f c1J.-seals'"hove sand UDlts.,ratcs ofdeposition can result in the formation 0 y.a which destroyvcrticalpermeability a.nd cause the formation ofexcess percpressure .,9 c .~.~i i --...~"&E~.u .::i f:::"3£ --1Onq<nI'" -'-'-L0n9----~It 418 Rtg.12-4 ~~cS.pchandt\'Pe0(.ain c:ontaain.....-..of.....of..__..w,o.ning.I_J T . 1950.Am«".Aaoc..htI...GHl.6f111t_M.715.Used by ~of ..."'""""""Aaoc.r_Goologlsu,l may have resultedsimply from cilberan ioacase in paoenlage of elongate rod:: fragments withdepth oran ioacasein clay C>OQlentofthesandstones. The presenceofdetritalclayina sandstone hasthesameeffect asthe presence ofductile fragments but ioacases the rate ofcompaction.Mud has a very low bearing strength and noticeable compaction of clayey sandstones <an occur at depths ofonly a few meters. Increased compaction causes a ·deaease in primary porosity,a feature observed in seven.!field studies.Data relating porosity toburial depthhave been collected from lart<numbers 0(.subsurface cores in different sedimentary basins (Fig.12-S),andit wasfoundthatporositycandeaeaseeitherlinearlyornonlinearly withdepthand at ueallydiffc:ring rates.PetrograplUcstudies are needed to detc:r- mine thecausesofthescdifferenoes.Theintcrn:lationsbipsamongporosity,testural maturity,and mineralogic composition are weI1 illustrated by Selley (197S)in a study ofthe occurrence ofoil in Jurassic sandstones in!he North Sea area (Fig. 12~.Volcaniclastic sandsareeasilyalt<:fed cbanieally during diagenesis to,pro- ducefine-grained matrix.Nearly purequartzsandstonessuffer leastfromdiagenetic effects.Arkoses occupyan intcnnediatc position with respect to diagenc:tic effca.s... With respect to texture.the:situation in the:Jurassic rocks is equally dear.with shallowenvironmentsbeingmost texturallymature.distalturbidite:stheleast. /---~<;<-;~--;.-y.::. OL---SOO~:-·----:Kl()O:!;,;::----"I5OO""'---2=:OOO:!;,;::::..~.....,2::500'=--.....,3000,.,J· O€PTH Iml .----s..t..<<d --~ofcontocts to 20 00 '"- oQO r-----.-----::--..----=----..---=--::--,--..,,----,.O 'o;;~--'----'---'--.----r--~ 7•, 0·01;;0--:2t.O)-:4()~---iGO~---;;OO~---::1OO!::----.J PERCENT (tolof por~$pOCe e-tatc'fedl '17 (0 0.01 pm or less at a depth ofJOOO ro.These values arc an orderor magnitude 'mailer than thos<:typical orundstone,(=Fig.12-3). l"he quantitative significance of the soning of s.and grains on porosity of a sandstone was studied experimentally by Beard and Weyl (1973)for gaussian distributions.Porosity was essentially independent of grain size but dttrc:ued seq~nli.ally as sorting dcacascd (com .(2..(~porosity in extremely we:II-s.ortcd sands to 27.9/;in very poorly sorted s.ands "'ith no clay matrix.This result seems quire reasonable because smallergrains will lodge betwccn the larger oocs.Pryor (1973)found no significant change in the porosityofriver,beach,and dune unds with change in 'tandard deviation from0.34>to l.~,but his coresamples,unlike thos<:in the Beard and Weylstudy,werenot homogeneous.Pryor'sCOres consisted ofmany thin,individually wcll~ed laminaeSO that although porositywould be exccllcnl,thesediment sorting<ktcrminedinthe laboratory mightbe goodorpoor for the core as a uniL The porosity ofa san<lstone depends on postdepositional factors as well as thos<:present at the time and site of deposition.AJ;noted,the most important .facton duringdepositionareclaycontentand the sorting ofthe und fraction of the sediment.Of ksscr importance are initial grain pacl::ing,sand mineralogy. mean grain siz<:(assuming 'COlUlant sorting),and grain angularity.Important postdcpositiooal or diagenetic factors arc degnoc ofcompaction and the formation ofauthigenic miocals. Compaction Upon burial.sandscompact muchkss thanmudrods.Tbc ksscrcompaction ofsandsresults from two factors.First,theaveragesan<lstonc is composedIugcly or quartz grains,and these grains arc undeformable under most sedimentary conditions.Secondly,the fiitcr particles that predominate in mudrods arc deposited with initially higher _ter contents and this_rcr is quic1:Jyexpelled. Many investigators have:compactedquartzunds in the laboratorywiththe result thatthethicknessofthe aggregate bas deetcascd only 10 to ISX dueto rearrange- mentorgrains and chipping ofgrain corners. The amount of compaction increases ,ignificantly with the proportion or ductile rocl::fragcncnts inthe detritalfraction ofthesand.Such panicks asshalc, slate.pbyllite.and schist deform easily at shallowdepth,decreasing porosity (sec below)and thinningthestratigraphicsection.Thisdccrcascinporosityis noticeable in well logs and .....first studied in thin sections ofsubsurface cores by Taylor (1950).Shefound that the proportions ofthe fourdifferent typesofinlCfgranular contacts cbangcd with depth ofburial (Fig.12~).Tangential cootacts dcacascd rapidly in abundance with depth,whereas the other three types.showed marl::ed inc:rcascs.GrainsWClC being pushed close together as burial depth ~ Unfortunately,Taylordid not lcepa closecbed:onchanges in mineralcomposi· tion with depth;so we cannot hecertain how muchofthe increased clos<:ncss of grains was due to plasticdeformationofelongate ductile fragmentsand howmuch or lance.Torauosiay in &undstonc is usually be(ween landJ;in 100$(:scdimcna ia is lpproximaacly one-half&s l.ar~.The trc.aaer the 10rluosilY.lhe.slowcr the flow of luid through the pore system. The physical principle on which the mercury injection method is hued is that liquids forming contact angles on solid surfao=s ofmore tnan 90-(i.c..non- welling ftuids)cannot pc.netf2tc into small pores unlcs.s the fnj«:tion pressure cxC«ds (he capillary pressurc.The higher the injeaion pressurc.the smaller the pores(hatcanbe penetrated bytheliquid.Incircular poreswith radius r the surface tension q acts along the ,x:rimcacr of the cirdc with the (orce.-2xro.1be force coun(cr.teting the intrusion ofthe liquid paralkl ao the axisofthe pore is -2xra COS 1.where 1 is the angle of contact.The [orce a.uscd by tbe injection pressure p is ~rp.For equilibrium.we obtain -~acos1 =-.rIp 20"cos.lr=----p lbe surface:tensionofmercuryis ~84.2 dylld{cmat!Soc,and th<:angkofcontact of mercury on silicate mincm surfaces has been determined cxpcrimcnUlly to approximate 141.3°.Usingthcsc ruucs, 7.6r=-p wbcn pressure is measured in bars and pocc:radii in micrometers (Fig.12-2). Using this relationship,rncrcury injectionofa core yields th<:volume percentage ofpore throats ofany givenme in the rod:sample (Fig.12.3). lbe poCO$ity ofmudrod:s varies over essentiaJly th<:same range as in sand- stones,from zero toabout ~Yo,butth<:definition ofporosityin a mudred:is not ascIcar-<:Ut asin th<:=-graincdrod:s.Indeed.theddinitionandmcasurcmcnt ofporosity in mudrocks present probkms not encounta"cd in undstoncs.In a undstonc composed primarily of quartz and similar minerals.th<:boundary between porespace:and grain is rcasotl1b1y ""'"dclincd.Forcxampk.ifth<:pore space is 61kd with water.th<:n this frce or movable water rcprcscnts th<:porosity. lbe proportion ofadsorbed or bound water is usually ncgligihk because the specificsurface:ofsuch mineralsasquartzis only I to 2 m'/gofsediment.(Compare with clay minerals below.)In subsurface:studies,Iouing methods that measure total hydrogen concwtsatio...such.as neutron logging,etreetivcly measure the porosity.But mudrod:s present a .rnon:complcx problem.Many of th<:clay mineralscontain water as part of their strveturc.and this water certainly should be considered part of·the solid rather than part ofth<:pore lpace.In addition, u~lcr adsorbedon thesurface:ofthe claylIales nocmaJly is notfree to move,and ....tcr may form a large percentage of the total waterhctwccn clay fIa«'in .udrod:.This lituation occurs because the lpCCiJic lurr"",ofday mincrns IS very large,On th<:order of tens o(squarc meters pcr gram.Within th<:space between the grains and thcir adsorbed wake.-howcver.there exists free water ,.. lQO~~---r--,---,.-----,--r-'--'---'-"-----"l•~. 2 . '0• , 2 0.01L.L--!IO~.L-,20;;!;-""~30;\-;-.......loo~~:IO~..L-'i"'~~"'70 o IN.£CTOOH Pll(SSlJR(c;F HQ (-.1 fig 12-2 Relc~~~~or~it'CO.aweat>d \he~ofpole~1hat....~ . .ved b compaction.Thus when we speak capahk of moving or being<aSlly rcmo.L _y ta-of th<:total volumeof the ud -_L ·ty we usually mean U~pcreen b-ofm rug.poros.,It.uallymeasuredby mechan-rod:thatcontainsfrcc oreasilymo....bIe.water.IS us f n id removed or the.th<:ed:and rncasunng th<:amount 0 ujcaJJycompactingr.These methodsare atbest.an approximationof percentageofvolume red':::;:th<:possibility ofal;ering th<:watercontcat ofthe thctrUe pore volurnc bea •th<:nalysis clay flakes orthe amount of.adsorbed water~u~ngbe~sandstones and mud- lbe cri~1d~~~~CC:=larlYinfissile m~droa:s (shales).~arcm=flalcsthatfOOD 60Yo ofth<:mineralgrainsarconcntedon pa= y..tI tabular FurthctmOCC.beaus<IIatandhenceporespacesaredoml~y uch·smaller Heling (1970)studied ~he can be vcrydoscly pad::cd,pore sacs~re m.that ~buried to depths up to fabric ofTertiary shales from the Rhincgraben f 004pm at a depth of 100 m l400 m.Pore radii dcc:r'eaSed from an avcna.g<::0 ..,5 '.'..,.'..'.£',.:t..',.,.,..',:..,.'!.........-:.(. ,'<,~~~ Line of travers.e T0noen1iol contoct Sutured CC)fttoct G Matril Iliil'i!l Cement Oll'e-o>nvex contact Totol nvrnbef'ofOroiM ~tered •K> Totol ~ofcontocts enc.ountend -.q PoctdnO proll:imity -40 %. f\n;,-q denSity -0.8 F"'Q.12.'Ocf\Ntion of Il"MI ~typa and ~ptOximity.(Aft_ J.M.TeyCor.lsso.~.Jln.oc:.hr.GtIOI.8v1t..:J.C.p.711. 712.~J.S. l:ahn.1956.~.WoI_K p..393). grain volume;and cffcetiw:porosity.lite ratio ofinterconnected void volume to 10tl.Irod:volume.In dclrii.alsiliclIe rods.effective porosilyis usually onlyslightly k:ss than lolal porosily. Methods of Measurement Cores o[rods used [or porosily determinalion are normally cylinders one inch long and one ind>in diamct<r.n.e porositycan beeasily dClermined by ps expansion.using Boyle's.law.Alletnalively.tbe vcain densily can be assumed (2.65)and tbe porosily dctermined by weighing a sample salurated wilh a fluid orknown densiry.11lCse experimentl.l mcthods aresuitl.b1y a=rate and are tbe standards[orcalibralionorall other porosily-<lClerminingmethod.s.suchas poinl -auntsin rod:Ihin sectionsorsubsunaa:logging lechniques.An importl.nlpoinl i:cepin mind.however,is thaItbe.porosilyor13em'orroci:maynOl be repre- Altl.tive ora rod:unit millions ortimes larger in volume,panicularly because field obscPlalions ~lhal porosilicscanvaryueatlyover small distana:s wilh such factors asclay mineral or rock fragmentcontent. ~12 The uSC ofsubsurface logging techniques (sonic.density.neutron)can SOme- limes produce porosity values within 1,%o(the value obtained On the same rocl in a cores.amplc.Theadvanlagc-1 oflogging methodSOvt:r coreanalysis(orporosity dctermination lie in the much larger volume ofrock."'s.amplcd.-perhaps 100 times larger than thc laboratory core,and 1n the fact that the measurement is madc in situ,before overburden pressure is removed.In addition,there is thc mattcr of cost.Ekctriclogs are madeofall 'Wctls,butcores arc taken in relativelyfew. In most sandstones the bulk.of pore space has diameters less than the JO pm thid:ness of a standard thin section and so is difficult or impossibk to detcct during examination of the slide unless special techniques arc used.The usual techniquc is [0 vacuum-impregnatc tM:rock slice with a colored epoxy before thin sectioning so thatcve:n extremely narrow pores that intersect the plane ofthe thin sectton become visible in uncrossed nicols.This technique,now standard in industry ~boralories,also mal:esil possible 10 distinguishbelween pores produa:d by diagenetic dissolulion or delrital trains and pseudopores produa:d by gnin pluckingduring grindingof the thin section. Pore Sizes..Geometry..and Measurement Poraarc irregularlyshapedcavitiesina rock;thereforeanydefinitionoftheir "size"is an approximation based on the musuremcnt technique used to deter- mine it.In some cases.it is possible to vacuum-impregnate a porous rock with eilhcra mollen plasticormctI.l andthendissolve tberocl:by usingsuitablereagents 10 produa:a "negative image"or lbe rocl:-1hal is,ils Ihree-<limensional pore nClwori:(Swa~.1919).This technique.allhough userul forsome research pur- poses.is impractical asa stl.ndard method.n.e distribution or pore sizes in a rocl:sample is determined generally by injection or mercury inlo tbe rocl:.n.e sizes orpores determined in Ihis way are actually lbesizesortbe pore""lhroalS"ornarrow connectionsbetween~rge pores. II is lbesizes orthe Ihroats thaI conlrol the flow orfluid through rocb,whether the 60w is or mercury during measurement or porosity or is water.petrokum. or nalural ps in tbe subsunaa:.Onedcticien<:y ofthe mercuryinjeaion technique is lhal ira large pore,such as a vug.is enlerc<l by fluid Ihrough a narrowthroat. lhe large vug will be included wilhin the volume or porespace represenled by the throal size.A second deficiency is lhal nol aU pores can be invadedbytbe mercury because they may be shiclded by olher smaller pores whose displaa:menlpressure is notacceded.n.e individualporemay betubular lil:e a capillary lube;oril maybe nodu~r and fcalber oul inlo the bounding conslrietions belween nodules;or il may be a thin.inlercrystallinetabularopeni",thaI is SO 10 100 timesas wide as itis thic\:.n.e wall ortbe pore maybecleanquartz.reldspar.or calcile;oritmaybecoated wilh day mineral panicles.platcy accessory minerals,or roci:fragmenlS.The crooi:ednessortbe pore patlem,called the torruosity,is Ihe raliobetween tbedis- tl.na:between two points bywayorthe conneaed pores and tbe straighl-linedis- I I I: \, CHAPTER 12 POROSITY AND PERMEABILITY OF DETRiTAL ROCKS 12.1 INTRODUCTION The porosityand pe~abili(~ofsandstones and mudrocks have been gcnccvallyneglectedbyacade'nte geologists.Mostofour knowledge in this area comes from the petroleum industryas part of its etrort to locate reserves of oil and gas It IS strange ~t.few geolo~istsoutside ofindustry h.;.ve investigated the porosil~ '";d permc:abdltles of ~etntal rods,for these variables conlrol most diagenetic p ocesses.In rods.Without adequate permeability to water there ean be linleClC~ta(lOn.o~sand,tones..diagenettealterationofheavy mincrals~conversion of Smect.te to dhte,or the myriad ofotber processes that affect rock af'er burial Pore spaceandpermeabilityarebasicaspecu ofrock fabric and should be studied as a nonnal part of a petrologic investigation. 12.2 FABRIC ~termfabric is rcS(:rvcd for "the manocr ofmutual arrangement in space of tbe ,:?mponents of a rock body and of the boundaries between lhese COm. ponents (IntcrnDttonal Tectonics Dictionary).It thus indudes both the pack.ing .'0 and ortentation of grains.Grain pacL.:inC strongly affects both porosity and per- meabilityand grain orientation affects the permeability(Sec.12.4). The kaSl-studicd aspect of fa.bric is packing."the spacing or density paucrn of mineral grains in a rock-(AGt Glossary).The meaning of packing and its distinction from olhcr aspects offabric.such as orientation.is most clearly seen for the case of a sediment composed of pcrfcc(spheres uniform in size.Even in this highly idealized ~sc it has been shown that there arc six different systematic ways ofarranging the spheres so that each sphere is in contact with-rour ormore adjacent spheres and there arc no vacant positions.The arrangements vary from the "loosest"cubic packing witha porosity of47.6%tothe""tightest"rhombohed- ral packing wilh a porosity of 26.0%.The six regular packingsdo not exhaust the numberofways that sphcra may.in fact,be:pad::cd bcausc in natureaninfinite number ofcombinations ofthe sixand of "n.ndom-padings may also be devel- oped. Kahn (1956)devised two numerical measurc-s for usc:in thin section studies. I.Thepackirlg densi'y is the ratio ofthe sumofthelengths ofgrainintercepts to the total kngth_of the traverse across tbe thin section.It is a measure oftbe:porosityofa cement-and matrix..(rcc sand orofthe "matrix<:cmcnt- free porosity"ofa sandstone that has some matrix and cement. 2.Thepackingproximityis t11<:ratioofthe Dumberof&ain-to-graincontacts (encountered in a traverse across the thin seaion)to the total number of contaet1 of all kinds encountered in the same traverse (Fig.12-1).Ifthe grainshave onlysmallareasofcontact witheachother.mostoftbecontaet1 observed in a thin section will be conUets between a grain and matrix or cement;so the packing proximity win be small.In a rock in which there has been compaction without the introduction of much ce:ntent.most of the grain contacts observed will be grain-to-grain contacts andthe pad:ing proximilywill be large. The type ofcontact bctwcc:n grains canalso be studied in thin $CClion.Inthe ideal case ofpacked spheres.the onlyobserved contaet1 between grains would be tangential OACS.But in the ca~of nonspherical grains or where compaction has taken place,threeotber types ofcontaet1 can beobserved(Taylor.1950).Thefour possible typesofcontaet1are(a)tangential(b)long-:hatis,a contactthatappears as a straight line in the plane ofsection.(e)concavoeonvex,and(d)sutured.The frequency ofeoncavoeonvex and sutured contaCts relative to that ofother types ofcontacts has beenusedas a measure oftbeintensityofcompaaionofsands. 12.3.POROSI1Y Several tcrms arc widely used to indicate theamount of pore spacein a rock. The most common arc porosity,the ralio ofvoid volume to total rock volume (multiplied by 100 to form .a pcrcentagc::);void ratio,the ratioofpore volume to .-~ ..-.- ..:. APPENDIXG Slope Stability ~--_...-.-......---_.-.-.--=E E E=~~Environmental TITAN Environmental By .-KG:..Date.J..!!J..fL Subject Ern White Mesa Mill Tailings Cover Chkd ByJ:rtL Date~Stability Analysis ofSide Slopes ofthe Cover PURPOSE: Stability Analysis ofthe Side Slopes ofthe Cover Page_l_of_2_ Proj No 6111-001 The purpose of this calculation brief is to evaluate stability of the side slopes of the cover for the uranium tailings impoundments.The sides of the covers are sloped at 5H:1V.From the old drawings as published by UMETCO (section B-B),the side slope for Cell 4 is the tallest.Also, along the southern section of Cell 4,the ground elevation drops rapidly.Hence the side slopes of the cover located along the southern side of Cell 4 are assumed to be critical and considered for stability analysis. METHODOLOGY: Static and pseudostatic slope stability analyses have been performed for the slope geometry as shown in Figure 1.The limit equilibrium slope stability code GSLOPE,developed by MITRE Software Corporation has been used for these analyes.The Bishop's method of slices has been applied. Geometry and Material Properties Along the southern end of Cell 4,the topography drops at a rate of approximately 5.5%(Figure 2). The material properties as provided by Dames and Moore,1978,have been used for these analyses. The material properties have been listed in Table 1,below. Material Type of Unit weight,y Cohesion,c Angle of No.Material friction,~ (pct)(pst)(degrees) 1 Earthfill 123 0 30 2 Tailings 62.4 0 0 3 ~Dike 123 0 30 4 Foundation 120 0 28 5 Bedrock 130 10,000 45 Table 1:Matenal PropertIes The surface of the bedrock has been determined from the bore-logs as supplied by Chen and Associates,1978.But as this bedrock surface almost coincides with that of the foundation, assuming the bedrock layer to be about 10ft.below the lowest point of the foundation surface,will D:\PROJECTS\6111-001\STABLITY.DOC TITAN Environmental By -.KG.-Date..l..!!lfL Subject EFN White Mesa Mill Tailings Cover Chkd BylfiL-Date~Stability Analysis ofSide Slopes ofthe Cover Page_2_of_2_ Proj No 61 11-001 give conservative results.Thus,for the stability analysis,the surface ofcompetent bedrock has been assumed to be at an elevation of+5540 ft.above mean sea level (MSL). Factor of Safety and Horizontal Acceleration required for analysis: A factor of safety of 1.5 and 1.0 are respectively acceptable for static and pseudostatic analyses. Pseudostatic slope stability analysis has been performed for a maximum seismic coefficient of0.1 g. RESULTS: Results ofthe stability analyses have been presented in this calculation document. Results for Static case:For static analysis,the maximum Factor of Safety calculated is 2.91 (>1.5). Results for Pseudostatic case:For pseudostatic analysis,the maximum Factor of Safety calculated is 1.903 (>1.0)for a ground acceleration of O.lg. Hence the side slopes are stable. REFERENCE: a)Chen and Associates,Inc.,1978.Soil Property Study,Earth Lined Tailings Retention Cells, White Mesa Uranium Project,Blanding,Utah. b)Dames and Moore,1978.Site Selection and Design Study -Tailing Retention and Mill Facilities,White Mesa Uranium Project,January 17,1978. c)"GSLOPE Limit Equilibrium Slope Stability Analysis",Mitre Software Corporation, Alberta,Canada O:\PROJEc-TS\6111-001\STABLITY.DOC TITAN Environmental By KG Date 7/96 Subject EFN White Mesa Mill Tailings Cover Chkd By~Date~Stability Analysis ofSide Slopes ofthe Cover Page__of__ Proj No 6104-001 RESULTS OF RUN BY "GSLOPE"ANALYSIS Material Un it Wt C Phi Piezo Ru Titan Environmental -Bozeman MT pcf psf deg Surf.5111.001 Earthfill 123 0 30 0 0 EFN White Mesa Slope StabilityTailings62.4 0 0 0 0 Dike 123 0 30 0 0 7/1996 Foundation 120 0 28 0 0 Static Analysis Bedrock 130 10000 45 0 0 WHTMESA 1.GSL + F =2.91 5600 ~.S;;:5600 Io I 100 I 200 I 300 I 400 I 500 I 500 I 700 I 800 I 900 DATA FILE NAME.'."C:\STABLITY\GSLOPE\WHTMESA1.GSL ,T-"No. le Date Label A Label B Max Slice Width Set Neg.Normals to zero No.of Materials Seismic Acceleration External Forces Piezometric Surfaces Unit Wt.of Pore Fluid 6111.001 EFN White Mesa Slope Stability 7/1996 Static Analysis 10 Y 5 o o o 62.4 Material Unit Wt Cohesion Friction Piezo Ru Angle Surface Value #1 -Earthfill 123 0 30 0 0 #2 -Tailings 62.4 0 0 0 0 #3 -Dike 123 0 30 0 0 #4 -Foundation 120 0 28 0 0 #5 -Bedrock 130 10000 45 0 0 Upper Surface of Material #1 (Earthfill) X-Coord Y-Coord 0 5550.5 310 5568 480 5602 900 5605 Upper Surface of Material #2 (Tailings) X-Coord Y-Coord 0 5550.5 310 5568 390 5568 480 5598 495 5598 500 5596.5 900 5598 Upper Surface of Material #3 (Dike) X-Coord Y-Coord (1 5550.5 5568 390 5568 480 5598 495 5598 500 620 900 5596.5 5557.5 5560 P-~er Surface of Material #4 (Foundation) X-Coord o 310 390 620 900 Y-Coord 5550.5 5568 5568 5557.5 5560 Upper Surface of Material #5 (Bedrock) X-Coord o 900 Y-Coord 5540 5540 There are no explicit external forces in the data set. GSLOPE 3.26a LIMIT EQUILIBRIUM SLOPE STABILITY ANALYSIS Licensed by MITRE Software Corporation,Edmonton,Canada for use at:- Titan Environmental -Bozeman MT Results are for Bishop's Modified Method unless otherwise noted. File C:\STABLITY\GSLOPE\WHTMESA1.GSL Output dated 07-03-1996 at 11:55:05 Material Unit Wt Cohesion Friction Piezo Ru Angle Surface Value #1 -Earthfill 123 0 30 0 0 #2 -Tailings 62.4 0 0 0 0 #3 -Dike 123 0 30 0 0 #4 -Foundation 120 0 28 0 0 #5 -Bedrock 130 10000 45 0 0 X-centre Y-centre Radius Factor Iterations Slices M Alpha of Safety Warnings 322.60 5732.50 165.50 2.9103 4 11 0 22.91 5732.50 165.50 2.9101 4 11 0 ..>23.23 5732.50 165.50 2.9164 4 12 0 322.60 5733.13 166.13 2.9101 4 11 0 322.91 5733.13 166.13 2.9159 4 12 0 323.23 5733.13 166.13 2.9164 4 12 0 322.60 5733.75 166.75 2.9099 4 11 0 322.91 5733.75 166.75 2.9160 4 12 0 323.23 5733.75 166.75 2.9164 4 12 0 Minimum Bishop Factor of Safety this run: 322.60 5733.75 166.75 2.9099 4 11 0 Material Un it Wt C Phi Piezo Ru Titan Environmental -Bozeman MT pcf psf deg Surf.6111.001 Earthfi 11 123 0 30 a a EFN White Mesa Slope StabilityTailings62.L1 0 0 0 0 Dike 123 a 30 0 a 7/1996 Foundation 120 0 28 0 0 Pseudostatic Analysis Bedrock 130 10000 L15 0 0 Seismic coefficient =.1 ground accln.=0.1g WHTMESA2.GSL + F =1.903 5600 ~~5600 I a I 100 I 200 I 300 I L100 I 500 I 600 I 700 I 800 I 900 DATA FILE NAME .....C:\STABLITY\GSLOPE\WHTMESA2.GSL ""No. le Date Label A Label B Max Slice Width Set Neg.Normals to zero No.of Materials Seismic Acceleration External Forces Piezometric Surfaces Unit Wt.of Pore Fluid 6111.001 EFN White Mesa Slope Stability 7/1996 Pseudostatic Analysis ground accln.=O.lg 10 Y 5 .1 o o 62.4 Material Unit Wt Cohesion Friction Piezo Ru Angle Surface Value #1 -Earthfill 123 0 30 0 0 #2 -Tailings 62.4 0 0 0 0 #3 -Dike 123 0 30 0 0 #4 -Foundation 120 0 28 0 0 #5 -Bedrock 130 10000 45 0 0 Upper Surface of Material #1 (Earthfill) X-Coord Y-Coord 0 5550.5 310 5568 480 5602 900 5605 Upper Surface of Material #2 (Tailings) X-Coord Y-Coord 0 5550.5 310 5568 390 5568 480 5598 495 5598 500 5596 .5 900 5598 Upper Surface of Material #3 (Dike) X-Coord Y-Coord ('5550.5 5568 390 5568 480 5598 495 5598 500 620 900 5596.5 5557.5 5560 r''er Surface of Material #4 (Foundation) X-Coord o 310 390 620 900 Y-Coord 5550.5 5568 5568 5557.5 5560 Upper Surface of Material #5 (Bedrock) X-Coord o 900 Y-Coord 5540 5540 There are no explicit external forces in the data set. GSLOPE 3.26a LIMIT EQUILIBRIUM SLOPE STABILITY ANALYSIS Licensed by MITRE Software Corporation,Edmonton,Canada for use at:- Titan Environmental -Bozeman MT Results are for Bishop's Modified Method unless otherwise noted. File C:\STABLITY\GSLOPE\WHTMESA2.GSL Output dated 07-03-1996 at 12:14:06 Material Unit Wt Cohesion Friction Piezo Ru Angle Surface Value #1 -Earthfill 123 0 30 0 0 #2 -Tailings 62.4 0 0 0 0 #3 -Dike 123 0 30 0 0 #4 -Foundation 120 0 28 0 0 #5 -Bedrock 130 10000 45 0 0 X-centre Y-centre Radius Factor Iterations Slices M Alpha of Safety Warnings 22.60 5732.50 165.50 1.9036 4 11 0 322.60 5732.50 166.13 1.9067 4 12 0 322.60 5732.50 164.88 1.9160 4 11 0 MIN THIS CENTRE 1.903 322.91 5732.50 165.50 1.9037 4 11 0 322.91 5732.50 166.13 1.9067 4 12 0 322.91 5732.50 164.88 1.9163 4 11 0 MIN THIS CENTRE 1.903 323.23 5732.50 165.50 1.9066 4 12 0 323.23 5732.50 166.13 1.9068 4 12 0 323.23 5732.50 164.88 1.9165 4 11 0 MIN THIS CENTRE 1.906 322.60 5733.13 166.13 1.9035 4 11 0 322.60 5733.13 166.75 1.9067 4 12 0 322.60 5733.13 165.50 1.9160 4 11 0 MIN THIS CENTRE 1.903 322.91 5733.13 166.13 1.9062 4 12 0 122.91 5733.13 166.75 1.9067 4 12 0 322.91 5733.13 165.50 1.9162 4 11 0 MIN THIS CENTRE 1.906 323.23 5733.13 166.13 1.9066 4 12 0 323.23 5733.13 166.75 1.9067 4 12 0 323.23 5733.13 165.50 1.9164 4 11 0 MIN THIS CENTRE 1.906 322.60 5733.75 166.75 1.9034 4 11 0 322.60 5733.75 167.38 1.9067 4 12 0 322.60 5733.75 166.13 1.9159 4 11 0 MIN THIS CENTRE 1.903 322.91 5733.75 166.75 1.9062 4 12 0 322.91 5733.75 167.38 1.9067 4 12 0 322.91 5733.75 166.13 1.9161 4 11 0 MIN THIS CENTRE 1.906 323.23 5733.75 166.75 1.9066 4 12 0 323.23 5733.75 167.38 1.9066 4 12 0 323.23 5733.75 166.13 1.9163 4 11 0 MIN THIS CENTRE 1.906 Minimum Bishop Factor of Safety this run: 322.60 5733.75 166.75 1.9034 4 11 o TITAN Environmental By -.KG...Date.J..I!2Q....Subject EFN White Mesa Mill Tailings Cover Chkd By PtA-Date~Stability Analysis of Side Slopes ofthe Cover PURPOSE: Page_l_of_2_ Proj No 6111-001 Pseudostatic Slope Stability Analysis of the Side Slopes of the Cover for horizontal acceleration of O.12g The purpose of this calculation brief is to evaluate pseudostatic stability of the side slopes of the cover for the uranium tailings impoundments for a horizontal ground acceleration of 0.12g.The sides ofthe covers are sloped at 5H:IV.From the old drawings as published by UMETCO (section B-B),the side slope for Cell 4 is the tallest.Also,along the southern section ofCell 4,the ground elevation drops rapidly.Hence the side slopes ofthe cover located along the southern side ofCell 4 are assumed to be critical and considered for stability analysis. METHODOLOGY: Pseudostatic slope stability analyses have been performed for the slope geometry as shown in Figure 1.The limit equilibrium slope stability code GSLOPE,developed by MITRE Software Corporation has been used for these analyes.The Bishop's method ofslices has been applied. Geometry and Material Properties Along the southern end of Cell 4,the topography drops at a rate of approximately 5.5%(Figure 2). The material properties as provided by Dames and Moore,1978,have been used for these analyses. The material properties have been listed in Table 1,below. Material Type of Unit weight,y Cohesion,c Angle of No.Material friction,~ (pet)(pst)(degrees) 1 Earthfill 123 0 30 2 Tailings 62.4 0 0 3 Dike 123 0 30 4 Foundation 120 0 28 5 Bedrock 130 10,000 45 Table 1:MaterIal PropertIes The surface of the bedrock has been determined from the bore-logs as supplied by Chen and Associates,1978.But as this bedrock surface almost coincides with that of the foundation, assuming the bedrock layer to be about lOft.below the lowest point ofthe foundation surface,will D:\PROJECTS\6111--001\STABLTY2.DOC TITAN Environmental By ..KG-Date ~Subject EFN White Mesa Mill Tailings Cover Chkd ByA Date.Stability Analysis ofSide Slopes ofthe Cover Page_2_of_2_ ProjNo 6111-001 give conservative results.Thus,for the stability analysis,the surface ofcompetent bedrock has been assumed to be at an elevation of+5540 ft.above mean sea level (MSL). Factor of Safety and Horizontal Acceleration required for analysis: A factor of safety of 1.0 is acceptable for pseudostatic.Pseudostatic slope stability analysis has been performed for a maximum seismic coefficient of 0.12g as recommended by the Lawrence Livermore National Laboratory. RESULTS: Results for Pseudostatic case:For pseudostatic analysis,the maximum Factor of Safety calculated is 1.778 (>1.0)for a ground acceleration of 0.12g. Hence the side slopes are stable. REFERENCE: a)Chen and Associates,Inc.,1978.Soil Property Study,Earth Lined Tailings Retention Cells, White Mesa Uranium Project,Blanding,Utah. b)Dames and Moore,1978.Site Selection and Design Study -Tailing Retention and Mill Facilities,White Mesa Uranium Project,January 17,1978. c)Report by "Lawrence Livermore Natioal Laboratory" d)"GSLOPE Limit Equilibrium Slope Stability Analysis",Mitre Software Corporation, Alberta,Canada 0:\PROJECTS\6111~OOI\STABLTY2.DOC Material unit me Phi Piezo Ru Titan Environmental -Bozeman pef psf deg Surf.611L001 Earthfill 123 0 30 0 0 EFN White Mesa Slope StabilityTailings62.4 0 0 0 0 Dike 123 0 30 0 0 7/1996 Foundation 120 0 28 0 0 Pseudostatie Analysis Bedrock 130 10000 45 0 0 Seismic coefficient =.12 ground aeeln.=0.12g WHTMESA4.GSL + F =1.778 5600-~~-5600 I I I I I I I I I I 0 100 200 300 400 500 600 700 800 900 DATA FILE NAMIl.....C:\STABLITY\GSLOPIl\•...~MIlSA4.GSL Job ~.~1\\fl\0~itle q",'1" Date' 6111.001 IlFN White Mesa Slope Stability 7/1996 L '.A .L B Pseudostatic Analysis ground accln.=0.12g Max Slice width Set Neg.Normals to zero No.of Materials seismic Acceleration Ilxternal Forces Piezometric Surfaces unit Wt.of Pore Fluid 10 Y 5 .12 o o 62.4 Material Unit wt Cohesion Friction piezo Ru Angle Surface Value #1 -Ilarthfill 123 0 30 0 0 #2 -Tailings 62.4 0 0 0 0 #3 -Dike 123 0 30 0 0 #4 -Foundation 120 0 28 0 0 #5 -Bedrock 130 10000 45 0 0 Surface of Material #1 (Ilarthfill) X-Coord o 310 480 900 Y-Coord 5550.5 5568 5602 5605 Upper Surface of Material #2 X-Coord Y-Coord 0 5550.5 310 5568 390 5568 480 5598 495 5598 500 5596.5 900 5598 Upper Surface of Material #3 (Tailings) (Dike) X-Coord o 310 390 500 620 900 Y-Coord 5550.5 5568 5568 5598 5598 5596.5 5557.5 5560 upper sur~ace ot Mater1al #4 (Founda'-~.-,,) X-Coord Y-Coord 0 5550.5 310 5568 390 5568 5557.5 5560 Upper Surface of Material II 5 (Bedrock) X-Coord o 900 Y-Coord 5540 5540 There are no explicit external forces in the data set. GSLOPE 3.26a LIMIT EQUILIBRIUM SLOPE STABILITY ANALYSIS Licensed by MITRE Software Corporation,Edmonton,Canada for use at:- Titan Environmental -Bozeman MT Results are for Bishop's Modified Method unless otherwise noted. File C:\STABLITY\GSLOPE\WHTMESA4.GSL Output dated 08-28-1996 at 13:09:05 Material Unit Wt Cohesion Friction Piezo Ru Angle Surface Value #1 -Earthfill 123 0 30 0 0 #2 -Tailings 62.4 0 0 0 0 #3 -Dike 123 0 30 0 0 #4 -Foundation 120 0 28 0 0 #5 -Bedrock 130 10000 45 0 0 X-centre Y-centre Radius Factor Iterations Slices M Alpha of Safety Warnings 322.60 5732.50 165.50 1.7777 4 11 0 22.91 5732.50 165.50 1.7778 4 11 0 323.23 5732.50 165.50 1.7804 4 12 0 322.60 5733.13 166.13 1.7777 4 11 0 322.91 5733.13 166.13 1.7801 4 12 0 323.23 5733.13 166.13 1.7804 4 12 0 322.60 5733.75 166.75 1.7776 4 11 0 322.91 5733.75 166.75 1.7801 4 12 0 323.23 5733.75 166.75 1.7804 4 12 0 Minimum Bishop Factor of Safety this run: 322.60 5733.75 166.75 1.7776 4 11 0 TITAN Environmental By KG Date 7/96 Subject --=E=FN--"-,-Wh~=ite=-.o.;M=e=s=a-"-,M=i=Il-,T=aI=·I=in",,,g=s--,,C=o,-,-v=er,---_ Chkd By__Date___Stability Analysis ofSide Slopes ofthe Cover FIGURES Page__of__ Proj No 6104-001 t .....,.....\',_. "",.....1 ....I 0 0 0 Q 0 (}'0()<;)ty}II:)t})N I -.r 5500 - eta 0),S.(.US), j I1f S-7 -32 <r C;Y'-:;-G -~~~~ ALON CELL-:1 :DIKE ,It I'l 0 F BEDI(oCl< I _''SS2D-,f't":bA-Y£R'·#ssulJrn \J ,:POR'ANALYSiS -:'.. ;iI i I SLOPE $TA 13 fL tTY l\NALY $IS (SECTION B-B By UM}f-TC.O)",-- TI=-~+~c 5"'2.0'",. ------------ .-..:'.'"'--~\;:"'-,;.--.-':'"....' ---f-"\,--.1)j',"\CA,v v .'_.,.. ) 5575.2+ +5609.2 \'--'( \W.L.5606.8 )'------..,//'~//~./~/ !"\....,/ TITAN Environmental By KG Date.7/96 Subject ---==E=P.::-N,-Wh-,-,-==it",-e=M=e=sa=.cM=il=1~T=ai=li=noOgs,,-=C=ov-,-,e=r _ Chkd By__Date___Stability Analysis of Side Slopes ofthe Cover APPENDIX Page__of__ Proj No 6104-00 I I $I ,:chen and associates,inc. CONSULTING ENGINEERS I rotL t fOOtaMiJOtI ~S.ZUNI DENVER.COLORADO 10223 JaJI74+7105 [NGINEERING 1~'(EAST ARST STREET •CASPER.WYOMING .2S01 .Ja712J.4-212fISECTION2 I Extracted Data From SOIL PROPERTY STUDY I EARTH LINED TAILINGS RETENTION CELLS WHITE MESA URANIUM PROJECT BLANDING,UTAH I I I I I j Ii1 II Prepared for: Et~ERGY FUELS NUCLEAR,INC. PARK CENTRAL 1515 ARAPAHOE STREET DENVER,COLORADO 80202 Job No.16,406 July 18,1978 f=u. :~~H:.... ...:z::::t ::::~......«.~S-> ::::~ :::~ "*i~ i .............._;~___••_•••_••_••••••_-1 _•••••• I...I.I ..1::: "I ..! ·:::::I'::::::::l'::::::·:j:':::::::::':::::::·l'·:::::::}'::::::::I';:::::::J::::::j:::;.':1 '":1>............................................................',.......!. . , "i." : .i•••;:::::::••,,:::":;".":;;1';:::::I...,;:"::::BOio ~:: ::;Ii":~:,ii;:.::!"';'i~,.~L~S.61lliJJill'::.:.::~:~S:607.: : :..: : .tI.:-S60 ::.:.:.El'jSlil2:~r~··-S61~: :I'~'::~~:~~9)~:.:.~.:..:!~i ..S60A."·~··_·f··:l..,m~.i ...I .:1<•••••••••/11/•••·.....I>!I J:.II J d illiliililillJJ I ITO ill,··I!·.'..~....·-·..·..---··t·-·-..···-:-:-8~~::,=j...,-...:::'-:-+':.::::..:I:::':::':I::.~i;::.:::'I::::::.:/-::-:....:·_·:-~~··_·__·-:..·~~·:-..·i·~..·-·_···-_.j.......-..............m~ ..I ..•.••..••1......... ......." ,..,.......l;we...J......,....;. . .i. '1 :.::.::..:::::::':I:::::;:.:,;:::i .:::::i :i :::':.::::;::i ;II ;.::~~rn >..}::::.:;i:'.:!.'.,!. ::. .-200":53.........I.................,...1......I ••, • •..,..i ..,,. .... : I ,'...'.i ....... . . .....I .-~OQ".s~...PI-1'"..,../......,..,i I·:::;:;:::::;:::::.I~;~~;:I::::::::;;::::J .:..;;::I .i.::J.,.!' ..I ~'",~:::::......·1 · I ..I I _...··_..···_·~r ..:·...:..~_..~...._-:··.:..:ft·~ob ;;;:..'::;;::'+~:r:+;;-~+:.:~:::::I:;:.;;;':I :~~':::.:r~';..WC~ii.r::~..~:~·I ..-··~·_·..~i!:-..·..-·-_...._· !..i .::.Jd •"'''::::•::::::::::.,:::::::.:..:.:.::::::::'j:::'::,:I'.;'20o-'6r : : : : : : . :i ..:.:..'-200-73· -----J.--L •••i.-F.,••••·:••••••.••••••'•••••••••1•••••••••1••••••.•:.1--••-.1/rt •••••H------i~~J ...I·::....·1.................·1 ........./I.....~1 . ......J ......I"..i lIb-a.l·... .......................:-=.--~\;d+~~~~~:::.':::::I :~::::~~:~::.:~J :::::.::'·_:~-~~-·-4 :"~.;~~..: :__:..~.~:::1::':..pr~POslld.cell.aouom.····I ·I ,I J ....I'"I· I /·1..·'··1···1 ·1.......,..·1·,I ..·'.'" =~~~~~~:~~=~~~~~~~ ..::I::::::..I .....:.::i:::::.::.i:::::::::.!:::::::::I:::::::::!::::.:::...!....... .FIGURe 2 .:i,::::'.i.::::::',:::::::::::::.!..LOGS OF EXPLORATORY BORINGS:. , ...(CHEN.&ASSOCIATESJ . WHITE MESA PROJECT ····5585.. .........-5~ ·······-·-5605· ········-56·1~ ....·559<r· .........-56+5- """1-. UJ. UJ.u;;·····56M-·.........,. z·0: I-«....>..-579 UJ.....I. UJ' i...'","··,t 5570- ...551S·':':· .~6<ie..:- ~:::I:::::::::I::::: .::i:::::::::!::::::::T ::. "'56& \:::::T:;;:.::<\<:.,:::\>::l:«::J:::::<!':::::<:ti:::T:}:::::::::I:.:::::::i'::::::':jI ::::1',,:i '. ::lfoldli 'l .::Ii~l.:i:.....Iidl.:ij:'::::'lIoi~:14:::·:::lioi.:b::::.::::liol:':i,:::::Boi~:l~::':::::i1':i8:·::'I'aO~~:i~'"'"::i!oi :20.i,. I .,•.....•..••..',...,•...•.••.••....••..••.•..•..•I ..•I.,•.•..I ....46i~,£1.1"5529:L .~~.-~~~:..::.~~-l-.5610 .....:~~~~~9~::::::~l~~S~8:::::::It~~-~~~~::':.~~~~58~:_:: . ::~~rS~90..:.!::::.S.~~~~~..U·~I~78..'_..'..1. : : .i~..1.........1 ·..,·1 ··\1 ::I:'C::·..'::.'::.:::::'::':::1 :.:::::.:·..:·:::1 :·:·:::':.':',:,'"..I .'.I . ...'....\,·1 ·..·1..I"I' ._._j ---J.-.-~~--.:-:~~-~~-------:.-L---j---~.L--+_C--+--------i~--j-.----I-.-----,-------H";.c . i ,I L200-.8..."tlie-rJ..\.,....·1 ....I... .1 ....,'... .i ......I','I IV.~~3:.::.: :~~~o-:8E:::.'.:::..:.::.'.:::"':I.::::::...:.......;...:..I'"I'. : ..,..!':...:I l~~~~:::.:~I.LL:39 :::::±.:.:.:.:::::.:..:.:..:I : : . : :..: :,..:.:.. I :.:...i ..I. I 'I .........•1.I.:Pl.U . . . ....,...,..., ...,.,'I •• "•••••~.••••••••••;::.•••••••,••••••,.••••••••• ••••••••••••••..,••••••••••••.,••••• •••••I I............................-..J.-"......L -'-'---'~..,--_.--L---J---..:.L.------L ..--.-""..-.(--..----1".--.-..-: ...i·..:.·'·:~:::::..1<:::::::::::::::::::~:..::'.:::.:::::..:.:..'.'::::::::.:..:...:1.:..I .i ."'j''j'"·..1··..1·"'''1''",j ·1.':..::::::::">:i J..C ii.3::::.;:::::::::.:'::.':::'.::::::.::::::::''':.::I'..T .!:.:.. . ,....I ..•. I "'2rO-89'...._~OO-6S-·······. . .....,"....,.··1 ...I :...:.~.:.~.i..-:-:.:.~.-!-:..:....-:"'U,40:::.:..:.-:-!:~:8':::.~..:..:..::..1 :..:..:.:..-:.-:-~•.:.;._:••:..:-..-~-.:-,1-.-:.:.~..:..:..~.---"-,.-'.!:_.-:-.:--:.;_'~"""':":"~»~.s...:..: lie-~4'.0"i . . .I . . , . . . , . ...l'l H . . .... ,j.........I.....\...'.,..I' --:>~~~r----~---•••1•••••••.••.•••'•.••••••••••.•1•••iii ii.1 i••iii.i•••••••••••••••••••••i •••••iI••••.••••i ~.-.4--.+•••~ .:".:i".':::::..::::::J:::::::::::::::::::::::::::::::::::::i'::::::::::··4....::::::::::::::::I:::::::::I:::::::::::::::~I . .... .,... . ...I 1:.1.1:....... . . . .....,,- I ,Proposed'fill Bolfum':::::::::::::::::::::::.::::••'::...:::::. .Z~O-S?::::1 • : : •::::::.::.:I ::i . : : . , , : : : : : :~ -------,---T-~:r ::::::-:.-i •••::•r'~:~:::::~:~::;'::::I::::-:.-..r':·":~:i-:'-:-:-"~-~-'.::::::ti .:1 1 1 ·1 ·1 J !··u I · "I·,.....1 · '·,·..I .,."I .., ," ,·\::·1 ·i·.. ___...-~----0--<~:t~<hkJldb~-+-----Hi~ .T:::::::l::::::::l:::.:':l::-:'::i.:.:I:."'.1 :.::.,'.. . .I....1 ......,.........1·I ......I'.'.",.'., :Ii:! . ....:i !.LOGS OF EXPLORATORY BORINGS' ..............."(CHEN&.ASSOClAT.ESl WHITE MESA PROJECT. ··....:s-soo- .......:S5.~S- -·....-55?~.. .:...:....:~.. ,.... i-' W'w"1.1;;'-559&.....,..., ZOo,,"0:"":' i-:.«.. "'>'''-5-58S-w..J..w ' ~5-15-'''' '-557l>--- 0$597--'" -5567--' ..·5600--" '''5~~ .'z.:::0 ::::;:::.....""5~e5->:::::w........I ::::::~ ::':P...UJ......UJ:-5~~ ·....~S·75- ···..·..."8&- ~.r-UJ::UJ ..u;;"-?~ge.......... z·0:::....c(.. ·->·-55850- UJ : :...J .. U!: : "--"'-'?~9so·-J·-·....·..·······..········..·..··!·..·.. .:::..I...:.:"::::>lli-'::::':T:<:::::I:::::::T :>::>~'::::::::~I:::::>::<:~:::<><1<:::·:1·::::'::ji::::..:::!.:.:.:::: . :.::1'80i~:il:.: :::Hol.2:'.::"::801..:2:3::::~::ilcii':2 :::::::aOi.:is:::::::::!k>i~:~:::::::80i.#: ::::::::B~l~:28 :I:::::::H~i :29:·::::Bi':3Q::..::::;:1"""'0:::..::8l''''s::::..:£t.""":;::;8l'"'';:::::<1.,"": : ::::",,,,,,;::::::"'"on:::;:::::t'':'ll'":::::"";'73:.: :"L",. , .=J T 1-.....I_m1jj2 .........:::.:::::::::::I~-.::~:-~':'-:-:-:T'7'~~O:-:-:- -,,00-~ .---..-_...."i"-I~:--:l-:--::--:--:"'---l-,,-:.I'. '.. ...,..1 .........I ........I..·..·......".........1 ......"'''''1 i.....I:..:.'..:::-:::1>::::::'':'..::::':::.'.:::.':::::.1:.::::..:::::::::,'...., i I.,..............I IIC-13 ::1'I "I ..I ....I'.,. :::I ...:::::::::::::::::::::::l ~t9~;:7::.::::::::::::::::I:::::::::::::::::I >.::::::i ....:I ::: :.:i::. .:::I .:.~.::::::::::::.:::::::::::::::::~~:~:::::v.j :::::::::~::::;:::::::::::::::::::::.I.:::::I ::::.:····1 fl.·········1·l/......·1·,.....:...:::.~*::;~/•••••••••:.,y\~I;~~.+,\-----1-----, ......1..........·1·. .n.1Q......I ·1 I .:::I:::::::::::::::::::::::::::.::::::::!:::..:.::::::::::::::::::::::::::I'::::::::I: ::!............................... ..........................'1".........................,.......! ••,••••••••••••••••••••••••••••••••••••••.••••••I ••••••••••••••••••••••••.••••.••...•I·..I",I·,....:......! ....--------:-7:-'1::::..::.:::.::::::::::::::.:::::1::'::::~.:::::::1:::::::::1 ..··::.:I-:":~'-'",.\:,"'1""I \~'~". !«i,i <•<ii'1~:b7i '~~;;,.~.-....1......:.:..:......._.....,-.__.__._:.....-.-;...-------r.._....··..·.._---·_..J.·-....-·_-----1'.'--'-"'--.,....-....-·....fl..~;._'ll~lq.._....!P~~i..··:'.::-'.:j'.::j.':::'J:::"::1"';::"::"":':l ..:'::!:::I· I ::I .:...I'·..·::•,.1·..··'.···1 ..,.......,../., . I . . . . ....I:.:..::::I..:.:..:i ~Pr9posad Call.~OtlOm.'. , .1 . . . . . .• ..'".'....••.•. ,, .\ .'!·,.!. ·I... · I . FIGURE" LOGS OF EXPLORATORY BORINGS ............_..........__.._,_.................._._..".._....__...CCHEN &.ASSOClATES). . . . . : . . : : ::. . . . : ::: .. . . .WHITE MESA PROJECT .:I· :'1 5565 ......·..-~~·7()· ~.. . ... .. 00--'...,.". ....z::::::~ -55*--;:::.."::::w.....J..·w....,... .:.".....:::::t: ~.~~- ...,. .,. -5615--- iI i ..!.'"1'''..···1·"..'''I /,..........,...,..,,..I·······,·.,:.':::,::::::::::::I::·::::::::::::::::::::::::...,,"". ·:1i~1~1 ::::::::>~:33:::::<i1oi~:3:71::::::1i';1~1 3S::::::::1i~1.:39:: ·tl..-S6 t loI"S5!l2..'."l:.l.'!'5SB:3 ."E:lo.-ps t1~·30001.. "'X:':::::::.'::':::U:iTiY::::'.:i :.:T:::(:.T:~'!!!:T::.,.~,\p .....:::.....::::::::::::::::::::::::::::::::::::::::::::: ::::::::: "'''--''1-':--:-''-:-'':'''-'.,,;-I'..":""'-..'-:-'i"~"':-:-:-:"':-:'-:-"\''':-:--'':'-:-:-:-',.-:-:--:-:--:-:.-:-.,-;---:-":-:-:-:-..".....-.-......_-·1 ::::::.:::::::::I::::::::.:::::::::::::::::::::::::::::::::::: I ·....,.·.,,. . .._.•._--,.'-'- .......i·..··\..,. \................I ... :::::::::::::::::::::::;,I::::::::.:.,':.;..",...Hole.4 '.,..,..Bole .41,. ...,I,·Hol.·42 ",80l.o.'3 ., .'''1 .561 .,.,....,'.·600'"...I'''1',560~,I...."1 ."~'".•••1:0 ••-••••••"'.L,.~,)•..••..•.....-2.....•"'"•.~"""'~"'4. .........,•.·••••·.i ••••••·.·.I ••••·•••r••••.••[. ........·1 ..·..·..·, ..···1..·."1'..·..'U··"..·.........',....... j~7~~~I·~~~..:..~7..:·":..I..:·~.."·:,,:..-:..:·":..·r:··:-.."·:~..:..:..!:"".":,,.~,,:...:~..,.,~........I..·..·...j·..·1...j..................".....J .....! I I ·IF L .J 't....""'"''-::r'''·....~·:~I··..~":·"0:J-·~:::-:··::::::::::I::~':.::I::::::~:"~:::.:::":~:0"0":'~":::::-'.::""1'"'j'" ._.J ~:_.••iH+••••I I~:lb-++r-P-t ••_.•r'-~.-~-t•••..•,. -----,--•••1.:__••·•••+4-••-.••••••••I••••••••r .....d'+c.fb-+-P:---I--cci~ccc"~h;E ..I-.....-_.-...if"''"....-.---._.....--..·1·-..-..1 ...-.-..-I ....1 .....···1·- ,Ii..i'". : : :I ' ::::..':::.:::::I:...,:!...:LOGS ·OF EXPLORATORY BORINGS:' ....1..: :"""..:...~.........."..".......CCHEN.&ASSOCIATES).. f •,i .i WHITE MESA PROJECT5570 ······556$·.. "::'''558tl'' ···",,·-*to- .....-."?{,OO.......... "-"":-'~M . ·...._·-·S·5·75.. ..,.,.I 'H~it :31 : : : : : :.: :ItLioS6r4: ""~.-:-1-:--..-..-.. z·.0::. i=:<...>-5'$~ W ..JW· ,.... i;j. w··lJ;;--.H9"""..... .5590:-:-:- .,. . : : : : : :Eo-....u........u. ~~~ . i .'~i.".1....'"i"••••••,.Ll .•.,.d-U.,{H.L;i,Li •••••1.....;1 i ••,.,.J...,t ;i •.1 ...:::.:!':9:~..:..':.:..•.:....Xl.'!'5:91.i:1.'!s:sB9 ..1 !l.'!'SSS:S u.5S9:8:.•..J.:tl.-:S~OI ..''':..£1.-)90 W·~55S~..:...:..:..:::.~:~.9.:.tq-:m5 ..:_":".:..!e.s...:... ...j ,iJilJJ ·.1 ·l ····1·,..I ..L:·..__-..__....-:--.-.··:-:-~r--:-~-~'":_-;-:-:---._-.-~.._.-:'_-r:?~r:- ..::::::::::::::I:::::::::I:::::::::I ~~'.:::::::::::::::::::::::::I::::::.i.I' .....••.•••.......•••..••••.•..••.I i"t 9·········1 ..·..· .i...........,.....I..·····+Pr+--+~,,'f!••••j.•--••..•~---+•pH-F-~.+--~--.;.... ::.:::::::::::::. :::::::::::::::::':::..:::::::.i::::::::::::::::I::..:::::.:':.n.'~;r -200-79"........l 'ill--I·,'1'"'"..,"..,...,"I . . . . .I·......·1·..c~·.:LL~i~..:..~..~....._~..~_~~+>:::::_::::::::::::~.::::::;~:.;~:::',:-~,O~5~::::.;:::::::f~-:.~~!::..:......:.._+.~~..:..:-_.._:_.;',....:...:..:...:..:_. El .~.......'..'I loIC..~.;1"'.I ..,..,F '.1'I .5,, ..r .I ..;;.I . ...*.1 .:I ..'..::::J .~2~~tj ~:.:..::::::.:I ..: : : : : : :I::: :.:I:::::.:.:.:.::.::II':.I ..:...' : . :I .:..:2....,....j>i~'·r l .... ...Proposed'C."aouam !I 'I·,I.······1 '"..!I ::I::·:····,..:·:::::i:::·::::::.:.:::..i:::::>::i:::·::::·!::"·.;..\:,.'.....;......i FIGURe tS .:!.:........!LOGS OF EXPLORATORY BORINGS' .......................(CHEN .&.ASSOCIATES).. WHITE MESA PROJECT '-'-?~95-' ····_·-5SH· '"'~. UJ. UJl;5':-'S58 .~~. ·..·····~~~S·· ··....S5~()· :···:-:··ss~.. z·'0:,..,.«."'>--5seo-UJ:. ..J ... UJ: Soo-- i '.10"••;..••0...1....TL.i ••.,;"';;I L;.1L"I•••U.l.·.....,1 10 ,i ••••1....,.1.•...,.1.,.... £1.:-SSSO '1 ::~£1~-3S~: : : : :!1 -3:511:. ::::!l~-:5S7I::::::£l~-:S~88:: : : : : :IU.:-S511.:::::U~;'5S6:B ::::::.:0 ';'S560:...i:£1~-SS79 .!::..:U.:-Sf82 :'." . .:::.·-r-:·---.1·-••··•'·'..••...•..•..•..:[.···•··•C ••.•!:•••••••.,~•••.••••..•••••i··'-r-·.--......'1'......---.r ....-·_·--·-·r--5596- I'.:·..1 ··..1··I..·..· /''1''''''-:--:~--~-i--.c--l-f-£+·•••.••__:::--••••J :••±--~-:Li ••--4---{c~:I-~~-+-C.--H5,T- .. I ..;.I ..,I...T:·..·1..... ...I..·I....!...:.I !.:~~b:-'"L,.:,.+••.--lH.:.4 ••••-..••~~;;~.':.k-••4••7!-~------;~~:-+~---_.'J_....._ .J u·r~\.-200"'11 ·1·········.·1·"8"'j".I····lIe"rx 6"P~.":::.I:;t:~~~:::::::'::'::.:;:T:<T:<<>:.:;:':Y:<:;:T:::::>:<:..::~:.:::-:I.:.1t~:~~:'....... ...1 +..__...____..__..,----.-------..-------..---.......-.--r--.------.._~~H_"~Hr.r- _:~?:TI'TT ........./1-:•••••••••.........="illM.'~,._._.•.~.-! ----rEi':.~I ..m..·..r·..,·1 ~ . .:: :.::::::..:-::::::..::::::::::::::::::::::::::::::::....:::::::::::::::::::::::::::::::::I:::::::::-::::::~ LOPOSGd :.....:..: . . ...'"..,::::::::::::::::::::::::.:::::::",.:::::::::::.:::::::::: : :I::::l:.::..:...::::::;: .---..--...-..~g!!I1_.~.~~.!!!•.!....._.::::t..::::::::...:::I ::::: : ::::::::::::,-:: : : : : : : .'11l1': : : :::: : : : : : : :i":::.:: :.1·-~~-"":"·:~1-·---.--'.-~~-.'5-S~8 '.::::'::'1 ..::i<::iT:::::::~:;:::::::<:>:::::::::::~.:::::~::}:::::::-:l::·.·..I'.,.":.::~ ..·1 I 1 I 1·..···/I '..----.--.----.~-~.~-~-~~~;E:::::I:::::::::I::::::::'l:':::::::,:~~.I .:.~~r'·.-::-------~..'--'-"---'::~~~~...: . .I . .I.. ...'.......'j'..,..I '-200-7~.. --:1··---1 •••----I·.··.-1=-.-r-;---~·-f-~~--,:__~~1~_+-....-..--!.•...••.~..;~ cc-+__~--••+.--••1••••••---4-+••H-+:B-+--~••b+-+-----r--,-----..--L,>~ ..i .. .I . . .i . . . . . . . . . . . . ...-........!.....!...:..FIGURe 7 . ..i .i::...i:::;:::::.:::::::.:i:::::::::/..::::.::i::····.....'L'O'GS 'O'F EX'·PL·ORATOR·Y BOR'/NGS':::.,.{.!..........., .!...I'I ........:..L _~..:.~_:.___..i__..:..~..._.._._"•••_..l._.__:..:___::___..._.......-.............(CHEN..&.ASSOClATESJ.. ..i i ;,:i :.::::..."::::..:::I : : : :.•::::: .. .WHITE MESA PROJECT '''S555'' ......·......~S50 ...:.":"':'S:~~' ..-._~~ ·-"·5~6e... ......-..·..HSo- ....-..~~.;.s- .....t-'-.W: W..~·-.-,.S'·1.........,.... z·o~.. ·>--5-S65-w-I.w· ..•..._~ ····--S5-1G- ,.:»6~: : : : : :u ......':" ......:; ..:::::<: :::::::~ ':...m~....::iJ i::". .::::::f.......~ ·.---":":"':'..1.•5569 .~ . i,i I, , I,..... t-"W. W'LL;'-S5.....,..... z0: t-"'«'>-5w-J ...W:' ···--5S& "5~ ......·S550-· ....-S54;- ·•..·-·..·S540 12-incb,a approximltely 40-50%Silt, FIGURE 9 LOGS OF EXPLORATORY BORINGS {CHEN &ASSOCIATESL .. WHITE MESA PROJECT Slndltone bedrock,veil eemented vith depth,fin.to .edium grained,tan to gray. Clayetone-Iandltone bedrock,ligbtly ce.ented.rougbly atratified,fine to mediua grained,Ireenilh Iray. Clayltone,bedrock,Ilightly moilt,greenilh gray. Clay (CL),highly calcareoul,landy to lilty,spproximately 50-75%lov plalticity finel,Icattered very hard leCl.l/layer,dry to Ilightly moilt, light tan to vhite. lI..thered clayltone (CL-CB),approximately 90%medium to high plasticity fin..,.oilt,·gray-brown. Clay,lilty to landy lilt (CL-HL),approximately 60-75%lov to non-plastic fin..,fine to medium land liu,llightly to moderattly celcareoul vith depth,Ilightly aolat,light brovn• Silt (MI.),sandy,approximately 60-70%lilt,fine to .edium land aize, Ilightly calcareoul vith depth,Ilightly moist to moilt,reddilh brove to light brown. Sand,lilty to satldy lilt (SM-MI..),Une to medium grained.spproximately 50-60%lilt,alightly aoilt to aoilt,reddilh brown. Sand (SM),lilty,fine to .edium Irained. Ilightly moilt to moilt,reddilh brove. !:i·!, .I ..r· ••.•..•.__.•.l...• I! 1.:.::.:·.'1'::..::·:·::::::;::·.;::>iIT:::::::I<:.:::l:::'<::::::::::1':<:::::1:':::'>1\'::::::11:>.IIio'la :74'.::B~i':7.S:::::::::::~::::::::::::::::I:::::::::I:::::::::::::::::::::::::::I:::::::::::::::.::.::::' ·n.-.m9:'l');1'':5560'·1·········L·····3···· .,____. ._.-S5ll-.2:_.----f ~ ...(...~~~tz~:::::::.::::::~::::::::;I ::::::: : : .:::~u..I...I ,..2bo.,9::l.. . ....>..!.:.:..:...J...:..-~~F~:::.LL...:::Tj.ilUJl:::.lLi..:::.i.1LlJ ~ I"!'......·........1........· ·..·..·..1···' !:'.::.\:::::::.::::::::::I ::::::::::::::::::!::::i [:J '''j l ..·..... , /.. ..........._:_~..L..""''':-~-'-r'::'..=~::.5~~:::I~::..~~i..~::::':::::L~~~I ..:....1 II Pl 1 ::\::::::::':::::::::::'::::::G<::::}::>~..I··ldddg l ~ ______1-.·-i--•••••••••.•.•••1••••••••-•••••••••i•••••;'~:"~'b",'."'Q,l,. ...!:::::::::c::::::::::::::I::::::::J:::'(1)Test hol..vert drilling on H.ly 17 and 18,1978 vith......:---:-:-.r:--..-.--:--.-.-..,....~....I..-:-.-.-.-.-.I ..,..,.-:j-:-:--:--:dngle-flight,pover augar • : : I : : : : : ::::.:':::::,::::'::::I:::::::::'::::(2)thvationl art approximate and taken fro.contours Ihove on Fig.1...,'j""I'.........·1·...(3)No fru vater VII found in tilt hol..at the time of dr1ll1ng. ::::I:::::::::::::::::: :::::.:::I:::::::::I::::(4)lie·lIater ConUnt (%);.:.i .:::: :,:..::::::::::::.::I:::::::::I::::-200 •Percent PUling No.200 Sine; ....I I / I I . . . .LL •Liquid Liait (%);"'-:-~"-:-·i."""~-:-":"·:--"""""~"'1-:--.-.-.~"-:-:--':"'l.'"~-.-.-.~'-:-:-':--7'['-'-'.-.-.-.-.;-:-~-:-PI •Pluticity Index (%). I .:':':"I.:.::..:.I::::::::::.::::::::I:.:.NP •Non-Plutic. !I .:........:.....j .....",......,, ....._..._....-.............................:..l..:.·..:~..~:.~LL..~.~.~.~.~L..l~..:..~..::..~..:..j ...~..:_:..~..:...·_:_:..~...I.:...:...~~..:...:~~L.:..~:....._......:. ..1:....:1::::·::::1:·::·::·:,....·:\"''1: . . . . i . ..........·.......·--·-T II i! zo ~.<:>.. W..J .. W '"'.r"-.w.w ..~--554........,. :~.sS~ .---5~ ··":":"·~Y.5 ··..:..~55-~.. SECTION 4 Extracted Data From REPORT SITE SELECTION AND DESIGN STUDY TAILING RET£::.;rlON AND MILL FACILITIES WHITE XESA URANIUM PROJECT BLANDING,UTA~1 FOR E~tRGY FUELS NUCLEAR,INC. Dam~s and Moore January 17,1978 09973-015-14 I I I I I I I I I I I I t I -25- 3.8"'St~bTlTfy'-~~". 3.8.1 Sl{)pe Stabili-ty ..··-- The 'external dikes formed by cover placement OhCe1l2'wilr 'bi-exTended t.()a reclaimed slope of 5(H)to1(V)butmay-exist"un'an'''rnlenm-fjasTs as.~~.L to.-l·(V}s-lup-es"unffr'finar"-recTa'-maIrori:"-"A'sraDTrrty~'-an-alysis was_~e-r·f{)rme-d-uslng··thej\H)··..to-itV1--slopes...-rhe--rnax.:Hnum--section 'of the ~.:H+--tr<1Vea 15 -fOOf\;ri'de--ber-m...at--i.:t-s-·ba:se.The soil strength parameters used in the analysis are those developed by Dames &Moore (1978a)and are as follows: Soil Parameters for Slope Stability Analysis Density C Section (Pcf)(Degrees)ill.fl Embankment 123 30 0 Tail ings 62.4 0 0 Foundation Soil s 120 28 0 Bedrock 130 45 10,000 BORING NO. EL.5629.0 FT. BORING NO.5 EL.5632.9 FT. o -----r.""""-,."S""'M..,..,r-RE-D-_-B-RO-W-N-F-I-N-E-S-A-NO-A-NO-S-IL-T-.- ML MtDIUH DENSE HOLE COMPLETED 9/10/77 NO GROUND WATER ENCOUNTERED GRE£.'I TO BROWN.FI:;c.;-GRAINED S.\.'Io- STONE:LAYERED ItEDIUft TO WELL CE-M£.'lTED WITH LITTLE POORLY CE.~ENTED RED-BROWN FIIlE SAND AND SILT.MEDIUH DENSE GRADING CALCAREOUS WITH CAL-CITE STRINGERS ~OS ,.SM/ ML 20------ ...wwlL=10 :l:.."-w0 15 CRAor:-rc CALCAREOUS ;.,rTH C;L- CITE STRINGERS LIGHT BROWN.SILTY CLAY.1iA....(WEATHERED CLAYG1UNE) MEDIUM BROWN.VERY FINE-GRAINEOSANDSTONE;INTERLAYERED WELL-C~~ED AND THIN.PooRLY-CE.'II'.:NTED llANOS HOLE COMPLETED 9/10/77 NO GROU:.ID WATER E:;COU:ITEREn CL SOS 20 75 SO/ ___~r;l~3::'·_L-..1.--"" 20 6.0\-1I8 ... '"'"lL ?;10 :l:..."-'"0 IS BORING NO.2 EL.5634.3 FT. BORING NO.6 EL.5633.5 FT. 20 _ 0 <SM/RED-BROWN FIlIE SAND AND SILT.r MEllIUM DE:4S1: SO/GRADING CALCAREOUS WITH CAL-.5'"CITE STRINGERS5 90/1...s.-,'"'"lL ?;GREEN-BROWN SILTY CLAY (WtATHERED i=CLAYSTONE)•HARD "-•88 '"150 GREENISH-B~~.FINE-GRAINED SANO- STONE;INTERLAYERED WELL CEH."lITEDANDPOORLY-C£''II'.:NTED SANDS o ..'"'"to. ?;5. i="-'"0 IS SM/RED-BROWN FINE SAND AND SILT. ML M£DIl;~1 DENSE GRADES CALCAREOUS WITH CAL- r;l 39 CITE STRINGERS AND OCCASlm' ZONES OF MASSIVE CALCITE CE MtNTATION 6\-108 .~~~1I LIG/lT BROWN TO GREEN CLAY .82 (WEATHERED CLAYSTONE).lIARD ~.CL.'O,'O,'O-I!".I"\!".OFF-WlIITE SANDSTONE,VERY WELL HOLE COMPL~ED 9/18/77 110 GROUND \;ATER ENCOUNTERED BORING NO.4 EL.5623.2 FT. 25-----HOLE COMPLETED'9/10/77 NO GROUND WATER ENCOUNTERED A-a •~ DC lSI C KEY INDICATES DEPTH AT WHICH U~~ISTURBED SAMPLE WAS EX-TRACTED USING DAMES ,MOORE SAMPlER INDICATES DEPTH AT WHICH DISTURBED SAMPLE WAS EXTRACTED USING DAMES ,HOORE SAMPLER INDICATES SAMPLE ATT£.~T WITH NO RECOVERY INDICATES DEPTH AT WHICH DISTURBED SAMPLE WAS-EXTRACTEDUSINGSTANDARDP£''lETRATION TEST SAMPLER BLOWS/FT OF PENETRATION USI:lC A HO-LB HA.~RDROPPING)0 INCHES INDICATES NC CORE RUN o PERCENT OF CORE RECO'f£RY E RQO· F PER~ILITY MEASURED BY SrNGL£PACKER TEST t~FT/YR B DRY DENSITY EXPRESSED IN LaS/CO FT A FIELD MOISTURE EXPRESSED AS A PERCENTAGE OF THE DRY WEICHT OF SOIL NA NOT APPLICABLE (USED FOR RQD IN CLAYS OR M£CHANICAL~YFRACTUREDZONES) NOTE,ELEVATIONS PROVIDED BY ~'lERCY FUELS NUCLEAR.INC. T I r1 HOLE COMPLETED 9/10/77 ~o GROUND WATER ~~COUNTERED 0 rSM/REO-BROWN FINE SAND A!m SIL1", ML :iEDIUl1 DENSE GRADING CALCAREOUS WITH CAL- CITE STRINGERS .1\-107.70 lUi: 501 sos GRCEN FIIlE-GRAINED SA"nSTO~E;IN TERL.;YERED WELL CEMENTED AlIOlIil2'POORLY-CE:-lENTED BANDS r;ls~/:~ 15-s---"!"- ...wwlL ?; :x:.. "-wa •ROCK QUALITY OESIC~ATION --PERCENTAGE OF'CORE R£COVEP~D !~LENGTHS GREATER THAN •INC~ES LOG OF BORINGS DAMES e.MOORE PI AT!='A-~ BORING NO.3 EL.5634.4 FT. MATCH LINE DRILLING I~DICA1ES UNFRACTUlU:D. iol£:":"CE."ol£l-"'·a:o s.:.scSro:-:E LIGUT GRAY,FI:lE-GRAINED S~~D­ STONE,POQ;u.y CEXE"TE:D IN PARTS HOLE CO/olPLEOCO 9/IV77 IlfttRLAYElU:D £..\....DS OF SANDY.GREEN CLAYSTONE AND PALL:BROWN SANDSTONE L:t;HT BROWN TO PA:J::GRAY.FINE:':'0 ~OICM-GaArNtD SJ~~CSTON£ 85 -r----C~::,f' lJO..,..----j';; 145----- 90 I T I 71 95 15 1 100 110 ...OJOJ... l!;US i=0 0.OJ 1,8Q 120 173 125 ORILLIHG INDICATES GENERALLY WELL-CEMENTED SANDSTONE >lITH MINuR CDNGWMERATE BANes GRADES TUROUGH WHITE SILTS":'O:l£ TO A GREEN CLAYSTONE YELLOW,K£OIUM-GRAINE:D SANDSTONE GROUND WATER LEVEL 56.8 FT 11/4/77 WELL CEtl£NTU> CONGLOMERATE IN LIGHT GRAY,FINE SAND MATRIX FROM 62.4 TO 63 FT RED-BRO~.FINE SAND ~~D SILT. LOOSE GRADING CALCArtEOUS WITH MI~R CALCI~E STRINGERS LICHT TO KZOIUM CR££:~-8ROYiN• MEDIUM TO ~ARSE-GRAINED SAND- STONE LIGHT GRAY./tEDIUI<GRAI:lED.WELL CD~~ED S~NDSTONE WITH O~~GE LIMONITE STAINED BANDS BROWN SILTY CLAY (WEATHERED CLAY- STONE),HARD DARK CRAY.FI~~CaAI~tO.SILTY SANDSTONE WITH YELLOW B~IO*HOSTLY WELL CEKEYrEO ~UT WITH SOMe THIN, SOFT,CLAYE.a;~"DS MATCH LINE .82/10· 70-'-------1''',,'',,1 7.6;-1007.0\-109 .35 50-'------1'~"""'1 0-----r.'!:r.=:-:7~------------Ii!Mr'-1;1 tsllJ !10------lli1! 1m 80~----.Jo~ 20----- 25 85 43,.. 30 98 I 56D 72 I T 35..OJ 2.8OJ... ?:40 :z:..0.OJQ 45 LOG OF BORINGS DAMES &MOO~E PLATE A-4 BORING NO.7 EL.5656.9 FT. BORING NO.8 EL.5668.4 FT. RED-BROWN FI:lE SAND AND SILT, DEliSE GRADING CALCAREOUS WITtI CAL- CITE STRINGERS GRADING TO MASS IVE CALCITE CE:HE:NTATION GRADES TO VERY HARD DARK GRAY,SILTY CLAYSTONE, WU.11lER.EO WITH YEI.LOW-QRA.'IGE IRON STAINING,GE~ERALLY VE:RY DRY GR.EE:l.>U:DlUH TO COARSE GRAINED, wEATHEReO SA~OSTONE •__CLS SO/_a 2~·-_••-. ---....--f-:.-- C>l 37 ::: 10 ............ ?i 15 :r..."-...0 20 E REO HOLE COHPLL~EO 9/13/77 NO GROUIlD WATeR E:NCOUllTEREO ,~~RED-BRO.<N FINE SAND AND SILT, XEDIUlt DEliSE ~O/GRADI:lG CALCAREOUS WITH CALCIT STRING~AND OCCASIONAL ZONES9\-10).11'OF MASSIVE C~~17E C~~~~ATIOS rtf"I 91/ISDS PAW:BROWN,FINE GRAINED,WEATtlE !Sl10·SANDSTONE.GRADING HARDER ;)/DARl(BROWN TO DARl(GRAY,FINE TOflJ~.nEDIu."GRAINED,WEATHERED SA.'IDSTO GRADES HARDER AND TA.'I COLORED I NTERBWDED HARD AI'D VERY HARD~ LIGUT GRAY S;<-,/DSTO..:E 20----- J. ............ ?i 10 :r..."-.... 0 15 REO-BROWN FINE SAIID AND SILT GRAD :NG CALCAREOUS WITH CAL- CITE STRIN~ERS AND SOME ZONES OF MASSIVE CALCITE CE:H£:lTATION LICHT 8~N,FINE GRAINED, WEATHE:RED SAI'DSTONE HOLE COIlPLETED 9/19/77 NO GROUIID WATER ENCOU:lTE~ED DARK GRAY,H£OlUH-GRAINED SANDSTONE. :U:i..,,;-:IV£~¥t,.,ncuv.:"N'T1::i.J OFF-WHITE,MEDIUM-CRAINED SANDSTONE, ~LL C£H£NTEO II FT• SMI ML BORING NO. EL.5677.8 )0----- 25 0 ...ww... : i="-...100 TO HOLE:CaiPLETED 9/19/~7 NO GROUND WATE:R £llCOUNTE:RED 10 FT. BORING NO. EL.5690.9 JSMI RED-BROWN TINE S~NO ANO SILTvMLDENSE 85/GRADING CALCAREOUS WITtI CAL-7\-106 ·10'CITE:STRINGERS GRADING VERY CALCAREOUS ANO VERY DENSE !Sl 84/a' '"70 ,:,:SOS YELLOW TO GREE:l,FIll/;TO HEDIUIi i!!~·:!l GRAINED,WEATtlERED SANDSTONE 'GRADING lIARD,GREEN.IlE:DIUli COArSE-GRAINED SANDSTONE 20----- 0 6. ............. ?i 10 i="-....0 15 GRADI:lG WELL C~~llTED HOLE COliPLETED 9/18/77 NO GROUND WA':'ER ENCOUNTt:RED 15----- 14 FT. BORING NO. EL.5597.5 13 FT. BORING NO. EL.5602.4 0 .............. : i=......0 10 RED·B~1 FINE SAND A.'ID SILT, K£DIUIi DENSE PALE:GREEN,MEDIUM-GRAINED SANDSTONE BECOMES VERY WELL-C£H£NTED HOLE COMPLETED 9/18/77 NO GROUND WATER ENCOUNTERED 0 ).~\-I~5 •<2...5......lL ?i i="-10...0 SMI ML RED-BROWN FIl<E SA.'ID AND 5ILT. XEDIUM DENSE C;RADING CALCAREOUS WITH CAL- C:n:STRI:lGERS LIGK7 GRAY TO OFF-WHITE.HEDIU~ TO COARSE-GRAINED SANDSTONE.VERY WE~L C£.~"'T£O COLOn GRADES TO YELLOW-TAN 15----- HOL£CO~PLETEO 9/18/77 NO CiIDlJ:-lO ~ATER ENCOUNTERED LOG OF BORINGS DA....ES e ....OORE GRAY-BROWI/.:!EDICK GRAINED.MODER- ATELY TO ?OORLY-C£:u:rITED SANDSTONE. HIGHLY FRACTURED BY DISKI~G PERPEll-olCULAR TO CORE AXIS MATCH LINE ~D--;--+--1 .-t85 90 9 FT. RED-BROWN fINE S.\.'<D AND SILT MOTTLED OFF-WHI~·£MD GREL".wEATdLaEO SILTY ~LAYSTO~E OFF-WHITE TO GREE~.CLAYEY. WEATIlERED SANDSTONE BORING NO. EL.5679.3 0 f ~M/ML 82/ •9~'::-:CLS ------ SDS lSl 7810 HOLE CO:~LETED 9/27/77 GROUND WATER L£VEL 99.8 FT.11/4/71 PALE GREEN.MEilIUIi GRAINED.HARD. SILICIFIEil SAl<DSTONL PALE GREElI.SAl<DY CLAYSTONE FROH 101.1 TO 108.2 FT DARK GREE~.MEUIUK GRAINED.CLAn:y SANDSTONE.MODERATELY HARD WITH MINOR IllCLlJSIONS OF ilAR~BRO'I:!,ANGULAR CAA\-C!..-SIZ£O Cil£a:: ... ii[.~l:l~y- 100 89 -'- 1.1 0.3 I -i-----ti .1.~;;.;.L.--' 95 115 100 130 135 125 120 ........III ....•.•.. "105 -:------1 '"I r.:I a.I.... Q I 110 I I I I CRADES dAROER TO CR££~StU~~$TONE OCCASIONAL.THIN.CARBONACEOUS BANDS C::'N'l':NUE GREE~.FINE TO MEDILM-GRAI~ED. WEATHERED,CLAYEY SANDSTONE BI~C~.HIGHLY WEATHLRED.SOFT. LAMINhTED CtAYSTO~I'WITH ORANGI' LIMONITE-STAINED LAYERS MEDIUH BROWN.FINE TO MEDIUM-GRAINED SANDSTONE:VARIES FROM MODERATELY CEH£NTED TO VERY POORLY-CEMENTED MF.DIUH GRAY.rl~VEV SILTSTONF. ~~I~~-uRA!NED SANOSTONE.HOOEaA7£LY CE:l1:IITEO.WITH lRO~STAINING ALO"G HORIZONTAL F~RE BANDED.LIGHT TO MEDIUM GREEN SILT- STONE.CLAYEY AND SOFT IN PART DARA GRAY TO BUCK.HEDIUM GRAIliEIl. WELL C£K£llTt:D.CARBOtIACEO(JS SANDSTONI' WITH SOME SOFT.BLACK.CLAn;y dAl<DS 2.0 I I 1 I T f 15 35 I, I 5S -'1...----1 f I I 20 50 ~40lU.. :: ......60 93 S6 . VERY WELL CE.'lE"TED.LIGHT GRAY TO OFF- WHITE.HEDIUI<-GRAI~EDS.\."DSTONE 65 POORLY-CE.'lE."TED PEBBLE CONG~RAT£ IN BRO~I.S~IDY MATRIX.SDH£UNCEHLNTED SANOY BANOS HODERATELY-CO<EIITED TO POORLY-CEI<£NT£D S~IDSTONE 0.7 70 GRADES WELL C£H£::T£D 80 MATCH LINE LOG OF BORINGS DA"'ES e "'OORE PLATE A-6 BORING NO.12 EL.5648.1 FT. 54/ §ll 6" CIRCU~TION LOST,STILL APPEARS WELL CE:.\iC:~TEO GROU~D WATER ~LVEL 81.3 FT,11/4/77 80 ----r--r'''C,':'I~ I + IGRADINGCALCAREOvSWITHTHIll LAYERS OF VLay CALCAREOGS MATERIAL RZD-SROWN FI~L SA~O AND SILT. DENSE.,f.~~/ t----;Mlj t I. o 88/ 6.2\-104 •C" 90 --'------i':::':':'1 BECOMES LESS CEMENTED SO!tE CIRCULATION REGAINED BUTSTILLLAaCEWATEaLOSSES HOLE CDkPLETED 9/29/77 WELL-CE.~</TEO S""~DSTONE POORLY-C~~NTEDSANDSTONE POORLY-ct::tE:~ED SA.~DSTONE WELL-C~</TED SANDSTONE POORLY-C~iENTED,POSSIBLY CONCLOIF ERATE OR FRACTt:RED SA.~DSTONE HODERA1'ELY-CEMLHTED SANDSTONE POORLY-CE;'!£NTED SANDSTONE WELL-CEKENTED SAlmSTONE HOLE C~~PLETED 9/17/77 ::;:~::t:;!..-:::l :;.-\:':::~:::::.:Ct::::::::U::J t.iSt2S"..FIN.i:.TO MEOIUli-CRA1Nt:U S,\.~DSTONE GRADES WELL CEMENTED R£o-BROWN FINE SAND AND SILT, XEDIUM DE.'lSE CRADING CAI.C.\REOUS WITH CALCITE STRINGERS G 81 l ~~/ •63-----:.-1-::'-::-::-CLS 15----- I I 10.7 I 100 BORING NO.15 EL.5600.7 FT. I ..L lJ5 ll5 125 130 120 ·------'L'~~~~:1 0 ......IU.. 3 r:"-IU 10<> .. ::;105.. 3 i="-~10 BECOH<:,;LLS~CLAYEY;HOST CIRCULATION LOST wELL-CElU:NTEO S,"\NDSTONE,APPAR- ENTLY WITH OCCASIONAL FlW:TUREu ZONES LIGHT BROWN.MED!l!l+-GRAINED SAND- STONE,MODERATEL.Y CEMENTED,GRADING WELL CEMENTED WELL-CEME:~CD S~~DSTONE GREEN AND YELLOW.FlC<L TO MEDIUM CRAINED.~CATH~R£D SANDSTONE GENERALLY MODERATELY-C~~ENTED SAUDSTONE VERY LIGHT d~N TO GRAY,MEDIUM- GRAINED SANJSTONE WITH SOME ORANGE STAINING;MODERATELY TO WELL CEIiENTED AT TOP.BECOKES POOi<~f­ C~'iENTLD AT)5 FT GRE~~.FINE G~I~ED.CLAYEY. ~EA.TKER£O S.ulOS70~t.WI"!!YCLLOW AND RED I~N STAINING I I I I 79.2 I I -I I 100 J 67 J.-I I I I I 1.4 I I I 75 -'--,-----1 I I I 80 I 70 --'-----t 45 I I 0.9 '1 50 I 1 I ,... I 100 55 N)\ I + I 60 I I I I 6S so/GI 2" 15 r I - I 5.1 1'020N.\I T I 25 35 30 r:"-...c ............ :!:40 LOG OF BORINGS DA....ES e.....OORE PI ATE A-7 BORING NO.17 EL.5582.0 FT. NO.16 FT. BORING EL.5597.5 20----- BORING NO.21 EL.5584.5 FT. LAYERED WELL-CEMENTED AND VERYWELL-C£I1£NTED HOLE COMPL£7ED 9/17/77 NO GROUNO WAT~R £.XCOUNTERED RED-BROW..FINE SAND AND SILT GRADING CALCAREOUS WITH CAL- CITE STRINGERS AND INCLUSIONS CJ:U:E~.FINE TO ~IUM-CR..\IUEO SANDSTONE,INIITALLY WEATHERED, GaADING WELL C£.'1EIITED LAYERED POORLY-C£I1ENTED ANDWELL-C£.'I£NTED.POSSIBLY 50/1£CLAY- STONE LAYERS SMI ML 5.5\-105 •76 15----- ....w...... :!: :c>- ::;10 --_....::~=--I·•••••d<> GAAD0:5 DENSE HOLE COMPLETED 9/10/77 .W GROUND WATER ~COlmTERED PALE GREE~TO WHITE.FINE TO COARSE-GRAINED S~~DSTONE.ALTER- NA'I~G WELL-CEMENTED AND POORLY- CE;i£NTED BANDS BECQH£S COiiTINUOUSLY WELL-C£.'1ENT£D RED-BRDON FINE SAND AND SILT. ){EDlUM DENSE GRADING CALCAREOUS wITH CAL- CITE STRINGERS M ML SOS l ..9C/,l' 79 6.3\-104 o >-ww... ::!:10 :c....o.....<> 15 25 5CV :-:-::;. fll 4'-::;.:-: RED-BROWN FINE SAbiD AND SILT GRADING CALCAREOUS WITH CAL- CITE STRINGERS HOLE COMPLETED 9/17/77 NO GROUND WATER ~L~TERED BECOMES WELL-CDiE;iTED RED-BRlY.<N FINE SAND AND SILT, LOOSE TO /1£Dlmt DENSE GRE~,FINE GRAINED,WEATHERED SANDSTONE GREEN CLAY WITH SOI1E GYPSUM CRYSTALS.(WEATHERED CLAYSTONE) STIFF TO VERY STIFF SM/ Ml 'SMI Ml :-:-:=CLS fllS6/6~' BORING NO.22 EL.5585.3 FT. 0------,. 73/ 12.5\-llS.101( 0 >-...w... :!: ~o..10'"<> 15 GREEN,WEATHERED CLAYSTONE WITH O""r<G>;111011 STAINING GRE~SANDSTONE OFF-WHITE.POORLY C£I1£NTED.WEATHERED SANDSTONE WITH LAYERSOFWEATHEREDCLAYSTONE BORING NO.18 EL.5608.5 FT. o --"""f1"""""""'11..SMML /...".-----1 RED-BR~'FINE SAND AND SILT,MCDIUM DENSE 93/GRADING CALCAREOUS WITH CAL- .11'CITE STRINGERS :11111111 sos iii~]~;10 ""H >-ww SO...I:iil S'::!:15 :c....o..w<> '"lS,6~20 BORING NO.20 EL.5570.4 FT. SO/------00'"'-_--_---......_... 30----- 0 >-ww... ::!: ~o..'"<> 10 HOLE COMPLETED 9/17/77NOGROUNDWATERDCOUNTERED RED-BROWN FINE SAND AND SILT. LOOSE TO /1£DIUM DCNSt. LIGHT BROWN.FINE TO H£DIUM-GRAINED SANDSTONE,GRADING WELL-C£M£.'1TED HOLE COMPLETED 9/17(77 NO GROuND WATER ENCOUNTERED >-10'"...... ::!: :c>-o..w 15<> 20 25------ GP.AOES CLAYIER LIGHT BROWN TO OFF-WHITE,SILTY CLAY C~~.FI~~CaftI~EO,~TH~REO .SANDSTONE WITH HIGH CLAY CONT£IIT, POORLY-CEI1£NTED BECOHES WELL-cDi£NT£D HOLE COXPLETED 9/17/77NOGROUIIDWATERENCOUNTERED LOG OF BORINGS DA"'ES e."'OORE PLATE A-a BORING NO.19 EL.5600.3 FT. 93/ 12.4\-92 •U" 943 VERY WELL-CEH£NTEO SANDSTONE VERY POORLY-CEH£NTED SANDSTONE VERY :<ELL-CE!<ENTED SANDSTONE HOLE COMPLETED 9/25/77 BECOMES LESS CEH£NTED AND CLAYEY POORLY-CCiCNTED SANDSTONE WITH OCCASIOllAL BA~;oS OF GRAVEL OR CONGLOMERATE GRADING LESS CE~E~rrED VER¥POORLY-C~'I£NTED SANDSTONE MODERATELY-CE..'I£NTED CLAYSTONE POORLY-CE~"TED SANDSTONE WITHMINORHARDLENSLS HODERATEL¥-CEH£~~EO SANDSTONE GRADES LESS CE..~ENTED APPEARS CU¥EY HODERATELY-CEH£~TED S...."DSTONE HQDERATELY WELL-CEMENTED CDNG~ERATE OR FRl\CTURZD SAtIOSTONE..GaADING BETTER CE..'I£llTED GROUND WATER LEVEL liD FT.11/4/71 85 ------i 120 -----\:;:',:;,,,\ 115 ------t':::~~:1 80 -----C::;p 110 -----k::::;:r 100 -----+::::::;:, 95 -----+::;':::.1 "'lOS------+::;:;:':1 i=....wo ...w'oJ... RED-aROWN FINE SAND AND SILT.MEDIUM DENSE GRADING CALCAREOUS WTIH CALCITE STRINGERS GAAOES VER¥CA'-CAREOUS AND VER¥DENSE GREEN,FINE TO H£DIUH-GRAINED SANDSTONE,~TIlLRED,WITH SOME ORA."GE ...."0 YELLO;;IRON STAINI:lG BECOM£S VERY LOOSE,POSSIBLY:.lITIl VOI.)S BECOMES DEliSE BROWN-YELLO<i,COARSE-GRAINLa SANDSTONE FINE CRAVEL CONCLOH£RATE WITIl CONSID- £RABLE COARSE-GRAINED SAND AND CAL-CAREOUS XATRIX GRAY-GREEN,FINE TO MEDIUM GRAINLD, WEATHERED,CLAYEY SANDSTONE Wlnl ORANGE AND YELLOW IRON STAINIlK: BECOH£S LESS WEATHERED WITH LESSCLAY.PREOOMlli......-rLY GRAY WITIlORANGEIRONS1AININC.MOOERATELYCEMENTEO,MEDIUM GRAINED BROWN TO YELLOW,COARSE-cRAINED SAND- STONE WITH CONSIOERABLE NEAR HORI- ZONTAL FRACTURING ...."0 SOH£ORANGE IRON STAININC.HOOERATELY CEMENTED .[., sos I I 7.0 I I 95/ fJ 9" SO/..&~~" :'\l 10 I 1 I ::.;".::CGL -:,__+-:8_5;:;:::::::,SOS I 8 I I I 20 35 30 10 25 15 45 ...w...Ii. '"40i=....wo 50 55 I J.- 78n WATER RETURN COMPLETELY LOST LICHT GRAY.H£OIUM TO COARSE-GRAINED SANOSTONE:HICHLY FRACTURED ALONG HORIZONTAL BEDDING.CONSIDERABLE LIMONITE STAINING ALONG BEDDINGFRACTURES:HODERATELY CEH£NTEO TO UNCEMENTED.CORE LOSSES ASSUMED DUE TO WASHING AWAY OF UNCEH£NTED ZONES 130----- 60 LIMITED WATER RETURN 80 5.ill1~ 65 70 -----Illlil BECOH£S VERY UNCEH1:llTED,WATER RETURN LOST HOLE LOST AT 72 FT,HOLE 19ADRILLED15FTSOUTHOFHOLE19:NO WATER RETURN OBTAINED:NO S~LING POSSIBLE:HOLE LOGGED FRC~~RI~~:~C PRQCR£SS VERY WELL-CEt1ENTED SANOSTONE (72 FTl MODERATELY-CEMENTED SANDSTONE (73 FTl LOG OF BORINGS PLATE A-9 BORING NO.23 EL.5555.9 FT. BORING NO.27 El.5555.0 FT. RCD-Bk~W~FINE SAND AND SILT. LOOSE TO MEDIUM DENSE GRADING C~CAREOUS WITH CAL- CITE:STRIN~£RS ___...JL5_2-J~~~~~Dl1~g~~G~~~E~DTO ,nilT£o\NO YELLOW t-YELLOW TO LIGHT BROWN.11£DIUM TO W COARSC:-GRAINEO SAND (WEATHERED~SAtlilSTOlIE) ~10 --_.Jl!...-l;:ig;lg.;Z;g;;;~~;;S:<:;;O;;:S3Cl~~~H~JU:~H~~y~~~DCLAY t mmm OFF-WHITE TO ¥ELLOW BROWN*~Dtu~~69/mmm ~N~~i:~-C~ci·w~R~~~~~EOtSll0~'';,;;,,"• 15-----1 HOLE COMPLL~ED 9/10/77 NO GROUND WATER El/COUNTERED a£O-9RO~FINE s~~o AND SIL'. LOOSE TO MEDIU:~Dt='SE GRADING C.\LCA!l.tOUS "'lTH CALCITE S7RIlIGERS Ca.::!:;ISH.FLa.:-:0 :-!£:>ri.i;';-Ga.;I~E:> S~:DS70NZ,Vr:RY "'ELL-Ct.'l£lITED HOL£COMPLET=D 9/17/77 lIO GROUND WATER E~CDUNTERED 10 BORING NO.29 EL.5655.0 FT.(APPROXJ 20------ GRADES HEDleH OE;;SE HOLE COMPLETED 9/3J/77 lIO GROUND WATER £;;COUNTEREO RED-BROWN FINE SA;;O AND SILT, lo'll:7E TO SLIGHTLY To\,"SANDSTONE BECOMES WELL-Ce....C:lTEO :':::5E SM/it MLII. 10 i:0-IUQ t-IU..... ?i :'IGIlT BRQ;m,FItIE TO K£DIUIl GRAINED, ~£LL-cD~lTEDSANDSTONE ;101.:::Co.~LETED 9/17/77 NO GROUND WATER ENCOUN7£RED REO-BROWN FINE SAND AND SILT. LOOSE TO 11£OIU11 DEliSE GRADING CALCAREOUS wIm CALCITE STRWGERS OFF-WHITE.FINE GRAINED.WEATHERED SANDSTONE.GRADES WELL-C£~NTCD OFF-WHITE.FINE TO 11I:DIU11 GRAINED. MODERATELY WELL-cOlENTED SANDSTONE 'SMI ML /iil58/6' BORING NO.24 EL.5573.4 FT 0 t-W..... ~ ~0-10...Q 15 NO.26 FT. BORING EL.5578.3 t-IU..... ?i ~0-IUQ 10 RED-BR~1 FINE SAND AND SILT. LOOSE TO HJ:DIUH D£."SE GRADING CALCAREOUS wlm CALCIT£ STRINGERS OFF-UHITE,FINE TO MEDIUH-GRAINEO SANDSTONE,WEATHE!l.£D,GRADING WELL- CEMENTED VERY WELL CEMEllTEO HOLE COMPLETED 9/17/77 NO GROUND WATER ENCOUNTERED LOG OF BORINGS 50 BORING NO.28 EL.5547.6 FT. LI(;HT GRAY,WELL-cE.'U:.~TED SA.~DSTONE LIGHT GRAY.MEDIUM GRAINED.WELL- C~NTED SAiIDSTONE:FRACTURES C£1IERALLY NEAR HORIZONTAL HOW:COiiPLETED 9/21/77 GRADES D.'RKER GRAY LIGHT GRAY TO OFF-WHITE,FIlIE TO H£OIUM-CRAI:-lE:O SANC3TONE.WELL CE.'IOITED GilAVEL AND PEBBLE CONGLO:ol£RATE WITH SANOY ~\TRIX IN PLACES CNC~~ENTEO GE:IERALLY LIGHT GRAY SANOSTONE WITH OCCASIONAL 3ANDS OF aRC'iN,CLAYIER SA:IOSTONE MATCH LINE 90 -'-[::::::"1 80 -----...,.,.~::' 95 -'-----1',,::,::,\ as 100 -1.-1",::::::1 115....1..----L':A ElOS -J'---II",'::'::I lL ~ LIGHT GREEN.FINE-GRAINED SAKC~ STONE WITt!LAYlRS OF GREEN CLAY- STONE UP TO 4 INCHES THICK Bi:CQMES LOOSE GlU\DES LIGHT BROWN AND VERY DENSE MEDIUM TO LIGHT Br.o«N.MEDIUM TO COARSE GRAIN;;:D.WLLL-CE:<ENTED SANo- STONE,IRON STAINING EVIDENT AT CONTACT WITH OVERLYIlIG FI~ca­ GRAINED SANDSTONE LIGHT GREZNIZH-GRAY.FINE TO MEDIUM-GRAINCO S,>.t;DSTQNE WITH SOME GRAVEL TO PEBBLE-SIZED IN- CLl;SIONS:SQiIE !HKOR U!«)NlTE STAIIIIIIG:FR.'CTURlS IlOl\IZOllTAL BECO~IES Vl:RY DENSE ORANGE TO YELLOW.MEDlUM TO <INE ';RAINEO.SILTY SAlID (WEATHERED SANDSTONEJ RED-B~FINE SN~O A~O SILT~ HJ;DIUM DENSE GRADING C;~ARLOUS WITH CALCI7'E S7RIWG.E.:RS 76/ I<l "10 1'\11515 f;j50/ 20 2\" -r- 25 94I081 1 T -'- 30 0 35 ...-,--'"'"... ::!:40 ;lOO i=80...-'-'"Cl 45 55-----1 135----- CIRCULATION LOST-.... 60 -+..:2~ o '- LIGHT GRAY,MEDIUM TO COARSE- GRAINED SANDSTONE WITH SECTIO,'S OF VERY POORLY-CEMENTED SANDSTONE INTERLAYEaED.POORLY-C~~.TED~<D WELL-CE:<£NTED SANDSTO~E AND CON- GLOMERATE 65------1 70 CA,ING INSTALLED TO 74 FT 7S------I T 1 80_,-,I__~.JillJ ~ GROUND WATER LEVEL 75.7 FT,11/4/77 MATCH LINE LOG OF BORINGS DA...es e ...oone PLATE A-" ."C()(2)ft (2)-,..I'M 1'1/1 17,11 IY,I( S......~l I ;:z .3 4-.8...,-,,:TRIAXIAL COMPRESSION TESTS et:~T"Irt(TI .e",,-~,e.....'k ,e",u" "'.../3·3 1~.2 13·3 13·1 ON SILTY FINE SAND COMPACTED TO 95%~Y4""C,III./I II.Z./1/.//1/·:1 !"o·nJ--0.S1.7 ".~z.r o.-S2.~ OF AASHTO T-99 MAXIMUM DRY DENSITY ,s ~'J'7-'J'X r:...Yo c 7 "I.. v •../8.2 Il·~N•.7 1<:.1 ~T,."U Ilfl·i II}.I I',?-O 1Z0·~.~-~"0.491 o·f:;o ".<lU 0'1'0",~- "S ~~100 Y./00 "ICC 'J'100 -I; 10 IACx P'ft(SSJlI\C ff'SlI 6'15·1 72 .).N.r Ij<;; STIU,I"f UT[.oo0.r!3 .00<>035 .000e'GOrl",eHU I "'!HUTI!I .t:)Oc:J ?;~EFFECTIVE STRES£, --TOTAL STRESS :..:$C )-'f t(f -t(I'.~sr"tss D D"ll"Ill"0-,.,., COHOITtO",I...~~·v ..B ...·~;,t .•· I •..11·~9 5'.5(;2o.oc lo..~·t:~./,,:/.Zo.,,_.<;.';'<- U.m~l~H.l ~?:<,;$lSo:.~~~.,)"':...!H::L ~~(J) :<:::;;:-~;--if..-=.00 ."7;;;'t ..."...!'.~')~j'•.,., en 6 ~a.·as ''Z''1~..L-.88 s·l.r 4.n ~.~.:..f7 //.'9 ·-".1,';..f-'-.-./.17(J);a,.}(".'4·~8 J.88 9.~t 1/./2 1(J.J.l.19.~~:f;.3·· w ~-33·C-O ~~!'MI4-(J.'N·';.i'{.1.Z"~_%:.:,5.fr1..·.Gd0:..-~·2·'N~ila,'a)1 ,.!~b.it;;.ry t-U 17.I¢-II.'"(J) • I t-t6,'0.71./.a,?/.CI J·f4-4..·'r <t.:u2.1'';'·°9 0:-At -/10',"'<7')1:>2.,..rJ,5,7 e,2t "'.~It c'lf'.:>:11 (J.'7 "...~<~-w ---...-41-14'C-300 PSF I •..J!.0f'9 5.5~z...oo 10.'f1i'IJ.C;'J f·'1 ~•.:>5·.,J:,:x:~~/:::-~~--.%0 37t.14:v 710 /"2'-,t~~I<Z4.'13.(f)--"-·II•.1("'/·28 (J.'l~Z.3°/oR!'1.1';.!l ~.:'7 /.~/·w "-«II,'''./..f',f $'·(.S <t.ro;4.!'"P II.'-~7·Jj~2·H ,fofz.·~~~--~~_.1'.7"Z.N i,"7 ....,(0 ,.lk ,.ott JS"-?r 1.21'...........2 ?/'"/\E~,.·a-·,.!,I.2~"·14 ,z.[{.~".l:;2.J'~_L~9 5.If J.~.t'\S~,'Il.'!2.~'/.,;$.2.3 -i:!!-'T-!r 4..3 '.Sf ~..:.u --....-/j\\\•.110,:<>·71.I·~i /.'-I 2·11 J:~...,/.'1;~.:J9-.',' '.'/I~"C,'0.'7 o.~·.oze ~.;ii·,...-D.~:"'7 .:J....;\0.71"-\ I I I \\"v",z·'N.'/.0/I i.~g J.::'1.'.).01.-""'1 0:;;' 0 0 2 4 6 B 10 12 14 16 IINORMALSTRESS.KSF I(MAXIMUM EFFECTIVE STRESS RATIO)TRIAXIAL COMPRESSION TEST REPORT TYPE OF TEST£?ft~#t;;!"H:;/{'::I9R:-~8,<>[::/:;;f,(l;~" TYPE MATERIAL CO""I"AC"~D C9t"'e I SAMPLE DESCRIPTION CLASSIFICATION .p~I>()'SH ·.<r....OWl'.CC"IYeY S"l.," LIOUIO LIMIT_-_PLASTIC LIMIT_-_SPECIFIC GRAVITY,G,;;:;"0 (A tJ.\ P~OJECT j e-N'!:'R~y P"c cS LOCATION oc:-......V{C?R-fJOBNO."'(1)'O/S·Nt PREPARED BY •/0 I lZI T',CHECKED BY 1<2#./~'I Z2. Pt..ATE:8-1 1 ; ~H".L·,_" ----¢-'3.5"0-0 5 04 u. (I) :.: en 3 (I)wcr /- (I) cr«2w ::I: (I) MULTI PHASE TRIAXIAL COMPRESSION TESTS ON SILTY FINE SAND AT NATURAL DENSITY EFFECTIVE STRESS TOTAL STRESS /~-2B"0-0 --....--::::::::----/--;/-,/"-V '\ I \\ \\ ~ ~~ ..-c:Jt:I"lil:(S$,..t'II(''''1 Sf"...,,,,IIArr 1,,..eMU I MI"'Uf[I ~I ~I ~I ~I ~I ~IT.."I;;~;,~~~ COfIfOITIO",..=~5'I'l ~Wr;~;t!; e~!:..~-p=~~~~I-=~+= ~~!-:.!--+Jl.LL.+ i 1..J.2.....:.!..:.-1~UO!4 1.11 .~b'\.q,~ "1....tl ~ 2 3 04 5 6 7 B 9 10 NORMAL STRESS.KSF (MAXIMUM EFFECTIVE STRESS RATIO)TRIAXIAL COMPRESSION TEST REPORT TYPE OF TEST Th·C\l -PP TYPE MATERIAL e>,.....S"lt \F.S/I!.IA ,SAMPLE DESCRIPTION CLASSIFICAT10N-""S'-Mu/wM......",t-=----:-::::__ LIOUID LIMIT.t4iL ~STIC LIMIT~iLSPECIFICGRAVITY,G.~v~ PROJECT i:N E p.r.'!c;.'l~LOCATlON~LA...!JJlJ.t.ul~·"'"'t"""'_\U)~I:~._ JOB NO.;.5'17 ~'Otr=u\PREPARED BY LWc..•II I Un) CHECKED BY '-'- PLATE B-I 2 APPENDIXH Material Quantities ..-...--_..-.....-.-.-.--_.-.----=il il il:-":=~Environmental TITANEnvironmental By TAM Date 7/5/96 Subject -",E=FN"""""-,--_W~h....,it=e....,M....,e""s,,,,-a Page~of~ Chkd BY~Date 0/11/1&Tailings Cover Material Volume Calc.Proj No 61 11-001 Purpose: Method: To determine the volume ofriprap,clay,and random fill materials required to construct the uranium mill tailings cover at White Mesa Mill in Blanding,Utah. Material volumes were calculated for two construction options: •An integrated soil cover over Disposal Cells 2,3,and 4A,and • A cover over Cells 2 and 3,where Ce1l4A tailings are excavated and placed in Cell 3. Standard geometric equations,as shown below,were used to determine the required material volumes. Volume ofa rectangle Volume ofa trapezoid =base *height *length =1/2 *height *(base)+base 2) Assumptions: Surface area calculations for the tops ofCells 2,3,and 4A are shown in Figure 1, and material volumes are calculated in Table 1. The method for calculating material volumes on the side slopes is shown in Figure 2.The 5H:1V slopes have been divided into several zones which are indicated on Figure 1.The slopes have been categorized based on the average height they attain over a certain length.The height ofthe cover above the ground surface, along each side,was estimated using the cross sections in Figures 3 -5. Calculations are presented in Table 2. •Random fill will be used to fill the existing freeboard space between the tailings and clay layer ofthe cover and bring the tailings pile elevations up to the berm elevations.This will create a smooth surface with a slope matching that ofthe cover.The random fill thickness between the clay and tailings surface will be a minimum ofthree feet.This random fill volume was not calculated due to the lack ofinformation ofthe current topography in the tailings piles. •The 0.2 percent slope on the tailings piles will be created using random fill materials beneath the clay layer ofthe cover.Cover materials will consist of one foot ofclay under two feet of random fill.The top,riprap layer will consist ofa minimum three inches on the top ofthe cover,and one foot on the side slopes. d:\projects\6111.001\volume.clc 9/16/96 TITANEnvironmental By TAM Date 7/5/96 Subject -""E....FN-"-'----'W'-'-'h!.!..!i.."te'--LMu:e""'s""-a Page Z-of-L Chkd BYkfj Date g/W~Tailings Cover Material Volume Calc.Proj No 6111-001 Results: Option 1:(Cover on Cells 2,3,and 4A): Total volume (Clay):=9,857,221 ft3 Total volume (Random fill):=19,918,351 ft3 Total volume (Riprap -top cover):=2,234,563 ft3 Total volume (Riprap -side slopes):=1,122,881 ft3 Option 2:(Cover on Cells 2 and 3): Total volume (Clay):=7,816,884 ft3 Total volume (Random fill):=15,804,024 ft3 Total volume (Riprap -top cover):=1,754,563 ft3 Total volume (Riprap -side slopes):=968,890 ft3 d:\projects\6111_001\volume.clc 9/16/96 =365,082 yd3 =737,717 yd3 =82,762 yd3 =41,588 yd3 =289,514 yd3 =585,334 yd3 =64,984 yd3 =35,885 yd3 TABLE 1 Volume of materials for top of cover: Cell #surface area Th (riprap)Th (fill)Th (clay)V (riprap)V(fill)V(clay) ftA2 inches feet feet ft.A3 ft.A3 ft.A3 2 3237500 3 2 1 809375 6475000 3237500 3 3780750 3 2 1 945188 7561500 3780750 4A 1920000 3 2 1 480000 3840000 1920000 Option 1 Total (Cells 2,3,and 4A):2234563 17876500 8938250 Option 2 Total (Cells 2 and 3):1754563 14036500 7018250 TABLE 2 Volume of materials forside slopes: Slope #total h h(riprap)h (fill)h (clay)L'(riprap)L'(fill)L'(clay)Length Th (riprap)Th (fill)Th (clay)V(riprap)"V(fill)"V(clay)" ft.ft.ft.ft.ft. ft.ft.ft.feet feet feet ft.A3 ft.A3 ft.A3 1 16 15.5 14.0 12.5 79.0 71.4 63.7 3500 1 2 1 276622 499704 223082 2 6 5.5 4.0 2.5 28.0 20.4 12.7 500 1 2 1 14022 20396 6374 3 6 5.5 4.0 2.5 28.0 20.4 12.7 1180 1 2 1 33093 48135 15042 4 20 19.5 18.0 16.5 99.4 91.8 84.1 1900 1 2 1 188919 348773 159854 5 43 42.5 41.0 39.5 216.7 209.1 201.4 1750 1 2 1 379240 731709 352470 6 10 9.5 8.0 6.5 48.4 40.8 33.1 950 1 2 1 46019 77505 31486 7 5 4.5 3.0 1.5 22.9 15.3 7.6 1350 1 2 1 30977 41302 10326 8 27 26.5 25.0 23.5 135.1 127.5 119.8 1200 1 2 1 162149 305941 143792 9 35 34.5 33.0 31.5 175.9 168.3 160.6 1450 1 2 1 255078 487976 232898 10 18 17.5 16.0 14.5 89.2 81.6 73.9 1300 1 2 1 116003 212119 96117 Option 1 Total (Slopes 1,2,3,4,6,7,8,9,and 10):1122881 2041851 918971 Option 2 Total (Slopes 1,2,3,4,5,6,and 7):968890 1767524 798634 TABLE 3 Total Material Volumes for the Cover Option 1: rlprap (top of cover)2234563 ft'82762 yd' riprap (side slopes)1122881 ft"41588 yd random fill 19918351 ft'737717 vd' clay 9857221 ft°365082vd:r Option 2: rlprap (top of cover)1754563 ft'64984vd' rlprap (side slopes)968890 ft"35885 yd' random fill 15804024 ft'585334 yd' clay 7816884 ft 289514 yd' Notes: Riprap on top and sides of cover are of different dimensions,and are therefore caluculated separately. Total h =the average height along the slope length. Th =Thickness ofthe layer ofmaterial. V =Total volume ofthe material L'=Length of the layer down the side slope,Calculated as (h(material»I (cos 78.7).The slope Is 5H:1V. Length =Horizontal length ofthe side slope. (1)Volume calculated as (surface area)x (layer thickness). (2)Volume calculated as (L'x Th x Length), d:lproject.\6111,001\VOL_CLC,XLS8/14/96 5~ \~.....,..,.,;1' \.f\J ~ oQ :5 ~5~-::':E.I~ironmental 0 'f ~ By ~%A Date Subject Sheet No _of_ Chkd bY~Date <6f l Y Proj No,_ G .~-At.toeS ot ~s 1/5"x 115"1N A6t-II}L '(/j6'W - Slo~*I/' eel13 3500' Cdl2 1\ ~ <) 'J V)-~~ ~ z\:II l/).-q:.....->--\S)§/'CJ-1\\I ~('l)~-6::?< V)II <J"-..JIJ!- <'J \:I tj:Lv1)V(» (rIP.!JO)t(~ c Vr!/Lf~ (i~-f/~r)If-7 ....-}1............--===~-.-..-====='=='·=Envlrontnenta-=-==::...--...._/....-- !::J «Sheet No _of_MDA-Date.Subject _ By ~Q<.(1'1 Proj No._ Chkd bY~Date ~----------115"x 115" V\ 0 VJ ~.--..n 0~~v."<J~-V) -B ~-. "-:2..~'--l-~<;:)-- if' <:l~r-- -:::>ex:,-r-.<) ~t ,~~ 5620 5580 5640 5600 5560 g5540 ~~g N,.,~§ N g '"N g.,. N*N~g ~§~~~g '"§~~ f fRANDO"f'1LL (2 rT.!}fIC.)r-OETAIL 2 OETAl I //;V~i<NOOI.I FILL All >:;;U~~NOS (M~~u~J.,n,IC')/orrAl I +~F or e "M OETAl ~APPR XIMAT(SURrA I,.MOVEO ,,/.I.,l...~0.2:\I r'I Ir'[LDEIl2--\T.&JUN S 1 ~l~XI T1N~~1 IN'",~,~l?£STIN§1 CE II D Y IIAIlINGCEL1~t"c ,7.LL 2 BER CEl 1Nt'!CEl 4'1 I BE M 1\\..APPR XlMA,T!Bono,or C(L-l BE M 6,.,...,", \....APPR XIMAT(011'OM or c£ 6 t; t::'560 I Z52 558<~556 554 562 56 £6 ~g V!:RnCAL SCALE (FtET) ~~-~ HORIZONTAL SCALE (rErr) SECTION A-A'(WITH COVER ON CEllS 2.3 &4A) ovr 556 0< -=+ 5640 5520 5580 5600 5560 ~5540 ,.,~ fut;W1.Q4 g N,.,6~~~~N~N~ 8 <5 8 --8__"l HORIZONTAL SCALE (rEET) 6§~~ ~<5 ~---S VERnCAL SCAlE (FtET) ~ SECTION A-A'(WITH COVER ON CELLS 2 &3) ~6as6o'"~~ ';-R""OOM rILL (2 rT,!}fIC')r-OCiAIL 2---~----_. OETAII 1 //'/j)IANOOM ~LL All V!:TA/I.NCS (MNIt,(~~J.,n.TIel<)/'~DrTAl 1 ~;..or B RM APPR XIMATE NUNO SuR'",E ,".MOVEO -;;z ~"'~='\TNUN S ~V Ul 1 j ~L...~1 'I>AlU""'{Itt STINC\~'CE )Y."CEll /Ll 1 t'ri".,Ll 2 BER /EXI ING\l eEL 41:\c~L J '\\..APPR BOTTO_L-lCE4RMXIMATEorC( BE M ....~..'.-..'~.....<0, \J APPRqxr~TE ~TTO"or CE,.,I I.. 6 562 56<1 554 t; t::'560 §558~w r ~ REFERENCES Advanced Terra Testing,1996,Physical soil data,White Mesa Mill,Blanding,Utah,July 25,1996. Aitken,George W.and R.L.Berg,1968,"Digital Solution of Modified Berggren Equa- tion to Calculate Depths of Freeze or Thaw in Multilayered Systems",Special Report 122,October. Chen and Associates,1978,"Soil Property Study Earth Lined Tailings Retention Cells White Mesa Uranium Project,Blanding,Utah",July 18. Chen and Associates,1979,"Soil Property Study Proposed Tailings Retention Cells White Mesa Uranium Project,Blanding,Utah",January 23. Dames and Moore,1978,"Environmental Report,White Mesa Uranium Project,San Juan County,Utah",January 30. Energy Fuels Nuclear,Inc., 1996,radon flux measurements for 1994 and 1995. Environmental Protection Agency (EPA),1994,"The Hydrologic Evaluation of Landfill Performance (HELP)Model,Version 3",EPAl6001R-941168b,September. Freeze,R.Allan and 1.A.Cherry,1979,"Groundwater". Mitre Software Corporation,1990,"GSLOPE Limit Equilibrium Slope Stability Analysis",Alberta,Canada,June 1. Nuclear Regulatory Commission (NRC),1989,"Regulatory Guide 3.64 (Task WM-503- 4)Calculation of Radon Flux Attenuation by Earthen Uranium Mill Tailings Covers",March. NRC,1990,"Final Staff Technical Position Design of Erosion Protection Covers for Stabilization ofUranium Mill Tailings Sites",August. NUREG/CR-4620,Nelson,J.D.,Abt,S.R.,et aI,1986,"Methodologies for Evaluating Long-Term Stabilization Designs of Uranium Mill Tailings Impoundments", June. NUREG/CR-4651,1987,"Development of Riprap Design Criteria by Riprap Testing in Flumes:Phase 1",May. Perry,Robert H.et aI,1984,"Perry's Chemical Engineers'Handbook",McGraw-Hill, Inc. C:\PROJECTS\6111-00I\REFERENC.DOC [27-Sep-96]...-....--_.......- _!i !=::.~,;Environlllental Page R2 Principles &Practice ofCivil Engineering,2nd Edition,1996. Rogers and Associates Engineering Company,1988,Radiological Properties Letters to e.O.Sealy from R.Y.Bowser dated March 4 and May 9. Rogers and Associates Engineering Company,1996,Report of Radiological Property Measurements,September 3,1996. U.S.Department ofEnergy,1988,"Effect ofFreezing and Thawing on UMTRA Covers" Albuquerque,New Mexico,October. ~--_..~-_E i E~~~Environmental