Loading...
HomeMy WebLinkAboutDRC-2010-001423 - 0901a06880161444'^^^' 2010 - ooms(3 ^^ k k Denison Mlnas (USA) Corp. ^^^ k A 10S017th Street Suits SSO DENISOr^ii 5Sr""" ^^INES Tel: 303 628-n98 Fax:30338M12S www.denbonmines.com January 21, 2010 Mr. Dane Finerfi"ock, Executive Secretary Utah Radiation Control Board Utah Department ofEnvironmental Quality 168 North 1950 West P.O. Box 144810 Sah Lake City, UT 84114-4810 Dear Mr. Finerfrock: Re: White Mesa Uranium Mill - First Round of Interrogatories From Review of License Amendment Request and Environmental Report For Cell 4B - Referenced Documents Enclosed please find one (1) CD with the following referenced documents: • Hydro Geo Chem, Inc. 2001. Letter to Harold Roberts, International Uranium (USA) Corporation. • Hydro Geo Chem Inc. 2005. Perched Monitoring Well Installation and Testing at the White Mesa Uranium Mill, April through June 2005. Submitted to International Uranium (USA) Corporation. Please contact Harold Roberts at (303) 389-4160 with any questions or concerns. Yours very truly, DENISON MINES (USA) CORP. 3oDie Records Administrator/Paralegal cc: Robert Baird, PE - URS Corporation End. [II INTERNATIONAL URANIUM (USA) CORPORATION Independence Plaza,Suite 9~0 •1050 Seventeenth Street •Denver,CO 80265 •303 628 7798 (main)•303 389 4125 (fax) November 9,2001 VIA OVERNIGHT MAIL Mr.William J.Sinclair Director,Division ofRadiation Control Utah Department ofEnvironmental Quality P.O.Box 144850 168 North 1950 West Salt Lake City,UT 84114-4850 Re:Update report regarding IUSA's October 4,2000 report on investigation of elevated Chloroform Concentrations in Perched Groundwater at the White Mesa Uranium Mill.Utah Division ofWater Quality Notice ofViolation and Groundwater Corrective Action Order;Docket No.UGW20-01. Dear Mr.Sinclair: This transmits International Uranium (USA)Corporation's ("IUSA's")Contaminant Investigation report entitled Update to Report -"Investigation of Elevated Chloroform Concentrations in Perched Groundwater at the White Mesa Uranium Mill near Blanding, Utah".This report is an update to the Contaminant Investigation Report (the "CIR")that IUSA submitted to the Utah Department of Environmental Quality ("UDEQ")on October 4,2000 (IUSA and HGC,2000),and addresses questions raised by UDEQ's letter to IUSA in response to the CIR dated June 7,2001.Items addressed in this report are also pursuant to a meeting between IUSA and UDEQ on October 5,2001. Please note that this report includes a recommendation for installing two additional temporary wells,for the purpose of additional delineation of the areas of the perched zone containing chloroform,and in the locations discussed during the meeting with UDEQ.IUSA would like to install these two additional wells during the week of Mr.William J.Sinclair November 9,2001 Page 2 of2 December 3,2001,so that the wells can be sampled during the fIrst quarter 2002 sampling event.Should you have any questions or comments concerning this or any other part ofthis report,please contact me at 303.3 89.4131. Sincerely, ~~~---- Michelle R.Rehmann Environmental Manager cc/att:Larry Mize,UDEQ Division ofWater Quality Loren Morton,UDEQ Division ofRadiation Control Ron F.Hochstein,IUSA David C.Frydenlund,IUSA Harold R.Roberts,IUSA Richard E.Bartlett,IUSA Ron E.Berg,IUSA Stewart J.Smith,Hydro Geo Chern S:\STAFF\MRR\Chloroformlnvestigation\commentsonGCIRreport\transmittaILtrUpdateChloroformlnvestigationReport UPDATE TO REPORT "INVESTIGATION OF ELEVATED CHLOROFORM CONCENTRATIONS IN PERCHED GROUNDWATER AT THE WHITE MESA URANIUM MILL NEAR BLANDING,UTAH" Prepared By: INTERNATIONAL URANIUM (USA)CORPORATION Independence Plaza,Suite 950 1050 Seventeenth Street Denver,CO 80265 and HYDRO GEO CHEM,INCORPORATED 51 West Wetmore Street,Suite 101 Tucson,AZ 85705 November 9,2001 TABLE OF CONTENTS 1.INTRODUCTION AND SUMMARy 3 2.DNAPL ISSUES 5 2.1 Vertical Profiling ofExisting Perched Wells 5 2.2 Potential for DNAPL to Exist in the Vadose Zone 6 2.3 Evaluation ofthe Potential for DNAPL to Exist in the Saturated Zone 7 2.3.1 Detected Concentrations with Respect to Chloroform Solubility 7 2.3.2 Comparison ofMW-4 to Nearby Temporary Wells 10 2.3.3 Vertical Profiling ofMW-4 11 2.4 Brushy Basin Contact 12 3.ADDITIONAL PLUME DELINEATION 15 3.1 Analytical Results from Temporary Wells 15 3.2 Hydraulic Gradient in the Vicinity ofMW-4 16 3.3 Need for Additional Wells to Delineate Chloroform in the Perched Zone 17 3.4 Temporal Trends in Chloroform Concentrations and Relationship to Nitrate 18 4.COORDINATES REQUESTED BY UDEQ 20 5.PERCHED ZONE PERMEABILITY 21 5.1 Permeability Distribution ofthe Perched Zone 21 5.2 Conglomeratic Zone Near MW-4 21 6..ONGOING GROUNDWATER MONITORING AND REPORTING 23 7.ADDITIONAL GROUNDWATER MONITORING PARAMETERS 25 7.1 Dichloromethane Analytical Results From Split Sampling 25 7.2 Direct Measurement ofRedox Conditions in the Field 26 7.3 Feasibility ofEnhancing Reductive Dechlorination In-Situ 26 8.REFERENCES 28 FIGURES 1 Chloroform Analytical Results (Jlg\L)for Temporary Perched Wells 2 Contour Map ofTop ofBrushy Basin,White Mesa Uranium Mill Site 3 Water Level Contour Map December,2000,White Mesa Uranium Mill Site 4 Water Level Contour Map September -October,2001 White Mesa Uranium Mill Site 5 Proposed Locations ofNew Temporary Perched Wells 6 Nitrate Analytical Results (mg\L)for Temporary Perched Wells 7 Scatterplot ofChloroform vs.Nitrate,Temporary Perched Wells and MW-4 8 Perched Zone Permeability Based on Pump and Slug Tests,and Constant Head Packer Tests,White Mesa Uranium Mill 9 Approximate Intervals of Conglomeratic Sandstone Logged in Temporary Well Borings APPENDICES A Vertical Profile Sampling Bailer B Use ofSoil Gas to Detect DNAPL C Coordinates Requested by UDEQ D Analytical Results E U.S.G.S Manual Chapter 6.5 and Hydrolab Parameter Specifications 1.INTRODUCTION AND SUMMARY International Uranium (USA)Corporation ("IUSA")submitted a Contaminant Investigation Report entitled "Investigation of Elevated Chloroform Concentrations in Perched Groundwater at the White Mesa Uranium Mill near Blanding,Utah"(the "CIR")to the Utah Department of Environmental Quality ("UDEQ")on October 4,2000 (IUSA and HGC,2000). This report has been prepared as an update to the CIR,and to address questions raised by UDEQ's letter to IUSA dated June 7,2001 in response to the CIR.Items addressed in this report are also pursuant to a meeting between IUSA and UDEQ on October 5,2001. This report discusses analytical results to date,trends in chloroform concentrations in the vadose or perched water zones at the site,and additional delineation ofthe areas ofthe perched zone containing chloroform.This report also discusses the potential for degradation of chloroform in the perched water and the feasibility of enhancing in-situ reductive dechlorination ofchloroform. Important results ofthe investigation to date are that: 1.The data do not indicate that chloroform DNAPL exists at the site either in the vadose zone or the perched water zone. 2)The data do not indicate that a continuing chloroform source exists. 3)Data are consistent with the abandoned scale house leach field as the source for the MW-4 chloroform,and for the chloroform to have entered the perched water as a "slug"over a relatively short period oftime (1-2 years). 4)Additional wells are needed to delineate the chloroform plume to the west and northwest ofMW-4. S:\STAFF\MRR\Chloroformlnvestigation\UpdateChloroformInvestigationReport 11_9_01 3 5)Rapid degradation of chloroform III the perched water IS unlikely without enhancement. Additional delineation of the chloroform in the perched water is proposed to be accomplished by adding two new temporary wells to the west and northwest of MW-4,and by vertical profile sampling in selected wells,to define the chloroform concentrations in three dimensions.Additional characterization ofgroundwater gradients in the northeast portion of the site,which have been changing and may affect chloroform migration in the perched water,will be accomplished by phased installation of piezometers.In addition,IUSA will continue to perform quarterly monitoring of chloroform and will transmit such data to the UDEQ in accordance with a schedule provided herein. S:\STAFF\MRR\ChlorofonnInvestigation\UpdateChlorofonnInvestigationReport 11_9_01 4 2.DNAPL ISSUES UDEQ has expressed concern that dense,non-aqueous phase liquid (DNAPL) cWoroform may exist in the vadose and perched water zones in the vicinity of MW-4 and the abandoned scale house leach field.This section uses existing soil gas and groundwater data from the site to demonstrate that DNAPL does not exist in either the vadose or perched water zones at the site,and that no evidence for continuing chloroform source exists. 2.1 Vertical Profiling of Existing Perched Wells Initial sampling to evaluate the potential for stratification of chloroform concentrations was conducted in the fall of 1999,and reported in the CIR.As indicated in the CIR,multi-depth sampling of MW-4 was conducted during the week of September 27,1999.Two samples were collected,one from the top ofthe water column (approximately 70-73 feet bls)and one from the base of the water column (approximately 117-120 feet bls).The shallow sample was collected first.Both samples were collected using disposable teflon bailers.Samples were collected without purging the well,to prevent disturbance ofthe water column. Samples were collected in 40 ml VOA vials,with no headspace,capped,labeled,and stored in a cooler with blue ice at 4°C for shipment to the offsite analytical laboratory (Energy Laboratories,Casper,Wyoming).Chloroform was detected in the shallow sample at a concentration of 6,200 Jlg/L,and in the deep sample at a concentration of5,820 Jlg/L.Because concentrations did not increase with depth,the presence of DNAPL (i.e.,free chloroform product)was not indicated in MW-4. S:\STAFF\MRR\ChloroforrnInvestigation\UpdateChloroforrnInvestigationReport 11_9_01 5 As UDEQ has requested further evaluation of the vertical distribution of chloroform concentrations,a Sampling Plan,with the Data Quality Objective of evaluating the potential for stratification of chloroform concentrations in the Chloroform Investigation wells,will be developed.This Sampling Plan will include the following key features: •Procedure to collect samples from discrete depths using disposable bailers with double check values •Requirements for field records •Methodology for evaluation ofresults •Evaluation of the feasibility of testing experimental USGS procedure using passive diffusion bags in at least one well,to provide comparison to conventional method results •This sampling will take place in the first quarter of2002 Appendix A contains manufacturer specifications for disposable bailer designed to collect samples from discrete intervals in groundwater. 2.2 Potential for DNAPL to Exist in the Vadose Zone Soil gas sampling is a useful means to detect the presence ofpure phase volatile organic compounds (VOC)that reside in the vadose zone.This applies to chloroform,which has a vapor pressure of 160 mm Hg.As discussed in Appendix B,soil gas concentrations in excess of 10% of a VOC pure phase saturated vapor pressure are indicative of the presence of the pure phase. For chloroform,soil gas concentrations in excess of 100,000 JlglL would be indicative of pure phase. The possibility that residual pure phase chloroform exists as a DNAPL within the vadose S:\STAFF\MRR\Chlorofonnlnvestigation\UpdateChlorofonnlnvestigationReport 11_9_01 6 zone beneath the abandoned scale house leach field is not supported by the trace level soil gas chloroform concentrations measured in the vicinity in 1999 «1 f.lg/L).The measured concentrations are indicative of low concentrations of chloroform dissolved in vadose pore waters.Furthermore,the possibility that DNAPL exists within the perched zone is not supported by the relatively low chloroform concentrations detected at wells TW4-5 and TW4-9,which are the temporary wells located closest to the leach field (Figure 1). 2.3 Evaluation of the Potential for DNAPL to Exist in the Saturated Zone The possibility that chloroform DNAPL may exist in the perched zone beneath the abandoned scale house leach field and/or may traveled downgradient along the Brushy Basin contact toward MW-4 is remote.This possibility is not supported by data collected from the temporary perched wells at the site or from MW-4. 2.3.1 Detected Concentrations with Respect to Chloroform Solubility Perched water chloroform concentrations exceeding 1%of the solubility of chloroform (8,000-10,000 mg/l)would have to exist to indicate the presence of DNAPL .(Cohen and Mercer,1993).The highest groundwater concentrations detected at the site «7 mg/L)are more than 3 orders of magnitude lower than the solubility of chloroform.While the solubility of chloroform in the perched water may be slightly depressed by the presence of trace concentrations of carbon tetrachloride (500 mg/L dissolved in the pure chloroform used in the ore assay lab as suggested in UDEQ's June 7,2001 letter to IUSA)and by the presence of inorganic solutes in the perched water,as detailed below,it can be demonstrated that this depression is not significant. S:\STAFF\MRR\Chloroformlnvestigation\UpdateChloroformlnvestigationReport 11_9_01 7 The effect of 500 mg/l carbon tetrachloride contaminant on the solubility of chloroform used at the site would be negligible,potentially lowering the solubility by less than 0.05%, because the mole fraction ofcarbon tetrachloride in the mixture would be less than 0.05%.The presence of significant concentrations of other solvents in perched groundwater near MW-4, which could potentially lower the solubility of chloroform,is not supported by past analytical results.Furthermore,as detailed below,the impact of salinity on chloroform solubility,which will depend on the concentrations of salts in the water,is also not significant. The solubility of a neutral organic compound such as chloroform in water containing dissolved inorganic salts is generally lowered as the concentration ofthe inorganic salts increases (Schwarzenbach,1993;Garrels and Christ,1965;and Harned and Owen,1950).The depression ofsolubility is generally not significant,unless the concentration ofthe salts is greater than about 0.1 molar (M).At MW-4,the dominant anion is sulfate,which averages approximately 2,000 mg/l,or 0.021M,based on data presented in TITAN,1994.The average concentrations of chloride,sodium,calcium,and potassium ions average approximately O.0013M,0.014M, 0.010M,and 0.0003M,respectively,at MW-4.These concentrations are too low to have a significant effect on the solubility of chloroform in the perched water,at most reducing solubility by a few percent.Even in seawater,where salt concentrations are orders of magnitude higher than in the perched water,the depression ofsolubility ofneutral organic compounds is typically less than a factor of2 (Schwarzenbach,1993). Schwarzenbach,1993,provides a methodology for estimating the impact of salinity on the solubility of neutral organic compounds.Salting constants (Ks)for various types ofsalts are provided,with the highest that of sodium sulfate (Ks =0.55).Using the formula provided in Schwarzenbach, S:\STAFF\MRR\Chloroformlnvestigation\UpdateChloroformlnvestigationReport 11_9_01 8 where C~~.valt =solubility ofneutral organic compound in salty water, Ks =salting constant, c~at =solubility ofneutral organic compound in pure water, and assuming that Ks=0.55,and [salt]=[S04]=0.021M, the solubility of chloroform in perched water is calculated as 0:975 C;:t or 97.5%of the solubility in pure water,a reduction in solubility ofless than 3%. The actual reduction in solubility is likely to be lower for chloroform,however,because the salting-out effect is lower for polar organic compounds (Schwarzenbach,1993).Because chloroform is somewhat polar,owing to it's asymmetry,which accounts for it's high solubility (l0 times that of carbon tetrachloride,which is non-polar),the actual depression of chloroform solubility in perched water is likely to be less than 2.5%.Because the estimated reduction in chloroform solubility is so small,and is nearly an order of magnitude lower than typical laboratory analytical error of ±20%,the effect of perched water salinity on the solubility of chloroform can be ignored. Furthermore,the assumption that DNAPL is not indicated unless dissolved groundwater concentrations greater than 1%of the solubility of the pure product are detected (Cohen and Mercer,1993)is considered reliable because the lowering of solubility by other factors such as the presence ofother solvents,is taken into account in this assumption. S:\STAFF\MRR\ChlorofonnInvestigation\UpdateChlorofonnInvestigationReport 11_9_01 9 2.3.2 Comparison ofMW-4 to Nearby Temporary Wells Chlorofonn concentrations in the past have been higher at MW-4 in comparison with nearby temporary wells,although these differences have been slight in recent sampling events. The differences do not indicate DNAPL that may be present at MW-4 or that these differences result from well construction factors,possibilities suggested in UDEQ's June 7,2001 letter. Recently measured chloroform concentrations at MW-4 are not significantly higher than at nearby temporary wells.Concentrations at TW4-1 and TW4-2,located immediately downgradient and upgradient,respectively,of MW-4,are within approximately 5%and 12%, respectively,of concentrations at MW-4 as of the June 2001 sampling (Figure 1). Concentrations at MW-4 are within 8%of concentrations at TW4-2 in the September,2001 sampling.(Concentrations between MW-4 and TW4-1 cannot be compared for the September, 2001 sampling because the TW4-1 sample vial broke in transit to the laboratory and no analysis was performed).These results suggest that differences in concentrations are more likely the result ofrecovery than well construction factors or the potential presence ofDNAPL at MW-4 as suggested by UDEQ.Differences in concentration between MW-4 and nearby temporary wells would be expected to be much larger if DNAPL were present near MW-4.The slightly lower concentrations at the nearby temporary wells,and the reduction in the differences in nearby temporary wells relative to MW-4 over time are consistent with recovery of temporary wells from the air rotary drilling process (as discussed in Section 3).In other words,the reason that MW-4 has had the highest concentrations is more likely due to its age rather than construction. Furthermore,it is highly unlikely that chloroform DNAPL could have migrated more than 1,200 feet from the source area (the abandoned scale house leach field)to the vicinity of MW-4.The Burro Canyon/Brushy Basin contact is an erosional surface with numerous small- S:\STAFF\MRR\Chlorofonnlnvestigation\UpdateChlorofonnlnvestigationReport I1_9_01 10 scale irregularities that would prevent movement of any DNAPL very far from the source area. Even if small scale irregularities did not prevent the movement,the farther the DNAPL moved from the source area,the more spread out it would become,exposing more surface area to the groundwater and making it easier to dissolve.Also,it can be demonstrated that more than sufficient volume of water has passed beneath the abandoned leach field source area to have dissolved all ofthe chloroform potentially disposed there. Assuming the following conditions, Width ofabandoned leach field = Average saturated thickness = Average hydraulic gradient = Average hydraulic conductivity == 20 feet 30 feet (conservative) 0.016 ft/ft 1 ft/day Approximately 520,000 gallons of perched water have passed beneath the leach field over the past 20 years.(The average hydraulic conductivity was based on the results of a pump test at MW-4 in 1999,which yielded a transmissivity of 38.4 ft2 /day.Dividing this by the saturated thickness of the perched zone at that time,approximately 40 feet based on a depth to the Brushy Basin of 108 feel bls depicted in the geophysical log of MW-4,yields an average hydraulic conductivity of 1 foot/day.)Assuming a solubility of chloroform of 8,000 mg/l,or 5 x 10-3 gallon chloroform/gallon water,sufficient perched water has flowed beneath the source area to have dissolved more than 10 times the amount potentially used in the ore assay laboratory. 2.3.3 Vertical Profiling ofMW-4 As stated above under 2.1,previous vertical profile sampling of MW-4 in 1999 did not indicate that concentrations increased with depth,as would be expected if DNAPL existed near MW-4. S:\STAFF\MRR\Chloroformlnvestigation\UpdateChloroformlnvestigationReport I 1_9_01 11 Samples were collected from depths of approximately 71 feet bls (approximately 2 feet below the top of the water column)and from near the base of the well (approximately 118 feet bls)using a disposable bailer.The shallow sample was collected first,then the deep sample.If chloroform DNAPL were present at the base ofthe well,concentrations would be expected to be significantly higher there than at the top of the water column.Instead,sampling results showed no significant difference in concentration between the deep and shallow samples.CWoroform was detected at a concentration of 6,200 flglL in the shallow sample and a concentration of5820 5,280 flglL in the deep sample. More rigorous vertical profile sampling of MW-4 is proposed to characterize the vertical distribution ofcWoroform concentrations at the site as discussed above in Section 2.1. 2.4 Brushy Basin Contact UDEQ has expressed concern that the Brushy Basin contact at MW-4 may be depressed and may harbor a pool ofchloroform DNAPL.This concern is based on a reported contact depth of 125 ft below land surface (bls)at MW-4.However,the Brushy Basin contact at MW-4 is considered to be at a depth of 108 ft bls based on lithologic logs ofnearby temporary wells TW4- 1,TW4-2,TW4-7 and TW4-8,and on the geophysical log for MW-4 provided in TITAN,1994. The geophysical log for MW-4 provided in TITAN,1994,depicts the Burro Canyon/Brushy Basin contact at 108 ft bls.This depth is consistent with the lithologic logs of nearby temporary perched monitoring wells TW4-1,TW4-2,TW4-7,and TW~4-8,which depict the contact at approximately 103 ft,105 ft,98 ft,and 105 ft bls,respectively.This would place the base of the screened interval of MW-4,which extends to 112 ft bls,approximately 4 feet below the contact. S:\STAFF\MRR\ChlorofonnInvestigation\UpdateChlorofonnlnvestigationReport I1_9_01 12 The 125 foot depth that has·been previously reported for the Brushy Basin at MW-4 is apparently based on the well completion diagram provided in TITAN,1994,which depicts a contact between "sandstone"and "claystone"at 125 ft bls.However,no additional lithologic information is provided to indicate whether the "sandstone"is continuous from the surface to 125 ft bls,or whether the "sandstone"is a lens or layer encountered within the Brushy Basin. The formation names are also not designated on the diagram. During drilling of temporary wells TW4-3 and TW4-7,the borings were extended into the Brushy Basin to characterize the lithology of the uppermost portion of the formation.Thin layers or lenses of sandstone and/or conglomeratic sandstone were found at a depth of approximately 108-112 ft bls in TW4-7,10 feet below the Brushy Basin contact,and depths of approximately 125-132 ft bls in TW4-3,25 feet below the contact.These lenses or layers in the Brushy Basin were separated from the base of the Burro Canyon by shales,siltstones and claystones.These low permeability materials would hydraulically isolate the lenses or layers of sandy/conglomeratic material within the Brushy Basin from the Burro Canyon. With regard to the geophysical log of MW-4,there is a clear response in the natural gamma at 108 ft bls.This response is also consistent with the natural gamma response at the Brushy Basin contact as depicted in other geophysical logs at the site and is consistent with the lithology logged at nearby temporary wells.Because the geophysical log depicts the Brushy Basin contact at 108 ft bls in MW-4 and because this is consistent with lithologic logs ofnearby temporary wells,the 108 foot depth is considered reliable. Therefore,any DNAPL potentially present near MW-4 would be expected to enter the well screen,and to raise the measured chloroform concentrations at MW-4 nearer the solubility S:\STAFF\MRR\Chlorofonnlnvestigation\UpdateChlorofonnlnvestigationReport 11_9_01 13 ofchlorofonn (8,000-10,000 mg/l).Because the measured concentrations ofchlorofonn at MW- 4 are more than 3 orders of magnitude lower than the solubility,no DNAPL is indicated. Furthennore,if DNAPL were present near MW-4,concentrations should be at least one to two orders of magnitude higher that at TW4-1,TW4-2 and TW4-4,rather that only 5%,12%,and 48%higher as ofthe June,2001 sampling. Installation ofan exploratory boring near MW-4 as suggested by UDEQ to characterize the contact is not considered necessary based on the geophysical log of MW-4 provided in TITAN,1994,the lithologic logs of nearby temporary wells,and the lack of evidence for DNAPL in the analytical data.The depth to Brushy Basin of 108 feet bls depicted on the geophysical log ofMW-4 is consistent with the depths provided in the nearby lithologic logs and is considered reliable. A contour map of the top of the Brushy Basin,using the 108 ft depth at MW-4,is provided in Figure 2. S:\STAFF\MRR\Chloroform1nvestigation\UpdateChloroform1nvestigationReport I 1_9_01 14 3.ADDITIONAL PLUME DELINEATION UDEQ has expressed concern that more temporary perched wells are needed to define the extent of chloroform in the perched water,and that piezometers are needed in the northeast portion of the site to better define changing water level gradients and to identify sources of recharge.This section discussed the distribution of chloroform in the perched water both spatially and temporally,the need for new temporary wells.to the west and northwest of MW-4 based on observed trends in the chloroform data,and the relationship of chloroform to nitrate which is consistent with a leach field origin. 3.1 Analytical Results from Temporary Wells Chloroform analytical results for MW-4 and temporary wells are shown in Figure 1.The chloroform plume is bounded to the south (downgradient)by non-detect results at TW4-6, although the recent detection of 3.6 Ilg/L chloroform at TW4-6 may indicate arrival of chloroform at that well.The upgradient well (TW4-5)and lateral wells (TW4-7 and TW4-8) show chloroform concentrations in excess of 100 IlglL,although concentrations at these wells are much lower than at MW-4,TW4-1 and TW4-2. The increases in concentration detected in most of the temporary wells after installation are most likely related to recovery of concentrations that were lowered as a result of the air rotary drilling method,and the generally long recovery times expected when wells are installed in low permeability formations.Temporary wells located downgradient (south)of MW-4 are affected by both the recovery process and by continued southerly migration of the chloroform 8:\STAFF\MRR\Chloroformlnvestigation\UpdateChloroformlnvestigationReport 11_9_01 15 plume.These and other temporal trends will be discussed further in Section 3.5.IUSA will continue to monitor and report results to the UDEQ. 3.2 Hydraulic Gradient in the Vicinity ofMW-4 The hydraulic gradient in the vicinity ofMW-4 has historically been to the south (IUSA and HOC,2000).Recent water level contour maps are provided in Figures 3 and 4. The change in water levels and change in hydraulic gradient to a more westerly direction in the vicinity ofthe abandoned leach field are recent,and the direction ofthe hydraulic gradient during most of the period of migration of the plume was southerly.A southerly gradient still exists near MW-4 and at the downgradient edge of the plume.The recently detected more westerly hydraulic gradient near the scale house leach field is of no concern unless a residual chloroform source is present,but the assumption of a residual source is not supported by any of the soil gas or groundwater data collected to date.IUSA plans to install piezometers,in a phased fashion,in the northeast portion ofthe site to further investigate the increase in water levels and change in hydraulic gradient.This work will be described in a report to UDEQ due on November 16,2001. The water level map provided by UDEQ in their June 7,2001 letter to IUSA indicates a concern as to whether or not there may be a possible groundwater mound near MW-4. This feature is likely not a mound but the result of locally semi-confined conditions related to the stratigraphy of the perched zone.This type of feature is common in water table aquifers even where the hosting lithology consists of unconsolidated layered sands and gravels S:\STAFF\MRR\ChlorofonnInvestigation\UpdateChlorofonnInvestigationReport 11_9_01 16 with local interbeds ofsilt and clay.These small-scale fluctuations in the regional flow field can be ignored when considering the large scale flow ofgroundwater and transport ofsolutes. 3.3 Need for Additional Wells to Delineate Chloroform in the Perched Zone The vertical dimension of the chloroform in perched water will be addressed by vertical profile sampling as discussed in Section 2.1.The lateral dimension of the plume is defined in large part by the existing temporary well network but further delineation is likely needed to the . west and northwest ofMW-4.Additional downgradient delineation may be needed in the future as the plume continues to move to the south. UDEQ provided a chloroform isoconcentration map in its June 7,2001 letter to IUSA. While this map indicates that further lateral delineation of the plume is needed,to the west and northwest of MW-4,the chloroform isoconcentration map prepared by UDEQ displays a number offeatures that are not hydrogeologically reasonable.These features are related to: 1)Non-uniform distribution of input data leading to unavoidable errors in coniputer gridding and contouring unless specific measures are taken to counteract them, 2)The impossibility of providing hydrogeologic input to the computer gridding and contouring algorithm such as,for example,historical groundwater gradient information,and 3)The assignment of detectable chloroform concentrations to downgradient wells that have always been non-detect for chloroform Some ofthe resulting erroneous features displayed in the map include the following: 1)The depicted plume extends farther cross-gradient and up-gradient than down- gradient which is not hydrogeologically reasonable. S:\STAFF\MRR\Chloroformlnvestigation\UpdateChloroformlnvestigationReport 11_9_01 17 2)The detectable chlorofonn isoconcentration contours extend up to and beyond wells that have always been non-detect for chlorofonn,which is not hydrogeologically reasonable. 3)"Bulls eye"features occur that are related to the non-unifonn distribution of data, choice of gridding parameters,and unavoidable limitations of the gridding and contouring package.There is no hydrogeologic mechanism that can result in such features. 4)Unless chlorofonn is actually detected at the downgradient wells,the downgradient edge of the plume will always be at or just beyond these same wells that are non- detect for chlorofonn,resulting in a plume whose extent is time independent.This is not hydrogeologically reasonable unless a steady-state condition has been reached. The apparent northwest trend in the isoconcentration contours in the map produced by UDEQ is an artifact resulting partly from the well density west and northwest of MW-4,and partly from the non-unifonn distribution of data,the lack of hydrogeologic input in producing the map,and the assignment of detectable chloroform concentrations to wells that have been non-detect for chlorofonn.. IUSA proposes to install two new temporary wells to the west and northwest of MW-4, as shown in Figure 5,to help delineate the extent of the plume to the west and northwest where control is poor.Additional wells to the east and south may be considered at a later time based on the results ofcontinued monitoring at the site. 3.4 Temporal Trends in Chloroform Concentrations and Relationship to Nitrate Figure 1 shows the chloroform concentrations over time measured in MW-4 and temporary wells near MW-4.As discussed in section 3.1,initial increases in most of the temporary wells are likely related to recovery from the drilling process which used primarily air as a drilling.fluid,and small amounts of water as needed to maintain circulation.Increases·at wells upgradient (north)of MW-4 are most likely due to recovery alone,while downgradient S:\STAFF\MRR\Chlorofonn]nvestigation\UpdateChlorofonn]nvestigationReport ]]_9_0]18 wells (south of MW-4)are expected to respond to both recovery and continued downgradient (southerly)plume movement.For example,the rapid increase in concentration at TW4-1 after installation could not likely have resulted from recovery alone,but must also have resulted from movement ofthe leading edge of the plume past that well.Increases in concentration from non- detect to 3,200 ~g/L at TW4-4 are also likely to have resulted primarily from continued plume movement to the south. Concentrations at upgradient wells TW4-5,TW4-9,and TW4-3 have stabilized or decreased after the initial increase related to recovery.Concentrations at lateral wells TW4-7 and TW4-9 are stabilizing.These trends are consistent with the initial interpretation ofa "slug" of chloroform entering the perched water over a relatively short period of time (1-2 years)and migrating downgradient toward MW-4,TW4-1,and TW4-4.The width ofthe plume near MW- 4 will be addressed by the installation oftwo new temporary wells to the west and northwest of MW-4. Figure 6·is a plot of nitrate concentrations over time at MW-4 and the temporary wells. There is a clear correlation between chloroform and nitrate concentrations which is consistent with a leach field origin.Figure 7 is a scatterplot of chloroform vs.nitrate through the June,2001 sampling,which illustrates this correlation. S:\STAFF\MRR\Chloroformlnvestigation\UpdateChloroformlnvestigationReport 11_9_01 19 4.COORDINATES REQUESTED BY UDEQ A copy ofestimated coordinates for the following locations was previously transmitted to UDEQ on September 7,2001,and was provided during the meeting on October 5.They are also provided in this report in Appendix C. •Former mill office building sanitary leach field, •Former mill office building laboratory wastewater holding tank and pipeline to Evaporation Cell 1. •Former office trash disposal area S:\STAFF\MRR\Chloroformlnvestigation\UpdateChloroformlnvestigationReport 11_9_01 20 5.PERCHED ZONE PERMEABILITY UDEQ has expressed concern about the permeabilities derived from the hydraulic tests at MW-4,and whether chloroform could have migrated from the abandoned scale house leach field to MW-4,and whether chloroform could have migrated from the abandoned scale house leach field to MW-4 via conglomeratic materials logged in temporary wells at the site,as suggested in the CIR.This section discussed the results of hydraulic testing at MW-4,the probable coincidence of a high permeability zone evident in the MW-4 test data with conglomeratic materials logged in nearby temporary wells,and the likelihood that these conglomeratic materials influence the flow ofperched water and transport ofchloroform near MW-4. 5.1 Permeability Distribution ofthe Perched Zone An updated perched zone permeability map is provided in Figure 8.The permeabilities plotted on the map are based on the results of pump and slug tests where available,or on constant head packer tests within the perched zone.Test results by Peel were used where available,except the value plotted for MW-4 (3.5 x 10-4 cm/s),which was based on a transmissivity of 38 ft2/day measured during a 1999 pump test by HGC.The saturated thickness at that time was calculated as 39 feet assuming a Brushy Basin contact at 108 ft bls.A detailed discussion ofte~ts at MW-4 will be provided in a report to UDEQ due on November 16. 5.2 Conglomeratic Zone Near MW-4 Varying thicknesses of conglomeratic material are present below the water table in all temporary wells north ofTW4-1 (Figure 9).The base ofthis zone is approximately 95 feet bls in TW4-1,and TW4-2,and approximately 88 ft bls in TW4-7.A higher permeability zone with a base at a depth of approximately 95 feet below top of casing (btoc)is evident in the drawdown data collected during a pump test by Peel at MW-4 in 1992 (UMETCO,1994).During the first S:\STAFF\MRR\Chlorofonnlnvestigation\UpdateChlorofonnlnvestigationReport 11_9_01 21 3 hours of pumping at a constant rate of 0.46 gpm,only about 2 liz feet of drawdown was measured.Then,as water levels dropped below approximately 95 feet btoc,the rate of drawdown increased by about a factor of 30.Similar behavior occurred in a test conducted at 0.92 gpm,except that the break in slope occurred in about half the time.This behavior is consistent with dewatering of a higher permeability zone having a base at 95 feet btoc near MW- 4 at about 3 hours into the test.This zone most likely coincides with the conglomeratic zone logged at nearby temporary wells.Because this conglomeratic zone is present below the water table at all wells north (upgradient)of TW4-1,and has a relatively high permeability based on the pump tests at MW-4,it likely influences the flow of the perched water,and therefore the transport ofchloroform,in the vicinity.Furthermore,the least productive temporary wells at the site,TW4-4 and TW4-6,have very thin conglomeratic zones that are located above the water table where they cannot at present affect the movement ofperched water at the site. A detailed discussion oftests at MW-4 and interpretation ofresults will be provided in a report to UDEQ due November 16. S:\STAFF\MRR\Chloroformlnvestigation\UpdateChloroformlnvestigationReport 11_9_01 22 6.ONGOING GROUNDWATER MONITORING AND REPORTING As stated in Section 5.1 of the CIR,the sampling results to date indicate that elevated chloroform concentrations are confined to a relatively narrow zone.Elevated chloroform concentrations have not moved significantly downgradient ofTW4-4. To ensure that samples collected from the temporary wells are representative of the perched groundwater,continued monitoring has been performed on a quarterly basis in the temporary wells (TWs)and in MW-4.Measurements have included depth to water,electrical conductivity,temperature,pH,and chloroform concentration.Nitrate has also been measured in temporary wells TW4-1,TW4-3,and TW4-4. Continued potential movement of the elevated chloroform concentrations is.being monitored using the new temporary wells,TW 4-4 and TW 4-6 located downgradient ofTW 4-1. Also,based on hydraulic conductivity estimates at MW-4,and the magnitude ofthe groundwater gradient,the travel times can be used to estimate the effective porosity of the perched zone in this vicinity. IUSA will continue to collect chloroform data for all of the wells involved in the chloroform investigation,including well MW-4,all the existing TW-4 series wells,and all future monitoring wells that are installed to delineate the area ofchloroform contamination. Table 1 is a summary of data collected to date from the TW-4 series wells.Quarterly analytical results which were not preciously transmitted to UDEQ in split sampling data S:\STAFF\MRR\Chlorofonnlnvestigation\UpdateChlorofonnlnvestigationReport 11_9_01 23 packages for data collected since the transmittal of the eIR to the present are included in Appendix D. To ensure adequate time for sample analysis,laboratory data validation,IUSA data validation,and reporting,IUSA proposes to submit the data,together with the quarterly summary report,to UDEQ in accordance with the following schedule: Quarter January -March April-June July -September October -December Submittal Due Date May 30 August 30 November 30 February 30 S:\STAFF\MRR\Chlorofonnlnvestigation\UpdateChlorofonnlnvestigationReport II_9_01 24 7.ADDITIONAL GROUNDWATER MONITORING PARAMETERS The primary purpose for measuring additional groundwater parameters within and near the chloroform plume should be to establish the likelihood that chloroform is degrading naturally (either chemically or biologically)within the perched water. The natural degradation pathway for chloroform is for chlorine atoms to be successively replaced by hydrogen under anaerobic,reducing conditions,via reductive dechlorination. Chloroform will degrade to its daughter product,dichloromethane (DCM)under these conditions,and may ultimately degrade to methane.The presence or absence of DCM would help establish whether or not this process is occurring at a significant rate. The presence ofnitrate concentrations in the perched water near MW-4 that are generally higher than the chloroform concentrations,however,indicates that groundwater conditions are not presently favorable for this process.Under conditions favorable for reductive dechlorination, nitrate will also be expected to degrade,.and at a higher rate than chloroform.For this reason, existing analytical data provides an indirect estimate of redox conditions,which do not appear favorable for reductive chlorination. 7.1 Dichloromethane Analytical Results From Split Sampling Previous split sampling analytical results indicate that DCM is not present in perched water near MW-4 at detectable concentrations (l ~g/L).This is consistent with conditions that are not favorable for reductive dechlorination of chloroform. ~. S:\STAFF\MRR\ChlorofonnInvestigation\UpdateChlorofonnlnvestigationReport I1_9_01 25 7.2 Direct Measurement of Redox Conditions in the Field At UDEQ's request,IUSA had evaluated the feasibility of obtaining relatively reliable measurements of reduction-oxidation potential (redox,or ORP)for groundwater,using field instruments.As described in the U.S.O.S.Field Manual,Chapter 6.5,in contrast to other field mesaurements,the determination of redox "should not be considered a routine measurement" and is "not recommended in general because ofthe difficulties inherent in its theoretical concept and its practical measurement"(see Appendix D).The U.S.O.S.notes that "Eh measurement may show qualitative trends,but generally cannot be interpreted as equilibrium values". Hydrolab Corporation,the supplier ofthe Hydrolab Surveyor 4a Instrument currently being used at the Mill for field measurement of pH,temperature,and electrical conductivity in groundwater, has indicated that the instrument's available redox electrode,which can be retrofitted to the Mill's instrument,has somewhat improved capability of measuring redox,as compared with earlier models.Hydrolab's Tech Note 204 listing parameter specifications is included in Appendix D.Response time is not specified on Tech Note 204,and IUSA will need to establish a procedure to determine at what point the redox value would be selected.Also,to avoid potential exposure to quinhydrone,the Mill would use Zobell solution to calibrate the new redox electrode,after it has been added to the instrument. 7.3 Feasibility ofEnhancing Reductive Dechlorination In-Situ Reductive dechlorination can be enhanced in-situ by adding substances such as hydrogen release compound,or substances that accomplish the same purpose such as molasses or ethyl alcohol,which release hydrogen during fermentation (Odom,Martin J et aI,1995),and mixing S:\STAFF\MRR\Chlorofonnlnvestigation\UpdateChloroformlnvestigationReport 11_9_01 26 them with the perched water.The mixing process will be facilitated at the site because temporary wells currently exist along almost the entire extent of the chloroform plume,with a number of wells completed in that portion of the plume with the highest chloroform concentrations.Existing data indicate that this process will be feasible,however additional data will be collected prior to making a final determination of the feasibility and developing a work plan for implementation. S:\STAFF\MRR\Chloroformlnvestigation\UpdateChloroformlnvestigationReport 11_9_01 27 TABLE 1 MW-4 and Temporary Perched Well Completion and Analytical Parameters TW4-1 TW4-2 TW4-3 TW4-4 TW4-5 TW4-6 TW4-7 TW4-8 TW4-9 MW-4 Approximate screened interval 70-110 80-120 67-97 72-112 80-120 57.5-97.5 80-120 85-125 80-120 92-112(feet bls) Chloroform (lJg/L)5.8 2,510 702 NS 29.5 NS 256 <1 4.2 NS(1st sampling) Chloroform (lJg/L)1,100 5,520 834 NS 49 NS 616 21.8 1.88 NS(2nd sampling) Chloroform (lJg/L)1,490 NS NS NS NS NS NS NS NS NS(3rd sampling) t;nlorOTorm (lJg/L)(initial sampling NS NS NS <0.5 NS <0.5 NS NS NS NSofTW4-4 and TW4-6) Chloroform (lJg/L)(4th Sampling) NS(2nd sampling of 2,230 5,220 836 <1 124 <1 698 102 14.2 TW4-4 and TW4-6) Chloroform (lJg/L)3,440 4,220 836 3.85 255 <1 684 107 39.4 6,470(11/00 sampling) Chloroform (lJg/L)2,340 3,890 347 2,260 236 <1 747 116 43.6 4,360(03/01 sampling) Chloroform (lJg/L)6,000 5,500 390 3,100 240 <1 1,100 180 59 6,300(06/01 sampling) Chloroform (lJg/L)NA 4,900 300 3,200 240 3.6 1,200 180 19 5,300(09/01 sampling) Nitrate (mg/L)7.79 10.7 1.97 1.02 3.16 <0.1 1.99 <0.1 <0.1 9.37(11/00 sampling) Nitrate (mg/L)7.15 10.2 1.85 14.5 3.88 0.13 2.46 <0.1 <0.1 8.77(03/01 sampling) Nitrate (mg/L)8.81 9.67 2.61 14.0 6.47 <0.1 2.65 <0.1 0.15 9.02(06/01 sampling) NS =not sampled NA =not analyzed H:/71800/chloroform table 1.xls 8.REFERENCES Cohen,Robert M and James Mercer.1993.DNAPL Site Evaluation.Library of Congress Harned,Herbert S and Benton BOwen.1950.The Physical Chemistry of Electrolytic Solutions.American Chemical Society Monograph Series.Reinhold Publishing Corp. International Uranium (USA)Corporation,and Hydro Geo Chern (HGC),2000.Investigation of Elevated Chlorofonn Concentrations in Perched Groundwater at the White Mesa Uranium Mill Near Blanding,Utah.Submitted to UDEQ. Odom,J Martin,Jo Ann Tabinowski,Michael D.Lee,and Babu Z.Fathepure,1995.Anaerobic Biodegradation of Chlorinated Solvents:Comparative Laboratory Study of Aquifer Microcosms.In Bioremediation o/ChlorinatedSolvents.Battelle Press. Schwarzenbach,Renee P;Phillip M Gschwend,and Dieter M Imboden.1993.Environmental Organic Chemistry.John Wiley and Sons. Titan,1994.Hydrogeologic Evaluation of White Mesa Uranium Mill.Submitted to Energy Fuels Nuclear. Umetco,1994.Groundwater Study,1~94 Update.White Mesa Facility,Blanding,Utah Submitted to United States Nuclear Regulatory Commission. U.S.Geological Survey,1998.Reduction-Oxication Potential (Electrode Method).Chapter 6.5, Field Manual.Available on-line at http://water.usgs.gov/owq/FieldManual/Chapter6/6.5 contents.html S:\STAFF\MRR\ChlorofonnInvestigation\UpdateChlorofonnInvestigationReport 11_9_01 28 EXPLANATION temporary perched well showing chloroform (uG/L)in NOTE:sample vial for tw4-1 broke in transit to the laboratory so no analysis was performed on 9/01 sample \\ ,/ /./ / eoo i:.-......~. :~;fr;A':,~( i\\.\ \\/.;' I' '. initial sampling second sampling third sampling fourth sampling 11/00 sampling 03/01 sampling 06/01 sampling 09/01 sampling perched monitoring well MW-4 showing chloroform (uG/L)in 6/01 and 9/01 samplings 6300 .5300 ()702 834 NS 836 836 347 390 300 CHLOROFORM ANALYTICAL RESULTS (uG/L) FOR TEMPORARY PERCHED WELLS (through september,2001) Approved Date Reference Figure 1 PROPERTYBOUNDARY - *ASSUMED TO BE AT EL£VATION OF BASE OF SCREENED INTERVAL ~~, ~'wW-19 5ii11 \\\\\\ \\\\\ MW-22. 5396 3000 PERCHED MONITORING WElL SHOWING TOP OF BRUSHY BASIN IN FEET (AMSL) o 5522 •MW-ll 5513 N 1 o SCALf:IN FEET EXPLANATION TEMPORARY PERCHED MONITORING WElL SHOWING TOP OF BRUSHY BASIN IN FEET (AMSL) --5400----CONTOUR LINE IN FEET (AMSL).DASHED WI-lERE UNCERTAIN CONTOUR MAP OF TOP OF BRUSHY BASIN WHITE MESA URANIUM MILL SITE Approved SS Revised Reference: 71800022 FIG.2 PROPERTYBOUNDARY ....:,~==5580~5570 ~~~--5560 ~~~~==5550_5540 5525 5530 ___0 ;;;:55;::22:""_5520 -=------:!~....,~W=? --__~...~-"-_-5500 -:::~-5490 --_"="'",......,,.......,.-5480 T37S ---__..LT~3~8L,;.S.2..-_-5470 TEMPORARY PERCHED MONITORING WELL SHOYtlNG WATER LEVEL IN FEET (AMSL)o 5522 II .....21 II II II II II N \.1IW-2D1\"":~~--~~--~~r---~-~!r.-_-~__-__-_~~_/ .'iiiiiiiiiiiiiiiiiil!!!!!!!!!!!!!!!!!!!!!!!!5iiiiiiiiiiiiiiiiiil'""-,.....-::,/5450 o 3000 1IW-22.,,II SCALE IN FEET 5445 /f/ EXPLANATION /f//7•MW-11 PERCHEO MONITORING WELL //5513 SHOYtlNG WATER LEVEL IN FEET (AMSL),J7 /7//7 ----5585 WATER LEVEL CONTOUR.DASHED WHERE UNCERTAIN WATER LEVEL CONTOUR MAP DECEMBER,2000 WHITE MESA URANIUM MILL SITE Approved 88 Reference: 71800020 FIG.3 PROPERTYBOUNDARY - 5470 T37S --.---------5490 1IW-1754891------5480 ~=__5580 '--"'::::'~-5570 .----556o \~~sm=5550..."5540 -~=--55.30 ----=~-5520 ------""=-..-=!i5jQ= '".p'"5500 TEMPORARY PERCHED MONITORING WELLSHOWINGWATERLEVELINFEET(AMSL)o 5522 •MW-ll PERCHED MONITORING WELL5513SHOWINGWATERLEVELINFEET (AMSL) SCALE IN FEET EXPLANATION ,\ '\•WW-20-__-!---5460 ~5461 ~~~~~~~~---=----- lii!iiiiiiiiiiiiiiiiiiiiiiil!!~!!!!!!!!5iiiiiiiiiiiiiiiiiiiiJ!o ~D ----5585 WATER LEVEL CONTOUR.DASHED YttlERE UNCERTAIN WATER LEVEL CONTOUR MAP SEPTEMBER -OCTOBER,2001 WHITE MESA URANIUM MILL SITE Approved SS Revised Reference: 71800032 FIG.4 EXPLANATION MW-4• tw4-1 ct perched groundwater monitoring well temporary perched groundwater monitoring well PROPOSED TEMPORARY WELL PROPOSED LOCATIONS OF NEW TEMPORARY PERCHED WELLS Approved Date Reference Figure 5 EXPLANATION NO =not detected at 0.1 mg/L /i\, ) \\ \ \'.\\. il../; i f'.i:"...L~:~.__....:':'::' i ; ! ) ,:::-<-~~;::;::~~+ j \\~,.J ..........,i.....'...\ ~ /'----_._.-~. .......'/I 11/00 sampling 03/01 sampling 06/01 sampling perched monitoring well MW-4 showing nitrate (mg/L)in 6/01 sampling temporary perched well showing nitrate (mg/L)in 1.02 14.5 14.0 9.02 () • NITRATE ANALYTICAL RESULTS (mg/L) FOR TEMPORARY PERCHED WELLS Approved Dale Reference Figure 6 600050004000300020001000 - - - --- - - - - - -_1 __:-----------1---~-----I I I ----1.--,'---------,- ____________~-------------j--------j i ------------1------------------- ,,-----'','r-----------''____________~-------------:i --i-------------~------------------- ,______I •IIIr___.1 I,''--------,'------------J--------:.:-:------------+-----.--------I ------r-----:I.I r ----,,-----''..-e : : e ---:----.-------:-----------:..e .,. ___________~----------:::--1-------------~---- ,---<--"--,----',',------->",',-----------''',''-+--------''-e----",----"---------~"------'------,',---+-.'-------",,----------,'',,--------'".'',---------''' ..._I •''- - --,-- - - - - - --''---e--'"' ' ' '----"-----':-------------f-------------~::--------:-----,',--------''',',-- - --,-- - --- --''1 I 1 1 ...1___1II-----.,"LI1----- 1 I 1 11I1III 2 12· 14 1 .--.. ::::::::::: (!J E...- (1) +oJ~6-:!:::: C 4 chloroform (uG/I) SCATTERPLOT OF CHLOROFORM VS NITRATE TEMPORARY PERCHED WELLS AND MW-4 Approved Date Reference Figure 7 o EXPLANATION PERCHED ZONE PERMEABILITY BASED ON PUMP AND SLUG TESTS.AND CONSTANT HEAD PACKER TESTS WHITE MESA URANIUM MILL SITE PERCHED MONITORING WELL SHOWING PERCHED ZONE PERMEABIUTY IN em/s A!!ITTI'!'I PERCHED ZONE PERMEA81UTY <10-5 em/s PERCHED ZONE PERMEA81UTY ~1<rem/s \Ulllll.llv NOTE:PUMP TEST (DRAWDOWN OR RECOVERy)RESULTSAREPLOTTEDWHEREAVAILABLE.WHERE NOT AVAILABLE,SLUG TEST OR CONSTANT HEAD PACKER TEST RESULTS ARE PLOTTED PERCHED ZONE PERMEABIUTY BETWEEN 10""4em/s AND 10-5 em/s •MW-11 1x10-3 (fjfJ) @............................ Approved SS Revised Reference: 71800024 FIG.8 ~,, 1600140012001000800600400200o LO 0)et).C\J I"--,.-.co I I I I I I I"¢"¢"¢."¢"¢"¢"¢ $:$:$:$:$:$:$:5650 j I ~I I •.__..I-._-...-l...... I I 1-_----J----~-."l.-.1-._-.-----J--J---l.-_.----~--..-._-~..-J--L--~--t-._ I .~--i'.--t--j..-,,----I I I·t--t--t--t·--_·-- 1 I I I"r--T--T--'T'"--"•• I I I I Ii'"I t..·... j Iii iii5500 co.~ >Q) Q)5550 15 5600 Q)---- EXPLANATION: approximate distance south (feet) m conglomeratic sandstone _----10/01 water table APPROXIMATE INTERVALS OF CONGLOMERATIC SANDSTONE LOGGED IN TEMPORARY WELL BORINGS Approved Date Reference Figure 9 APPENDIX A Vertical Profile Sampling Methods geotech· Environmental Equipment,Inc. Leaders in manufacturing and distributin9 ground and surface water sampling,analytical, filtration,.and remediation equipment. Bailers Geotech Pressurized Disposable Bailers Geotech Disposable Bailers are available in the following configurations: ORDER TODAY (800)833-7958 Disposable Accessories Geotech Reusable Bailers Geotech Disposable Bailers DISPOSABLE BAILERS REUSABLE BAILERS Product sampler forfloating hydrocarbons VOC sampler uses a unique design that allows sample transfer to VOA vials with minimal loss of VOCs Optional double check valve bailers isolate the sample,sealing as the bailer is removed from the well at specific depths ertified special clean disposable bailers aval a e upon request DISPOSABLE ACCESSORIES Manufactured under strict clean-room conditions -Made of virgin,FDA approved high-density poly resin -The polyethylene contains no plasticizers or additives,and no regrinds are accepted Improved bailer design -Geotech's ·Orbit Flux·design fills 33%faster than other bailers -V-notch design for trouble free cord attachment,and·accurate pouring Weighted disposable bailer as heavy as most double-weighted without the extra cost PVC white and clear -Diameters from .675·to 3.5·in lengths 12·to 60· -Recessed check and double check available Stainless Steel Geobailers -1"and 1.75·diameters are 36·long -Rugged and durable for well development Teflon®Geobailers -1.25·and 1.625·diameters are 36·long -Most inert material available Material Diameter Length Configurations Units/case Poly 75·36·,83·Weighted/Non Weighted 24 per case Poly 1.5·12·.36·,48·Weighted/Non Weighted/Pressurized 24 per case Poly 3·36·Weighted/Non Weighted 9 per case Teflon®1.5·12·.36·Weighted/Non Weighted 12 per case Clear PVC .46·, .75·,1.5"36·N/A ;30 per case Geotech·disp()~ableal1dreus.~IJlebailers are...ayanCJbJ~;jn;inany c()l1fig urati()l1§a.l1d·rrla~E!r~alsto meetyourspecificsanip1iogne~ds. ~_._'.'_'.:::·.:::;::'~".i....~.'.l."~:."····..-·.,,·-.L··.'.'.-'..,,-:.,':C,;._~:-,__,-,::.,,';-:"" Geotech Disposable and Reusable Bailers This special disposable bailer provides the convenience ofusing in-line dispos-a-filters'IM in the field even when pumps are not available.By using a pneumatic hand pump you can filter your samples directly from the bailer, saving time while maintaining sample integrity. Each bailer comes complete with a barbed hose adapter for attaching the hand pump to the top of the bailer, and a special adapter with a notched thread to be used with a dispos-a-filter'IM at the bottom.In order to dis- place the check ball and establish a smooth flow.an additional large barbed removal device is included for bot- tom emptying without filtering. Accessories Poly VOC tips for 1.5·diameter bailers 24 per case Poly VOC tips for 3·diameter bailers 9 per case Teflon®voe tips for 1.5·diameter bailers 12 per case Poly free prodUct samplers 24 per case APPENDIXB Use ofSoil Gas to Detect DNAPL ./ ./. \. '.'\"" ,.,") \.. ..... '-/'. '. ,.$.. .J -. ,.._.,'f'"• / ./-.,', i.'"",' '.J. /', !,. ". "'. .,;.',' ! . -' --.' 'to .}. '.. ~.. ./ ..•:I '\~\.~ '-.)=- -.- "-'"-, / ., /. ',. .'-,( 'r /.\.. '.' ./.. J :./ . J \- ,/'"'. .' './ , I i.,.< I '.... \/ ./'..c.-', ,/' /.'"::;'.,:.'J ..,',. ".·Gr-oundwater.-·Reso·u·rc·es \' .A~sociatio'n;'Presents :...><.'" \./.,.:...,.......~'~./'\.. ~. }. / \ I / ./ ! -: -:. .-' ~\. .....-:.J--- ,.,/:.- .\.' / :; -- '., '~ .' ...... / -'- "i \..... ,..:" -'- ....- '.'""/ \ ". .!......../'I,wedne~{iay,Septembet.14,.1997. McCJenan ~ir For<;:e Baser Sacrarnento~·California.-).-.'../'.'... .and _'.,Thurs'day,Sept~mb~r 25,'1997 I _WY!1dhartl Gareten :Hbt~~·Cos~Mes'a~~alif(irnia '. -..... .- I., nF l·A.L/I,}-nR~I"', ROUNhwATER RESOURCES ASSOClAll0:\ THE USE OF SOIL GAS DATA TO OBTAIN SOIL VOC CONCENTRATIONS AND TO IDENTIFY THE PRESENCE OF NAPL by Harold W.Bentley Hydro Geo Chern,Inc. 6905 E.·Ocean Blvd Long Beach,California 90803 Gary R.Walter Hydro Geo Chern,Inc. 1430 N.6th Avenue Tucson Arizona,85705 THE USE OF SOIL GAS DATA TO OBTAIN SOIL VO.C CONCENTRATIONS AND TO IDENTIFY THE PRESENCE OF NAPL 1.Conversion of Soil Gas Concentrations to Soil Concentrations The concentration of a vac in soil gas can be converte~to its total concentration in the soil by considering the equilibrium laws governing the partitioning of the vac between the gas,liqUid, and solid phases.The reasoning and methodology are as follows: Unless a separate liquid phase of vac,Le.,a NAPL,is present,the soil gas concentration is controlled by the distribution of-the vac between the soil,water and soil organic matter.If the moisture content in the soil is greater than 5%,normally the case,the vapor phase contaminant concentration will be controlled by its gas-water distribution coefficient,the Henry's Law coefficient (H).The Henry's Law coefficient can be written in its dimensionless form,Ho.The dimen~ionless Henry's Law coefficient relates the concentration of a compound in the vapor phase to its concentration in the aqueous phase Ho =CICw =HlRT.-p/S (1) where H R T Ps and S is the Henry's Law coefficient is the ideal gas constant is degrees Kelvin is the vac's vapor density (the vapor pressure of the pure liquid expressed as mass/unit volume). is the water solubility The aqueous-phase concentration will in turn be controlled by the distribution of contaminants between water and the solid soil matrix.This distribution is governed by KD,the water-solid distribution coefficient.Rarely is the direct distribution of contaminants between the.gas and solids important. If the'water-solid distribution is controlled by adsorption onto organic carbon,which occurs above organic carbon concentrations of approximately 0.001 (fraction),(Chiou and Shoup,1985) the water-solid distribution coefficient is K .%OC.oc 100 (2) where Cs Cw Koe foe is the concentration in the soli.d [mass VaC/mass solids] is the concentration in the water [mass VaC/volume water] is the water-organic carbon distribution coefficient is the fraction,by weight,of organic carbon in the soil c:\info.doc\sgs_soil.cnv 1 The total soil voe concentration (M/L3)is the sum of the mass/unit volume in each of t~three .( phases:. (3) where is the concentration inttle gas [MIV air] is the total concentration in the soil [MIV (bulk volume soil)] is the bulk dry soilderisity [MIV solid] is the total porosity . is the water filled porosity The ratio of a voe's total concentration in the soil.gas to its concentration in the soil is given by s.ubstituting (1)and (2)in (3)and dividing by bulk density (Pb)to convert soil concentration units from mass/volume to mas·s/mass: Ko 8w (8T -8w> -+--+ Ho HOPb Pb (4) where er is the total concentration in the soil (M/M) Table 1 presents an example of the results of using (4)to relate soil gas and soil concentrations. For each of the compounds listed,a soil gas concentration of 100 ~g/L was converted to the equivalent soil voe concentration .in ~g/kg.The soil parameters utilized in the calculation were foe(fraction)=0.005;total porosity (fraction)=0.40;volumetric moisture content.(fraction)=0.2; and dry soil bulk density (gm/cm3)=2.00. c:ljnfo.doc\sgs_soil.cnv 2 TABLE 1.CONVERSION OF SOIL GAS TO TOTAL SOIL CONCENTRATION .,.- COMPOUND Kodmllg)Henry's H *Kc·SGas-Soil Soil Gas SoilD Coeff.(H)(H/RT)(ml/g)Conversion Cone.Cone. Factor (~g/L)(~g/Kg) CCI4 110 2.41 E-2 1.0 0.55 0.75 100 75 Chloroform 31 2.87E·3 0.119 0.155 2.24 100 224 1,1 DCA 30 4.31E-3 0.179 0.15 1.50 100 150 1,2 DCA 14 9.78E-4 0.0407 0.07 .10.2 100 1020 1,1 DCE .65 3.40E·2 ·1.41 0.325 0.401 100 40.1 cis 1,2 DeE 49 7.58E·3 0.315 0.245 1.2 100 120 trans 1,2 DCE 59 6.56E·3 0.273 0.295 1.55 .100 155 1,1,1 TCA 155 1.70E·2 0.707 0.775 1.33 100 134 TCE 126 9.10E·3 0.379 0.63 2.03 100 203 PCE 364 2.59E·2 1.08 .1.82 1.88 100 18 Vinyl Chloride 57 8.19E·2 3.41 0.285 0.212 100 21.2 Benzene 83 5.59E·3 0.233 0.415 2.31·100 232 Ethyl Benzene 1100 6.43E-3 0.267 5,5 19.4 100 1940 Toluene 300 6.37E·3 0.265 1.5 5.86 100 586 Xylene 240 7.04E·3 0.293 1.2 4.53 .100 453 *Roy·:·:&Griffin,1989.-1,1,1 TCA *Montgomery &Welkom,1990 -all others. It can be showri by sensitivity analysis of (4)that for ·all put the most water-soluble compounds,the ratio of soil gas to total soil concentration is most sensitive to 1<0,next to Ho, and that the other parameters have relatively little effect.Thus,for all but the most quantitative applications,the soil parameter important in calculating the conversion of soil gas concentration to total soil concentration is total organic carbon.Reasonable estimates of moisture content, porosity,and bulk density,the additional soil parameters,will be sufficient for most purposes. c:ljnfo.doc\sgs_soil.cnv 3 .f .,i;.:;~..~~~;. .>.....,:.::~;",-.o,. '::;..~j .:;c:.i, " """~'"..CD"""".."' •-""0- Eas UJ---~o·LLUJ~ UJ ~I ~CIJIn~~'-'as ".... E "+0--.....-.c ...., ().......";:at C\1 ~:I:'t- CD Q)~tn...::s as"-m0+"0 --- t/)";:0 en en •e • _•"Q).casQf CD:E .a "I .c:-.......at Q)...., II ~..0a_ E 0 C)"C) 0 ..0 0...............E E ECD..J 0 0 0 c CD.c I- <D Q).,- ::J:2>.u. ,'.' ,'" ~. ,~: ,~, "t. /' ".:1., .... 2:Predicting the Presence of NAPL from Soil Gas Concentrations Equation 4 is valid inmost soil gas applications,butcal")under predict a total soil concentration in cases where a separate non-aqueous liquid phase is present.The total VOC soil concentration is then a function of the VOC concentration in the NAPL and the amount of NAPL in the soil.In such a case,although Equation 4 continues to account for the VOC's partitioned into soil,water,.and soH gas,it does not account for the VOCsdissolved .in lhe NAPL.Where'NAPL is present,the prediction of VOCsoil concentrations from s'oil gas •concentrations is not possible be'cause the vapor pressure ofa VOCin the NAPL is a function of-its concentration in the NAPL"and the amount of NAPLis generally unknown. •Wheria VOC'concentration in the NAPL is high,its distribution between the NAPL and the gas'phase can·be estimated by Raoult's Law Ps is the vapor density (pure-compound vapor pressure)of the ithvoe . Xj is the mole.fraction of the ith VOC where and C'!(i)(5) (6) Where n is the number of compounds in the NAPL... .,. Assuming the NAPL is composed of VOCs,that is,each of the.dissolved. compounds has a reasonable vapor pressure,the substitution of (5)int6 (6)yields .~'Cg .(1).1L,•t.'·Ps (I)(7) Thus,'in a soil NAPL zonewhere the NAPLis composed entirelyofVOCs, the sum of the quotients of soil gas concentrations divided by their respective pure-compound vapor pressure should apprClach .1.'However,a lower than the theoretical value of 1.0 for the summation in (7)should.be used to indicate the presence of a 'NApL in unsaturated soils.In water saturated soils,'because of attenuation by advective and diffusive processes,only 1%of the saturated solubility of a groundwater contaminant is the criterion used to determine the presence of NAPL in groundwater (Feenstra and others,1991),Soil gas is less likely to be attenuated by C!dve.ctive processes,and the diffusive transport of a gas borne compound is . much more effective than that of a compound dissolved in water,both'processes leading toa largerzone of dete;ction for son.g·assources.Thus a larger criterion than the 1%ofthe. 4 '.I theoretical value is appropriate.We suggest,based on observations at a number of soil gas sites,that 10%of the theoretical value be used to determine that a NAPL as present at a soil gas sampling location.The appropriate criterion,therefore,is ;'; n L ).1 Cg (i) Ps (/) 0.1 (8) As an example of the use of this criterion,suppose that the soil gas data obtained at a point location are PCE TCE Cis 1,2·DCE =2,500 ~g/L=4,200 ~g/L=10,000 J.lg/L The calculations utilizing Equation 8 are summarized in Table 2. -TABLE 2.EXAMpLE OF USING SOIL GAS TO DETERMINE NAPL PRESENCE<' C\oil Gas Vapor Pressure Molecular Conversion Factor·Vapor Observed Crlps'".1alyte '(mm)Weight (g)[J.lg/(mm·L'g))Density Ps,Concentration (@20 0c)(~g/L )Co (J.lg/L) PCE 14 165.8 54.7 '127,000 2,500 0.02 TCE 19 131.4 54.7 137,000 4,200,0.03, 1,2 cis DCE 180 97 54.7 955,000 '10,000 0.01 SUM of CrlPs 0.06 According to this calculation.the soil gas concentrations divided by their respective pure-solvent vapor pre,ssures sum to less than 0.1.Thus NAPL is not present where this soil gas probe was located,and the con-centrations of PCE,TCE.and 1,2 cis DCE at this location can be calculated by the methods summarized in Table 1. References Chiou.C.T.and T.D.Shoup,Environ.Sci.TechnoL 1985,19,1196. Fe~nstra,S.,D.M.McKay,and J.A.Cherry,1991.A method for assissing residual NAPL based on organic concentrations in soil samples c:lJnfo.doc\sgs_soil.cnv 5 ~:~'!:• ..Use of Soil Gas to Determine The Presence of NAPLs in Soils .When a vae concentration in the NAPL is high, its distribution between the NAPL and the gas phase is described by Raoult's Law C g (i)=Ps Xi where Ps is the vapor density of theith vac . and Xjis the mole fraction of the ·ith VO·C . Figure 12 .. ."The sum of them,oJefractions of compounds '.dis'so,lved in ,a NAP~(or any liquid)ls"equalto1: n,Exi ,=1.0, 1=1 Where n is the number of compounds in the NAPL~ Assuming the NAPL ~s cO'mposed of VOCs ,that is" each of the dissolvecj comp'ounds has a,r~asonable vapor pressure,these two ~quatioris may be'.. combined as: ..t·Cg (~)=1.0 1=1 Ps (I), Figure 14 A lower value,than the theoretical value of 1,.0 should be used to determine that a NAPL is present.The lower value is c;lppropriate for much the same reason that only 1%of the saturated solu~ility o1.a groundwater con.taminant is used to determine the presence of NAPL in groundwater (Feenstra et a1.,1992). Figure 1'5 The choice of the proper value is somewhat arbitrary.A larger value than the 1%used for groundwater is reasonable because soil gas components are less likely than groundwater solutes to be attenuated by advective processes and because the diffusivity of a gas borne compound,which widens the area of detection,is much greater than that of a compound dissolved in water.We suggest,based on observations at a number of soil gas sites,that 10 %of the theoretical value be used to determine that a NAPL is present at a soil gas . sampling location.The appropriate criterion is .n C(/) The Presence of NAPL Is Indicated By:L g ~0.1 H Ps (I) Figure 16 APPENDIXC Coordinates Requested by UDEQ Approximate Coordinates Misc.Features·White Mesa Mill Site Revised using 2001 Topographic Map (all coordinates are approximate) Feature EastingNorthing Elevation Tailings Cells·Appproximate Boundaries Ruin Spring 2574294 310375 Cottonwood Spring 2570024 317880 Westwater Spring 2574166 321692 Water Well #1 Test Well Jones Well Jet Pump 2580084 323314 2580945 322687 2581252 318910 2581250 329460 5391 5238 5493 Cell No.Easling Northing 1-1 NW 2577460 323190 NE 2579365 323145 SE 2579355 322078 SW 2576795 322150 A 2576880 322415 2 Former Leach Field (near office) NW 2580274 322228 NE 2580369 322228 SE 2580369 322128 SW 2580274 322128 Old Leach Field (scale house) NW 2580765 322279 NE 2580786 322279 SE 2580786 322223 SW 2580765 322223 Current Leach Field (east of Mill yard) NW 2581224 322530 NE 2581324 322530 SE 2581324 322370 SW 2581224 322370 Dimensions (ft.x ft.) 95 100 Area (sq.ft.)9500 Dimensions (ft;x ft.) 21 56 Area (sq.ft.)1176 Dimensions (ft.x ft.) 100 160 Area (sq.ft.)16000 NW 2576795 322150 NE 2580210 322040 SE 2580210 320745 SW 2576845 321680 3 NW 2576845 321680 NE 2580210 320745 SE 2579593 320100 SW 2576015 320825 4A NW 2577883 320411 NE 2579593 320100 SE 2578860 319021 SW 2577469 319266 Land Fill NW NE SE SW 2581040 322915 2581115 322915 2581115 322785 2581040 322785 Dimensions (ft.x ft.) 75 130 Sedimentation Pond NW 2579420 322645 .NE 2579465 322645 A 2579465 322400 B 2579555 322355 SE 2579555 322175 SW 2579420 322175 Lab Waste Holding Tank 2580085 322408 Abandoned Monitor Wells,Bore Holes,and Angle Holes Feature Easling Northing Elevation (all coordinates are approximate) MW·13 2577590 319547 5570 MW·6-1 2578895 320530 5588 MW-6-2 2578895 320530 5588 MW-7·1 2578125 320886 5588 MW-7·2 2578125 320886 5588 MW·8-1 2577265 320925 5590 MW·8·2 2577265 320925 5590 D & M 3 2580092 322720 5634.3 D & M 9 2581380 327365 5679.3 GH-94·1 2576459 320549 5597 GH-94·2J 2577257 320385 5585 GH-94·3 2577245 320046 5579 GH·94-4 2577365 319598 5572 D&M 122578314 326932 5648.1 D & M282577380 317340 5547.6 11/0912001 9:25 AM APPENDIXD Analytical Results i,1lll1:1tt?W gt&l."§u.UlII' Billings·Casper.Gillette Helena·RapidCity ENERGY LABORATORIES,INC. SHIPPING:2393 SALT CREEK HIGHWAY •CASPER,WY 82601 MAILING:P.O.SOX 3258 •CASPER.WY 82602 E-mail:casper@energylab.com •FAX:(307)234·1639 PHONE:(307)235-0515 •TOLL FREE:(888)235-0515 LABORATORY ANALYSIS REPORT Client:INTERNATIONAL URANIUM (USA)CORPORATION Project:White Mesa Mill Contact:Wally Brice Sample Matrix:Liquid,Water Date Received:04-02-01 Report Date:April 9,2001 Laboratory ID Sample Date /Time Sample ID Nitrate +Nitrite as N, mglL 01-31914-1 03-26-2001 14:02 WMMTW4-11 <0.10 01-31914-2 03-26-2001 15:49 WMMTW4-15 <0.10 . 01-31914-3 03-29-2001 11 :08 WMMTW4-12 10.0 01-31914-4 03-29-2001 12:38 WMMMW4 8.77 tprl1f1-r£l;.,-/1 i~4.f.-del bk".[(~rCL.J:.). t.elIlJ\MTLU -,I>e...£.<:p •- Quality Assurance Data Method EPA353.2 Reporting Limit 0.10 RPD 1 1.0 Spike2 96 Analyst rwk Date/Time Analyzed 04-04-2001 17:13 - NOTES: (1)These values are an assessment ofanalytical precision.The acceptance range is 0-20%for sample results above 10 times the reporting limit.This range is not applicable to samples with results below 10 times the reporting limit. (2)These values are an assessment ofanalytical accuracy.They are a percent recovery of the spike addition.ELI performs a matrix spike on 10 percent ofall samples for each analytical method. msh:r:\reports\clients2001\international_uranium_corp\1 iquid\31914-1-4.xis 7':)....~.-~..,....:-'t:i:..:'~..Jn -::~."~.'Of •••••'.~....;,..:",Ii '.v. COMPLETE ANALYTICAL SERVICES ."1 ."'oJ'. ~aD.j ••ES s:a •Billings o Casper o Glllelle o Railid City ENERGY LABORATORIES,INC.'S CHAIN OF CUSTODY RECORD Mail Dilly:PO Box 3258 •Casper,WY •82602-3258 UPSIFe(IEx Deliveries:2393 Salt Creek Hig1lway •Casper,WY •82601 loll.li-ee 1-888-235-0515 "(lice 307-235-0515 fax 307-23:1-/639 Special Requests Comments,Special Instructions,etc. I .------ /""\lVI...... ~'-wi '0 'oS~ (SEE BACK OF FORM FOR EXAMPLES AND INSTRUCTIONS) j....~ ~;i1 Type of Analyses Requested c '-'I f"re'Q.~"J/L~~~~.~SI .,'"....;:..t:~c,,'~"'7)\C(\L.{ 8 ==~'.. ".::-.==-,C)~~....~:.::::'ll ~c;)~~I~If:,,~~t eSSl ~~~I.~"=1 FeU"Sample Tracking Pm"llOSeS,Please Provide Contact Name and Telephone #'s as Indicated ~~'lh ;/e·l1_Jf(;II/lAz~5.tkr 1'71 EIuJI,."If,T 89SJi Name /Phone #7 Fax fI J 'll 'll -·a ~ Dale I Time'I 2.~'-'--------t:f.P=Il~~~.,LL7Jtt: If:oC:l Send Report to:c:._...IL ..•"-_;::"8 ~~~~~b.() Sample I.D,'BKMt'T,:"\.sI-J'f ~( Project Name I Location I Purchase Order #I Bid H v,~I..)~1tJ,/1 '''\0z.1 1v1 JA)MW\~a)LJ-,t k):-~/t\e- -~._-_.u~=W~~_~1~rff~~==~~~·~6.ld~L~"L:l~)~_~'-'=-'-"~"='''-=''="='=t=tj~E~~f-I Ikc.:civcd hy:(Sil!lIalllr.:)TimeDille 4.Relinquished hy:(signatunl) 2.Rclinquished hy:(sigmllure) Received hy:(signature) Received hy:(signature) Timc Tilllc Date Datc 'signatlll'c) i "~Iiti)o#i~,~/~I I I I .1 _ .,Energy Laboratories,Inc• SAMPLE CONDITION REPORT \ This report provides information about the condition of the sample{s),and assocated sample custody information on receipt at the laboratory. Client:International Uranium (USA)Corporation Description:"WATER Lab ID{s):01-31914-1 Thru 01-31914-4 Matrix:Liquid Delivered by:ups Date&Time Rec'd:02-APR-01 1000 Date&Time Col'd:26~MAR-01 1402 Received by:Sara Hawken Logged In by:Sara Hawken Chain of custody form completed &signed: Chain of custody seal: Chain of custody seal intact: Signature match,chain of custody vs.seal: Sample received Temperature: Samples received within holding time: Samples received in proper containers: Samples Properly Preserved: Yes No N/A N/A SC Yes Yes Yes· Comments: Comments: Comments: Comments: Comments: Comments:. Comments: Comments: Bottle Types Received:~4_-=1=6=o=z~p~n~f~h=2=s=o4~___ Comments: :--,--"'0,-..-\t,:.;:r·,• Energy Laboratories,Inc. REPORT PACKAGE SUMMARY FINAL PAGE Acronyms and Definitions ELI-B Energy Laboratories,Inc.-Billings,Montana ELI-G Energy Laboratories,Inc.-Gillette,Wyoming ELI-H Energy Laboratories,Inc.-Helena,Montana ELI-R Energy Laboratories,Inc.-Rapid City,South Dakota co -Carry over from previous sample ip Insufficient parameters N/A -Not Applicable NA -Not Analyzed ND -Analyte Not Detected at Stated Limit.of Detection NR -Analyte Not Requested NST -No Sample Time Given NSD -No Sample Date Given This Package Contains the following Client ID(s)and Lab ID(s) Client ID:WMMMW4 is associated to Lab ID:01-31914-4 Client ID:WMMTW-11 is associated to Lab ID:01-31914-1 Client ID:WMMTW-12 is associated to Lab ID:01-31914-3 Client ID:WMMTW-1S is associated to Lab ID:01-31914-2 Approved By:Reviewed By: 'a-..._ "~','...:.::-,"-- .'•",i.:.•.• This is the last page of the Laboratory Analysis Report. Additional QC is available upon request. The report contains the .number of pages indicated by the last 4 ~gf ~.r ::.n0;'-;.::05 ,;m ::IrVtftj Rt&t.Ula.un,. Billings·Casper·Gillette Helens.Rapid City ENERGY LABORATORIES,INC. SHIPPING:2393 SALT CREEK HIGHWAY •CASPER,WY 82601 MAILING:P.O.BOX 3258 •CASPER,WY 82602 E-mail:casper@energytab.com •FAX:(307)234·1639 PHONE:(307)235-0515 •TOLL FREE:(888)235.Q515 LABORATORY ANALYSIS REPORT Client:INTERNATIONAL URANIUM (USA)CORPORATION Project:White Mesa Mill Contact:Wally Brice Sample Matrix:Liquid,Water Date Received:04-02-01 Report Date:April 9,2001 .Laboratory In Sample Date /Time Sample ID Nitrate +Nitrite as N, mg/L 01-31913-1 03-29-2001 09:32 WMMTW4-1 7.15 01-31913-2 03-29-2001 11 :08 WMMTW4-2 10.2 01-31913-3 03-28-2001 17:35 WMMTW4-3 1.85 01-31913-4 03-27-2001 09:02 WMMTW4-4 14.5 01-31913-5 .03-28-2001 11:04 WMMTW4-5 3.88 01-31913-6 03-26-2001 16:20 WMMTW4-6 0.13 01-31913-7 03-27-2001 14:56 WMMTW4-7 2.46 01-31913-8 03-27-200116:54 WMMTW4-8 <0.10 01-31913-9 03-27-2001 11:20 WMMTW4-9 <0.10 01-31913-10 03-26-2001 14:01 WMMTW4-10 <0.10.... Quality Assurance Data Method EPA 353.2 Reporting Limit 0.10 RPD1 0.8 Soike2 94 Analyst rwk Date/Time Analyzed 04-04-2001 15:30 NOTES: (I)These values are an assessment ofanalytical precision.The acceptance range is 0·20%for sample results above 10 times the reporting limit.This range is not applicable to samples with results below 10 times the reporting limit. (2)These values are an assessment ofanalytical accuracy.They are a percent recovery ofthe spike addition.ELI performs a matrix spike on 10 percent ofall samples for each analytical method. msh:r:\reports\c1ients2001\intemational_uranium_corp\liquid\31913-1-1O.xis -:-:-":"\:~.•...•~.'..,....... ~.".,-~.".".....".~:\r::::-~.~:!.,-.......'0"_' COMPLETE ANALYTICAL SERVICES;'.... ;~"';~-.;",....:"":." "'}••:..'~••.'.:"_I ._ "~'~))c(1"-::/0)-.. ~•lIi11ings ENERGY LABORA TORIES,INC.'S CHAIN OF CUSTODY RECORD (011 free 1-888-235-0515 •Casper Mail O"'y:1'0 Box 3258 •Caspe,.,W}'•82602-3258 I'o;ce 307-135-0515 •Gillellctt;t:I.J;&U.UUD •Railid City UPS/FettEx Deliveries:2393 Salt Creek Highway •Caspe,.,WY •82601 fax 307-234-1639 For Sample Tracking Pm'poses,Please Provide COllt~~t Name.and Telephone #'s as Indicated (SEE IlACK OF FORM FOR EXAMI'LUS ANO INSl'RUCl'IONS) Project Name I Location I Purchase Order #I Bid #t /Special Refluests ~Type of Analyses Requested {..(..(h)~:te..t'\~\\\.\\/W2.S"S.~.At gJ~'Iv.lJrB*lnl o~1 I ~.,"""t..,~..',:::>.5 Name I Phone #I Fax /I \,J "~~....:::.s:: ~tttJ 5t\Ut./M~S)t..~-'l:."2.c..\/(Lf:!ant-":f8-l.u,tf- S ··s.=:'-)'5~~~u to J 'Send Invoice to:::c~(c-~::>1 IU ~p~.!ote.80C1 ~~~iIU~"5.~~~~d.t~tUT~"'C.\>A::I ~,~E:,,~Date Time ~~~4\~-1?.Q"&ie ::s-o~~~I~>A::I Send Report to:~.4~~~u e ~-::tl <-Comments,Specialb.<l .~ Sample I.D.IAJ".Itf~/tltdl.'II -..:1 .,rlnstructions,etc. :3~~1 ~V t\l;\ro:\-e...a. .,. I'••1 .tw&t- 31lJi 01 IHDf>V h.\MMTIO+z...3kSI .1'13S V V- II lUM\\\TIUl\...:3~L'I ----, !Nlbl t:liD'Z-V .~- $jA ..- 1104 V )~wtr~~-"/u,1~;20 V 11~W1"'1WL\-~'--'"··'31r:;~l~V ./,\""'"-n.v\:...:r --~.~J-r.i'l 1/,51 .. V I'-...,8I •U'VIP,I l.()Lt-f---fi:>"twrnu tl-tl --_.~k;.tlllfitl;lO V .0;.....~rJ.la4b\J/"LVR1lJ1'1I\)Ll-,O ~.. .i ) ,.; ·1 -).,I.Sampler:(signature)Date Time Received by:(signature)2.Relinquished by:(signature)Date Time Rctcived hy:(signalurc) ,L\~...:l:u..rJ ~!~tfJc>O -3.Rclil1l~Shed hy':(sigmllllre) --... Date Timc Rcceived by:(signature)4.Relinquished by:(signature)Date Tillie r,;"""!.1~,unuu""I'''' ..\). ...J~/Illre) .'J {till {}1 'O'{H "J ...(;~.,>;. .1//1 . ...,t.....'I :,.'.){Ii -"/'.',-it ()t'/} / •• Energy Laboratories,Inc. SAMPLE CONDITION REPORT This report provides information about the .condition of the sample (s),and assocated sample custody information on receipt at the laboratory. Client:International Uranium (USA)Corporation Description:WATER Lab 1D(s):O~-3~9~3-~Thru 01-31913-10 Matrix:Liquid Delivered by:ups Date&Time Rec'd:02-APR-Ol 1000 Date&Time Col'd:29-MAR-Ol 0932 Received by:Sara Hawken Logged In by:Sara Hawken Chain of custody form completed &signed: Chain of custody seal: Chain of custody seal intact: Signature match,chain of custody vs.seal: Sample received Temperature: Samples received within holding time: Samples received in proper containers: Samples Properly Preserved: Bottle Types Received:lO-16oz p nf h2so4 (a) Comments: Yes No N/A N/A SC Yes Yes Yes· Comments: Comments: Comments: Comments: Comments: Comments: Comments: Comments: -~Ii!..""~..'0,'......~~••,••...•\r.~...._..••~_.•.Q.•14~""......:.~._:.:}.--- • .; Energy Laboratories,Inc. REPORT PACKAGE SUMMARY FINAL PAGE Acronyms and Definitions ELI-B Energy Laboratories,Inc.-Billings,Montana ELI-G Energy Laboratories,Inc.-Gillette,Wyoming ELI-H Energy Laboratories,Inc.-Helena,Montana ELI-R Energy Laboratories,Inc.-Rapid City,South Dakota co -Carry over from previous sample ip Insufficient parameters N/A -Not Applicable NA -Not Analyzed ND -Analyte Not Detected at Stated Limit of Detection NR -Analyte Not Requested NST -No Sample Time Given NSD -No Sample Date Given This Package Contains the following Client ID{s)and Lab ID{s) Client ID:WMMTW4-1 is associated to Lab ID:01-31913-1 Client 10:WMMTW4-10 is associated to Lab ID:01-31913-10 Client ID:WMMTW4-2 is associated to Lab IO:01-31913-2 Client ID:WMMTW4-3 is associated to Lab IO:01-31913-3 Client ID:WMMTW4-4 is associated to Lab ID:01-31913-4 Client ID:WMMTW4-5 is associated to Lab ID:01-31913-5 Client ID:WMMTW4-6 is associated to Lab IO:01-31913-6 Client ID:WMMTW4-7 is associated to Lab IO:01-31913-7 Client 10:WMMTW4-8 is associated to Lab ID:01-31913-8 Client 10:WMMTW4-9 is asso~iated to Lab ID:01-31913-9 Reviewed By::z.:.~X;>-·t:~t;.~ ::;-,;;.~..:....'~:,... Approved By: This is the last page of the Laboratory Analysis Report. Additional QC is available upon request. The report contains the.number of pages indicated by the last 4:~~g~~~'3 200 G05 · Quality Assurance Data Method EPA 353.2 Reporting Limit 0.10 RPD1 0.8 Spike2 94 Analyst rwk Date/Time Analyzed 04-04-2001 15:30 NOTES: (1)These values are an assessment ofanalytical precision.The acceptance range is 0-20%for sample results above 10 times the reporting limit.This range is not applicable to samples with results below 10 times the reporting limit. (2)These values are an assessment ofanalytical accuracy.They are a percent recovery ofthe spike addition.ELI performs a matrix spike on 10 percent ofall samples for each analytical method. msh:r:\reports\c1ients2001\international_uranium_corp\liquid\31913-1-10.xls 01-31914-1 03-26-200114:02 WMMTW4-11 <0.10 01-31914-2 03-26-2001 15:49 WMMTW4-15 <0.10 01-31914-3 03-29-200111:08 WMMTW4-12 10.0 01-31914-4 03-29-2001 12:38 WMMMW4 8.77 Quality Assurance Data Method EPA 353.2 Reporting Limit 0.10 RPD1 1.0 Spike2 96 Analyst rwk Date/Time Analyzed 04-04-200117:13 NOTES: (1)These values are an assessment ofanalytical precision.The acceptance range is 0-20%for sample results above 10 times the reporting limit.This range is not applicable to samples with results below 10 times the reporting limit. (2)These values are an assessment ofanalytical accuracy.They are a percent recovery ofthe spike addition.Ell performs a matrix spike on 10 percent ofall samples for each analytical method. msh:r:\reports\c1ients2001 \international_uranium_corp\liquid\31914-1-4.xls LABORATORY ANALYSIS REPORT,EPA METHOD 8260 Volatile Organic Compounds Client: Project: Sample ID: Laboratory 10: Matrix: Dilution Factor: International Uranium (USA)Corporation WHITE MESA MILL WMMTW4-1 01-31916-1 Liquid -WATER 200 Date Sampled: Time Sampled: Date/Time Received: Date Analyzed: Date Reported: 03-29-01 09:50 04-02-01 10:00 . 04-04-01 April 12.2001 67-66-3 Chloroform (Trichloromethane)2,340 100 ND -Analyte not detected at stated limit ofdetection INTERNAl.STANDARDS Pentafluorobenzene Fluorobenzene 1,4 -Difluorobenzene Chlorobenzene -dS 1,4 -Dichlorobenzene -d4 AREA 1166070 2433645 . .1769122 1189063 473744 ICAL/CCAL AREA 1150521 2388861 1775533 1163446 458787 PERCENT RECOVERY 101% 102% 99.6% 102% 103'% ACCEPTANCE RANGE 50.;.200% 50-200% 50 -200% 50-200 % 50-200% rIo SYSTEM MONITORING COMPOUNDS Dibromofluoromethane Toluene -d8 4 •Bromofluorobenzene 1.2 -Dichlorobenzene -d4 METHODS USED IN TIDS ANAlYSIS; EPA 5030B,EPA 826GB CONCENTRATION 9.45 10.3 9.91 9.90 PERCENT RECOVERY 94.5% 103% 99.1% 99.0% ACCEPTANCE RANGE 86 -118 % 88 -llO % 86 -115 % 80 -120 % Analyst:--------- I.ABORATORY ANALYSIS REPORT,EPA METHOD 8260 Volatile Organic Compounds Client: Project: Sample 10: Laboratory 10: Matrix: Dilution Factor: International Uranium (USA)Corporation WHITE MESA MILL WMMTW4-2 01-31916-2 Liquid -WATER 200 Date Sampled: Time Sampled: Date/Time Received: Date Analyzed: Date Reported: 03-29-01 11:12 04-02-01 10:00 04-04-01 April 14,2001 ....67~3 .Chloroform (Trichloromethane)3,890 ...'"ioo . ND -Analyte not detected lit stiltedlimit ofdetection UVTERNALSTANOABDS Pentafluorobenzene Fluorobenzene 1,4 -Difluorobenzene Chlorobenzene -dS 1,4 -Dichlorobenzene -d4 'AREA 1154034 2407856. 1752960 1171985 471262 ICAL/CCAL AREA 1150521 2388861 1775533 1163446 458787 PERCENT RECOVERY 100% 101% 98.7% 101% 103% ACCEPTANCE RANGE 50-200% 50-200% 50-200% 50-200% 50-200% rlo SYSTEM MONITORING COMPOUNDS Dibromofluoromethane Toluene-d8 4 -Bromofluorobenzene 1,2 -Dichlorobenzene -d4 MEmODS USED IN TlDS ANALYSIS; EPA 5030B,EPA 8260B CONCENTRATION 9.36 10.3 9.93 9.88 PERCENT RECOVERY 93.6% 103% 99.3% 98.8% ACCEPTANCE RANGE 86-118 % 88 -110 % 86 -115 % 80 -120% Analyst:-------, ~. LABORATORY ANALYSIS REPORT.EPA METHOD 8260 Volatile Organic Compounds Client: Project: Sample ID: Laboratory ID: Matrix: Dilution Factor: International Uranium (USA)Corporation WHITE MESA MILL WMMTW4-3 01-31916-3 Liquid -WATER 100 Date Sampled: Time Sampled: Date/Time Received: Date Analyzed: Date Reported: 03-28-01 17:56 04-02-01 10:00 04-04-01 Apri114,2001 67-66-3 Chloroform (Trichloromethane)347 .SO.O ND-Analyte not detected atstated limit ofdetection INTERNAl.STANDARDS Pentafluorobenzene Fluorobenzene 1,4 -Difluorobenzene Chlorobenzene -dS 1,4 -Dichlorobenzene -d4 AREA 1158619 2404030 1745382 1175904 472736 ICAL/CCAL AREA 1150521 2388861 1775533 1163446 458787 SYSTEM MONITORING COMPOUNDS Dibromofluoromethane Toluene -d8 4 -Bromofluorobenzene 1,2 -Dichlorobenzene -d4 CONCENTRATION 9.48 10.3 10.1 9.85 PERCENT RECOYERY 94.8% 103% 101% 98.5% ACCEPTANCE RANGE 86 -118 % 88 -110 % 86 -115 % 80 -120 %. METHODS USED IN DDS ANALYSIS; EPA 5030B,EPA 8260B rio .Analyst:-------sec:r:\rcpons\Cliem.s200l\intemationaLuranium_corp\casper_org\31916-1-19_826011_chlorofonn_I-w.xls LABORATORY ANALYSIS REPORT,EPA METHOD 8260 Volatile Organic Compounds Client: Project: Sample ID: Laboratory ID: Matrix: Dilution Factor: International Uranium (USA)Corporation WHITE MESA MILL WMMTW4-4 01-31916-4 Liquid -WATER 200 Date Sampled: Time Sampled: Date/Time Received: Date Analyzed: Date Reported: 03-27-01 09:00 04-02-01 10:00 04-06-01 April 14,2001 67~3 Chlorofonn (Trichloromethane)2,260 100 ND -Analyte not detected III stilled limit ofdetection INTERNAl.StANDARDS Pentafluorobenzene Fluorobenzene 1,4 -Difluorobenzene Cblorobenzene -d5 1,4 -Dichlorobenzene -d4 AREA 980162 2227683 . 1572210 1044788 410680 ICAL/CCAL AREA 1150521 2388861 1775533 1163446 458787 SYSTEM MONITORING COMPOUNDS Dibromofluoromeiha:ile Toluene·d8 4 -Bromofluorobenzene 1,2 -Dichlorobenzene -d4 METHODS USED IN TIUS ANAI"vSlS; EPA 5030B,EPA 8260B CONCENTRATION 9.83 10.6 10.6 9.92 PERCENT RECOVERy 98.3% 106% 106% 99.2% ACCEPTANCE RANGE' 86 -118 % 88 -110 % 86·115% 80 -120 % rIo·sec:r:\repons\Clients200I\imemalionaLuraniwn_corp\casper_org\31916-1-19_8260b_chloroform_I-w.xls Analyst:------- LABORATORY ANALYSIS REPORT,EPA METHOD 8260 Volatile Organic Compounds Client: Project: Sample ID: Laboratory ID: Matrix: Dilution Factor: International Uranium (USA)Corporation WHITE MESA MILL WMMTW4-5 01-31916-5 Liquid -WATER 10 Date Sampled: Time Sampled: DatelTime Received: Date Analyzed: Date Reponed: 03-28-01 11:22 04-02-01 10:00 04-04-01 April 14,2001 67-66-3 Chloroform (Trichloromethane)236 5.0 ND -Analyte not detected at stated limitofdeteetion JNTERNAI.STANDARDS Pentafluorobenzene Fluorobenzene 1,4-Difluorobenzene Chlorobenzene -d5 1,4 -Dichlorobenzene -d4 AREA 1107374 2345208 1698810 1159686 466834 JCAL/CCAL AREA 1150521 2388861 1775533 1163446 458787 PERCENT RECOVERY 96.2% 98.2% 95.7% 99.7% 102% ACCEPTANCE RANGE 50-200% 50-200% 50-200% 50-200% 50-200% rio . SYSTEM MONITORING COMPOUNDS Dibromofluoromethane Toluene -d8 4 -Bromofluorobenzene 1,2 -Dichlorobenzene -d4 METHODS USED IN THIS ANALYSIS; EPA S030B,EPA 8260B. CONCENTRATION 9.46 10.4 10.1 9.76 PERCENT RECOVERY 94.6% 104% 101% 97.6% ACCEPTANCE RANGE 86 -118 % 88 -110 % 86 -115 % 80 -120 % Analyst:------- LABORATORY ANALYSIS REPORT,EPA METHOD 8260 Volatile Organic Compounds Client: Project: Sample 10: Laboratory ID: Matrix:. Dilution Factor: International Uranium (USA)Corporation WHITE MESA MILL WMMTW4-6 01-31916-6 Liquid -WATER 2 Date Sampled: Time Sampled: Date/Time Received: Date Analyzed: Date Reported: 03-26-01 16:30 04"()2"()1 10:00 04..()4"()1 April 14,2001 67-66-3 Chloroform (Trichloromethane)ND 1.0 ND •Analyte not detected 01 stated limit ofdetection ~. AREA 1135759 2382190 . 1708345 1159355 467805 JNTERNALSTANDARDS Pentafluorobenzene Fluorobenzene 1,4 -Difluorobenzene Chlorobenzene -dS 1,4 -Dichlorobenzene -d4 :::~;){I;:::::::::::::;:;!:::::)::::;:JJI:::::~:::;)::::::::::tjj~:::tt:::::j~:):::i::!:JII;;i~it:::I;ir?~:::~:::::$YNtiMi.l::QYm;n.gI\f.$vi.fl.N€i.l!!1iEf:Qji:!:i:i:j!i~!):):)i:!I I:i:f!:!!:::;i:i!fi:~ii~!!!!i!i!f:i:i!i!i~:il!!Ii:i!i!i :!)i!i~!!!::~fjjjrj:!!t:!::j:!:j;;:::~!:::::::::\:::: ICAL /CCAL PERCENT ACCEPTANCE AREA RECOVERY RANGE 1150521 98.7%50 -200 % 2388861 99.7%50 -200 % 1775533 96.2%50'-200 % 1163446 99.6%50 -200 % 458787 102%50 -200 % SYSTEM MONITORING COMPOUNDS Dibromofluoromethane Toluene -d8 4 -Bromofluorobenzene 1,2 -Dichlorobenzene -d4 CONCENTRATION 9.58 10.4 10.0 9.84 PERCENT RECOVERY 95.8% 104% 100% 98.4% ACCEPTANCE RANGE 86 -118 % 88 -110 % 86 -115 % 80 -120 % MEmODS USED IN TlDS ANALYSIS; EPA S030B,EPA 8260B . rIo·scc::r:\repons\clienlS200I\inlcmalionaturanium_corp\casper_org\31916-1-19_826Ob_chloroform_l-w.lIls Analyst:------- !.tABORATORY ANALYSIS REPORT;EPA METHOD 8260 Volatile Organic Compounds Client: Project: Sample 10: Laboratory 10: Matrix: Dilution Factor: International Uranium (USA)Corporation WHITE MESA MILL WMMTW4-7 01-31916-7 .Liquid -WATER 100 Date Sampled: Time Sampled: Date/Time Received: Date Analyzed: Date Reported: 03-28-01 15:09 04-02-01 10:00 04-04-01 Apri114,2001 .....67.66-3 Chloroform (Trichloromethane).747 50.0 ... ND -Analyte not detected Ilt stiltedlimit ofdetection JNTERNAJ.STANDARDS Pentafluorobenzene FJuorobenzene 1,4 "Difluorobenzene ChlorobeDZene -dS 1,4 -Dichlorobenzene -d4 .AREA 1105485 2323615 1678345 1136308 448761 ICAL I CCAL AREA 1150521 2388861 1775533 1163446 458787 PERCENT RECOVERY 96.1% 97.3% 94.5% 97.7% 97.8% rio SYSTEM MONITORING COMPOUNDS Dibrornofluoromethane Toluene·d8 4 -Brornofluorobenzene 1,2 -Dichlorobenzene -d4 METHODS lISED IN TIUS ANALYSIS; EPA 5030B,EPA 8260B. CONCENTRATION 9.38 10.5 10.0 9.83 PERCENT RECOVERY 93.8% 105% 100% 98.3% ACCEPrANCE RANGE 86 -118 % 88 -110 % 86 -115 % ·80 -120 % Analyst:------- LABORATORY ANALYSIS REPORT,EPA METHOD 8260 Volatile Organic Compounds Client: Project: Sample 10: Laboratory 10: Matrix: Dilution Factor: International Uranium (USA)Corporation WHITE MESA MILL WMMTW4-8 01-31916-8 Liquid -WATER 10 Date Sampled: Time Sampled: Date/Time Received: Date Analyzed: Date Reported: 03-26-01 17:00 04-02-01 10:00 04-04-01 April 14,2001 67-66-3 Chlorofonn (Trichloromethane)116 5.0 ND -Analyte not detected at stated limit ofdetection INTERNAL STANDARDS Pentafluorobenzene Fluorobenzene 1,4 -Difluorobenzene Chlorobenzene -d5 1,4 -Dichlorobenzene -d4 AREA 1090084 2309760 1664765 1119681 442367 ICAL/CCAL AREA 1150521 2388861 1775533 1163446 458787 rio SYSTEM MONITORING COMPOUNDS Dibromofluorometbane .Toluene -d8 4 -Bromofluorobenzene 1,2 -Dichlorobenzene -d4 METHODS USED IN THIS ANALYSIS; EPA 5030B,EPA 8260B CONCENTRATION 9.57 10.4 10.1 9.94 PERCENT RECOVERY 95.7% 104% 101% 99.4% ACCEPrANCE RANGE 86 -118 % 88 -110 % 86 -115 % 80 -120 % Analyst:------- LABORATORY ANALYSIS REPORT,EPA METHOD 8260 Volatile Organic Compounds Client: Project: Sample 10: Laboratory 10: Matrix: Dilution Factor: International Uranium (USA)Corporation WHITE MESA MILL WMMTW4-9 01-31916-9 Liquid -WATER 2 Date Sampled: Time Sampled: Date/Time Received: Date Analyzed: Date Reported: .03-27-01 11:35 04..()2"()1 10:00 04"()5"()1 April 14,2001 67-66-3 Chloroform (Trichloromethane)43.6 1.0 ND -Analyte not detected DI stDledlimit ofdetection INTERNAl.STANDARDS" Pentafluorobenzene Fluorobenzene 1,4 -Difluorobenzene Chlorobenzene -d5 1,4 -Dichlorobenzene -d4 AREA 1067998 2306313". 1658294 1115898 447091 ICAL/CCAL AREA 1150521 2388861 1775533 1163446 458787 PERCENT RECOVERY 92.8% 96.5% 93.4% 95.9%" 97:5% ACCEPTANCE RANGE SO-200% 50-200% 50"'200% 50-200% 50 -200 % rio SYSTEM MONITORING COMPOUNDS Dibromofluoromethane Toluene -d8 4 -Bromofluorobenzene 1,2 -Dichlorobenzene -d4 METHODS USED TN TlDS ANALYSIS; EPA S030B,EPA 826GB CONCENTRATION 9.50 10.5 10.1 9.80 PERCENT RECOVERY 95.0% 105% 101% 98.0% ACCEPTANCE RANGE 86 -118 % 88 -110 % 86 -115 % 80 -120 % Analyst:------- LABORATORY ANALYSIS REPORT,EPA METIlOn 8260 Volatile Organic Compounds Client: Project: Sample 10: Laboratory 10: Matrix: Dilution Factor: International Uranium (USA)Corporation WHITE MESA MILL WMMTW4-10 q A 01-31916-10 Liquid -WATER 2 Date Sampled: Time Sampled: DatelTime Received: Date Analyzed: Date Reported: 03-23-01 12:45 04-02-01 10:00 04-05-01 April 14,2001 .67-66-3 Chloroform (Trichloromethane)ND 1.0 ND-Analyte not detected tJt statedlimit ofdetection INTERNAl,STANDARDS Pentafluorobenzeile Fluorobenzene 1,4 -Difluorobenzene Chlorobenzene -dS 1,4 -Dichlorobenzene -d4 AREA 1081645 2280451 1630418 1103332 437754 ICAL/CCAL .AREA 1150521 2388861 1775533 1163446 458787 PERCENT RECOVERY 94.0% 95.5% 91.8% 94.8% 95.4% rio SYSTEM MONITORING COMPOUNDS Dibromofluoromethane Toluene -d8 4 -Bromofluorobenzene 1,2 -Dichlorobenzene -d4 METHODS USED IN TIllS ANALYSIS; EPA 5030B,EPA 8260B CONCENTRATION 9.55 10.6 10.2 9.91 PERCENT RECOVERY 95.5% 106% 102% 99.1% ACCEPTANCE RANGE 86 -118 % 88 -110 % 86 -115 % 80 -120 % Analyst:------- LABORATORY ANALYSIS REPORT,EPA METHOD 8260 Volatile Organic Compounds Client: Project: Sample ID: Laboratory ID: Matrix: Dilution Factor: International Uranium (USA)Corporation WHITE MESA MILL WMMTW4-11 Q4 01-31916-11 Liquid -WATER 2 Date Sampled: Time Sampled: Date/Time Received: Date Analyzed: Date Reported:. 03-23-01 12:47 04-02-01 10:()() 04-05-01 April 14,2001 67-66-3 Chloroform (Trichloromethane)ND 1.0 ND-Ana/yte not detected oJ stD1ed limit ofdetection INTERNAl,STANDARDS Pentafluorobenzene Fluorobenzene 1,4 -Difluorobenzene Chlorobenzene -dS 1,4 -Dichlorobenzene -d4 AREA 1087398 2312161 . 1661249 1093054 427271 ICAL/CCAL AREA 1150521 2388861 1775533 1163446 458787 PERCENT RECOVERY 94.5% 96.8% 93.6% 93.9% 93.1% rio SYSTEM MONITORING COMPOUNDS Dibromofluorometbane Toluene -d8 4 -Bromofluorobenzene 1,2 -Dichlorobenzene -d4 METIJODS USED IN nus ANAI.ySIS; EPA S030B,~A 8260B CONCENTRATION 9.53 10.4 10.2 9.91 PERCENT RECOVERY 95.3% 104% 102% 99.1% ACCEPTANCE RANGE 86 -118 % 88 -110 % 86 -115 % 80 -120 % Analyst:----..;....-- LABORATORY ANALYSIS REPORT,EPA METHOD 8260 Volatile Organic Compounds Client: Project: Sample ID: Laboratory ID: Matrix: Dilution Factor: International Uranium (USA)Corporation WHITE MESA MILL WMMTW4-12 Dl.Ip,[)F=nv 4-2- 01-31916-12 Liquid -WATER 200 Date Sampled: Time Sampled: Date/Time Received: Date Analyzed: Date ~ePQrted: 03-29-01 11:24 04-02-01 10:00 04-06-01 April 14,2001 67-66-3 Chloroform (Trichloromethane)4,410 100 ND -Analyte not detected lit stated limit ofdetection AREA 954374 2199976 1545815 1054565 411716 INTERNAl,STANDARDS Pentafluorobenzene Fluorobenzene 1,4 -Difluorobenzene Chlorobenzene -d5 1,4 -Dichlorobenzene -d4 :::~::i!:::!!~n!:::ir!::::!:::j:j;j::fj:::r::jl:iI:i::@:;:iI1:::::::~:::::::~:i:;:::::::::i::::!:mt::~:::::::::::::::::::::::::)I{i!j!/!;{id¥';fQ.f!.M4«5fl§r$~f:J;f!I/N€M{lf!jl/fjl!/ijii{:j':t::t:::if::::i::::I:f:::::::ii:::::i::l:::i:ri:!iiifitiiH!:!:::iiiiIi!i:;=::t::.:·::::::·:··:::·:. JCAL/CCAL PERCENT ACCEPTANCE ABEARECOVERY RANGE 1150521 83.0%50 -200 % 2388861 92.1 %50 -200 % 1775533 87.1 %SO -200 % 1163446 90.6%SO -200 % 458787 89.7%50 -200 % SYSTEM MONITORING COMPOUNDS Dibromofluorometbane Toluene -d8 4 -Bromofluorobenzene 1,2 -Dichlorobenzene -d4 CONCENTRATION 10.0 10.8 10.4 9.83 PERCENT RECOVERY 100% 108% 104% 98.3% ACCEPI'ANCE RANGE 86 -118 % 88 -110 % 86 -115 % 80 -120 % METIlODS USED IN nus ANALYSIS; EPA 5030B,EPA 8260B. rioAnalyst:------- LABORATORY ANALYSIS REPORT,EPA METHOD 8260 Volatile Organic·Compounds 03-23-01 14:24 04-02-01 10:00 04~5-o1 Apri114,2001 Date Analyzed: Date Reported: Date Sampled: Time Sampled: DatelTime Received: Client: Project: Sample ID: Laboratory ID: Matrix: Dilution Factor: International Uranium (USA)Corporation WHITE MESA MILL WMMTW4-13 ~nSa-rE p~or to 01-31916-13 p"""rj.l1~c)(l.a Liquid -WATER S~mp I".,~Pt:>c.Wt2-/£5. 2 (CoI~a~~)t.~V~ ····'7.66-3 .Chloroform (Trichloromethane)16.7'..·i~(i·. ND -Analyte not detected atstated limit ofdetection INTERNAl,STANDARDS Pentafluorobenzene Fluorobenzene 1,4 -Difluorobenzene Chlorobenzene -dS 1,4 -Dichlorobenzene -d4 AREA 1056010 2291350· 1639990 1102979 429163 ICAL/CCAL AREA 1150521 2388861 1775533 1163446 458787 PERCENT RECOVERY 91.8% 95.9% 92.4% 94.8% 93.5% SYSTEM MONITORING COMPOUNDS Dibromofluoromethane Toluene -d8 4-Bromofluorobenzene 1,2 -Dichlorobenzene -d4 CONCENTRATION 9.56 10.5 10.1 '9.85 PERCENT RECOVERY 95.6% 105% 101% 98.5% ACCEPTANCE RANGE 86 -118 % 88 -110 % 86 -115 % 80 -120 % METHODS USED IN THIS ANAlYSIS; EPA S030B,EPA 8260B rioAnalyst:--------- LABORATORY ANALYSIS REPORT,EPA METHOD 8260 Volatile Organic Compounds Client: Project: Sample ID: Laboratory ID: Matrix: Dilution Factor: International Uranium (USA)Corporation WHITE MESA MILL WMMTW4-14 12..f)~~rto 01-31916-14 ".m u)-/~" Liquid -WATER 2 Date Sampled: Time Sampled: Date/Time Received: Date Analyzed: Date Reported: 03-25-01 12:33 04-02-01 10:00 04-05-01 April 14,2001 67-66-3 Chloroform (Trichloromethane)ND 1.0 ND -Analyte not detectedat statedlimit ofdetectUm .AREA 1053851 2258371 1603542 1090824 426403 INTERNAl.STANJ)ARnS Pentafluorobenzene Fluorobenzene 1,4 -Difluorobenzene Chlorobenzene -d5 1,4 -Dichlorobenzene -d4 j::r:::~;;t::';::@?::;:':;:~:::::::;::I::~:::::~II::~:::::;::I:::::::::~~::::~II:::~:::~:':::;::~:!;::::J:::::::t:::~;::!::::~YN[J.M!.t:!~Ymml$.§fl.~€!.t.;;~~gti.l}f::::~ii::i::::Ii:~:!i:~~rt:I::i;:i~:ii!::iI::!:i:ii!;;MIf@!!fl!i!ii!i!i!fI:!::ifIi:i::!;:;:!:!;:; "ICAL /CCAL PERCENT ACCEPrANCE AREA RECOVERY RANGE 1150521 91.6%"SO -200 % 2388861 94.5%50 -200 % 1775533 90.3%50 -200% 1163446 93.8%50 -200 % 458787 92.9%50 -200 % SYSTEM MONITORING COMPOUNDS Dibromofluoromethane Toluene -d8 4 -Bromofluorobenzene 1,2 -Dichlorobenzene"-d4 CONCENTRATION 9.62 10.6 10.1 9.78 PERCENT RECOVERY 96.2% 106% 101% 97.8% ACCEPfANCE RANGE 86 -118 % 88 -110 % 86 -115 % 80 -120 % METHODS USED IN TIUS ANAI,ySIS; EPA 5030B,EPA 8260B riosec:r:\reporlS\c1ielllS2~l\inlemaliona,-uranium_corp\casper_org\31916-1.19_826Ob_chloroform_l-w.xls Analyst:--------- .. LABORATORY ANALYSIS REPORT,EPA METHOD 8260 Volatile Organic Compounds Client: Project: Sample 10: Laboratory 10: Matrix: Dilution Factor: International Uranium (USA)Corporation WHITE MESA MILL WMMTW4-15 f2..tfl'>o4-c...(>~to 01-31916-15 c..V}\orohwM.wc.LLs· Liquid -WATER 2 Date Sampled: Time Sampled: Date/Time Received: ..Date Analyzed: Date Reported: 03-25-01 13:35 04-02-01 10:00 04-05-01 Apri114,2001 ··67;;"3·Chloroform (Trichloromethane)NO ...··1~0 . ND •Analyte not detected at slated limit ofdetection INTERNAl,STANDARDS Pentafluorobenzene Fluorobenzene 1,4 -Difluorobenzene Chlorobenzene -d5 1,4 -Dichlorobenzene -d4 AREA 1064856 2258935 1624960 1088081 419852 ICAL/CCAL AREA 1150521 2388861 1775533 1163446 458787 PERCENT RECOVERY 92.6% 94.6% 91.5% 93.5% 91.5% SYSTEM MONITORING COMPOlJNDS Dibromofluoromethane Toluene -d8 4 -Bromofluorobenzene 1,2 -Dichlorobenzene -d4 CONCENTRATION 9.47 10.5 10.1 9.98 PERCENT RECOVERY 94.7% 105% 101 % 99.8% ACCEPTANCE RANGE 86 -118 % 88 -110 % ·86 -115 % 80 -120 % METHODS USED IN TIDS ANAJ.vSlS; EPA 5030B,EPA 8260B poAnalyst:---..;..---- LABORATORY ANALYSIS REPORT,EPA METHOD 8260 Volatile Organic Compounds Client: Project: Sample ID: Laboratory ID: Matrix: Dilution Factor: International Uranium (USA)Corporation WHITE MESA MILL WMMMW4 01-31916-16 Liquid -WATER 400 Date Sampled: Time Sampled: Date/Time Received: Date Analyzed: Date Reported: 03-29..01 12:50 04-02-01 10:00 -04-05-01 April 14,2001 67-66-3 Chloroform (Trichloromethane)4,360 200 ND ..Ana/yte not detected at stated limit ofdetection AREA 1042084 2239095 1612893 1075862 420445 INTERNAl.STANDARDS Pentafluorobenzene FJuorobenzene 1,4 -Difluorobenzene Chlorobenzene ..dS 1,4 -Dichlorobenzene ..d4 :::~IJit:t/:}:tl{:~;:::t):::;/::f:;i!:i!;;::I:iii!!:::::!::i!~I!;!!!iI:::!:!t!:;=;:'M/:J:::::::r1tMNll.M~tQP.mW~t~l.~"'~y.iM:tt.qi.f::~f:Qgl!::!!lt:::1:!!lti!::i!i::::!:!:i:!:i:::!:!::::::::!:!t:!:iI!~t!!!:!iII!Ii:!t::::!I:/;:::::;:::::\\ ICAL /CCAL PERCENT ACCEPTANCE AREA RECOVERY RANGE 1150521 90.6%SO -200 % 2388861 93.7%SO ..200 % 1775533 90.8%50 ..200 % 1163446 92.5%SO ..200 % 458787 91.6%SO ..200 % SYSTEM MONITORING COMPOUNDS Dibromofluoromethane Toluene ..d8 4 -Bromofluorobenzene 1,2 -Dichlorobenzene ..d4 CONCENTRATION 9.46 10.4 10.2 9.98 PERCENT RECOVERY 94.6% 104% 102% ..99.8% ACCEPfANCE RANGE 86 ..118 % 88 ...-110 % 86 ..115 % 80 ..120 % MEmODS USED IN TInS ANAI.YSIS: EPA S030B,EPA 8260B rio -sec:r:\rcpons\clientS2001\inlemalional_uranium_corp\casper..org\31916-1-19..8260b_chloroform_I-w.xls Analyst:------- LABORATORY ANALYSIS REPORT,EPA METHOD 8260 Volatile Organic Compounds Client: Project: Sample 10: Laboratory 10: Matrix: Dilution Factor: International Uranium (USA)Corporation WHITE MESA MILL WMMMW17 01-31916-17 Liquid -WATER 2 Date Sampled: Time Sampled:· Date/Time Received: Date Analyzed: Date Reported: 03-25-01 14:48 04-02-01 10:00 {)4-o5-o1 April 14,2001 67-66-3.Chloroform (TJ'ichloromethane)NO 1.0 ND -Analyte not detected at stated limit ofdetection AREA 1055347 2270030 1618320 1091563 432256 INTERNAL STANDARDS Pentafluorobenzene Fluorobenzene 1,4 -Difluorobenzene Chlorobenzene -d5 1,4 -Dichlorobenzene -d4 ::':::::i!':::::it::i:!:::':::!!i:IiIiI!!lfii:!::!:I1!!:!::i!ji:!i:~i!i:::!I:!:!::!!!Iii!:!!i!!f~!:i:!i:ItI!t:lRfWf.l.M!t,!!QM4.Ml%;!J.~jpB.4&€;g;iE1i.;r,gJ.II!!!i!Ji:i!;t:i!!:~!:i!iI!J!::;~:!::i:i:::i::!~~:li:M!fi!il@11@fJiI:JJf}::::::::::)'{::r lCAL I CCAL PERCENT ACCEPTANCE AREA RECOYERY RANGE 1150521 91.7%50 -200 % 2388861 95.0%50 -200 % 1775533 91.1 %50 -200 % 1163446 93.8%50 -200 % 458787 94.2%50 -200 % SYSTEM MONITORING COMPOUNDS Dibromofluoromethane Toluene -d8 4 -Bromofluorobenzene 1,2 -Dichlorobenzene -d4 CONCENTRATION 9.61 10.6 10.2 9.88 PERCENT RECOVERY 96.1% 106% 102% 98.8% ACCEPTANCE RANGE 86-118% 88 -110 % 86 -115 % 80 -120 % METHODS USED IN TIDS ANALYSIS; EPA 5030B,EPA 8260B. rloAnalyst:------- LABORATORY ANALYSIS REPORT,EPA METHOD 8260 Volatile Organic Compounds Client: Project: Sample ID: Laboratory ID: Matrix: Dilution Factor: International Uranium (USA)Corporation WHITE MESA MILL WMMTW4COMP 01-31916-18 Liquid -WATER 100 Date Sampled: Time Sampled: Date/Time Received: Date Analyzed: Date Reported: 03-30-01 07:36 04-02-01 10:00 04-05-01 April 14,2001 ND •Analyte not detected at stlJted limit oIdeteenon INTERNAL STANDARDS Pentafluorobenzene Fluorobenzene 1,4 -Difluorobenzene Chlorobenzene -dS 1,4 -Dichlorobenzene -d4 AREA 1036677 2249534 1598837 1072649 416945 JCAL/CCAL AREA 1150521 2388861 1775533 1163446 458787 PERCENT RECOVERY 90.1% 94.2% 90.0% 92.2% 90.9% ACCEPTANCE RANGE 50-200% 50 -200 % .50 -200 % 50 -200 % 50 -200 % rio SYSTEM MONITORING COMPOlINDS Dibromofluoromethane Toluene -d8 4 -Bromofluorobenzene 1,2 -Dichlorobenzene -d4 METHODS USED IN THIS ANAI.ySIS: EPA 5030B,EPA8260B CONCENTRATION 9.44 10.6 10.2 "9.92 PERCENT RECOVERY 94.4% 106% 102% 99.2% ACCEPTANCE RANGE 86 -118 %" 88 -110 % 86 -115 % 80 -120 % Analyst:------- LABORATORY ANALYSIS REPORT,EPA METHOD 8260 Volatile Organic Compounds Client: Project: Sample 10: Laboratory ID: Matrix: Dilution Factor: International Uranium (USA)Corporation WHITE MESA MILL TRIP BLANK 01-31916-19 Liquid -WATER 1 .Date Sampled: Time Sampled: Date/Time Received: Date Analyzed: Date Reported: 03-16-01 16:10 04-02-01 10:00 04-04-01 April 14,2001 67-66-3 Chloroform (Trichloromethane)ND 1.0 ND •Analyte not detected atstated limitofdetection nrrERNALSTANOARDS Pentafluorobenzene Fluorobenzene 1,4 •Difluorobenzene Chlorobenzene -ciS 1,4 -Dichlorobenzene -d4 AREA 1191328 2452721 1788376 1218017 491947 ICAL/CCAL .AREA 1150521 2388861 1775533 1163446 458787 PERCENT RECOVERY 104% 103% 101% 105% 107% ACCEPTANCE RANGE 50-200% 50-200% 50~2oo% 50-200% 50-200% SYSTEM MONITORING COMPOUNDS Dibromofluoromethane Toluene -d8 4 -Bromofluorobenzene 1,2 -Dichlorobenzene -d4 CONCENTRATION 9.59 10.2 9.89 9.79 PERCENT RECOVERY· 95.9% 102% 98.9% 97.9% ACCEPTANCE RANGE 86 -118 % 88 ~110 % 86 -115 % 80 -120 % METHODS USED IN TlUS ANAISSlS; EPA S030B,EPA 8260B rioAnalyst: -~----- ·LABORATORY ANALYSIS REPORT.EPA METHOD·8260 Volatile Organic Compounds Client: Project: Sample 10: Laboratory ID: Matrix: Dilution Factor: International Uranium (USA)Corporation WHITE MESA MILL Method Blank MB0404 .Water 1 Date Sampled: Time Sampled: Date/Time Received: Date Analyzed: Date Reported: N/A N/A N/A 04-Q4-01 April 12,2001 67-66-3 Chloroform (Trichloromethane)ND 1.0 ND -Analyte notdetected at stated limU ofdetection JNTERNAI.STANJ)ARDS Pentafluorobenzene Fluorobenzene 1,4 -Difluorobenzene Chlorobenzene -ciS 1,4 -Dichlorobenzene -d4 AREA 1184558 2435440 1782379 1183537 464888 ICAL/CCAL AREA 1150521 2388861 1775533 1163446 458787 PERCENT RECOVERY 103% 102% 100% 102% 101% SYSTEM MONITORING COMPOUNDS Dibromofluoromethane Toluene -d8 4 -Bromofluorobenzene 1,2 -Dichlorobenzene -d4 MEDiODS USED IN TIUS ANALYSIS; EPA 5030B,EPA 826GB. CONCENTRATION 9.53 10.2 9.88 9.85 PERCENT RECOVERY 95.3% 102% 98.8% 98.5% ACCEPTANCE RANGE 86 -118 % 88 -110 % 86 -115 % 80 -120 % rlosec:r:\repons\ClicOlS200I\iolcmalionaLuraniwo_corp\casper_org\31916-1-19_826Ob_chloroforrn_l-woltls Analyst:------- LABORATORY ANALYSIS REPORT,EPA METHOD 8260 QC RESULTS ~MATRIX SPIKE (MSl,MATRIX SPIKE DUPLICATE (M:SD) Client: Sample Set: Laboratory ID: Matrix: International Uranium (USA)Corporation 01-31916-1 through 01·31916-19 01-31916-17 S Liquid -WATER Date Sampled: Date/Time Received: Date Analyzed: Date Reported: 03-29~1 04..()2~1 10:00 ~5~1 April 12,2001 Dibromofluoromethane Toluene -d8 4 -Bromofluorobenzene 1,2 -Dicblorobenzene-d4 ~'i8.mttigift¥$r:$mm'j~:~~::~:~~rl~I!::I:~!:~:::~t:::~i~::::::~f:~fj~::::::l:fI:t::::~~~::t~j~~~I::::::~:I::!I::m:~:::i:I::::ltttHl:;~:;t:W::I~It:III~IttMi:!t::::::r::::fIt~rIl!I:Itttl:$fml!t!t:!:@@;:il::MHn1:!ii:@:i!~liH;~m~nliit!!ilII:~: ICAL /CCAL SPIKED SAMPLE SPIKE DUPLICATE ACCEPTANCE AREA AREA St AREA SiI.RANGE Pentafluorobenzene 1150521 1025937 89.2%1034958 90.0%50 -200 % Fluorobenzene 2388861 2213431 92.7%2237292 93.7%50 -200 % 1,4-Difluorobenzene 1775533 1595730 89.9%1600008 90.1%50 -200 % Chlorobenzene -tiS 1163446 1065324 91.6%1060181 91.1 %50 -200 % 1,4 -Dichlorobenzene-d4 458787 .425066 92.6%424488 92.5%SO -200 %:&fitif4£Mq&ir.Qi.UNq'¥1iNtfP~~:~t::r:}ti~:~:I:::::::::::~:::~~i:II:::i~:::tt~:i:IItI!~~:~:!:I:t:f~:Intt:I;I!tt::tt::tt!I::lm:tm:llfI!ir~:!!:::I!:~fr~~r!:IIfIlIIrf:i!:i~!tf%H@:@gii!::@i:!fi:@!!ii!mIii;I::m}f@i}I SPIKED SAMPLE PERCENT SPIKE DUPLICATE PERCENT ACCEPTANCE CONCEI\TRATIONRECOVERY CONCENTRATION RECOVERY RANGE 9.62 96.2%9.57 95.7%86 -118 % 10.6 106%10.6 106%88 -110 % 10.3 103%10.4 104%86 -115 % 9.95 99.5%9.97 99.7%80 -120 % CONCENTRATION ~1J&glL)RECOVERY B.AtiGE Chloroform (Trichloromethane)9.85 NO 10.0 98.5'"70 -130 % :$r.ltte::·i!tJijrii¢4j~~$4~~P'~:'jBiifwJ2j)!!j~!iiij!!f!!){i1:!!:~;~:ti!~~!ij::jji~!i!!!i:~j!!i!;!:~:~:{:~:!~~i;~::1!:::;Eii::~:;ii:::i::j:~~i:iiJ'~;:::i:~i;:!i!i:i~:):::i~i:!ii~iii::::i:::i:'~::ir::~:::j~::::j::t:::~QriA.~!!9P':::ql§:::mENI:\i~.1_9i.:~ SPIKE DUP ORIG.CONC.SPIKE PERCENT RPD CONCENTRATION i.J&gfl,l.U&glL)RECOVERY 11m LIM1TS Chloroform (Trichloromethane)10.1 NO 10.0 101%2.8'"20 % ':,." MA TRIX SPIKE· MAUllK SPIKE DUPlICATE· o of2 Matrix Spike results are outside of established QC Limits o of 1Matrix Spike Duplicate results are outside ofestablished QC Limits rIoAnalyst:---......;.;---sec:r:\reports\ClienIS200I\inlernalionaturanium_corp\casper_org\31916-1-19_826Ob_chloroform_l-w.xls ••• ".lRirt?iV mrllell&"ellUD Bllllng_.Ca_per.Glllene Helena.Rapid City July 10,2001 ENERGY LABORATORIES,INC. SHIPPING:2393 SAlT CREEK HIGHWAY •CASPER,WY 82601 MAILING:P.O.BOX 3258 •CASPER,WY 82602 E-mail:casper@energylab.com •FAX:(307)234·1639 PHONE:(307)235-0515 •TOLL FREE:(888)235-0515 Wally Brice Int.emational Uranium Corp.(IDC) POBox 809 Blanding,Utah 84511 Order No:COI060297 RE:White Mesa Mill Mr.Brice: The following cover letter is a summary ofthe attached analytical results for the above referenced project. This packet contains one.invoice,thirteen pages ofanalytical results,one page ofquality assurance data,the project chain ofcustody,and the sample receipt condition report.This packet contains 20 pages inc~udingthis cover letter. There were no problems with the analyses and all data for the batch QC met USEPA or laboratory specifications;: Ifyou have any questions r~garding these test results,please feel free to call.Energy Laboratories,Inc.appreciat~sthe opportunity to provide you with analytical services for your projects.;:. Approved By:QAQC -Data Validation: COMPLETE ANALYTICAL SERVICES CLIENT: Lab Order: Project: Lab ID: International Uranium (USA)Corp-Blandin COI060297 White Mesa Mill COl060297-001 Matrix:AQUEOUS Report Date:07/05/01 Collection Date:06/21/0110:34 Client Sample ID:WMMTW4-1· Analyses Result Units Qual VOLATILE ORGANIC COMPOUNDS Chloroform 6000 uglL Surr:1,2-Dichlorobenzene-d4 99.8 %REC SUIT:Dibromofluoromethane 111 %REC Surr:p.Bromofluorobenzene 102 %REC Surr:Toluene-d8 102 %REC Report Definitions: NO -Not detected at the reporting limit J•Analyle detected below quantitation limits B•Analyle detected in the associated method blank MCl -Maximum contaminant level QCl •Quality control limit S •Spike recovery outside accepted recovery limits R-RPO outside accepted recovery limits •-Value exceeds maximum contaminant level Rl·Analyle reponing level Page 1 of13 CLIENT: Lab Order: Project: Lab ID: International Uranium (USA)Corp-Blandin COl060297 White Mesa Mill COl060297-002 Matrix:AQUEOUS Report Date:07/05/01 Collection Date:06/22/01 10:42 Client Sample ID:WMMTW4-2 MCLt Analyses Result Units Qual RL QCL Method Analysis Date /By VOLATILE ORGANIC COMPOUNDS Chloroform 5500 ug/l 200 SW8260B 06128101 17:461 rio Surr:1,2-Dichlorobenzene-d4 101 %REC 80-120 SW8260B 06128101 17:461 rio Surr:Dibromofluoromethane 114 %REC 80-120 SW8260B 06128/01 17:461 rio Surr:p.Bromofluorobenzene 102 %REC 80·120 SW8260B 06128/01 17:461 rio Surr:Toluene-d8 100 %REC 80-120 SW8260B 06128101 17:46 1rio ....-.-...-...'_..."..-_.•.._..._--------_._-----_..---_.---.--.._---..••.._._- Report Definitions: NO -Not detected at the reporting limit J-Analyte detected belowquantitation limits B -Analyte detected in the associated method blank MC'l -Maximum contaminant level QC'L -Quality control limit S -Spike recovery outside accepted recovery limits R -RPO outside accepted recovery limits •-Value exceeds maximum~ontaminantlevel RL •'Analyte reporting level Page 2 of 13 Analyses Result Units Qual VOLATILE ORGANIC COMPOUNDS Chloroform 390 ugil Surr:1,2-Dichlorobenzene-cl4 98.8 %REC Surr:Dibromofluoromethane 113 %REC Surr:p-Bromofluorobenzene 102 %REC Surr:Toluene-d8 101 %REC Report Date:07/05/01 Collection Date:06/21/01 09:04 Client Sample ID:WMMTW4-3 MCL! RL QCL Method CLIENT: Lab Order: Project: Lab ID: International Uranium (USA)Corp-Blandin COl 060297 White Mesa Mill COl 060297·003 Matrix:AQUEOUS 50 80-120 80-120 80-120 80·120 SW8260B SW8260B SW8260B SW8260B SW8260B --..-.__.__._----- Analysis Date /By 06/28101 18:28/rio 06/28101 18:28/rio 06128101 18:28/rio 06/28/01 18:28/rio 0612810118:28/rio Report Definitions: NO -Notdetected at the reporting limit J •Analyte detected below quantitation limits B-Analyte detected in the associated method blank MCl •Maximum contaminant level QCl •Quality controllim!t S -Spike recovery outside accepted recovery limits R•RPO outside accepted recovery limits •-Value exceeds maximum contaminant level Rl •Analyte reporting level Page 3 of 13 CLIENT: Lab Order: Project: Lab ID: International Uranium (USA)Corp-Blandin C01060297 White Mesa Mill C01060297-004 Matrix:AQUEOUS Report Date:07/05101 Collection Date:06120101 09:36 Client Sample ID:WMMTW4-4 MCLI Analyses Result Units Qual RL QCL Method Analysis Date 1By VOLATILE ORGANIC COMPOUNDS Chloroform 3100 ugiL 200 SW8260B 06/28/0119:11/r10 Surr:1,2-Dichlorobenzene-d4 100 %REC 80-120 SW8260B 06/28/01 19:111 rio Surr:Dibromofluoromethane 113 %REC 80-120 .SW8260B 06/28/01 19:11 1rio SUIT:p-Bromofluorobenzene 103 %REC 80-120 SW8260B 06/28101 19:11 1rio Surr:Toluen~d8 101 %REC 80-120 SW8260B 06128101 19:11 1rio -----------_._----_.__..-.---_---_-.._-._- Report Definitions: NO -Not detected at the reponing limit J•Analyte detected belowquantitation limits B •Analyte detected in the associated method blank MeL •Maximum contaminant level QCL •Quality control limit S -Spike recovery outside accepted recovery limits R -RPD outside·accepted recovery limits *-Value exceeds maximumcontaminant level RL -Analyte reponing level Page 4 of13 CLIENT: Lab Order: Project: Lab ID: International Uranium (USA)Corp-Blandin COI060297 White Mesa Mill COl 060297-005 Matrix:AQUEOUS Report Date:07/05101 Collection Date:06/20101 14:14 Client Sample ID:WMMTW4-5 MCLI Analyses Result Units Qual RL QCL Method Analysis Date 1By VOLATILE ORGANIC COMPOUNDS Chloroform 240 ug/l 10 SW8260B 06128/01 19:53/rio Surr:1.2-Dichlorobenzene-d4 99.3 %REC 80-120 SW8260B 0612810119:53/rio Surr:Dibromofluoromethane 117 %REC 80-120 SW8260B 06/28101 19:53/rio Surr:p-Bromofluorobenzene 102 %REC 80-120 SW8260B 06128101 19:53/rio Surr:T0luene-d8 102 %REC 80-120 SW8260B 0612810119:53/rio --_.......•-. Report Definitions: NO·Not detected at the reporting limit J.Analyte detected belowquantitation limits B -Analyte detected in the associated method blank MC'l -Maximum contaminant level QC'l •Quality control limit S •Spike recovery outside accepted recovery limits R -RPD outside accepted recovery limits ••Value exceeds maximum contaminant level Rl -Analyte reporting level Page S of13 CLIENT: Lab Order: Project: Lab ID: International Uranium (USA)Corp-Blandin COI060297 White Mesa Mill CO 1060297-006 Matrix:AQUEOUS ......._---._...•__._-_...-._--- Report Date:07/05101 Collection Date:06/20101 09:58 Client Sample ID:WMMTW4-6 MCLI Analyses Result Units Qual RL QCL Method Analysis Date I By VOLATILE ORGANIC COMPOUNDS Chloroform NO ug/L 2.0 SW8260B 06/28/01 20:361rio Surr:1,2-Dichlorobenzene-d4 100 %REC 80·120 SW8260B 06128/01 20:361rio Surr:Dibromofluoromethane 114 %REC 80·120 SW8260B 06/28/01 20:36 1rio Surr:p-Bromofluorobenzene 102 %REC 80·120 SW8260B 06128/01 20:36 1rio Surr:Toluene-d8 102 %REC 80·120 SW8260B 06/28/01 20:361rio .._.._--.-._------._--_.._-__--_-_-_._..___-.------ Report Definitions: ND -Not detected at the reporting limit J•Analyte detected belowquantitation limits 8 •Analyte detected in the associated method blank MCl •Maximum contaminant level QCl •Quality control limit S -Spike recovery outside accepted recovery limits R•RPD outside accepted recovery limits ...Value exceeds maximum contaminant level RL -Analyte reporting level Page 6 of13 CLIENT: Lab Order: Project: Lab ID: International Uranium (USA)Corp-Blandin COl060297 White Mesa Mill COl060297·007 Matrix:AQUEOUS Report Date:07/05101 Collection Date:06/20/01 12:55 Client Sample ID:WMMTW4-8 MCLI Analyses Result Units Qual RL QCL Method VOLATILE ORGANIC COMPOUNDS Chloroform 180 ug/l 10 SW8260B Surr:1,2-Dichlorobenzene-d4 101 %REC 80-120 SW8260B Surr:Dibromofluoromethane 112 %REC 80-120 .SW8260B Surr:p-Bromofluorobenzene 103 %REC 80-120 SW8260B Surr:Toluene-d8 102 %REC 80-120 SW8260B ..........-..-------_._---------.__.__._-_.-._.__.._--_. Analysis Date 1By 06/28/01 21 :191 rio 06128/01 21:191rio 06128101 21 :191rio 06128101 21 :191 rio 06128101 21:19 1rio Report Definitions: NO -Not detected at the reporting limit J-Analyte detected belowquantitation limits B•Analyte detected in the associated method blank MCl -Maximum contaminant level QCL -Quality controllimil S•Spike recovery outside accepted recovery limits R-RPO outside lIccepted recovery limits • •Value exceeds ITIlIximum contaminant level RL -Anlllyte reporting level Page 7 of13 CLIENT: Lab Order: Project: LabID: International Uranium (USA)Corp-Blandin COl 060297 White Mesa Mill CO1060297-008 Matrix:AQUEOUS Report Date:07/05/01 . Collection Date:06/20/01 11:09 Client Sample ID:WMMTW4-9 Analyses ORGANIC COMPOUNDS Chloroform Surr:1,2-Dichlorobenzene-d4 Surr:Dibromofluoromelhane Surr:p-Bromofluorobenzene Surr:Toluene-d8 ---"---'._-------........_-...-...... MCL/ Result Units Qual RL QCL Method Analysis Date I By 59 ugIL 2.0 SW8260B 06/28/01 22:01 /rio 98.3 %REC 80-120 SW8260B 06128101 22:01 /rio 112 %REC 80-120 SW8260B 06/28101 22:01 /rio 103 %REC 80-120 SW8260B 06128101 22:01 /rio 102 %REC 80-120 SW8260B 06128101 22:01 /rio .......__.._-_._----'-----_.._----_._-_.._._.__....•....... Report Definitions: NO·Not detected at the reporting limit J.Analyte detected belowquantitation limits B•Analyte detected in the associated method blank Mel -Maximum contaminant level QCl •Quality control limit S -Spike recovery outside accepted recovery limits R-RPO outside accepted recovery limits *-Value exceeds maximum contaminant level Rl•Analyte reporting level Page 8 ofl3 Analyses Result Units ORGANIC COMPOUNDS Chloroform 1100 uglL Surr:1,2-Dichlorobenzene-d4 98.5 %REC Surr:Dibromofluoromethane 113 %REC Surr:p-Bromofluorobenzene 103 %REC Surr:Toluene-d8 101 %REC --"-'_----- 50 SW8260B 06128101 22:44 1rio 80-120 SW8260B 06/28101 22:441rio 80-120 .SW8260B 06128101 22:441rio 80-120 SW8260B 06128/01 22:44 1rio 80·120 SW8260B 06128101 22:44 1rio CLIENT: Lab Order: Project: Lab ID: International Uranium (USA)Corp-Blandin CO 1060297 White Mesa Mill COl 060297-009 Matrix:AQUEOUS Qual Report Date:07/05101 Collection Date:06/21/0109:50 Client Sample ID:WMMTW4-7 MCLI RL QCL Method Analysis Date1By Report Definitions: .-_._.._._--------_. NO •Not detected at the reporting limit J •Analyte detected below quantitation limits B•Analyte detected in the associated method blank Mel •Maximum contaminant level QCl •Quality control limit S -Spike recovery outside accepted recovery limits R-RPO outside accepted recovery limits ..-Value exceeds maximum contaminant level Rl-Analyte reporting level Page 9 of 13 CLIENT: Lab Order: Project: Lab In: International Uranium (USA)Corp-Blandin cOI060297 White Mesa Mill COl 060297-010 Matrix:AQUEOUS Report Date:07/05/01 Collection Date:06/22/01 11:25 Client Sample ID:WMMMW-4 __••••_••__•••0 ••.__----_._.--------._.._-~.-"-.'.__.-_.... MCLt Analyses Result Units Qual RL QCL Method Analysis Date t By VOLATILE ORGANIC COMPOUNDS Chlorofonn 6300 ugIL 400 SW8260B 06/28/01 23:26 /rio Surr:1.2-Dichlorobenzene-d4 99.0 %REC 80-120 SW8260B 06/28/01 23:26 /rio Surr:Oibromofluoromethane 117 %REC 80-120 'SW8260B 06/28/01 23:26 /rio Surr:p-Bromofluorobenzene 105 %REC 80·120 SW8260B 06128/01 23:26/rio Surr:Toluene-d8 101 %REC 80-120 SW8260B 06/28/01 23:26/rio Report Definitions: NO •Not detected at the reponing limit J•Analyte detected below quantitation limits B•Analyte detected in the associated method blank MCl •Maximum contaminant level QCl -Quality control limit S •Spike recovery outside accepted recovery limits R-RPO outside accepted recovery limits •-Value exceeds maximum contaminant level Rl-Analyte reponing level Page 10 of13 CLIENT: Lab Order: Project: Lab ID: International Uranium (USA)Corp-Blandin COl 060297 White Mesa Mill CO I060297-01 I Matrix:AQUEOUS Report Date:07/05/0I Collection Date:06/21/01 09:04 Client Sample ID:WMMTW4-10 --_._---_...--.._---_._._------ Report Definitions:· NO·Not detected at the reporting limit J-Analyte detected belowquantitation limits B •Analyte detected in theassociated method blank Mel •Maximum contaminant level QCl -Quality control limit S -Spike recovery outside accepted recovery limits R·RPO outside accepted recovery limits ••Value exceeds maximum contaminant level Rl •Analyte reporting level Page II ofl3 Report Date:07/05/01 Collection Date:06/21/01 J.2:11 Client Sample ID:WMMTW4-ll Analyses Result Units .Qual VOLATILE ORGANIC COMPOUNDS Chlorofonn 3.0 ug/l Surr:1,2-Dichlorobenzene-d4 102 %REC Surr:Dibromofluoromethane 118 %REC Surr:p-Bromofluorobenzene 103 %REC Surr:Toluene-d8 102 %REC MCLI RL QCL Method -_.____-._------ 06129/01 00:51 1rio 0&29/01 00:51 1rio . 06/29/01 00:511 rio 06129101 00:51 1rio 06129/01 00:51 1rio Analysis Date1By SW8260B SW8260B SW8260B SW8260B SW8260B 80-120 80·120 80-120 80-120 1.0 ------_.-._---_.--_.---_._- International Uranium (USA)Corp-Blandin cOI060297 White Mesa Mill COl 060297-012 Matrix:AQUEOUS CLIENT: Lab Order: Project: Lab ID: .-..._-_._--_.._----.........-_"-".-.._.._.___..___.__._----- Rrport Drfinitions: NO·Not detected at the reporting limit J •Analyte detected below quantitation limits B•Analyte detected in the associated method blank Mel -Maximum contaminant level QCl -Quality control limit S -Spike recovery outside accepted recovery limits R-RPD outside accepted recovery limits ..-Value exceeds maximum contaminant level RL -Analyte reporting level Page 12 of13 CLIENT: Lab Order: Project: Lab ID: International Uranium (USA)Corp-Blandin COI060297 White Mesa Mill COI060297-013 Matrix:AQUEOUS Report Date:07/05101 Collection Date:06/22/01 13:50 Client Sample In:WMMTW4-Comp Analyses Result Units Qual MCLI RL QCL Method Analysis Date1By VOLATILE ORGANIC COMPOUNDS Chloroform SUIT:1,2-Dichlorobenzene-d4 Surr:Dibromofluoromethane Surr:p-Bromofluorobenzene Surr:Toluene-d8 960 101 118 103 103 ug/L %REC %REC %REC %REC 100 SW8260B 06/29/01 01:34/rio 80-120 SW8260B 06129/01 01:34 /rio 80·120 SW8260B 06/29/01 01:34 /rio 80·120 SW8260B 06129/01 01:34 /rio 80-120 SW8260B 06129/01 01:34 1rio Report Definitions: ..-.-_...-...------------ NO -Not detected at the reporting limit J -Analyte detected belowquantitation limits B •Analyte detected in the associated method blank Mel -Maximum contaminant level QCl -Quality control limit """'--'--'.._-._-.._--------- S -Spike recovery outside accepted recovery limits R-RPO outside accepted recovery limits •-Value exceeds maximum contaminant level RL -Analyte reporting level Page 13 of13 Date:05-Jl/l-01 §II CLIENT: Work Order: Project: International Uranium (USA)Corp-Blandin COl060297 White Mesa Mill ••••••_••••••••H_'•••••••.•••• ANALYTICAL QC SUMMARY REPORT TestCode:VOC-8260-W-SHT Sample 10:Method Blank # Client 10: Analyte SampType:MBLK Batch 10:R282 Result TestCode:VOC-8260-W-SHT Units:ug/L TestNo:SW8260B PQl SPK value SPK RefVal Prep Date: Analysis Date:6/28/2001 %REC lowLimit HighLimlt RPO RefVal Run 10:GCMS1-e_010628A SeqNo:5880 %RPO RPOLimit Qual Chloroform Surr:1,2-01chlorobenzene-d4 Surr:Olbromofluoromethane Surr:p-Bromofluorobenzene Surr:Toluene-d8 NO 9.99 11.43 10.29 10.13 1.0 o o o o 10 10 10 10 o o o o 99.9 114 103 101 80 80 80 80 120 120 120 120 o o o o o o o o Sample 10:C01060297.Q13A Client 10:WMMTW4-Comp Analyte Chloroform Surr:1,2-0ichlorobenzene-d4 Surr:Oibromofluoromethane Surr:p-Bromofluorobenzene Surr:Toluene-d8 Sample 10:C01060297-013A Client 10:WMMTW4·Comp Atlalyte Chloroform Surr:1.2-0ichlorobenzene-d4 Surr:Oibromofluoromethane Surr:p-Bromofluorobenzene Surr:Toluene-d8 SampType:MS Batch 10:R282 Result 13330 9960 11980 10390 9890 SampType:MSD Batch 10:R282 Result 13570 10110 12070 10320 10180 TestCode:VOC-8260-W-SHT Units:ug/L Prep Date: TestNo:SW8260B Analysis Date:6/29/2001 PQl SPK value SPK RefVal %REC lowLimlt HlghLimit RPORefVal 1000 10000 956 124 70 130 0 0 10000 0 99.6 80 120 0 0 10000 0 120 80 120 0 0 10000 0 104 80 120 0 0 10000 0 98.9 80 120 0 TestCode:VOC-8260·W-SHT Units:ug/L Prep Date: TestNo:SW8260B Analysis Date:6/29/2001 PQL SPK value SPK Ref Val %REC lowLimif HighLirnit RPO Ref Val 1000 10000 956 126 70 130 13330 0 10000 0 101 80 120 0 0 10000 0 121 80 120 0 0 10000 0 103 80 120 0 0 10000 0 102 80 120 0 Run 10:GCMS1-C_010628A SeqNo:5894 %RPO RPOLimit Qual o o o o o Run 10:GCMS1-C_010628A SeqNo:5895 %RPO RPOLimit Qual 1.78 20 o 10 o 10 S o 10 o 10 Quanners:NO -Not Detected at the Reporting Limit J-Analyte detected below quantitation limits S -Spike Recovery outside accepted recovery limits R-RPO outside accepted recovery limits B-Analyte detected in the associated Method Blank Page I of I Yes/No Yes/No Yes/No Comments,Special Instructions,etc. RAI'Inell'\',SII P.O.Bu,24711c5771".,,',1//.,,~SIl-67~·'225 hlnr:nrn\\'uud t577U1.",,;,...fJlIJ..f./!./!!.i FII.\'6115·./-12,'.197 Cust.No.:_'_ Custody Seal: Intact: Signature Match?: If no -Reason: /IJ?'{;j~J ;~rf't-~oF ~ 'l ~~ IIEI.ENA,MT P.O.Bu.56MM (5')(,(1.11 1111//.'1177·472-'1711 27114 Rilli,,~.A,'c.15t}(~111 1\,,,,.-1''',,.-1''''--1-12-11711 Received Date:----- login Date: Shipped by:I J...i?5;-A1 Shipping Bill #:_-.-=--__ Sample Temp:\.5 DC ~lhn/IJIYl IJt::.It'LFor lab Use Only 'to. PLEASE PRINT OR TYPE.ALl INFORMATJON ~XCEPT SIGNATURESrrK-?) CHAIN OF CUSTODY RECORD1. (:ASI'ER,WY V G1U."TI'F.WV P.O.no.325M IR2(2)11',1//.,IIRII·2.I,~,')5)5 IIn5 We'1 fir<'Slice.(R2116)",/,.~.107.686.7175 23'13 S.,.Cnock Hi~hwDY lR2MIl ,·..i,·".1117.2.15.(15)5 F,...1117.6112.4625 F,U'.1117·2.14·)6.19 J:... DATE I TIME IlnL ,'*_ ,i "Lab No_ For Lab Use Only Contact Name &Phone P.O.# 1I11.1.INm',MT ".(l,n.,~·,:trll)ltJC5I'IU7."'III'"H(J().7.f5•.J.JHCJ II.:!USnuth17111 f~I'IU1.""/n'.J'Jfl.!5!.tUZ5 I·"x .J''''·2.~2·fJl''''fI ~, 5 •SiS. Project Name /Address .... III-s4S1(~I .~~::II ~.~ .......L:-I.......1JooI!I--~~~~~r=--...,.=:-;::7:":"-""7:::---:--~·iU 0 :rgI-IIIInvoiceto:6 ::I ~ U:::.$1'Q<t)~~~~~q;~t-:R::-e-po-rt-t-o:---'IlIIl]J~f-:-$.J-J,J.~lI-----------1 E~~ ~.....9l~~~I SAMPLEI.D.z."J.HI ?AM It,.\<.....l r..._.J.!-c?J ~I 1I'iliBiTifi-J.-04" " (p/~Ilo'~~I/JMM11,...)~-1 TO IlrD I V to 1'''1- I~ IO~L-I/J.")"'MTrot/-'~ I)qo~I JAM.MT~~-~ I 11,0 Iq:~gl t.)i\J1 T~""{P \g!-to I tJ 4'~" l/o/7_fJlllfl&l IJJMMTlJ.)l£-4 p lUMMTlJ.)4-~'aI1 IltD wlJ..n 111,5'$'1 WMtvrfwL{...B "1 Lth_fJ III tIT IW Mft\TUl'1-'9 L.hl JrJtst>IW"-,,,,,,wt\.,1-'-. lvlvv I II'"I (})Mfv\fV\~-a\V'f";}/f.i !led (signa/ure)If4 D~te I(~1 Vl.'hJtf Time u~oo-v('.J Received by:(signature) ~I~ 2.Relinquished(signature)Date f74dLtlPr1 CI ~ /l .A I I ,,V~ z ).... •Billings ENERGY LABORATORIES,INC.'S CHAIN OF CUSTODY RECORD toll/ree 1-888-235-0.H5J.ili.iiiO •Casper Mail O,lly:PO Box 3258 •Casper,WY •82602-3258 voice 307-235-0515•Glllelle,e;t:l.Ut4U •UWir •Rapid Cit)'UPS/FedEx Deliveries:2393 Salt Creek Highway •Casper,WY •82601 fax 307-234-1639 For Sample Tracking Purposes,Please Provide Contact Name and Telephone #'s as Indicated (SEE BACK OF FORM FOR EXAMPLES AND INSTRUCTIONS) Project Name I Location I Purchase Order"I Bid"..Special Requests 2t1QQ<"""~., Type of Analyses Requested-s'co I "••)S...~,~jo...,t...k 1~".._VI'\./I J P.1"....j "...\l-kJ-- ~01!'>., &.;;~'eNameIPhoneiIFax#J ~::5, ....::..I::?~.e l).......J.TV>"il.-/l't1S-)b7Y-n-,I )eli:,n h?y -'Z'22-C( ....c"t::~S ~C)~..u to Send Invoice to::t".:l'-.~::>:1 ~ eu ~-Be.'J ~":':~~eu ....p.o.B.,.,..~Q.)lU ~.~~oC)~~~c"E;k-!•""':).u k...J.."1tt.!-,/E lU ~C)Date Time ~~:::t}~d:loC)Send Report to:s,-""",,",-a.J 4.l.~~~~'\\C)l:~Iu 'll Comments,SpecialboO~~Instructions,etc.Sample I.D.. "'I:z.,}""O'ioY ~W""""-l""''T1V ~10 "j.&J ./ "'/"'/0 /12..lt ./WoM Wi 'tIAJ '-{-II 3·"L1 .,/ ~Jr,j~1 13.f'::>....",WW\.......T\"AJ 4 ..(d_-:1 '3 -tV ,/ 3.Relinquished hy:(signature) Date bltrh" Date Time U:DV Time Received hy:(signature) Received by:(signature) 2.Relinquished hy:(signature) 4.Relinquished by:(signature) Date Date Time Time )rxiJ Received hy:(sigmllure) Energy Laboratories,Inc. SAMPLE CONDITION REPORT This report provides information about the condition of the sample(s),and assocated sample custody information on receipt at the laboratory. Client:International Uranium (USA)Corporation Description:WATER Lab ID(s):01-33939-1 Thru 01-33939-14 Matrix:Liquid,Misc Delivered by:UPS Date&Time Rec1d:26-JUN-Ol 1000 Date&Time Col'd:21-JUN-Ol 1034 Received by:Sara Hawken Logged In by:Tabitha Fassett Chain of custody form completed &signed: Chain of custody seal: Chain of custody seal intact: Signature match,chain of custody vs.seal: Sample received Temperature: Samples received within holding time: Samples received in proper containers: Samples Properly Preserved: Bottle Types Received:39-40ML VOA NF HCL(ABC) comments: Yes No N/A N/A SC Y~s Yes hs Comments: Comments: Comments: Comments: Comments: Comments: Comments: Comments: m~'ll?i'"mt1l.U&It.UpU Billings.Casper·Gillette Helena·RapidCity ENERGY LABORATORIES,INC. SHIPPING:2393 SALT CREEK HIGHWAY'.CASPER,WY 82601 MAILING:P.O.BOX.3258 •CASPER,WY 82602 E-mail:casper@energylab.com •FAX:(397)234·1639 PHONE:(307)235-0515 •TOLL FREE:(888)235-0515 LABORATORY ANALYSIS REPORT Client:INTERNATIONAL URANIUM (USA)CORPORATION Contact:Wally Brice Sample Matrix:Liquid,Water DatelTime Received:06/26/200110:00 Report Date:July 11,2001 Laboratory ID Sample Date 1Time Sample ID Nitrate +Nitrite as N,mg/L 01-33936-1 0612112001 10:31 WMMTW4-1 8.81 01-33936-2 06122/2001 10:38 WMMTW4-2 9.67 01-33936-3 0612112001 08:58 WMMTW4-3 2.61 01-33936-4 0612212001 09:34 WMMTW4-4 14.00 01-33936-5 0612012001 14:09 WMMTW4-5 6.47 01-33936-6 06/2012001 09:45 WMMTW4-6 <0.10 01-33936-7 06/2112001 09:50 WMMTW4-7 2.65 01-33936-8 06120/2001 12:51 WMMTW4-8 <0.10 01-33936-9 06/20/2001 11:00 WMMTW4-9 0.15 01-33936-10 06/22/2001 11 :20 WMMMW4 9.02 01-33936-11 06/2112001 08:58 WMMTW4-10 2.96 01-33936-12 06/2112001 12:15 WMMTW4-11 3.19 01-33936-13 06/2112001 12:17 WMMTW4-12 0.66 Quality Assurance Data Method .EPA 353.2 Reporting Limit 0.10 RPD1 0.0 SDike2 97 Analyst rwk Date 1Time Analyzed 06/27/2001 14:18 '. NOTES: (1)These values are an assessment ofanalytical precision.The acceptance range is 0-20%for sample results above 10 times the reporting limit.This range is not applicable to samples with results below 10 times the reporting limit. (2)These values are an assessment ofanalytical accuracy.They are a percent recovery ofthe spike addition.ELI performs a matrix spike on 10 percent ofall samples for each analytical method. msh:r:\reports\c1ients2001\intemational_uranium_corp\liquid\33936-1-13.xIs COMPLETE ANALYTICAL SERVICES ,,'IIII~,'I.~X·~71·/~1.i I'"i,"('Md·J-I2-111.~f"..(1I1.~·.!42·I.I~7 Comments,Special Instructions,etc. "A.'m CIT\',SII P.O,On.2~7nI57711'1l hl('fa~nwnud~S171111 , m"",H77·472·11711 HJ;,',./pux 406·-1-11·071/ .~ ~'IiIfitlJ: .~~~~ IIEI.ENA,MT P.O,On.5hRK'5')(\(\.11 271\.1 Oilli.~,Ave.(59(~1I) Received Date:Cust.No,:TH/C login Dote:Custody Seal:Yes/No Shipped by:I A.J)5.Intact:Yes/No Shipping Bill #:.Signature Match?:Yes/No Sample Temp:5 o~If no -Reason:~])Itoo:e 'Prl~~~tJ tb)Ifi7,",~f 11 ~fl7~t#b~UseOn/Y GlLI,EliE,WY 1105 We"FiI1lIS'ree'(R2716)",1<",'.I07.~H~.7175 I'm .!07·~H2·4M5 II'n".f HIW~·2.'5.05IS",i,','.!1l7.2.15.1l51S I'll..107·2.14·M.l') IJ SAMPLE 1.0,7.__J,.0\(!J~~O~..a Z .......l. PLEASE PRINT OR TYPE ALL INFORMATION EXCEPT SIGNATURESJ&1-.!2 Sampler's Signature CASPER.W\' P.O.Bn.J258 1826021 2J'IJS"I,Cn:ek Hi~h\\'.y (K2(~1ll CHAIN OF CUSTODY RECORD TIMEDATE Project Name7 Address Lab No. For Lab Use Only Contact Name &Phone P.O.# nll.UN(;S.MT.'., ".Il.Bn,JI~lIh1591071 ...,,11,'X'N~7.15.44H'} II~n Snuth ~71h (:'i'lUlI',',,1,'('"06.2.~!-fJ.t2.~ ""tr "''''..2!iZ·fJINW ~£0\ CIl,~ ~:::>1 P~lf51~~~~2(!1j~¥~L-r;;b;;;;~::r::-:-------------J CII c: .S .~ IllO~ Invoice to::I.",c....§:::>~ 'Yo "!o'C.~a~~~~I~~A\'",.Kf'"MS"\~CJ);gCII~blt-;::':;:-;::-~.J.ll;~~~I'4~,=,:--------1~«~II ::J "0'O~L r::!~I .!!1j~~I ru·~CJ)«I ~HiIi51iliii-lr04., ~:2.".3(,-I "/2.-1 I leJI I!l)/ltMr&l4-!'~I,w1)(.. -~rZ~/r~~~JI1J1171c).I{-3 I I I~ ..2 I"lz·I.(c,11D3']'IlJIHJffTlJ 4-Z-I I I X./ \ -L/-I Gft-2j~L~~'1IIAI1IV1Twlf-l/I I l'i \..51~.J)I\!\()q \1AJ/lfI111JAJJ{-$'\-f-I~ -··1 \'G,\-qt1J Iq:l{stWJlfMIW4-~,' \I IX~~_\)'''J '~',\.,~?,g ."".,t--:=:•.'::-,.---;-....,-~.J...T~t=-..::...::.-f-&'~....:.:.....!.....:~:....L-..l._----------J.-J.----J~ :.':J =:': t.;I •,'J ':\J ~-::; C)1-'__~f-_-L..++~~~l:.-~:::;':'''':'':'-l-':'''::-!...:-....!-'''':''''~I-~Q1 , "H~..,.£__--=~.1.-_--L--r_..IIO~;":-'~!...F;--I--~~--r-__~I-..J.:..~I.--...J..._..I..r-.....J._....L..,.........'---.L-.--+:--\-c:)Receivedby:(signature) :.·.'i II :()()_. '1''''1 .. 5i ~/)Received Dote:Cust.No.:~YCI~I.oginlAJle:CusIodySooI:Yes/No~i.Jlll#kl CHAIN 0 CUSTODY RECORD Sshh~P~bB~:II#In.tact:h ~es//NNo 'ppmg I :Signature Mate?:,es 0 PLEASE PRINT OR TYPE ALL SampleTemp:O(If no -Reason: INFORMATION EXCEPT SIGNATURES For Lab Use On/v 11II.1.INm'.IIIT CASPER.W\'G11.1.ETfF..WV NEI.ENA,MT R,wm('Il'\'.SII p,n,nn,31"'1>IS·llll7."'/11.\,~IHI·7.'.I.~~H9 P,O.nnx 32SM IR21102\"'''".,111111·2,1.1·"51.1 1illS W<xl Firs,S""<I (M27II>.""/,'r .1IJ7·~1I~.717,1 P,O,nnx SI>MK 1591>1\.11 iii",.'.~77.~7!'''711 p,n.lin,2~7015771~11 ..../11,,~,~,~.~7!.I!!.i 1120Slllllh 271h ISI'IIII.,";.'"~'IfJ·!,1!·".'2.i 2393 S.h Cn.d Highway (K21>1,fl I·..i,·.,.1117·2.15·115'5 1'.....,tn7."'~2-~~1.l 270~BillingsA,,,,15111>1111 \I.i,·('/I'.....~'IfJ..U2."711 Mil ";0".."••115771111 I·..i.·.·fJI',i.,'~2.1!25 "',,-,"("'·J.~2,"''''fl ."'fU JfJ7·2.U.,t..l9 "tl.\'11I15..I"~.1.ltj7 P.O.#Project Name /Address .... 1/,)h,·~t.l1~~~;II ItA1.r~.J&,.\t/Icrt.rl_J~..~Ur PArll ~I Contact Name &Phone [''Sampler's Sigmlture r !II §, .~c IIf~\\11 ~id (~~~~,tA"llJJ '~0 ~JrInvoiceto::I:u ~§:;:)~if86qu~:$I '~ 'PO &~\T B4SIf 'Q CI);g I-'e>1t:AA\A'"1 t lJ.~~0 .f Lab No.DATE TIME ~'"f&1\.~~~i For Lab Use Only Report to:~t,A1 ~~.I::~~dJ ~~~Comments,Special~::>.1 ~'Instructions,etc. SAMPLEl.D.,_",1 'I"lOOt lao)~P(a.r.J.~~I ~ ';:r3 1~t'J-1 /~/t'n~~II·\"A_1'1i\4-'b 'U luJ v' ( -12 (0/:10-1/0'L2·1c;"1~"''''''''Wtl-11 lLJ ./ ")-/3 ("ft"OI 1111-,luM,.,,-rl.Alt,f-rz.'w ,/ 'J -I:;;::1 ••,.l'.,':.>.;;-')..'"'..'1-=----~---t---+------------~__+___I____1f____t_+__t__+___+___t_~---'--_i , ".;j ~.J :.: ~).. .;.....J .....:1' .•r;) .:.)1''1 ~ .:"~~/IA;red(Slgnature)6l~~Time Received by:(signature)2.Relinquished(signature)rll~a~e ,~=~\r.1.iv~~~raf.~bY: /1 l1(/1 Z~/pl It;o()_tlDC _/(n.A1J1fr!JfIX.J (v~~LI,-1J7.k...~ Energy Laboratories,Inc. SAMPLE CONDITION REPORT This report provides information about the condition of the sample(s),and assocated sample custody information on receipt at the laboratory. Client:International Uranium (USA)Corporation Description:WATER Lab ID(s):01-33936-1 Thru 01-33936-13 Matrix:Liquid Delivered by:UPS Date&Time Rec'd:26-JUN-01 1000 Date&Time Col'd:21-JUN-01 1031 Received by:Sara Hawken Logged In by:Kerri Schroeder Chain of custody form completed &signed: Chain of custody seal: Chain of custody seal intact: Signature match,chain of custody vs.seal: Sample received Temperature: Samples received within holding time: Samples received in proper containers: Samples properly Preserved: Yes No N/A N/A SC Yes Yes Yes Comments: Comments: Comments: Comments: Comments: 'Comments: Comments: Comments: Bottle Types Received:12-160Z P NF H2S04 (A),2-120Z P NF H2S04 (AS) cOmments: Energy Laboratories,Inc. REPORT PACKAGE SUMMARY Acronyms and Definitions ELI-B Energy Laboratories,Inc.-Billings,Montana ELI-G Energy Laboratories,Inc.-Gillette,Wyoming ELI-H Energy Laboratories,Inc.-Helena,Montana ELI-R Energy Laboratories,Inc.-Rapid City,South Dakota co -Carry over from previous sample ip Insufficient parameters N/A -Not Applicable NA -Not Analyzed NO -Analyte Not Detected at Stated Limit of Detection NR -Analyte Not Requested NST -No Sample Time Given NSD -No Sample Date Given FINAL PAGE This Package Contains the following Client ID(S)and Lab ID(s) Client ID:WMMMW4 is associated to Lab ID:01-33936-10 Client ID:WMMTW4-1 is associated to Lab ID:01-33936-1 Client ID:WMMTW4-10 is associated to Lab ID:01-33936-11 Client ID:WMMTW4-11 is associated to Lab ID:01-33936-12 Client ID:WMMTW4-12 is associated to Lab ID:01-33936-13 Client ID:WMMTW4-2 'is associated to Lab ID:01-33936-2 Client ID:WMMTW4-3 is associated to Lab 10:01-33936-3 Client 10:WMMTW4-4 is associated to Lab 10:01-33936-4 Client 10:WMMTW4-5 is associated to Lab 10:01-33936-5 Client 10:WMMTW4-6 is associated to Lab 10:01-33936-6 Client 10:WMMTW4-7 is associated to Lab 10:01-33936-7 Client ID:WMMTW4-8 is associated to Lab 10:01-33936-8 Client 10:.WMMTW4-9 is associated to Lab 10:01-33936-9 Approved By:~.~ StTJVt £:c....-.3'!"l:~~sSwi~.~· ~df;;;;. QUALITYASSURANCE DIRECTORReviewedBy: This is the last page of the Laboratory Analysis Report. Additional QC is available upon request .. The r~port contains the number of pages indicated by the last 4 TRACiWt::1':0.PAGE NO. digits ~"),....,~r 1"'1 0 ("",-.0 r.......1"......( •t •;,d .I ;:I)'1 .,I'I·.....-.,'-..-'..)\_~ F-725801678ZZZ4T-555 P.D02/0l2 ENERGYLABORATORIE~·.INC--2393 Salt Creek Highway(82601)•p.o.Box"--fj •Casper,WY82602 Toll nee BB9.235.0515 •30;.0515 •F~307.234.1639 •casper@energylab.L 'www.energylab.com, lO:40amNov-OS-Ol LABORATORY ANALYTICAL REPORT Client: Project; International Uranium (USA)Corp 3rd Qtr CIW Sampling -White Mesa Mill L:lb Order:CO1090685 Report Date:10/16101 Lab 1)):COI09068S-001 Client Sampleill:WMMTW4-2 An~lyses -~------- vocs Chloroform Surr:1,2-0Ichlorobenzene-d4 Surr:Dibromofluoromethane Surr:p-8romofluorObenz:ene Surr:Toluene-d8 Lab ID:C01090685-002 ClientSample ID:WMMTW4:'3 Analyses vocs Chlorofonn Surr:1.2-Dichlorobenzel1e-d4 SUIT:Oibromofluoromelhane Surr:p-Bromoflucrobel1%.ene $urr.Toluene-de Lab lD:CO1090685-003 Client SampleID:WMMTW44 Analyses vocs Chloroform SUIT:1,2-0ichlorobenzene-d4 Surr.Dibromofluorometl"lane SUIT;p·6romofluorobenzene SUIT:loluene-d8 Collection Date:09120/01 10;52 DateReceived:0912S/01 Matrix:AQUEOUS MeV Result Units Qual RL QCL Method ~alysisDate /By--- 4900 ug/L 400 SW8260B 10104/01 00;561 rh 101 %REC 60·120 SW8260B 10/04/0100:581 rh 93.5 %REC 80·120 SW8260B 10104/01 00;561 rh 83.0 %REC 80·120 SW8~606 10104/01 00:561rh 95.6 %REC 80-120 SW82GOa 10/04/0100:561rh Collection Date:09/20/0'1 10:25 DateReceived:09125/01 Matrix:AQUEOUS MeL! Result Units Qual RL QCL Method Analysis D~..L 300 ugll..100 SW8260B 10102101 22:30I rh 102 %REC 80-120 SW8260B 10/02/01 22:30/rh 109 %REC 80-120 SW8260B 10/02/01 22:301rh 88.8 %REC 80·120 SW8260B 10102101 22:301rh 96.9 %REC 80·120 SW8260B 10102/01 22:301rh Collection Date:09/20/.01 10:50 DateRecei'Ved:09125/01 Matrix:AQUEOUS MeL! Result Units Qual RL QCL Method An~sisD~By 3200 uglL 200 SW8260B 1010210123:11/rh 101 %REC 80-120 SW8260B 10/0210123:111 rh 107 %REC 80-1;20 SW6260B 10/02l0123:11/rtl 88.9 %REC eo-120 SW8250B 10/Q2/01 23:11 Jrh 96.5 %REC 60-120 SW6260B 10102/01 23:11 1rh Report DefinitioDs; NO-Not d~cetedatthc reportinglimit MeL •lVIaltimum contaminant Ic"c1 RL •Analyte reporting level QCL -Quality cantrollimit ~•.~-t:''•• ••••...1_••' t'"......--,.coo .',r~...~n I: ..".1 ,"oj ••U',..:..i . Nov-oe-Ot to:40am From-/Ue BLANDING 80t B78 2224 T-555 P.003/012 F-725 !:?'~r~t=NERGYLABORATORI£.c."'Ic.·2S9SSaflCreekHighway(82601j·f;?Q Box·'-11 •Casper,WY82602!...~~..!::J.'!!::"':i~701IFree88Q.235.051S·J07;.0515·Fax307.234.1639·r:asper@energyla/u,.www.ent1rgylab.com l~t:I·Utifi.mm LAnORATORY ANALytICAL REPORT Client: Project: International Uranium (USA)Corp 3rdQtr crw Sampling·White Mesa Mill Lab Order:COI090685 Report Datc:10/16/01 Lab JD:C0109068S-004 Client SampleID:WMMTW4-5 vocs Chloroform SUrf:1,2-Dichlorobell2.ene-d4 SUIT:Oibromofiuoromelhane SUIT:p-BromofluorCbenzene SUIT:Toluene-d8 Lab ID:CO1090685~005 Client Sample ID:WMMTW4-6 Analyses vocs Chlorcfonn Sl,Irr:1.2-Dictllorcbe~ene-d4 SUIT:Oibromofluoromelhane SUIT:p-Brornonuorobenzene Sl,Irr:Toluene-dS Lab lD:C0109068S-006 Client SampleID:WMMTW4-7 VOCS Chloroform Sl,Irr:1,2-Dlchlorobenzene-d4 Surr:Dibrcmofll,loromethane Sl,Irr:p-6romofll,lorobenzene Surr.Toluene-d8 Collection Date:09120/01 10:05 Date.R.ecei"cd:09125/01 Matrix:AQUEOUS MCU Result Units Qual RL QCL Method Analysis Date1By 240 ugll.20 SW82606 10/04/01 01:37 1rh 100 %REC 80-120 SW8260B 10/04/01 01:37 1rh 92.5 %REC 80-120 SW8260B 10104/01 01:37 I rh 82.8 %RE:C 60-120 SW6260a 10/04/0101;31Irh 94.3 %~C 80-120 SWa260B 10104/01 01:37/m CollectionDate:09120/01 09:16 DateReceived:09/2S/OI Matrix:AQUEOUS MeV Result Units Qual RL QCL Method AnalysisDate I By 3.6 ugIl.2.0 swe260B 10/03/01 13;211 rh 99.0 'YaREC 80-120 swa260B 10103/01 13:21 I rh 100 %REC 80-120 SW8260B 10/03/0113:211rh 66.9 %REC 80-120 SW8260B 10/03101 13:211 rh 98.1 %REC 80-120 swa260B 10/03/0113:21/rh Collection Date:09/2010110:43 Datclleceived:09125101 Matrix:AQUEOUS MCIJ Result Units Qual RL QCL Method Analysis nate /By 1200 uglL 100 SW8260B 10f0310114:021 rh 98.9 %REO.C 80-120 SW8260B 10/03101 14:021 rh 96.6 %REC 80-120 SW8260B 10103101 14;02I rh 88.7 %RI;OC 60-120 SWB260B 10/03101 14:02f rh 96.2 %REO.C 80-120 SW8260B 10103101 14:021rh Report Definitions: NO -Not dctected.n the repomn!;limit MeL -Maximum contamin:mt level RL -Analylc reponing Icy,}1 QCL •Quality CQTlttollimil ~...,r _'••.•4Ilo _-I.l"\ !:~.-.'J'.••,....~~1'0..''--.1.·...:_~. Nov-OS-Ol 10:40am From-IUe BLANDING 801 678 2224 T-555 P.004/012 F-725 ~ENERGYLABORATORJEt:·"'C.·ZJ!l:J Salt CreekHighWliY (82601)•P.G Box ,r "-7 •~"'asper.WY8260219~:;;e)Tod Free 888..235.0515 •307.~J515 •Fax 307.234.1639 •casper@energyJab.ci-.www.en_b.com g;t.j:-/c4U-kltB LABORATORY ANAL\'TICALREPO:RT Client: Project: International Uranium (USA)Corp 3rd Qtt crw Sampling -White Mesa Mill Lab Order:COl09068S ReportDate:10/16101 Lab ID:CO1090685-007 Client Sample ID:WMMiW4-8 AJlalyscs vocs Chloroform SUIT:1.2-Dichlorobenzene-d4 Surr.Dlbromofluoromelhane Suit:p-Brornofluorobenzene Surr:ToJuene-d8 Lab ID:COI090685-008 Client Sample ID:WMMTW4-9 Apalyscs vocs ChlortJform SUit:1,2-0iehloroberuene-d4 Surt:Dibromofluoromethane Surr:p-BromofluorObenzene Surt:Toluene-d8 Lab ID:COI09068S-009 Client SampleID:WMMMW4 Analyses vocs Chloroform Surr:1.2-0iehlorobenzene-d4 Surr:DibrtJmofluoromethane SUfi.p.BromofluorobelUene SUrT:Toluene-dB Collection Date:09120/01 09:46 DllteReeeived:09125/01 Matrix:AQUEOUS MCL! Result Units Qual RL QCL Method Analysis Date Illy_~ 180 uglL 10 SW6260B 10/03101 14:4:3 /rh 99.4 %REC 80-120 SW8260B 10103101 14:43 t rh 102 %RE:C 80-120 SW8260B 10/03(01 14:43/rh 87.8 %REC 8Q.120 SW~60B 10103/01 14:43 f rh 95.9 %REC 80-120 SW8260B 1010:3101 14:43/rh Collection Date:09120/0109:31 llateReceived:09125/01 Matrix:AQUEOUS MCIJ Result Units Qual RL QCL Method AnalysisDate1By 19 uglL 2.0 SW8260B 10104101 02:27/rh 89.2 OfoREC 80-120 SW8260El 10104/01 02:27 /rh 92.1 %REC 80-120 SW82608 10104(01 02:27/rh 84.8 %REC 80-120 SW8260B 10104/01 02:27 /rtl 97.3 o/aREC 80-120 SW8260B 10104101 02:27 f rh Collection Date:09/20/01 11:20 DateReceived:09125/01 Matri~:AQUEOUS MCV Result Units Qual RL QCL Method AnalysisDateI By 5300 ugiL 400 $W8260B 10103101 16:04/ri'I 102 %REC 8Q.-120 $W82608 10103101 16:04 /rh 102 %REC 80-120 SW8260B 10103/01 16:04/rh 87.2 %REC 80-120 SW8260B 10103101 16:04/rh 96.7 %REC 80·120 SW8260B 10103101 16:04/rh fteport Definitions: NO-NotdeteCted atthereponing limit MeL -Maltimum COtIlllminant level RL -Analytc repOrting level QCL -Quality control limit ~'-.~''~::._\i!:-,~.n t -".:_I .:_.J ••d...:U '. NDv-09-01 10:40am FrDm-IUC BLANDING 901 679 2224 T-555 P.005/012 F-725 I.?J:'I""'..y?!?ENERGYLABORATORJEt:·We.·2393Sail Creek Highway (82601)-P.O.Box ;.....q •Gasper;WYB2602_~'!!~rolIFree888.235.0515·307..J515 •Fax 307.234.1639 -casper@energylab.c-.www.energylafJ.com Rt#l·1ititt•Jru4. LABORATORY ANALYTICAL REPORT Client: Project: Intemational Uranium (USA)Corp 3rd Qtr CIW Sampling -White Mesa Mill Lab Ol""der:COI09068S Report Date:10/16101 CQUection Pate:08/22101 10:20 DateReceived:09/25/01 Matrix:AQUEOUS MCIJ Result UnitS Qual lU.QCL Method Analysis Date1By ND ugJL 1.0 SW8260B 10/02101 16:59 I rh 101 %REC 60-120 $W82606 10102101 16:59/rIt 102 %REC 80-120 SW8260B 10/02/01 16:591rIt B6.7 %REC 80-120 SW6260B 10/02101 16:591 rIt 96.7 %REC 80.120 SW6260a 10/02101 16:59/rh VOCS Chloroform Surt:1.2-DiCt1lcrobenzene-d4 SUN':DibrQmcf)uorometh.me surr:p-Brorncfluoroben;:ene SUN':Toluene-dB Lab ID:COl 090685-010 Client Sample JD:Trip Blank Analyses_.--~,~-------------------....:....... Rl:pon DefiuiliOIlS: NO -Not detected at the reporting limit M~L •Maximum contaminant levd RL -AnalytC reporting level QCL -Quality control limit Y...,'r'-r"'"..-....,"'_ •I ...•....·.tl .'.:-.,-,,";..I":;f:.tID n .'.,.-~.-:.0 ...-• - • : • 1 :""I •J !:-,....-....,..~I 0'..' .... 1:1Y~ENERGY LABORATORIES,INC. 1.!:J,I(!1dt:!!!l.I P.o.BOX 3269 •CASPER,WY 82602 •2393 SAL.T CREEK HIGHWAY •CASPER.WY 82601 ===~_PHONE (307)235,0515 •FA)((307)a34-1639 CLiENT:IntemationalUrnnium(USA)Corp ANALYTICAL QC SUJ\II1\1ARYREPORT Date:J8-0ct-OJ Work Order:CG1090685 Project:3rd Qtr CI\V Sampling -White Mesa Mill TestNo:SW8260B :zo"ic:> CDIc:> c:> "., ~ POL SPK value SPK Ref Va' TestCode:VOC.82!10·WoSHT Unlls:ugtL TestNo:SW8260B lovllimll HillhUmlt RPD Ref Val Prep Dale: Analysis Dale:1011'2001 on...~I c:n aJr->-:zco :zt:')o o o o %RPO RPDlimit Qual Run ID:GCMS1oC_011lJ01A SeqNo:4g698 o o o o 120 120 120 12.0 80 80 eo 80 9B 101 87.3 96.8 %REC o o o a 10 10 10 10 1.0 o o o o ND 9.8 10.12 8.76 9.6B Result SampType:MBt.K Batch 10:R2441l Analyte Chloroform Surr:1,2-Dlchlorobenzene..(J4 Surf;Oibromofiuoromel1lane SlJrr:p·Bromolluorooonzene Surr:Toluene-dB Semple ID:Method Blank # CllenllD: Sample ID:Mell'lor:l Blank # CllentlD: SampType:MBLK Batch ID:R2451 TeslCode;VOC-a260·W-5HT Ul'llls:ugiL TestNo:SW8261lB P,ep Date: Analysis Dale:101212001 Run ID:GCMS1-C_tl110D3C SeqNo:49751 Analyte Result PQl SPK value SPK Ref Val %REC LOI'lllmll HlghUmlt RPD RefVal %RPD RPDlImll Qual TeslCode:VOC~260·W·SHT Ul'llts:uglL TestNo:5W8260B Cilloroform Sun:1,2-Dlchlorobenzene..(J4 Surr:DlbromoftuOJomethane Surr:p-Bromofluorobenzene SlJrr:Toluene-de Sample ID:Methot!Blank # CllenllD: ND 10.13 10.33 8.59 9.6 SllmpTyp.e:MBlK Batcl110:R2461 1.0 o G o o 10 10 10 10 o {) o o 101 100 85.9 96 BD 120 80 120 80 120 80 12.0 Prep Date: AnalysIs Dale:111/3/2.001 o o o o o o o o Run ID:GCMS1-C_01H)()3C Sec;No:49162 CDc:> CD......CD..............."., COMPLETE ANALYT1CAL SERVICES Analyte Resull POL Ci'liorororm ND 1.0 Surr:1,2-Dlchlorobenzerle·d4 8.8 0 •..:1 e~rr:Dlbromonuoromelhane 10.12 {}..:-.~~rr:p·Bromofluorobe nzene 8.76 0z..:I,·,l?~,r;Toluene-d3 9.e8 0 • •....J '"~J j ..) ~'.)'.:Ja ......:------;--J I"..")Q~:~lOers:o 1"11 %REC lowUmlt HlghLlml1 RPD Ref Val -tIenenen -u c:>c:>CD~ onI...........en ..... o o o o %RPO RPDtimit Qual o o o {} B·AnIlI)'I!:detcc:tC'd in the assoeialt:d MclhGd Blank 120 12.0 12.0 120 ao lID lID SO 88 101 87.6 96.8 o o o o 10 10 10 10 S•Spike Recovcl}'oUlside aC(cp'od recQvcry IimiIs R •RPD o~Iside accepled recovery limi,s SPK value SPK RerVal NO -Nol Dclcc!od at lbe Reporting Limil J•Anal)'te detected ~1()w ql1ontilalion IimilS-.~.'.<:)U) LSIl CLlENT~ Work Order: Project: International Uranium (USA)Corp C01090685 3rd Qtr CIW Sampling -\Vlrile Mesa Mill ANALYTICAL QC SUMMARY REPORT TestNo~ Date:18-0ct-OJ SW8260B :z:~Ic:> CDIc:> c:> ~ IIU:I Sample 10:Metbod Blank f#SampType:MBLK TeslCocle:VOC·B260·W-8HT Unlls:ug/L.Prep Date:RlJn 10:GCMS1-c_011C103C ClIef\tlD:Batch 10:R2461 TastNo:SW8260B Analysis Oate:10J4J2.001 SeqNo:441769 Analyte Resull PQl SPK value SPK Ref Val %REC L.owtlmil HlghLlmlt RPD Ref Val %RPD RPOLlmlt Qual Ctlloror01m ND 1,0 Surr:1,2-Dlchlorobel1Zene-d4 10.16 0 10 0 102 80 120 0 0 Surr:Dibromoftuoromelhane 10.07 0 10 0 101 80 120 0 0 Sun:p-SromofluorolJenzene 8.43 0 10 0 B4.3 ao 120 0 0 Surr:Toluene-dB 9.51 0 10 0 95.1 80 120 0 0 Sample 10:C0105lD6BS.Q09A SampType:MS TestCode:VOC·El2.B{J·W-SHT UnIts:uglL Prep Date:Run 10:GCPlrS1oC_G11001A Cllenl1D:W'..MMW4 BalcJ1ID:R2449 TestNo:SW8260B Analysis Dale:10'1J2ClO1 Se.qNo:49729 Analyte Result POL.SPKvalue SPKRefVal %REC L.OY4.lmll HllJhUmll RPD Ref Val %RPD RPOLlmlt Qual Surr:1,2·Dlchlorobenzene-d4 9980 0 10000 0 99,8 80 120 0 0 Surr:Dlbromclluoromethene 9770 0 10000 0 91,7 80 120 0 0 Burr:p-BromoOuorolJenzene 8730 0 10000 0 87.3 60 120 0 0 Surr:Toluene-d8 9620 a 100Q[)0 96.2 80 120 0 (} Sample ID:C01090773.Q01A SampType:,",S TestCode:VOC·826Cl.W-SHT Units:ugfl..PrilpDale:Run ID:GCMS1-e_0110D3C CllenllD:Balch ID:R2461 TeslNo:SWB26ClB Analysis Date:10J2I2001 SeqNo:49752 Analyle Result pal SPKvalue SPK Ref Val %REC L.owLlmlt HlghLlmlt RPD Ref Val %RPD RPDl:lmll Qual Chloroform 51.9 5.0 50 0 104 70 130 0 {l Surf:1,2·DlcI1l(]1'obenzene-d4 5D.4 0 50 0 101 ao 120 0 0 Surr:DlbromonuorQmelhane 52.75 ()50 0 100 BO 120 a 0 $4rr:p-8romonuorobenzel'le 43.45 0 50 (}86,9 50 120 0 0I.•-) .:.....,S~rr:Toluene-<lB 47.75 0 50 (}95,5 so 120 a 0 ';"'J','J.....'.,•J -n., ~ ~ OJr-~0::::1 ::zSO") CDc:> CD-....CD """"""- -tIenenen ., c:>c:>~ ""•I'·~....I - I.......... C1 .,> '.,-nI-....""en ;::'1 QUiilrfiers: •..,L·· '••-oJ L~) Co")rl1 NO -Not Dc~eted al the RepClT1ins Limil J-AnDly1e d~1ectecl belo\V quan1iwliOll limits S•Spike Rcco\rcryoutside accepted recovery Iimils R•RPD outside acctp1ed recO'.'ery'IEmill; B-Analyte delecled in the associ1l1ed Mell10d Blsnk ....J :-.=:.a Inlernational UflInium (USA)Corp COJ0906SS 3rd Qtr crw Sampling -White Mesa Mill pal SPKvalue SPK Ref Val pal SPK value SPK Ref Val TestCode:VOC-Il260-W-SHT Units:ulJIL TestNo:SWa260B :zc<IC>CDIC> -C> ",. II) 31 ......c31..!...c::n OJ....>-:z'CJ :z~ '; o a o a o %RPD RPDlImll Qual Date:J8·0ct-OJ O/ORPD RPDUml1 Qual Run 10:GC~"S1-e_011003C SeqNo:49770 Run ID:GCMS1-c_011003C SeqNo~49763 SW8260BTestNo: Prep Date: Analysis Dale:10'3'20Q1 %REC Lowllmll HlghLimll RPO Ref Val 109 70 130 0 99.8 80 120 0 97.7 80 120 a 87.3 80 120 a 96.2 80 120 0 Prep Dale: Analysrs Dale:10J5I20D1 %REC LO'NLlmlt HlghLlmlt RPD Ref Val 5280 o o {I o 10000 10000 10000 10000 10000 ANALYTICAL QC SUl\11\1ARY REPORT 1000 o o o o TestCode:VOC·B260-W-SHT Units:u"IL TestNo:swaZSOB Result 16180 9980 9nO 8730 9620 Resull SampType:MS Balch 10:R2461 SampType:MS BalclllD:R2461 Sample ID:CCl1090695-(112A, ClrenllD: Analyle Chloroform Surr:1,2-0Ichlorollenzene-d4 Surr:Dlbromofluoromethane .Surr:p.Bromorluorobenzene SUIT:TofLlene-d8 Analyle Sample 10:C01C190685-D09A Client 10:WMMMW4 CLIENT: Work Order: Projec(; CD:l TeslCodl3:VOC-8260·W·SHT Units:ug/L Prep Date: TeslNo:SW8260B Analysis Dale:1011J20D1 POL SPKvalue SPK Ref Val %REC LO'tovl.lmll Hlgl1L1mil RPD RefVal 1000 10000 5280 105 70 130 16180 ()10000 ()100 80 120 0 0 100<10 {)98.5 SO 120 0 0 10000 0 87.9 80 120 a (}10000 0 96.5 80 120 0 %RPD RPDlImit aual Run 10:GCMS1oC_C11t001A SeqNo:49730 o o o o a ~UIUIUI '"U C>C>CD~..... CDC> ...I.......... UI CD.....CD...............",. 20 10 10 10 10 2.69 o o o o 1000 a 105 70 130 0 1000 0 99.6 BO 120 0 1000 0 96.2 ao 120 0 1000 (}87.5 ao 120 0 1000 0 97 00 120 a 50 o o o o 1047 996 ga2 875 970 15750 10036 9850 8790 9550 Resull SampTypB:MSD aa~ch 10:R2449 Analyle Sampll3lQ:C01090BB5.(J09A Client 10:WMMMW4 Chloroform Sur..1,2.Dfcl1lorooenzene-d4 Surr.01 bromonuoromelhane Burr:p-Bromofluorobenzene Burr:Toluene-d8 (J ~•.J...• I......~,i) c:> Chloroform Surr.1,2·Dlchlorobenzene-d4 .....Surr;Dibromonuoromelhane" .."."J S1lrr:p.BromDftuorobenzeneI~"~sin..Toluene-d8..... to.".l ."~ :_00,7.'l."..QUI!l.llC:rs:.-=,'j i;")o P1 1-·')~..0 NO -Nltt Dctccled at the Reporting Limit J•An al)'te detecled below quantillltinn limi1s S•Spike Reco\'CT)'(]~1side accepted recover}'limi Is R-RPO oUlside accepted recovery limi1s B·Analyle delected in tile associated Melhod Bhmk IS1ll :zc<Ic:>a:>Ic:> CLIENT: Work Order: Project: InternationalUranium (USA)Corp CO 1090685 3rd QCr ClW Sampling -,"Vllite Mesa Mill ANALYTJCAL QC S~1ARYREPORT TestNo: Date:18-0cl-()! SW8260B c:> ".. ~ 50 0 105 70 130 51.9 1.53 20 50 0 104 80 120 0 0 10 50 0 10B 80 12G 0 0 10 50 0 8S.3 80 120 0 0 10 50 0 97 ao 120 0 0 10 Sample 10:CD't090773-4l01A Cllen\10: Analyla Chloroform Surr:1,2-Dichlorobellzel1e-lf4 Surr:DibromGlluoromethane Surr:p·BrOO\ofluorobenlene Surr:Toluene·aS SampType:MSD Balcl11D:R2461 Result 52.7 51.9 53.8 44.15 48.5 Tes\Coda:VOC-B2E1G-WoSHT Units:ugJl Tes\No:SWB26DB PaL SPKvalua SPK Ref Val 5.0 o o o o Flap Date: Analysis Oafe:1DJ2J20C1 %REC LowLlmil HlgtlLlmlt RPD RerVal Run 10:GCMS1-G311100aC SeqNo:49753 %RPD RPOLlml\aual 'TI.... § I c::n OJ....>-::z'0 ::zIn CDc:> "'" "V c:>c:>a:>~ en.....CD "'""'""'"".. -'tIc:nc:nc:n TestCotle:VOC·B26[t·W-SHT Units:ug/L Prep Dale:Run ID:GCMS1-G_011Cm3C TeslNo:SW626DB Analysis Date:101312001 SeqNo:49764 POL SPK value SPK Ref Val %REC LowUmlt HlghUmlt RPD Ref Val %RPD RPDUmU QlIal 1000 10000 5280 105 70 130 16180 2.69 20 0 10000 0 100 80 120 0 a 10 0 10000 0 98.5 80 120 0 0 1{l 0 1000D 0 87.9 BO 120 0 0 10 0 10000 0 96.5 BO 120 0 0 10 TeslCode:VQC·S26{1·W-SHf Units:uglL Prep Date:Run ID:GCMS1-e_011Q03C TeslNo:SW826DB AnalysIs Date:10/512001 SeqNo:49771 POL SPKvallJB SPK Ref Val %REC LoV/lImlt HlghLlrnll RPD Ref Val %RPD RPDUml1 QlIal 50 1000 0 107 70 130 1041 2.45 20 0 1DOO 0 100 BO 120 0 0 10 G 10(1)0 104 80 126 0 0 10 0 1DDO 0 87 BO 120 0 ()o 10 0 1000 0 96.1 ao 120 0 0 10 Result 1073 1001 1035 B70 961 15750 10030 9650 8790 9650 Result SampType:MSD Batch ID:R24131 SampType:MSD Ba\ch 10:R2.4131 Chloroform Surr:1.2·Dlctllorobenzerle-d4 Surr:Dibromofllloromelhane"'JS:urr:poBromofluorobenzenB Stlrr:Toll1enB-clB Analyie Chlororonn Surr.:1.2-Dlchlorobenzeneo(J4 Surr:Dlbromolluoromelhana Surr:p·BromoRuorobenzene Surr:TolllenlHfEl Sample 10:CCl1G9D595~12A. Client 10: Analyle Sample 10:C01090118S-G09A Client U):WMMMW4 ..r:J "1 :..)':,": •••••1 I .:-;, en ;:1 :",j :..)o ' ,-,':'Quriiiners:.,~~,.r;l(..:,\,.,-,.~,I J (3 ND •Not Delected at 1heReporling Limil J-Anal}1c deleclClll below qumntitation limi1s S•Spike Recovery outside acccplcd rccoyCI)'Iimils R•RPD ouisidc accepled recQVeJ)'lim;ls B·Analyle dctecled in 1heassocialed Mclhod Bialik 'TII....."'"c:n Nov-oe-Ol 10:42am From-IUC BLANDING 801 678 2224 T-555 P.Ol0/012 F-725 ~..T.....-u ENERGYLABORATORIES,INC."2393 SaHCreekHigl1way(82G01).P.D.BoY-':I25B •Casper.WYB2tf02t:!!..:!'-~~'!:.~~701IFree88Q.235.0515·3C .15.0515·Fax 307.234.1639 •casper@energylaJ,',-www.enetgy!ab.ctJm 't:Ot~l·l,l·fK·t;n4f' LABORATORY ANALYTICAL RE10RT Client: Project: International Uranium (USA)COIp 3rd Quarter 2001 Sampling Event White Mesa Mill Lab Order:cOI090647 Report Date:10/04101 Collection Date:09/20/01 11;02 DateReceived:09125/01 Matrix:AQUEOUS MCU Result Units Qual RL QCL Method Analysis Date1By 12.8 mg/l.0.50 E353.2 09126101 19:27JIWk Collection Date:09120101 10:55 DateReceived:09125101 Mauu.:AQUEOUS MCU Result Units Qual RL QCl..Method Amllysis Date I By 11.4 mglL 0.50 E353.2 09126101 19:29 Jrwk Collection Date:09120/01 10:30 DateReceived:09125/01 Matrix:AQUEOUS MCU Result 'UJlits Qual RLQCL Method Analysis Date1By 3.06 rng/L 0.10 E353.2 09/26101 19:331 rwk Collection Date:09120/01 10:50 DateReceived:09/25/01 Matrix:AQUEOUS MCLI Result Units Qual RL QCL Method Analysis Date 1By 14.8 mg/L 1.00 E353.2 09126/01 19;391rwk Lab ID:COl 090647-001 Client Sample ID:WMMTW4-1 Analyses NON-METAlS Nitrogen,Nitrclle+Nitrite as N Labill:COl090647-002 ClientSalllple ID:WMMTW4-2 Analyses NON-METAI.S NitrOgen,Nitrate+Nitrlteas N Lab ID:COl090647-003 Client Samplem:WMMTW4-3 Analys:s ~~__~~.__:~_~__=_~__~ NON..METAlS Nitrogen,Nitrate+NitriteCIS N Lab ID:COl090647-004 Client Sample ID:WMMTW4-4 Analyses NON-METALS Nitrogen,Nittate+Nitrite as N Report Definitions: NO -Not delet1cd at thereportinS limit Mer..-Maximum conmminant level IU.•Analytc reporting Icvel QCL -Quality control limit ,~...,"I .'~:',---,..,"1 ,",:);..:••~',.J :iU·,I..L;;: Nov-oe-Ol 10:42am From-IUC BLANDING 801 678 2224 -T-555 P.Oll/012 F-725 ~:!....:-~Y:J ENERGYLABORATORIE5r INC-·2393Sah Cr6ekHighway (82601)•RO.Box;.3?58 •Casper;WY82fj()2~_~!~l!lOUFree 888.235.0515 •30-.''i0515·Fax 301.234.1639 •casper@energYlat;.~.·I.www.energylab.ctJI1'1 p:ta-];W-1c/14. LABORATOltY ANALYTICAL REPOaT Client: Project: International Uranium (USA)Corp 3rd Quarter 2001 Sampling Event White Mesa Mill Lab O..der:C01090647 Report Date:10/04/01 Lab ill:CO1090647.005 ClientSample lD:WMMTW4-S Analyses---------------------=~--~~---------=---- NON-METALS Nitrogen,Nilrilte+Nittite as N Lab ID:COl 090647·006 Client SampleID:WMMTW4-6 Analyses NON-METAlS Nitrogen.Nitrate+Nitrite as N Lab lJ):COl090647-007 Client Sample ID:WMMTW4-7 Analyses NON-METALS Nittogen.Nitrate+Nitrite as III LabJD:CO1090647-008 Client Sample ID:WMMTW4-8 Analyses NON-METALS Nitrogen,Nilrilte+Nitrite as N Repon Definitions: NO •Not dCtc&:tcd at the reponing limit MeL •Maximum con~minant1cvd RL-Analytc:reponing level QCL -Qualil)'control limit ...... Nov-OS-Ol 10:42am ·From-IUC BLANDING 801 678 2224 T-555 P.012l012 F-725 ?~.~!?ENERGYLABORATORIES".INC••239388/1 Creek Highway(8!!fi01)-P.Q Box QP58 -Casper;WY&."602~~~,"=1~roHFme088.235.0515·30.~·1.0515'Fax 307.234.1639 •casper@energylab~'.-www.energylab.com '~':I·M:ti·mm,. LAllORATORYANALY11CAL REPORT Client: Project: International Uranium (USA)Cotp 3rd Quarter 2001 Sampling Event White Mesa Mill Lab Order:C01090647 lteport Date:10/04/01 Lab ID:CO1090647-009 Client Sample ID:WMMTW4-9 Analyses NON-METALS Nitrogen.Nltrate+Nitrite as N Lab ID:COI090647-010 Client Sample ID:WMMMTW4 Analyses NON~METALS Nitrogen,Nib"ale+Nilrlte as N Lab ID:COI090647-011 Client Sample ID:WMMTW4-10 Analyses NON-METALS Nitrogen.Nitrate+Nilrite as N Collection Date:09120/01 09=33 DateReceiYed:09125/01 Matrix:AQUEOUS MeLI Result Units Qual RL QCL Method Analysis DateI By 0.40 mg/L 0.10 E353-2 09126/01 19:1iS 1rwk Collection Date:09/20/01 11;22 DateRe~eived:09125/01 Matrix:AQUEOUS MeL! Result Units Qual :RL QCL Method Analysis DateI By 9.45 mglL O.liO E353.2 09126101 19:551 rwk CoUection Date:09120/0110:10 DateRecei-ved:09/25/01 Matrix:AQUEOUS MeV Result Units Qual RL QCL Method Analysis DateI By 2.32 mglL 0-20 E353.2 09/26101 20;01 1twit Report Dcfidiooos: NO -Not deteeted at the n:poning limit MeL -Maximum contaminant Ic=1Iel Jl.L -AnalYte reporting level QCt -QualitY control limit :~:J ~...··l·~....""-.''"'E ~IO• l •.-"l•.•,.•":f .:"..":!I~••• APPENDIXE U.S.G.S Manual Chapter 6.5 and Hydrolab Parameter Specifications Section 6.5 Water Resources--Office ofWater Quality This document is also available in pdfformat: mChapter 6.5.pdf http://water.usgs.gov/owq/FieldManuaVChapter6/6.5.html 1 of 1 6.5 REDUCTION-OXIDATION POTENTIAL (ELECTRODE METHOD) Reduction-oxidation potential (as Eh):a measure of the equilibrium potential,relative to the standard hydJ'ogen electrode,developed at the interface beoveen a noble metal electrode and an aqueous solution containing electroactive redox species. In contrast to other field measurements,the determination ofthe reduction-oxidation potential ofwater (referred to as redox)should not be considered a routine determination.Measurement ofredox potential, described here as Eh measurement,is not recommended in general because ofthe difficulties inherent in its theoretical concept and its practical measurement (see "Interferences and Limitations,"section 6.5.3.A). ...Eh measurement may show qualitative trends but generally cannot be interpreted as equilibrium values. ...Determinations ofredox using the platinum (or other noble metal)electrode method (Eh)are valid only when redox species are (a)electroactive,and (b)present in the solution at concentrations ofabout 10-5 molal and higher.Redox species in natural waters generally do not reach equilibrium with metal electrodes. Procedures for equipment calibration (test procedures)and Eh measurement are described in this section for the platinum electrode only.Although the general guidance given here applies to other types ofredox electrodes (such as gold and glassy carbon electrodes),it is necessary to consult the manufacturer's instructions for correct use ofthe specific electrode selected.Concentrations ofredox species can be determined by direct chemical analysis instead ofusing the electrode method (Baedecker and Cozzarelli, 1992). ~Section 6.5.1 1IReturn to Contents for 6.5--Reduction Oxidation Potential (Electrode Method) 11 Return to Chapter A6 Contents Page 11 Return to Field Manual Complete Contents 1IReturn to WaterOuality Information Pages Maintainer:Office ofWater Quality Webversion by:Genevieve Comfort Last Modified:16JUNE98 ghc 11/08/20014:24 PM Section 6.5.1 Water Resources--Office of Water Quality This document is also available in pdfformat: mChapter 6.5.I.pdf 6.5.1 EQUIPMENT AND SUPPLIES http://water.usgs.gov/owq/FieldManuaVChapter6/6.5.1.html lof3 The equipment and supplies needed for making Eh measurements using the platinum electrode method are listed in table 6.5-1.Eh equipment must be tested before each field trip and cleaned soon after use. Every instrument system used for Eh measurement must have a log book in which all the equipment repairs and calibrations or equipment tests are recorded,along with the manufacturer make and model numbers and serial or property number. Electrodes.Select either a redox-sensing combination electrode or an electrode pair (a platinum and reference electrode).Use of the correct electrolyte filling solution is essential to proper measurement and is specified by the electrode manufacturer.Orion Company,for example, recommends selection ofa filling solution to best match the ionic strength ofthe sample solution,in order to minimize junction potentials. Table 6.5-1.Equipment and supplies used for Eh measurements' [mY,millivolt;±.plus or minus;jlSIcm,mlc.roslemens per amtimell!rat25 dE9rees CelsIus] ./Mllllvoitmete r orpH memrwith mllHvolt rgading capability,praferably with automatfc temperature compensator;O.1-mVsensItivIty;scale to atleast±1,400 mV:BNC connector (see instrumentspecifications forpH meters,6.4.1 in NFM 6.4) ./Redox electrodes,either (a)platinum and reference electrode (calomel or sllver:sllver- ch loride)or (b)combInation electrode ./Electrode fllllng solutions (rgfer to manufacturer's specifications) ./Thermometer (liquid-In-glass orthermIstor type),calibrated (see NFM 6.1 for selection and ca Ilbration crlteria)-far use with millivoltmete rs wlthouttemperaturg compensator r/Flowthrough cell with valves,tubIng,and aa:essories Impermeable to air (for use with pump sysmm) r/Sampling system:(1)In sItu (downhole)measurement instrument,or (2)submersIble pump (used with closed-sysmm flowthrough cell).Pump tubIng must be "impermeable"to oxygen. r/ZoBe II's solution ./Aqua regIa or manufacturer's recommended electrode-claanlng solution ./liquid nonphospham laboratory-grada detergent ./Mild abrasIve:crocus cloth or 400-to SOO-grlt wst/drv Carborundum™papar ./Deionized water (maxlmum conductivIty of 1.0 JISlcm) ./Bottle,squeeze dlspenssr for deIonIzed wBtsr r/Safety equIpment gloves,glasses,apron,chemical spill kIt r/Paper tissues,disposable,lint free .r Wests-dlsposel container ,Modify this Iiet to meet specific-needs oftlllil fieldeffoIt. 11/08/20014:25 PM Section 6.5.1 http://water.usgs.gov/owqlFieldManuaIlChapter6/6.5.1.html CAUTION:The standard hydrogen reference electrode (SHE)can be dangerous and Is not recommended for Oeld use. 20f3 ...Silver:silver-chloride or calomel reference electrodes are the redox electrodes in common use. ...The Orion™combination electrodes are platinum redox and silver:silver-chloride reference electrodes in one body (the Orion™brand is used for purposes ofillustration only). ZoBell's solution.ZoBell's is the standard solution for testing redox instruments.ZoBell's solution can be obtained from the QWSU in Ocala,Fla.,or it can be prepared fresh (see below).Quinhydrone solution is sometimes used but is not recommended because it is significantly less stable above 30°C and its temperature dependence is not as well defined as that ofZoBell's. ZoBell's solution consists ofa 0.1 molal KCI solution containing equimolal amounts ofK4Fe(CN)6 and K3Fe(CN)6'ZoBell's is reported stable for at least 90 days ifh:pt chilled at 4°C.To prepare ZoBell's solution: 1.Weigh the chemicals (dry chemicals should be stored overnight in a desiccator before use). 1.4080 g K4Fe(CNk3HzO (potassium ferrocyanide) 1.0975 g K3Fe(CN)6 (potassium ferricyanide) 7.4557 g KCI (potassium chloride) 2.Dissolve these chemicals in deionized water and dilute solution to 1,000 mL. 3.Store the solution in a dark bottle,clearly labeled with its chemical contents,preparation date,and expiration date.Keep the solution chilled. CAUTION:ZoBell's solution Is tOXic-handle with care.." Aqua regia.Aqua regia can be used for cleaning the Eh electrode (check the electrode manufacturer's recommendations).Prepare the aqua regia at the time ofuse--do not store it.To prepare the aqua regia, mix 1 volume concentrated nitric acid with 3 volumes ofconcentrated hydrochloric acid. 6.5.l.A MAINTENANCE,CLEANING,AND STORAGE Refer to 6.4.1 ofNFM 6.4 on pH for general guidelines on meter and electrode maintenance,cleaning, and storage.Follow the manufacturer's guidelines on the operation and maintenance ofthe meters and electrodes,and keep a copy ofthe instruction manual with each instrument system.Keep the meters and electrodes clean ofdust and chemical spills,and handle them with care. Maintenance Keep the surface ofnoble electrodes clean ofcoatings or mineral deposits.A brightly polished metal surface prevents deterioration ofelectrode response.The billet tip is more easily cleaned than the wire tip on the platinum electrode.Condition and maintain the Eh electrodes as recommended by the manufacturer. 11108/20014:25 PM Section 6.5.1 Cleaning http://water.usgs.gov/owq/FieldManuaIlChapter6/6.5.1.html 30f3 Keep the O-ring on electrodes moist during cleaning procedures. ....To remove precipitate that forms on the outside wall or tip ofthe reference or combination electrode,rinse the outside ofthe electrode with deionized water. ....Ifparticulates or precipitates lodge in the space between the electrode sleeve and the inner cone ofsleeve-type electrode junctions,clean the chamber by flushing out the filling solution (the precise procedure to be followed must come from the electrode manufacturer). ....To remove oily residues,use a liquid nonphosphate detergent solution and polish the surface with mild abrasive such as coarse cloth,a hard eraser,or 400-to 600-grit wet/dry Carborundum™paper (Bricker,1982). ....To recondition the Eh electrode,immerse the electrode in warm aqua regia (70°C)for about 1 minute.Do not immerse the electrode for longer than 1 minute because aqua regia dissolves the noble metal as well as foreign matter and leads to an erratic electrode response (Bricker,1982).Soak the electrode several hours in tap water before use. TECHNICAL NOTE:Disassembly ofthe electrode is not recommended for routine cleaning and should only be used when absolutely needed.Additional cleaning and reconditioning procedures are discussed in NFM 6.4 and in American Public Health Association and others (1992),American Society for Testing and Materials (1990),Edmunds (1973),Adams (1969),and Callame (1968). Storage For short-term storage,immerse the electrode in deionized water to above the electrode junction and keep the fill hole plugged to reduce evaporation ofthe filling solution.The recommended procedures for long-term storage ofelectrodes vary with the type ofelectrode and by manufacturer.The Orion™ combination electrodes are stored dry after rinsing precipitates from outside ofthe electrode,draining the filling solution from the chamber,and flushing it with water (consult the manufacturer's cleaning instructions).The electrode connector ends must be kept clean.Clean them with alcohol,ifnecessary. Store the connector ends in a plastic bag when not in use. Some afthe procedures recommended herein for equipment operation maybe out of date If the equipment being used Is different from that described orlncorpomtes more recent technological advances-follow the manufacturer's Instructions. ~Section 6.5.2 'irRetum to Section 6.5 'ir Rerum to Contents for 6.5--Reduction Oxidation Potential (Electrode Method) 'ir Rerum to Chapter A6 Contents Page 'ir Rerum to Field Manual Complete Contents 'ir Retum to Water Quality Infomlation Pages Maintainer:Office ofWater Quality Webversion by:Genevieve Comfort Last Modified:16JUNE98 ghc 11/08/20014:25 PM Section 6.5.2 Water Resources--Office ofWater Quality This document is also available in pdfformat: mChapter 6.5.2.pdf 6.5.2 EQUIPMENT TEST PROCEDURE http://water.usgs.gov/owq/FieldManuaVChapter6/6.5.2.html lof5 Eh measuring systems can be tested for accuracy but they cannot be adjusted.Eh equipment must be tested,either in the laboratory or in the field,against a ZoBell's standard solution before making field measurements.In general,field testing with ZoBell's is not required,but the protocol used will depend on study needs. ...Before using,check that the ZoBell's solution has not exceeded its shelflife. ...Test the Eh equipment using the ZoBell's solution before and after field use. ...Be aware that: ZoBell's is toxic and needs to be handled with care. ZoBell's reacts readily with minute particles ofiron, dust,and other substances, making field use potentially difficult and messy. The Eh measurements are made by inserting a platinum electrode coupled with a reference electrode into the solution to be measured.The resulting potential,read directly in millivolts from a potentiometer (such as a pH meter),is corrected for the difference between the standard potential ofthe reference electrode being used at the solution temperature and the potential ofthe standard hydrogen electrode table 6.5-2). TECHNICAL NOTE:Erefis the whole-cell potential ofthe reference electrode in ZoBell's solution. Eref=238 mV (saturated KCI,immersed with the platinum electrode in ZoBell's at 25°C)is the measured potential ofthe silver:silver-chloride (Ag:AgCl)electrode; Eref =185.5 mV (saturated KCI,immersed with the platinum electrode in ZoBell's at 25°C)is the measured potential ofthe calomel (Hg:HgCI2)electrode; EO =430 mV is the standard electrode potential ofZoBell's solution measured against the hydrogen electrode at 25°C. Half-cell potentials for the calomel,silver:silver chloride,and combination electrodes are shown in table 6.5-2.Table 6.5-3 provides the theoretical Eh ofZoBell's solution as a function oftemperature.For those temperatures not shown on tables 6.5-2 and 6.5-3,interpolate the values.Add the value .corresponding to the solution temperature to the measured potential electromotive force (emf measurement). 11/08/2001 4:26 PM Section 6.5.2 http://water.usgs.gov/owq/FieldManuaI/Chapter6/6.5.2.html Table 6.5-2.Standard half-cell potentials ofselected reference electrodes as a function of temperature and potassium chloride reference-solution con- centration,in volts [Liquid-junction potentialincluded-multiplyvoltsby l,ODOtocomertto miIIiIIolts;KCI,pcti13!iium chloride;Temp"C,te mperature indegreesCelsius,M,molar;.:-.wluenolprovi::led inreference] 10 0.221)0.216 IU14 0.280 0.258 0.254 0.2!l6 15 0.218 0.212 IUII9 0.251 0.253 20 0.213 0.208 0.204 0.257 0.252 O.24B 0.249 26 0.2119 0.206 0.11i9 0.256 0.250 0.248 0.244 0.248 3D 0.206 0.201 0.1IM 0.253 0.248 0.244 0.241 0.242 36 0.202:0.100'0.1IB 0.238 O.23B 40 0.1re 0.193 11.184 0.249 11.244 1I.2lB 11.234 0.234 'MOdified flamLAngmllir[19711.~Modi6ed flamllMes(100'~. SNiJItlltltJm[l971ll1nd O.K.NordllriJl'(~U.s.GeiJlogilIllSLiI"''''',wIllefl i:tImm~••19!16;Ihehili-tell ptiletlllalli:lflelMa.redflomNoJdlUOM(19711 lire recommended wherthllflthe...all.iell frOM ChDlellllll0041 clfed InUlIl ihtitlnJel1t_nuillprovl:led ~iheOrion CbMp"bVbecaul&e Nordlll'Dm~vallll!!>were de.....loped lIpedlii:lfIl'l'bnheOrion'"9&18 tetlal(electltidealid prOIll:le gteMer6iiClltllClt'lind p,eeilliofl. 40110n""marufat:lUrerreQimmendll U'I!it b rIlIlMplelitIllIIiohllwithIOIaI IonicWetlglhelll:i!l!dIII"0.2 molar[lor l>lI&mple,Il>awau;rl,Lisea 4MKI;1-BMllflittotl fillingllohAlon [lJIllIBlI'I'IIlpplledwththeOrlon'"mod!!1 97-18ell!ClllldO!+and thehal'cell pCliemlaluhownabo.....bltheIUvel:lllverchloridesaturated ICCI re~rence i!'ll!tIlOdi!'.. 2of5 Table 6.5-3.Eh of ZoBeWs solution as a function of temperature [From Nord.strom (1977);"c,degrees Celsfus;mV,millivolts] 10 467 26 428 12 462 28 423 14 457 '30 418 16 4~32 416 18 448 '34 407 2)443 '36 402 22 4'38 '38 '!Ii11 24 433 40 ?93 25 430 To test Eh equipment,complete thefollowing 7steps and record results on the Eh data recordform for the equipment testprocedure (fig.6.5-]): 1.Follow the manufacturers'recommendations for instrument warm up and operation. •Set the scale to the desired millivolt range. •Record the type ofreference electrode being used. 2.Unplug the fill hole.Shake the electrode gently to remove air bubbles from the sensing tip ofthe electrode.Check the level ofthe filling solution and replenish to the bottom ofthe fill hole. •The filling solution level must be at least 1 in.above the level ofsolution being measured. •Use only the filling solution specified by the manufacturer. 3.Rinse the electrode,thennometer,and measurement beaker with deionized water.Blot (do not 11/08/20014:26 PM Section 6.5.2 http://water.usgs.gov/owq/FieldManuaVChapter6/6.5.2.html 30f5 wipe)excess moisture from the electrode. 4.Pour ZoBell's solution into a measurement beaker containing the electrode and temperature sensor. •The Eh electrode must not touch the bottom or side ofthe container. •Add enough solution to cover the reference junction. •Allow 15 to 30 minutes for the solution and sensors to equilibrate to ambient temperature. 5.Stir slowly with a magnetic stirrer (or swirl manually)to establish equilibrium between the electrode(s)and solution.Switch the meter to the millivolt function,allow the reading to stabilize (±5 mY),and record the temperature and millivolt value.. 6.Look up the half-cell reference potential for the electrode being used (table 6.5-2).Add this value to the measured potential to obtain the Eh ofZoBell's at ambient temperature. •Ifthe value is within 5 mV ofthe ZoBell Eh given on table 6.5-3,the equipment is ready for field use.(See the example below.) •Refer to section 6.5.4 ifthe value is not within 5 mV ofthe ZoBell Eh. 7.Rinse offthe electrodes and the thermometer thoroughly with deionized water.Store the test solution temporarily for possible verification. EXAMPLE: Example ofthe equipment test procedure using a silver:silver chloride-saturated KCI (Ag:AgCI) electrode. Eh =emf+Erel where: Eh is the potential (in millivolts)ofthe sample solution relative to the standard hydrogen electrode, emfor Emeasuredis the electromotive force orpotential (in millivolts)ofthe water measured at the sample temperature, Ere/is the reference electrode potential ofthe ZoBell's solution corrected for the sample temperature (table 6.5-2). a.Follow steps 1-5 (above).For this example, •Measured temperature =22°C •emf=238 mV. b.Check table 6.5-2.The interpolated reference potential =202 mV for Ag:AgCI-saturated KCI at 22°C. c.From Eh =emf+Erel Eh (ZoBel/'s)=238 mV +202 mV =440 mV. 11/08/20014:26 PM Section 6.5.2 http://water.usgs.gov/owq/FieldManuaVChapter6/6.5.2.html d.Check table 6.5-3.The test value of440 mV is within ±5 mV of438 mV from table 6.5-3. Thus,the equipment is functioning well and ready for field use.. Check the date on Zobell's solution-donot use solution past Its expiration date. Eh Data Record Equipment Test Procedure Equipm ent deecription end identificstion (model snd serisl snd/or W num ber!: Metllr _ Eh elsctrods _._Reference slsctrode _ ZoBell's solution:Lot '*_Dete:prepered sxpirsd _ Beforessmpie Eh:After nmple Eh: 1.Temperature ofZoBell'ssolutian:T =_ (efter equilib r&tionto am bienttem pe returel 2.Observsd potentiel (in millivolts)ofZoBell's reletive to messuring electrode,st smbient tempersture (Emaesursd or eml):emf=_ 3.Referenca elactrode potentisl lin millivolts) stem bienttem pereture from teble 6.5:-2 (Eref):Ersf=------- 4.Calculate Eh ofZoBell's:Eh =emf+Ersf Eh=_ 5.Thsoreticsl potentiel (in millivolts) ofZoBell'a atsm bient tem pereture from table 8.5-3:Eh (theoreticsI)=_ 8.SubtrsctcslculstedEh from Eh theoreticsl (Zobell'slCaisp 4 minue &tep Ii)AEh=_ 1.Check:is AEh within ±Ii mV1 Observations:_ 40f5 Figure 6.5-1.Eh data record:equipment test procedure. I:'VSection 6.5.3 'it-Return to Section 6.5.1 1tReturn to Contents for 6.5--Reduction Oxidation Potential (Electrode Method) 'it-Return to Chapter A6 Contents Page 'it-Return to Field Manual Complete Contents 'it-Return to Water Quality Information Pages Maintainer:Office ofWater Quality 11108/200I 4:26 PM Section 6.5.3 Water Resources--Office ofWater Quality This document is also available in pdfformat: mJ Chapter 6.5.3.pdf 6.5.3 MEASUREMENT http://water.usgs.gov/owq/FieldManuaI/Chapter6/6.5.3.html lof5 To obtain accurate results,it is necessary to prevent losses and gains ofdissolved gases in solution. Consult NFM 6.0 for information on precautions and general procedures used in sample collection and NFM 6.2 for a description ofthe flowthrough cell used in dissolved-oxygen determination (the spectrophotometric method). ...Chemical,physical,and biological reactions can cause the Eh ofwater to change significantly within minutes or even seconds after the collection ofa sample. ....Water samples cannot be preserved and stored for the Eh measurement. ...Use equipment that eliminates sample aeration and operate the equipment to meet this goal.Ifusing a flowthrough chamber or cell: Use tubing that is impermeable (relatively)to oxygen. Channel the sample flow through an airtight cell (closed system)constructed specifically to accommodate redox or ion-specific electrodes,temperature,and other sensors. Connections and fittings must be airtight. Purge atmospheric oxygen from the sample tubing and associated flow channels before measuring Eh. Do not use pumping systems In which Inert gas contacts and lifts the sample to the surface:the gas could strip gaseous redox species from the water. Measure Eh in situ with a submersible instrument or use an airtight flowthrough system. First: 1.Record the type ofreference-electrode system being used (fig.6.5-1). 2.Check for the correct electrode filling solution.Ifworking in very hot or boiling waters,change the reference electrode filling solution daily. 3.Keep the electrode surface brightly polished. TECHNICALNOTE:Temperature determines the Eh reference potential for a particular solution and electrode pair,and may affect the reversibility ofthe redox reactions,the magnitude ofthe exchange current, 11/08/2001 4:28 PM Section 6.5.3 http://water.usgs.gov/owqlFieldManuaIlChapter6/6.5.3.html and the stability ofthe apparent redox potential reading.The observed potential ofthe system will drift until thennal equilibrium is established.Thermal equilibrium can take longer than 30 minutes but it is essential before beginning the measurements. 2of5 Next,measure the Eh and complete thejieldform (fig.6.5-2): 1.Select an in situ or closed-system sampling method.Immerse the electrodes and temperature sensors in the sample water. •In situ (or downhole)--Lower the sensors to the depth desired and follow the manufacturer's recommendations. •Closed-system flow cell--Check that the connections and sensor grommets do not leak,and that the water being pumped fills the flowthrough cell. 2.Allow the sensors to reach thermal equilibrium with the aqueous system being measured and record the time lapsed. •It is essential that platinum electrodes be flushed with large volumes ofsample water to obtain reproducible values. •Record the pH and temperature ofthe sample water. 3.Switch the meter to the millivolt function. •Allow the reading to stabilize (±5 mV). •Record the value and temperature (see the technical note that follows step 7,below). •Stabilization should occur within 30 minutes. 4.Take readings ofthe sample temperature and potential (in millivolts)every few minutes for the first 15 to 20 minutes. •It is best to stop the flow ofthe sample while the reading is being taken to prevent streaming-potential effects. •After 15 to 20 minutes,begin to record the time,temperature,and potential in plus or minus millivolts about every 10 minutes.Continue until 30 minutes have passed from the initial measurement and until the measurements indicate a constant potential. 5.After the measurements have been completed for the day,rinse the electrode(s)thoroughly with deionized water. Iffield calibration is required for a study, a.Place the electrode(s)and other sensors in ZoBell's solution that has been equilibrated to the temperature ofthe aqueous system to be measured.The electrode(s)must not touch the container,and the solution must cover the reference junction. b.Allow the electrode to reach thermal equilibrium (15 to 30 minutes). c.Record the potential reading. d.Follow steps 5-7 ofthe equipment test procedure in section 6.5.2. 6.Record all data and calculate Eh (see EXAMPLE,(section 6.5.2). 11/08/20014:28 PM Section 6.5.3 http://water.usgs.gov/owq/FieldManual/Chapter6/6.5.3.html Fill out the Eh data record form for field measurements fig.6.5-2). Eh Data Record rield Measurements FieldEh 1.Temperaturs and pH ofsysmm measured:T :0 pH: 2.Time to thermal equilibration; Measurement began at --- Measurement ended at --- 3.Measured pomntial ofwamr system ImV);emf: 4.Reference electrode pomntfal mV ofZoBe/l's atsample temperature:Eref :_ Field Eh1 5.Calcuiam sample Eh:BITt+Eref (add step :I +-step 4l:Eh = _ 30f5 6.Field measurements should agrsewithin about 10 mV. ObservatiDns;_ 'Tt18 second f1EBSurement is necesmryfurqualitv mltrol. figure 6.5-2~Eh data record:field measurements. 7.Quality control--Repeat the measurement. TECHNICAL NOTE:The response ofthe Eh measurement system may be considerably slower than that of the pH system and that response also may be asymmetrical:the time required for stabilization may be longer when moving from an oxidizing to reducing environment or vice versa.Ifthe readings do not stabilize within about 30 minutes,record the potential and its drift;assume a single quantitative value is not possible.Ifan estimate ofan asymptotic final (hypothetical)potential in such a drifting measurement is desired,referto the method used by Whitfield (1974)and Thorstenson and others (1979). 6.5.3.A INTERFERENCES AND LIMITATIONS Measurements should not be carried out without an awareness ofthe interferences and limitations inherent in the method. 11/08/20014:28 PM Section 6.5.3 http://water.usgs.gov/owq/FieldManuaVChapter6/6.5.3.html 40f5 ~Organic matter and sulfide may cause contamination ofthe electrode surface,salt bridge,or internal electrolyte,which can cause drift or erratic performance when reference electrodes are used (American Public Health Association and others,1992). ...Hydrogen sulfide can produce a coating on the platinum electrode that interferes with the measurement ifthe electrode is left in sulfide-rich water for several hours (Whitfield,1974;Sato,1960). ~The platinum single and combination redox electrodes may yield unstable readings in solutions containing chromium,uranium,vanadium,or titanium ions and other ions that are stronger reducing agents than hydrogen or platinum (Orion Research Instruction Manual,written commun.,1991). ~Do not insert redox electrodes into iron-rich waters directly after electrode(s)contact with ZoBell's.An insoluble blue precipitate coats the electrode surface because ofan immediate reaction between ferro-and ferricyanide ions in ZoBell's with ferrous and ferric ions in the sample water,causing erratic readings. Many elements with more than one oxidation state do not·exhibit reversible behavior at the platinum electrode surface and some systems will give mixed potentials,depending on the presence ofseveral different couples (Barcelona and others,1989;Bricker,1982,p.59-65;Stumm and Morgan,1981,p. 490-495;Bricker,1965,p.65).Methane,bicarbonate,nitrogen gas,sulfate,and dissolved oxygen generally are not in equilibrium with platinum electrodes (Berner,1981). TECHNICAL NOTE:Misconceptions regarding the analogy between Eh (pe)and pH as master variables and limitations on the interpretation ofEh measurements are explained in Hostettler(1984),Lindberg and Runnells (1984),Thorstenson (1984),and Berner (1981).To summarize: (1)Hydrated electrons do not exist in meaningful concentrations in most aqueous systems--incontrast,pH represents real activities ofhydrated protons.Eh may be expressed as pe,the negative logarithm ofthe electron activity,but conversion to pe offers no advantage when dealing with measured potentials. (2)Do not assume that redox species coexist in equilibrium.Many situations have been documented in which dissolved oxygen coexists with hydrogen sulfide,methane,and ferrous iron. •The practicality ofEh measurements is limited to iron in acidic mine waters and sulfide inwaters under-going sulfate reduction. •Other redox species are not sufficiently electroactive to establish an equilibrium potential at the surface ofthe conducting electrode. (3)A single redox potential cannot be assigned to a disequilibrium system,nor can it be assigned to a water sample without specifying the particular redox species to which it refers.Different redox elements (iron, manganese,sulfur,selenium,arsenic)tend not to reach overall equilibrium in most natural water systems; therefore,a single Eh measurement generally does not represent the system. 6.S.3.B INTERPRETATION A rigorous quantitative interpretation ofa measurement ofEh requires interactive access to an aqueous speciation code.Exercise caution when interpreting a measured Eh using the Nernst equation.The Nernst equation for the simple half-cell reaction (M/(aq)=Ml/(aq)+e-)is 11/08/20014:28 PM Section 6.5.3 where: http://water.usgs.gov/owq/FieldManuaIlChapter6/6.5.3.html 50f5 R =gas constant; T =temperature,in degrees kelvin; n =n umber of electrons in the half~ceU reaction; F =Faraday constant;and Q'M ,,}and QUJ.((",j=thermodynamic activities ofthe free ions MI~} ,'I ,~and MI'(",and not simplythe analytical eonce:' tntions'lof total M in oxidation states I and ll, respectively. Measurements ofEh are used to test and evaluate geochemical speciation models,particularly for suboxic and anoxic ground-water systems.Eh data can be useful for gaining insights on the evolution of water chemistry and for estimating the equilibrium behavior ofmultivalent elements relative to pH for an aqueous system.Eh can delineate qualitatively strong redox gradients;for example,those found in stratified lakes and rivers with an anaerobic zone,in an oxidized surface flow that becomes anaerobic after passing through stagnant organic-rich systems,and in mine-drainage discharges. ~Section 6.5.4 -ttReturri to Section 6.5.2 -ttRetum to Contents for 6.5--Reduction Oxidation Potential (Electrode Method) -ttReturn to Chapter A6 Contents Page -tt Return to Field Manual Complete Contents -ttReturn to Water Quality Information Pages Maintainer:Office ofWater Quality Webversion by:Genevieve Comfort Last Modified:15AUGOO imc 11/08/20014:28 PM Section 6.5.4 Water Resources--Office ofWater Quality This document is also available in pdfformat: mI Chapter 6.5.4.pdf 6.5.4 TROUBLESHOOTING http://water.usgs.gov/owqlFieldManuaIlChapter6/6.5.4.html Contact the instrument manufacturer ifthe suggestions in table 6.5-4 fail to resolve the problem. ~Check the voltage ofthe batteries. ~Always start with good batteries in the instruments and carry spares. Table 6.5-4.Troubleshooting guide for &.musurement [±.plus or minus;mY,millillOlb;l!'mf,electromotive force] lof2 Eh of ZeBell'e solution exceedetheoraticel by ±5mV Exceeeive drift Erratic performence Poor reeponee when using peired electod8!l Check mster operetion: •Use shorting leed to establish mater reeding etzero mY. •Checlqteplece betteriee. •Checkagainst beckup mster. Check electrodeoperation: •Checkthet electrode reference eolution level ietothe fill hole. •Plugqueationeble reference electrode into reference electrode jeck end enother reference electrode in good working order ofthe Bam e type into the indicator electrode jeck ofthe mater;imm eree electrodesin e potessium chloridesolution.record mY,rinse off and immerse electrodee in ZeBell's solution.Thetwo mV reedings should ba 0±5 mY.It using different elec- trodes (Ag~gCI end Hg:HgCI21.reeding should be 44± 5 mVfor a good reference electrode. •Polish platinum tip with mild ebraeive (crocuscloth, herd ereeer,ore 4 00-6OO-grit watfdrv Cerborundum"'" peper),rinee thoroughlywith deionized weter.Uee e Kimwipem ittheee abreeivee ere not evaileble. •Drain end refill reference electrolytechember. •Di.!Connect reference electrode.Drain and ret~1 electro- lyte chem ber with correctfilling solution.Wipe off connectors on electrode end mster.Usebeckup electrode to checktheemf. •Reed emfwithfreeh aliquot ofZeBell'seolution; preparefresh ZoBell'ssolution if possible. •Recondition electrode byclesning with aque regie snd renewing filling solution-thiBisBls.nlBCft. 11108/20014:28 PM Section 6.5.4 http://water.usgs.gov/owqlFieldManuaIlChapter6/6.5.4.html 2of2 ~Section6.5.5 'itRetum to Section 6.5.3 'it Return to Contents for 6.5--Reduction Oxidation Potential (Electrode Method) 'itReturn to Chapter A6 Contents Page 'itReturn to Field Manual Complete Contents 'itReturn to Water Quality Information Pages Maintainer:Office ofWater Quality Webversion by:Genevieve Comfort Last Modified:16JUNE98 ghc 11/08/20014:28 PM Section 6.5.5 Water Resources--Office ofWater Quality This document is also available in pdfformat: 'II Chapter 6.5.5.pdf 6.5.5 REPORTING http://water.usgs.gov/owqlFieldManuaIlChapter6/6.5.5.html 1of1 Report the calculated Eh in mV to two significant figures. Potentials are reported to the nearest 10mV,along with the temperature at which the measurement was made,the electrode system employed,and the pH at time ofmeasurement. ~Chapter 6.6 Contents "irRetunl to Section 6.5.4 "irRetunl to Contents for 6.5--Reduction Oxidation Potential (Electrode Method "ir Retunl to Chapter A6 Contents Page "ir Return to Field Manual Complete Contents "irRetum to Water Quality Information Pages Maintainer:Office ofWater Quality Webversion by:Genevieve Comfort Last Modified:16JUNE98 ghc 11108/2001 4:28 PM Section 6.5.2 Webversion by:Genevieve Comfort Last Modified:16JUNE98 ghc 50f5 http://water.usgs.gov/owq/FieldManuaVChapter6/6.5.2.html 11/08/2001 4:26 PM Qualifications for Series 4a Speclflcations (continued)Hydl'olab Technlca'Note 2.04 '~ {1} {2) (3) (4) {~) {S} (7) tal (9) (\O) (11) (12) Re&llOll4ie tlms II the t1mslBqulred for ameai1JrlImlll1t lD lIOC:CPIIlllah 95%of aItsp-<:hange In only thai measurement forInstlinca,lfIile tamper.1.'Jra Ch8~d sudc!llnly from 25·C10 S5'C,lelT(>llrature's tlllI8 tespcnse would be the tlms TlIQul~fer the reacling to charlie to 95%<~·~5)";l6='34.15"C, StIlbilily IIitml;illprabo'.Bbility to read wlth\n ~I&IA:C:UIBCY IpeclblJonslnthe HmIlltendard ullI!ld fCc celll:flIl1on.Certain .IIuaU\)n&cen adlleraly a1feCl stltllmy,For example.eralere""e~aoalled for amonth in 'sery law Spldftc Ca~ua.noowiler eannllt ceclnar1ly be expected III 1ll'0dlOU acc.'.lTale pH (or Radell o~ISS)raadlngs.Slrri,lBrly.II DO prebe oonrad wlll'l al:llw algnIs nat 1~lILy 10 produce a<:eU/illB DO readings.Tha Ilabml~ apecI1IcaUons ant baaed onan anal~ls offneIWorelectronk:a lind ncl on direct 1ea11ng,~IlCIUle of the dlf1lcult:,'Inappl'~lng such a tesnD spae!ftCflelcl condltiDl\S. H)'drolab'lstlmclard 1hermlrlcrprovides :I:C,115"Ca<:ClJracywollt casaand:l:0,11)"C uslrlg 95%Certainty (mOlt probable arror)m8lhod for CIIlcula1ing accuriC'l.This means thll mall thin 95 out cf 100 mulliprabes Vltll mNt Illn0.10·C spBCI~catlol\, Thlfour ~BI (o to 0,1999.0.2101..5,1.51016,and 15 to 11)1)mSJcm)11'8 changed.8\MmI~cally (eutDran;ed)to pro~e!he maltcllglts avllLable. The 4dlgll reaclutian tor Spe1;'d1c Cond'~r-=8 dlpend.l on wMcn ofthe lour eu\omal1cally .Iaewdrang88 8~1[\usa.For inl1ant:a,aTHdlng ofI),1S mSkm WDUld be displayed u "300:resol~n would be ten lhousandlhs of mS~A Slllelflc Ccndu.ctanoe of to.157 mS/ern vlOuld bll dlspleyed as 10,1B;resoluton would be to hundred1tll offlISIcm,If 1M,optional oulpul.\ISIc:m.Is choun,tne fellOlulIon [or Specific Conductance 0,...1 9998 1JSlc:m wllllle four digiti.'Itlth azero acldad as the lut(fl1lt1)digit,, The lamperature cornllOnsstlon for SPB~nc COn.DU~8~can be dlsablad aesllyIf'ra,"Conductl.vlt~reedl~.are ondecl. The Sellnl\~acculllcy Is enhanced .....hen t'ne systamIII alllbrallldllcr SlB1lnity (Wlatee<l ofSpv.lflc Cor'oCllJct.anca)near \hoe exp6C1ed Oeld 'lell.'6&. Although the mulUprobe will moalure thafull 0 to 14;m1l pH re~e,II II nl)~rllCOnsrlBndeci thaI thll &enlKllI beexposed 10 pH ol(\J'ornel ou.tslde the 2to12 WIllrange, tho pH eecul1Icy Is lIerd for waler.of Spoclftc Candu::1llnce gIealer 1l'1an 0,'2 mSICm,w'nBn using H>'drclab'&standard,rehulldable reterac"lOl oleckodll.Thll aocureoy can be Ofcllna~me\In lillY frech,WIa\e1'I (Speclftc CQndl.'Clanca len1han 0.2 mstg'fJ)LI ~u Iolli8 Hydr':)lllb'.opt)onBI USREF ('.ow Ionic ~th)referllnce e'oectrode and follow ,'ar)'Illlrticuler rrlllinlenance and calil:rallon :lrocedures.l1'Je LISREF ralarence eleclroda 15 r,ol reI1l1~lB, Ymen ope~\lIci e.t Llmpel1lture ofcellt:raUonand cellbrale:l 'h1lh turbld 'free water and a Forrnazin slendard of 76%of rallge.Typlcel Lelftlllllllture coem~n1.is-ll.26 NTUIC". ResPCflMl\lme 1.II8S\han ten lecands with e~al'll.lling dlsBCled.but requlllll1tirty saconds after powtr·up.The m~xll1'llJm mo'llng Bvera;a lI:ne Is 60 secondl for a'HOfI\ca$4l le$pllns&Umo of911 Mloonds from pO'It'er·up. Turbldltf mea&ufement IIdlylded 1I'l1O IWO rangea:0 lD 100 end 100 to 1000 ~nJ.Readln.;s are merl'ac:wra\e in t'ne range In \'ot1lch callbratlon 15 made,as shawn In the cheri below.The chart also shcws the feadln;s are lIIC11tl acQJra\e when made at the temparaturll ofcallbra1lon, atcal temp nol atcal \emil %rBngton calranse :1:6 110 %rBrvaon nen-eeJ tangll :1:10 :l:U5 The Redox accuracy refws to lNe elll<:l:todo voIlalJe.AdusI reedl1'lll5IUe IUbJecllo slow elewodellquillbrallon Urnes and uncel1aintlt In 1II1!l6surement1h80f'\'and calibration.A typlcel aB-/Tl8asured f1CCUrlIc)'might bit ~5Ornl/, AccI;racy Is aldlldIn Yery fresh water.(SpeCifIC Concfuc1Bnce Illasltharl D.~mSlan)by Hydrolab'a opllL:JnllI LISREF raferenoo e!emda("efoot~Dta9)., Po.\raNfer mndem I,acalibration solutIOn or stan&lrd QradB~by ano\J'ler moasuramel'l\mell'lod.IUCh aa ctlemlcal tltra~on {It,g.Winkler}.In 1tle CB&Il of RedO)("II lransfer allmdard m1Qht be a solU1ion measured by attustee Iaboratoey pH-m1/melar.fQl'many PUlllOIIIS,~Is nol neoossary to calibrate RedQll at a~. The emerequired for aRedox sa~or \Q respond ~aItepo<:l-.ange In Redox I.highly yarlable arl:!depe1ld&on thll condlllcn of lhe sace01 the 9laltlum'.lIc1tDdfl and on 1/10 <ilrecllonof the Ilop-chenge.Baceusa nl$ponse~mB Is IIIl1eaffBclfld by non-Redox sensor \teens,,ueh IIioIeCttonle cl.eilgn or1he effectsof o\h.e:r lanlOI1l.the rflSpc!'IIEl time ·;)f Kydrclab's Red~.an60r 'aYlr11111I~yIha 8eme 88lhato!eUler RedOX-I'lWIIUlBmen.~in&1rum4ll'l1s. Wplcal ~,AIM1~um::I:6%of readlr.g,or t 2.-N,wtv.hever la lIre&Lor.t.llninv.zm i\ccuracy:I:10tk a(readIng.or t '2 mlllL.-N,whleha\'er Ii glllll1el',8alh a~wacy spaclbUoni ana 1St lempere\JJna of calibration w1th no Interlel1ng looa.1ntelf&r1nllION flrtl1'Lcially IncteasB tho ammonium readIng 15follc'HS~ (13) (101,) ~(16) ~ ~ (16) ::;).. .-l.-l ;:, ;z:l ~ '1"'1 Q Q l'ol...... 1"'10......r-I r-I In\8IfeMg '\mglL.·N Ion InLorfelll~ K+1Smgfl. N8+1,3:l0 mgJ\. Updated 912001 Page :3 Quallflcatlons for Serles 4a Speclficatlons(cQntinued)Hydrolab Techn1cal Note 204 TyPIcal Accuracy.Aml1'lQl1la::I::27%of teadl~,or t 2 rnQIL-N,whlc:hever Is IIrBe1Sl'.Minlrmm lIoc"Jracy::I:70","01 reading,or:l:2 mgfl.·N,whichever II great-r.Amm:lnla IIcabAted (rom Iho IllrlSOt'S ammonJ~a\$UI according la pH,and 1i1£Ilnhll1entunceltaintvInpH 15').2llrilll,wnlch weans an uneel1lllnty 11\smmonla or:l:60%wh8rl mathemaUcslly gon~ertad frcm ammanlum10 ammonia.Both accuracy spedflCllions ere 11\tempsl'llturs at ClIlibratlllrlwith no Inlerfel1n1j 10'"and pH lese tnan 10.Interfenng lanl>artI(k:1tIl'~Inerellilt the ammor¥um reading snd M1'lOll1he ammM'a leading. (17)Wplcal Accuracy,N.ltrat-:I:6%cC rllacl"lI1g,or:l:2 ngiL-N,\\1llcheYer 16lilrea\el.1~lnlmum ADC'Uracy:i 10'1'.of rell\llng,or :I:2 AV;IIL-N.whlche\J&f Is lIf8al8l'.BctI\llCCUIllCY speclllcatlona are at tempBl'llture a'~librallon wltn no Interlerln;Ions.Interlerlnllions clnal1lnelall)'Inerea,e th.nitrate lSld'ng a,follO'n'&: Interferln;1mglL·N lOll Interfersnca CI~'Q.OG7111lll1t I·O.4!mglL CN':2.6mglt Sr'39,7mgIL N~'23mglL HS"2Sms.'\.W·433m~'L B52mg,'L Ck·165 m)1\. ~18)TYjllCl11 AccurG)',Chlorids :I:5%cf readlllQ,or !2~,whlche~'er"greater.MInimum Aocufat'l~:t 10%at reading or:t :2 mQJ1...vdl1che'o'ar llIgrem.r.BDIh IOCUrac:y lipselfi<:a1JOI'I&Bre allamperatl.lle 01 1:lIlibration with no Il11Brf8l'inlllons and pH Ie..than 12,4.Interfering lonl>olin iutlftdall~Incrsals 1he cNortde INdlng se follow,: lnlerfarlnll ,mglL lem In\erfsrenca ON'1,6X 100&mill\.r 1.a lI.1G-OnlQILSol9,~x 10-ll1TrJ1\. Bf 6.7 II11l·:l mglL (19)Chlori~e resolutlllrl vart,»with Ihe magrl\1ude of the rNdlng u fo:Jows: Raacllng RSlIOlutlcn 0.00 to g9.99 mglL G.O\mw~ 100.0 to 9911.9 ~0.1 mgl~ 1,000 \0 1B,000 mglL 1. The 905%respDnH change to a cN.nge IrL total dllsotl'ld 91lllfeGllJle liN lhan 1SOseconds at -.1'C. T~ploel aeOllre~":I:%6 of feeding,ell':t 1Jjmol s',m4•wnlche....rISllisalat.MInimum BDC\.lrIlC'f.!19%ofreading.or i 2~MOII'"m4•'Nh!chS'ier 16 gl1l&ler,Manufecturer reccrnmends fwrysensorrecallbraUon at leBA cr.eever;two rean. It Is 1l1'lPOrtantInnct~tnel theflUOl'eSClIM ~81d obuMid In the nawl enylronment can deVIU Yl1cle~over vary1ng IXlndlUOOL Glyen this,theRbodamlne standard should notbe d1recl1y campved to cHell'ophy1l.The etandarc. is used In luning 0(f,uorome\Br.18 a ~f&rflnce,nat ae acaIlbraUOl'.We encourage ourUHl.til perfonn flied callklcatlons In the lacale"Oftheir Illmpllnijlflney are Intarslled In more tl'lan rwlalive nncls. The 10m Deplti accuracy II'he 95%Certalnly(MO"IllObabiB elforl accuraey.based on the worsl-cale enors l>\Jch as drift,lelll1>8ralulfl oompensaUoo,till.rror,etc.Tha 10m Dllplh 1r'InI4UClIrIs atmospherlClllly vlC'l!ed to ellmlnat81he Ylf'liarge e«ors poaslble frtm baromttrlc prailUI9 Ihlftl c:auled.fer Instancs,bychaNillng weathlf). (20) (21) ~.(22) " ~ l~a) oj, oj oj :;,="l "l;) ;) ~....-l ;).... "l -l UpdatadQl2OO1 Page 4 Qualifications for Series '4a Specifications (continued)Hydrolab Technical Note 204 :(24)I ~{2S) (26) ~" I) .oj The Depth ~adlngli ant lXlmpllmalSd rorS.allnlly {that Is,water dtflsl1~}so thai readings 8~aCC\lrlltB \''''ettler ma<:illn fntsh or Uit'lAl.ters.. Th1l25m,10011'.lind 200m t)lIplh accurBC~arltthe~cel18lnty {meltprcbabla artCr.1lCCUJ8C)',based on the \'l'Orll\-caSII efTl)lS such liS dtlfl,IlImperallJrecompensllUon,lilt 8rf01,B:Il,1NI so;urlCY rsquirelllhat the usar'"'PlaY a1mllsph8ric oc~on If chIInglls In baromelJ1c plllisure are to beconald&:ed.The accuracy is Il1UChbelter1n1!1IJaUons Wlrlll.llmp&rature chIlnges lITe arnd and cnangall'l Deplti,ralher than the exad.Depth,Blllal ~r1marylntemt. Sallnlly Iscelculaled from cDndul:l1\'l:)'and tempel.lUre bElied on USGSWS Peper 2$11 or Seetkln252')ofStandardMelt1c:dsfor the EumlnatlDn of Waw and Wastswater,The S1.Bnderl!Melhoct&runctlon II alea eolMIonly Bferred 10 esthe PractlcalSallNty Seale or UNESCO M&lhCICI. HIIBdOlTlos: Hydralab Corpal'lltlcn 8700 Cameron Rd.111DG Auslln,TX 76764U8A Pl1cne:{30Cl}949-3765 Df(512)832·8832Fill«(512)~5SB email:aa!e5@hydrolab.pom bUp:b'wtoy,h.ydrqlsl:!,QPm In \he Il)\llrest a1lmprovlng IItld IJpdel1nglIe equlprnan\,Hydrolab roserns the rtght to aller speclllcatlons 10 IIqlipment atIInytlma.Hyclrplab Corp~2.OCl1 .. .oj .oj ;;, ~ ~ ::) ::) l'.I "-.-i ::) "-.-i.-i 1Jp<£a\ed 912001 PageS ~ ) ) ~ iiiiI Tech Note 204 SerIes 4a DataSonde~4a &MlniSondeiBl 4a &Surveyo~4a Disp~ay Parameter Specifications ~ No =~ ~ PARAMETER RANGE ACCURACY RESOWltON SENSOR COMPENSAT~ONS CALIBRATION RESPONSE STAB1L\rf OUTPUT TIME'OPTIONS TE~PERATURE .-9106D"C ~.to'd1 .D.01"C Ihnnl8tor nolle required .none leqlired <,ml!lJtlt IhrMYNr5 ·C,OF.or "I( Cl,(looo 100.1999 mSlcm "-Q,2OO 101.600mS{CfI\*1%of resdln;0.25'11.1'e~al bora KCI DC'cIher mS!om,~Slan, SPEC1FlC 1.45 to 16.00 mSlcm :I.1 lXlunl 4dlg1l8'wll'n rcur QraphRe au\Omstlc Ie 2t>"c'ilandard,<10 .ecandi six mcn1i1l ocndu.ctMly,lOS, CONDUCTANCE 14.510 ~OO,l)mSlcm t \\IS/em iQ:lrodel Dl'res11tM1ytaulerarv.llld)~ ,\,UI8&callbl'a1lon C81culallJclfrom from IP:condo Or SAL1NITY Ot070 PSS'*1%ol'reedl!'G O.il1 PSS ~flc nene {~ulred callbfala dlredty <11heconcLs one monlh PS$:iD,01 PSS IXlndLl:lllnclI y~lh.58111111y lIanclards DISSOLVED IBb~8bl.all\OmaUcfer ',.aler-Ialuralsd air,nlQIt..% 1)1000.:i 0.2 mgJt ~20)0,01 mglL pcla~~~hlc:1 rr/&.IempltJiltura and .II',W!Cler,orair-<',mll\Ule one month sal\lrlll:ion,orOXYGENt0.8 mglL~2C)Teflon lj nlUreted WIller mgllv.11hout mMTIbl'ane &1lnnlty IIllinllyIXl~OI\ 91asl pH; pH 01014 urJls't O,2unltal 0.01 unll .rebulldi'b].or low eutotnl!lcfor I=H 7bul1er,p113 <.1 m'nuls one month pHur~lcnlc ~rsrIQ\h te~reture ene,aIopa buffermerenceeletrode'i SHUTTERI!t)ISO 7027 compliantlURBIClTYOID100NTUcr:I:2.6%~re~to I ~.~~nephelomeler v.t1h automa~c amblenll1ghl cIlluilcl'lll aI (Oa12sonde 41l otl \oOClN11J loullr.;reUstinl reJact\on FormazlnorAEPA,-<'1)toeonds"one month mu-orveils ontv)(uNraelectable)Io'll.tllar{US Pslsnt 1polymerbea" 116.111,2491 " NON· SHUlTERED OID100NTU 0.1 N,1lJ TURBIDITY 100 10 1000NTU ,t 5%of range 'z ,NTV ~O 7021-bllSecI mUll beoperallld al dll~onso( I {Datascnc:le 48 .(autorlll'l4lsd)nephelome1&7 depth ~\nor shlelded FormezJn ClI'Af:PA·c 1TW.111Ite one month NTUfromlunlfghl'1 ~Iymer beadsandMlnlsonde48).- REDOX' Qulnhydronf, -998 lo1l99 mV :t.20mV11 1mV Pl.Jec1rodB I'IQne rB<lulred lobell,1.I,,'lhl'1.~~lIIleau one month mVtranBlere actMtj~cl.nt cemp\Jl.ed from specl1lc 2,,3-,or4<palrn .AMMON1UMJ grls\Brof :i 6%of -lClll-lpecl1k:ccrlduC\1lnce:and callbnltlon ~m;IL..f\I,mY.or AMMONIA (]10 100 mgll·N reading Dr 0.01 ~-N electrodlt emm:lnla de;\~frtml l'iydrolab Ofuser-<.1 mlnu{a ollllmcnh ~-t.I !If!Dl11 l:lfI'l9.II.-f\l"ammonl~llrfldueod NHtaitemperatura,pH.and sIatldal'lSl; M)fIclftcQ;lnduc1ence ..~ oo C'ol "-.". C'ol"-o.-t Updated 9l'2Oll1 page 1 .. PARAMETER RA~GE ACCURACY RESOlUTION SENSOR COMPENSATIONS CALlBRA110N RESPONSE STA81LIT'f OUTPUT TIME'OPTIONS .2-,3-,or 4-pOIJIl 0"'01:1:6%01 iCIn'lpecll\c acllvltycoefflclent c:allbrdOn with NITRATE I>to 100 m;IL-N leIlllneor G,01 mllJ\.-N computed !rom.Ipeclfic l-t~drollb or use:-c 1 lTfinule onl month I1IQll.ooN or mV '1:2 mgll.·f\f electrode conctutblnce prtldYCedllandarcll 2-,3-,or 4-palnt grulllrof:l:~.~of 4digit.'·Ian-Illlddlc aclMly co8fflclent caI1braUonv.ilh :01:,'oar ~d1l\ mglLormVCKt.ORIDE 0,5to 'IB.OOI>m9/1.r'I.sIng or eleclrodl computed 'rtlm&optclftc IHydrall!b or UHr-<'mlwt.oocallonal :I:21TQ.Il.-Nu conductanca producecl pclJsll Jlanclards. TOTAL 400 101300 1MlHl'l membranBoClDvored <~mlnu.ll!slllDlSSCI.VED GAS {max Immersion depth:SO ;tD.1%ohpan 0.1 mmHg pres&urI l\Q1lO reql:£Tld ,elln Ilr onemcnlh nr.IHg,mV,orPSI metall)tranlldU08r " AMBIENT LIGHT I}Ig to,oOO 1~mol &,\m't it 6%of raBd[ng ,1Imd1"moQ te)ectlon 01 amblent tlYOyea~'1~moll"m""(PAR}or pi'loto'l'cllllic cell light ClUflllcle Ihe 400-nonereqwed <~o iOCOlld& t ~mol.~m41J1l 700 nm ban~MdII'l dlluUOMof rtlodamlne(OI' CttLOROPHYL.L 0.03 \0 150 ugll.13%offeeding IBconclar:,' :!:G.1 ~gJl.II 1}.11Jgl\.fluoromlltrlc l'IQfle lequ'~ed caibl'B~on cube)<10s.,.;:onds QClemonlh IJgll.or volts wltt1\JBOr correlellcn te flalll S&!f1p\e1 OEPTHlO·10M 010 10 m s D.Oam-0.001 m strllln~e aulomatlcfor .sa\inl'~~set zero In air <.10 $econ~one month m.lI.orPSI,..mid IrIIonsducer. DEPTHI02SM ' 010 25 m 1D,<l6 mil O,Q\m &IrIl1n-gege au\oltlllUcfor sellnLV'sal zero In elr <\0 secQ;lds orlOmonlh m,il,or PSI1I01IIo'18lI~lnlneducer DEPTHIO-100M o\G1OOm :I:G,~nt'0,'m &1niIn·gage autorr.atlc for seUnttyM lOt zero In air <10 se=onds one month m,ft,orPSII'IOM'IIIIed Il'Bnld\t"..el' DEPTHJOw20DM CIte 2OI)m :1:0,8 m21 c,t m mln~eutol'l'll!1l&for sa'inl!'?slit Z6.'ll1n alr <10 seconds one month m.It.or PSI_"ltd 1rIInlIdWlf BAROMETRIC W)to etiC mlHg :l:'OmmHg 0,1 mmKg strliIn1:&De inone rllClulred mmHg,lnHII, PRESSURE 1rBnsduoer selin Ilr <10 seOOMs silt months kPA,mbar,Aim, or PSI ~::>::>....~::>::> iI ~ C?Q.. (D ~ ~ ~ Q Q IN...... '0:1' IN...... Q ~ Parameter Speclflcatlons -Serles 48 OataSond~4a &MlnlSonde®4a &Surveyor®48 Display (Continued from Page 1) Note:Thea,IpecmcaUons rappl~G'ler1he OPBl1IU~\8mperature ren;e 01-6 to 6O"C (rII:)n-!Qezlng),Ird Qver the epera1il;voltagerange of111016VDC,lor well maLntalned aeMOl'Iln cleln,\Jnchmglng 'laterl,TheTe are marw I11uaUons,wc:I1 AI blDtoullng,thet'0'&1 negete exbapolaUon QfIhe6ll'iIlec1licaUCI1&to fl.kl condltlol\ll. U~teeI QI2OO1 Hydrolab Technical Note 204 Pl!lga2