HomeMy WebLinkAboutDRC-2010-001423 - 0901a06880161444'^^^' 2010 - ooms(3
^^ k k Denison Mlnas (USA) Corp.
^^^ k A 10S017th Street Suits SSO
DENISOr^ii 5Sr"""
^^INES Tel: 303 628-n98
Fax:30338M12S
www.denbonmines.com
January 21, 2010
Mr. Dane Finerfi"ock, Executive Secretary
Utah Radiation Control Board
Utah Department ofEnvironmental Quality
168 North 1950 West
P.O. Box 144810
Sah Lake City, UT 84114-4810
Dear Mr. Finerfrock:
Re: White Mesa Uranium Mill - First Round of Interrogatories From Review of License
Amendment Request and Environmental Report For Cell 4B - Referenced Documents
Enclosed please find one (1) CD with the following referenced documents:
• Hydro Geo Chem, Inc. 2001. Letter to Harold Roberts, International Uranium (USA)
Corporation.
• Hydro Geo Chem Inc. 2005. Perched Monitoring Well Installation and Testing at the
White Mesa Uranium Mill, April through June 2005. Submitted to International
Uranium (USA) Corporation.
Please contact Harold Roberts at (303) 389-4160 with any questions or concerns.
Yours very truly,
DENISON MINES (USA) CORP.
3oDie
Records Administrator/Paralegal
cc: Robert Baird, PE - URS Corporation
End.
[II INTERNATIONAL
URANIUM (USA)
CORPORATION
Independence Plaza,Suite 9~0 •1050 Seventeenth Street •Denver,CO 80265 •303 628 7798 (main)•303 389 4125 (fax)
November 9,2001
VIA OVERNIGHT MAIL
Mr.William J.Sinclair
Director,Division ofRadiation Control
Utah Department ofEnvironmental Quality
P.O.Box 144850
168 North 1950 West
Salt Lake City,UT 84114-4850
Re:Update report regarding IUSA's October 4,2000 report on investigation of
elevated Chloroform Concentrations in Perched Groundwater at the White Mesa
Uranium Mill.Utah Division ofWater Quality Notice ofViolation and
Groundwater Corrective Action Order;Docket No.UGW20-01.
Dear Mr.Sinclair:
This transmits International Uranium (USA)Corporation's ("IUSA's")Contaminant
Investigation report entitled Update to Report -"Investigation of Elevated Chloroform
Concentrations in Perched Groundwater at the White Mesa Uranium Mill near Blanding,
Utah".This report is an update to the Contaminant Investigation Report (the "CIR")that
IUSA submitted to the Utah Department of Environmental Quality ("UDEQ")on
October 4,2000 (IUSA and HGC,2000),and addresses questions raised by UDEQ's
letter to IUSA in response to the CIR dated June 7,2001.Items addressed in this report
are also pursuant to a meeting between IUSA and UDEQ on October 5,2001.
Please note that this report includes a recommendation for installing two additional
temporary wells,for the purpose of additional delineation of the areas of the perched
zone containing chloroform,and in the locations discussed during the meeting with
UDEQ.IUSA would like to install these two additional wells during the week of
Mr.William J.Sinclair
November 9,2001
Page 2 of2
December 3,2001,so that the wells can be sampled during the fIrst quarter 2002
sampling event.Should you have any questions or comments concerning this or any
other part ofthis report,please contact me at 303.3 89.4131.
Sincerely,
~~~----
Michelle R.Rehmann
Environmental Manager
cc/att:Larry Mize,UDEQ Division ofWater Quality
Loren Morton,UDEQ Division ofRadiation Control
Ron F.Hochstein,IUSA
David C.Frydenlund,IUSA
Harold R.Roberts,IUSA
Richard E.Bartlett,IUSA
Ron E.Berg,IUSA
Stewart J.Smith,Hydro Geo Chern
S:\STAFF\MRR\Chloroformlnvestigation\commentsonGCIRreport\transmittaILtrUpdateChloroformlnvestigationReport
UPDATE TO REPORT
"INVESTIGATION OF ELEVATED CHLOROFORM CONCENTRATIONS IN
PERCHED GROUNDWATER AT THE WHITE MESA URANIUM MILL NEAR
BLANDING,UTAH"
Prepared By:
INTERNATIONAL URANIUM (USA)CORPORATION
Independence Plaza,Suite 950
1050 Seventeenth Street
Denver,CO 80265
and
HYDRO GEO CHEM,INCORPORATED
51 West Wetmore Street,Suite 101
Tucson,AZ 85705
November 9,2001
TABLE OF CONTENTS
1.INTRODUCTION AND SUMMARy 3
2.DNAPL ISSUES 5
2.1 Vertical Profiling ofExisting Perched Wells 5
2.2 Potential for DNAPL to Exist in the Vadose Zone 6
2.3 Evaluation ofthe Potential for DNAPL to Exist in the Saturated Zone 7
2.3.1 Detected Concentrations with Respect to Chloroform Solubility 7
2.3.2 Comparison ofMW-4 to Nearby Temporary Wells 10
2.3.3 Vertical Profiling ofMW-4 11
2.4 Brushy Basin Contact 12
3.ADDITIONAL PLUME DELINEATION 15
3.1 Analytical Results from Temporary Wells 15
3.2 Hydraulic Gradient in the Vicinity ofMW-4 16
3.3 Need for Additional Wells to Delineate Chloroform in the Perched Zone 17
3.4 Temporal Trends in Chloroform Concentrations and Relationship to Nitrate 18
4.COORDINATES REQUESTED BY UDEQ 20
5.PERCHED ZONE PERMEABILITY 21
5.1 Permeability Distribution ofthe Perched Zone 21
5.2 Conglomeratic Zone Near MW-4 21
6..ONGOING GROUNDWATER MONITORING AND REPORTING 23
7.ADDITIONAL GROUNDWATER MONITORING PARAMETERS 25
7.1 Dichloromethane Analytical Results From Split Sampling 25
7.2 Direct Measurement ofRedox Conditions in the Field 26
7.3 Feasibility ofEnhancing Reductive Dechlorination In-Situ 26
8.REFERENCES 28
FIGURES
1 Chloroform Analytical Results (Jlg\L)for Temporary Perched Wells
2 Contour Map ofTop ofBrushy Basin,White Mesa Uranium Mill Site
3 Water Level Contour Map December,2000,White Mesa Uranium Mill Site
4 Water Level Contour Map September -October,2001 White Mesa Uranium Mill Site
5 Proposed Locations ofNew Temporary Perched Wells
6 Nitrate Analytical Results (mg\L)for Temporary Perched Wells
7 Scatterplot ofChloroform vs.Nitrate,Temporary Perched Wells and MW-4
8 Perched Zone Permeability Based on Pump and Slug Tests,and Constant Head Packer
Tests,White Mesa Uranium Mill
9 Approximate Intervals of Conglomeratic Sandstone Logged in Temporary Well Borings
APPENDICES
A Vertical Profile Sampling Bailer
B Use ofSoil Gas to Detect DNAPL
C Coordinates Requested by UDEQ
D Analytical Results
E U.S.G.S Manual Chapter 6.5 and Hydrolab Parameter Specifications
1.INTRODUCTION AND SUMMARY
International Uranium (USA)Corporation ("IUSA")submitted a Contaminant
Investigation Report entitled "Investigation of Elevated Chloroform Concentrations in Perched
Groundwater at the White Mesa Uranium Mill near Blanding,Utah"(the "CIR")to the Utah
Department of Environmental Quality ("UDEQ")on October 4,2000 (IUSA and HGC,2000).
This report has been prepared as an update to the CIR,and to address questions raised by
UDEQ's letter to IUSA dated June 7,2001 in response to the CIR.Items addressed in this report
are also pursuant to a meeting between IUSA and UDEQ on October 5,2001.
This report discusses analytical results to date,trends in chloroform concentrations in the
vadose or perched water zones at the site,and additional delineation ofthe areas ofthe perched
zone containing chloroform.This report also discusses the potential for degradation of
chloroform in the perched water and the feasibility of enhancing in-situ reductive dechlorination
ofchloroform.
Important results ofthe investigation to date are that:
1.The data do not indicate that chloroform DNAPL exists at the site either in the vadose
zone or the perched water zone.
2)The data do not indicate that a continuing chloroform source exists.
3)Data are consistent with the abandoned scale house leach field as the source for the
MW-4 chloroform,and for the chloroform to have entered the perched water as a
"slug"over a relatively short period oftime (1-2 years).
4)Additional wells are needed to delineate the chloroform plume to the west and
northwest ofMW-4.
S:\STAFF\MRR\Chloroformlnvestigation\UpdateChloroformInvestigationReport 11_9_01 3
5)Rapid degradation of chloroform III the perched water IS unlikely without
enhancement.
Additional delineation of the chloroform in the perched water is proposed to be
accomplished by adding two new temporary wells to the west and northwest of MW-4,and by
vertical profile sampling in selected wells,to define the chloroform concentrations in three
dimensions.Additional characterization ofgroundwater gradients in the northeast portion of the
site,which have been changing and may affect chloroform migration in the perched water,will
be accomplished by phased installation of piezometers.In addition,IUSA will continue to
perform quarterly monitoring of chloroform and will transmit such data to the UDEQ in
accordance with a schedule provided herein.
S:\STAFF\MRR\ChlorofonnInvestigation\UpdateChlorofonnInvestigationReport 11_9_01 4
2.DNAPL ISSUES
UDEQ has expressed concern that dense,non-aqueous phase liquid (DNAPL)
cWoroform may exist in the vadose and perched water zones in the vicinity of MW-4 and the
abandoned scale house leach field.This section uses existing soil gas and groundwater data
from the site to demonstrate that DNAPL does not exist in either the vadose or perched water
zones at the site,and that no evidence for continuing chloroform source exists.
2.1 Vertical Profiling of Existing Perched Wells
Initial sampling to evaluate the potential for stratification of chloroform concentrations
was conducted in the fall of 1999,and reported in the CIR.As indicated in the CIR,multi-depth
sampling of MW-4 was conducted during the week of September 27,1999.Two samples were
collected,one from the top ofthe water column (approximately 70-73 feet bls)and one from the
base of the water column (approximately 117-120 feet bls).The shallow sample was collected
first.Both samples were collected using disposable teflon bailers.Samples were collected
without purging the well,to prevent disturbance ofthe water column.
Samples were collected in 40 ml VOA vials,with no headspace,capped,labeled,and
stored in a cooler with blue ice at 4°C for shipment to the offsite analytical laboratory (Energy
Laboratories,Casper,Wyoming).Chloroform was detected in the shallow sample at a
concentration of 6,200 Jlg/L,and in the deep sample at a concentration of5,820 Jlg/L.Because
concentrations did not increase with depth,the presence of DNAPL (i.e.,free chloroform
product)was not indicated in MW-4.
S:\STAFF\MRR\ChloroforrnInvestigation\UpdateChloroforrnInvestigationReport 11_9_01 5
As UDEQ has requested further evaluation of the vertical distribution of chloroform
concentrations,a Sampling Plan,with the Data Quality Objective of evaluating the potential for
stratification of chloroform concentrations in the Chloroform Investigation wells,will be
developed.This Sampling Plan will include the following key features:
•Procedure to collect samples from discrete depths using disposable bailers with
double check values
•Requirements for field records
•Methodology for evaluation ofresults
•Evaluation of the feasibility of testing experimental USGS procedure using passive
diffusion bags in at least one well,to provide comparison to conventional method
results
•This sampling will take place in the first quarter of2002
Appendix A contains manufacturer specifications for disposable bailer designed to collect
samples from discrete intervals in groundwater.
2.2 Potential for DNAPL to Exist in the Vadose Zone
Soil gas sampling is a useful means to detect the presence ofpure phase volatile organic
compounds (VOC)that reside in the vadose zone.This applies to chloroform,which has a vapor
pressure of 160 mm Hg.As discussed in Appendix B,soil gas concentrations in excess of 10%
of a VOC pure phase saturated vapor pressure are indicative of the presence of the pure phase.
For chloroform,soil gas concentrations in excess of 100,000 JlglL would be indicative of pure
phase.
The possibility that residual pure phase chloroform exists as a DNAPL within the vadose
S:\STAFF\MRR\Chlorofonnlnvestigation\UpdateChlorofonnlnvestigationReport 11_9_01 6
zone beneath the abandoned scale house leach field is not supported by the trace level
soil gas chloroform concentrations measured in the vicinity in 1999 «1 f.lg/L).The measured
concentrations are indicative of low concentrations of chloroform dissolved in vadose pore
waters.Furthermore,the possibility that DNAPL exists within the perched zone is not supported
by the relatively low chloroform concentrations detected at wells TW4-5 and TW4-9,which are
the temporary wells located closest to the leach field (Figure 1).
2.3 Evaluation of the Potential for DNAPL to Exist in the Saturated Zone
The possibility that chloroform DNAPL may exist in the perched zone beneath the
abandoned scale house leach field and/or may traveled downgradient along the Brushy Basin
contact toward MW-4 is remote.This possibility is not supported by data collected from the
temporary perched wells at the site or from MW-4.
2.3.1 Detected Concentrations with Respect to Chloroform Solubility
Perched water chloroform concentrations exceeding 1%of the solubility of chloroform
(8,000-10,000 mg/l)would have to exist to indicate the presence of DNAPL .(Cohen and
Mercer,1993).The highest groundwater concentrations detected at the site «7 mg/L)are more
than 3 orders of magnitude lower than the solubility of chloroform.While the solubility of
chloroform in the perched water may be slightly depressed by the presence of trace
concentrations of carbon tetrachloride (500 mg/L dissolved in the pure chloroform used in the
ore assay lab as suggested in UDEQ's June 7,2001 letter to IUSA)and by the presence of
inorganic solutes in the perched water,as detailed below,it can be demonstrated that this
depression is not significant.
S:\STAFF\MRR\Chloroformlnvestigation\UpdateChloroformlnvestigationReport 11_9_01 7
The effect of 500 mg/l carbon tetrachloride contaminant on the solubility of chloroform
used at the site would be negligible,potentially lowering the solubility by less than 0.05%,
because the mole fraction ofcarbon tetrachloride in the mixture would be less than 0.05%.The
presence of significant concentrations of other solvents in perched groundwater near MW-4,
which could potentially lower the solubility of chloroform,is not supported by past analytical
results.Furthermore,as detailed below,the impact of salinity on chloroform solubility,which
will depend on the concentrations of salts in the water,is also not significant.
The solubility of a neutral organic compound such as chloroform in water containing
dissolved inorganic salts is generally lowered as the concentration ofthe inorganic salts increases
(Schwarzenbach,1993;Garrels and Christ,1965;and Harned and Owen,1950).The depression
ofsolubility is generally not significant,unless the concentration ofthe salts is greater than about
0.1 molar (M).At MW-4,the dominant anion is sulfate,which averages approximately 2,000
mg/l,or 0.021M,based on data presented in TITAN,1994.The average concentrations of
chloride,sodium,calcium,and potassium ions average approximately O.0013M,0.014M,
0.010M,and 0.0003M,respectively,at MW-4.These concentrations are too low to have a
significant effect on the solubility of chloroform in the perched water,at most reducing solubility
by a few percent.Even in seawater,where salt concentrations are orders of magnitude higher
than in the perched water,the depression ofsolubility ofneutral organic compounds is typically
less than a factor of2 (Schwarzenbach,1993).
Schwarzenbach,1993,provides a methodology for estimating the impact of salinity on
the solubility of neutral organic compounds.Salting constants (Ks)for various types ofsalts are
provided,with the highest that of sodium sulfate (Ks =0.55).Using the formula provided in
Schwarzenbach,
S:\STAFF\MRR\Chloroformlnvestigation\UpdateChloroformlnvestigationReport 11_9_01 8
where C~~.valt =solubility ofneutral organic compound in salty water,
Ks =salting constant,
c~at =solubility ofneutral organic compound in pure water,
and assuming that
Ks=0.55,and
[salt]=[S04]=0.021M,
the solubility of chloroform in perched water is calculated as 0:975 C;:t or 97.5%of the
solubility in pure water,a reduction in solubility ofless than 3%.
The actual reduction in solubility is likely to be lower for chloroform,however,because
the salting-out effect is lower for polar organic compounds (Schwarzenbach,1993).Because
chloroform is somewhat polar,owing to it's asymmetry,which accounts for it's high solubility
(l0 times that of carbon tetrachloride,which is non-polar),the actual depression of chloroform
solubility in perched water is likely to be less than 2.5%.Because the estimated reduction in
chloroform solubility is so small,and is nearly an order of magnitude lower than typical
laboratory analytical error of ±20%,the effect of perched water salinity on the solubility of
chloroform can be ignored.
Furthermore,the assumption that DNAPL is not indicated unless dissolved groundwater
concentrations greater than 1%of the solubility of the pure product are detected (Cohen and
Mercer,1993)is considered reliable because the lowering of solubility by other factors such as
the presence ofother solvents,is taken into account in this assumption.
S:\STAFF\MRR\ChlorofonnInvestigation\UpdateChlorofonnInvestigationReport 11_9_01 9
2.3.2 Comparison ofMW-4 to Nearby Temporary Wells
Chlorofonn concentrations in the past have been higher at MW-4 in comparison with
nearby temporary wells,although these differences have been slight in recent sampling events.
The differences do not indicate DNAPL that may be present at MW-4 or that these differences
result from well construction factors,possibilities suggested in UDEQ's June 7,2001 letter.
Recently measured chloroform concentrations at MW-4 are not significantly higher than
at nearby temporary wells.Concentrations at TW4-1 and TW4-2,located immediately
downgradient and upgradient,respectively,of MW-4,are within approximately 5%and 12%,
respectively,of concentrations at MW-4 as of the June 2001 sampling (Figure 1).
Concentrations at MW-4 are within 8%of concentrations at TW4-2 in the September,2001
sampling.(Concentrations between MW-4 and TW4-1 cannot be compared for the September,
2001 sampling because the TW4-1 sample vial broke in transit to the laboratory and no analysis
was performed).These results suggest that differences in concentrations are more likely the
result ofrecovery than well construction factors or the potential presence ofDNAPL at MW-4 as
suggested by UDEQ.Differences in concentration between MW-4 and nearby temporary wells
would be expected to be much larger if DNAPL were present near MW-4.The slightly lower
concentrations at the nearby temporary wells,and the reduction in the differences in nearby
temporary wells relative to MW-4 over time are consistent with recovery of temporary wells
from the air rotary drilling process (as discussed in Section 3).In other words,the reason that
MW-4 has had the highest concentrations is more likely due to its age rather than construction.
Furthermore,it is highly unlikely that chloroform DNAPL could have migrated more
than 1,200 feet from the source area (the abandoned scale house leach field)to the vicinity of
MW-4.The Burro Canyon/Brushy Basin contact is an erosional surface with numerous small-
S:\STAFF\MRR\Chlorofonnlnvestigation\UpdateChlorofonnlnvestigationReport I1_9_01 10
scale irregularities that would prevent movement of any DNAPL very far from the source area.
Even if small scale irregularities did not prevent the movement,the farther the DNAPL moved
from the source area,the more spread out it would become,exposing more surface area to the
groundwater and making it easier to dissolve.Also,it can be demonstrated that more than
sufficient volume of water has passed beneath the abandoned leach field source area to have
dissolved all ofthe chloroform potentially disposed there.
Assuming the following conditions,
Width ofabandoned leach field =
Average saturated thickness =
Average hydraulic gradient =
Average hydraulic conductivity ==
20 feet
30 feet (conservative)
0.016 ft/ft
1 ft/day
Approximately 520,000 gallons of perched water have passed beneath the leach field over the
past 20 years.(The average hydraulic conductivity was based on the results of a pump test at
MW-4 in 1999,which yielded a transmissivity of 38.4 ft2 /day.Dividing this by the saturated
thickness of the perched zone at that time,approximately 40 feet based on a depth to the Brushy
Basin of 108 feel bls depicted in the geophysical log of MW-4,yields an average hydraulic
conductivity of 1 foot/day.)Assuming a solubility of chloroform of 8,000 mg/l,or 5 x 10-3
gallon chloroform/gallon water,sufficient perched water has flowed beneath the source area to
have dissolved more than 10 times the amount potentially used in the ore assay laboratory.
2.3.3 Vertical Profiling ofMW-4
As stated above under 2.1,previous vertical profile sampling of MW-4 in 1999 did not
indicate that concentrations increased with depth,as would be expected if DNAPL existed near
MW-4.
S:\STAFF\MRR\Chloroformlnvestigation\UpdateChloroformlnvestigationReport I 1_9_01 11
Samples were collected from depths of approximately 71 feet bls (approximately 2 feet
below the top of the water column)and from near the base of the well (approximately 118 feet
bls)using a disposable bailer.The shallow sample was collected first,then the deep sample.If
chloroform DNAPL were present at the base ofthe well,concentrations would be expected to be
significantly higher there than at the top of the water column.Instead,sampling results showed
no significant difference in concentration between the deep and shallow samples.CWoroform
was detected at a concentration of 6,200 flglL in the shallow sample and a concentration of5820
5,280 flglL in the deep sample.
More rigorous vertical profile sampling of MW-4 is proposed to characterize the vertical
distribution ofcWoroform concentrations at the site as discussed above in Section 2.1.
2.4 Brushy Basin Contact
UDEQ has expressed concern that the Brushy Basin contact at MW-4 may be depressed
and may harbor a pool ofchloroform DNAPL.This concern is based on a reported contact depth
of 125 ft below land surface (bls)at MW-4.However,the Brushy Basin contact at MW-4 is
considered to be at a depth of 108 ft bls based on lithologic logs ofnearby temporary wells TW4-
1,TW4-2,TW4-7 and TW4-8,and on the geophysical log for MW-4 provided in TITAN,1994.
The geophysical log for MW-4 provided in TITAN,1994,depicts the Burro
Canyon/Brushy Basin contact at 108 ft bls.This depth is consistent with the lithologic logs of
nearby temporary perched monitoring wells TW4-1,TW4-2,TW4-7,and TW~4-8,which depict
the contact at approximately 103 ft,105 ft,98 ft,and 105 ft bls,respectively.This would place
the base of the screened interval of MW-4,which extends to 112 ft bls,approximately 4 feet
below the contact.
S:\STAFF\MRR\ChlorofonnInvestigation\UpdateChlorofonnlnvestigationReport I1_9_01 12
The 125 foot depth that has·been previously reported for the Brushy Basin at MW-4 is
apparently based on the well completion diagram provided in TITAN,1994,which depicts a
contact between "sandstone"and "claystone"at 125 ft bls.However,no additional lithologic
information is provided to indicate whether the "sandstone"is continuous from the surface to
125 ft bls,or whether the "sandstone"is a lens or layer encountered within the Brushy Basin.
The formation names are also not designated on the diagram.
During drilling of temporary wells TW4-3 and TW4-7,the borings were extended into
the Brushy Basin to characterize the lithology of the uppermost portion of the formation.Thin
layers or lenses of sandstone and/or conglomeratic sandstone were found at a depth of
approximately 108-112 ft bls in TW4-7,10 feet below the Brushy Basin contact,and depths of
approximately 125-132 ft bls in TW4-3,25 feet below the contact.These lenses or layers in the
Brushy Basin were separated from the base of the Burro Canyon by shales,siltstones and
claystones.These low permeability materials would hydraulically isolate the lenses or layers of
sandy/conglomeratic material within the Brushy Basin from the Burro Canyon.
With regard to the geophysical log of MW-4,there is a clear response in the natural
gamma at 108 ft bls.This response is also consistent with the natural gamma response at the
Brushy Basin contact as depicted in other geophysical logs at the site and is consistent with the
lithology logged at nearby temporary wells.Because the geophysical log depicts the Brushy
Basin contact at 108 ft bls in MW-4 and because this is consistent with lithologic logs ofnearby
temporary wells,the 108 foot depth is considered reliable.
Therefore,any DNAPL potentially present near MW-4 would be expected to enter the
well screen,and to raise the measured chloroform concentrations at MW-4 nearer the solubility
S:\STAFF\MRR\Chlorofonnlnvestigation\UpdateChlorofonnlnvestigationReport 11_9_01 13
ofchlorofonn (8,000-10,000 mg/l).Because the measured concentrations ofchlorofonn at MW-
4 are more than 3 orders of magnitude lower than the solubility,no DNAPL is indicated.
Furthennore,if DNAPL were present near MW-4,concentrations should be at least one to two
orders of magnitude higher that at TW4-1,TW4-2 and TW4-4,rather that only 5%,12%,and
48%higher as ofthe June,2001 sampling.
Installation ofan exploratory boring near MW-4 as suggested by UDEQ to characterize
the contact is not considered necessary based on the geophysical log of MW-4 provided in
TITAN,1994,the lithologic logs of nearby temporary wells,and the lack of evidence for
DNAPL in the analytical data.The depth to Brushy Basin of 108 feet bls depicted on the
geophysical log ofMW-4 is consistent with the depths provided in the nearby lithologic logs and
is considered reliable.
A contour map of the top of the Brushy Basin,using the 108 ft depth at MW-4,is
provided in Figure 2.
S:\STAFF\MRR\Chloroform1nvestigation\UpdateChloroform1nvestigationReport I 1_9_01 14
3.ADDITIONAL PLUME DELINEATION
UDEQ has expressed concern that more temporary perched wells are needed to define the
extent of chloroform in the perched water,and that piezometers are needed in the northeast
portion of the site to better define changing water level gradients and to identify sources of
recharge.This section discussed the distribution of chloroform in the perched water both
spatially and temporally,the need for new temporary wells.to the west and northwest of MW-4
based on observed trends in the chloroform data,and the relationship of chloroform to nitrate
which is consistent with a leach field origin.
3.1 Analytical Results from Temporary Wells
Chloroform analytical results for MW-4 and temporary wells are shown in Figure 1.The
chloroform plume is bounded to the south (downgradient)by non-detect results at TW4-6,
although the recent detection of 3.6 Ilg/L chloroform at TW4-6 may indicate arrival of
chloroform at that well.The upgradient well (TW4-5)and lateral wells (TW4-7 and TW4-8)
show chloroform concentrations in excess of 100 IlglL,although concentrations at these wells
are much lower than at MW-4,TW4-1 and TW4-2.
The increases in concentration detected in most of the temporary wells after installation
are most likely related to recovery of concentrations that were lowered as a result of the air
rotary drilling method,and the generally long recovery times expected when wells are installed
in low permeability formations.Temporary wells located downgradient (south)of MW-4 are
affected by both the recovery process and by continued southerly migration of the chloroform
8:\STAFF\MRR\Chloroformlnvestigation\UpdateChloroformlnvestigationReport 11_9_01 15
plume.These and other temporal trends will be discussed further in Section 3.5.IUSA will
continue to monitor and report results to the UDEQ.
3.2 Hydraulic Gradient in the Vicinity ofMW-4
The hydraulic gradient in the vicinity ofMW-4 has historically been to the south (IUSA
and HOC,2000).Recent water level contour maps are provided in Figures 3 and 4.
The change in water levels and change in hydraulic gradient to a more westerly direction
in the vicinity ofthe abandoned leach field are recent,and the direction ofthe hydraulic gradient
during most of the period of migration of the plume was southerly.A southerly gradient still
exists near MW-4 and at the downgradient edge of the plume.The recently detected more
westerly hydraulic gradient near the scale house leach field is of no concern unless a residual
chloroform source is present,but the assumption of a residual source is not supported by any of
the soil gas or groundwater data collected to date.IUSA plans to install piezometers,in a phased
fashion,in the northeast portion ofthe site to further investigate the increase in water levels and
change in hydraulic gradient.This work will be described in a report to UDEQ due on
November 16,2001.
The water level map provided by UDEQ in their June 7,2001 letter to IUSA indicates a
concern as to whether or not there may be a possible groundwater mound near MW-4.
This feature is likely not a mound but the result of locally semi-confined conditions
related to the stratigraphy of the perched zone.This type of feature is common in water table
aquifers even where the hosting lithology consists of unconsolidated layered sands and gravels
S:\STAFF\MRR\ChlorofonnInvestigation\UpdateChlorofonnInvestigationReport 11_9_01 16
with local interbeds ofsilt and clay.These small-scale fluctuations in the regional flow field can
be ignored when considering the large scale flow ofgroundwater and transport ofsolutes.
3.3 Need for Additional Wells to Delineate Chloroform in the Perched Zone
The vertical dimension of the chloroform in perched water will be addressed by vertical
profile sampling as discussed in Section 2.1.The lateral dimension of the plume is defined in
large part by the existing temporary well network but further delineation is likely needed to the .
west and northwest ofMW-4.Additional downgradient delineation may be needed in the future
as the plume continues to move to the south.
UDEQ provided a chloroform isoconcentration map in its June 7,2001 letter to IUSA.
While this map indicates that further lateral delineation of the plume is needed,to the west and
northwest of MW-4,the chloroform isoconcentration map prepared by UDEQ displays a number
offeatures that are not hydrogeologically reasonable.These features are related to:
1)Non-uniform distribution of input data leading to unavoidable errors in coniputer
gridding and contouring unless specific measures are taken to counteract them,
2)The impossibility of providing hydrogeologic input to the computer gridding and
contouring algorithm such as,for example,historical groundwater gradient
information,and
3)The assignment of detectable chloroform concentrations to downgradient wells that
have always been non-detect for chloroform
Some ofthe resulting erroneous features displayed in the map include the following:
1)The depicted plume extends farther cross-gradient and up-gradient than down-
gradient which is not hydrogeologically reasonable.
S:\STAFF\MRR\Chloroformlnvestigation\UpdateChloroformlnvestigationReport 11_9_01 17
2)The detectable chlorofonn isoconcentration contours extend up to and beyond wells
that have always been non-detect for chlorofonn,which is not hydrogeologically
reasonable.
3)"Bulls eye"features occur that are related to the non-unifonn distribution of data,
choice of gridding parameters,and unavoidable limitations of the gridding and
contouring package.There is no hydrogeologic mechanism that can result in such
features.
4)Unless chlorofonn is actually detected at the downgradient wells,the downgradient
edge of the plume will always be at or just beyond these same wells that are non-
detect for chlorofonn,resulting in a plume whose extent is time independent.This is
not hydrogeologically reasonable unless a steady-state condition has been reached.
The apparent northwest trend in the isoconcentration contours in the map produced by
UDEQ is an artifact resulting partly from the well density west and northwest of MW-4,and
partly from the non-unifonn distribution of data,the lack of hydrogeologic input in producing
the map,and the assignment of detectable chloroform concentrations to wells that have been
non-detect for chlorofonn..
IUSA proposes to install two new temporary wells to the west and northwest of MW-4,
as shown in Figure 5,to help delineate the extent of the plume to the west and northwest where
control is poor.Additional wells to the east and south may be considered at a later time based on
the results ofcontinued monitoring at the site.
3.4 Temporal Trends in Chloroform Concentrations and Relationship to Nitrate
Figure 1 shows the chloroform concentrations over time measured in MW-4 and
temporary wells near MW-4.As discussed in section 3.1,initial increases in most of the
temporary wells are likely related to recovery from the drilling process which used primarily air
as a drilling.fluid,and small amounts of water as needed to maintain circulation.Increases·at
wells upgradient (north)of MW-4 are most likely due to recovery alone,while downgradient
S:\STAFF\MRR\Chlorofonn]nvestigation\UpdateChlorofonn]nvestigationReport ]]_9_0]18
wells (south of MW-4)are expected to respond to both recovery and continued downgradient
(southerly)plume movement.For example,the rapid increase in concentration at TW4-1 after
installation could not likely have resulted from recovery alone,but must also have resulted from
movement ofthe leading edge of the plume past that well.Increases in concentration from non-
detect to 3,200 ~g/L at TW4-4 are also likely to have resulted primarily from continued plume
movement to the south.
Concentrations at upgradient wells TW4-5,TW4-9,and TW4-3 have stabilized or
decreased after the initial increase related to recovery.Concentrations at lateral wells TW4-7
and TW4-9 are stabilizing.These trends are consistent with the initial interpretation ofa "slug"
of chloroform entering the perched water over a relatively short period of time (1-2 years)and
migrating downgradient toward MW-4,TW4-1,and TW4-4.The width ofthe plume near MW-
4 will be addressed by the installation oftwo new temporary wells to the west and northwest of
MW-4.
Figure 6·is a plot of nitrate concentrations over time at MW-4 and the temporary wells.
There is a clear correlation between chloroform and nitrate concentrations which is consistent
with a leach field origin.Figure 7 is a scatterplot of chloroform vs.nitrate through the
June,2001 sampling,which illustrates this correlation.
S:\STAFF\MRR\Chloroformlnvestigation\UpdateChloroformlnvestigationReport 11_9_01 19
4.COORDINATES REQUESTED BY UDEQ
A copy ofestimated coordinates for the following locations was previously transmitted to UDEQ
on September 7,2001,and was provided during the meeting on October 5.They are also
provided in this report in Appendix C.
•Former mill office building sanitary leach field,
•Former mill office building laboratory wastewater holding tank and pipeline to
Evaporation Cell 1.
•Former office trash disposal area
S:\STAFF\MRR\Chloroformlnvestigation\UpdateChloroformlnvestigationReport 11_9_01 20
5.PERCHED ZONE PERMEABILITY
UDEQ has expressed concern about the permeabilities derived from the hydraulic tests at
MW-4,and whether chloroform could have migrated from the abandoned scale house leach field
to MW-4,and whether chloroform could have migrated from the abandoned scale house leach
field to MW-4 via conglomeratic materials logged in temporary wells at the site,as suggested in
the CIR.This section discussed the results of hydraulic testing at MW-4,the probable
coincidence of a high permeability zone evident in the MW-4 test data with conglomeratic
materials logged in nearby temporary wells,and the likelihood that these conglomeratic
materials influence the flow ofperched water and transport ofchloroform near MW-4.
5.1 Permeability Distribution ofthe Perched Zone
An updated perched zone permeability map is provided in Figure 8.The permeabilities
plotted on the map are based on the results of pump and slug tests where available,or on
constant head packer tests within the perched zone.Test results by Peel were used where
available,except the value plotted for MW-4 (3.5 x 10-4 cm/s),which was based on a
transmissivity of 38 ft2/day measured during a 1999 pump test by HGC.The saturated thickness
at that time was calculated as 39 feet assuming a Brushy Basin contact at 108 ft bls.A detailed
discussion ofte~ts at MW-4 will be provided in a report to UDEQ due on November 16.
5.2 Conglomeratic Zone Near MW-4
Varying thicknesses of conglomeratic material are present below the water table in all
temporary wells north ofTW4-1 (Figure 9).The base ofthis zone is approximately 95 feet bls in
TW4-1,and TW4-2,and approximately 88 ft bls in TW4-7.A higher permeability zone with a
base at a depth of approximately 95 feet below top of casing (btoc)is evident in the drawdown
data collected during a pump test by Peel at MW-4 in 1992 (UMETCO,1994).During the first
S:\STAFF\MRR\Chlorofonnlnvestigation\UpdateChlorofonnlnvestigationReport 11_9_01 21
3 hours of pumping at a constant rate of 0.46 gpm,only about 2 liz feet of drawdown was
measured.Then,as water levels dropped below approximately 95 feet btoc,the rate of
drawdown increased by about a factor of 30.Similar behavior occurred in a test conducted at
0.92 gpm,except that the break in slope occurred in about half the time.This behavior is
consistent with dewatering of a higher permeability zone having a base at 95 feet btoc near MW-
4 at about 3 hours into the test.This zone most likely coincides with the conglomeratic zone
logged at nearby temporary wells.Because this conglomeratic zone is present below the water
table at all wells north (upgradient)of TW4-1,and has a relatively high permeability based on
the pump tests at MW-4,it likely influences the flow of the perched water,and therefore the
transport ofchloroform,in the vicinity.Furthermore,the least productive temporary wells at the
site,TW4-4 and TW4-6,have very thin conglomeratic zones that are located above the water
table where they cannot at present affect the movement ofperched water at the site.
A detailed discussion oftests at MW-4 and interpretation ofresults will be provided in a
report to UDEQ due November 16.
S:\STAFF\MRR\Chloroformlnvestigation\UpdateChloroformlnvestigationReport 11_9_01 22
6.ONGOING GROUNDWATER MONITORING AND REPORTING
As stated in Section 5.1 of the CIR,the sampling results to date indicate that elevated
chloroform concentrations are confined to a relatively narrow zone.Elevated chloroform
concentrations have not moved significantly downgradient ofTW4-4.
To ensure that samples collected from the temporary wells are representative of the
perched groundwater,continued monitoring has been performed on a quarterly basis in the
temporary wells (TWs)and in MW-4.Measurements have included depth to water,electrical
conductivity,temperature,pH,and chloroform concentration.Nitrate has also been measured in
temporary wells TW4-1,TW4-3,and TW4-4.
Continued potential movement of the elevated chloroform concentrations is.being
monitored using the new temporary wells,TW 4-4 and TW 4-6 located downgradient ofTW 4-1.
Also,based on hydraulic conductivity estimates at MW-4,and the magnitude ofthe groundwater
gradient,the travel times can be used to estimate the effective porosity of the perched zone in
this vicinity.
IUSA will continue to collect chloroform data for all of the wells involved in the
chloroform investigation,including well MW-4,all the existing TW-4 series wells,and all future
monitoring wells that are installed to delineate the area ofchloroform contamination.
Table 1 is a summary of data collected to date from the TW-4 series wells.Quarterly
analytical results which were not preciously transmitted to UDEQ in split sampling data
S:\STAFF\MRR\Chlorofonnlnvestigation\UpdateChlorofonnlnvestigationReport 11_9_01 23
packages for data collected since the transmittal of the eIR to the present are included in
Appendix D.
To ensure adequate time for sample analysis,laboratory data validation,IUSA data
validation,and reporting,IUSA proposes to submit the data,together with the quarterly summary
report,to UDEQ in accordance with the following schedule:
Quarter
January -March
April-June
July -September
October -December
Submittal Due Date
May 30
August 30
November 30
February 30
S:\STAFF\MRR\Chlorofonnlnvestigation\UpdateChlorofonnlnvestigationReport II_9_01 24
7.ADDITIONAL GROUNDWATER MONITORING PARAMETERS
The primary purpose for measuring additional groundwater parameters within and near
the chloroform plume should be to establish the likelihood that chloroform is degrading naturally
(either chemically or biologically)within the perched water.
The natural degradation pathway for chloroform is for chlorine atoms to be successively
replaced by hydrogen under anaerobic,reducing conditions,via reductive dechlorination.
Chloroform will degrade to its daughter product,dichloromethane (DCM)under these
conditions,and may ultimately degrade to methane.The presence or absence of DCM would
help establish whether or not this process is occurring at a significant rate.
The presence ofnitrate concentrations in the perched water near MW-4 that are generally
higher than the chloroform concentrations,however,indicates that groundwater conditions are
not presently favorable for this process.Under conditions favorable for reductive dechlorination,
nitrate will also be expected to degrade,.and at a higher rate than chloroform.For this reason,
existing analytical data provides an indirect estimate of redox conditions,which do not appear
favorable for reductive chlorination.
7.1 Dichloromethane Analytical Results From Split Sampling
Previous split sampling analytical results indicate that DCM is not present in perched
water near MW-4 at detectable concentrations (l ~g/L).This is consistent with conditions that
are not favorable for reductive dechlorination of chloroform.
~.
S:\STAFF\MRR\ChlorofonnInvestigation\UpdateChlorofonnlnvestigationReport I1_9_01 25
7.2 Direct Measurement of Redox Conditions in the Field
At UDEQ's request,IUSA had evaluated the feasibility of obtaining relatively reliable
measurements of reduction-oxidation potential (redox,or ORP)for groundwater,using field
instruments.As described in the U.S.O.S.Field Manual,Chapter 6.5,in contrast to other field
mesaurements,the determination of redox "should not be considered a routine measurement"
and is "not recommended in general because ofthe difficulties inherent in its theoretical concept
and its practical measurement"(see Appendix D).The U.S.O.S.notes that "Eh measurement
may show qualitative trends,but generally cannot be interpreted as equilibrium values".
Hydrolab Corporation,the supplier ofthe Hydrolab Surveyor 4a Instrument currently being used
at the Mill for field measurement of pH,temperature,and electrical conductivity in groundwater,
has indicated that the instrument's available redox electrode,which can be retrofitted to the
Mill's instrument,has somewhat improved capability of measuring redox,as compared with
earlier models.Hydrolab's Tech Note 204 listing parameter specifications is included in
Appendix D.Response time is not specified on Tech Note 204,and IUSA will need to establish
a procedure to determine at what point the redox value would be selected.Also,to avoid
potential exposure to quinhydrone,the Mill would use Zobell solution to calibrate the new redox
electrode,after it has been added to the instrument.
7.3 Feasibility ofEnhancing Reductive Dechlorination In-Situ
Reductive dechlorination can be enhanced in-situ by adding substances such as hydrogen
release compound,or substances that accomplish the same purpose such as molasses or ethyl
alcohol,which release hydrogen during fermentation (Odom,Martin J et aI,1995),and mixing
S:\STAFF\MRR\Chlorofonnlnvestigation\UpdateChloroformlnvestigationReport 11_9_01 26
them with the perched water.The mixing process will be facilitated at the site because
temporary wells currently exist along almost the entire extent of the chloroform plume,with a
number of wells completed in that portion of the plume with the highest chloroform
concentrations.Existing data indicate that this process will be feasible,however additional data
will be collected prior to making a final determination of the feasibility and developing a work
plan for implementation.
S:\STAFF\MRR\Chloroformlnvestigation\UpdateChloroformlnvestigationReport 11_9_01 27
TABLE 1
MW-4 and Temporary Perched Well Completion and Analytical Parameters
TW4-1 TW4-2 TW4-3 TW4-4 TW4-5 TW4-6 TW4-7 TW4-8 TW4-9 MW-4
Approximate screened interval 70-110 80-120 67-97 72-112 80-120 57.5-97.5 80-120 85-125 80-120 92-112(feet bls)
Chloroform (lJg/L)5.8 2,510 702 NS 29.5 NS 256 <1 4.2 NS(1st sampling)
Chloroform (lJg/L)1,100 5,520 834 NS 49 NS 616 21.8 1.88 NS(2nd sampling)
Chloroform (lJg/L)1,490 NS NS NS NS NS NS NS NS NS(3rd sampling)
t;nlorOTorm (lJg/L)(initial sampling NS NS NS <0.5 NS <0.5 NS NS NS NSofTW4-4 and TW4-6)
Chloroform (lJg/L)(4th Sampling)
NS(2nd sampling of 2,230 5,220 836 <1 124 <1 698 102 14.2
TW4-4 and TW4-6)
Chloroform (lJg/L)3,440 4,220 836 3.85 255 <1 684 107 39.4 6,470(11/00 sampling)
Chloroform (lJg/L)2,340 3,890 347 2,260 236 <1 747 116 43.6 4,360(03/01 sampling)
Chloroform (lJg/L)6,000 5,500 390 3,100 240 <1 1,100 180 59 6,300(06/01 sampling)
Chloroform (lJg/L)NA 4,900 300 3,200 240 3.6 1,200 180 19 5,300(09/01 sampling)
Nitrate (mg/L)7.79 10.7 1.97 1.02 3.16 <0.1 1.99 <0.1 <0.1 9.37(11/00 sampling)
Nitrate (mg/L)7.15 10.2 1.85 14.5 3.88 0.13 2.46 <0.1 <0.1 8.77(03/01 sampling)
Nitrate (mg/L)8.81 9.67 2.61 14.0 6.47 <0.1 2.65 <0.1 0.15 9.02(06/01 sampling)
NS =not sampled
NA =not analyzed
H:/71800/chloroform table 1.xls
8.REFERENCES
Cohen,Robert M and James Mercer.1993.DNAPL Site Evaluation.Library of Congress
Harned,Herbert S and Benton BOwen.1950.The Physical Chemistry of Electrolytic
Solutions.American Chemical Society Monograph Series.Reinhold Publishing Corp.
International Uranium (USA)Corporation,and Hydro Geo Chern (HGC),2000.Investigation of
Elevated Chlorofonn Concentrations in Perched Groundwater at the White Mesa
Uranium Mill Near Blanding,Utah.Submitted to UDEQ.
Odom,J Martin,Jo Ann Tabinowski,Michael D.Lee,and Babu Z.Fathepure,1995.Anaerobic
Biodegradation of Chlorinated Solvents:Comparative Laboratory Study of Aquifer
Microcosms.In Bioremediation o/ChlorinatedSolvents.Battelle Press.
Schwarzenbach,Renee P;Phillip M Gschwend,and Dieter M Imboden.1993.Environmental
Organic Chemistry.John Wiley and Sons.
Titan,1994.Hydrogeologic Evaluation of White Mesa Uranium Mill.Submitted to Energy
Fuels Nuclear.
Umetco,1994.Groundwater Study,1~94 Update.White Mesa Facility,Blanding,Utah
Submitted to United States Nuclear Regulatory Commission.
U.S.Geological Survey,1998.Reduction-Oxication Potential (Electrode Method).Chapter 6.5,
Field Manual.Available on-line at
http://water.usgs.gov/owq/FieldManual/Chapter6/6.5 contents.html
S:\STAFF\MRR\ChlorofonnInvestigation\UpdateChlorofonnInvestigationReport 11_9_01 28
EXPLANATION
temporary perched well
showing chloroform (uG/L)in
NOTE:sample vial for
tw4-1 broke in
transit to the
laboratory so
no analysis
was performed
on 9/01 sample
\\
,/
/./
/
eoo
i:.-......~.
:~;fr;A':,~(
i\\.\
\\/.;'
I'
'.
initial sampling
second sampling
third sampling
fourth sampling
11/00 sampling
03/01 sampling
06/01 sampling
09/01 sampling
perched monitoring well
MW-4 showing chloroform
(uG/L)in 6/01 and 9/01
samplings
6300
.5300
()702
834
NS
836
836
347
390
300
CHLOROFORM ANALYTICAL RESULTS (uG/L)
FOR TEMPORARY PERCHED WELLS
(through september,2001)
Approved Date Reference Figure 1
PROPERTYBOUNDARY
-
*ASSUMED TO BE AT EL£VATION OF
BASE OF SCREENED INTERVAL
~~,
~'wW-19
5ii11
\\\\\\
\\\\\
MW-22.
5396
3000
PERCHED MONITORING WElL SHOWING TOP OF
BRUSHY BASIN IN FEET (AMSL)
o 5522
•MW-ll
5513
N
1
o SCALf:IN FEET
EXPLANATION
TEMPORARY PERCHED MONITORING WElL
SHOWING TOP OF BRUSHY BASIN IN FEET (AMSL)
--5400----CONTOUR LINE IN FEET (AMSL).DASHED WI-lERE UNCERTAIN
CONTOUR MAP OF
TOP OF BRUSHY BASIN
WHITE MESA URANIUM MILL SITE
Approved
SS
Revised Reference:
71800022
FIG.2
PROPERTYBOUNDARY
....:,~==5580~5570
~~~--5560
~~~~==5550_5540
5525 5530
___0 ;;;:55;::22:""_5520
-=------:!~....,~W=?
--__~...~-"-_-5500
-:::~-5490
--_"="'",......,,.......,.-5480
T37S
---__..LT~3~8L,;.S.2..-_-5470
TEMPORARY PERCHED MONITORING WELL
SHOYtlNG WATER LEVEL IN FEET (AMSL)o 5522
II
.....21
II
II
II
II
II
N \.1IW-2D1\"":~~--~~--~~r---~-~!r.-_-~__-__-_~~_/
.'iiiiiiiiiiiiiiiiiil!!!!!!!!!!!!!!!!!!!!!!!!5iiiiiiiiiiiiiiiiiil'""-,.....-::,/5450
o 3000 1IW-22.,,II
SCALE IN FEET 5445 /f/
EXPLANATION /f//7•MW-11 PERCHEO MONITORING WELL //5513 SHOYtlNG WATER LEVEL IN FEET (AMSL),J7
/7//7
----5585 WATER LEVEL CONTOUR.DASHED WHERE UNCERTAIN
WATER LEVEL CONTOUR MAP
DECEMBER,2000
WHITE MESA URANIUM MILL SITE
Approved
88
Reference:
71800020
FIG.3
PROPERTYBOUNDARY
-
5470
T37S
--.---------5490
1IW-1754891------5480
~=__5580
'--"'::::'~-5570
.----556o
\~~sm=5550..."5540
-~=--55.30
----=~-5520
------""=-..-=!i5jQ=
'".p'"5500
TEMPORARY PERCHED MONITORING WELLSHOWINGWATERLEVELINFEET(AMSL)o 5522
•MW-ll PERCHED MONITORING WELL5513SHOWINGWATERLEVELINFEET (AMSL)
SCALE IN FEET
EXPLANATION
,\
'\•WW-20-__-!---5460
~5461
~~~~~~~~---=-----
lii!iiiiiiiiiiiiiiiiiiiiiiil!!~!!!!!!!!5iiiiiiiiiiiiiiiiiiiiJ!o ~D
----5585 WATER LEVEL CONTOUR.DASHED YttlERE UNCERTAIN
WATER LEVEL CONTOUR MAP
SEPTEMBER -OCTOBER,2001
WHITE MESA URANIUM MILL SITE
Approved
SS
Revised Reference:
71800032
FIG.4
EXPLANATION
MW-4•
tw4-1
ct
perched groundwater
monitoring well
temporary perched
groundwater monitoring
well
PROPOSED
TEMPORARY WELL
PROPOSED LOCATIONS OF NEW
TEMPORARY PERCHED WELLS
Approved Date Reference Figure
5
EXPLANATION
NO =not detected at 0.1 mg/L
/i\,
)
\\
\
\'.\\.
il../;
i f'.i:"...L~:~.__....:':'::'
i ;
!
)
,:::-<-~~;::;::~~+
j \\~,.J
..........,i.....'...\
~
/'----_._.-~.
.......'/I
11/00 sampling
03/01 sampling
06/01 sampling
perched monitoring well
MW-4 showing nitrate
(mg/L)in 6/01 sampling
temporary perched well
showing nitrate (mg/L)in
1.02
14.5
14.0
9.02
()
•
NITRATE ANALYTICAL RESULTS (mg/L)
FOR TEMPORARY PERCHED WELLS
Approved Dale Reference Figure 6
600050004000300020001000
- - - --- - - - - - -_1 __:-----------1---~-----I
I I ----1.--,'---------,-
____________~-------------j--------j i ------------1-------------------
,,-----'','r-----------''____________~-------------:i --i-------------~-------------------
,______I •IIIr___.1
I,''--------,'------------J--------:.:-:------------+-----.--------I ------r-----:I.I r ----,,-----''..-e : : e ---:----.-------:-----------:..e .,.
___________~----------:::--1-------------~----
,---<--"--,----',',------->",',-----------''',''-+--------''-e----",----"---------~"------'------,',---+-.'-------",,----------,'',,--------'".'',---------'''
..._I •''- - --,-- - - - - - --''---e--'"' ' ' '----"-----':-------------f-------------~::--------:-----,',--------''',',-- - --,-- - --- --''1 I 1 1 ...1___1II-----.,"LI1-----
1 I 1 11I1III
2
12·
14
1
.--..
:::::::::::
(!J
E...-
(1)
+oJ~6-:!::::
C
4
chloroform (uG/I)
SCATTERPLOT OF CHLOROFORM VS NITRATE
TEMPORARY PERCHED WELLS AND MW-4
Approved Date Reference Figure 7
o
EXPLANATION
PERCHED ZONE PERMEABILITY
BASED ON PUMP AND SLUG TESTS.AND
CONSTANT HEAD PACKER TESTS
WHITE MESA URANIUM MILL SITE
PERCHED MONITORING WELL SHOWING PERCHED ZONE
PERMEABIUTY IN em/s A!!ITTI'!'I PERCHED ZONE PERMEA81UTY <10-5 em/s
PERCHED ZONE PERMEA81UTY ~1<rem/s \Ulllll.llv
NOTE:PUMP TEST (DRAWDOWN OR RECOVERy)RESULTSAREPLOTTEDWHEREAVAILABLE.WHERE NOT AVAILABLE,SLUG TEST
OR CONSTANT HEAD PACKER TEST RESULTS ARE PLOTTED
PERCHED ZONE PERMEABIUTY
BETWEEN 10""4em/s AND 10-5 em/s
•MW-11
1x10-3
(fjfJ)
@............................
Approved
SS
Revised Reference:
71800024
FIG.8
~,,
1600140012001000800600400200o
LO 0)et).C\J I"--,.-.co
I I I I I I I"¢"¢"¢."¢"¢"¢"¢
$:$:$:$:$:$:$:5650 j I ~I I •.__..I-._-...-l......
I I
1-_----J----~-."l.-.1-._-.-----J--J---l.-_.----~--..-._-~..-J--L--~--t-._
I .~--i'.--t--j..-,,----I I I·t--t--t--t·--_·--
1 I I I"r--T--T--'T'"--"••
I I I I
Ii'"I t..·...
j Iii iii5500
co.~
>Q)
Q)5550
15 5600
Q)----
EXPLANATION:
approximate distance south (feet)
m conglomeratic sandstone
_----10/01 water table
APPROXIMATE INTERVALS OF
CONGLOMERATIC SANDSTONE
LOGGED IN TEMPORARY WELL BORINGS
Approved Date Reference Figure
9
APPENDIX A
Vertical Profile Sampling Methods
geotech·
Environmental Equipment,Inc.
Leaders in manufacturing and distributin9
ground and surface water sampling,analytical,
filtration,.and remediation equipment.
Bailers
Geotech Pressurized Disposable Bailers
Geotech Disposable Bailers are available in the following configurations:
ORDER TODAY (800)833-7958
Disposable Accessories
Geotech Reusable Bailers
Geotech Disposable Bailers
DISPOSABLE BAILERS
REUSABLE BAILERS
Product sampler forfloating hydrocarbons
VOC sampler uses a unique design that allows sample transfer to VOA vials
with minimal loss of VOCs
Optional double check valve bailers isolate the sample,sealing as the bailer is
removed from the well at specific depths
ertified special clean disposable bailers aval a e upon request
DISPOSABLE ACCESSORIES
Manufactured under strict clean-room conditions
-Made of virgin,FDA approved high-density poly resin
-The polyethylene contains no plasticizers or additives,and no regrinds are accepted
Improved bailer design
-Geotech's ·Orbit Flux·design fills 33%faster than other bailers
-V-notch design for trouble free cord attachment,and·accurate pouring
Weighted disposable bailer as heavy as most double-weighted without the extra
cost
PVC white and clear
-Diameters from .675·to 3.5·in lengths 12·to 60·
-Recessed check and double check available
Stainless Steel Geobailers
-1"and 1.75·diameters are 36·long
-Rugged and durable for well development
Teflon®Geobailers
-1.25·and 1.625·diameters are 36·long
-Most inert material available
Material Diameter Length Configurations Units/case
Poly 75·36·,83·Weighted/Non Weighted 24 per case
Poly 1.5·12·.36·,48·Weighted/Non Weighted/Pressurized 24 per case
Poly 3·36·Weighted/Non Weighted 9 per case
Teflon®1.5·12·.36·Weighted/Non Weighted 12 per case
Clear PVC .46·, .75·,1.5"36·N/A ;30 per case
Geotech·disp()~ableal1dreus.~IJlebailers are...ayanCJbJ~;jn;inany
c()l1fig urati()l1§a.l1d·rrla~E!r~alsto meetyourspecificsanip1iogne~ds.
~_._'.'_'.:::·.:::;::'~".i....~.'.l."~:."····..-·.,,·-.L··.'.'.-'..,,-:.,':C,;._~:-,__,-,::.,,';-:""
Geotech Disposable and Reusable Bailers
This special disposable bailer provides the convenience ofusing in-line dispos-a-filters'IM in the field even when
pumps are not available.By using a pneumatic hand pump you can filter your samples directly from the bailer,
saving time while maintaining sample integrity.
Each bailer comes complete with a barbed hose adapter for attaching the hand pump to the top of the bailer,
and a special adapter with a notched thread to be used with a dispos-a-filter'IM at the bottom.In order to dis-
place the check ball and establish a smooth flow.an additional large barbed removal device is included for bot-
tom emptying without filtering.
Accessories
Poly VOC tips for 1.5·diameter bailers 24 per case
Poly VOC tips for 3·diameter bailers 9 per case
Teflon®voe tips for 1.5·diameter bailers 12 per case
Poly free prodUct samplers 24 per case
APPENDIXB
Use ofSoil Gas to Detect DNAPL
./
./.
\.
'.'\""
,.,")
\..
.....
'-/'.
'.
,.$..
.J
-.
,.._.,'f'"•
/
./-.,',
i.'"",'
'.J.
/',
!,.
".
"'.
.,;.','
! .
-'
--.'
'to
.}.
'..
~..
./
..•:I
'\~\.~
'-.)=-
-.-
"-'"-,
/
.,
/.
',.
.'-,(
'r /.\..
'.'
./..
J
:./
. J
\-
,/'"'.
.'
'./
, I
i.,.<
I
'....
\/
./'..c.-',
,/'
/.'"::;'.,:.'J ..,',. ".·Gr-oundwater.-·Reso·u·rc·es \'
.A~sociatio'n;'Presents :...><.'"
\./.,.:...,.......~'~./'\..
~.
}.
/
\
I /
./
!
-:
-:.
.-'
~\.
.....-:.J---
,.,/:.-
.\.'
/
:;
--
'.,
'~
.'
......
/
-'-
"i
\.....
,..:"
-'-
....-
'.'""/
\
".
.!......../'I,wedne~{iay,Septembet.14,.1997.
McCJenan ~ir For<;:e Baser Sacrarnento~·California.-).-.'../'.'... .and
_'.,Thurs'day,Sept~mb~r 25,'1997 I
_WY!1dhartl Gareten :Hbt~~·Cos~Mes'a~~alif(irnia
'.
-.....
.-
I.,
nF l·A.L/I,}-nR~I"',
ROUNhwATER RESOURCES ASSOClAll0:\
THE USE OF SOIL GAS DATA TO OBTAIN SOIL VOC CONCENTRATIONS
AND
TO IDENTIFY THE PRESENCE OF NAPL
by
Harold W.Bentley
Hydro Geo Chern,Inc.
6905 E.·Ocean Blvd
Long Beach,California 90803
Gary R.Walter
Hydro Geo Chern,Inc.
1430 N.6th Avenue
Tucson Arizona,85705
THE USE OF SOIL GAS DATA TO OBTAIN SOIL VO.C CONCENTRATIONS
AND TO IDENTIFY THE PRESENCE OF NAPL
1.Conversion of Soil Gas Concentrations to Soil Concentrations
The concentration of a vac in soil gas can be converte~to its total concentration in the soil
by considering the equilibrium laws governing the partitioning of the vac between the gas,liqUid,
and solid phases.The reasoning and methodology are as follows:
Unless a separate liquid phase of vac,Le.,a NAPL,is present,the soil gas concentration
is controlled by the distribution of-the vac between the soil,water and soil organic matter.If the
moisture content in the soil is greater than 5%,normally the case,the vapor phase contaminant
concentration will be controlled by its gas-water distribution coefficient,the Henry's Law coefficient
(H).The Henry's Law coefficient can be written in its dimensionless form,Ho.The dimen~ionless
Henry's Law coefficient relates the concentration of a compound in the vapor phase to its
concentration in the aqueous phase
Ho =CICw =HlRT.-p/S (1)
where H
R
T
Ps
and S
is the Henry's Law coefficient
is the ideal gas constant
is degrees Kelvin
is the vac's vapor density (the vapor pressure of the pure liquid expressed
as mass/unit volume).
is the water solubility
The aqueous-phase concentration will in turn be controlled by the distribution of
contaminants between water and the solid soil matrix.This distribution is governed by KD,the
water-solid distribution coefficient.Rarely is the direct distribution of contaminants between the.gas
and solids important.
If the'water-solid distribution is controlled by adsorption onto organic carbon,which occurs
above organic carbon concentrations of approximately 0.001 (fraction),(Chiou and Shoup,1985)
the water-solid distribution coefficient is
K .%OC.oc
100 (2)
where Cs
Cw
Koe
foe
is the concentration in the soli.d [mass VaC/mass solids]
is the concentration in the water [mass VaC/volume water]
is the water-organic carbon distribution coefficient
is the fraction,by weight,of organic carbon in the soil
c:\info.doc\sgs_soil.cnv 1
The total soil voe concentration (M/L3)is the sum of the mass/unit volume in each of t~three .(
phases:.
(3)
where
is the concentration inttle gas [MIV air]
is the total concentration in the soil [MIV (bulk volume soil)]
is the bulk dry soilderisity [MIV solid]
is the total porosity .
is the water filled porosity
The ratio of a voe's total concentration in the soil.gas to its concentration in the soil is given by
s.ubstituting (1)and (2)in (3)and dividing by bulk density (Pb)to convert soil concentration units
from mass/volume to mas·s/mass:
Ko 8w (8T -8w>
-+--+
Ho HOPb Pb
(4)
where er is the total concentration in the soil (M/M)
Table 1 presents an example of the results of using (4)to relate soil gas and soil concentrations.
For each of the compounds listed,a soil gas concentration of 100 ~g/L was converted to the
equivalent soil voe concentration .in ~g/kg.The soil parameters utilized in the calculation were
foe(fraction)=0.005;total porosity (fraction)=0.40;volumetric moisture content.(fraction)=0.2;
and dry soil bulk density (gm/cm3)=2.00.
c:ljnfo.doc\sgs_soil.cnv 2
TABLE 1.CONVERSION OF SOIL GAS TO TOTAL SOIL CONCENTRATION .,.-
COMPOUND Kodmllg)Henry's H *Kc·SGas-Soil Soil Gas SoilD
Coeff.(H)(H/RT)(ml/g)Conversion Cone.Cone.
Factor (~g/L)(~g/Kg)
CCI4 110 2.41 E-2 1.0 0.55 0.75 100 75
Chloroform 31 2.87E·3 0.119 0.155 2.24 100 224
1,1 DCA 30 4.31E-3 0.179 0.15 1.50 100 150
1,2 DCA 14 9.78E-4 0.0407 0.07 .10.2 100 1020
1,1 DCE .65 3.40E·2 ·1.41 0.325 0.401 100 40.1
cis 1,2 DeE 49 7.58E·3 0.315 0.245 1.2 100 120
trans 1,2 DCE 59 6.56E·3 0.273 0.295 1.55 .100 155
1,1,1 TCA 155 1.70E·2 0.707 0.775 1.33 100 134
TCE 126 9.10E·3 0.379 0.63 2.03 100 203
PCE 364 2.59E·2 1.08 .1.82 1.88 100 18
Vinyl Chloride 57 8.19E·2 3.41 0.285 0.212 100 21.2
Benzene 83 5.59E·3 0.233 0.415 2.31·100 232
Ethyl Benzene 1100 6.43E-3 0.267 5,5 19.4 100 1940
Toluene 300 6.37E·3 0.265 1.5 5.86 100 586
Xylene 240 7.04E·3 0.293 1.2 4.53 .100 453
*Roy·:·:&Griffin,1989.-1,1,1 TCA
*Montgomery &Welkom,1990 -all others.
It can be showri by sensitivity analysis of (4)that for ·all put the most water-soluble
compounds,the ratio of soil gas to total soil concentration is most sensitive to 1<0,next to Ho,
and that the other parameters have relatively little effect.Thus,for all but the most quantitative
applications,the soil parameter important in calculating the conversion of soil gas concentration
to total soil concentration is total organic carbon.Reasonable estimates of moisture content,
porosity,and bulk density,the additional soil parameters,will be sufficient for most purposes.
c:ljnfo.doc\sgs_soil.cnv 3
.f
.,i;.:;~..~~~;.
.>.....,:.::~;",-.o,.
'::;..~j
.:;c:.i,
"
"""~'"..CD"""".."'
•-""0-
Eas
UJ---~o·LLUJ~
UJ ~I ~CIJIn~~'-'as "....
E "+0--.....-.c ....,
().......";:at C\1
~:I:'t-
CD Q)~tn...::s as"-m0+"0 ---
t/)";:0
en en
•e • _•"Q).casQf CD:E .a "I .c:-.......at Q)....,
II ~..0a_
E 0 C)"C)
0 ..0 0...............E E ECD..J 0 0 0
c
CD.c
I-
<D
Q).,-
::J:2>.u.
,'.'
,'"
~.
,~:
,~,
"t.
/'
".:1.,
....
2:Predicting the Presence of NAPL from Soil Gas Concentrations
Equation 4 is valid inmost soil gas applications,butcal")under predict a total
soil concentration in cases where a separate non-aqueous liquid phase is present.The total
VOC soil concentration is then a function of the VOC concentration in the NAPL and the amount
of NAPL in the soil.In such a case,although Equation 4 continues to account for the VOC's
partitioned into soil,water,.and soH gas,it does not account for the VOCsdissolved .in lhe
NAPL.Where'NAPL is present,the prediction of VOCsoil concentrations from s'oil gas
•concentrations is not possible be'cause the vapor pressure ofa VOCin the NAPL is a function
of-its concentration in the NAPL"and the amount of NAPLis generally unknown.
•Wheria VOC'concentration in the NAPL is high,its distribution between the
NAPL and the gas'phase can·be estimated by Raoult's Law
Ps is the vapor density (pure-compound vapor pressure)of the ithvoe .
Xj is the mole.fraction of the ith VOC
where
and
C'!(i)(5)
(6)
Where n is the number of compounds in the NAPL...
.,.
Assuming the NAPL is composed of VOCs,that is,each of the.dissolved.
compounds has a reasonable vapor pressure,the substitution of (5)int6 (6)yields
.~'Cg .(1).1L,•t.'·Ps (I)(7)
Thus,'in a soil NAPL zonewhere the NAPLis composed entirelyofVOCs,
the sum of the quotients of soil gas concentrations divided by their respective pure-compound
vapor pressure should apprClach .1.'However,a lower than the theoretical value of 1.0 for the
summation in (7)should.be used to indicate the presence of a 'NApL in unsaturated soils.In
water saturated soils,'because of attenuation by advective and diffusive processes,only 1%of
the saturated solubility of a groundwater contaminant is the criterion used to determine the
presence of NAPL in groundwater (Feenstra and others,1991),Soil gas is less likely to be
attenuated by C!dve.ctive processes,and the diffusive transport of a gas borne compound is .
much more effective than that of a compound dissolved in water,both'processes leading toa
largerzone of dete;ction for son.g·assources.Thus a larger criterion than the 1%ofthe.
4 '.I
theoretical value is appropriate.We suggest,based on observations at a number of soil gas
sites,that 10%of the theoretical value be used to determine that a NAPL as present at a soil
gas sampling location.The appropriate criterion,therefore,is ;';
n
L
).1
Cg (i)
Ps (/)
0.1 (8)
As an example of the use of this criterion,suppose that the soil gas data obtained at a point
location are
PCE
TCE
Cis 1,2·DCE
=2,500 ~g/L=4,200 ~g/L=10,000 J.lg/L
The calculations utilizing Equation 8 are summarized in Table 2.
-TABLE 2.EXAMpLE OF USING SOIL GAS TO DETERMINE NAPL PRESENCE<'
C\oil Gas Vapor Pressure Molecular Conversion Factor·Vapor Observed Crlps'".1alyte '(mm)Weight (g)[J.lg/(mm·L'g))Density Ps,Concentration
(@20 0c)(~g/L )Co (J.lg/L)
PCE 14 165.8 54.7 '127,000 2,500 0.02
TCE 19 131.4 54.7 137,000 4,200,0.03,
1,2 cis DCE 180 97 54.7 955,000 '10,000 0.01
SUM of CrlPs 0.06
According to this calculation.the soil gas concentrations divided by their respective
pure-solvent vapor pre,ssures sum to less than 0.1.Thus NAPL is not present where this soil gas probe
was located,and the con-centrations of PCE,TCE.and 1,2 cis DCE at this location can be calculated by
the methods summarized in Table 1.
References
Chiou.C.T.and T.D.Shoup,Environ.Sci.TechnoL 1985,19,1196.
Fe~nstra,S.,D.M.McKay,and J.A.Cherry,1991.A method for assissing residual NAPL
based on organic concentrations in soil samples
c:lJnfo.doc\sgs_soil.cnv 5
~:~'!:•
..Use of Soil Gas to Determine
The Presence of NAPLs in Soils
.When a vae concentration in the NAPL is high,
its distribution between the NAPL and the gas phase
is described by Raoult's Law
C g (i)=Ps Xi
where Ps is the vapor density of theith vac .
and Xjis the mole fraction of the ·ith VO·C .
Figure 12
..
."The sum of them,oJefractions of compounds
'.dis'so,lved in ,a NAP~(or any liquid)ls"equalto1:
n,Exi ,=1.0,
1=1
Where n is the number of compounds in the
NAPL~
Assuming the NAPL ~s cO'mposed of VOCs ,that is"
each of the dissolvecj comp'ounds has a,r~asonable
vapor pressure,these two ~quatioris may be'..
combined as:
..t·Cg (~)=1.0
1=1 Ps (I),
Figure 14
A lower value,than the theoretical value of 1,.0
should be used to determine that a NAPL is
present.The lower value is c;lppropriate for much
the same reason that only 1%of the saturated
solu~ility o1.a groundwater con.taminant is used to
determine the presence of NAPL in groundwater
(Feenstra et a1.,1992).
Figure 1'5
The choice of the proper value is somewhat arbitrary.A larger
value than the 1%used for groundwater is reasonable because soil gas
components are less likely than groundwater solutes to be attenuated
by advective processes and because the diffusivity of a gas borne
compound,which widens the area of detection,is much greater than
that of a compound dissolved in water.We suggest,based on
observations at a number of soil gas sites,that 10 %of the theoretical
value be used to determine that a NAPL is present at a soil gas .
sampling location.The appropriate criterion is
.n C(/)
The Presence of NAPL Is Indicated By:L g ~0.1
H Ps (I)
Figure 16
APPENDIXC
Coordinates Requested by UDEQ
Approximate Coordinates
Misc.Features·White Mesa Mill Site
Revised using 2001 Topographic Map
(all coordinates are approximate)
Feature EastingNorthing Elevation Tailings Cells·Appproximate Boundaries
Ruin Spring 2574294 310375
Cottonwood Spring 2570024 317880
Westwater Spring 2574166 321692
Water Well #1
Test Well
Jones Well
Jet Pump
2580084 323314
2580945 322687
2581252 318910
2581250 329460
5391
5238
5493
Cell No.Easling Northing
1-1
NW 2577460 323190
NE 2579365 323145
SE 2579355 322078
SW 2576795 322150
A 2576880 322415
2
Former Leach Field (near office)
NW 2580274 322228
NE 2580369 322228
SE 2580369 322128
SW 2580274 322128
Old Leach Field (scale house)
NW 2580765 322279
NE 2580786 322279
SE 2580786 322223
SW 2580765 322223
Current Leach Field (east of Mill yard)
NW 2581224 322530
NE 2581324 322530
SE 2581324 322370
SW 2581224 322370
Dimensions (ft.x ft.)
95 100
Area (sq.ft.)9500
Dimensions (ft;x ft.)
21 56
Area (sq.ft.)1176
Dimensions (ft.x ft.)
100 160
Area (sq.ft.)16000
NW 2576795 322150
NE 2580210 322040
SE 2580210 320745
SW 2576845 321680
3
NW 2576845 321680
NE 2580210 320745
SE 2579593 320100
SW 2576015 320825
4A
NW 2577883 320411
NE 2579593 320100
SE 2578860 319021
SW 2577469 319266
Land Fill
NW
NE
SE
SW
2581040 322915
2581115 322915
2581115 322785
2581040 322785
Dimensions (ft.x ft.)
75 130
Sedimentation Pond
NW 2579420 322645
.NE 2579465 322645
A 2579465 322400
B 2579555 322355
SE 2579555 322175
SW 2579420 322175
Lab Waste Holding Tank
2580085 322408
Abandoned Monitor Wells,Bore Holes,and Angle Holes
Feature Easling Northing Elevation (all coordinates are approximate)
MW·13 2577590 319547 5570
MW·6-1 2578895 320530 5588
MW-6-2 2578895 320530 5588
MW-7·1 2578125 320886 5588
MW-7·2 2578125 320886 5588
MW·8-1 2577265 320925 5590
MW·8·2 2577265 320925 5590
D & M 3 2580092 322720 5634.3
D & M 9 2581380 327365 5679.3
GH-94·1 2576459 320549 5597
GH-94·2J 2577257 320385 5585
GH-94·3 2577245 320046 5579
GH·94-4 2577365 319598 5572
D&M 122578314 326932 5648.1
D & M282577380 317340 5547.6 11/0912001 9:25 AM
APPENDIXD
Analytical Results
i,1lll1:1tt?W
gt&l."§u.UlII'
Billings·Casper.Gillette
Helena·RapidCity
ENERGY LABORATORIES,INC.
SHIPPING:2393 SALT CREEK HIGHWAY •CASPER,WY 82601
MAILING:P.O.SOX 3258 •CASPER.WY 82602
E-mail:casper@energylab.com •FAX:(307)234·1639
PHONE:(307)235-0515 •TOLL FREE:(888)235-0515
LABORATORY ANALYSIS REPORT
Client:INTERNATIONAL URANIUM (USA)CORPORATION
Project:White Mesa Mill
Contact:Wally Brice
Sample Matrix:Liquid,Water
Date Received:04-02-01
Report Date:April 9,2001
Laboratory ID Sample Date /Time Sample ID Nitrate +Nitrite as N,
mglL
01-31914-1 03-26-2001 14:02 WMMTW4-11 <0.10
01-31914-2 03-26-2001 15:49 WMMTW4-15 <0.10 .
01-31914-3 03-29-2001 11 :08 WMMTW4-12 10.0
01-31914-4 03-29-2001 12:38 WMMMW4 8.77
tprl1f1-r£l;.,-/1 i~4.f.-del bk".[(~rCL.J:.).
t.elIlJ\MTLU -,I>e...£.<:p •-
Quality Assurance Data
Method EPA353.2
Reporting Limit 0.10
RPD 1 1.0
Spike2 96
Analyst rwk
Date/Time Analyzed 04-04-2001 17:13
-
NOTES:
(1)These values are an assessment ofanalytical precision.The acceptance range is 0-20%for sample results above 10 times
the reporting limit.This range is not applicable to samples with results below 10 times the reporting limit.
(2)These values are an assessment ofanalytical accuracy.They are a percent recovery of the spike addition.ELI performs
a matrix spike on 10 percent ofall samples for each analytical method.
msh:r:\reports\clients2001\international_uranium_corp\1 iquid\31914-1-4.xis 7':)....~.-~..,....:-'t:i:..:'~..Jn
-::~."~.'Of •••••'.~....;,..:",Ii '.v.
COMPLETE ANALYTICAL SERVICES ."1
."'oJ'.
~aD.j ••ES s:a
•Billings
o Casper
o Glllelle
o Railid City
ENERGY LABORATORIES,INC.'S CHAIN OF CUSTODY RECORD
Mail Dilly:PO Box 3258 •Casper,WY •82602-3258
UPSIFe(IEx Deliveries:2393 Salt Creek Hig1lway •Casper,WY •82601
loll.li-ee 1-888-235-0515
"(lice 307-235-0515
fax 307-23:1-/639
Special Requests
Comments,Special
Instructions,etc.
I .------
/""\lVI......
~'-wi
'0
'oS~
(SEE BACK OF FORM FOR EXAMPLES AND INSTRUCTIONS)
j....~
~;i1 Type of Analyses Requested
c '-'I f"re'Q.~"J/L~~~~.~SI .,'"....;:..t:~c,,'~"'7)\C(\L.{
8 ==~'..
".::-.==-,C)~~....~:.::::'ll ~c;)~~I~If:,,~~t eSSl
~~~I.~"=1
FeU"Sample Tracking Pm"llOSeS,Please Provide Contact Name and Telephone #'s as Indicated
~~'lh ;/e·l1_Jf(;II/lAz~5.tkr 1'71 EIuJI,."If,T 89SJi
Name /Phone #7 Fax fI J
'll
'll -·a ~
Dale I Time'I 2.~'-'--------t:f.P=Il~~~.,LL7Jtt:
If:oC:l Send Report to:c:._...IL ..•"-_;::"8 ~~~~~b.()
Sample I.D,'BKMt'T,:"\.sI-J'f ~(
Project Name I Location I Purchase Order #I Bid H
v,~I..)~1tJ,/1 '''\0z.1 1v1 JA)MW\~a)LJ-,t k):-~/t\e-
-~._-_.u~=W~~_~1~rff~~==~~~·~6.ld~L~"L:l~)~_~'-'=-'-"~"='''-=''="='=t=tj~E~~f-I
Ikc.:civcd hy:(Sil!lIalllr.:)TimeDille
4.Relinquished hy:(signatunl)
2.Rclinquished hy:(sigmllure)
Received hy:(signature)
Received hy:(signature)
Timc
Tilllc
Date
Datc
'signatlll'c)
i "~Iiti)o#i~,~/~I I I I .1 _
.,Energy Laboratories,Inc•
SAMPLE CONDITION REPORT
\
This report provides information about the condition of the sample{s),and assocated
sample custody information on receipt at the laboratory.
Client:International Uranium (USA)Corporation Description:"WATER
Lab ID{s):01-31914-1 Thru 01-31914-4 Matrix:Liquid
Delivered by:ups Date&Time Rec'd:02-APR-01 1000 Date&Time Col'd:26~MAR-01 1402
Received by:Sara Hawken Logged In by:Sara Hawken
Chain of custody form completed &signed:
Chain of custody seal:
Chain of custody seal intact:
Signature match,chain of custody vs.seal:
Sample received Temperature:
Samples received within holding time:
Samples received in proper containers:
Samples Properly Preserved:
Yes
No
N/A
N/A
SC
Yes
Yes
Yes·
Comments:
Comments:
Comments:
Comments:
Comments:
Comments:.
Comments:
Comments:
Bottle Types Received:~4_-=1=6=o=z~p~n~f~h=2=s=o4~___
Comments:
:--,--"'0,-..-\t,:.;:r·,•
Energy Laboratories,Inc.
REPORT PACKAGE SUMMARY FINAL PAGE
Acronyms and Definitions
ELI-B Energy Laboratories,Inc.-Billings,Montana
ELI-G Energy Laboratories,Inc.-Gillette,Wyoming
ELI-H Energy Laboratories,Inc.-Helena,Montana
ELI-R Energy Laboratories,Inc.-Rapid City,South Dakota
co -Carry over from previous sample
ip Insufficient parameters
N/A -Not Applicable
NA -Not Analyzed
ND -Analyte Not Detected at Stated Limit.of Detection
NR -Analyte Not Requested
NST -No Sample Time Given
NSD -No Sample Date Given
This Package Contains the following Client ID(s)and Lab ID(s)
Client ID:WMMMW4 is associated to Lab ID:01-31914-4
Client ID:WMMTW-11 is associated to Lab ID:01-31914-1
Client ID:WMMTW-12 is associated to Lab ID:01-31914-3
Client ID:WMMTW-1S is associated to Lab ID:01-31914-2
Approved By:Reviewed By:
'a-..._
"~','...:.::-,"--
.'•",i.:.•.•
This is the last page of the Laboratory Analysis Report.
Additional QC is available upon request.
The report contains the .number of pages indicated by the last 4 ~gf ~.r ::.n0;'-;.::05
,;m ::IrVtftj
Rt&t.Ula.un,.
Billings·Casper·Gillette
Helens.Rapid City
ENERGY LABORATORIES,INC.
SHIPPING:2393 SALT CREEK HIGHWAY •CASPER,WY 82601
MAILING:P.O.BOX 3258 •CASPER,WY 82602
E-mail:casper@energytab.com •FAX:(307)234·1639
PHONE:(307)235-0515 •TOLL FREE:(888)235.Q515
LABORATORY ANALYSIS REPORT
Client:INTERNATIONAL URANIUM (USA)CORPORATION
Project:White Mesa Mill
Contact:Wally Brice
Sample Matrix:Liquid,Water
Date Received:04-02-01
Report Date:April 9,2001
.Laboratory In Sample Date /Time Sample ID Nitrate +Nitrite as N,
mg/L
01-31913-1 03-29-2001 09:32 WMMTW4-1 7.15
01-31913-2 03-29-2001 11 :08 WMMTW4-2 10.2
01-31913-3 03-28-2001 17:35 WMMTW4-3 1.85
01-31913-4 03-27-2001 09:02 WMMTW4-4 14.5
01-31913-5 .03-28-2001 11:04 WMMTW4-5 3.88
01-31913-6 03-26-2001 16:20 WMMTW4-6 0.13
01-31913-7 03-27-2001 14:56 WMMTW4-7 2.46
01-31913-8 03-27-200116:54 WMMTW4-8 <0.10
01-31913-9 03-27-2001 11:20 WMMTW4-9 <0.10
01-31913-10 03-26-2001 14:01 WMMTW4-10 <0.10....
Quality Assurance Data
Method EPA 353.2
Reporting Limit 0.10
RPD1 0.8
Soike2 94
Analyst rwk
Date/Time Analyzed 04-04-2001 15:30
NOTES:
(I)These values are an assessment ofanalytical precision.The acceptance range is 0·20%for sample results above 10 times
the reporting limit.This range is not applicable to samples with results below 10 times the reporting limit.
(2)These values are an assessment ofanalytical accuracy.They are a percent recovery ofthe spike addition.ELI performs
a matrix spike on 10 percent ofall samples for each analytical method.
msh:r:\reports\c1ients2001\intemational_uranium_corp\liquid\31913-1-1O.xis -:-:-":"\:~.•...•~.'..,.......
~.".,-~.".".....".~:\r::::-~.~:!.,-.......'0"_'
COMPLETE ANALYTICAL SERVICES;'....
;~"';~-.;",....:"":."
"'}••:..'~••.'.:"_I ._
"~'~))c(1"-::/0)-..
~•lIi11ings ENERGY LABORA TORIES,INC.'S CHAIN OF CUSTODY RECORD (011 free 1-888-235-0515
•Casper Mail O"'y:1'0 Box 3258 •Caspe,.,W}'•82602-3258 I'o;ce 307-135-0515
•Gillellctt;t:I.J;&U.UUD •Railid City UPS/FettEx Deliveries:2393 Salt Creek Highway •Caspe,.,WY •82601 fax 307-234-1639
For Sample Tracking Pm'poses,Please Provide COllt~~t Name.and Telephone #'s as Indicated (SEE IlACK OF FORM FOR EXAMI'LUS ANO INSl'RUCl'IONS)
Project Name I Location I Purchase Order #I Bid #t /Special Refluests
~Type of Analyses Requested {..(..(h)~:te..t'\~\\\.\\/W2.S"S.~.At gJ~'Iv.lJrB*lnl o~1 I ~.,"""t..,~..',:::>.5
Name I Phone #I Fax /I \,J "~~....:::.s::
~tttJ 5t\Ut./M~S)t..~-'l:."2.c..\/(Lf:!ant-":f8-l.u,tf-
S ··s.=:'-)'5~~~u to
J 'Send Invoice to:::c~(c-~::>1
IU ~p~.!ote.80C1 ~~~iIU~"5.~~~~d.t~tUT~"'C.\>A::I ~,~E:,,~Date Time ~~~4\~-1?.Q"&ie ::s-o~~~I~>A::I Send Report to:~.4~~~u e ~-::tl <-Comments,Specialb.<l .~
Sample I.D.IAJ".Itf~/tltdl.'II -..:1 .,rlnstructions,etc.
:3~~1 ~V t\l;\ro:\-e...a.
.,.
I'••1 .tw&t-
31lJi 01 IHDf>V h.\MMTIO+z...3kSI .1'13S V V-
II lUM\\\TIUl\...:3~L'I ----,
!Nlbl t:liD'Z-V .~-
$jA ..-
1104 V )~wtr~~-"/u,1~;20 V 11~W1"'1WL\-~'--'"··'31r:;~l~V ./,\""'"-n.v\:...:r --~.~J-r.i'l 1/,51
..
V I'-...,8I •U'VIP,I l.()Lt-f---fi:>"twrnu tl-tl
--_.~k;.tlllfitl;lO V
.0;.....~rJ.la4b\J/"LVR1lJ1'1I\)Ll-,O ~..
.i
)
,.;
·1
-).,I.Sampler:(signature)Date Time Received by:(signature)2.Relinquished by:(signature)Date Time Rctcived hy:(signalurc)
,L\~...:l:u..rJ ~!~tfJc>O
-3.Rclil1l~Shed hy':(sigmllllre)
--...
Date Timc Rcceived by:(signature)4.Relinquished by:(signature)Date Tillie r,;"""!.1~,unuu""I''''
..\). ...J~/Illre)
.'J {till {}1 'O'{H "J ...(;~.,>;. .1//1 .
...,t.....'I :,.'.){Ii -"/'.',-it ()t'/}
/
••
Energy Laboratories,Inc.
SAMPLE CONDITION REPORT
This report provides information about the .condition of the sample (s),and assocated
sample custody information on receipt at the laboratory.
Client:International Uranium (USA)Corporation Description:WATER
Lab 1D(s):O~-3~9~3-~Thru 01-31913-10 Matrix:Liquid
Delivered by:ups Date&Time Rec'd:02-APR-Ol 1000 Date&Time Col'd:29-MAR-Ol 0932
Received by:Sara Hawken Logged In by:Sara Hawken
Chain of custody form completed &signed:
Chain of custody seal:
Chain of custody seal intact:
Signature match,chain of custody vs.seal:
Sample received Temperature:
Samples received within holding time:
Samples received in proper containers:
Samples Properly Preserved:
Bottle Types Received:lO-16oz p nf h2so4 (a)
Comments:
Yes
No
N/A
N/A
SC
Yes
Yes
Yes·
Comments:
Comments:
Comments:
Comments:
Comments:
Comments:
Comments:
Comments:
-~Ii!..""~..'0,'......~~••,••...•\r.~...._..••~_.•.Q.•14~""......:.~._:.:}.---
•
.;
Energy Laboratories,Inc.
REPORT PACKAGE SUMMARY FINAL PAGE
Acronyms and Definitions
ELI-B Energy Laboratories,Inc.-Billings,Montana
ELI-G Energy Laboratories,Inc.-Gillette,Wyoming
ELI-H Energy Laboratories,Inc.-Helena,Montana
ELI-R Energy Laboratories,Inc.-Rapid City,South Dakota
co -Carry over from previous sample
ip Insufficient parameters
N/A -Not Applicable
NA -Not Analyzed
ND -Analyte Not Detected at Stated Limit of Detection
NR -Analyte Not Requested
NST -No Sample Time Given
NSD -No Sample Date Given
This Package Contains the following Client ID{s)and Lab ID{s)
Client ID:WMMTW4-1 is associated to Lab ID:01-31913-1
Client 10:WMMTW4-10 is associated to Lab ID:01-31913-10
Client ID:WMMTW4-2 is associated to Lab IO:01-31913-2
Client ID:WMMTW4-3 is associated to Lab IO:01-31913-3
Client ID:WMMTW4-4 is associated to Lab ID:01-31913-4
Client ID:WMMTW4-5 is associated to Lab ID:01-31913-5
Client ID:WMMTW4-6 is associated to Lab IO:01-31913-6
Client ID:WMMTW4-7 is associated to Lab IO:01-31913-7
Client 10:WMMTW4-8 is associated to Lab ID:01-31913-8
Client 10:WMMTW4-9 is asso~iated to Lab ID:01-31913-9
Reviewed By::z.:.~X;>-·t:~t;.~
::;-,;;.~..:....'~:,...
Approved By:
This is the last page of the Laboratory Analysis Report.
Additional QC is available upon request.
The report contains the.number of pages indicated by the last 4:~~g~~~'3 200 G05
·
Quality Assurance Data
Method EPA 353.2
Reporting Limit 0.10
RPD1 0.8
Spike2 94
Analyst rwk
Date/Time Analyzed 04-04-2001 15:30
NOTES:
(1)These values are an assessment ofanalytical precision.The acceptance range is 0-20%for sample results above 10 times
the reporting limit.This range is not applicable to samples with results below 10 times the reporting limit.
(2)These values are an assessment ofanalytical accuracy.They are a percent recovery ofthe spike addition.ELI performs
a matrix spike on 10 percent ofall samples for each analytical method.
msh:r:\reports\c1ients2001\international_uranium_corp\liquid\31913-1-10.xls
01-31914-1 03-26-200114:02 WMMTW4-11 <0.10
01-31914-2 03-26-2001 15:49 WMMTW4-15 <0.10
01-31914-3 03-29-200111:08 WMMTW4-12 10.0
01-31914-4 03-29-2001 12:38 WMMMW4 8.77
Quality Assurance Data
Method EPA 353.2
Reporting Limit 0.10
RPD1 1.0
Spike2 96
Analyst rwk
Date/Time Analyzed 04-04-200117:13
NOTES:
(1)These values are an assessment ofanalytical precision.The acceptance range is 0-20%for sample results above 10 times
the reporting limit.This range is not applicable to samples with results below 10 times the reporting limit.
(2)These values are an assessment ofanalytical accuracy.They are a percent recovery ofthe spike addition.Ell performs
a matrix spike on 10 percent ofall samples for each analytical method.
msh:r:\reports\c1ients2001 \international_uranium_corp\liquid\31914-1-4.xls
LABORATORY ANALYSIS REPORT,EPA METHOD 8260
Volatile Organic Compounds
Client:
Project:
Sample ID:
Laboratory 10:
Matrix:
Dilution Factor:
International Uranium (USA)Corporation
WHITE MESA MILL
WMMTW4-1
01-31916-1
Liquid -WATER
200
Date Sampled:
Time Sampled:
Date/Time Received:
Date Analyzed:
Date Reported:
03-29-01
09:50
04-02-01 10:00 .
04-04-01
April 12.2001
67-66-3 Chloroform (Trichloromethane)2,340 100
ND -Analyte not detected at stated limit ofdetection
INTERNAl.STANDARDS
Pentafluorobenzene
Fluorobenzene
1,4 -Difluorobenzene
Chlorobenzene -dS
1,4 -Dichlorobenzene -d4
AREA
1166070
2433645 .
.1769122
1189063
473744
ICAL/CCAL
AREA
1150521
2388861
1775533
1163446
458787
PERCENT
RECOVERY
101%
102%
99.6%
102%
103'%
ACCEPTANCE
RANGE
50.;.200%
50-200%
50 -200%
50-200 %
50-200%
rIo
SYSTEM MONITORING COMPOUNDS
Dibromofluoromethane
Toluene -d8
4 •Bromofluorobenzene
1.2 -Dichlorobenzene -d4
METHODS USED IN TIDS ANAlYSIS;
EPA 5030B,EPA 826GB
CONCENTRATION
9.45
10.3
9.91
9.90
PERCENT
RECOVERY
94.5%
103%
99.1%
99.0%
ACCEPTANCE
RANGE
86 -118 %
88 -llO %
86 -115 %
80 -120 %
Analyst:---------
I.ABORATORY ANALYSIS REPORT,EPA METHOD 8260
Volatile Organic Compounds
Client:
Project:
Sample 10:
Laboratory 10:
Matrix:
Dilution Factor:
International Uranium (USA)Corporation
WHITE MESA MILL
WMMTW4-2
01-31916-2
Liquid -WATER
200
Date Sampled:
Time Sampled:
Date/Time Received:
Date Analyzed:
Date Reported:
03-29-01
11:12
04-02-01 10:00
04-04-01
April 14,2001
....67~3 .Chloroform (Trichloromethane)3,890 ...'"ioo .
ND -Analyte not detected lit stiltedlimit ofdetection
UVTERNALSTANOABDS
Pentafluorobenzene
Fluorobenzene
1,4 -Difluorobenzene
Chlorobenzene -dS
1,4 -Dichlorobenzene -d4
'AREA
1154034
2407856.
1752960
1171985
471262
ICAL/CCAL
AREA
1150521
2388861
1775533
1163446
458787
PERCENT
RECOVERY
100%
101%
98.7%
101%
103%
ACCEPTANCE
RANGE
50-200%
50-200%
50-200%
50-200%
50-200%
rlo
SYSTEM MONITORING COMPOUNDS
Dibromofluoromethane
Toluene-d8
4 -Bromofluorobenzene
1,2 -Dichlorobenzene -d4
MEmODS USED IN TlDS ANALYSIS;
EPA 5030B,EPA 8260B
CONCENTRATION
9.36
10.3
9.93
9.88
PERCENT
RECOVERY
93.6%
103%
99.3%
98.8%
ACCEPTANCE
RANGE
86-118 %
88 -110 %
86 -115 %
80 -120%
Analyst:-------,
~.
LABORATORY ANALYSIS REPORT.EPA METHOD 8260
Volatile Organic Compounds
Client:
Project:
Sample ID:
Laboratory ID:
Matrix:
Dilution Factor:
International Uranium (USA)Corporation
WHITE MESA MILL
WMMTW4-3
01-31916-3
Liquid -WATER
100
Date Sampled:
Time Sampled:
Date/Time Received:
Date Analyzed:
Date Reported:
03-28-01
17:56
04-02-01 10:00
04-04-01
Apri114,2001
67-66-3 Chloroform (Trichloromethane)347 .SO.O
ND-Analyte not detected atstated limit ofdetection
INTERNAl.STANDARDS
Pentafluorobenzene
Fluorobenzene
1,4 -Difluorobenzene
Chlorobenzene -dS
1,4 -Dichlorobenzene -d4
AREA
1158619
2404030
1745382
1175904
472736
ICAL/CCAL
AREA
1150521
2388861
1775533
1163446
458787
SYSTEM MONITORING COMPOUNDS
Dibromofluoromethane
Toluene -d8
4 -Bromofluorobenzene
1,2 -Dichlorobenzene -d4
CONCENTRATION
9.48
10.3
10.1
9.85
PERCENT
RECOYERY
94.8%
103%
101%
98.5%
ACCEPTANCE
RANGE
86 -118 %
88 -110 %
86 -115 %
80 -120 %.
METHODS USED IN DDS ANALYSIS;
EPA 5030B,EPA 8260B
rio .Analyst:-------sec:r:\rcpons\Cliem.s200l\intemationaLuranium_corp\casper_org\31916-1-19_826011_chlorofonn_I-w.xls
LABORATORY ANALYSIS REPORT,EPA METHOD 8260
Volatile Organic Compounds
Client:
Project:
Sample ID:
Laboratory ID:
Matrix:
Dilution Factor:
International Uranium (USA)Corporation
WHITE MESA MILL
WMMTW4-4
01-31916-4
Liquid -WATER
200
Date Sampled:
Time Sampled:
Date/Time Received:
Date Analyzed:
Date Reported:
03-27-01
09:00
04-02-01 10:00
04-06-01
April 14,2001
67~3 Chlorofonn (Trichloromethane)2,260 100
ND -Analyte not detected III stilled limit ofdetection
INTERNAl.StANDARDS
Pentafluorobenzene
Fluorobenzene
1,4 -Difluorobenzene
Cblorobenzene -d5
1,4 -Dichlorobenzene -d4
AREA
980162
2227683 .
1572210
1044788
410680
ICAL/CCAL
AREA
1150521
2388861
1775533
1163446
458787
SYSTEM MONITORING COMPOUNDS
Dibromofluoromeiha:ile
Toluene·d8
4 -Bromofluorobenzene
1,2 -Dichlorobenzene -d4
METHODS USED IN TIUS ANAI"vSlS;
EPA 5030B,EPA 8260B
CONCENTRATION
9.83
10.6
10.6
9.92
PERCENT
RECOVERy
98.3%
106%
106%
99.2%
ACCEPTANCE
RANGE'
86 -118 %
88 -110 %
86·115%
80 -120 %
rIo·sec:r:\repons\Clients200I\imemalionaLuraniwn_corp\casper_org\31916-1-19_8260b_chloroform_I-w.xls Analyst:-------
LABORATORY ANALYSIS REPORT,EPA METHOD 8260
Volatile Organic Compounds
Client:
Project:
Sample ID:
Laboratory ID:
Matrix:
Dilution Factor:
International Uranium (USA)Corporation
WHITE MESA MILL
WMMTW4-5
01-31916-5
Liquid -WATER
10
Date Sampled:
Time Sampled:
DatelTime Received:
Date Analyzed:
Date Reponed:
03-28-01
11:22
04-02-01 10:00
04-04-01
April 14,2001
67-66-3 Chloroform (Trichloromethane)236 5.0
ND -Analyte not detected at stated limitofdeteetion
JNTERNAI.STANDARDS
Pentafluorobenzene
Fluorobenzene
1,4-Difluorobenzene
Chlorobenzene -d5
1,4 -Dichlorobenzene -d4
AREA
1107374
2345208
1698810
1159686
466834
JCAL/CCAL
AREA
1150521
2388861
1775533
1163446
458787
PERCENT
RECOVERY
96.2%
98.2%
95.7%
99.7%
102%
ACCEPTANCE
RANGE
50-200%
50-200%
50-200%
50-200%
50-200%
rio .
SYSTEM MONITORING COMPOUNDS
Dibromofluoromethane
Toluene -d8
4 -Bromofluorobenzene
1,2 -Dichlorobenzene -d4
METHODS USED IN THIS ANALYSIS;
EPA S030B,EPA 8260B.
CONCENTRATION
9.46
10.4
10.1
9.76
PERCENT
RECOVERY
94.6%
104%
101%
97.6%
ACCEPTANCE
RANGE
86 -118 %
88 -110 %
86 -115 %
80 -120 %
Analyst:-------
LABORATORY ANALYSIS REPORT,EPA METHOD 8260
Volatile Organic Compounds
Client:
Project:
Sample 10:
Laboratory ID:
Matrix:.
Dilution Factor:
International Uranium (USA)Corporation
WHITE MESA MILL
WMMTW4-6
01-31916-6
Liquid -WATER
2
Date Sampled:
Time Sampled:
Date/Time Received:
Date Analyzed:
Date Reported:
03-26-01
16:30
04"()2"()1 10:00
04..()4"()1
April 14,2001
67-66-3 Chloroform (Trichloromethane)ND 1.0
ND •Analyte not detected 01 stated limit ofdetection
~.
AREA
1135759
2382190 .
1708345
1159355
467805
JNTERNALSTANDARDS
Pentafluorobenzene
Fluorobenzene
1,4 -Difluorobenzene
Chlorobenzene -dS
1,4 -Dichlorobenzene -d4
:::~;){I;:::::::::::::;:;!:::::)::::;:JJI:::::~:::;)::::::::::tjj~:::tt:::::j~:):::i::!:JII;;i~it:::I;ir?~:::~:::::$YNtiMi.l::QYm;n.gI\f.$vi.fl.N€i.l!!1iEf:Qji:!:i:i:j!i~!):):)i:!I I:i:f!:!!:::;i:i!fi:~ii~!!!!i!i!f:i:i!i!i~:il!!Ii:i!i!i :!)i!i~!!!::~fjjjrj:!!t:!::j:!:j;;:::~!:::::::::\::::
ICAL /CCAL PERCENT ACCEPTANCE
AREA RECOVERY RANGE
1150521 98.7%50 -200 %
2388861 99.7%50 -200 %
1775533 96.2%50'-200 %
1163446 99.6%50 -200 %
458787 102%50 -200 %
SYSTEM MONITORING COMPOUNDS
Dibromofluoromethane
Toluene -d8
4 -Bromofluorobenzene
1,2 -Dichlorobenzene -d4
CONCENTRATION
9.58
10.4
10.0
9.84
PERCENT
RECOVERY
95.8%
104%
100%
98.4%
ACCEPTANCE
RANGE
86 -118 %
88 -110 %
86 -115 %
80 -120 %
MEmODS USED IN TlDS ANALYSIS;
EPA S030B,EPA 8260B .
rIo·scc::r:\repons\clienlS200I\inlcmalionaturanium_corp\casper_org\31916-1-19_826Ob_chloroform_l-w.lIls Analyst:-------
!.tABORATORY ANALYSIS REPORT;EPA METHOD 8260
Volatile Organic Compounds
Client:
Project:
Sample 10:
Laboratory 10:
Matrix:
Dilution Factor:
International Uranium (USA)Corporation
WHITE MESA MILL
WMMTW4-7
01-31916-7
.Liquid -WATER
100
Date Sampled:
Time Sampled:
Date/Time Received:
Date Analyzed:
Date Reported:
03-28-01
15:09
04-02-01 10:00
04-04-01
Apri114,2001
.....67.66-3 Chloroform (Trichloromethane).747 50.0 ...
ND -Analyte not detected Ilt stiltedlimit ofdetection
JNTERNAJ.STANDARDS
Pentafluorobenzene
FJuorobenzene
1,4 "Difluorobenzene
ChlorobeDZene -dS
1,4 -Dichlorobenzene -d4
.AREA
1105485
2323615
1678345
1136308
448761
ICAL I CCAL
AREA
1150521
2388861
1775533
1163446
458787
PERCENT
RECOVERY
96.1%
97.3%
94.5%
97.7%
97.8%
rio
SYSTEM MONITORING COMPOUNDS
Dibrornofluoromethane
Toluene·d8
4 -Brornofluorobenzene
1,2 -Dichlorobenzene -d4
METHODS lISED IN TIUS ANALYSIS;
EPA 5030B,EPA 8260B.
CONCENTRATION
9.38
10.5
10.0
9.83
PERCENT
RECOVERY
93.8%
105%
100%
98.3%
ACCEPrANCE
RANGE
86 -118 %
88 -110 %
86 -115 %
·80 -120 %
Analyst:-------
LABORATORY ANALYSIS REPORT,EPA METHOD 8260
Volatile Organic Compounds
Client:
Project:
Sample 10:
Laboratory 10:
Matrix:
Dilution Factor:
International Uranium (USA)Corporation
WHITE MESA MILL
WMMTW4-8
01-31916-8
Liquid -WATER
10
Date Sampled:
Time Sampled:
Date/Time Received:
Date Analyzed:
Date Reported:
03-26-01
17:00
04-02-01 10:00
04-04-01
April 14,2001
67-66-3 Chlorofonn (Trichloromethane)116 5.0
ND -Analyte not detected at stated limit ofdetection
INTERNAL STANDARDS
Pentafluorobenzene
Fluorobenzene
1,4 -Difluorobenzene
Chlorobenzene -d5
1,4 -Dichlorobenzene -d4
AREA
1090084
2309760
1664765
1119681
442367
ICAL/CCAL
AREA
1150521
2388861
1775533
1163446
458787
rio
SYSTEM MONITORING COMPOUNDS
Dibromofluorometbane
.Toluene -d8
4 -Bromofluorobenzene
1,2 -Dichlorobenzene -d4
METHODS USED IN THIS ANALYSIS;
EPA 5030B,EPA 8260B
CONCENTRATION
9.57
10.4
10.1
9.94
PERCENT
RECOVERY
95.7%
104%
101%
99.4%
ACCEPrANCE
RANGE
86 -118 %
88 -110 %
86 -115 %
80 -120 %
Analyst:-------
LABORATORY ANALYSIS REPORT,EPA METHOD 8260
Volatile Organic Compounds
Client:
Project:
Sample 10:
Laboratory 10:
Matrix:
Dilution Factor:
International Uranium (USA)Corporation
WHITE MESA MILL
WMMTW4-9
01-31916-9
Liquid -WATER
2
Date Sampled:
Time Sampled:
Date/Time Received:
Date Analyzed:
Date Reported:
.03-27-01
11:35
04..()2"()1 10:00
04"()5"()1
April 14,2001
67-66-3 Chloroform (Trichloromethane)43.6 1.0
ND -Analyte not detected DI stDledlimit ofdetection
INTERNAl.STANDARDS"
Pentafluorobenzene
Fluorobenzene
1,4 -Difluorobenzene
Chlorobenzene -d5
1,4 -Dichlorobenzene -d4
AREA
1067998
2306313".
1658294
1115898
447091
ICAL/CCAL
AREA
1150521
2388861
1775533
1163446
458787
PERCENT
RECOVERY
92.8%
96.5%
93.4%
95.9%"
97:5%
ACCEPTANCE
RANGE
SO-200%
50-200%
50"'200%
50-200%
50 -200 %
rio
SYSTEM MONITORING COMPOUNDS
Dibromofluoromethane
Toluene -d8
4 -Bromofluorobenzene
1,2 -Dichlorobenzene -d4
METHODS USED TN TlDS ANALYSIS;
EPA S030B,EPA 826GB
CONCENTRATION
9.50
10.5
10.1
9.80
PERCENT
RECOVERY
95.0%
105%
101%
98.0%
ACCEPTANCE
RANGE
86 -118 %
88 -110 %
86 -115 %
80 -120 %
Analyst:-------
LABORATORY ANALYSIS REPORT,EPA METIlOn 8260
Volatile Organic Compounds
Client:
Project:
Sample 10:
Laboratory 10:
Matrix:
Dilution Factor:
International Uranium (USA)Corporation
WHITE MESA MILL
WMMTW4-10 q A
01-31916-10
Liquid -WATER
2
Date Sampled:
Time Sampled:
DatelTime Received:
Date Analyzed:
Date Reported:
03-23-01
12:45
04-02-01 10:00
04-05-01
April 14,2001
.67-66-3 Chloroform (Trichloromethane)ND 1.0
ND-Analyte not detected tJt statedlimit ofdetection
INTERNAl,STANDARDS
Pentafluorobenzeile
Fluorobenzene
1,4 -Difluorobenzene
Chlorobenzene -dS
1,4 -Dichlorobenzene -d4
AREA
1081645
2280451
1630418
1103332
437754
ICAL/CCAL
.AREA
1150521
2388861
1775533
1163446
458787
PERCENT
RECOVERY
94.0%
95.5%
91.8%
94.8%
95.4%
rio
SYSTEM MONITORING COMPOUNDS
Dibromofluoromethane
Toluene -d8
4 -Bromofluorobenzene
1,2 -Dichlorobenzene -d4
METHODS USED IN TIllS ANALYSIS;
EPA 5030B,EPA 8260B
CONCENTRATION
9.55
10.6
10.2
9.91
PERCENT
RECOVERY
95.5%
106%
102%
99.1%
ACCEPTANCE
RANGE
86 -118 %
88 -110 %
86 -115 %
80 -120 %
Analyst:-------
LABORATORY ANALYSIS REPORT,EPA METHOD 8260
Volatile Organic Compounds
Client:
Project:
Sample ID:
Laboratory ID:
Matrix:
Dilution Factor:
International Uranium (USA)Corporation
WHITE MESA MILL
WMMTW4-11 Q4
01-31916-11
Liquid -WATER
2
Date Sampled:
Time Sampled:
Date/Time Received:
Date Analyzed:
Date Reported:.
03-23-01
12:47
04-02-01 10:()()
04-05-01
April 14,2001
67-66-3 Chloroform (Trichloromethane)ND 1.0
ND-Ana/yte not detected oJ stD1ed limit ofdetection
INTERNAl,STANDARDS
Pentafluorobenzene
Fluorobenzene
1,4 -Difluorobenzene
Chlorobenzene -dS
1,4 -Dichlorobenzene -d4
AREA
1087398
2312161 .
1661249
1093054
427271
ICAL/CCAL
AREA
1150521
2388861
1775533
1163446
458787
PERCENT
RECOVERY
94.5%
96.8%
93.6%
93.9%
93.1%
rio
SYSTEM MONITORING COMPOUNDS
Dibromofluorometbane
Toluene -d8
4 -Bromofluorobenzene
1,2 -Dichlorobenzene -d4
METIJODS USED IN nus ANAI.ySIS;
EPA S030B,~A 8260B
CONCENTRATION
9.53
10.4
10.2
9.91
PERCENT
RECOVERY
95.3%
104%
102%
99.1%
ACCEPTANCE
RANGE
86 -118 %
88 -110 %
86 -115 %
80 -120 %
Analyst:----..;....--
LABORATORY ANALYSIS REPORT,EPA METHOD 8260
Volatile Organic Compounds
Client:
Project:
Sample ID:
Laboratory ID:
Matrix:
Dilution Factor:
International Uranium (USA)Corporation
WHITE MESA MILL
WMMTW4-12 Dl.Ip,[)F=nv 4-2-
01-31916-12
Liquid -WATER
200
Date Sampled:
Time Sampled:
Date/Time Received:
Date Analyzed:
Date ~ePQrted:
03-29-01
11:24
04-02-01 10:00
04-06-01
April 14,2001
67-66-3 Chloroform (Trichloromethane)4,410 100
ND -Analyte not detected lit stated limit ofdetection
AREA
954374
2199976
1545815
1054565
411716
INTERNAl,STANDARDS
Pentafluorobenzene
Fluorobenzene
1,4 -Difluorobenzene
Chlorobenzene -d5
1,4 -Dichlorobenzene -d4
:::~::i!:::!!~n!:::ir!::::!:::j:j;j::fj:::r::jl:iI:i::@:;:iI1:::::::~:::::::~:i:;:::::::::i::::!:mt::~:::::::::::::::::::::::::)I{i!j!/!;{id¥';fQ.f!.M4«5fl§r$~f:J;f!I/N€M{lf!jl/fjl!/ijii{:j':t::t:::if::::i::::I:f:::::::ii:::::i::l:::i:ri:!iiifitiiH!:!:::iiiiIi!i:;=::t::.:·::::::·:··:::·:.
JCAL/CCAL PERCENT ACCEPTANCE
ABEARECOVERY RANGE
1150521 83.0%50 -200 %
2388861 92.1 %50 -200 %
1775533 87.1 %SO -200 %
1163446 90.6%SO -200 %
458787 89.7%50 -200 %
SYSTEM MONITORING COMPOUNDS
Dibromofluorometbane
Toluene -d8
4 -Bromofluorobenzene
1,2 -Dichlorobenzene -d4
CONCENTRATION
10.0
10.8
10.4
9.83
PERCENT
RECOVERY
100%
108%
104%
98.3%
ACCEPI'ANCE
RANGE
86 -118 %
88 -110 %
86 -115 %
80 -120 %
METIlODS USED IN nus ANALYSIS;
EPA 5030B,EPA 8260B.
rioAnalyst:-------
LABORATORY ANALYSIS REPORT,EPA METHOD 8260
Volatile Organic·Compounds
03-23-01
14:24
04-02-01 10:00
04~5-o1
Apri114,2001
Date Analyzed:
Date Reported:
Date Sampled:
Time Sampled:
DatelTime Received:
Client:
Project:
Sample ID:
Laboratory ID:
Matrix:
Dilution Factor:
International Uranium (USA)Corporation
WHITE MESA MILL
WMMTW4-13 ~nSa-rE p~or to
01-31916-13 p"""rj.l1~c)(l.a
Liquid -WATER S~mp I".,~Pt:>c.Wt2-/£5.
2 (CoI~a~~)t.~V~
····'7.66-3 .Chloroform (Trichloromethane)16.7'..·i~(i·.
ND -Analyte not detected atstated limit ofdetection
INTERNAl,STANDARDS
Pentafluorobenzene
Fluorobenzene
1,4 -Difluorobenzene
Chlorobenzene -dS
1,4 -Dichlorobenzene -d4
AREA
1056010
2291350·
1639990
1102979
429163
ICAL/CCAL
AREA
1150521
2388861
1775533
1163446
458787
PERCENT
RECOVERY
91.8%
95.9%
92.4%
94.8%
93.5%
SYSTEM MONITORING COMPOUNDS
Dibromofluoromethane
Toluene -d8
4-Bromofluorobenzene
1,2 -Dichlorobenzene -d4
CONCENTRATION
9.56
10.5
10.1
'9.85
PERCENT
RECOVERY
95.6%
105%
101%
98.5%
ACCEPTANCE
RANGE
86 -118 %
88 -110 %
86 -115 %
80 -120 %
METHODS USED IN THIS ANAlYSIS;
EPA S030B,EPA 8260B
rioAnalyst:---------
LABORATORY ANALYSIS REPORT,EPA METHOD 8260
Volatile Organic Compounds
Client:
Project:
Sample ID:
Laboratory ID:
Matrix:
Dilution Factor:
International Uranium (USA)Corporation
WHITE MESA MILL
WMMTW4-14 12..f)~~rto
01-31916-14 ".m u)-/~"
Liquid -WATER
2
Date Sampled:
Time Sampled:
Date/Time Received:
Date Analyzed:
Date Reported:
03-25-01
12:33
04-02-01 10:00
04-05-01
April 14,2001
67-66-3 Chloroform (Trichloromethane)ND 1.0
ND -Analyte not detectedat statedlimit ofdetectUm
.AREA
1053851
2258371
1603542
1090824
426403
INTERNAl.STANJ)ARnS
Pentafluorobenzene
Fluorobenzene
1,4 -Difluorobenzene
Chlorobenzene -d5
1,4 -Dichlorobenzene -d4
j::r:::~;;t::';::@?::;:':;:~:::::::;::I::~:::::~II::~:::::;::I:::::::::~~::::~II:::~:::~:':::;::~:!;::::J:::::::t:::~;::!::::~YN[J.M!.t:!~Ymml$.§fl.~€!.t.;;~~gti.l}f::::~ii::i::::Ii:~:!i:~~rt:I::i;:i~:ii!::iI::!:i:ii!;;MIf@!!fl!i!ii!i!i!fI:!::ifIi:i::!;:;:!:!;:;
"ICAL /CCAL PERCENT ACCEPrANCE
AREA RECOVERY RANGE
1150521 91.6%"SO -200 %
2388861 94.5%50 -200 %
1775533 90.3%50 -200%
1163446 93.8%50 -200 %
458787 92.9%50 -200 %
SYSTEM MONITORING COMPOUNDS
Dibromofluoromethane
Toluene -d8
4 -Bromofluorobenzene
1,2 -Dichlorobenzene"-d4
CONCENTRATION
9.62
10.6
10.1
9.78
PERCENT
RECOVERY
96.2%
106%
101%
97.8%
ACCEPfANCE
RANGE
86 -118 %
88 -110 %
86 -115 %
80 -120 %
METHODS USED IN TIUS ANAI,ySIS;
EPA 5030B,EPA 8260B
riosec:r:\reporlS\c1ielllS2~l\inlemaliona,-uranium_corp\casper_org\31916-1.19_826Ob_chloroform_l-w.xls Analyst:---------
..
LABORATORY ANALYSIS REPORT,EPA METHOD 8260
Volatile Organic Compounds
Client:
Project:
Sample 10:
Laboratory 10:
Matrix:
Dilution Factor:
International Uranium (USA)Corporation
WHITE MESA MILL
WMMTW4-15 f2..tfl'>o4-c...(>~to
01-31916-15 c..V}\orohwM.wc.LLs·
Liquid -WATER
2
Date Sampled:
Time Sampled:
Date/Time Received:
..Date Analyzed:
Date Reported:
03-25-01
13:35
04-02-01 10:00
04-05-01
Apri114,2001
··67;;"3·Chloroform (Trichloromethane)NO ...··1~0 .
ND •Analyte not detected at slated limit ofdetection
INTERNAl,STANDARDS
Pentafluorobenzene
Fluorobenzene
1,4 -Difluorobenzene
Chlorobenzene -d5
1,4 -Dichlorobenzene -d4
AREA
1064856
2258935
1624960
1088081
419852
ICAL/CCAL
AREA
1150521
2388861
1775533
1163446
458787
PERCENT
RECOVERY
92.6%
94.6%
91.5%
93.5%
91.5%
SYSTEM MONITORING COMPOlJNDS
Dibromofluoromethane
Toluene -d8
4 -Bromofluorobenzene
1,2 -Dichlorobenzene -d4
CONCENTRATION
9.47
10.5
10.1
9.98
PERCENT
RECOVERY
94.7%
105%
101 %
99.8%
ACCEPTANCE
RANGE
86 -118 %
88 -110 %
·86 -115 %
80 -120 %
METHODS USED IN TIDS ANAJ.vSlS;
EPA 5030B,EPA 8260B
poAnalyst:---..;..----
LABORATORY ANALYSIS REPORT,EPA METHOD 8260
Volatile Organic Compounds
Client:
Project:
Sample ID:
Laboratory ID:
Matrix:
Dilution Factor:
International Uranium (USA)Corporation
WHITE MESA MILL
WMMMW4
01-31916-16
Liquid -WATER
400
Date Sampled:
Time Sampled:
Date/Time Received:
Date Analyzed:
Date Reported:
03-29..01
12:50
04-02-01 10:00
-04-05-01
April 14,2001
67-66-3 Chloroform (Trichloromethane)4,360 200
ND ..Ana/yte not detected at stated limit ofdetection
AREA
1042084
2239095
1612893
1075862
420445
INTERNAl.STANDARDS
Pentafluorobenzene
FJuorobenzene
1,4 -Difluorobenzene
Chlorobenzene ..dS
1,4 -Dichlorobenzene ..d4
:::~IJit:t/:}:tl{:~;:::t):::;/::f:;i!:i!;;::I:iii!!:::::!::i!~I!;!!!iI:::!:!t!:;=;:'M/:J:::::::r1tMNll.M~tQP.mW~t~l.~"'~y.iM:tt.qi.f::~f:Qgl!::!!lt:::1:!!lti!::i!i::::!:!:i:!:i:::!:!::::::::!:!t:!:iI!~t!!!:!iII!Ii:!t::::!I:/;:::::;:::::\\
ICAL /CCAL PERCENT ACCEPTANCE
AREA RECOVERY RANGE
1150521 90.6%SO -200 %
2388861 93.7%SO ..200 %
1775533 90.8%50 ..200 %
1163446 92.5%SO ..200 %
458787 91.6%SO ..200 %
SYSTEM MONITORING COMPOUNDS
Dibromofluoromethane
Toluene ..d8
4 -Bromofluorobenzene
1,2 -Dichlorobenzene ..d4
CONCENTRATION
9.46
10.4
10.2
9.98
PERCENT
RECOVERY
94.6%
104%
102%
..99.8%
ACCEPfANCE
RANGE
86 ..118 %
88 ...-110 %
86 ..115 %
80 ..120 %
MEmODS USED IN TInS ANAI.YSIS:
EPA S030B,EPA 8260B
rio -sec:r:\rcpons\clientS2001\inlemalional_uranium_corp\casper..org\31916-1-19..8260b_chloroform_I-w.xls Analyst:-------
LABORATORY ANALYSIS REPORT,EPA METHOD 8260
Volatile Organic Compounds
Client:
Project:
Sample 10:
Laboratory 10:
Matrix:
Dilution Factor:
International Uranium (USA)Corporation
WHITE MESA MILL
WMMMW17
01-31916-17
Liquid -WATER
2
Date Sampled:
Time Sampled:·
Date/Time Received:
Date Analyzed:
Date Reported:
03-25-01
14:48
04-02-01 10:00
{)4-o5-o1
April 14,2001
67-66-3.Chloroform (TJ'ichloromethane)NO 1.0
ND -Analyte not detected at stated limit ofdetection
AREA
1055347
2270030
1618320
1091563
432256
INTERNAL STANDARDS
Pentafluorobenzene
Fluorobenzene
1,4 -Difluorobenzene
Chlorobenzene -d5
1,4 -Dichlorobenzene -d4
::':::::i!':::::it::i:!:::':::!!i:IiIiI!!lfii:!::!:I1!!:!::i!ji:!i:~i!i:::!I:!:!::!!!Iii!:!!i!!f~!:i:!i:ItI!t:lRfWf.l.M!t,!!QM4.Ml%;!J.~jpB.4&€;g;iE1i.;r,gJ.II!!!i!Ji:i!;t:i!!:~!:i!iI!J!::;~:!::i:i:::i::!~~:li:M!fi!il@11@fJiI:JJf}::::::::::)'{::r
lCAL I CCAL PERCENT ACCEPTANCE
AREA RECOYERY RANGE
1150521 91.7%50 -200 %
2388861 95.0%50 -200 %
1775533 91.1 %50 -200 %
1163446 93.8%50 -200 %
458787 94.2%50 -200 %
SYSTEM MONITORING COMPOUNDS
Dibromofluoromethane
Toluene -d8
4 -Bromofluorobenzene
1,2 -Dichlorobenzene -d4
CONCENTRATION
9.61
10.6
10.2
9.88
PERCENT
RECOVERY
96.1%
106%
102%
98.8%
ACCEPTANCE
RANGE
86-118%
88 -110 %
86 -115 %
80 -120 %
METHODS USED IN TIDS ANALYSIS;
EPA 5030B,EPA 8260B.
rloAnalyst:-------
LABORATORY ANALYSIS REPORT,EPA METHOD 8260
Volatile Organic Compounds
Client:
Project:
Sample ID:
Laboratory ID:
Matrix:
Dilution Factor:
International Uranium (USA)Corporation
WHITE MESA MILL
WMMTW4COMP
01-31916-18
Liquid -WATER
100
Date Sampled:
Time Sampled:
Date/Time Received:
Date Analyzed:
Date Reported:
03-30-01
07:36
04-02-01 10:00
04-05-01
April 14,2001
ND •Analyte not detected at stlJted limit oIdeteenon
INTERNAL STANDARDS
Pentafluorobenzene
Fluorobenzene
1,4 -Difluorobenzene
Chlorobenzene -dS
1,4 -Dichlorobenzene -d4
AREA
1036677
2249534
1598837
1072649
416945
JCAL/CCAL
AREA
1150521
2388861
1775533
1163446
458787
PERCENT
RECOVERY
90.1%
94.2%
90.0%
92.2%
90.9%
ACCEPTANCE
RANGE
50-200%
50 -200 %
.50 -200 %
50 -200 %
50 -200 %
rio
SYSTEM MONITORING COMPOlINDS
Dibromofluoromethane
Toluene -d8
4 -Bromofluorobenzene
1,2 -Dichlorobenzene -d4
METHODS USED IN THIS ANAI.ySIS:
EPA 5030B,EPA8260B
CONCENTRATION
9.44
10.6
10.2
"9.92
PERCENT
RECOVERY
94.4%
106%
102%
99.2%
ACCEPTANCE
RANGE
86 -118 %"
88 -110 %
86 -115 %
80 -120 %
Analyst:-------
LABORATORY ANALYSIS REPORT,EPA METHOD 8260
Volatile Organic Compounds
Client:
Project:
Sample 10:
Laboratory ID:
Matrix:
Dilution Factor:
International Uranium (USA)Corporation
WHITE MESA MILL
TRIP BLANK
01-31916-19
Liquid -WATER
1
.Date Sampled:
Time Sampled:
Date/Time Received:
Date Analyzed:
Date Reported:
03-16-01
16:10
04-02-01 10:00
04-04-01
April 14,2001
67-66-3 Chloroform (Trichloromethane)ND 1.0
ND •Analyte not detected atstated limitofdetection
nrrERNALSTANOARDS
Pentafluorobenzene
Fluorobenzene
1,4 •Difluorobenzene
Chlorobenzene -ciS
1,4 -Dichlorobenzene -d4
AREA
1191328
2452721
1788376
1218017
491947
ICAL/CCAL
.AREA
1150521
2388861
1775533
1163446
458787
PERCENT
RECOVERY
104%
103%
101%
105%
107%
ACCEPTANCE
RANGE
50-200%
50-200%
50~2oo%
50-200%
50-200%
SYSTEM MONITORING COMPOUNDS
Dibromofluoromethane
Toluene -d8
4 -Bromofluorobenzene
1,2 -Dichlorobenzene -d4
CONCENTRATION
9.59
10.2
9.89
9.79
PERCENT
RECOVERY·
95.9%
102%
98.9%
97.9%
ACCEPTANCE
RANGE
86 -118 %
88 ~110 %
86 -115 %
80 -120 %
METHODS USED IN TlUS ANAISSlS;
EPA S030B,EPA 8260B
rioAnalyst:
-~-----
·LABORATORY ANALYSIS REPORT.EPA METHOD·8260
Volatile Organic Compounds
Client:
Project:
Sample 10:
Laboratory ID:
Matrix:
Dilution Factor:
International Uranium (USA)Corporation
WHITE MESA MILL
Method Blank
MB0404
.Water
1
Date Sampled:
Time Sampled:
Date/Time Received:
Date Analyzed:
Date Reported:
N/A
N/A
N/A
04-Q4-01
April 12,2001
67-66-3 Chloroform (Trichloromethane)ND 1.0
ND -Analyte notdetected at stated limU ofdetection
JNTERNAI.STANJ)ARDS
Pentafluorobenzene
Fluorobenzene
1,4 -Difluorobenzene
Chlorobenzene -ciS
1,4 -Dichlorobenzene -d4
AREA
1184558
2435440
1782379
1183537
464888
ICAL/CCAL
AREA
1150521
2388861
1775533
1163446
458787
PERCENT
RECOVERY
103%
102%
100%
102%
101%
SYSTEM MONITORING COMPOUNDS
Dibromofluoromethane
Toluene -d8
4 -Bromofluorobenzene
1,2 -Dichlorobenzene -d4
MEDiODS USED IN TIUS ANALYSIS;
EPA 5030B,EPA 826GB.
CONCENTRATION
9.53
10.2
9.88
9.85
PERCENT
RECOVERY
95.3%
102%
98.8%
98.5%
ACCEPTANCE
RANGE
86 -118 %
88 -110 %
86 -115 %
80 -120 %
rlosec:r:\repons\ClicOlS200I\iolcmalionaLuraniwo_corp\casper_org\31916-1-19_826Ob_chloroforrn_l-woltls Analyst:-------
LABORATORY ANALYSIS REPORT,EPA METHOD 8260
QC RESULTS ~MATRIX SPIKE (MSl,MATRIX SPIKE DUPLICATE (M:SD)
Client:
Sample Set:
Laboratory ID:
Matrix:
International Uranium (USA)Corporation
01-31916-1 through 01·31916-19
01-31916-17 S
Liquid -WATER
Date Sampled:
Date/Time Received:
Date Analyzed:
Date Reported:
03-29~1
04..()2~1 10:00
~5~1
April 12,2001
Dibromofluoromethane
Toluene -d8
4 -Bromofluorobenzene
1,2 -Dicblorobenzene-d4
~'i8.mttigift¥$r:$mm'j~:~~::~:~~rl~I!::I:~!:~:::~t:::~i~::::::~f:~fj~::::::l:fI:t::::~~~::t~j~~~I::::::~:I::!I::m:~:::i:I::::ltttHl:;~:;t:W::I~It:III~IttMi:!t::::::r::::fIt~rIl!I:Itttl:$fml!t!t:!:@@;:il::MHn1:!ii:@:i!~liH;~m~nliit!!ilII:~:
ICAL /CCAL SPIKED SAMPLE SPIKE DUPLICATE ACCEPTANCE
AREA AREA St AREA SiI.RANGE
Pentafluorobenzene 1150521 1025937 89.2%1034958 90.0%50 -200 %
Fluorobenzene 2388861 2213431 92.7%2237292 93.7%50 -200 %
1,4-Difluorobenzene 1775533 1595730 89.9%1600008 90.1%50 -200 %
Chlorobenzene -tiS 1163446 1065324 91.6%1060181 91.1 %50 -200 %
1,4 -Dichlorobenzene-d4 458787 .425066 92.6%424488 92.5%SO -200 %:&fitif4£Mq&ir.Qi.UNq'¥1iNtfP~~:~t::r:}ti~:~:I:::::::::::~:::~~i:II:::i~:::tt~:i:IItI!~~:~:!:I:t:f~:Intt:I;I!tt::tt::tt!I::lm:tm:llfI!ir~:!!:::I!:~fr~~r!:IIfIlIIrf:i!:i~!tf%H@:@gii!::@i:!fi:@!!ii!mIii;I::m}f@i}I
SPIKED SAMPLE PERCENT SPIKE DUPLICATE PERCENT ACCEPTANCE
CONCEI\TRATIONRECOVERY CONCENTRATION RECOVERY RANGE
9.62 96.2%9.57 95.7%86 -118 %
10.6 106%10.6 106%88 -110 %
10.3 103%10.4 104%86 -115 %
9.95 99.5%9.97 99.7%80 -120 %
CONCENTRATION ~1J&glL)RECOVERY B.AtiGE
Chloroform (Trichloromethane)9.85 NO 10.0 98.5'"70 -130 %
:$r.ltte::·i!tJijrii¢4j~~$4~~P'~:'jBiifwJ2j)!!j~!iiij!!f!!){i1:!!:~;~:ti!~~!ij::jji~!i!!!i:~j!!i!;!:~:~:{:~:!~~i;~::1!:::;Eii::~:;ii:::i::j:~~i:iiJ'~;:::i:~i;:!i!i:i~:):::i~i:!ii~iii::::i:::i:'~::ir::~:::j~::::j::t:::~QriA.~!!9P':::ql§:::mENI:\i~.1_9i.:~
SPIKE DUP ORIG.CONC.SPIKE PERCENT RPD
CONCENTRATION i.J&gfl,l.U&glL)RECOVERY 11m LIM1TS
Chloroform (Trichloromethane)10.1 NO 10.0 101%2.8'"20 %
':,."
MA TRIX SPIKE·
MAUllK SPIKE DUPlICATE·
o of2 Matrix Spike results are outside of established QC Limits
o of 1Matrix Spike Duplicate results are outside ofestablished QC Limits
rIoAnalyst:---......;.;---sec:r:\reports\ClienIS200I\inlernalionaturanium_corp\casper_org\31916-1-19_826Ob_chloroform_l-w.xls
•••
".lRirt?iV
mrllell&"ellUD
Bllllng_.Ca_per.Glllene
Helena.Rapid City
July 10,2001
ENERGY LABORATORIES,INC.
SHIPPING:2393 SAlT CREEK HIGHWAY •CASPER,WY 82601
MAILING:P.O.BOX 3258 •CASPER,WY 82602
E-mail:casper@energylab.com •FAX:(307)234·1639
PHONE:(307)235-0515 •TOLL FREE:(888)235-0515
Wally Brice
Int.emational Uranium Corp.(IDC)
POBox 809
Blanding,Utah 84511
Order No:COI060297
RE:White Mesa Mill
Mr.Brice:
The following cover letter is a summary ofthe attached analytical results for the above
referenced project.
This packet contains one.invoice,thirteen pages ofanalytical results,one page ofquality
assurance data,the project chain ofcustody,and the sample receipt condition report.This packet
contains 20 pages inc~udingthis cover letter.
There were no problems with the analyses and all data for the batch QC met USEPA or
laboratory specifications;:
Ifyou have any questions r~garding these test results,please feel free to call.Energy
Laboratories,Inc.appreciat~sthe opportunity to provide you with analytical services for your
projects.;:.
Approved By:QAQC -Data Validation:
COMPLETE ANALYTICAL SERVICES
CLIENT:
Lab Order:
Project:
Lab ID:
International Uranium (USA)Corp-Blandin
COI060297
White Mesa Mill
COl060297-001 Matrix:AQUEOUS
Report Date:07/05/01
Collection Date:06/21/0110:34
Client Sample ID:WMMTW4-1·
Analyses Result Units Qual
VOLATILE ORGANIC COMPOUNDS
Chloroform 6000 uglL
Surr:1,2-Dichlorobenzene-d4 99.8 %REC
SUIT:Dibromofluoromethane 111 %REC
Surr:p.Bromofluorobenzene 102 %REC
Surr:Toluene-d8 102 %REC
Report
Definitions:
NO -Not detected at the reporting limit
J•Analyle detected below quantitation limits
B•Analyle detected in the associated method blank
MCl -Maximum contaminant level
QCl •Quality control limit
S •Spike recovery outside accepted recovery limits
R-RPO outside accepted recovery limits
•-Value exceeds maximum contaminant level
Rl·Analyle reponing level
Page 1 of13
CLIENT:
Lab Order:
Project:
Lab ID:
International Uranium (USA)Corp-Blandin
COl060297
White Mesa Mill
COl060297-002 Matrix:AQUEOUS
Report Date:07/05/01
Collection Date:06/22/01 10:42
Client Sample ID:WMMTW4-2
MCLt
Analyses Result Units Qual RL QCL Method Analysis Date /By
VOLATILE ORGANIC COMPOUNDS
Chloroform 5500 ug/l 200 SW8260B 06128101 17:461 rio
Surr:1,2-Dichlorobenzene-d4 101 %REC 80-120 SW8260B 06128101 17:461 rio
Surr:Dibromofluoromethane 114 %REC 80-120 SW8260B 06128/01 17:461 rio
Surr:p.Bromofluorobenzene 102 %REC 80·120 SW8260B 06128/01 17:461 rio
Surr:Toluene-d8 100 %REC 80-120 SW8260B 06128101 17:46 1rio
....-.-...-...'_..."..-_.•.._..._--------_._-----_..---_.---.--.._---..••.._._-
Report
Definitions:
NO -Not detected at the reporting limit
J-Analyte detected belowquantitation limits
B -Analyte detected in the associated method blank
MC'l -Maximum contaminant level
QC'L -Quality control limit
S -Spike recovery outside accepted recovery limits
R -RPO outside accepted recovery limits
•-Value exceeds maximum~ontaminantlevel
RL •'Analyte reporting level
Page 2 of 13
Analyses Result Units Qual
VOLATILE ORGANIC COMPOUNDS
Chloroform 390 ugil
Surr:1,2-Dichlorobenzene-cl4 98.8 %REC
Surr:Dibromofluoromethane 113 %REC
Surr:p-Bromofluorobenzene 102 %REC
Surr:Toluene-d8 101 %REC
Report Date:07/05/01
Collection Date:06/21/01 09:04
Client Sample ID:WMMTW4-3
MCL!
RL QCL Method
CLIENT:
Lab Order:
Project:
Lab ID:
International Uranium (USA)Corp-Blandin
COl 060297
White Mesa Mill
COl 060297·003 Matrix:AQUEOUS
50
80-120
80-120
80-120
80·120
SW8260B
SW8260B
SW8260B
SW8260B
SW8260B
--..-.__.__._-----
Analysis Date /By
06/28101 18:28/rio
06/28101 18:28/rio
06128101 18:28/rio
06/28/01 18:28/rio
0612810118:28/rio
Report
Definitions:
NO -Notdetected at the reporting limit
J •Analyte detected below quantitation limits
B-Analyte detected in the associated method blank
MCl •Maximum contaminant level
QCl •Quality controllim!t
S -Spike recovery outside accepted recovery limits
R•RPO outside accepted recovery limits
•-Value exceeds maximum contaminant level
Rl •Analyte reporting level
Page 3 of 13
CLIENT:
Lab Order:
Project:
Lab ID:
International Uranium (USA)Corp-Blandin
C01060297
White Mesa Mill
C01060297-004 Matrix:AQUEOUS
Report Date:07/05101
Collection Date:06120101 09:36
Client Sample ID:WMMTW4-4
MCLI
Analyses Result Units Qual RL QCL Method Analysis Date 1By
VOLATILE ORGANIC COMPOUNDS
Chloroform 3100 ugiL 200 SW8260B 06/28/0119:11/r10
Surr:1,2-Dichlorobenzene-d4 100 %REC 80-120 SW8260B 06/28/01 19:111 rio
Surr:Dibromofluoromethane 113 %REC 80-120 .SW8260B 06/28/01 19:11 1rio
SUIT:p-Bromofluorobenzene 103 %REC 80-120 SW8260B 06/28101 19:11 1rio
Surr:Toluen~d8 101 %REC 80-120 SW8260B 06128101 19:11 1rio
-----------_._----_.__..-.---_---_-.._-._-
Report
Definitions:
NO -Not detected at the reponing limit
J•Analyte detected belowquantitation limits
B •Analyte detected in the associated method blank
MeL •Maximum contaminant level
QCL •Quality control limit
S -Spike recovery outside accepted recovery limits
R -RPD outside·accepted recovery limits
*-Value exceeds maximumcontaminant level
RL -Analyte reponing level
Page 4 of13
CLIENT:
Lab Order:
Project:
Lab ID:
International Uranium (USA)Corp-Blandin
COI060297
White Mesa Mill
COl 060297-005 Matrix:AQUEOUS
Report Date:07/05101
Collection Date:06/20101 14:14
Client Sample ID:WMMTW4-5
MCLI
Analyses Result Units Qual RL QCL Method Analysis Date 1By
VOLATILE ORGANIC COMPOUNDS
Chloroform 240 ug/l 10 SW8260B 06128/01 19:53/rio
Surr:1.2-Dichlorobenzene-d4 99.3 %REC 80-120 SW8260B 0612810119:53/rio
Surr:Dibromofluoromethane 117 %REC 80-120 SW8260B 06/28101 19:53/rio
Surr:p-Bromofluorobenzene 102 %REC 80-120 SW8260B 06128101 19:53/rio
Surr:T0luene-d8 102 %REC 80-120 SW8260B 0612810119:53/rio
--_.......•-.
Report
Definitions:
NO·Not detected at the reporting limit
J.Analyte detected belowquantitation limits
B -Analyte detected in the associated method blank
MC'l -Maximum contaminant level
QC'l •Quality control limit
S •Spike recovery outside accepted recovery limits
R -RPD outside accepted recovery limits
••Value exceeds maximum contaminant level
Rl -Analyte reporting level
Page S of13
CLIENT:
Lab Order:
Project:
Lab ID:
International Uranium (USA)Corp-Blandin
COI060297
White Mesa Mill
CO 1060297-006 Matrix:AQUEOUS
......._---._...•__._-_...-._---
Report Date:07/05101
Collection Date:06/20101 09:58
Client Sample ID:WMMTW4-6
MCLI
Analyses Result Units Qual RL QCL Method Analysis Date I By
VOLATILE ORGANIC COMPOUNDS
Chloroform NO ug/L 2.0 SW8260B 06/28/01 20:361rio
Surr:1,2-Dichlorobenzene-d4 100 %REC 80·120 SW8260B 06128/01 20:361rio
Surr:Dibromofluoromethane 114 %REC 80·120 SW8260B 06/28/01 20:36 1rio
Surr:p-Bromofluorobenzene 102 %REC 80·120 SW8260B 06128/01 20:36 1rio
Surr:Toluene-d8 102 %REC 80·120 SW8260B 06/28/01 20:361rio
.._.._--.-._------._--_.._-__--_-_-_._..___-.------
Report
Definitions:
ND -Not detected at the reporting limit
J•Analyte detected belowquantitation limits
8 •Analyte detected in the associated method blank
MCl •Maximum contaminant level
QCl •Quality control limit
S -Spike recovery outside accepted recovery limits
R•RPD outside accepted recovery limits
...Value exceeds maximum contaminant level
RL -Analyte reporting level
Page 6 of13
CLIENT:
Lab Order:
Project:
Lab ID:
International Uranium (USA)Corp-Blandin
COl060297
White Mesa Mill
COl060297·007 Matrix:AQUEOUS
Report Date:07/05101
Collection Date:06/20/01 12:55
Client Sample ID:WMMTW4-8
MCLI
Analyses Result Units Qual RL QCL Method
VOLATILE ORGANIC COMPOUNDS
Chloroform 180 ug/l 10 SW8260B
Surr:1,2-Dichlorobenzene-d4 101 %REC 80-120 SW8260B
Surr:Dibromofluoromethane 112 %REC 80-120 .SW8260B
Surr:p-Bromofluorobenzene 103 %REC 80-120 SW8260B
Surr:Toluene-d8 102 %REC 80-120 SW8260B
..........-..-------_._---------.__.__._-_.-._.__.._--_.
Analysis Date 1By
06/28/01 21 :191 rio
06128/01 21:191rio
06128101 21 :191rio
06128101 21 :191 rio
06128101 21:19 1rio
Report
Definitions:
NO -Not detected at the reporting limit
J-Analyte detected belowquantitation limits
B•Analyte detected in the associated method blank
MCl -Maximum contaminant level
QCL -Quality controllimil
S•Spike recovery outside accepted recovery limits
R-RPO outside lIccepted recovery limits
• •Value exceeds ITIlIximum contaminant level
RL -Anlllyte reporting level
Page 7 of13
CLIENT:
Lab Order:
Project:
LabID:
International Uranium (USA)Corp-Blandin
COl 060297
White Mesa Mill
CO1060297-008 Matrix:AQUEOUS
Report Date:07/05/01 .
Collection Date:06/20/01 11:09
Client Sample ID:WMMTW4-9
Analyses
ORGANIC COMPOUNDS
Chloroform
Surr:1,2-Dichlorobenzene-d4
Surr:Dibromofluoromelhane
Surr:p-Bromofluorobenzene
Surr:Toluene-d8
---"---'._-------........_-...-......
MCL/
Result Units Qual RL QCL Method Analysis Date I By
59 ugIL 2.0 SW8260B 06/28/01 22:01 /rio
98.3 %REC 80-120 SW8260B 06128101 22:01 /rio
112 %REC 80-120 SW8260B 06/28101 22:01 /rio
103 %REC 80-120 SW8260B 06128101 22:01 /rio
102 %REC 80-120 SW8260B 06128101 22:01 /rio
.......__.._-_._----'-----_.._----_._-_.._._.__....•.......
Report
Definitions:
NO·Not detected at the reporting limit
J.Analyte detected belowquantitation limits
B•Analyte detected in the associated method blank
Mel -Maximum contaminant level
QCl •Quality control limit
S -Spike recovery outside accepted recovery limits
R-RPO outside accepted recovery limits
*-Value exceeds maximum contaminant level
Rl•Analyte reporting level
Page 8 ofl3
Analyses Result Units
ORGANIC COMPOUNDS
Chloroform 1100 uglL
Surr:1,2-Dichlorobenzene-d4 98.5 %REC
Surr:Dibromofluoromethane 113 %REC
Surr:p-Bromofluorobenzene 103 %REC
Surr:Toluene-d8 101 %REC
--"-'_-----
50 SW8260B 06128101 22:44 1rio
80-120 SW8260B 06/28101 22:441rio
80-120 .SW8260B 06128101 22:441rio
80-120 SW8260B 06128/01 22:44 1rio
80·120 SW8260B 06128101 22:44 1rio
CLIENT:
Lab Order:
Project:
Lab ID:
International Uranium (USA)Corp-Blandin
CO 1060297
White Mesa Mill
COl 060297-009 Matrix:AQUEOUS
Qual
Report Date:07/05101
Collection Date:06/21/0109:50
Client Sample ID:WMMTW4-7
MCLI
RL QCL Method Analysis Date1By
Report
Definitions:
.-_._.._._--------_.
NO •Not detected at the reporting limit
J •Analyte detected below quantitation limits
B•Analyte detected in the associated method blank
Mel •Maximum contaminant level
QCl •Quality control limit
S -Spike recovery outside accepted recovery limits
R-RPO outside accepted recovery limits
..-Value exceeds maximum contaminant level
Rl-Analyte reporting level
Page 9 of 13
CLIENT:
Lab Order:
Project:
Lab In:
International Uranium (USA)Corp-Blandin
cOI060297
White Mesa Mill
COl 060297-010 Matrix:AQUEOUS
Report Date:07/05/01
Collection Date:06/22/01 11:25
Client Sample ID:WMMMW-4
__••••_••__•••0 ••.__----_._.--------._.._-~.-"-.'.__.-_....
MCLt
Analyses Result Units Qual RL QCL Method Analysis Date t By
VOLATILE ORGANIC COMPOUNDS
Chlorofonn 6300 ugIL 400 SW8260B 06/28/01 23:26 /rio
Surr:1.2-Dichlorobenzene-d4 99.0 %REC 80-120 SW8260B 06/28/01 23:26 /rio
Surr:Oibromofluoromethane 117 %REC 80-120 'SW8260B 06/28/01 23:26 /rio
Surr:p-Bromofluorobenzene 105 %REC 80·120 SW8260B 06128/01 23:26/rio
Surr:Toluene-d8 101 %REC 80-120 SW8260B 06/28/01 23:26/rio
Report
Definitions:
NO •Not detected at the reponing limit
J•Analyte detected below quantitation limits
B•Analyte detected in the associated method blank
MCl •Maximum contaminant level
QCl -Quality control limit
S •Spike recovery outside accepted recovery limits
R-RPO outside accepted recovery limits
•-Value exceeds maximum contaminant level
Rl-Analyte reponing level
Page 10 of13
CLIENT:
Lab Order:
Project:
Lab ID:
International Uranium (USA)Corp-Blandin
COl 060297
White Mesa Mill
CO I060297-01 I Matrix:AQUEOUS
Report Date:07/05/0I
Collection Date:06/21/01 09:04
Client Sample ID:WMMTW4-10
--_._---_...--.._---_._._------
Report
Definitions:·
NO·Not detected at the reporting limit
J-Analyte detected belowquantitation limits
B •Analyte detected in theassociated method blank
Mel •Maximum contaminant level
QCl -Quality control limit
S -Spike recovery outside accepted recovery limits
R·RPO outside accepted recovery limits
••Value exceeds maximum contaminant level
Rl •Analyte reporting level
Page II ofl3
Report Date:07/05/01
Collection Date:06/21/01 J.2:11
Client Sample ID:WMMTW4-ll
Analyses Result Units .Qual
VOLATILE ORGANIC COMPOUNDS
Chlorofonn 3.0 ug/l
Surr:1,2-Dichlorobenzene-d4 102 %REC
Surr:Dibromofluoromethane 118 %REC
Surr:p-Bromofluorobenzene 103 %REC
Surr:Toluene-d8 102 %REC
MCLI
RL QCL Method
-_.____-._------
06129/01 00:51 1rio
0&29/01 00:51 1rio .
06/29/01 00:511 rio
06129101 00:51 1rio
06129/01 00:51 1rio
Analysis Date1By
SW8260B
SW8260B
SW8260B
SW8260B
SW8260B
80-120
80·120
80-120
80-120
1.0
------_.-._---_.--_.---_._-
International Uranium (USA)Corp-Blandin
cOI060297
White Mesa Mill
COl 060297-012 Matrix:AQUEOUS
CLIENT:
Lab Order:
Project:
Lab ID:
.-..._-_._--_.._----.........-_"-".-.._.._.___..___.__._-----
Rrport
Drfinitions:
NO·Not detected at the reporting limit
J •Analyte detected below quantitation limits
B•Analyte detected in the associated method blank
Mel -Maximum contaminant level
QCl -Quality control limit
S -Spike recovery outside accepted recovery limits
R-RPD outside accepted recovery limits
..-Value exceeds maximum contaminant level
RL -Analyte reporting level
Page 12 of13
CLIENT:
Lab Order:
Project:
Lab ID:
International Uranium (USA)Corp-Blandin
COI060297
White Mesa Mill
COI060297-013 Matrix:AQUEOUS
Report Date:07/05101
Collection Date:06/22/01 13:50
Client Sample In:WMMTW4-Comp
Analyses Result Units Qual
MCLI
RL QCL Method Analysis Date1By
VOLATILE ORGANIC COMPOUNDS
Chloroform
SUIT:1,2-Dichlorobenzene-d4
Surr:Dibromofluoromethane
Surr:p-Bromofluorobenzene
Surr:Toluene-d8
960
101
118
103
103
ug/L
%REC
%REC
%REC
%REC
100 SW8260B 06/29/01 01:34/rio
80-120 SW8260B 06129/01 01:34 /rio
80·120 SW8260B 06/29/01 01:34 /rio
80·120 SW8260B 06129/01 01:34 /rio
80-120 SW8260B 06129/01 01:34 1rio
Report
Definitions:
..-.-_...-...------------
NO -Not detected at the reporting limit
J -Analyte detected belowquantitation limits
B •Analyte detected in the associated method blank
Mel -Maximum contaminant level
QCl -Quality control limit
"""'--'--'.._-._-.._---------
S -Spike recovery outside accepted recovery limits
R-RPO outside accepted recovery limits
•-Value exceeds maximum contaminant level
RL -Analyte reporting level
Page 13 of13
Date:05-Jl/l-01
§II
CLIENT:
Work Order:
Project:
International Uranium (USA)Corp-Blandin
COl060297
White Mesa Mill
••••••_••••••••H_'•••••••.••••
ANALYTICAL QC SUMMARY REPORT
TestCode:VOC-8260-W-SHT
Sample 10:Method Blank #
Client 10:
Analyte
SampType:MBLK
Batch 10:R282
Result
TestCode:VOC-8260-W-SHT Units:ug/L
TestNo:SW8260B
PQl SPK value SPK RefVal
Prep Date:
Analysis Date:6/28/2001
%REC lowLimit HighLimlt RPO RefVal
Run 10:GCMS1-e_010628A
SeqNo:5880
%RPO RPOLimit Qual
Chloroform
Surr:1,2-01chlorobenzene-d4
Surr:Olbromofluoromethane
Surr:p-Bromofluorobenzene
Surr:Toluene-d8
NO
9.99
11.43
10.29
10.13
1.0
o
o
o
o
10
10
10
10
o
o
o
o
99.9
114
103
101
80
80
80
80
120
120
120
120
o
o
o
o
o
o
o
o
Sample 10:C01060297.Q13A
Client 10:WMMTW4-Comp
Analyte
Chloroform
Surr:1,2-0ichlorobenzene-d4
Surr:Oibromofluoromethane
Surr:p-Bromofluorobenzene
Surr:Toluene-d8
Sample 10:C01060297-013A
Client 10:WMMTW4·Comp
Atlalyte
Chloroform
Surr:1.2-0ichlorobenzene-d4
Surr:Oibromofluoromethane
Surr:p-Bromofluorobenzene
Surr:Toluene-d8
SampType:MS
Batch 10:R282
Result
13330
9960
11980
10390
9890
SampType:MSD
Batch 10:R282
Result
13570
10110
12070
10320
10180
TestCode:VOC-8260-W-SHT Units:ug/L Prep Date:
TestNo:SW8260B Analysis Date:6/29/2001
PQl SPK value SPK RefVal %REC lowLimlt HlghLimit RPORefVal
1000 10000 956 124 70 130 0
0 10000 0 99.6 80 120 0
0 10000 0 120 80 120 0
0 10000 0 104 80 120 0
0 10000 0 98.9 80 120 0
TestCode:VOC-8260·W-SHT Units:ug/L Prep Date:
TestNo:SW8260B Analysis Date:6/29/2001
PQL SPK value SPK Ref Val %REC lowLimif HighLirnit RPO Ref Val
1000 10000 956 126 70 130 13330
0 10000 0 101 80 120 0
0 10000 0 121 80 120 0
0 10000 0 103 80 120 0
0 10000 0 102 80 120 0
Run 10:GCMS1-C_010628A
SeqNo:5894
%RPO RPOLimit Qual
o
o
o
o
o
Run 10:GCMS1-C_010628A
SeqNo:5895
%RPO RPOLimit Qual
1.78 20
o 10
o 10 S
o 10
o 10
Quanners:NO -Not Detected at the Reporting Limit
J-Analyte detected below quantitation limits
S -Spike Recovery outside accepted recovery limits
R-RPO outside accepted recovery limits
B-Analyte detected in the associated Method Blank
Page I of I
Yes/No
Yes/No
Yes/No
Comments,Special
Instructions,etc.
RAI'Inell'\',SII
P.O.Bu,24711c5771".,,',1//.,,~SIl-67~·'225
hlnr:nrn\\'uud t577U1.",,;,...fJlIJ..f./!./!!.i
FII.\'6115·./-12,'.197
Cust.No.:_'_
Custody Seal:
Intact:
Signature Match?:
If no -Reason:
/IJ?'{;j~J
;~rf't-~oF ~
'l
~~
IIEI.ENA,MT
P.O.Bu.56MM (5')(,(1.11 1111//.'1177·472-'1711
27114 Rilli,,~.A,'c.15t}(~111 1\,,,,.-1''',,.-1''''--1-12-11711
Received Date:-----
login Date:
Shipped by:I J...i?5;-A1
Shipping Bill #:_-.-=--__
Sample Temp:\.5 DC
~lhn/IJIYl IJt::.It'LFor lab Use Only
'to.
PLEASE PRINT OR TYPE.ALl
INFORMATJON ~XCEPT SIGNATURESrrK-?)
CHAIN OF CUSTODY RECORD1.
(:ASI'ER,WY V G1U."TI'F.WV
P.O.no.325M IR2(2)11',1//.,IIRII·2.I,~,')5)5 IIn5 We'1 fir<'Slice.(R2116)",/,.~.107.686.7175
23'13 S.,.Cnock Hi~hwDY lR2MIl ,·..i,·".1117.2.15.(15)5 F,...1117.6112.4625
F,U'.1117·2.14·)6.19
J:...
DATE I TIME
IlnL ,'*_
,i
"Lab No_
For Lab Use Only
Contact Name &Phone
P.O.#
1I11.1.INm',MT
".(l,n.,~·,:trll)ltJC5I'IU7."'III'"H(J().7.f5•.J.JHCJ
II.:!USnuth17111 f~I'IU1.""/n'.J'Jfl.!5!.tUZ5
I·"x .J''''·2.~2·fJl''''fI
~, 5 •SiS.
Project Name /Address ....
III-s4S1(~I
.~~::II
~.~
.......L:-I.......1JooI!I--~~~~~r=--...,.=:-;::7:":"-""7:::---:--~·iU 0 :rgI-IIIInvoiceto:6 ::I ~
U:::.$1'Q<t)~~~~~q;~t-:R::-e-po-rt-t-o:---'IlIIl]J~f-:-$.J-J,J.~lI-----------1 E~~
~.....9l~~~I
SAMPLEI.D.z."J.HI ?AM It,.\<.....l r..._.J.!-c?J ~I
1I'iliBiTifi-J.-04"
"
(p/~Ilo'~~I/JMM11,...)~-1 TO
IlrD I V
to 1'''1-
I~
IO~L-I/J.")"'MTrot/-'~
I)qo~I JAM.MT~~-~
I
11,0 Iq:~gl t.)i\J1 T~""{P
\g!-to I tJ 4'~"
l/o/7_fJlllfl&l
IJJMMTlJ.)l£-4
p lUMMTlJ.)4-~'aI1
IltD
wlJ..n 111,5'$'1 WMtvrfwL{...B "1
Lth_fJ III tIT IW Mft\TUl'1-'9
L.hl JrJtst>IW"-,,,,,,wt\.,1-'-.
lvlvv I II'"I (})Mfv\fV\~-a\V'f";}/f.i !led (signa/ure)If4 D~te
I(~1 Vl.'hJtf
Time
u~oo-v('.J
Received by:(signature)
~I~
2.Relinquished(signature)Date
f74dLtlPr1
CI
~
/l .A I I
,,V~
z )....
•Billings ENERGY LABORATORIES,INC.'S CHAIN OF CUSTODY RECORD toll/ree 1-888-235-0.H5J.ili.iiiO •Casper Mail O,lly:PO Box 3258 •Casper,WY •82602-3258 voice 307-235-0515•Glllelle,e;t:l.Ut4U •UWir •Rapid Cit)'UPS/FedEx Deliveries:2393 Salt Creek Highway •Casper,WY •82601 fax 307-234-1639
For Sample Tracking Purposes,Please Provide Contact Name and Telephone #'s as Indicated (SEE BACK OF FORM FOR EXAMPLES AND INSTRUCTIONS)
Project Name I Location I Purchase Order"I Bid"..Special Requests
2t1QQ<"""~.,
Type of Analyses Requested-s'co I "••)S...~,~jo...,t...k 1~".._VI'\./I J P.1"....j "...\l-kJ--
~01!'>.,
&.;;~'eNameIPhoneiIFax#J ~::5,
....::..I::?~.e
l).......J.TV>"il.-/l't1S-)b7Y-n-,I )eli:,n h?y -'Z'22-C(
....c"t::~S ~C)~..u to
Send Invoice to::t".:l'-.~::>:1 ~
eu ~-Be.'J ~":':~~eu ....p.o.B.,.,..~Q.)lU ~.~~oC)~~~c"E;k-!•""':).u k...J.."1tt.!-,/E lU ~C)Date Time ~~:::t}~d:loC)Send Report to:s,-""",,",-a.J 4.l.~~~~'\\C)l:~Iu 'll Comments,SpecialboO~~Instructions,etc.Sample I.D..
"'I:z.,}""O'ioY ~W""""-l""''T1V ~10 "j.&J ./
"'/"'/0 /12..lt ./WoM Wi 'tIAJ '-{-II 3·"L1 .,/
~Jr,j~1 13.f'::>....",WW\.......T\"AJ 4 ..(d_-:1 '3 -tV ,/
3.Relinquished hy:(signature)
Date
bltrh"
Date
Time
U:DV
Time
Received hy:(signature)
Received by:(signature)
2.Relinquished hy:(signature)
4.Relinquished by:(signature)
Date
Date
Time
Time
)rxiJ
Received hy:(sigmllure)
Energy Laboratories,Inc.
SAMPLE CONDITION REPORT
This report provides information about the condition of the sample(s),and assocated
sample custody information on receipt at the laboratory.
Client:International Uranium (USA)Corporation Description:WATER
Lab ID(s):01-33939-1 Thru 01-33939-14 Matrix:Liquid,Misc
Delivered by:UPS Date&Time Rec1d:26-JUN-Ol 1000 Date&Time Col'd:21-JUN-Ol 1034
Received by:Sara Hawken Logged In by:Tabitha Fassett
Chain of custody form completed &signed:
Chain of custody seal:
Chain of custody seal intact:
Signature match,chain of custody vs.seal:
Sample received Temperature:
Samples received within holding time:
Samples received in proper containers:
Samples Properly Preserved:
Bottle Types Received:39-40ML VOA NF HCL(ABC)
comments:
Yes
No
N/A
N/A
SC
Y~s
Yes
hs
Comments:
Comments:
Comments:
Comments:
Comments:
Comments:
Comments:
Comments:
m~'ll?i'"mt1l.U&It.UpU
Billings.Casper·Gillette
Helena·RapidCity
ENERGY LABORATORIES,INC.
SHIPPING:2393 SALT CREEK HIGHWAY'.CASPER,WY 82601
MAILING:P.O.BOX.3258 •CASPER,WY 82602
E-mail:casper@energylab.com •FAX:(397)234·1639
PHONE:(307)235-0515 •TOLL FREE:(888)235-0515
LABORATORY ANALYSIS REPORT
Client:INTERNATIONAL URANIUM (USA)CORPORATION
Contact:Wally Brice
Sample Matrix:Liquid,Water
DatelTime Received:06/26/200110:00
Report Date:July 11,2001
Laboratory ID Sample Date 1Time Sample ID Nitrate +Nitrite as N,mg/L
01-33936-1 0612112001 10:31 WMMTW4-1 8.81
01-33936-2 06122/2001 10:38 WMMTW4-2 9.67
01-33936-3 0612112001 08:58 WMMTW4-3 2.61
01-33936-4 0612212001 09:34 WMMTW4-4 14.00
01-33936-5 0612012001 14:09 WMMTW4-5 6.47
01-33936-6 06/2012001 09:45 WMMTW4-6 <0.10
01-33936-7 06/2112001 09:50 WMMTW4-7 2.65
01-33936-8 06120/2001 12:51 WMMTW4-8 <0.10
01-33936-9 06/20/2001 11:00 WMMTW4-9 0.15
01-33936-10 06/22/2001 11 :20 WMMMW4 9.02
01-33936-11 06/2112001 08:58 WMMTW4-10 2.96
01-33936-12 06/2112001 12:15 WMMTW4-11 3.19
01-33936-13 06/2112001 12:17 WMMTW4-12 0.66
Quality Assurance Data
Method .EPA 353.2
Reporting Limit 0.10
RPD1 0.0
SDike2 97
Analyst rwk
Date 1Time Analyzed 06/27/2001 14:18 '.
NOTES:
(1)These values are an assessment ofanalytical precision.The acceptance range is 0-20%for sample results above 10 times
the reporting limit.This range is not applicable to samples with results below 10 times the reporting limit.
(2)These values are an assessment ofanalytical accuracy.They are a percent recovery ofthe spike addition.ELI performs
a matrix spike on 10 percent ofall samples for each analytical method.
msh:r:\reports\c1ients2001\intemational_uranium_corp\liquid\33936-1-13.xIs
COMPLETE ANALYTICAL SERVICES
,,'IIII~,'I.~X·~71·/~1.i
I'"i,"('Md·J-I2-111.~f"..(1I1.~·.!42·I.I~7
Comments,Special
Instructions,etc.
"A.'m CIT\',SII
P.O,On.2~7nI57711'1l
hl('fa~nwnud~S171111
,
m"",H77·472·11711
HJ;,',./pux 406·-1-11·071/
.~
~'IiIfitlJ:
.~~~~
IIEI.ENA,MT
P.O,On.5hRK'5')(\(\.11
271\.1 Oilli.~,Ave.(59(~1I)
Received Date:Cust.No,:TH/C
login Dote:Custody Seal:Yes/No
Shipped by:I A.J)5.Intact:Yes/No
Shipping Bill #:.Signature Match?:Yes/No
Sample Temp:5 o~If no -Reason:~])Itoo:e 'Prl~~~tJ tb)Ifi7,",~f 11 ~fl7~t#b~UseOn/Y
GlLI,EliE,WY
1105 We"FiI1lIS'ree'(R2716)",1<",'.I07.~H~.7175
I'm .!07·~H2·4M5
II'n".f HIW~·2.'5.05IS",i,','.!1l7.2.15.1l51S
I'll..107·2.14·M.l')
IJ
SAMPLE 1.0,7.__J,.0\(!J~~O~..a Z .......l.
PLEASE PRINT OR TYPE ALL
INFORMATION EXCEPT SIGNATURESJ&1-.!2
Sampler's Signature
CASPER.W\'
P.O.Bn.J258 1826021
2J'IJS"I,Cn:ek Hi~h\\'.y (K2(~1ll
CHAIN OF CUSTODY RECORD
TIMEDATE
Project Name7 Address
Lab No.
For Lab Use Only
Contact Name &Phone
P.O.#
nll.UN(;S.MT.'.,
".Il.Bn,JI~lIh1591071 ...,,11,'X'N~7.15.44H'}
II~n Snuth ~71h (:'i'lUlI',',,1,'('"06.2.~!-fJ.t2.~
""tr "''''..2!iZ·fJINW
~£0\
CIl,~
~:::>1
P~lf51~~~~2(!1j~¥~L-r;;b;;;;~::r::-:-------------J CII c:
.S .~
IllO~
Invoice to::I.",c....§:::>~
'Yo "!o'C.~a~~~~I~~A\'",.Kf'"MS"\~CJ);gCII~blt-;::':;:-;::-~.J.ll;~~~I'4~,=,:--------1~«~II ::J "0'O~L r::!~I
.!!1j~~I
ru·~CJ)«I
~HiIi51iliii-lr04.,
~:2.".3(,-I "/2.-1 I leJI I!l)/ltMr&l4-!'~I,w1)(..
-~rZ~/r~~~JI1J1171c).I{-3 I I I~
..2 I"lz·I.(c,11D3']'IlJIHJffTlJ 4-Z-I I I X./
\ -L/-I Gft-2j~L~~'1IIAI1IV1Twlf-l/I I l'i
\..51~.J)I\!\()q \1AJ/lfI111JAJJ{-$'\-f-I~
-··1 \'G,\-qt1J Iq:l{stWJlfMIW4-~,' \I IX~~_\)'''J '~',\.,~?,g ."".,t--:=:•.'::-,.---;-....,-~.J...T~t=-..::...::.-f-&'~....:.:.....!.....:~:....L-..l._----------J.-J.----J~
:.':J =:':
t.;I •,'J
':\J ~-::;
C)1-'__~f-_-L..++~~~l:.-~:::;':'''':'':'-l-':'''::-!...:-....!-'''':''''~I-~Q1
, "H~..,.£__--=~.1.-_--L--r_..IIO~;":-'~!...F;--I--~~--r-__~I-..J.:..~I.--...J..._..I..r-.....J._....L..,.........'---.L-.--+:--\-c:)Receivedby:(signature)
:.·.'i
II :()()_.
'1''''1
..
5i ~/)Received Dote:Cust.No.:~YCI~I.oginlAJle:CusIodySooI:Yes/No~i.Jlll#kl CHAIN 0 CUSTODY RECORD Sshh~P~bB~:II#In.tact:h ~es//NNo
'ppmg I :Signature Mate?:,es 0
PLEASE PRINT OR TYPE ALL SampleTemp:O(If no -Reason:
INFORMATION EXCEPT SIGNATURES
For Lab Use On/v
11II.1.INm'.IIIT CASPER.W\'G11.1.ETfF..WV NEI.ENA,MT R,wm('Il'\'.SII
p,n,nn,31"'1>IS·llll7."'/11.\,~IHI·7.'.I.~~H9 P,O.nnx 32SM IR21102\"'''".,111111·2,1.1·"51.1 1illS W<xl Firs,S""<I (M27II>.""/,'r .1IJ7·~1I~.717,1 P,O,nnx SI>MK 1591>1\.11 iii",.'.~77.~7!'''711 p,n.lin,2~7015771~11 ..../11,,~,~,~.~7!.I!!.i
1120Slllllh 271h ISI'IIII.,";.'"~'IfJ·!,1!·".'2.i 2393 S.h Cn.d Highway (K21>1,fl I·..i,·.,.1117·2.15·115'5 1'.....,tn7."'~2-~~1.l 270~BillingsA,,,,15111>1111 \I.i,·('/I'.....~'IfJ..U2."711 Mil ";0".."••115771111 I·..i.·.·fJI',i.,'~2.1!25
"',,-,"("'·J.~2,"''''fl ."'fU JfJ7·2.U.,t..l9 "tl.\'11I15..I"~.1.ltj7
P.O.#Project Name /Address ....
1/,)h,·~t.l1~~~;II ItA1.r~.J&,.\t/Icrt.rl_J~..~Ur PArll ~I
Contact Name &Phone [''Sampler's Sigmlture r !II §,
.~c IIf~\\11 ~id (~~~~,tA"llJJ '~0 ~JrInvoiceto::I:u ~§:;:)~if86qu~:$I '~
'PO &~\T B4SIf 'Q CI);g I-'e>1t:AA\A'"1 t lJ.~~0 .f
Lab No.DATE TIME ~'"f&1\.~~~i
For Lab Use Only Report to:~t,A1 ~~.I::~~dJ
~~~Comments,Special~::>.1 ~'Instructions,etc.
SAMPLEl.D.,_",1 'I"lOOt lao)~P(a.r.J.~~I ~
';:r3 1~t'J-1 /~/t'n~~II·\"A_1'1i\4-'b 'U luJ v'
( -12 (0/:10-1/0'L2·1c;"1~"''''''''Wtl-11 lLJ ./
")-/3 ("ft"OI 1111-,luM,.,,-rl.Alt,f-rz.'w ,/
'J -I:;;::1
••,.l'.,':.>.;;-')..'"'..'1-=----~---t---+------------~__+___I____1f____t_+__t__+___+___t_~---'--_i
, ".;j
~.J :.:
~)..
.;.....J
.....:1'
.•r;)
.:.)1''1 ~
.:"~~/IA;red(Slgnature)6l~~Time Received by:(signature)2.Relinquished(signature)rll~a~e ,~=~\r.1.iv~~~raf.~bY:
/1 l1(/1 Z~/pl It;o()_tlDC _/(n.A1J1fr!JfIX.J (v~~LI,-1J7.k...~
Energy Laboratories,Inc.
SAMPLE CONDITION REPORT
This report provides information about the condition of the sample(s),and assocated
sample custody information on receipt at the laboratory.
Client:International Uranium (USA)Corporation Description:WATER
Lab ID(s):01-33936-1 Thru 01-33936-13 Matrix:Liquid
Delivered by:UPS Date&Time Rec'd:26-JUN-01 1000 Date&Time Col'd:21-JUN-01 1031
Received by:Sara Hawken Logged In by:Kerri Schroeder
Chain of custody form completed &signed:
Chain of custody seal:
Chain of custody seal intact:
Signature match,chain of custody vs.seal:
Sample received Temperature:
Samples received within holding time:
Samples received in proper containers:
Samples properly Preserved:
Yes
No
N/A
N/A
SC
Yes
Yes
Yes
Comments:
Comments:
Comments:
Comments:
Comments:
'Comments:
Comments:
Comments:
Bottle Types Received:12-160Z P NF H2S04 (A),2-120Z P NF H2S04 (AS)
cOmments:
Energy Laboratories,Inc.
REPORT PACKAGE SUMMARY
Acronyms and Definitions
ELI-B Energy Laboratories,Inc.-Billings,Montana
ELI-G Energy Laboratories,Inc.-Gillette,Wyoming
ELI-H Energy Laboratories,Inc.-Helena,Montana
ELI-R Energy Laboratories,Inc.-Rapid City,South Dakota
co -Carry over from previous sample
ip Insufficient parameters
N/A -Not Applicable
NA -Not Analyzed
NO -Analyte Not Detected at Stated Limit of Detection
NR -Analyte Not Requested
NST -No Sample Time Given
NSD -No Sample Date Given
FINAL PAGE
This Package Contains the following Client ID(S)and Lab ID(s)
Client ID:WMMMW4 is associated to Lab ID:01-33936-10
Client ID:WMMTW4-1 is associated to Lab ID:01-33936-1
Client ID:WMMTW4-10 is associated to Lab ID:01-33936-11
Client ID:WMMTW4-11 is associated to Lab ID:01-33936-12
Client ID:WMMTW4-12 is associated to Lab ID:01-33936-13
Client ID:WMMTW4-2 'is associated to Lab ID:01-33936-2
Client ID:WMMTW4-3 is associated to Lab 10:01-33936-3
Client 10:WMMTW4-4 is associated to Lab 10:01-33936-4
Client 10:WMMTW4-5 is associated to Lab 10:01-33936-5
Client 10:WMMTW4-6 is associated to Lab 10:01-33936-6
Client 10:WMMTW4-7 is associated to Lab 10:01-33936-7
Client ID:WMMTW4-8 is associated to Lab 10:01-33936-8
Client 10:.WMMTW4-9 is associated to Lab 10:01-33936-9
Approved By:~.~
StTJVt £:c....-.3'!"l:~~sSwi~.~·
~df;;;;.
QUALITYASSURANCE DIRECTORReviewedBy:
This is the last page of the Laboratory Analysis Report.
Additional QC is available upon request ..
The r~port contains the number of pages indicated by the last 4
TRACiWt::1':0.PAGE NO.
digits ~"),....,~r 1"'1 0 ("",-.0 r.......1"......( •t •;,d .I ;:I)'1 .,I'I·.....-.,'-..-'..)\_~
F-725801678ZZZ4T-555 P.D02/0l2
ENERGYLABORATORIE~·.INC--2393 Salt Creek Highway(82601)•p.o.Box"--fj •Casper,WY82602
Toll nee BB9.235.0515 •30;.0515 •F~307.234.1639 •casper@energylab.L 'www.energylab.com,
lO:40amNov-OS-Ol
LABORATORY ANALYTICAL REPORT
Client:
Project;
International Uranium (USA)Corp
3rd Qtr CIW Sampling -White Mesa Mill
L:lb Order:CO1090685
Report Date:10/16101
Lab 1)):COI09068S-001
Client Sampleill:WMMTW4-2
An~lyses
-~-------
vocs
Chloroform
Surr:1,2-0Ichlorobenzene-d4
Surr:Dibromofluoromethane
Surr:p-8romofluorObenz:ene
Surr:Toluene-d8
Lab ID:C01090685-002
ClientSample ID:WMMTW4:'3
Analyses
vocs
Chlorofonn
Surr:1.2-Dichlorobenzel1e-d4
SUIT:Oibromofluoromelhane
Surr:p-Bromoflucrobel1%.ene
$urr.Toluene-de
Lab lD:CO1090685-003
Client SampleID:WMMTW44
Analyses
vocs
Chloroform
SUIT:1,2-0ichlorobenzene-d4
Surr.Dibromofluorometl"lane
SUIT;p·6romofluorobenzene
SUIT:loluene-d8
Collection Date:09120/01 10;52
DateReceived:0912S/01
Matrix:AQUEOUS
MeV
Result Units Qual RL QCL Method ~alysisDate /By---
4900 ug/L 400 SW8260B 10104/01 00;561 rh
101 %REC 60·120 SW8260B 10/04/0100:581 rh
93.5 %REC 80·120 SW8260B 10104/01 00;561 rh
83.0 %REC 80·120 SW8~606 10104/01 00:561rh
95.6 %REC 80-120 SW82GOa 10/04/0100:561rh
Collection Date:09/20/0'1 10:25
DateReceived:09125/01
Matrix:AQUEOUS
MeL!
Result Units Qual RL QCL Method Analysis D~..L
300 ugll..100 SW8260B 10102101 22:30I rh
102 %REC 80-120 SW8260B 10/02/01 22:30/rh
109 %REC 80-120 SW8260B 10/02/01 22:301rh
88.8 %REC 80·120 SW8260B 10102101 22:301rh
96.9 %REC 80·120 SW8260B 10102/01 22:301rh
Collection Date:09/20/.01 10:50
DateRecei'Ved:09125/01
Matrix:AQUEOUS
MeL!
Result Units Qual RL QCL Method An~sisD~By
3200 uglL 200 SW8260B 1010210123:11/rh
101 %REC 80-120 SW8260B 10/0210123:111 rh
107 %REC 80-1;20 SW6260B 10/02l0123:11/rtl
88.9 %REC eo-120 SW8250B 10/Q2/01 23:11 Jrh
96.5 %REC 60-120 SW6260B 10102/01 23:11 1rh
Report
DefinitioDs;
NO-Not d~cetedatthc reportinglimit
MeL •lVIaltimum contaminant Ic"c1
RL •Analyte reporting level
QCL -Quality cantrollimit
~•.~-t:''••
••••...1_••'
t'"......--,.coo .',r~...~n I:
..".1 ,"oj ••U',..:..i .
Nov-oe-Ot to:40am From-/Ue BLANDING 80t B78 2224 T-555 P.003/012 F-725
!:?'~r~t=NERGYLABORATORI£.c."'Ic.·2S9SSaflCreekHighway(82601j·f;?Q Box·'-11 •Casper,WY82602!...~~..!::J.'!!::"':i~701IFree88Q.235.051S·J07;.0515·Fax307.234.1639·r:asper@energyla/u,.www.ent1rgylab.com
l~t:I·Utifi.mm
LAnORATORY ANALytICAL REPORT
Client:
Project:
International Uranium (USA)Corp
3rdQtr crw Sampling·White Mesa Mill
Lab Order:COI090685
Report Datc:10/16/01
Lab JD:C0109068S-004
Client SampleID:WMMTW4-5
vocs
Chloroform
SUrf:1,2-Dichlorobell2.ene-d4
SUIT:Oibromofiuoromelhane
SUIT:p-BromofluorCbenzene
SUIT:Toluene-d8
Lab ID:CO1090685~005
Client Sample ID:WMMTW4-6
Analyses
vocs
Chlorcfonn
Sl,Irr:1.2-Dictllorcbe~ene-d4
SUIT:Oibromofluoromelhane
SUIT:p-Brornonuorobenzene
Sl,Irr:Toluene-dS
Lab lD:C0109068S-006
Client SampleID:WMMTW4-7
VOCS
Chloroform
Sl,Irr:1,2-Dlchlorobenzene-d4
Surr:Dibrcmofll,loromethane
Sl,Irr:p-6romofll,lorobenzene
Surr.Toluene-d8
Collection Date:09120/01 10:05
Date.R.ecei"cd:09125/01
Matrix:AQUEOUS
MCU
Result Units Qual RL QCL Method Analysis Date1By
240 ugll.20 SW82606 10/04/01 01:37 1rh
100 %REC 80-120 SW8260B 10/04/01 01:37 1rh
92.5 %REC 80-120 SW8260B 10104/01 01:37 I rh
82.8 %RE:C 60-120 SW6260a 10/04/0101;31Irh
94.3 %~C 80-120 SWa260B 10104/01 01:37/m
CollectionDate:09120/01 09:16
DateReceived:09/2S/OI
Matrix:AQUEOUS
MeV
Result Units Qual RL QCL Method AnalysisDate I By
3.6 ugIl.2.0 swe260B 10/03/01 13;211 rh
99.0 'YaREC 80-120 swa260B 10103/01 13:21 I rh
100 %REC 80-120 SW8260B 10/03/0113:211rh
66.9 %REC 80-120 SW8260B 10/03101 13:211 rh
98.1 %REC 80-120 swa260B 10/03/0113:21/rh
Collection Date:09/2010110:43
Datclleceived:09125101
Matrix:AQUEOUS
MCIJ
Result Units Qual RL QCL Method Analysis nate /By
1200 uglL 100 SW8260B 10f0310114:021 rh
98.9 %REO.C 80-120 SW8260B 10/03101 14:021 rh
96.6 %REC 80-120 SW8260B 10103101 14;02I rh
88.7 %RI;OC 60-120 SWB260B 10/03101 14:02f rh
96.2 %REO.C 80-120 SW8260B 10103101 14:021rh
Report
Definitions:
NO -Not dctected.n the repomn!;limit
MeL -Maximum contamin:mt level
RL -Analylc reponing Icy,}1
QCL •Quality CQTlttollimil
~...,r _'••.•4Ilo _-I.l"\
!:~.-.'J'.••,....~~1'0..''--.1.·...:_~.
Nov-OS-Ol 10:40am From-IUe BLANDING 801 678 2224 T-555 P.004/012 F-725
~ENERGYLABORATORJEt:·"'C.·ZJ!l:J Salt CreekHighWliY (82601)•P.G Box ,r "-7 •~"'asper.WY8260219~:;;e)Tod Free 888..235.0515 •307.~J515 •Fax 307.234.1639 •casper@energyJab.ci-.www.en_b.com
g;t.j:-/c4U-kltB
LABORATORY ANAL\'TICALREPO:RT
Client:
Project:
International Uranium (USA)Corp
3rd Qtt crw Sampling -White Mesa Mill
Lab Order:COl09068S
ReportDate:10/16101
Lab ID:CO1090685-007
Client Sample ID:WMMiW4-8
AJlalyscs
vocs
Chloroform
SUIT:1.2-Dichlorobenzene-d4
Surr.Dlbromofluoromelhane
Suit:p-Brornofluorobenzene
Surr:ToJuene-d8
Lab ID:COI090685-008
Client Sample ID:WMMTW4-9
Apalyscs
vocs
ChlortJform
SUit:1,2-0iehloroberuene-d4
Surt:Dibromofluoromethane
Surr:p-BromofluorObenzene
Surt:Toluene-d8
Lab ID:COI09068S-009
Client SampleID:WMMMW4
Analyses
vocs
Chloroform
Surr:1.2-0iehlorobenzene-d4
Surr:DibrtJmofluoromethane
SUfi.p.BromofluorobelUene
SUrT:Toluene-dB
Collection Date:09120/01 09:46
DllteReeeived:09125/01
Matrix:AQUEOUS
MCL!
Result Units Qual RL QCL Method Analysis Date Illy_~
180 uglL 10 SW6260B 10/03101 14:4:3 /rh
99.4 %REC 80-120 SW8260B 10103101 14:43 t rh
102 %RE:C 80-120 SW8260B 10/03(01 14:43/rh
87.8 %REC 8Q.120 SW~60B 10103/01 14:43 f rh
95.9 %REC 80-120 SW8260B 1010:3101 14:43/rh
Collection Date:09120/0109:31
llateReceived:09125/01
Matrix:AQUEOUS
MCIJ
Result Units Qual RL QCL Method AnalysisDate1By
19 uglL 2.0 SW8260B 10104101 02:27/rh
89.2 OfoREC 80-120 SW8260El 10104/01 02:27 /rh
92.1 %REC 80-120 SW82608 10104(01 02:27/rh
84.8 %REC 80-120 SW8260B 10104/01 02:27 /rtl
97.3 o/aREC 80-120 SW8260B 10104101 02:27 f rh
Collection Date:09/20/01 11:20
DateReceived:09125/01
Matri~:AQUEOUS
MCV
Result Units Qual RL QCL Method AnalysisDateI By
5300 ugiL 400 $W8260B 10103101 16:04/ri'I
102 %REC 8Q.-120 $W82608 10103101 16:04 /rh
102 %REC 80-120 SW8260B 10103/01 16:04/rh
87.2 %REC 80-120 SW8260B 10103101 16:04/rh
96.7 %REC 80·120 SW8260B 10103101 16:04/rh
fteport
Definitions:
NO-NotdeteCted atthereponing limit
MeL -Maltimum COtIlllminant level
RL -Analytc repOrting level
QCL -Quality control limit
~'-.~''~::._\i!:-,~.n t
-".:_I .:_.J ••d...:U '.
NDv-09-01 10:40am FrDm-IUC BLANDING 901 679 2224 T-555 P.005/012 F-725
I.?J:'I""'..y?!?ENERGYLABORATORJEt:·We.·2393Sail Creek Highway (82601)-P.O.Box ;.....q •Gasper;WYB2602_~'!!~rolIFree888.235.0515·307..J515 •Fax 307.234.1639 -casper@energylab.c-.www.energylafJ.com
Rt#l·1ititt•Jru4.
LABORATORY ANALYTICAL REPORT
Client:
Project:
Intemational Uranium (USA)Corp
3rd Qtr CIW Sampling -White Mesa Mill
Lab Ol""der:COI09068S
Report Date:10/16101
CQUection Pate:08/22101 10:20
DateReceived:09/25/01
Matrix:AQUEOUS
MCIJ
Result UnitS Qual lU.QCL Method Analysis Date1By
ND ugJL 1.0 SW8260B 10/02101 16:59 I rh
101 %REC 60-120 $W82606 10102101 16:59/rIt
102 %REC 80-120 SW8260B 10/02/01 16:591rIt
B6.7 %REC 80-120 SW6260B 10/02101 16:591 rIt
96.7 %REC 80.120 SW6260a 10/02101 16:59/rh
VOCS
Chloroform
Surt:1.2-DiCt1lcrobenzene-d4
SUN':DibrQmcf)uorometh.me
surr:p-Brorncfluoroben;:ene
SUN':Toluene-dB
Lab ID:COl 090685-010
Client Sample JD:Trip Blank
Analyses_.--~,~-------------------....:.......
Rl:pon
DefiuiliOIlS:
NO -Not detected at the reporting limit
M~L •Maximum contaminant levd
RL -AnalytC reporting level
QCL -Quality control limit
Y...,'r'-r"'"..-....,"'_
•I ...•....·.tl .'.:-.,-,,";..I":;f:.tID
n .'.,.-~.-:.0 ...-• - • : • 1 :""I •J !:-,....-....,..~I 0'..'
....
1:1Y~ENERGY LABORATORIES,INC.
1.!:J,I(!1dt:!!!l.I P.o.BOX 3269 •CASPER,WY 82602 •2393 SAL.T CREEK HIGHWAY •CASPER.WY 82601
===~_PHONE (307)235,0515 •FA)((307)a34-1639
CLiENT:IntemationalUrnnium(USA)Corp ANALYTICAL QC SUJ\II1\1ARYREPORT Date:J8-0ct-OJ
Work Order:CG1090685
Project:3rd Qtr CI\V Sampling -White Mesa Mill TestNo:SW8260B
:zo"ic:>
CDIc:>
c:>
".,
~
POL SPK value SPK Ref Va'
TestCode:VOC.82!10·WoSHT Unlls:ugtL
TestNo:SW8260B
lovllimll HillhUmlt RPD Ref Val
Prep Dale:
Analysis Dale:1011'2001
on...~I
c:n
aJr->-:zco
:zt:')o
o
o
o
%RPO RPDlimit Qual
Run ID:GCMS1oC_011lJ01A
SeqNo:4g698
o
o
o
o
120
120
120
12.0
80
80
eo
80
9B
101
87.3
96.8
%REC
o
o
o
a
10
10
10
10
1.0
o
o
o
o
ND
9.8
10.12
8.76
9.6B
Result
SampType:MBt.K
Batch 10:R2441l
Analyte
Chloroform
Surr:1,2-Dlchlorobenzene..(J4
Surf;Oibromofiuoromel1lane
SlJrr:p·Bromolluorooonzene
Surr:Toluene-dB
Semple ID:Method Blank #
CllenllD:
Sample ID:Mell'lor:l Blank #
CllentlD:
SampType:MBLK
Batch ID:R2451
TeslCode;VOC-a260·W-5HT Ul'llls:ugiL
TestNo:SW8261lB
P,ep Date:
Analysis Dale:101212001
Run ID:GCMS1-C_tl110D3C
SeqNo:49751
Analyte Result PQl SPK value SPK Ref Val %REC LOI'lllmll HlghUmlt RPD RefVal %RPD RPDlImll Qual
TeslCode:VOC~260·W·SHT Ul'llts:uglL
TestNo:5W8260B
Cilloroform
Sun:1,2-Dlchlorobenzene..(J4
Surr:DlbromoftuOJomethane
Surr:p-Bromofluorobenzene
SlJrr:Toluene-de
Sample ID:Methot!Blank #
CllenllD:
ND
10.13
10.33
8.59
9.6
SllmpTyp.e:MBlK
Batcl110:R2461
1.0
o
G
o
o
10
10
10
10
o
{)
o
o
101
100
85.9
96
BD 120
80 120
80 120
80 12.0
Prep Date:
AnalysIs Dale:111/3/2.001
o
o
o
o
o
o
o
o
Run ID:GCMS1-C_01H)()3C
Sec;No:49162
CDc:>
CD......CD...............".,
COMPLETE ANALYT1CAL SERVICES
Analyte Resull POL
Ci'liorororm ND 1.0
Surr:1,2-Dlchlorobenzerle·d4 8.8 0
•..:1 e~rr:Dlbromonuoromelhane 10.12 {}..:-.~~rr:p·Bromofluorobe nzene 8.76 0z..:I,·,l?~,r;Toluene-d3 9.e8 0
• •....J '"~J j ..)
~'.)'.:Ja
......:------;--J
I"..")Q~:~lOers:o 1"11
%REC lowUmlt HlghLlml1 RPD Ref Val
-tIenenen
-u
c:>c:>CD~
onI...........en
.....
o
o
o
o
%RPO RPDtimit Qual
o
o
o
{}
B·AnIlI)'I!:detcc:tC'd in the assoeialt:d MclhGd Blank
120
12.0
12.0
120
ao
lID
lID
SO
88
101
87.6
96.8
o
o
o
o
10
10
10
10
S•Spike Recovcl}'oUlside aC(cp'od recQvcry IimiIs
R •RPD o~Iside accepled recovery limi,s
SPK value SPK RerVal
NO -Nol Dclcc!od at lbe Reporting Limil
J•Anal)'te detected ~1()w ql1ontilalion IimilS-.~.'.<:)U)
LSIl
CLlENT~
Work Order:
Project:
International Uranium (USA)Corp
C01090685
3rd Qtr CIW Sampling -\Vlrile Mesa Mill
ANALYTICAL QC SUMMARY REPORT
TestNo~
Date:18-0ct-OJ
SW8260B
:z:~Ic:>
CDIc:>
c:>
~
IIU:I
Sample 10:Metbod Blank f#SampType:MBLK TeslCocle:VOC·B260·W-8HT Unlls:ug/L.Prep Date:RlJn 10:GCMS1-c_011C103C
ClIef\tlD:Batch 10:R2461 TastNo:SW8260B Analysis Oate:10J4J2.001 SeqNo:441769
Analyte Resull PQl SPK value SPK Ref Val %REC L.owtlmil HlghLlmlt RPD Ref Val %RPD RPOLlmlt Qual
Ctlloror01m ND 1,0
Surr:1,2-Dlchlorobel1Zene-d4 10.16 0 10 0 102 80 120 0 0
Surr:Dibromoftuoromelhane 10.07 0 10 0 101 80 120 0 0
Sun:p-SromofluorolJenzene 8.43 0 10 0 B4.3 ao 120 0 0
Surr:Toluene-dB 9.51 0 10 0 95.1 80 120 0 0
Sample 10:C0105lD6BS.Q09A SampType:MS TestCode:VOC·El2.B{J·W-SHT UnIts:uglL Prep Date:Run 10:GCPlrS1oC_G11001A
Cllenl1D:W'..MMW4 BalcJ1ID:R2449 TestNo:SW8260B Analysis Dale:10'1J2ClO1 Se.qNo:49729
Analyte Result POL.SPKvalue SPKRefVal %REC L.OY4.lmll HllJhUmll RPD Ref Val %RPD RPOLlmlt Qual
Surr:1,2·Dlchlorobenzene-d4 9980 0 10000 0 99,8 80 120 0 0
Surr:Dlbromclluoromethene 9770 0 10000 0 91,7 80 120 0 0
Burr:p-BromoOuorolJenzene 8730 0 10000 0 87.3 60 120 0 0
Surr:Toluene-d8 9620 a 100Q[)0 96.2 80 120 0 (}
Sample ID:C01090773.Q01A SampType:,",S TestCode:VOC·826Cl.W-SHT Units:ugfl..PrilpDale:Run ID:GCMS1-e_0110D3C
CllenllD:Balch ID:R2461 TeslNo:SWB26ClB Analysis Date:10J2I2001 SeqNo:49752
Analyle Result pal SPKvalue SPK Ref Val %REC L.owLlmlt HlghLlmlt RPD Ref Val %RPD RPDl:lmll Qual
Chloroform 51.9 5.0 50 0 104 70 130 0 {l
Surf:1,2·DlcI1l(]1'obenzene-d4 5D.4 0 50 0 101 ao 120 0 0
Surr:DlbromonuorQmelhane 52.75 ()50 0 100 BO 120 a 0
$4rr:p-8romonuorobenzel'le 43.45 0 50 (}86,9 50 120 0 0I.•-)
.:.....,S~rr:Toluene-<lB 47.75 0 50 (}95,5 so 120 a 0
';"'J','J.....'.,•J
-n.,
~
~
OJr-~0::::1
::zSO")
CDc:>
CD-....CD
""""""-
-tIenenen
.,
c:>c:>~
""•I'·~....I
- I..........
C1
.,>
'.,-nI-....""en
;::'1 QUiilrfiers:
•..,L··
'••-oJ L~)
Co")rl1
NO -Not Dc~eted al the RepClT1ins Limil
J-AnDly1e d~1ectecl belo\V quan1iwliOll limits
S•Spike Rcco\rcryoutside accepted recovery Iimils
R•RPD outside acctp1ed recO'.'ery'IEmill;
B-Analyte delecled in the associ1l1ed Mell10d Blsnk
....J :-.=:.a
Inlernational UflInium (USA)Corp
COJ0906SS
3rd Qtr crw Sampling -White Mesa Mill
pal SPKvalue SPK Ref Val
pal SPK value SPK Ref Val
TestCode:VOC-Il260-W-SHT Units:ulJIL
TestNo:SWa260B
:zc<IC>CDIC>
-C>
",.
II)
31
......c31..!...c::n
OJ....>-:z'CJ
:z~
';
o
a
o
a
o
%RPD RPDlImll Qual
Date:J8·0ct-OJ
O/ORPD RPDUml1 Qual
Run 10:GC~"S1-e_011003C
SeqNo:49770
Run ID:GCMS1-c_011003C
SeqNo~49763
SW8260BTestNo:
Prep Date:
Analysis Dale:10'3'20Q1
%REC Lowllmll HlghLimll RPO Ref Val
109 70 130 0
99.8 80 120 0
97.7 80 120 a
87.3 80 120 a
96.2 80 120 0
Prep Dale:
Analysrs Dale:10J5I20D1
%REC LO'NLlmlt HlghLlmlt RPD Ref Val
5280
o
o
{I
o
10000
10000
10000
10000
10000
ANALYTICAL QC SUl\11\1ARY REPORT
1000
o
o
o
o
TestCode:VOC·B260-W-SHT Units:u"IL
TestNo:swaZSOB
Result
16180
9980
9nO
8730
9620
Resull
SampType:MS
Balch 10:R2461
SampType:MS
BalclllD:R2461
Sample ID:CCl1090695-(112A,
ClrenllD:
Analyle
Chloroform
Surr:1,2-0Ichlorollenzene-d4
Surr:Dlbromofluoromethane
.Surr:p.Bromorluorobenzene
SUIT:TofLlene-d8
Analyle
Sample 10:C01C190685-D09A
Client 10:WMMMW4
CLIENT:
Work Order:
Projec(;
CD:l
TeslCodl3:VOC-8260·W·SHT Units:ug/L Prep Date:
TeslNo:SW8260B Analysis Dale:1011J20D1
POL SPKvalue SPK Ref Val %REC LO'tovl.lmll Hlgl1L1mil RPD RefVal
1000 10000 5280 105 70 130 16180
()10000 ()100 80 120 0
0 100<10 {)98.5 SO 120 0
0 10000 0 87.9 80 120 a
(}10000 0 96.5 80 120 0
%RPD RPDlImit aual
Run 10:GCMS1oC_C11t001A
SeqNo:49730
o
o
o
o
a
~UIUIUI
'"U
C>C>CD~.....
CDC>
...I..........
UI
CD.....CD...............",.
20
10
10
10
10
2.69
o
o
o
o
1000 a 105 70 130 0
1000 0 99.6 BO 120 0
1000 0 96.2 ao 120 0
1000 (}87.5 ao 120 0
1000 0 97 00 120 a
50
o
o
o
o
1047
996
ga2
875
970
15750
10036
9850
8790
9550
Resull
SampTypB:MSD
aa~ch 10:R2449
Analyle
Sampll3lQ:C01090BB5.(J09A
Client 10:WMMMW4
Chloroform
Sur..1,2.Dfcl1lorooenzene-d4
Surr.01 bromonuoromelhane
Burr:p-Bromofluorobenzene
Burr:Toluene-d8
(J ~•.J...• I......~,i)
c:>
Chloroform
Surr.1,2·Dlchlorobenzene-d4
.....Surr;Dibromonuoromelhane" .."."J
S1lrr:p.BromDftuorobenzeneI~"~sin..Toluene-d8.....
to.".l ."~
:_00,7.'l."..QUI!l.llC:rs:.-=,'j i;")o P1
1-·')~..0
NO -Nltt Dctccled at the Reporting Limit
J•An al)'te detecled below quantillltinn limi1s
S•Spike Reco\'CT)'(]~1side accepted recover}'limi Is
R-RPO oUlside accepted recovery limi1s
B·Analyle delected in tile associated Melhod Bhmk
IS1ll
:zc<Ic:>a:>Ic:>
CLIENT:
Work Order:
Project:
InternationalUranium (USA)Corp
CO 1090685
3rd QCr ClW Sampling -,"Vllite Mesa Mill
ANALYTJCAL QC S~1ARYREPORT
TestNo:
Date:18-0cl-()!
SW8260B
c:>
"..
~
50 0 105 70 130 51.9 1.53 20
50 0 104 80 120 0 0 10
50 0 10B 80 12G 0 0 10
50 0 8S.3 80 120 0 0 10
50 0 97 ao 120 0 0 10
Sample 10:CD't090773-4l01A
Cllen\10:
Analyla
Chloroform
Surr:1,2-Dichlorobellzel1e-lf4
Surr:DibromGlluoromethane
Surr:p·BrOO\ofluorobenlene
Surr:Toluene·aS
SampType:MSD
Balcl11D:R2461
Result
52.7
51.9
53.8
44.15
48.5
Tes\Coda:VOC-B2E1G-WoSHT Units:ugJl
Tes\No:SWB26DB
PaL SPKvalua SPK Ref Val
5.0
o
o
o
o
Flap Date:
Analysis Oafe:1DJ2J20C1
%REC LowLlmil HlgtlLlmlt RPD RerVal
Run 10:GCMS1-G311100aC
SeqNo:49753
%RPD RPOLlml\aual
'TI....
§
I
c::n
OJ....>-::z'0
::zIn
CDc:>
"'"
"V
c:>c:>a:>~
en.....CD
"'""'""'""..
-'tIc:nc:nc:n
TestCotle:VOC·B26[t·W-SHT Units:ug/L Prep Dale:Run ID:GCMS1-G_011Cm3C
TeslNo:SW626DB Analysis Date:101312001 SeqNo:49764
POL SPK value SPK Ref Val %REC LowUmlt HlghUmlt RPD Ref Val %RPD RPDUmU QlIal
1000 10000 5280 105 70 130 16180 2.69 20
0 10000 0 100 80 120 0 a 10
0 10000 0 98.5 80 120 0 0 1{l
0 1000D 0 87.9 BO 120 0 0 10
0 10000 0 96.5 BO 120 0 0 10
TeslCode:VQC·S26{1·W-SHf Units:uglL Prep Date:Run ID:GCMS1-e_011Q03C
TeslNo:SW826DB AnalysIs Date:10/512001 SeqNo:49771
POL SPKvallJB SPK Ref Val %REC LoV/lImlt HlghLlrnll RPD Ref Val %RPD RPDUml1 QlIal
50 1000 0 107 70 130 1041 2.45 20
0 1DOO 0 100 BO 120 0 0 10
G 10(1)0 104 80 126 0 0 10
0 1DDO 0 87 BO 120 0 ()o 10
0 1000 0 96.1 ao 120 0 0 10
Result
1073
1001
1035
B70
961
15750
10030
9650
8790
9650
Result
SampType:MSD
Batch ID:R24131
SampType:MSD
Ba\ch 10:R2.4131
Chloroform
Surr:1.2·Dlctllorobenzerle-d4
Surr:Dibromofllloromelhane"'JS:urr:poBromofluorobenzenB
Stlrr:Toll1enB-clB
Analyie
Chlororonn
Surr.:1.2-Dlchlorobenzeneo(J4
Surr:Dlbromolluoromelhana
Surr:p·BromoRuorobenzene
Surr:TolllenlHfEl
Sample 10:CCl1G9D595~12A.
Client 10:
Analyle
Sample 10:C01090118S-G09A
Client U):WMMMW4
..r:J "1
:..)':,":
•••••1
I .:-;,
en ;:1
:",j :..)o '
,-,':'Quriiiners:.,~~,.r;l(..:,\,.,-,.~,I J (3
ND •Not Delected at 1heReporling Limil
J-Anal}1c deleclClll below qumntitation limi1s
S•Spike Recovery outside acccplcd rccoyCI)'Iimils
R•RPD ouisidc accepled recQVeJ)'lim;ls
B·Analyle dctecled in 1heassocialed Mclhod Bialik
'TII....."'"c:n
Nov-oe-Ol 10:42am From-IUC BLANDING 801 678 2224 T-555 P.Ol0/012 F-725
~..T.....-u ENERGYLABORATORIES,INC."2393 SaHCreekHigl1way(82G01).P.D.BoY-':I25B •Casper.WYB2tf02t:!!..:!'-~~'!:.~~701IFree88Q.235.0515·3C .15.0515·Fax 307.234.1639 •casper@energylaJ,',-www.enetgy!ab.ctJm
't:Ot~l·l,l·fK·t;n4f'
LABORATORY ANALYTICAL RE10RT
Client:
Project:
International Uranium (USA)COIp
3rd Quarter 2001 Sampling Event White Mesa Mill
Lab Order:cOI090647
Report Date:10/04101
Collection Date:09/20/01 11;02
DateReceived:09125/01
Matrix:AQUEOUS
MCU
Result Units Qual RL QCL Method Analysis Date1By
12.8 mg/l.0.50 E353.2 09126101 19:27JIWk
Collection Date:09120101 10:55
DateReceived:09125101
Mauu.:AQUEOUS
MCU
Result Units Qual RL QCl..Method Amllysis Date I By
11.4 mglL 0.50 E353.2 09126101 19:29 Jrwk
Collection Date:09120/01 10:30
DateReceived:09125/01
Matrix:AQUEOUS
MCU
Result 'UJlits Qual RLQCL Method Analysis Date1By
3.06 rng/L 0.10 E353.2 09/26101 19:331 rwk
Collection Date:09120/01 10:50
DateReceived:09/25/01
Matrix:AQUEOUS
MCLI
Result Units Qual RL QCL Method Analysis Date 1By
14.8 mg/L 1.00 E353.2 09126/01 19;391rwk
Lab ID:COl 090647-001
Client Sample ID:WMMTW4-1
Analyses
NON-METAlS
Nitrogen,Nitrclle+Nitrite as N
Labill:COl090647-002
ClientSalllple ID:WMMTW4-2
Analyses
NON-METAI.S
NitrOgen,Nitrate+Nitrlteas N
Lab ID:COl090647-003
Client Samplem:WMMTW4-3
Analys:s ~~__~~.__:~_~__=_~__~
NON..METAlS
Nitrogen,Nitrate+NitriteCIS N
Lab ID:COl090647-004
Client Sample ID:WMMTW4-4
Analyses
NON-METALS
Nitrogen,Nittate+Nitrite as N
Report
Definitions:
NO -Not delet1cd at thereportinS limit
Mer..-Maximum conmminant level
IU.•Analytc reporting Icvel
QCL -Quality control limit
,~...,"I .'~:',---,..,"1 ,",:);..:••~',.J :iU·,I..L;;:
Nov-oe-Ol 10:42am From-IUC BLANDING 801 678 2224 -T-555 P.Oll/012 F-725
~:!....:-~Y:J ENERGYLABORATORIE5r INC-·2393Sah Cr6ekHighway (82601)•RO.Box;.3?58 •Casper;WY82fj()2~_~!~l!lOUFree 888.235.0515 •30-.''i0515·Fax 301.234.1639 •casper@energYlat;.~.·I.www.energylab.ctJI1'1
p:ta-];W-1c/14.
LABORATOltY ANALYTICAL REPOaT
Client:
Project:
International Uranium (USA)Corp
3rd Quarter 2001 Sampling Event White Mesa Mill
Lab O..der:C01090647
Report Date:10/04/01
Lab ill:CO1090647.005
ClientSample lD:WMMTW4-S
Analyses---------------------=~--~~---------=----
NON-METALS
Nitrogen,Nilrilte+Nittite as N
Lab ID:COl 090647·006
Client SampleID:WMMTW4-6
Analyses
NON-METAlS
Nitrogen.Nitrate+Nitrite as N
Lab lJ):COl090647-007
Client Sample ID:WMMTW4-7
Analyses
NON-METALS
Nittogen.Nitrate+Nitrite as III
LabJD:CO1090647-008
Client Sample ID:WMMTW4-8
Analyses
NON-METALS
Nitrogen,Nilrilte+Nitrite as N
Repon
Definitions:
NO •Not dCtc&:tcd at the reponing limit
MeL •Maximum con~minant1cvd
RL-Analytc:reponing level
QCL -Qualil)'control limit
......
Nov-OS-Ol 10:42am ·From-IUC BLANDING 801 678 2224 T-555 P.012l012 F-725
?~.~!?ENERGYLABORATORIES".INC••239388/1 Creek Highway(8!!fi01)-P.Q Box QP58 -Casper;WY&."602~~~,"=1~roHFme088.235.0515·30.~·1.0515'Fax 307.234.1639 •casper@energylab~'.-www.energylab.com
'~':I·M:ti·mm,.
LAllORATORYANALY11CAL REPORT
Client:
Project:
International Uranium (USA)Cotp
3rd Quarter 2001 Sampling Event White Mesa Mill
Lab Order:C01090647
lteport Date:10/04/01
Lab ID:CO1090647-009
Client Sample ID:WMMTW4-9
Analyses
NON-METALS
Nitrogen.Nltrate+Nitrite as N
Lab ID:COI090647-010
Client Sample ID:WMMMTW4
Analyses
NON~METALS
Nitrogen,Nib"ale+Nilrlte as N
Lab ID:COI090647-011
Client Sample ID:WMMTW4-10
Analyses
NON-METALS
Nitrogen.Nitrate+Nilrite as N
Collection Date:09120/01 09=33
DateReceiYed:09125/01
Matrix:AQUEOUS
MeLI
Result Units Qual RL QCL Method Analysis DateI By
0.40 mg/L 0.10 E353-2 09126/01 19:1iS 1rwk
Collection Date:09/20/01 11;22
DateRe~eived:09125/01
Matrix:AQUEOUS
MeL!
Result Units Qual :RL QCL Method Analysis DateI By
9.45 mglL O.liO E353.2 09126101 19:551 rwk
CoUection Date:09120/0110:10
DateRecei-ved:09/25/01
Matrix:AQUEOUS
MeV
Result Units Qual RL QCL Method Analysis DateI By
2.32 mglL 0-20 E353.2 09/26101 20;01 1twit
Report
Dcfidiooos:
NO -Not deteeted at the n:poning limit
MeL -Maximum contaminant Ic=1Iel
Jl.L -AnalYte reporting level
QCt -QualitY control limit
:~:J ~...··l·~....""-.''"'E ~IO• l •.-"l•.•,.•":f .:"..":!I~•••
APPENDIXE
U.S.G.S Manual Chapter 6.5 and Hydrolab Parameter Specifications
Section 6.5
Water Resources--Office ofWater Quality
This document is also available in pdfformat:
mChapter 6.5.pdf
http://water.usgs.gov/owq/FieldManuaVChapter6/6.5.html
1 of 1
6.5
REDUCTION-OXIDATION POTENTIAL (ELECTRODE
METHOD)
Reduction-oxidation potential (as Eh):a measure of the
equilibrium potential,relative to the standard hydJ'ogen
electrode,developed at the interface beoveen a noble metal
electrode and an aqueous solution containing electroactive redox
species.
In contrast to other field measurements,the determination ofthe reduction-oxidation potential ofwater
(referred to as redox)should not be considered a routine determination.Measurement ofredox potential,
described here as Eh measurement,is not recommended in general because ofthe difficulties inherent in
its theoretical concept and its practical measurement (see "Interferences and Limitations,"section
6.5.3.A).
...Eh measurement may show qualitative trends but generally cannot be interpreted as
equilibrium values.
...Determinations ofredox using the platinum (or other noble metal)electrode method
(Eh)are valid only when redox species are (a)electroactive,and (b)present in the
solution at concentrations ofabout 10-5 molal and higher.Redox species in natural
waters generally do not reach equilibrium with metal electrodes.
Procedures for equipment calibration (test procedures)and Eh measurement are described in this section
for the platinum electrode only.Although the general guidance given here applies to other types ofredox
electrodes (such as gold and glassy carbon electrodes),it is necessary to consult the manufacturer's
instructions for correct use ofthe specific electrode selected.Concentrations ofredox species can be
determined by direct chemical analysis instead ofusing the electrode method (Baedecker and Cozzarelli,
1992).
~Section 6.5.1
1IReturn to Contents for 6.5--Reduction Oxidation Potential (Electrode Method)
11 Return to Chapter A6 Contents Page
11 Return to Field Manual Complete Contents
1IReturn to WaterOuality Information Pages
Maintainer:Office ofWater Quality
Webversion by:Genevieve Comfort
Last Modified:16JUNE98 ghc
11/08/20014:24 PM
Section 6.5.1
Water Resources--Office of Water Quality
This document is also available in pdfformat:
mChapter 6.5.I.pdf
6.5.1
EQUIPMENT AND SUPPLIES
http://water.usgs.gov/owq/FieldManuaVChapter6/6.5.1.html
lof3
The equipment and supplies needed for making Eh measurements using the platinum electrode method
are listed in table 6.5-1.Eh equipment must be tested before each field trip and cleaned soon after use.
Every instrument system used for Eh measurement must have a log book in which all the equipment
repairs and calibrations or equipment tests are recorded,along with the manufacturer make and model
numbers and serial or property number.
Electrodes.Select either a redox-sensing combination electrode or an electrode pair (a platinum and
reference electrode).Use of the correct electrolyte filling solution is essential to proper
measurement and is specified by the electrode manufacturer.Orion Company,for example,
recommends selection ofa filling solution to best match the ionic strength ofthe sample solution,in
order to minimize junction potentials.
Table 6.5-1.Equipment and supplies used for Eh measurements'
[mY,millivolt;±.plus or minus;jlSIcm,mlc.roslemens per amtimell!rat25 dE9rees CelsIus]
./Mllllvoitmete r orpH memrwith mllHvolt rgading capability,praferably with automatfc
temperature compensator;O.1-mVsensItivIty;scale to atleast±1,400 mV:BNC connector
(see instrumentspecifications forpH meters,6.4.1 in NFM 6.4)
./Redox electrodes,either (a)platinum and reference electrode (calomel or sllver:sllver-
ch loride)or (b)combInation electrode
./Electrode fllllng solutions (rgfer to manufacturer's specifications)
./Thermometer (liquid-In-glass orthermIstor type),calibrated (see NFM 6.1 for
selection and ca Ilbration crlteria)-far use with millivoltmete rs wlthouttemperaturg
compensator
r/Flowthrough cell with valves,tubIng,and aa:essories Impermeable to air (for use
with pump sysmm)
r/Sampling system:(1)In sItu (downhole)measurement instrument,or
(2)submersIble pump (used with closed-sysmm flowthrough cell).Pump tubIng
must be "impermeable"to oxygen.
r/ZoBe II's solution
./Aqua regIa or manufacturer's recommended electrode-claanlng solution
./liquid nonphospham laboratory-grada detergent
./Mild abrasIve:crocus cloth or 400-to SOO-grlt wst/drv Carborundum™papar
./Deionized water (maxlmum conductivIty of 1.0 JISlcm)
./Bottle,squeeze dlspenssr for deIonIzed wBtsr
r/Safety equIpment gloves,glasses,apron,chemical spill kIt
r/Paper tissues,disposable,lint free
.r Wests-dlsposel container
,Modify this Iiet to meet specific-needs oftlllil fieldeffoIt.
11/08/20014:25 PM
Section 6.5.1 http://water.usgs.gov/owqlFieldManuaIlChapter6/6.5.1.html
CAUTION:The standard hydrogen reference electrode (SHE)can
be dangerous and Is not recommended for Oeld use.
20f3
...Silver:silver-chloride or calomel reference electrodes are the redox electrodes in
common use.
...The Orion™combination electrodes are platinum redox and silver:silver-chloride
reference electrodes in one body (the Orion™brand is used for purposes ofillustration
only).
ZoBell's solution.ZoBell's is the standard solution for testing redox instruments.ZoBell's solution can
be obtained from the QWSU in Ocala,Fla.,or it can be prepared fresh (see below).Quinhydrone
solution is sometimes used but is not recommended because it is significantly less stable above 30°C and
its temperature dependence is not as well defined as that ofZoBell's.
ZoBell's solution consists ofa 0.1 molal KCI solution containing equimolal amounts ofK4Fe(CN)6 and
K3Fe(CN)6'ZoBell's is reported stable for at least 90 days ifh:pt chilled at 4°C.To prepare ZoBell's
solution:
1.Weigh the chemicals (dry chemicals should be stored overnight in a desiccator before use).
1.4080 g K4Fe(CNk3HzO (potassium ferrocyanide)
1.0975 g K3Fe(CN)6 (potassium ferricyanide)
7.4557 g KCI (potassium chloride)
2.Dissolve these chemicals in deionized water and dilute solution to 1,000 mL.
3.Store the solution in a dark bottle,clearly labeled with its chemical contents,preparation date,and
expiration date.Keep the solution chilled.
CAUTION:ZoBell's solution Is tOXic-handle with care.."
Aqua regia.Aqua regia can be used for cleaning the Eh electrode (check the electrode manufacturer's
recommendations).Prepare the aqua regia at the time ofuse--do not store it.To prepare the aqua regia,
mix 1 volume concentrated nitric acid with 3 volumes ofconcentrated hydrochloric acid.
6.5.l.A
MAINTENANCE,CLEANING,AND STORAGE
Refer to 6.4.1 ofNFM 6.4 on pH for general guidelines on meter and electrode maintenance,cleaning,
and storage.Follow the manufacturer's guidelines on the operation and maintenance ofthe meters and
electrodes,and keep a copy ofthe instruction manual with each instrument system.Keep the meters and
electrodes clean ofdust and chemical spills,and handle them with care.
Maintenance
Keep the surface ofnoble electrodes clean ofcoatings or mineral deposits.A brightly polished metal
surface prevents deterioration ofelectrode response.The billet tip is more easily cleaned than the wire
tip on the platinum electrode.Condition and maintain the Eh electrodes as recommended by the
manufacturer.
11108/20014:25 PM
Section 6.5.1
Cleaning
http://water.usgs.gov/owq/FieldManuaIlChapter6/6.5.1.html
30f3
Keep the O-ring on electrodes moist during cleaning procedures.
....To remove precipitate that forms on the outside wall or tip ofthe reference or
combination electrode,rinse the outside ofthe electrode with deionized water.
....Ifparticulates or precipitates lodge in the space between the electrode sleeve and the
inner cone ofsleeve-type electrode junctions,clean the chamber by flushing out the
filling solution (the precise procedure to be followed must come from the electrode
manufacturer).
....To remove oily residues,use a liquid nonphosphate detergent solution and polish the
surface with mild abrasive such as coarse cloth,a hard eraser,or 400-to 600-grit
wet/dry Carborundum™paper (Bricker,1982).
....To recondition the Eh electrode,immerse the electrode in warm aqua regia (70°C)for
about 1 minute.Do not immerse the electrode for longer than 1 minute because aqua
regia dissolves the noble metal as well as foreign matter and leads to an erratic electrode
response (Bricker,1982).Soak the electrode several hours in tap water before use.
TECHNICAL NOTE:Disassembly ofthe electrode is not recommended for routine cleaning and should
only be used when absolutely needed.Additional cleaning and reconditioning procedures are discussed in
NFM 6.4 and in American Public Health Association and others (1992),American Society for Testing and
Materials (1990),Edmunds (1973),Adams (1969),and Callame (1968).
Storage
For short-term storage,immerse the electrode in deionized water to above the electrode junction and
keep the fill hole plugged to reduce evaporation ofthe filling solution.The recommended procedures for
long-term storage ofelectrodes vary with the type ofelectrode and by manufacturer.The Orion™
combination electrodes are stored dry after rinsing precipitates from outside ofthe electrode,draining
the filling solution from the chamber,and flushing it with water (consult the manufacturer's cleaning
instructions).The electrode connector ends must be kept clean.Clean them with alcohol,ifnecessary.
Store the connector ends in a plastic bag when not in use.
Some afthe procedures recommended herein for equipment operation
maybe out of date If the equipment being used Is different from that
described orlncorpomtes more recent technological advances-follow
the manufacturer's Instructions.
~Section 6.5.2
'irRetum to Section 6.5
'ir Rerum to Contents for 6.5--Reduction Oxidation Potential (Electrode Method)
'ir Rerum to Chapter A6 Contents Page
'ir Rerum to Field Manual Complete Contents
'ir Retum to Water Quality Infomlation Pages
Maintainer:Office ofWater Quality
Webversion by:Genevieve Comfort
Last Modified:16JUNE98 ghc
11/08/20014:25 PM
Section 6.5.2
Water Resources--Office ofWater Quality
This document is also available in pdfformat:
mChapter 6.5.2.pdf
6.5.2
EQUIPMENT TEST PROCEDURE
http://water.usgs.gov/owq/FieldManuaVChapter6/6.5.2.html
lof5
Eh measuring systems can be tested for accuracy but they cannot be adjusted.Eh equipment must be
tested,either in the laboratory or in the field,against a ZoBell's standard solution before making field
measurements.In general,field testing with ZoBell's is not required,but the protocol used will depend
on study needs.
...Before using,check that the ZoBell's solution has not exceeded its shelflife.
...Test the Eh equipment using the ZoBell's solution before and after field use.
...Be aware that:
ZoBell's is toxic and needs to be handled with care.
ZoBell's reacts readily with minute particles ofiron, dust,and other substances,
making field use potentially difficult and messy.
The Eh measurements are made by inserting a platinum electrode coupled with a reference electrode into
the solution to be measured.The resulting potential,read directly in millivolts from a potentiometer
(such as a pH meter),is corrected for the difference between the standard potential ofthe reference
electrode being used at the solution temperature and the potential ofthe standard hydrogen electrode
table 6.5-2).
TECHNICAL NOTE:Erefis the whole-cell potential ofthe reference electrode in ZoBell's solution.
Eref=238 mV (saturated KCI,immersed with the platinum electrode in ZoBell's at 25°C)is the measured
potential ofthe silver:silver-chloride (Ag:AgCl)electrode;
Eref =185.5 mV (saturated KCI,immersed with the platinum electrode in ZoBell's at 25°C)is the measured
potential ofthe calomel (Hg:HgCI2)electrode;
EO =430 mV is the standard electrode potential ofZoBell's solution measured against the hydrogen electrode
at 25°C.
Half-cell potentials for the calomel,silver:silver chloride,and combination electrodes are shown in table
6.5-2.Table 6.5-3 provides the theoretical Eh ofZoBell's solution as a function oftemperature.For
those temperatures not shown on tables 6.5-2 and 6.5-3,interpolate the values.Add the value
.corresponding to the solution temperature to the measured potential electromotive force (emf
measurement).
11/08/2001 4:26 PM
Section 6.5.2 http://water.usgs.gov/owq/FieldManuaI/Chapter6/6.5.2.html
Table 6.5-2.Standard half-cell potentials ofselected reference electrodes
as a function of temperature and potassium chloride reference-solution con-
centration,in volts
[Liquid-junction potentialincluded-multiplyvoltsby l,ODOtocomertto miIIiIIolts;KCI,pcti13!iium
chloride;Temp"C,te mperature indegreesCelsius,M,molar;.:-.wluenolprovi::led inreference]
10 0.221)0.216 IU14 0.280 0.258 0.254 0.2!l6
15 0.218 0.212 IUII9 0.251 0.253
20 0.213 0.208 0.204 0.257 0.252 O.24B 0.249
26 0.2119 0.206 0.11i9 0.256 0.250 0.248 0.244 0.248
3D 0.206 0.201 0.1IM 0.253 0.248 0.244 0.241 0.242
36 0.202:0.100'0.1IB 0.238 O.23B
40 0.1re 0.193 11.184 0.249 11.244 1I.2lB 11.234 0.234
'MOdified flamLAngmllir[19711.~Modi6ed flamllMes(100'~.
SNiJItlltltJm[l971ll1nd O.K.NordllriJl'(~U.s.GeiJlogilIllSLiI"''''',wIllefl i:tImm~••19!16;Ihehili-tell
ptiletlllalli:lflelMa.redflomNoJdlUOM(19711 lire recommended wherthllflthe...all.iell frOM ChDlellllll0041
clfed InUlIl ihtitlnJel1t_nuillprovl:led ~iheOrion CbMp"bVbecaul&e Nordlll'Dm~vallll!!>were de.....loped
lIpedlii:lfIl'l'bnheOrion'"9&18 tetlal(electltidealid prOIll:le gteMer6iiClltllClt'lind p,eeilliofl.
40110n""marufat:lUrerreQimmendll U'I!it b rIlIlMplelitIllIIiohllwithIOIaI IonicWetlglhelll:i!l!dIII"0.2
molar[lor l>lI&mple,Il>awau;rl,Lisea 4MKI;1-BMllflittotl fillingllohAlon [lJIllIBlI'I'IIlpplledwththeOrlon'"mod!!1
97-18ell!ClllldO!+and thehal'cell pCliemlaluhownabo.....bltheIUvel:lllverchloridesaturated ICCI re~rence
i!'ll!tIlOdi!'..
2of5
Table 6.5-3.Eh of ZoBeWs solution as a function
of temperature
[From Nord.strom (1977);"c,degrees Celsfus;mV,millivolts]
10 467 26 428
12 462 28 423
14 457 '30 418
16 4~32 416
18 448 '34 407
2)443 '36 402
22 4'38 '38 '!Ii11
24 433 40 ?93
25 430
To test Eh equipment,complete thefollowing 7steps and record results on the Eh data recordform
for the equipment testprocedure (fig.6.5-]):
1.Follow the manufacturers'recommendations for instrument warm up and operation.
•Set the scale to the desired millivolt range.
•Record the type ofreference electrode being used.
2.Unplug the fill hole.Shake the electrode gently to remove air bubbles from the sensing tip ofthe
electrode.Check the level ofthe filling solution and replenish to the bottom ofthe fill hole.
•The filling solution level must be at least 1 in.above the level ofsolution being measured.
•Use only the filling solution specified by the manufacturer.
3.Rinse the electrode,thennometer,and measurement beaker with deionized water.Blot (do not
11/08/20014:26 PM
Section 6.5.2 http://water.usgs.gov/owq/FieldManuaVChapter6/6.5.2.html
30f5
wipe)excess moisture from the electrode.
4.Pour ZoBell's solution into a measurement beaker containing the electrode and temperature
sensor.
•The Eh electrode must not touch the bottom or side ofthe container.
•Add enough solution to cover the reference junction.
•Allow 15 to 30 minutes for the solution and sensors to equilibrate to ambient temperature.
5.Stir slowly with a magnetic stirrer (or swirl manually)to establish equilibrium between the
electrode(s)and solution.Switch the meter to the millivolt function,allow the reading to stabilize
(±5 mY),and record the temperature and millivolt value..
6.Look up the half-cell reference potential for the electrode being used (table 6.5-2).Add this value
to the measured potential to obtain the Eh ofZoBell's at ambient temperature.
•Ifthe value is within 5 mV ofthe ZoBell Eh given on table 6.5-3,the equipment is ready for
field use.(See the example below.)
•Refer to section 6.5.4 ifthe value is not within 5 mV ofthe ZoBell Eh.
7.Rinse offthe electrodes and the thermometer thoroughly with deionized water.Store the test
solution temporarily for possible verification.
EXAMPLE:
Example ofthe equipment test procedure using a silver:silver chloride-saturated KCI (Ag:AgCI)
electrode.
Eh =emf+Erel
where:
Eh is the potential (in millivolts)ofthe sample solution relative to the standard hydrogen
electrode,
emfor Emeasuredis the electromotive force orpotential (in millivolts)ofthe water measured
at the sample temperature,
Ere/is the reference electrode potential ofthe ZoBell's solution corrected for the sample
temperature (table 6.5-2).
a.Follow steps 1-5 (above).For this example,
•Measured temperature =22°C
•emf=238 mV.
b.Check table 6.5-2.The interpolated reference potential =202 mV for Ag:AgCI-saturated
KCI at 22°C.
c.From Eh =emf+Erel
Eh (ZoBel/'s)=238 mV +202 mV =440 mV.
11/08/20014:26 PM
Section 6.5.2 http://water.usgs.gov/owq/FieldManuaVChapter6/6.5.2.html
d.Check table 6.5-3.The test value of440 mV is within ±5 mV of438 mV from table 6.5-3.
Thus,the equipment is functioning well and ready for field use..
Check the date on Zobell's solution-donot use solution past Its
expiration date.
Eh Data Record
Equipment Test Procedure
Equipm ent deecription end identificstion (model snd serisl snd/or W num ber!:
Metllr _
Eh elsctrods _._Reference slsctrode _
ZoBell's solution:Lot '*_Dete:prepered sxpirsd _
Beforessmpie Eh:After nmple Eh:
1.Temperature ofZoBell'ssolutian:T =_
(efter equilib r&tionto am bienttem pe returel
2.Observsd potentiel (in millivolts)ofZoBell's
reletive to messuring electrode,st
smbient tempersture (Emaesursd or eml):emf=_
3.Referenca elactrode potentisl lin millivolts)
stem bienttem pereture from teble 6.5:-2
(Eref):Ersf=-------
4.Calculate Eh ofZoBell's:Eh =emf+Ersf Eh=_
5.Thsoreticsl potentiel (in millivolts)
ofZoBell'a atsm bient tem pereture
from table 8.5-3:Eh (theoreticsI)=_
8.SubtrsctcslculstedEh from Eh theoreticsl
(Zobell'slCaisp 4 minue &tep Ii)AEh=_
1.Check:is AEh within ±Ii mV1 Observations:_
40f5
Figure 6.5-1.Eh data record:equipment test procedure.
I:'VSection 6.5.3
'it-Return to Section 6.5.1
1tReturn to Contents for 6.5--Reduction Oxidation Potential (Electrode Method)
'it-Return to Chapter A6 Contents Page
'it-Return to Field Manual Complete Contents
'it-Return to Water Quality Information Pages
Maintainer:Office ofWater Quality
11108/200I 4:26 PM
Section 6.5.3
Water Resources--Office ofWater Quality
This document is also available in pdfformat:
mJ Chapter 6.5.3.pdf
6.5.3
MEASUREMENT
http://water.usgs.gov/owq/FieldManuaI/Chapter6/6.5.3.html
lof5
To obtain accurate results,it is necessary to prevent losses and gains ofdissolved gases in solution.
Consult NFM 6.0 for information on precautions and general procedures used in sample collection and
NFM 6.2 for a description ofthe flowthrough cell used in dissolved-oxygen determination (the
spectrophotometric method).
...Chemical,physical,and biological reactions can cause the Eh ofwater to change
significantly within minutes or even seconds after the collection ofa sample.
....Water samples cannot be preserved and stored for the Eh measurement.
...Use equipment that eliminates sample aeration and operate the equipment to meet this
goal.Ifusing a flowthrough chamber or cell:
Use tubing that is impermeable (relatively)to oxygen.
Channel the sample flow through an airtight cell (closed system)constructed
specifically to accommodate redox or ion-specific electrodes,temperature,and
other sensors.
Connections and fittings must be airtight.
Purge atmospheric oxygen from the sample tubing and associated flow channels
before measuring Eh.
Do not use pumping systems In which Inert gas contacts and
lifts the sample to the surface:the gas could strip gaseous redox
species from the water.
Measure Eh in situ with a submersible instrument or use an airtight flowthrough system.
First:
1.Record the type ofreference-electrode system being used (fig.6.5-1).
2.Check for the correct electrode filling solution.Ifworking in very hot or boiling waters,change
the reference electrode filling solution daily.
3.Keep the electrode surface brightly polished.
TECHNICALNOTE:Temperature determines the Eh reference potential for a particular solution and
electrode pair,and may affect the reversibility ofthe redox reactions,the magnitude ofthe exchange current,
11/08/2001 4:28 PM
Section 6.5.3 http://water.usgs.gov/owqlFieldManuaIlChapter6/6.5.3.html
and the stability ofthe apparent redox potential reading.The observed potential ofthe system will drift until
thennal equilibrium is established.Thermal equilibrium can take longer than 30 minutes but it is essential
before beginning the measurements.
2of5
Next,measure the Eh and complete thejieldform (fig.6.5-2):
1.Select an in situ or closed-system sampling method.Immerse the electrodes and temperature
sensors in the sample water.
•In situ (or downhole)--Lower the sensors to the depth desired and follow the
manufacturer's recommendations.
•Closed-system flow cell--Check that the connections and sensor grommets do not leak,and
that the water being pumped fills the flowthrough cell.
2.Allow the sensors to reach thermal equilibrium with the aqueous system being measured and
record the time lapsed.
•It is essential that platinum electrodes be flushed with large volumes ofsample water to
obtain reproducible values.
•Record the pH and temperature ofthe sample water.
3.Switch the meter to the millivolt function.
•Allow the reading to stabilize (±5 mV).
•Record the value and temperature (see the technical note that follows step 7,below).
•Stabilization should occur within 30 minutes.
4.Take readings ofthe sample temperature and potential (in millivolts)every few minutes for the
first 15 to 20 minutes.
•It is best to stop the flow ofthe sample while the reading is being taken to prevent
streaming-potential effects.
•After 15 to 20 minutes,begin to record the time,temperature,and potential in plus or minus
millivolts about every 10 minutes.Continue until 30 minutes have passed from the initial
measurement and until the measurements indicate a constant potential.
5.After the measurements have been completed for the day,rinse the electrode(s)thoroughly with
deionized water.
Iffield calibration is required for a study,
a.Place the electrode(s)and other sensors in ZoBell's solution that has been equilibrated to the
temperature ofthe aqueous system to be measured.The electrode(s)must not touch the
container,and the solution must cover the reference junction.
b.Allow the electrode to reach thermal equilibrium (15 to 30 minutes).
c.Record the potential reading.
d.Follow steps 5-7 ofthe equipment test procedure in section 6.5.2.
6.Record all data and calculate Eh (see EXAMPLE,(section 6.5.2).
11/08/20014:28 PM
Section 6.5.3 http://water.usgs.gov/owq/FieldManual/Chapter6/6.5.3.html
Fill out the Eh data record form for field measurements fig.6.5-2).
Eh Data Record
rield Measurements
FieldEh
1.Temperaturs and pH ofsysmm measured:T :0
pH:
2.Time to thermal equilibration;
Measurement began at ---
Measurement ended at ---
3.Measured pomntial ofwamr system ImV);emf:
4.Reference electrode pomntfal mV ofZoBe/l's
atsample temperature:Eref :_
Field Eh1
5.Calcuiam sample Eh:BITt+Eref
(add step :I +-step 4l:Eh = _
30f5
6.Field measurements should agrsewithin about 10 mV.
ObservatiDns;_
'Tt18 second f1EBSurement is necesmryfurqualitv mltrol.
figure 6.5-2~Eh data record:field measurements.
7.Quality control--Repeat the measurement.
TECHNICAL NOTE:The response ofthe Eh measurement system may be considerably slower than that of
the pH system and that response also may be asymmetrical:the time required for stabilization may be longer
when moving from an oxidizing to reducing environment or vice versa.Ifthe readings do not stabilize within
about 30 minutes,record the potential and its drift;assume a single quantitative value is not possible.Ifan
estimate ofan asymptotic final (hypothetical)potential in such a drifting measurement is desired,referto the
method used by Whitfield (1974)and Thorstenson and others (1979).
6.5.3.A
INTERFERENCES AND LIMITATIONS
Measurements should not be carried out without an awareness ofthe interferences and limitations
inherent in the method.
11/08/20014:28 PM
Section 6.5.3 http://water.usgs.gov/owq/FieldManuaVChapter6/6.5.3.html
40f5
~Organic matter and sulfide may cause contamination ofthe electrode surface,salt
bridge,or internal electrolyte,which can cause drift or erratic performance when
reference electrodes are used (American Public Health Association and others,1992).
...Hydrogen sulfide can produce a coating on the platinum electrode that interferes with
the measurement ifthe electrode is left in sulfide-rich water for several hours
(Whitfield,1974;Sato,1960).
~The platinum single and combination redox electrodes may yield unstable readings in
solutions containing chromium,uranium,vanadium,or titanium ions and other ions that
are stronger reducing agents than hydrogen or platinum (Orion Research Instruction
Manual,written commun.,1991).
~Do not insert redox electrodes into iron-rich waters directly after electrode(s)contact
with ZoBell's.An insoluble blue precipitate coats the electrode surface because ofan
immediate reaction between ferro-and ferricyanide ions in ZoBell's with ferrous and
ferric ions in the sample water,causing erratic readings.
Many elements with more than one oxidation state do not·exhibit reversible behavior at the platinum
electrode surface and some systems will give mixed potentials,depending on the presence ofseveral
different couples (Barcelona and others,1989;Bricker,1982,p.59-65;Stumm and Morgan,1981,p.
490-495;Bricker,1965,p.65).Methane,bicarbonate,nitrogen gas,sulfate,and dissolved oxygen
generally are not in equilibrium with platinum electrodes (Berner,1981).
TECHNICAL NOTE:Misconceptions regarding the analogy between Eh (pe)and pH as master variables
and limitations on the interpretation ofEh measurements are explained in Hostettler(1984),Lindberg and
Runnells (1984),Thorstenson (1984),and Berner (1981).To summarize:
(1)Hydrated electrons do not exist in meaningful concentrations in most aqueous systems--incontrast,pH
represents real activities ofhydrated protons.Eh may be expressed as pe,the negative logarithm ofthe
electron activity,but conversion to pe offers no advantage when dealing with measured potentials.
(2)Do not assume that redox species coexist in equilibrium.Many situations have been documented in which
dissolved oxygen coexists with hydrogen sulfide,methane,and ferrous iron.
•The practicality ofEh measurements is limited to iron in acidic mine waters and sulfide inwaters
under-going sulfate reduction.
•Other redox species are not sufficiently electroactive to establish an equilibrium potential at the surface
ofthe conducting electrode.
(3)A single redox potential cannot be assigned to a disequilibrium system,nor can it be assigned to a water
sample without specifying the particular redox species to which it refers.Different redox elements (iron,
manganese,sulfur,selenium,arsenic)tend not to reach overall equilibrium in most natural water systems;
therefore,a single Eh measurement generally does not represent the system.
6.S.3.B
INTERPRETATION
A rigorous quantitative interpretation ofa measurement ofEh requires interactive access to an aqueous
speciation code.Exercise caution when interpreting a measured Eh using the Nernst equation.The
Nernst equation for the simple half-cell reaction (M/(aq)=Ml/(aq)+e-)is
11/08/20014:28 PM
Section 6.5.3
where:
http://water.usgs.gov/owq/FieldManuaIlChapter6/6.5.3.html
50f5
R =gas constant;
T =temperature,in degrees kelvin;
n =n umber of electrons in the half~ceU reaction;
F =Faraday constant;and
Q'M ,,}and QUJ.((",j=thermodynamic activities ofthe free ions MI~}
,'I ,~and MI'(",and not simplythe analytical eonce:'
tntions'lof total M in oxidation states I and ll,
respectively.
Measurements ofEh are used to test and evaluate geochemical speciation models,particularly for
suboxic and anoxic ground-water systems.Eh data can be useful for gaining insights on the evolution of
water chemistry and for estimating the equilibrium behavior ofmultivalent elements relative to pH for
an aqueous system.Eh can delineate qualitatively strong redox gradients;for example,those found in
stratified lakes and rivers with an anaerobic zone,in an oxidized surface flow that becomes anaerobic
after passing through stagnant organic-rich systems,and in mine-drainage discharges.
~Section 6.5.4
-ttReturri to Section 6.5.2
-ttRetum to Contents for 6.5--Reduction Oxidation Potential (Electrode Method)
-ttReturn to Chapter A6 Contents Page
-tt Return to Field Manual Complete Contents
-ttReturn to Water Quality Information Pages
Maintainer:Office ofWater Quality
Webversion by:Genevieve Comfort
Last Modified:15AUGOO imc
11/08/20014:28 PM
Section 6.5.4
Water Resources--Office ofWater Quality
This document is also available in pdfformat:
mI Chapter 6.5.4.pdf
6.5.4
TROUBLESHOOTING
http://water.usgs.gov/owqlFieldManuaIlChapter6/6.5.4.html
Contact the instrument manufacturer ifthe suggestions in table 6.5-4 fail to resolve the problem.
~Check the voltage ofthe batteries.
~Always start with good batteries in the instruments and carry spares.
Table 6.5-4.Troubleshooting guide for &.musurement
[±.plus or minus;mY,millillOlb;l!'mf,electromotive force]
lof2
Eh of ZeBell'e solution
exceedetheoraticel by
±5mV
Exceeeive drift
Erratic performence
Poor reeponee when
using peired electod8!l
Check mster operetion:
•Use shorting leed to establish mater reeding etzero mY.
•Checlqteplece betteriee.
•Checkagainst beckup mster.
Check electrodeoperation:
•Checkthet electrode reference eolution level ietothe
fill hole.
•Plugqueationeble reference electrode into reference
electrode jeck end enother reference electrode in good
working order ofthe Bam e type into the indicator
electrode jeck ofthe mater;imm eree electrodesin e
potessium chloridesolution.record mY,rinse off and
immerse electrodee in ZeBell's solution.Thetwo mV
reedings should ba 0±5 mY.It using different elec-
trodes (Ag~gCI end Hg:HgCI21.reeding should be 44±
5 mVfor a good reference electrode.
•Polish platinum tip with mild ebraeive (crocuscloth,
herd ereeer,ore 4 00-6OO-grit watfdrv Cerborundum"'"
peper),rinee thoroughlywith deionized weter.Uee e
Kimwipem ittheee abreeivee ere not evaileble.
•Drain end refill reference electrolytechember.
•Di.!Connect reference electrode.Drain and ret~1 electro-
lyte chem ber with correctfilling solution.Wipe off
connectors on electrode end mster.Usebeckup
electrode to checktheemf.
•Reed emfwithfreeh aliquot ofZeBell'seolution;
preparefresh ZoBell'ssolution if possible.
•Recondition electrode byclesning with aque regie snd
renewing filling solution-thiBisBls.nlBCft.
11108/20014:28 PM
Section 6.5.4 http://water.usgs.gov/owqlFieldManuaIlChapter6/6.5.4.html
2of2
~Section6.5.5
'itRetum to Section 6.5.3
'it Return to Contents for 6.5--Reduction Oxidation Potential (Electrode Method)
'itReturn to Chapter A6 Contents Page
'itReturn to Field Manual Complete Contents
'itReturn to Water Quality Information Pages
Maintainer:Office ofWater Quality
Webversion by:Genevieve Comfort
Last Modified:16JUNE98 ghc
11/08/20014:28 PM
Section 6.5.5
Water Resources--Office ofWater Quality
This document is also available in pdfformat:
'II Chapter 6.5.5.pdf
6.5.5
REPORTING
http://water.usgs.gov/owqlFieldManuaIlChapter6/6.5.5.html
1of1
Report the calculated Eh in mV to two significant figures.
Potentials are reported to the nearest 10mV,along with the temperature at which the measurement was
made,the electrode system employed,and the pH at time ofmeasurement.
~Chapter 6.6 Contents
"irRetunl to Section 6.5.4
"irRetunl to Contents for 6.5--Reduction Oxidation Potential (Electrode Method
"ir Retunl to Chapter A6 Contents Page
"ir Return to Field Manual Complete Contents
"irRetum to Water Quality Information Pages
Maintainer:Office ofWater Quality
Webversion by:Genevieve Comfort
Last Modified:16JUNE98 ghc
11108/2001 4:28 PM
Section 6.5.2
Webversion by:Genevieve Comfort
Last Modified:16JUNE98 ghc
50f5
http://water.usgs.gov/owq/FieldManuaVChapter6/6.5.2.html
11/08/2001 4:26 PM
Qualifications for Series 4a Speclflcations (continued)Hydl'olab Technlca'Note 2.04
'~
{1}
{2)
(3)
(4)
{~)
{S}
(7)
tal
(9)
(\O)
(11)
(12)
Re&llOll4ie tlms II the t1mslBqulred for ameai1JrlImlll1t lD lIOC:CPIIlllah 95%of aItsp-<:hange In only thai measurement forInstlinca,lfIile tamper.1.'Jra Ch8~d sudc!llnly from 25·C10 S5'C,lelT(>llrature's tlllI8 tespcnse would
be the tlms TlIQul~fer the reacling to charlie to 95%<~·~5)";l6='34.15"C,
StIlbilily IIitml;illprabo'.Bbility to read wlth\n ~I&IA:C:UIBCY IpeclblJonslnthe HmIlltendard ullI!ld fCc celll:flIl1on.Certain .IIuaU\)n&cen adlleraly a1feCl stltllmy,For example.eralere""e~aoalled for amonth in 'sery
law Spldftc Ca~ua.noowiler eannllt ceclnar1ly be expected III 1ll'0dlOU acc.'.lTale pH (or Radell o~ISS)raadlngs.Slrri,lBrly.II DO prebe oonrad wlll'l al:llw algnIs nat 1~lILy 10 produce a<:eU/illB DO readings.Tha Ilabml~
apecI1IcaUons ant baaed onan anal~ls offneIWorelectronk:a lind ncl on direct 1ea11ng,~IlCIUle of the dlf1lcult:,'Inappl'~lng such a tesnD spae!ftCflelcl condltiDl\S.
H)'drolab'lstlmclard 1hermlrlcrprovides :I:C,115"Ca<:ClJracywollt casaand:l:0,11)"C uslrlg 95%Certainty (mOlt probable arror)m8lhod for CIIlcula1ing accuriC'l.This means thll mall thin 95 out cf 100 mulliprabes Vltll mNt
Illn0.10·C spBCI~catlol\,
Thlfour ~BI (o to 0,1999.0.2101..5,1.51016,and 15 to 11)1)mSJcm)11'8 changed.8\MmI~cally (eutDran;ed)to pro~e!he maltcllglts avllLable.
The 4dlgll reaclutian tor Spe1;'d1c Cond'~r-=8 dlpend.l on wMcn ofthe lour eu\omal1cally .Iaewdrang88 8~1[\usa.For inl1ant:a,aTHdlng ofI),1S mSkm WDUld be displayed u "300:resol~n would be ten lhousandlhs
of mS~A Slllelflc Ccndu.ctanoe of to.157 mS/ern vlOuld bll dlspleyed as 10,1B;resoluton would be to hundred1tll offlISIcm,If 1M,optional oulpul.\ISIc:m.Is choun,tne fellOlulIon [or Specific Conductance 0,...1 9998
1JSlc:m wllllle four digiti.'Itlth azero acldad as the lut(fl1lt1)digit,,
The lamperature cornllOnsstlon for SPB~nc COn.DU~8~can be dlsablad aesllyIf'ra,"Conductl.vlt~reedl~.are ondecl.
The Sellnl\~acculllcy Is enhanced .....hen t'ne systamIII alllbrallldllcr SlB1lnity (Wlatee<l ofSpv.lflc Cor'oCllJct.anca)near \hoe exp6C1ed Oeld 'lell.'6&.
Although the mulUprobe will moalure thafull 0 to 14;m1l pH re~e,II II nl)~rllCOnsrlBndeci thaI thll &enlKllI beexposed 10 pH ol(\J'ornel ou.tslde the 2to12 WIllrange,
tho pH eecul1Icy Is lIerd for waler.of Spoclftc Candu::1llnce gIealer 1l'1an 0,'2 mSICm,w'nBn using H>'drclab'&standard,rehulldable reterac"lOl oleckodll.Thll aocureoy can be Ofcllna~me\In lillY frech,WIa\e1'I (Speclftc
CQndl.'Clanca len1han 0.2 mstg'fJ)LI ~u Iolli8 Hydr':)lllb'.opt)onBI USREF ('.ow Ionic ~th)referllnce e'oectrode and follow ,'ar)'Illlrticuler rrlllinlenance and calil:rallon :lrocedures.l1'Je LISREF ralarence eleclroda 15 r,ol
reI1l1~lB,
Ymen ope~\lIci e.t Llmpel1lture ofcellt:raUonand cellbrale:l 'h1lh turbld 'free water and a Forrnazin slendard of 76%of rallge.Typlcel Lelftlllllllture coem~n1.is-ll.26 NTUIC".
ResPCflMl\lme 1.II8S\han ten lecands with e~al'll.lling dlsBCled.but requlllll1tirty saconds after powtr·up.The m~xll1'llJm mo'llng Bvera;a lI:ne Is 60 secondl for a'HOfI\ca$4l le$pllns&Umo of911 Mloonds from pO'It'er·up.
Turbldltf mea&ufement IIdlylded 1I'l1O IWO rangea:0 lD 100 end 100 to 1000 ~nJ.Readln.;s are merl'ac:wra\e in t'ne range In \'ot1lch callbratlon 15 made,as shawn In the cheri below.The chart also shcws the feadln;s are
lIIC11tl acQJra\e when made at the temparaturll ofcallbra1lon,
atcal temp
nol atcal \emil
%rBngton
calranse
:1:6
110
%rBrvaon
nen-eeJ tangll
:1:10
:l:U5
The Redox accuracy refws to lNe elll<:l:todo voIlalJe.AdusI reedl1'lll5IUe IUbJecllo slow elewodellquillbrallon Urnes and uncel1aintlt In 1II1!l6surement1h80f'\'and calibration.A typlcel aB-/Tl8asured f1CCUrlIc)'might bit ~5Ornl/,
AccI;racy Is aldlldIn Yery fresh water.(SpeCifIC Concfuc1Bnce Illasltharl D.~mSlan)by Hydrolab'a opllL:JnllI LISREF raferenoo e!emda("efoot~Dta9).,
Po.\raNfer mndem I,acalibration solutIOn or stan&lrd QradB~by ano\J'ler moasuramel'l\mell'lod.IUCh aa ctlemlcal tltra~on {It,g.Winkler}.In 1tle CB&Il of RedO)("II lransfer allmdard m1Qht be a solU1ion measured by attustee
Iaboratoey pH-m1/melar.fQl'many PUlllOIIIS,~Is nol neoossary to calibrate RedQll at a~.
The emerequired for aRedox sa~or \Q respond ~aItepo<:l-.ange In Redox I.highly yarlable arl:!depe1ld&on thll condlllcn of lhe sace01 the 9laltlum'.lIc1tDdfl and on 1/10 <ilrecllonof the Ilop-chenge.Baceusa nl$ponse~mB Is IIIl1eaffBclfld by non-Redox sensor \teens,,ueh IIioIeCttonle cl.eilgn or1he effectsof o\h.e:r lanlOI1l.the rflSpc!'IIEl time ·;)f Kydrclab's Red~.an60r 'aYlr11111I~yIha 8eme 88lhato!eUler RedOX-I'lWIIUlBmen.~in&1rum4ll'l1s.
Wplcal ~,AIM1~um::I:6%of readlr.g,or t 2.-N,wtv.hever la lIre&Lor.t.llninv.zm i\ccuracy:I:10tk a(readIng.or t '2 mlllL.-N,whleha\'er Ii glllll1el',8alh a~wacy spaclbUoni ana 1St lempere\JJna of calibration
w1th no Interlel1ng looa.1ntelf&r1nllION flrtl1'Lcially IncteasB tho ammonium readIng 15follc'HS~
(13)
(101,)
~(16)
~
~
(16)
::;)..
.-l.-l
;:,
;z:l
~
'1"'1
Q
Q
l'ol......
1"'10......r-I
r-I
In\8IfeMg '\mglL.·N
Ion InLorfelll~
K+1Smgfl.
N8+1,3:l0 mgJ\.
Updated 912001 Page :3
Quallflcatlons for Serles 4a Speclficatlons(cQntinued)Hydrolab Techn1cal Note 204
TyPIcal Accuracy.Aml1'lQl1la::I::27%of teadl~,or t 2 rnQIL-N,whlc:hever Is IIrBe1Sl'.Minlrmm lIoc"Jracy::I:70","01 reading,or:l:2 mgfl.·N,whichever II great-r.Amm:lnla IIcabAted (rom Iho IllrlSOt'S ammonJ~a\$UI
according la pH,and 1i1£Ilnhll1entunceltaintvInpH 15').2llrilll,wnlch weans an uneel1lllnty 11\smmonla or:l:60%wh8rl mathemaUcslly gon~ertad frcm ammanlum10 ammonia.Both accuracy spedflCllions ere 11\tempsl'llturs
at ClIlibratlllrlwith no Inlerfel1n1j 10'"and pH lese tnan 10.Interfenng lanl>artI(k:1tIl'~Inerellilt the ammor¥um reading snd M1'lOll1he ammM'a leading.
(17)Wplcal Accuracy,N.ltrat-:I:6%cC rllacl"lI1g,or:l:2 ngiL-N,\\1llcheYer 16lilrea\el.1~lnlmum ADC'Uracy:i 10'1'.of rell\llng,or :I:2 AV;IIL-N.whlche\J&f Is lIf8al8l'.BctI\llCCUIllCY speclllcatlona are at tempBl'llture a'~librallon wltn no
Interlerln;Ions.Interlerlnllions clnal1lnelall)'Inerea,e th.nitrate lSld'ng a,follO'n'&:
Interferln;1mglL·N
lOll Interfersnca
CI~'Q.OG7111lll1t
I·O.4!mglL
CN':2.6mglt
Sr'39,7mgIL
N~'23mglL
HS"2Sms.'\.W·433m~'L
B52mg,'L
Ck·165 m)1\.
~18)TYjllCl11 AccurG)',Chlorids :I:5%cf readlllQ,or !2~,whlche~'er"greater.MInimum Aocufat'l~:t 10%at reading or:t :2 mQJ1...vdl1che'o'ar llIgrem.r.BDIh IOCUrac:y lipselfi<:a1JOI'I&Bre allamperatl.lle 01 1:lIlibration with no
Il11Brf8l'inlllons and pH Ie..than 12,4.Interfering lonl>olin iutlftdall~Incrsals 1he cNortde INdlng se follow,:
lnlerfarlnll ,mglL
lem In\erfsrenca
ON'1,6X 100&mill\.r 1.a lI.1G-OnlQILSol9,~x 10-ll1TrJ1\.
Bf 6.7 II11l·:l mglL
(19)Chlori~e resolutlllrl vart,»with Ihe magrl\1ude of the rNdlng u fo:Jows:
Raacllng RSlIOlutlcn
0.00 to g9.99 mglL G.O\mw~
100.0 to 9911.9 ~0.1 mgl~
1,000 \0 1B,000 mglL 1.
The 905%respDnH change to a cN.nge IrL total dllsotl'ld 91lllfeGllJle liN lhan 1SOseconds at -.1'C.
T~ploel aeOllre~":I:%6 of feeding,ell':t 1Jjmol s',m4•wnlche....rISllisalat.MInimum BDC\.lrIlC'f.!19%ofreading.or i 2~MOII'"m4•'Nh!chS'ier 16 gl1l&ler,Manufecturer reccrnmends fwrysensorrecallbraUon at leBA cr.eever;two rean.
It Is 1l1'lPOrtantInnct~tnel theflUOl'eSClIM ~81d obuMid In the nawl enylronment can deVIU Yl1cle~over vary1ng IXlndlUOOL Glyen this,theRbodamlne standard should notbe d1recl1y campved to cHell'ophy1l.The etandarc.
is used In luning 0(f,uorome\Br.18 a ~f&rflnce,nat ae acaIlbraUOl'.We encourage ourUHl.til perfonn flied callklcatlons In the lacale"Oftheir Illmpllnijlflney are Intarslled In more tl'lan rwlalive nncls.
The 10m Deplti accuracy II'he 95%Certalnly(MO"IllObabiB elforl accuraey.based on the worsl-cale enors l>\Jch as drift,lelll1>8ralulfl oompensaUoo,till.rror,etc.Tha 10m Dllplh 1r'InI4UClIrIs atmospherlClllly vlC'l!ed to
ellmlnat81he Ylf'liarge e«ors poaslble frtm baromttrlc prailUI9 Ihlftl c:auled.fer Instancs,bychaNillng weathlf).
(20)
(21)
~.(22)
"
~
l~a)
oj,
oj
oj
:;,="l
"l;)
;)
~....-l
;)....
"l
-l
UpdatadQl2OO1 Page 4
Qualifications for Series '4a Specifications (continued)Hydrolab Technical Note 204
:(24)I
~{2S)
(26)
~"
I)
.oj
The Depth ~adlngli ant lXlmpllmalSd rorS.allnlly {that Is,water dtflsl1~}so thai readings 8~aCC\lrlltB \''''ettler ma<:illn fntsh or Uit'lAl.ters..
Th1l25m,10011'.lind 200m t)lIplh accurBC~arltthe~cel18lnty {meltprcbabla artCr.1lCCUJ8C)',based on the \'l'Orll\-caSII efTl)lS such liS dtlfl,IlImperallJrecompensllUon,lilt 8rf01,B:Il,1NI so;urlCY rsquirelllhat the usar'"'PlaY a1mllsph8ric oc~on If chIInglls In baromelJ1c plllisure are to beconald&:ed.The accuracy is Il1UChbelter1n1!1IJaUons Wlrlll.llmp&rature chIlnges lITe arnd and cnangall'l Deplti,ralher than the exad.Depth,Blllal
~r1marylntemt.
Sallnlly Iscelculaled from cDndul:l1\'l:)'and tempel.lUre bElied on USGSWS Peper 2$11 or Seetkln252')ofStandardMelt1c:dsfor the EumlnatlDn of Waw and Wastswater,The S1.Bnderl!Melhoct&runctlon II alea eolMIonly
Bferred 10 esthe PractlcalSallNty Seale or UNESCO M&lhCICI.
HIIBdOlTlos:
Hydralab Corpal'lltlcn
8700 Cameron Rd.111DG
Auslln,TX 76764U8A
Pl1cne:{30Cl}949-3765 Df(512)832·8832Fill«(512)~5SB
email:aa!e5@hydrolab.pom
bUp:b'wtoy,h.ydrqlsl:!,QPm
In \he Il)\llrest a1lmprovlng IItld IJpdel1nglIe equlprnan\,Hydrolab roserns the rtght to aller speclllcatlons 10 IIqlipment atIInytlma.Hyclrplab Corp~2.OCl1
..
.oj
.oj
;;,
~
~
::)
::)
l'.I
"-.-i
::)
"-.-i.-i
1Jp<£a\ed 912001 PageS
~
)
)
~
iiiiI Tech Note 204
SerIes 4a DataSonde~4a &MlniSondeiBl 4a &Surveyo~4a Disp~ay
Parameter Specifications
~
No
=~
~
PARAMETER RANGE ACCURACY RESOWltON SENSOR COMPENSAT~ONS CALIBRATION RESPONSE STAB1L\rf OUTPUT
TIME'OPTIONS
TE~PERATURE .-9106D"C ~.to'd1 .D.01"C Ihnnl8tor nolle required .none leqlired <,ml!lJtlt IhrMYNr5 ·C,OF.or "I(
Cl,(looo 100.1999 mSlcm "-Q,2OO 101.600mS{CfI\*1%of resdln;0.25'11.1'e~al bora KCI DC'cIher mS!om,~Slan,
SPEC1FlC 1.45 to 16.00 mSlcm :I.1 lXlunl 4dlg1l8'wll'n rcur QraphRe au\Omstlc Ie 2t>"c'ilandard,<10 .ecandi six mcn1i1l ocndu.ctMly,lOS,
CONDUCTANCE 14.510 ~OO,l)mSlcm t \\IS/em iQ:lrodel Dl'res11tM1ytaulerarv.llld)~
,\,UI8&callbl'a1lon
C81culallJclfrom from IP:condo Or
SAL1NITY Ot070 PSS'*1%ol'reedl!'G O.il1 PSS ~flc nene {~ulred callbfala dlredty <11heconcLs one monlh PS$:iD,01 PSS IXlndLl:lllnclI y~lh.58111111y
lIanclards
DISSOLVED IBb~8bl.all\OmaUcfer ',.aler-Ialuralsd air,nlQIt..%
1)1000.:i 0.2 mgJt ~20)0,01 mglL pcla~~~hlc:1 rr/&.IempltJiltura and .II',W!Cler,orair-<',mll\Ule one month sal\lrlll:ion,orOXYGENt0.8 mglL~2C)Teflon lj nlUreted WIller mgllv.11hout
mMTIbl'ane &1lnnlty IIllinllyIXl~OI\
91asl pH;
pH 01014 urJls't O,2unltal 0.01 unll .rebulldi'b].or low eutotnl!lcfor I=H 7bul1er,p113 <.1 m'nuls one month pHur~lcnlc ~rsrIQ\h te~reture ene,aIopa buffermerenceeletrode'i
SHUTTERI!t)ISO 7027
compliantlURBIClTYOID100NTUcr:I:2.6%~re~to I ~.~~nephelomeler v.t1h automa~c amblenll1ghl cIlluilcl'lll aI
(Oa12sonde 41l otl \oOClN11J loullr.;reUstinl reJact\on FormazlnorAEPA,-<'1)toeonds"one month mu-orveils
ontv)(uNraelectable)Io'll.tllar{US Pslsnt 1polymerbea"
116.111,2491 "
NON·
SHUlTERED OID100NTU 0.1 N,1lJ
TURBIDITY 100 10 1000NTU ,t 5%of range 'z ,NTV ~O 7021-bllSecI mUll beoperallld al dll~onso(
I {Datascnc:le 48 .(autorlll'l4lsd)nephelome1&7 depth ~\nor shlelded FormezJn ClI'Af:PA·c 1TW.111Ite one month NTUfromlunlfghl'1 ~Iymer beadsandMlnlsonde48).-
REDOX'
Qulnhydronf,
-998 lo1l99 mV :t.20mV11 1mV Pl.Jec1rodB I'IQne rB<lulred lobell,1.I,,'lhl'1.~~lIIleau one month mVtranBlere
actMtj~cl.nt
cemp\Jl.ed from specl1lc 2,,3-,or4<palrn .AMMON1UMJ grls\Brof :i 6%of -lClll-lpecl1k:ccrlduC\1lnce:and callbnltlon ~m;IL..f\I,mY.or
AMMONIA (]10 100 mgll·N reading Dr 0.01 ~-N electrodlt emm:lnla de;\~frtml l'iydrolab Ofuser-<.1 mlnu{a ollllmcnh ~-t.I !If!Dl11
l:lfI'l9.II.-f\l"ammonl~llrfldueod NHtaitemperatura,pH.and sIatldal'lSl;
M)fIclftcQ;lnduc1ence
..~
oo
C'ol
"-.".
C'ol"-o.-t
Updated 9l'2Oll1 page 1
..
PARAMETER RA~GE ACCURACY RESOlUTION SENSOR COMPENSATIONS CALlBRA110N RESPONSE STA81LIT'f OUTPUT
TIME'OPTIONS
.2-,3-,or 4-pOIJIl
0"'01:1:6%01 iCIn'lpecll\c acllvltycoefflclent c:allbrdOn with
NITRATE I>to 100 m;IL-N leIlllneor G,01 mllJ\.-N computed !rom.Ipeclfic l-t~drollb or use:-c 1 lTfinule onl month I1IQll.ooN or mV
'1:2 mgll.·f\f electrode conctutblnce prtldYCedllandarcll
2-,3-,or 4-palnt
grulllrof:l:~.~of 4digit.'·Ian-Illlddlc aclMly co8fflclent caI1braUonv.ilh :01:,'oar ~d1l\
mglLormVCKt.ORIDE 0,5to 'IB.OOI>m9/1.r'I.sIng or eleclrodl computed 'rtlm&optclftc IHydrall!b or UHr-<'mlwt.oocallonal
:I:21TQ.Il.-Nu conductanca producecl pclJsll
Jlanclards.
TOTAL 400 101300 1MlHl'l membranBoClDvored <~mlnu.ll!slllDlSSCI.VED GAS {max Immersion depth:SO ;tD.1%ohpan 0.1 mmHg pres&urI l\Q1lO reql:£Tld ,elln Ilr onemcnlh nr.IHg,mV,orPSI
metall)tranlldU08r "
AMBIENT LIGHT I}Ig to,oOO 1~mol &,\m't
it 6%of raBd[ng ,1Imd1"moQ te)ectlon 01 amblent tlYOyea~'1~moll"m""(PAR}or pi'loto'l'cllllic cell light ClUflllcle Ihe 400-nonereqwed <~o iOCOlld&
t ~mol.~m41J1l 700 nm ban~MdII'l
dlluUOMof
rtlodamlne(OI'
CttLOROPHYL.L 0.03 \0 150 ugll.13%offeeding IBconclar:,'
:!:G.1 ~gJl.II 1}.11Jgl\.fluoromlltrlc l'IQfle lequ'~ed caibl'B~on cube)<10s.,.;:onds QClemonlh IJgll.or volts
wltt1\JBOr
correlellcn te flalll
S&!f1p\e1
OEPTHlO·10M 010 10 m s D.Oam-0.001 m strllln~e aulomatlcfor .sa\inl'~~set zero In air <.10 $econ~one month m.lI.orPSI,..mid IrIIonsducer.
DEPTHI02SM ' 010 25 m 1D,<l6 mil O,Q\m &IrIl1n-gege au\oltlllUcfor sellnLV'sal zero In elr <\0 secQ;lds orlOmonlh m,il,or PSI1I01IIo'18lI~lnlneducer
DEPTHIO-100M o\G1OOm :I:G,~nt'0,'m &1niIn·gage autorr.atlc for seUnttyM lOt zero In air <10 se=onds one month m,ft,orPSII'IOM'IIIIed Il'Bnld\t"..el'
DEPTHJOw20DM CIte 2OI)m :1:0,8 m21 c,t m mln~eutol'l'll!1l&for sa'inl!'?slit Z6.'ll1n alr <10 seconds one month m.It.or PSI_"ltd 1rIInlIdWlf
BAROMETRIC W)to etiC mlHg :l:'OmmHg 0,1 mmKg strliIn1:&De inone rllClulred
mmHg,lnHII,
PRESSURE 1rBnsduoer selin Ilr <10 seOOMs silt months kPA,mbar,Aim,
or PSI
~::>::>....~::>::>
iI
~
C?Q..
(D
~
~
~
Q
Q
IN......
'0:1'
IN......
Q
~
Parameter Speclflcatlons -Serles 48 OataSond~4a &MlnlSonde®4a &Surveyor®48 Display
(Continued from Page 1)
Note:Thea,IpecmcaUons rappl~G'ler1he OPBl1IU~\8mperature ren;e 01-6 to 6O"C (rII:)n-!Qezlng),Ird Qver the epera1il;voltagerange of111016VDC,lor well maLntalned
aeMOl'Iln cleln,\Jnchmglng 'laterl,TheTe are marw I11uaUons,wc:I1 AI blDtoullng,thet'0'&1 negete exbapolaUon QfIhe6ll'iIlec1licaUCI1&to fl.kl condltlol\ll.
U~teeI QI2OO1
Hydrolab Technical Note 204
Pl!lga2