HomeMy WebLinkAboutDAQ-2024-0047721
DAQC-074-24
Site ID 10121 (B4)
MEMORANDUM
TO: STACK TEST FILE – HILL AIR FORCE BASE
THROUGH: Harold Burge, Major Source Compliance Section Manager
FROM: Robert Sirrine, Environmental Scientist
DATE: January 25, 2024
SUBJECT: Contact: Dr. Erik Dettenmaier – 801-777-0888
Location: Hill Airforce Base, Davis County, Utah
Tester: Alliance Technical Group, LLC 352-663-7568
Sources: Bldg 737, Unit 51 Landfill Gas RICE Engine 3
FRS ID #: UT00000049901100007
Permit: Title V operating permit 1100007004 dated June 30, 2022
Action Code: Tr
Subject: Review of Stack Test Report dated January 8, 2024
On January 18, 2024, the Utah Division of Air Quality (DAQ) received a test report for the Hill Air Force
Base Unit 51, Landfill Gas RICE Engine 3 located in Building 737, at Hill Air Force Base, Utah. Testing
was performed on December 6-7, 2023, to demonstrate compliance with the NOX, CO, and NMHC
emission limits found in Permit Condition II.B.40.e, and 40 CFR 60 Subpart JJJJ. The DAQ-calculated
test results are:
Source Test Date RM/Pollutant DAQ Result Test Result Limit
Engine 3 NG 12/7/23 7E/NOX 0.36 g/bhp-hr 0.34 g/bhp-hr 1.0 g/bhp-hr
10/CO 2.2 g/bhp-hr 2.1 g/bhp-hr 2.5 g/bhp-hr
ALT-096/NMHC 0.38 g/bhp-hr 0.37 g/bhp-hr 1.0 g/bhp-hr
Engine 3 Blend 12/6/23 7E/NOX 0.45 g/bhp-hr 0.45 g/bhp-hr 1.0 g/bhp-hr
10/CO 2.1 g/bhp-hr 2.1 g/bhp-hr 2.5 g/bhp-hr
ALT-096/NMHC 0.67 g/bhp-hr 0.67 g/bhp-hr 1.0 g/bhp-hr
DEVIATIONS: None noted.
CONCLUSION: The stack test report for Engine 3 appears to be acceptable. Testing was
conducted on December 6, 2023, with Engine 3 operating on a blend of
natural gas and landfill gas, and on December 7, 2023, with Engine 3
operating on natural gas only. There is a typo for run 1 NG on page 30
where the temperature was typed in as 8,369 degrees F and it should be
869 degrees F. This has caused a discrepancy in the emission values for
run 1 which is causing the differences seen in the test results vs DAQ
results for testing conducted December 7, 2023, in the chart above.
2
RECOMMENDATION: Hill AFB, Unit 51, Engine 3 CO, NMHC, and NOX stack emissions
appear to have been in compliance with the applicable limits at the time
of testing. No further action is necessary.
HPV: No.
ATTACHMENTS: Hill Air Force Base stack test report received January 18, 2024.
DAQ generated excel test review spreadsheets.
DEPARTMENT OFTHE AIR FORCE
HEADQUARTERS 75TH AIR BASE WING GFMC)
HILL AIR FORCE BASE UTAH
lQ Jelnuatyo6y
Colonel Jeffrey G. Holland
Installation Commander
7981 Georgia Street, Building I 102, Suite 100
Hill AFB UT 84056-5824
Director
Utah Division of Air Quality
Attention: Compliance Section
P.O. Box 144820
Salt Lake ciry uT 84114-4820
Dear Director
I,TAH DEPARTMENT OF
ENVIRONMENIAL OUAI.JTY
It tl L1JAt{ i. , i
DIVISION OF AIR OUALTTY
This notification and report are submitted pursuant to condition ILB.40.e.3 of Title V Operating
Permit I 100007004, which states, "For affected emission units that are subject to performance testing, the
permittee shall submit a copy of each performance test as conducted in Title 40 Code of Federal
Regulations (CFR) 60.4244 within 60 days after the test has been completed. Reports shall be submitted
in accordance with 40 CFR 60.4245(d) and Section I of this permit."
Stack testing for the 1,350 brake horsepower (bhp) lean burn landfill gas engine Jenbacher
JGS320 4SLB RICE (landfill gas engine 3) subject to 40 CFR Part 60 Subpart JJJJ was completed on 7
December 2023. The attached report concludes that carbon monoxide (CO), nitrogen oxide (NOx), and
volatile organic compound (VOC) were in compliance. CO emissions were less than 2.5 gramslbhp-hr.
NOx emissions were less than 1.0 gramsibhp-hr. VOC emissions were less than 1.0 grams/bhp-hr.
In accordance with Utah Administrative Code R307-415-5d and based on information and belief
formed after reasonable inquiry, the statements and information in this report are true, accurate, and
complete.
If you have any questions or would like to discuss this report further, my point of contact is
Dr. Erik Dettenmaier 75 CEGICEIEA, at (801) 777-0888 or erik.dettenmaier.l@us.af.mil.
Sincerely
Attachment:
Source Test Report
.
Alili=
I,lt
Source Test Report
Ameresco Federal Solutions
520 W. Summit Hill Drive, Suite #401
Knoxville, TN 37902
Hill Air Force Base
Landfill Gas Fired Pow1$.r;:ton Facility (unit s I )
Source Tested: One (1) Jenbacher JGS320 4SLB RICE
(Engine 3)
Test Dates: December 6 & 7,2023
Project No. AST-2023 -4300
Prepared By
Alliance Technical Group, LLC
3683 W 2270 S, Suite E
West Valley City, UT 84120
r'\lr,_t
Allffirpe
T=CI-.INiCAL GNOLF)Source Test Report
Test Program Summary
Resulatorv Information
Permit No.
Regulatory Citation
Source Information
UDAQ Title V Operating Permit I100007004
40 CFR Part 60, Subpart JJJJ
Source Name
One (l) Jenbacher JGS320 zuCE
Contact Information
Source ID
Unit 5l / Engine 3
Target Parameters
NOx, CO, NMHC
Test Location
75 CEG/CEIEA
Air Quality Program
Building 737
Hill Air Force Base, UT 84056
Air Program Manager
Dr. Erik Dettenmaier
erik.dettenmaier. I @us.af.mil
(801) 777-0888
Ameresco Federal Solutions
520 W. Summit Hill Drive, Suite
#401 Knoxville, TN 37902
Operations Engineer
Jonathan Driskill
jdriskill@ameresco.com
(86s) 330-7196
(865) 604-2031 (cell)
Test Company
Alliance Technical Group, LLC
3683 W 2270 S, Suite E
West Valley City, UT 84120
Project Manager
Charles Horton
charles.horton@alliancetg.com
(3s2) 663-7s68
Field Team Leader
Robert Burton
robert. burton@alliancetg.com
(224) 3s8-s0ss
Q,{/QC Manager
Kathleen Shonk
katie. shonk@alliancetg.com
(Et2) 4s2-478s
Report Coordinator
Delaine Spangler
-delaine.spangler@alliancetg.com
Regulalory Agency
Utah DAQ
195 North 1950 West
Salt Lake City, UT 84116
Air Quality Engineer
Harold Burge
hburge@utah.gov
(801) s36-4129
Ameresco - Hill AFB, UT
2 of 124
AST-20234300 Page i
Atfu Source Test Report
C e rtifi c ation Stateme ntTECHNICAL GROt,P
Alliance Technical Group, LLC (Alliance) has completed the source testing as described in this report. Results
apply only to the source(s) tested and operating condition(s) for the specific test date(s) and time(s) identified within
this report. All results are intended to be considered in their entirety, and Alliance is not responsible for use of less
than the complete test report without written consent. This report shall not be reproduced in full or in part without
written approval from the customer.
To the best of my knowledge and abilities, all information, facts and test data are correct. Data presented in this
report has been checked for completeness and is accurate, error-free and legible. Onsite testing was conducted in
accordance with approved internal Standard Operating Procedures. Any deviations or problems are detailed in the
relevant sections in the test report.
This report is only considered valid once an authorized representative ofAlliance has signed in the space provided
below; any other version is considered draft. This document was prepared in portable document format (.pd| and
contains pages as identified in the bottom footer of this document.
dJ il*01to8t2024
Charles Horton, QSTI
Alliance Technical Group, LLC
AST-2023-4300 Page iiAmeresco - Hill AFB, UT
1 of 124
Altfu Sowce Test Report
Table ofContentsTECHNICAL GNOLF'
TABLE OF CONTENTS
l.l Process/Control System Descriptions .............. l-l
1.3 Site-Specific Test Plan & Notification................... ................ l-l
3.1 U.S. EPA Reference Test Methods I and2 - Sampling/Traverse Points and Volumetric Flow Rate.....3-l
3.2 U.S. EPA Reference Test Method 3A - Oxygen/Carbon Dioxide......... ...... 3-l
3.3 U.S. EPA Reference Test Method 4 - Moisture Content......... .................... 3-l
3.4 U.S. EPA Reference Test Method 7E - Nitrogen Oxides.......... ..................3-2
3.5 U.S. EPA Reference Test Method l0 - Carbon Monoxide..... .....................3-2
3.6 U.S. EPA Alternative Test Method ALT-096- Non-Methane Hydrocarbons ................... 3-2
3.7 U.S. EPA Reference Test Method 205 - Gas Dilution System Certification. ....................3-2
3.8 Quality Assurance/Quality Control- U.S. EPA Reference Test Methods 3A,7E and 10.......................3-2
3.9 Quality Assurance/Quality Control - U.S. EPA Reference Method ALT-096...... ............ 3-3
LIST OF'TABLES
Table 2-l: Summary of Results - ENG-3 -Natural Gas............... .........2-2
Table2-2: Summary of Results - ENG-3 - Blended Fuel .............. .......2-3
APPENDICES
Appendix A Sample Calculations
Appendix B Field Data
Appendix C Engine Operating Data
Appendix D Quality Assurance/Quality Control Data
Appendix E Site-Specific Test Plan & Associated Documentation
Appendix F Schematics
Ameresco - Hill AFB, UT
4 of 124
AST-2023-4300 Page iii
5 of 124
piltffiiEe
Source Test Report
IntroductionTtrCI'I NNCAL GNcL.F
1.0 Introduction
Alliance Technical Group, LLC (Alliance) was retained by Ameresco Federal Solutions (Ameresco) to conduct
emission testing services at the Hill Air Force Base (AFB). Portions of the facility are subject to provisions of the
Utah Department of Environmental Quality, Division of Air Quality (UDAQ) Title V Operating Permit
1100007004, condition II.B.40.e and 40 CFR Part 60, Subpart JJJJ. Testing was conducted to determine the
emission rates of nitrogen oxides (NOx), carbon monoxide (CO) and non-methane hydrocarbons Orl\4}{C) from the
exhaust of one (l) Jenbacher JGS320 reciprocating internal combustion engine (RICE) (Engine 3) used for power
generation (Unit 5l). Testing was conducted at two (2) fuel conditions: (l) a blended fuel consisting of Landfill Gas
and Natural Gas and (2) 100% Natural Gas.
l.l Process/ControlSystemDescriptions
The HAFB Main Base is located in Davis and Weber Counties about 30 miles north of Salt Lake City, Utah. The
Landfill Gas Fired Power Generation Facility (Unit 5l) consists of three (3) landfill gas fired,4-cycle standard lean
bum (4SLB) reciprocating intemal combustion engines (RICE): 814 brake horsepower (bhp) Caterpillar 35l2LE
(Engine l), I,148 bhp Caterpillar 35l6LE (Engine 2) and 1,350 bhp, Jenbacher JGS320 (Engine 3). Engine 3 is the
subject of this test program.
1.2 Project Team
Personnel involved in this project are identified in the following table.
Table 1-l: Project Team
1.3 Site.Specific Test Plan & Notification
Testing was conducted in accordance with the Site-Specific Test Plan (SSTP) submitted to UDAQ by Ameresco. A
copy ofthe SSTP can be found in Appendix E - Site-Specific Test Plan.
Ameresco - Hill AFB, UT
6 of 124
Ameresco Personnel
Jonathan Driskill
Nate Hackwell
Alliance Personnel Robert Burton
Dillon Brown
AST-2023-4300 Page l-l
7 of 124
Alfu-N'ECHNICAL GFOLF Source Test Report
Summary of Results
2.0 Summary of Results
Alliance conducted compliance testing at the Hill AFB located in Davis County, Utah on December 6 and 7,2023.
Three l-hour test runs were conducted to determine the emission rates of NOx, CO, and NMHC from the exhaust of
Engine 3. Concurrent stack gas velocity, oxygen (O2), carbon dioxide (COz), and moisture (BWS) content were
me$ured to determine mass emission rates. NMHC data is reported for VOC compliance. Testing was conducted
at two (2) fuel conditions: (l) a blended fuel consisting of Landfill Gas and Natural Gas and (2) 100% Natural Gas.
Tables 2-l ud2-2 provide summaries of the emission testing results with comparisons to 40 CFR 60, Subpart JJJJ
and the UDAQ air permit limits. Any emissions parameters not found in the table may be found in Appendix B -
Field Data. Any difference between the summary results listed in the following table and the detailed results
contained in appendices is due to rounding for presentation. The following terms are used in the table:
a
a
a
a
a
a
oF - temperature in degrees Fahrenheit
%vd - diluent concentration, dry volume percent
dscfm - volumetric flow, dry standard cubic feet per minute
o/ovw - concentration, percent volume wet
ppmvd - parts per millions, dry volume basis
g/bhp-hr - gftrms per brake horse power - hour
Ameresco - Hill AFB, UT
I of 124
AST-2023-4300 Page 2-l
AlfuTECHNICAL GROUP Sowce Test Report
Smrmary of Results
Table 2-1: Summary of Results - ENG-3 - Netural Gas
itart Time
lnd Time
ingine Brake Horsepower (bhp)
itack Temperature ("F)
fas Flow (dscfm)
)z(o/ovd)
iOz(o/ovd)
lWS, dimensionless
ingine Load, To *
8:55
9:55
1,372
1338.6
2,105
10.00
6.61
0.132
102
l0:20
ll:.20
1,373
867.4
2,500
r0.02
6.58
0.1l8
102
I l:45
12:45
1,368
868.4
2,485
10.01
6.58
0.120
l0l
1,371
t024.8
2,363
10.01
6.59
0.r22
t02
Yitrogen Oxides Data
Emission Factor, g/HP-hr
NSPS JJJJ Limit, g/HP-hr
Percent of Limit,7o
0.3r 0.37 0.36 0.34
2.0
t7
Permit Limit, g/[IP-hr
Percent of Limit, 7o
1.0
34
Carbon Monoxide Data
Emission Factor, g/IP-hr
NSPS JJJJ Limit, g/HP-hr
Percent of Limit,7"
1.8 2.2 2.2 2.1
5.0
42
Permit Limit, g/HP-hr
Percent ofLimitro/o
2.5
76
{on-Methane Hydrocarbons Data
Emission Factor, g/FIP-hr
NSPS JJJJ Limit, gAIP-hr
Percent of Limit, 7o
0.32 0.39 0.39 0.37
1.0
37
* Performance testing was conducted while the engine was operating at the highest achievable load at current site conditions.
Ameresco - Hill AFB, UT
9 of 124
AST-20234300 Page2-Z
AtfuTECHNICAL GROUP
Table2-2: Summary Results - ENG-3 - Blended Fuel
Sowce Test Report
iunmam of Results
itart Time
lnd Time
3ngine Brake Horsepower (bhp)
itack Temperature ("F)
ias Flow (dscfin)
)2(o/ovd)
)Oz(o/ovd)
lWS, dimensionless
ingine Load, %o *
12:30
l3:31
1,300
886.8
2,484
10.12
7.86
0.1l5
96
l3:53
l4:54
1,371
867.4
2,491
10.08
7.89
0.1 l8
102
l5:10
l6:l I
1,364
868.4
2,477
9.92
7.92
0.120
l0l
1,345
874.2
2,484
10.04
7.89
0.1l8
100
{itrogen Oxides Data
Emission Factor, g/tlP-hr
NSPS JJJJ Limit, g/flP-hr
Percent of Limit, 7o
0.48 0.44 0.44 0.4s
2.0
23
Permit Limit, gAIP-hr
Percent of Limit,7o
1.0
45
larbon Monoxide Data
Emission Factor, gfif -hr
NSPS JJJJ Limit, g/HP-hr
Percent of Limit, 7o
2.1 2.0 2.1 2.1
5.0
4t
PermitLimit, g/If-hr
Percent olLimilo/o
2.5
82
{on-Methane Hydrocarbons Data
Emission Factor, g^f-hr
NSPS JJJJ Limit, g/HP-hr
Percent of Limit, o/o
0.74 0.64 0.64 0.67
1.0
67
Performance testing was conducted while the engine
AST-20234300
operating at the highest achievable load at current site conditions.
o - Hill AFB, UT
l0 of 124
pyll6rrpe
TEQHNICAL GNOLF Source Test Report
Testing Methodologt
3.0 Testing Methodology
The emission testing program was conducted in apcordance with the test methods listed in Table 3-1. Method
descriptions are provided below while quality assurance/quality control data is provided in Appendix D.
Table 3-l: SoUrce Testing Methodolory
3.1 U.S. EPA Reference Test Methods I and 2 - Sampling/Traverse Points and Volumetric Flow Rate
The sampling location and number of traverse (sampling) points were selected in accordance with U.S. EPA
Reference Test Method l. To determine the minimum numberof traverse points, the upstream and downsffeam
distances were equated into equivalent diameters and compared to Figure l-2 in U.S. EPA Reference Test Method l.
Full velocity traverses were conducted in accordance with U.S. EPA Reference Test Method 2 to determine the
average stack gas velocity pressure, static pressure find temperature. The velocity and static pressure measurement
system consisted of a pitot tube and inclined manorneter. The stack gas temperature was measured with a K-type
thermocouple and pyrometer.
Stack gas velocity pressure and temperature readings were recorded during each test run. The data collected was
utilized to calculate the volumetric flow rate in accordance with U.S. EPA Reference Test Method 2.
3.2 U.S. EPA Reference Test Method 3A - Oxygen/Carbon Dioxide
The oxygen (Oz) and carbon dioxide (CO2) testing were conducted in accordance with U.S. EPA Reference Test
Method 3A. Data was collected online and reported in one-minute averages. The sampling system consisted of a
stainless-steel probe, heated Teflon sample line(s), gas conditioning system and the identified gas analyzer. The gas
conditioning system was a non-contact condenser used to remove moisture from the stack gas. The quality control
measures are described in Section 3.8.
3.3 U.S. EPA Reference Test Method 4 - Moisture Content
The stack gas moisture content (BWS) was determined in accordance with U.S. EPA Reference Test Method 4. The
gas conditioning train consisted of a series of chilled impingers. Prior to testing, each impinger was filled with a
known quantity of water or silica gel. Each impinger was analyzed gravimetrically before and after each test run on
the same balance to determine the amount of moisture condensed.
Ameresco - Hill AFB, UT
12 of 124
Full Velocity Traverses
Gas Dilution System Certification
AST-2023-4300 Page 3-l
Alfu-TEEHNIEAL GNOLFl Source Test Report
Testing Methodologt
3,4 U.S. EPA Reference Test Method 7E - Nitrogen Oxides
The nitrogen oxides (NOx) testing was conducted in accordance with U.S. EPA Reference Test Method 7E. Data
was collected online and reported in one-minute averages. The sampling system consisted of a stainless-steel probe,
heated Teflon sample line(s), gas conditioning system and the identified gas analyzer. The gas conditioning system
was a non-contact condenser used to remove moisture from the stack gas. The quality control measures are
described in Section 3.8.
3.5 U.S. EPA Reference Test Method l0 - Carbon Monoxide
The carbon monoxide (CO) testing was conducted in accordance with U.S. EPA Reference Test Method 10. Data
was collected online and reported in one-minute averages. The sampling system consisted of a stainless-steel probe,
heated Teflon sample line(s), gas conditioning system, and the identified gas analyzer. The gas conditioning system
was a non-contact condenser used to remove moisture from the gas. The quality control measures are described in
Section 3.8.
3.6 U.S. EPA Alternative Test Method ALT-096- Non-Methane Hydrocarbons
The non-methane hydrocarbons (NMHC) testing was conducted in accordance with U.S. EPA Altemate Test Method
ALT-096. EPA Method 25A is incorporated by reference. The sampling system consisted of a stainless steel probe,
heated Teflon sample lines and a Thermo 55i analyzer. NMVOC data was collected in one (l) minute averages. The
quality control measures are described in Section 3.9.
3.7 U.S. EPA Reference Test Method 205 - Gas Dilution System Certification
A calibration gas dilution system field check was conducted in accordance with U.S. EPA Reference Method 205.
Multiple dilution rates and total gas flow rates were utilized to force the dilution system to perform two dilutions on
each mass flow controller. The diluted calibration gases were sent directly to the analyzer, and the analyzer response
recorded in an electronic field data sheet. The analyzer response agreed within 2%o of the actual diluted gas
concentration. A second Protocol I calibration gas, with a cylinder concentration within l0% of one of the gas
divider settings described above, was introduced directly to the analyzer, and the analyzer response recorded in an
electronic field data sheet. The cylinder concentration and the analyzer response agreed within 27o. These steps
were repeated three (3) times. Copies of the Method 205 data can be found in the Quality Assurance/Quality
Control Appendix.
3.8 Quality Assurance/Quality Controt - U.S. EPA Reference Test Methods 3A' 7E and l0
Cylinder calibration gases used met EPA Protocol I (+/- 2o/o) standards. Copies of all calibration gas certificates can
be found in the Quality Assurance/Quality Control Appendix.
Low Level gas was introduced directly to the analyzer. After adjusting the analyzer to the Low-Level gas
concentration and once the analyzer reading was stable, the analyzer value was recorded. This process was repeated
for the High-Level gas. For the Calibration Error Test, Low, Mid, and High Level calibration gases were
sequentially introduced directly to the analyzer. All values were within 2.0 percent of the Calibration Span or 0.5
ppmv lo/o absolute difference.
High or Mid Level gas (whichever was closer to the stack gas concentration) was introduced at the probe and the
time required for the analyzer reading to reach 95 percent or 0.5 ppmv/% (whichever was less restrictive) of the gas
concentration was recorded. The analyzer reading was observed until it reached a stable value, and this value was
recorded. Next, Low Level gas was inhoduced at the probe and the time required for the analyzsr reading to
Ameresco - Hill AFB, UT
13 of 124
AST-2023-4300 Page 3-2
pillffiipe
TEOHNICAL GNSLF Source Tesl Reporl
Tesling Methodology
decrease to a value within 5.0 percent or 0.5 ppmv/7o (whichever was less restrictive) was recorded. If the Low-
Level gas was zero gas, the response was 0.5 ppmvlo/o or 5.0 percent of the upscale gas concentration (whichever
was less restrictive). The analyzer reading was observed until it reached a stable value and this value was recorded.
The measurement system response time and initial system bias were determined from these data. The System Bias
was within 5.0 percent of the Calibration Span or 0.5 ppmvl%o absolute difference.
High or Mid Level gas (whichever was closer to the stack gas concentration) was introduced at the probe. After the
analyzer response was stable, the value was recorded. Next, Low Level gas was introduced at the probe, and the
analyzer value recorded once it reached a stable response. The System Bias was within 5.0 percent of the
Calibration Span or 0.5 ppmvlo/o absolute difference or the data was invalidated and the Calibration Error Test and
System Bias were repeated.
Drift between pre- and post-run System Bias was within 3 percent of the Calibration Span or 0.5 ppmv/% absolute
difference. If the drift exceeded 3 percent or 0.5 ppmv/%o, the Calibration Error Test and System Bias were repeated.
To determine the number of sampling points, a gas stratification check was conducted prior to initiating testing. The
pollutant concentrations were measured at three points (16.7, 50.0 and 83.3 percent of the measurement line). Each
traverse point was sampled for a minimum of twice the system response time.
If the pollutant concentration at each traverse point did not differ more than 5 percent or 0.5 ppmv/0.3% (whichever
was less restrictive) of the average pollutant concentration, then single point sampling was conducted during the test
runs. If the pollutant concentration did not meet these specifications but differed less than l0 percent or 1.0
ppmvl0.5%o from the average concentration, then three (3) point sampling was conducted (stacks less than 7.8 feet in
diameter - 16.7,50.0 and 83.3 percent of the measurement line; stacks greater than 7.8 feet in diameter- 0.4, 1.0,
and 2.0 meters from the stack wall). If the pollutant concentration differed by more than l0 percent or 1.0
ppmvl0.5o/o from the average concentration, then sampling was conducted at a minimum of twelve (12) traverse
points. Copies of stratification check data can be found in the Quality Assurance/Quality Control Appendix.
An NOz - NO converter check was performed on the analyznr at the completion of testing. An approximately 50
ppm nitrogen dioxide cylinder gas w:rs introduced directly to the NOx analyzer and the instrument response was
recorded in an electronic data sheet. The instrument response was within +/- 10 percent of the cylinder
concentration.
A Data Acquisition System with battery backup was used to record the instrument response in one (l) minute
averages. The data was continuously stored as a *.CSV file in Excel format on the hard drive of a computer. At the
completion of testing, the data was also saved to the Alliance server. All data was reviewed by the Field Team
Leader before leaving the facility. Once arriving at Alliance's office, all written and electronic data was
relinquished to the report coordinator and then a final review was performed by the Project Manager.
3.9 Quality Assurance/Quality Control - U.S. EPA Reference Method ALT-096
EPA Protocol I Calibration Gases - Cylinder calibration gases used met EPA Protocol 1 (+l- 2o/o) standards. Copies
of all calibration gas certificates are provided in the Quality Assurance/Quality Control Appendix.
Zero gas was introduced through the sampling system to the analyzer. After adjusting the analyzer to the Zero gas
concentration and once the analyzer reading was stable, the analyzer value was recorded. This process was repeated
Ameresco - Hill AFB, UT
14 of 124
AST-2023-4300 Page 3-3
TEC N ROU Source Test Report
Testing Methodologt
for the High Level gas, and the time required for the analy"Er reading to reach 95 percent of the gas concentration
was recorded to determine the response time. Next, Mid and Low Level gases were intnoduced through the
sampling system to the analyzer, and the response was recorded when it is stable. All values must be within +/- 5%
of the calibration gas concentrations.
Post Test Drift Checks - Mid Level gas was introduced through the sampling system. After the malyzer response
was stable, the value was recorded. Next, Zero gas was introduced through the sampling system, and the analyzer
value recorded once it reached a stable response. The Analyzer Drift must be less than 3 percent of the Calibration
Span.
Data Collection - A Data Acquisition System with battery backup was used to record the instrument response
(analog 0-10 volt signal) in one (l) minute averages. The data was continuously stored as a *.CSV file in Excel
format on the hard drive of a desktop computer. At the completion of the emissions testing the data was also saved
to disk.
Ameresco - Hill AFB, UT
15 of 124
AST-2023-4300 Page34
16 of 124
pull6lrce
TtrCIINICAL GRC)UP
Laation
Source
Projat No.
Run No. I
Hill Ail Force
Bxample Calculations
Parameter(s) BWS
Meter Pressure (Pm), itr. Hg
AHPm = Pbl:. IJ.bwhCrcr
Pb 25.01 = baoretric pressure, in. Hg
AH 1.000 = prcsure differential oforifice, in H2Opm..........F=in.ttg
Absolute St8ck Gas Prdsurc (Ps), iD. Hg
Ps
.n"...
Pt = Pb + 136
Pb 25.51 = buometric pressure, in. flg
Pg 0.02 = static pressure, in. H2O
Ps 25, =in.Hg
Strtrdrrd Mctcr Vdtrm (Vrutd), dscf
Vmtd =
l7.636xVmxPmxY
where.
Y 0.976 = meter corection factor
v. TEt s- " meter volume, cf
Pm 25.14 = absolute meter pressure, in. llg
t^T = absolute meter temp€rature, "R
vmtd-....ffi=d""f
Stardard Wet Volume (Vwstd), 3cf
where,
Vmtd: 0.04716 x Vlc
Vlc 95.1 = Volume ofIIzO collected, ml
VMtd 4485 =scf
Moisture Fraction (BWSsat), dimemionle$ (th@rcticrl rt srturstcd conditioN)
,oe.rz-ffi*r!{=)BWSsat =
-
whcrc. D.
Tt
-!ff!JL
= stack tempeBture, 'F
Pt-?!L= ubsolute stack gG pressure, in. Hg
BWSsat 1.000 = dimensionless
Moisturc Frrction (BWS), dimcnsionlcs
Vwstd
BWS =m;:Ilffiffi
Vstd 4.485 = stmdild ret volume, scf
v*ta-.....ffi= stmdtrd meter volume, dscf
Bws
-o1.i3l-=
dimereionless
Moisture Fraction (BWS), dimensionless
BWS = BWSmsd unless BWSsat < BWSmsd
where,
BWSsat-lL= moisture fraction (theoretical at satuated conditions)
BWSmd ;[!!= moisture fraction (rcaured)
BWS 0.132
Molaular wcight (DRY) (Md), lb[b-trplc
146 = (0.u14 xo/oCO2) + (0.32 xo/oO2) + (0.28(100- 0/oCO2 -o/oO2))
where,
CO, L= crbon dioxide concentration, 7o
OrA= orygen concentration, 7o
Md 29.46 = lMb mol
Tm
17 of 124
AIErce-ff(]IINIC.AL GR(}U P
Example Calculations
Loa"tion
Sor"""
P"oj""t No,
Run No. I
Parameter(s)
Molecular Weight (WET) (Ms), lb/lLmolc
Ms = Md (1 - BWS) + 18.015 (BWS)
where,
= molecular weight (DRY). lbilb mol
= moisture fraction, drmemionless
= Ib/lb mol
Average Velaity (Vs), ftlsc
, Vs = 85.49 x Cp x (Apr/z)avg xwbefe,
Cp]qgl-= pitot tube c@fficient
oPt'' ___f!f_: average pr€lpost test velocity head of stack go, (in. H2O)r'l
T"-|4L= uverage pre/post test absolute stack tempqature, oR
Ps 25.51 = absolute stack 96 pressure, in Hg
M" .@ = molecular weight ofstack gas, lb/lb mol
Vs 175.2 : i/sec
Aver8ge Stack Gas Flow aa Strck Conditions (Qa), acfm
Qa=60xVsxAs
where,
Vs t75.2 = stack gm velocity, fusec
As 0.92 = cross{ectional area ofstack, ft2
Qu.@=u"f.
Average Stack Gas Flow at St8rdard Condiaioos (Qs), dscfm
Qsd= l7.636xQax(r -Bws)x ft
where,
Qu_ry_= average stack 96 flow at stack conditions, acftn
BWS 0.132 = morsture fraction, dimensionless
Ps 25 5l = absolute stack g6 pressure, in. Hg
T" __)]jj2-= uverage pre/post test absolute stack tempsature, oR
Qs 2,105 = dscfm
Dry Gas Meter Calibration Chcck (Yqa), percent
Y_
x 100
Md
BWS
Ms
29.46
-6' r i2-T
Y 0.976 : meter correction factor. dimensionless
o-06-: .un time, min.
35.615
I.957
@
l 000
29.46
1.000---i:a-
**)/s
(*
Yqa =
where,
Tm
LH@
Pb
AH avg
Md
(a r0"'
Yqa
= total meter volume, dcf
= absolute meter temperature, oR
= ori6ce meter calibration coefficient, in. H2O
= bdometric pressure, in. Hg
= average pressure differential oforifice, in H2O
= molecula weight (DRY), lb/lb mol
= average square root pressure differential oforifice, (in
= percent
Hro'|"'
l8 of 124
Al6rceTECH\iCAL GROUP
Location: Ameiesco, Hill Air Force Base - Davis County
Source:@
Project No.: AST-2023-4300
Run No. /Dlethod Run I / Method 3A
Oz - Outlet Concentration (Co), Vo dry
Co,: (Cou,-C.)* ( affi;J
where,
Cou,{: average analyzervalue during test, % dry
Co 0.00 : average ofpretest & posttest zero responses,%o dry
CMA 12.00 : actual concentration ofcalibration gas,Yodry
CM I 1.97 : average ofpretest & posttest calibration responses, %o dry
C6, 10.00 : Oz Concentration,o/o dry
19 of 124
AITECH\ICAL GROUP
Location: Ameiesco. t{ill Air Force Base - Davis
COu - Outlet Concentration (CcoJ, %o dry
cco= (cou,-c.)* ( #q-)
where,
Cou, ..;![: average analyzer'
Co 0.06 : average of pretest
CM,{ 11.85 : actual
CM 11.88 : average ofpretest
Cco, 6.61 : COz Concentratio
FlafEe
during test, oZ dry
posttest zero responses,%o dry
of calibration gas, Yo dry
posttest calibration responses, 7o dry
o/o dry
pllt6rlEe
TECH\ICAL GROUP
Location: Ameresco, Hill Air Force Base - Davis CounW
Source: Unit 5l Engine 3 - Natural Gas
Project No.: AST-2023-4300
Run No. /ivlethodRun I / Method 7E
NOx - Outlet Concentration (Cro,), ppmvd
Cr.ro*: (Co6,-C6)x f ,9*, t\ rq-=;f/
where,
C*, L: average wtalyzer value during test, ppmvd
Co 0.20 = average ofpretest & posttest zero responses, ppmvd
CMA 50.00 : actual concentration of calibration gas, ppmvd
CM 50.67 : average ofpretest & posttest calibration responses, ppmvd
CNo* 61.46 : NOx Concentration, ppmvd
NOx - Outlet Concentration (Cxo,"rs), ppmvd @ l5o Oz
CNo^",, : CNo* x r 20.9-15 \
-l
\ zo.s -o, )
where,
CNo*
co,
CNo*cts
ERNo,:
where,
CNo*
MW
Qs
ERNo,
NOx - Outlet Emission Rate (ERNSJ, lb/hr
61.46
46.0055
2.105
0.93
NOx - Outlet Emission Rate (ER16,1py), ton/yr
: NOx - Outlet Concentration, ppmvd
: oxygen concentration, 7o
: ppmvd @15%O,
: NOx - Outlet Concentration, ppmvd
: NOx molecular weight, g/g-mole: stack gas volumetric flow rate at standard conditions, dscfin: lb/hr
61.46
10.00
33.26
Cro* x MW x Qs x60 # x28.32
24.04 --i-x 1.0E06 x453.592g - moLe
ERNo*rpy - ERNg-I!'760 f
2,000;..
where,
ERN6" 0.93 : NOx - Outlet Emission Rate, lb/hr
ERNo*rpy 4.1 : ton/yr
NOx - Outlet Emission Factor (EFnoJ, g/hp-hr
Er - ERNo* x 453.592 ft,.*o*_.........ffi
where,
ERNq* 0.93 : NOx - Outlet Emission Rate, lb/hr
EBW 1,372 : engine brake work, FIP
EF*o*-d3T-: g/hp-hr
2l of 124
plllf,lrce
TECH\ICAL GROUP
Location: Ameresco, Hill Air Force Base - Davis County
Source: Unit 5l Ensine 3 - Natural Gas
Project No.: AST-2023:4399
Run No. /Method Run 1 / Method l0
CO - Outlet Concentration (Cco), ppmvd
Cco= (Co6,-C6)x /,,C"o. \\ rcffi'l/
where,
Cor,;[!!= average analyzer value duringtest, ppmvd
Co l.15 : average ofpretest & posttest zero responses, ppmvd
CroA: actual concentration of calibration gas, ppmvd
CM 491.79 : average of pretest & posttest calibration responses, ppmvd
Cco 607.31 : CO Concentration, ppmvd
CO - Outlet Concentration (Cco"rs), ppmvd @ l5o/" Oz
cco"rs: ccox (##
where,
Cco 607.31 : CO - Outlet Concentration, ppmvd
Co, 10.00 : oxygen concentration, %o
Cco"rs 328.65 : ppmvd @l5o 02
CO - Outlet Emission Rate (ERss), Ib/hr
- CcoxMWxQsx60#x25.32 hanro -
where,
Cco 607.31 : CO - Outlet Concentration, ppmvd
MW 28.01 : CO molecular weight, g/g-mole
qr Z,f OS : stack gas volumetric flow rate at standard conditions, dscfm
ERco 5.6 : lb/hr
CO - Outlet Emission Rate (ER6mpy), ton/yr
ERco,p": tY;ilutu,ffo it
where,
ERco 5.6 : CO - Outlet Emission Rate, lb/hr
ERcorpv 24.4 : ton/yr
CO - Outlet Emission Factor (EFco), g/hp-hr
ED - ERco x453.592ft
EBW
where,
ERco 5.6 : CO - Outlet Emission Rate, lb/lr
EBW 1,372 : engine brake work, FIP
EFco-:g/hp-hr
22 of 124
pult6rlrce
TECH\ICAL GROUP' - -Lircitioni Ameresco, Hill Air Force Base - Davis County
Source: Unit 5l Engine 3 - Natural Gas
Project No.: AST-2023-4300
Run No. /Ivlethod Run I / Method Alt-096
NMHC - Outlet Concentration (as C3H8) (Cxr'rrc)' ppmvd
v - C*rnc*.*rrrc_EWS_
where,
C*rr.*1[!|: NMHC - Outlet Concentration (as C3H8), ppmvw
BWS 0.13 : moisture fraction, unitless
C"rr.E:ppmvd
NMHC - Outtet Concentration (as C3H8) (Cxnrsc"rs), ppmvd @ lSVo Oz
where,
NMHC - Outlet Emission Rate (as C3H8) (ERumucrpv), ton/yr
- ERNrranc x 8,760 :DnNMHcr?y_W,
where,
ER*rr. .;![: NMHC - Outlet Emission Rate (as C3H8), lb/hr
ERNrrcrpy 4.3 = ton/yr
CNvsc x MW x Qs x 60 {} 2852 n
EI(NUUC -
NMHC - Outlet Emission Factor (as C3H8) (EFxnrnc)' g/hp-hr
EE - ERNr,aHc x 454 *4ETNMHC __ggW
where,
ERN1anc 0.9S : NMHC - Outlet Emission Rate (as C3H8), lb/hr
Crrr. 1[!|: NMHC - Outlet Concentration (as C3H8), ppmvd
MW 44.1 : NMHC molecular weight, g/g-mole
Qs 2,105 : stack gas volumetric flow rate at standard conditions, dscfrn
ERNr,,rnc 0.98 : lb/hr
cNuHc"rs: cNruHc. (-r.4or - J
where,
Co-,.&:NMHC.outletConcentration(asC3H8),ppmvd
Co" 10.00 : oxygen concentration, %o
CN1auc"rs 36.70 : ppmvd @15%Oz
NMHC - Outlet Emission Rate (as C3H8) (ERxys6)' lb/hr
EBW 1,372 : engine brake work, HP
EFur'ruc 0.32 : g/hp-hr
23 of 124
24 of 124
25 of 124
altfrre
TECHNICAL GFIOUP
Emissions Calculations
Location Ameresco, Hill Air Force Base - Davis County
Source Unit 5l Engine 3 - Natural Gas
Project No. AST-2023-4300
Run Number Runl Run2 Run3 Average
Date
Start Time
Stop Time
tzl7l23
8:55
9:55
t2t7t23 t2t7t23
10:20 I l:45
ll:20 12:45
Engine Data
Engine Manufacturer
Engine Model
Engine Serial Number
Engine Type
Engine Date of Manufacturer
Engine Hour Meter Reading
DOM
EMR
Jenbacher
JGS320
1238786
Spark Ignition - 4SLB
2017-01-12
34,482
Generator Output, kW
Engine Brake Work, HP
Maximum Brake Work, HP
Engine Load, 7o
Ambient Temperature
Relative Humidity, %
Barometric Pressure, in. Hg
1,001
1,372
1,350
102
45
60
25.75
Gen OP
EBW
MaxEBW
EL
Te.u
RH
Pb
1,002
1,373
1,350
102
50
60
25.75
999 1,000
1,368 1,371
1,350 1,350
l0l 102
50 48
60 60
25.75 25.',15
Input Data - Outlet
Moisture Fraction, dimensionless
Volumetric Flow Rate (Ml-4), dscfm
BWS
Qs
0.t32
2,105
0.118
2,500
0.120 0.123
2,485 2,363
Calculated Data - Outlet
)z Concentration, o/o dry co, 10.00 10.02 10.01 10.01
3Oz Concentration, % dry cco, 6.61 6.58 6.58 6.59
3O Concentration, ppmvd
lO Concentration, ppmvd @ 15 Yo 02
lO Emission Rate, lb/hr
CO Emission Rate, tor/yr
30 Emission Factor, p/HP-hr
607.31
328.65
5.6
24.4
1.8
Cco
Cco",t
ERco
ERcorpv
EFco
617.26
334.60
6.7
29.5
2.2
6t6.35 613.64
333.91 332.39
6.7 6.3
29.3 27.7
2.2 2.1
\Ox Concentration, ppmvd
!,lOx Concentration, ppmvd @ 15 %oOz
\Ox Emission Rate, lb/hr
\lOx Emission Rate, ton/yr
\lOx Emission Factor. e/[IP-hr
61.46
33.26
0.93
4.1
0.31
CNo*
CNo*ct s
ERNo*
ERNo*rpv
EF*.r*
61.68
33.44
l.l
4.8
0.37
61. 16 61.43
33.13 33.28
l.r 1.0
4.8 4.6
0.36 0.34
),IMHC (as C:Hr) Concentration, ppmvd
!{MHC (as C:Ht) Concentration, ppmvw
\IMHC (as C:Hs) Concentration, ppmvd @
\MHC (as C:Hr) Emission Rate, lb/hr
),IMHC (as C,Hr) Emission Rate, ton/yr
\MHC (as C:Hr) Emission Factor, dHP-hr
67.83
58.87
36.70
0.98
4.3
0.32
C**rc
C*rc*
CrrraHc"ts
ERNrr,mc
ERNlrHcrpv
EF"-rr.
67.96
59.94
36.84
1.2
5.1
0.39
68.17 67.98
59.99 59.60
36.93 36.82
1.2 1.1
5.I 4.8
0.39 0.37
15 o/o Oz
26 of 124
llllf,irce
T =i: t"'t N I c AL ti r{ft tJ P
Locdion Arer6co, Hill Air Forc€ Bse - Dxvis Couily
Method I Data
Source Unil 5l Eneine 3 - Nat
Projd No. AST-2023-4300
D^k l2lo7l23
DudOrientstion: Vdical
Dud D6ign; Circular
Disruft from Ftr wrll ro Ortside of Pon, ----i'ili-in
Nippl" l*ogrh' -----ii3- in
Deptt of orc: ----illd-in
Crosi sfttioorl AM of Du"t,----i167-R'
No. ofTd Pon!: 2
Numb€r ofRddin$ pcr Poitrt: I
,r.,** ^,-----7i-nDistmce A Dud Dixrm..,-----7I--1.rst be, 0.51
DiltDe B: 4J ft
Dirrmc€ B Dtrd Dixmrcrs: 43 (must be > 2)
Mioimum Number ofTrrveme Poinb: 16
Adurl f{umber of Trrv".." Point., -----li-
Mesurer (lnitiel ud Dste): DBR l215/23
Reiser (lnirirl md Drt"1, -F-BEiTEZ-
rrar!{, ,16
LOCATION OF TRAVERSE POINTS
Numba of trarqv poin^ on a diatud
I
2
3
4
6
1
E
9
t0
ll
t2
2 3 1 5 6 1 E 9 l0 il t2
14.6 6.7 4.4 1.2 2.6 2t
85.4 25.0 10.5 8.2 e,7
19.4 r4 6
93.3 70.4 32.3 226
85.4 67.7 142 25.0
95.6 80.6 658 3s6
89.5 774 644
96.8 85.4 75.0
91 8 E2.3
97.4 88.2
93.3
97.9
'Peteil of sbck dianetetton hside wall to trMrce poiht
Tnrerle
Poin(
6/o ol Dirtte from
Dirmer wsI ouride of
t
3
.l
5
6
7
8
9
l0
ll
t2
Z
10.5
19.4
323
6t.7
80.6
89.5
968
1.37
2.52
4.20
8.80
r0.48
I 1.64
t2.50
2.25
3.12
4.27
5.95
10.55
\2.23
l 3.39
t4.25
Stack Diagranl
A = 2.9 fr.
B = 4.7 fi.
Depth of Ducl = 13 in.
Cross Seclioml Area
ooaaoooo
Up*,eam
Dlsturbance
Alr6tr-
T'EOHNICAL {lROI.JP
Cyclonic Flow Check
Location Ameresco, Hill Air Force Base - Davis County
Source Unit 5l Ensine 3 - Natural Gas
Project No. AS!-zQ!!QQQ
Date l2l7l23
Sample Polnt Angle (AP=0)
I
2
3
4
5
6
7
8
9
10
11
t2
13
t4
l5
t6
Average 3.6
28 of 124
pult6rrrce
IE(;HNi(;A.L GIIC}UP
Field Data
Method 2Data
Location Ameresco. Hill Air Force Bese - Davis Countv
Source Unit 51 Ensine 3 - Naturrl Gas
Projecr No. AST-2023-4300
I
12/7/23
VALID
9:05
9:16
Pass
,
r2l7l23
VALID
l0:30
l0:41
Pass
3
1217123
VALID
1 l:51
l2:05
Pass
865
865
865
867
867
867
865
865
869
869
869
869
869
869
869
870
2.30
2.30
2.30
2.40
2.40
2.40
2.50
2.30
2.30
2.30
2.40
2.40
2.40
2.50
2.50
2.30
866
866
866
867
868
868
868
870
870
872
868
869
869
869
869
870
al
2
3
4
5
6
7
8
b1
,,
3
4
5
6
7
8
2.20
2.20
2.30
2.30
2.30
2.40
2.40
2.30
2.40
2.40
2.40
2.40
2.40
2.50
2.50
2.40
872
872
872
870
870
870
871
871
868
868
868
869
869
8369
869
869
2.30
2.30
2.30
2.30
2.40
2.40
2.50
2.50
2.30
2.30
2.50
2.50
2.50
2.40
2.40
2.40
1.537
2.36
0.840
25.51
0.02
25.51
1338.6
1798.2
0.132
1.000
0.1 32
10.00
6.61
29.46
27.95
175.2
9,692
145,517
2.425
t.547
2.39
0.840
25.51
0.01
25.5t
867.4
1327.1
0.1r8
1.000
0.1 18
10.02
6.58
29.45
28.1 0
151.1
8,358
170,034
2,834
2,500
1.541
2.38
0.840
25.5 l
0.02
25.51
868.4
l 328. l
0.1 20
1.000
0.1 20
10.01
6.58
25.45
28.09
150.6
8,331
r69,363
2.823
1.542
2.38
0.840
25.51
0.02
25.51
1024.8
1484.5
0.123
1.000
0.1 23
10.0
6.6
29.45
28.05
159.0
8,794
161,638
2.694
2.363
Square Root of AP, (in. WC)rn
Averrge AP, in. WC
Pitot Tube Coeflicient
Barometric Pressure, in, IIg
Stetic Pressure, in. WC
Stack Pressure, in. Hg
Average Tempereture, oF
Averege Temperature, oR
Measu red Moisture Fraction
Moisture Frection @ Saturation
Moisture Fraction
02 Concentration, 7o
CO2 Concentration, 7o
(AP),,,
(P)
(cp)
(Pb)
(Pe)
(Ps)
(Ts)
(Ts)
(BWSmsd)
(BwSsat)
(Bws)
(02)
(c()2)
(Md)
(Ms)
(vs)
(Qa)
(Qsw)
(Qsw)
Weight, lb/lFmole(dry)
Weight, lbflb-mole (wet)
Velocity, ft/sec
VFR at stack conditions, acfm
VFR at standard conditions, sclh
VFR at standard conditions. scfm
29 of 124
Al6rceTECHNICAL GROUP
Method 4 Data
lotr No.
)rtc
;hto!
iffiTime
lnd Time
lutr Timq mir (0)
tter U)
I
tznl23
VALTD
8:55
9:55
60
M5 2600
tznn3
VALID
l0:20
ll:20
60
3
ta1n3
VALID
ll:45
12t45
60
M5-26{n
t&r Cormion tr.cor (Y)
)rili.G Cdibr.lion V.luc (AII @)
ilu V..uum, ir, Hg
,et lal ClftlL ft3/min (rl frr vrcl
0.976
1.957
l5
0.001
0.976
1.957
t5
0.976
1.957
l5
0 001
flder Volumq ft3
0
5
l0
l5
n
3t)
35
.10
45
50
55
@
lorrl M€h. V
402.835
405.925
408.790
41 1.850
414.680
4t7.420
420.720
423.960
426.855
429.720
432.850
435.650
438.450
35.615
43E.720
441.650
444.780
447.580
451.210
454.350
457.2t0
460.020
463.210
466.315
469.450
472.520
475.210
36.490
475.510
478.625
4Et.350
484.720
4E7.5t0
490.670
493.255
496.535
499.440
503.320
506.215
509.450
512.1 l0
lcmperrtuG
0
5
l0
l5
20
25
30
35
,l()
45
v)
60
\veng. Topo.turq "F (Im)
\venge TdD.r.aurq oR (Im)
l|inioum Tmpd.torc' otr
Mclcr
62
62
62
62
63
63
63
63
62
62
62
62
63
62
522
62
Pob€triltr Vlcucm
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
0p. Eti
54
54
54
52
52
53
53
51
54
54
55
5
5
52
Mds
63
63
63
63
62
62
63
63
62
63
63
7t
531
62
Probc Filter Vtauum
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
Imp. Ed
56
5l
5l
49
49
49
49
48
48
49
50
56
48
56
M&l
73
73
73
73
7t
7l
69
69
69
69
70
7l
53t
69
73
Pobc FilGr Vacuom
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
1
lmp. Edl
56
56
56
55
5{
54
53
55
55
56
56
55
53
l.rcmdricPr6,c&in, Hg (Pb)
ilder Ori6e PBlure, io. WC (AIl)
{ecr PB,u& ir. Ilg (PD)
25.07
l.m0
25.14
25.07
1.000
25.14
25.07
1.000
25.r1
\!iyri! TlDc
opine.r I, PrdPon Td, g
mpitrgF 2, PrdPon T6L 8
mpirgcr 3, PrdPort T6t, 8
mpinger 4, Pre/Polt Tst, g
/olume Wrbr Collcctd, mL (Vlc)
ihd.rd W&rvolumq d (Vw!td)
iloirluE Frrdion Molrrd (BWS)
;a Mderlt Wcithl, lMEmd€ (dry) (Md)
nzv
H20
Empty
Silica
816.0
768.0
648.7
1056-8
8S4.7
772.5
65r.2
1066.2
78.7
4.5
2.5
s.4
dzv
H20
Erpty
Sillca
731.6
772.5
651.2
1066.2
E00. I
775.4
654.0
1076.4
68 5
2.9
2.8
to.2
H20
It20
Empty
Silica
800. I
775.4
654.0
1076.4
871.3
780.4
655.5
71.2
5.0
1.5
a2
95.1
4.485
0.132
29.46
84.4
3.980
0.il8
29.45
85.9
4.051
0.120
29.45
30 of 124
pultfrlrce
TECHNi(:AL GFOTJIE
Runl-RMData
L@rtion:
Sourcc:
Project No,:
Drtel
Ameresco- Hill Air Force Base - Davis
Time
Unit
Staaus
Or - Outlet COr - Outlct CO - Outlet
ln dry o/o dty ppmvd
Valid Valid Valid
9.9?
12.00
0.00
0.00
0.00
12.0r
r r.93
11.97
NOr - Outlet ITIMHC - Outlct
ppmvd ppmw
Average
Cal Gas Concentration (Cya)
Pretest System Zero Response
Posttest System Zrro Respome
Average Zero Resporoe (Co)
Pretcst System Crl Rspotrse
Posltesl System Cal Response
Average Cal Response (Cy)
Corrected Run Aver
8:55
8:56
8:57
8:58
8:59
9:00
g:01
9:02
9:03
9:04
9:05
9:06
9:07
9:08
9;09
9: l0
9rl I
9: l2
9:13
9: l4
9:15
9:16
9;17
9: l8
9:19
9:20
9:21
9.22
9:23
9:24
9:25
9:26
9:27
9:28
9:29
9:30
9:31
9:32
9:33
9:34
9:35
9:36
9:37
9:38
9:39
9:40
9:41
9:42
9:43
9:44
9:45
9:46
9:47
9:48
9:49
9:50
9:51
9:52
9:53
9:54
6.65 597.09
9.92
9.93
9.94
9.94
9.94
9.92
9.92
9.89
9.91
9.92
9.94
9.94
9.94
9.93
9.94
9.95
9.94
9.94
9.95
9.97
9.97
9,96
10.00
9.96
r0.00
t0.01
9.97
9.96
10.03
r0.00
9.99
9.96
9.98
9.98
9.99
9.98
10.00
r0.03
10.03
9.99
9.96
9.94
9.97
10.00
10.00
10.03
10.04
9.98
10.02
10.03
9.99
10.02
9.98
9.96
10.01
9.94
9.99
9.97
10.06
10.00
596.88
599.7
598.91
598.82
597.18
599.36
599.03
601.54
597.78
597.38
597.93
596.98
595.73
596.33
s96.95
597.94
597.00
s96.86
599.02
597.54
595.92
594.86
598.15
597.66
598.24
598.07
592.50
592.98
600.69
595.0s
595.91
596.41
595.24
595.30
597.17
598.52
600.91
597.88
596.13
595.73
595.08
594.57
594.31
599.77
596.96
600.1 I
599.30
593.80
599.1 5
595.93
595.84
596.76
597.14
594.60
600.25
594.36
597.01
593.51
600.80
593.77
11.85
0.08
0.04
0.06
I 1.86
I 1.89
l 1.88
6.62
6.62
6.62
6.62
6.6r
6.64
6.63
6.66
6.65
6.6s
6.63
6.62
6.63
6.64
6.63
6.62
6.63
6.64
6.66
6.63
6.65
6.66
6.62
6.68
hb6
6.62
6.62
6.68
6.68
6.66
6.65
6.65
6.65
6.66
6.65
6.69
bb6
6.67
6.64
6.61
6.62
6.65
6.66
6.66
6.67
6.68
6.64
6.66
6.68
6.63
6.65
6.62
6.63
6.72
6.66
6.68
6.64
6.7 |
6.65
s00.00
0.08
l.l5
499.21
484.36
491.79
62.24
50.00
0.16
0.23
0.20
50.30
51.04
50.67
61.03
60.75
60.93
60.67
60.31
59.65
59.86
60.30
60.90
60.72
6l.20
61.14
61.44
61.26
6l.79
61.68
61.88
61.95
61.78
62.08
62.0r
62.33
62.92
63.05
62.5 l
62.35
62.43
62.22
62.39
62.32
62.t2
62.55
62.83
62.90
63.18
62.91
63.06
62.84
62.56
62.85
63.15
63.55
63.63
63.44
63.55
62.54
62.82
62.78
62.43
62.58
62.19
62.93
62.84
63.t2
62.89
63.19
63.31
63.12
63.30
62.91
58.87
100.00
0.90
2.98
1.94
99.38
100.45
99.92
NA
61.69
61.48
61.63
6l.69
61.62
61.60
62.05
62.58
62.02
61.32
61.46
61.71
61.79
6t.72
61.91
62.38
62.82
61.68
62.32
63.29
60.70
59.04
61.58
56.97
61.46
60.06
60.2 r
60.99
60.81
19.90
51.63
55.15
58.49
60.59
6t.52
6t.52
61.14
61.20
57.03
57.28
61.53
61.17
60.1 1
58.2t
56.54
60.50
5r.50
35.08
56.81
55.57
34.29
61.00
61.67
61.78
62.49
60.40
62.60
61.72
61.60
6r.80
3l of 124
Ailfrlrce
TECHNifiAL GHOIJP
Run2-RMData
Lmrtion: Ameresco. Hill Air Force Base - Davis Coutv
Soo."",
P.^i-.r N^ ' AST-2n2?-r1nn
Drae: l2l7l23
Time
Unia
(}2 - Outlet COr - Outlet C0 - 0utlet
lo dry '/" dry ppmvd
Valid Valid Valid
NOr - Outlet NMHC - Outlet
ppmvd ppmw
Valid Valid
Utrcorrected Rutr Average (C.5)
Crl Gas Conc€ntrstion (CMA)
Pretest System Zero Responre
P6ttest System Zcro RespoNe
Average Z€ro Respome (Co)
Pretst System Cal R6ponre
Posttesl System Cal Response
Average Cal Response (Cy)
Corrected Run
10.00
12.00
0.00
0.00
0.00
I 1.93
t2 04
9.95
9.95
9.96
9.97
9.96
9.99
10.00
10.00
9.99
ooo
10.02
9.99
10.01
10.01
t0.01
10.04
10.01
9.99
10.01
10.02
10.02
10.01
10.01
9.99
9.99
10.01
10.03
10.02
10.07
10.03
r0.02
10.06
9.99
10.01
9.98
9.97
9.98
10.04
9.99
9.99
9.98
10.01
9.98
9.99
10.08
10.00
9.98
9.99
10.00
10.02
10.00
10.02
10.00
10.03
9.99
10.00
10.00
r0.06
10.02
6.63
11.85
0.04
0.09
0.06
I 1.89
11.89
I 1.89
6.58
594. l4
500.00
2.22
0.95
1.59
484.36
478.78
48t.57
617.26
50.00 100.00
0.23 2.98
0.25 2.62
0.24 2.80
51.04 100.45
51.00 99.93
51.02 100.19
61.68 NA
l0:20
l0tzl
l0:22
l0:23
10124
10125
l0:26
10127
l0:28
l0:29
l0:30
l0:31
l0:32
10:33
l0:34
l0:35
l0:36
l0:37
l0:38
l0:39
l0:40
l0:41
10142
l0:43
10r44
l0:45
l0:46
l0:47
l0;48
10:49
l0:50
l0:51
10:52
10;53
10:54
l0:55
10:56
l0:57
l0:58
l0:59
I l:00
I l:01
I l:02
I l:03
l1:04
l1:05
l1:06
l1:07
l1:08
l1:09
I l:10
ll:ll
!ltl2
I l:13
llrl4
I l:15
I l:16
I l:17
1 l:18
I l:19
6.63
6.63
6.63
6.63
6.62
6.63
6.62
6.63
6.65
6.64
6.66
6.61
6.64
6.62
6.6r
6.64
6.63
6.60
6.61
6.63
6.63
6.66
6.65
6.60
6.61
6.61
6.61
6.64
6.66
6.64
6.63
6.67
6.6r
6.63
6.60
6.59
6.60
6.62
6.68
6.63
6.61
6.61
6.64
6.59
6.60
6.68
6.62
6.59
6.60
6.62
6.64
6.59
6.65
6.62
6.65
6.63
6.6s
6.62
6.66
6.63
593.80
595.26
595.47
594.14
594.82
596.53
596.23
59{.61
595.83
596.31
596.68
594. I 7
594.95
592.66
591.97
594.48
595.85
593.50
593.74
592.28
592.15
594.42
597.46
592.98
593.69
589.95
593.19
592.53
597.60
593.56
592.93
597.82
591.08
595.76
590.09
592.67
593.68
594.66
601.40
595.26
592.04
592.90
595.39
590.61
590.45
s95.81
594.52
592.3r
595.96
595.18
593.98
592.7 r
594.53
593.42
59{.20
592.3 l
594.81
593.73
593.89
593.43
61.68
6l.79
62.44
62.58
62.44
62.33
62.45
62.64
62.75
62.89
63.00
62.73
63.06
62.60
62.68
62.69
62.80
63.01
63.32
63.04
63.19
62.84
62.37
62.91
62.87
62.59
62.88
62.57
62.90
62.42
62.83
62.84
62.7 5
62.73
62.76
62.84
62.66
62.7 |
63.04
62.85
62.80
62.52
62.21
62.48
62.67
62.58
62.48
63.21
63.46
63.29
63.38
63.36
63.33
63.52
63.54
63.68
63.27
64.23
64.30
64.t7
61.44
61.33
61.73
6t.20
61.26
60.95
60.81
61.42
61.77
61.73
61.31
57.96
60.20
61.36
6l.00
61.67
61.79
6 t.13
61.10
61.64
61.61
42.98
25.49
62.87
62.04
60.88
61.66
6t.42
60.96
58.58
6r.93
60.62
60.79
61.05
61.42
61.43
61.22
61.45
61.89
60.72
57.11
60.12
62.00
61.94
62.06
62.03
58.1r
58.17
61.33
59.31
58.18
58.82
57.89
60.62
59.87
61.12
60.81
61.20
61. l9
60.63
32 of 124
pultffirlrce
TtrCHN]CAL GtrOIJIs
Run3-RMData
Lcraion:
Source:
Project No.r
Date:
Time
Utrit
Strius
11:45
ll:46
ll:47
I l:48
I l:49
I l:50
1l:51
I l:52
11:53
I l:54
ll:55
ll:56
I l:57
I l:58
I l;59
l2:00
l2:01
l2:02
l2:03
12t04
12:05
l2:06
12:O7
l2:08
l2:09
l2:10
l2:l I
lZtl2
l 2:13
12:14
12:15
I 2:16
l2:17
l2:18
l2:19
l2:20
l2:21
12:22
12:23
12t24
12:25
l2:26
12t27
l2:28
12:29
l2:30
12:31
12:32
12:33
12134
I 2:35
12:36
12:37
12:38
l2:39
lZ:40
12:41
12:42
l2:43
12:44
Or - Outlet
oh dty
Valid
10.03
12.00
0.00
0.00
0.00
12.04
12.00
12.02
9.97
9.96
9.98
9.98
9.97
9.99
9.98
9.98
9.99
10.00
9.99
r0.12
10.03
r0.00
r0.02
10.01
10.04
10.02
r0.02
10.06
10.05
10.02
10.02
10.03
10.0 r
r0.01
10.01
10.02
10.05
10.05
r0.03
t0.01
10.04
10.07
10.02
10.03
10.03
10.07
r0.01
r0.06
10.06
10.08
10.07
10.04
10.01
r0.05
10.04
10.03
10.07
10.0 I
10.03
10.02
10.02
10.02
10.01
r0.06
10.08
10.08
10.07
6.64
1 1.85
0.09
0.09
0.09
11.89
1 1.88
1 1.89
6.60
6.59
6.61
6.61
6.65
6.61
6.61
6.63
6.64
6.61
6.64
6.63
6.73
6.68
6.63
6.62
6.63
6.65
6.64
6.63
6.66
6.68
6.67
6.64
6.65
6.61
6.61
6.62
6.61
6.67
6.65
6.64
6.61
6.65
6.68
6.63
6.62
6.66
6.67
6.60
6.63
6.66
6.65
6.64
6.63
6.60
6.67
6.64
6.64
6.67
6.6r
6.64
6.60
6.62
6.64
6.6t
6.67
6.67
6.65
6.64
s96.62
500.00
0.9s
0. t0
0.53
478.78
489.42
484. l0
616.35
62.66
50.00
0.25
0.33
0.29
51.00
51.55
51.28
61.l6
62.21
62.46
62.60
62.75
62.67
63.29
63.28
63.62
63.62
63.56
63.32
63.39
63.1 1
62.96
63.37
63.45
63.06
63.20
63.03
62.37
62.34
62.53
62.68
62.65
62.62
62.81
62.96
62.98
62.90
62.75
62.33
62.36
62.50
62.97
62.59
62.65
62.55
62.56
62.37
62.45
62.39
6r.92
61.95
62. l8
62.02
62.4t
62.55
62.35
61.98
61.8{
62.23
62.2t
62.20
62.86
62.92
62.52
62.47
62.34
61.95
62.18
100.00
2.62
2.81
2.72
99.93
98.94
99.{4
NA
61.92
62.44
63.26
61.93
61.74
60.43
62.r3
62.08
62.23
61.91
62.07
56.26
61.81
57.77
59.92
61.14
60.90
61.07
62.00
62.09
61.15
60.85
60.72
60.70
61. l8
60.77
60.41
60.61
59.09
58.r3
59.66
59.83
59.48
59.81
58.91
58.92
59.23
58.07
59.81
57.81
6 r.18
6r.05
50.25
58.10
60.34
59.65
60.73
59.69
60.29
61.01
61.01
60.40
56.00
57.98
60.80
60.87
61.31
60.05
50.25
58.10
COu - Outlet CO - Outlea
7" dry ppmvd
NOr - Outlet NMHC - Outlet
ppmvd ppmw
Valid Valid
Uncorrected Run
Crl Gas Concetrtrstion (CMA)
Pretesl System Zcro Response
Posttest System Zero Response
Average Zero Rcsponse (Co)
Pretest System Cal Rspome
P6ttesl System Cal Responsc
Average Crl Response (CM)
Corrected Rutr
590.87
590.44
595.71
592.23
596.75
593.46
595.90
595.96
593.53
593.31
596.12
593.88
605.4 I
597.15
599.08
594.24
594.98
598.00
595.59
593.43
593.06
597.37
598.4 t
597.90
598.84
595.18
594.09
595.41
595.46
596.53
s97.89
s96.02
593.71
598.39
600.68
600.04
595.26
596.87
600.21
590.67
596.42
598.71
598.35
598.52
s96.78
598.77
600.54
598.01
599.74
597.70
593.12
596.74
597.09
s97.95
598.04
596.14
60r.36
598.60
598.3s
598.52
33 of 124
purtErre
TECHNICAL GFIOUP
Emissions Calculations
Location Ameresco, Hill Air Force Base - Davis County
Souraa
Project No. AST-2023-4300
Run Number Runl Run2 Run3 Average
Date
Start Time
Stop Time
t2l6l23 12/6123
13:53 15:10
14:54 16:ll
t2t6l23
l2:30
l3:31
Engine Data
Engine Manufacturer
Engine Model
Engine Serial Number
Engine Type
Engine Date of Manufacturer
Engine Hour Meter Reading
Jenbacher
JGS320
1238786
Spark Ignition - 4SLB
2017-01-12
34,476
DOM
EMR
Generator Output, kW
Engine Brake Work, HP
Maximum Brake Work, HP
Engine Load, %
Ambient Temperature
Relative Humidity, o/o
Barometric Pressure. in. Hg
998 983
r,364 r,345
1,350 1,350
l0l 100
48 47
60 60
25.51 25.51
Gen OP
EBW
MaxEBW
EL
Te.o
RH
Pb
950
1,300
1,350
96
45
60
25.51
1,002
r,371
1,350
102
47
60
25.51
Input Data - Outlet
Moisture Fraction, dimensionless
Volumetric Flow Rate (Ml-4), dscfm
BWS
Qs
0.115
2,484
0.118
2,49r
0.120 0.1 18
2,477 2,484
Calculated Data - Outlet
Oz Concentration,%o dry co, 10.12 10.08 9.92 10.04
COz Concentration, 7o dry cco, 7.86 7.89 7.92 7.89
CO Concentration, ppmvd
CO Concentration, ppmvd @ 15 %:o Oz
CO Emission Rate, lb/hr
CO Emission Rate, ton/yr
CO Emission Factor, g/HP-hr
Cco
Cco",t
ERco
ERcorpv
EFco
550.00
301.03
6.0
26.1
2.1
567.86
309.67
6.2
27.0
2.0
570.10 562.66
306.32 305.68
6.2 6.1
27.0 26.7
2.1 2.1
NOx Concentration, ppmvd
NOx Concentration, ppmvd @ 15 o/o Oz
NOx Emission Rate, lb/hr
NOx Emission Rate. ton/yr
NOx Emission Factor, s/FIP-hr
CNo*
CNoxct5
ERNo"
ERNo*rpv
EFNo*
77.72
42.54
1.4
6.1
0.48
74.09
40.41
1.3
5.8
0.44
73.84 75.22
39.68 40.87
1.3 1.3
5.7 5.9
0.44 0.45
NMHC (as C:Ha) Concentration, PPmvd
NMHC (as C:Ha) Concentration, ppmvw
NMHC (as CrHs) Concentration, ppmvd @
NMHC (as CrHr) Emission Rate, lblhr
NMHC (as C:Hs) Emission Rate, ton/yr
NMHC (as C,Hs) Emission Factor, g/HP-hr
Cuprnc
C*uHc*
CNprsc"r s
ERNrr,arc
ERmurcrpv
EFr.n"crc
125.07
l10.69
68.45
2.1
9.4
0.74
n2.66
99.37
61.44
t.9
8.4
0.64
113.37 I17.03
99.77 103.27
60.91 63.60
1.9 2.0
8.5 8.8
0.64 0.67
15 o/" O,
35 of 124
pultErre
TECHNICJAL fiTiOIIP
Method I Data
Locrtion Amr6co. Hill Air Force Be - Drvis
Soufts U.it 5l Endnc 3 - Blcnd€d Fuel
Projd No. AST-202.1-{300
Dac lA06123
sr&r w1a -
Trsvcrse
Point
o/" nI
Dimd€r
Distuce
'rom inside
ndl outside of
I
3
d
6
1
8
9
l0
ll
3.2
10.5
19.4
67.7
80.6
89.5
96.E
0.50
1.37
2.52
4.20
8.80
r0.48
11.64
12.50
3.t2
4.27
5.95
10.55
t2.23
13.39
t4.25
DoctOri€ntrtion: Vdical
ouct naig,, ---tiiilili-
Distue from Fe wrll to Orrid. of pon,----iiJ6-io
Nippl* Lngti, ------3- in
oepttr of ourt: -ili0--- in
Cross S(lionrl A(s of Du.t, 092 ft'
No, ofT6t Pofrs: 2
Nuffir or K*qrngr pcr ro,n,,--l-
,*,** ^,----ll-nDistue A Dr( Dim".,r----ll-(.usr be > 0.s)
Distme B: 4.7 ft
Disrme B Dud Dim^,---i--1.rrr b., z1
Mirimum Numb€r ofTrrvene Points: 16
Aod Numbrr ofTrrv".r" Poiot,, -----G-
Mesurer (Inirial ed Date):_PeBlljzl4_
Rsiser otritiel ud Dxe): RBB 1215/23
I-l
.*t-
I
I-l r'
''i
"i_
LocAttoN ots'l mvf,Rst PotNTs
Number ol tavffi points on a diwter
I
3
{
6
1
8
9
l0
ll
t2
2 3 {s 6 1 t 9 lo il l2
14.6
85.4
6.7
25.0
75.0
93.3
4.4
14.6
29.6
?0.4
85.4
95.6
3.2
r0.5
19.4
32.3
67.7
80.6
89.5
96.8
2.6
8.2
14.6
22.6
34.2
65.8
77.4
85.4
91.8
97.4
z.l
6.7
I 1.8
17.7
25.0
35.6
64.4
750
82.3
88.2
93.3
s79
*Petcenl ol stac* dianeler from inside wal] to travese poinl
Slack Diagram
A = 2.9 ft.
B = 4.7 ft.
Depth of Ducr = 13 in.
CrNs SacfioMl Are,
Oownstream
Disturbance
aaoooooo
Upstream
Disturbance
NtAtre
T'ECHNIC;AL (lFIOLJP Cyclonic Flow Check
Location Ameresco, Hill Air Force Base - Davis County
Source Unit 5l Ensine 3 - Blended Fuel
Project No. AST-20234300
Date 1216123
3
Sample Point Angle (AP:0)
I
2
3
4
5
6
7
8
9
l0
u
t2
13
t4
15
16
Averaqe 3.6
37 of 124
lllaErrrce
I-E(;11 Ni(.)AL G'{(iUP
Field Data
Method 2Data
Location Ameresco, Hill Air Force Base - Davis County
Source Unit 5l Ensine 3 - Blended Fuel
Project No. AST-2023-4300
I
t2l6/23
VALID
12:35
12:45
Pass
2
tzt6t23
VALID
l3:58
l4: l0
Pass
3
1216123
VALID
I 4:50
15:07
Pass
al
I
3
4
5
6
7
I
bl
,
3
4
5
6
7
8
2.30
2.30
2.40
2.40
2.40
2.40
2.45
2.40
2.40
2.40
2.40
2.40
2.40
2.50
2.50
2.40
885
885
885
886
887
887
889
889
885
885
886
886
886
889
889
890
2.30
2.30
2.30
2.30
2.40
2.40
2.50
2.50
2.30
2.30
2.50
2.50
2.50
2.40
2.40
2.40
865
865
865
867
867
867
865
865
869
869
869
869
869
869
869
870
2.30
2.30
2.30
2.40
2.40
2.40
2.s0
2.30
2.30
2.30
2.40
2.40
2.40
2.50
2.50
2.30
866
866
866
867
868
868
868
870
870
872
868
869
869
869
869
870
Square Root of AP, (in. \trC)rn (AP)t"
Average AP, in. WC (AP)
Pitot Tube Coellicient (Cp)
Barometric Pressure, in. IIg (Pb)
Static Pressure, in. WC (Pg)
Stack Pressure, in. Hg (Ps)
Average Temperaturg oF (Ts)
Average Temperaturg oR (To
MeasuredMoistureFraction (BWSmsd)
Moisture Fraction @ Saturation (BWSset)
Moisture Fraction (BWS)
02 Concentration, To (O2)
CO2Concentretion,9/o (CO2)
r Weight, lbflb-mole (dry) (Md)
\Yeight, lbflb-mole (wet) (Ms)
Velocity, fUsec (Vs)
VFR at strck conditions, acfm (Qa)
VFR at standard conditions, sclh (Qsw)
VFR at standard conditions, scfm (Qsw)
r.550
2.40
0.840
25.5r
0.02
25.51
886.8
1346.5
0.1 15
1.000
0.1 15
10.12
7.86
29.66
28.32
152.0
8,404
168,514
2,809
2.484
1.547
2.39
0.840
25.51
0.01
25.51
867.4
1327.1
0.1 18
1.000
0.1 l8
10.08
7.89
29.67
28.29
150.6
8,33r
169,476
2,825
1.541
2.38
0.840
25.51
0.02
25.51
868.4
1328.1
0.120
1.000
0.1 20
9.92
7.92
29.66
28.27
1 50.1
8,304
168,807
2,8r3
1.546
2.39
0.840
25.51
0.02
25.5r
87 4.2
1 333.9
0.1 18
1.000
0.1 18
r0.0
7.9
29.66
28.25
150.9
8,346
168,932
2,816
38 of 124
Al61rce
TECHNICAL GNOU>
Method 4 Data
lrcrtion Amer6co.
Soure
Proied No.
D.r.md.d.l RWS
Console Urits / Mdhod fi3 M4
lon No.
)rte
itrtus
itsn Time
lnd Time
lun Timq min (0)
I
t2t6t23
VALID
l2:30
l3:30
60
M5 2600
2
t2/6t23
VALID
l3:53
l4:53
60
3
tzl6t23
VALID
15:10
l6: l0
60
M5-2600
vlder CorGtion Frdor (Y)
)rifice Cilibrrtion vdue (AH @)
ils Vrcuum, in. Hg
,o.r lf,rk Chmk- fr3/min (.1 mrr vrc.l
0.976
r.957
l5
0 00i
0 976
r.957
l5
0.002
0.976
1.957
l5
l{derVoltrme, ft3
0
5
l0
l5
20
25
v)
35
{0
45
so
55
60
rar.l Md.r Vnhm. ftl
293.735
296.829
299.785
302.689
305.992
308.721
3r r.857
314.856
317.755
320.658
323.641
327.0r1
330.524
36.789
330 7l 5
333.752
336.826
339.650
342.751
34s.852
347.910
350.64r
353.751
356.845
359.748
362.65S
365.762
35 047
365.928
368.752
371.824
374.957
378.02r
381.01 1
384.21 5
387.365
390.468
393.378
396.521
39S.488
402.759
36.831
'emperrturq oF
0
5
l0
l5
20
25
30
35
,10
t5
5{)
60
\verxge Tdperrturg oF
lverrgc T@perxlorq oR
finihum Impe]sturq "F
Gm)
(Tm)
Mder
62
62
62
62
62
62
62
6l
6l
62
63
63
63
62
522
6l
63
Probe Filtcr Vac Ium lmp. Exi(
59
s8
56
54
54
54
54
54
53
53
53
53
5
5
Meter
68
68
68
68
70
70
7t
72
72
72
'tt
7l
7t
531
68
72
Probc Filter Vtcuum
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
mp. Oril
56
56
55
55
54
54
56
56
56
57
5l
57
57
56
54
57
Mder
71
7l
7t
72
72
72
7t
7t
t0
70
70
70
7l
7t
531
70
72
Prcbe Filtr Vrcuum
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
Imp. Eril
56
56
56
55
54
54
54
54
53
55
55
56
56
55
53
irrometric Presurq in. Hg
{der Orifie PBstrre, io. WC
Ylder Pmsurc, itr. Hg
(Pb)
(AH)
(Pm)
25.51
1.000
25.58
11 n50
25.51
1.000
25.58
29.083
25.5t
1.000
25.58
[nalysis Type
mpitrgcr I, Pre/Post T6t, g
mpinger 2, Pre/Post Test, g
mpitrg€r 3, Pre/Post T6t, g
mpinger 4, PrefPost Tst, g
/olume Wrter Colld€d, mL (Vlc)
;rrndrrd Wrter Volumq d (Vwstd)
[oisttrrc Fridioo Mqsured (BwS)
;s Moletrlrr Weight,lbflFmole (dry) (Md)
)CM C.lihrulinr ahmk Vdu€ (Yor)
Cravimeri(
H20
H20
Empty
Silica
733.1
74S.6
640.2
948.9
795.9
756.4
643.5
961.9
62.8
6.8
3.3
13.0
H20
H20
Empty
795.9
756.4
643.5
862.1
761.7
646.7
s69 I
66.2
5.3
3.2
H20
H20
Empty
Silica
742.6
76t.7
646.7
816.0
768.0
648.7
73.4
6.3
2.0
85.9
4.051
0.1 l5
29.66
47
82.6
3.89s
0.1 18
29.67
0.8
88.0
4.150
0.120
29.66
40
39 of 124
AlErce
TECHNlCAL GHOII P
Runl-RMData
Lmstion:
Source:
Project No.:
Dale:
Time
Unit
Or - Outlet CO, - Outlct CO - Outlet
lo dty Yo dty ppmvd
Valid Valid Valid
NOr - Outlet NMHC - Outlea
ppmvd ppmw
Valid Valid
Uncorrected Run Average
Cal Gas Concentration (Cya)
Pretest Syst€m Zcro Responsc
Posttesl System Zcro Respome
Average Zero Resporoe (Co)
Pretest System Cal Response
P6ttest System Cal Response
Average Cal Roponse (Cy)
12.00
0.13
0.17
0. l5
11.85
11.58
11.72
12.00
0.02
0.07
0.05
l 1.87
r 1.78
I 1.83
537.24
500.00
t.44
0.10
0.77
500.14
476.81
488.48
76.03
50.00
3.89
2.08
2.99
49.97
49.99
49.98
r00.00
0.90
0.92
0.9r
99.90
100.30
100. l0
12t3O
l2:31
12:32
l2:33
12134
12135
12:36
12:37
l2:38
12:39
12140
lZt4l
12142
12i43
12:44
12:45
12:46
12:47
l2:48
l2:49
l2:50
l2:51
l2:52
l2:53
l2:54
12:55
l2:56
l2:57
12:58
l2:59
l3:00
l3:01
13toz
13:03
l3:04
l3:05
l3:06
l3:07
l3:08
13r09
l3; l0
l3rll
13tlz
13: l3
13r l4
1 3:15
1 3:16
13tl7
13:18
13:19
l3:20
l3:21
l3:22
l3:23
13:24
l3:25
l3:26
13t27
l3:28
'13:29
9.92
9.96
9.95
9.89
9.90
9.95
9.93
9.89
9.90
9.94
10.01
9.86
9.91
9.99
9.95
9.87
9.91
9.95
9.95
9.90
9.90
9.95
r0.00
9.95
9.92
9.94
9.96
9.91
9.89
r0.00
9.9r
9.88
9.90
9.87
9.89
9.89
9.88
9.87
9.85
9.89
9.85
9.89
9.89
9.87
9.85
9.89
9.89
9.90
9.88
9.87
9.88
9.89
9.89
9.86
9.86
9.85
9.85
9.84
9.88
9.86
7.70
7.67
7.74
7.76
7.71
7.65
7.68
7.79
7.73
7.67
7.75
7.74
7.72
7.75
7.69
7.78
7.7s
7.72
7.78
?.73
7.7 t
7.67
7.82
7.75
7.70
7.76
7.73
7.72
7.83
7.78
7.74
7 .77
7.74
7 .77
7.79
7.78
7.77
7.75
7.81
7.74
7.81
7.83
7.79
7.76
7.79
7.77
7.79
7.79
7.78
7.79
7.81
7.80
7.79
7.78
7.78
7.79
7.78
?.84
7.82
532.40
531.7
521.61
523.50
533.22
532.68
522.95
524.37
533.12
533.85
531.72
521.57
532.05
535.94
524.07
52t.72
530.10
533.10
527.37
521.69
530.r2
533.34
528.40
522.58
526.88
531.03
538.33
536.54
538.19
542.72
542.14
541.59
541.70
540.86
544.08
545.75
543.94
545.09
543.71
546.85
543.83
547.40
547.94
547.66
544.72
545.88
542.59
543. r0
543.31
546.25
544.97
544.20
541.90
541.03
542. u
546.02
541.96
541.30
547.83
546.87
79.61
78.00
79.5s
83.35
79.80
?7.70
78.06
83.32
79.87
77.98
77.26
81.89
80.39
77.56
77.13
82.40
80.62
77.6r
76.90
81.35
81.32
77.71
75.79
79.20
80.88
7?.28
76.30
75.50
75.54
74.92
73.23
73.66
73.26
73.0r
72.89
73.02
73.04
72.67
72.87
73.t7
72.57
72.81
73.t2
73.35
73.85
73.63
73.11
72.72
73.01
73.74
73.92
73.83
73.28
73.08
73.69
74.25
74.22
73.54
73.73
73.39
l 10.85
99.20
97.66
I 14.48
r06.91
96.22
l 10.79
I 15.18
I 13.92
112.33
107.56
80.96
tt5.22
I 12.93
r 10.29
l 17.38
112.90
108.22
I 10.94
l 15.33
112.82
I 10.89
l 10.47
l 10.39
111.53
108.43
108.03
l 10.49
lll.54
I 10.93
104.6 I
105.49
I 15.51
115.40
I 13.94
114.25
113.48
t15.42
1 15.82
I 13.17
tt7.02
I 16.66
I 15.41
I 18.54
tt2.28
r 17.05
1 I 1.80
I 16.45
u3.71
1 16.10
u5.08
u2.85
112.90
64.02
97.04
r 16.97
I 16.13
r 15.78
I 15.47
I 14.69
40 of 124
gltfllrce
TECHNICAL GEOIJI=
Run2-RMData
NMHC - Outlet
Locrtion:
Source:
Project No.:
Date:
Uncorrsted Run Average
Cal Grs Concentrltiotr (CMA)
Pretcst System Zero R6ponse
P6tt6l System Zero Resporee
Average Zero Respome (Co)
Pretst System Csl Response
Pmttsa System Cal Resporce
Average Cal Rapoose (Cy)
Corrmted Run
l3:53
l3:54
l3:55
l3:56
13:57
l3:58
l3:59
l4:00
14:01
l4:02
l4:03
l4:04
l4:05
l4:06
l4:07
l4:08
l4:09
l4:10
l4:l I
l4:12
l4:13
l4: l4
l4:1 5
l4:1 6
l4:17
l4il8
l4;19
14t20
l4t2l
l4:22
l4:23
14t24
l4:25
l4:26
l4:27
l4:28
l4:29
l4:30
l4:31
l4:32
l4:33
14:34
1{:35
l4:36
l4:37
14:38
l4:39
l,l:40
l4:41
l4:42
14t43
14144
l4:45
l4:46
l4:47
l4:48
l4:49
l4:50
l4:51
l4:52
Or - Outlet CO, - Outlet
oh dry Y. dr!
Valid Valid
9.88
12.00
0.17
0.15
0.16
1 1.58
l 1.88
I 1.73
10.08
7.78 543.48
12.00
0.07
0.04
0.06
I 1.78
1 1.84
1l 8l
Time
Unit
Status
CO - Outlet
ppmvd
NOx - Outlet
ppmvd pplrlw
Valid
9.85
9.86
9.87
9.86
9.87
9.88
9.88
9.83
9.78
9.75
9.78
9.86
9.91
9.9r
9.94
9.92
9.92
9.88
9.88
9.94
9.90
9.98
9.91
9.90
9.92
9.88
9.89
9.90
9.90
9.90
9.88
9.88
9.93
9.89
9.91
9.88
9.89
9.93
9.88
9.91
9.89
9.87
9.86
9.89
9.91
9.87
9.90
9.89
9.85
9.87
9.86
9.86
9.87
9.86
9.87
9.87
9.8?
9.88
9.84
7.70
7.72
7.',12
7 .72
7.74
7.72
7.73
7.80
7.79
7.82
7.84
7.81
7.82
7.81
7.79
7.81
7.78
7.78
7.73
7.73
7.80
7.?8
7.85
7.75
7.7s
7.78
7 .75
7 .77
7.78
7 .79
7.79
7.77
7.77
7.83
7.76
7.80
7 .77
7.79
7.84
7.78
7.81
7.78
7.77
7.78
7.81
7.78
7.80
7.80
7.78
?.80
?.80
7.81
7.82
7.82
7.81
7.81
7.82
7.82
7.80
541.68
539.39
539.44
538.01
54r.03
539.50
541.69
544.60
548.05
551.97
553.39
551.94
550.75
546.49
542.89
543.02
542.24
54r.24
538.18
537.35
541.28
539.99
545.84
538.10
538.78
540.r9
538.02
540.05
538.55
542.06
537.78
538.31
538.92
542.44
541.61
544.22
542.02
544.1 I
545.86
543.55
s43.83
541.66
542.78
544.52
544.85
547.93
542.46
544.22
546.51
544.76
545.36
545.59
547.11
548.27
546.51
547. I l
545.30
545.15
545.46
548.14
73.39
50.00
2.08
2.02
2.05
49.99
50.40
50.20
62.45
66.43
68.32
68.89
70.82
7 t.32
72.02
72.59
73.71
74.70
74.68
7 4.82
75.54
75.00
75.26
74.96
74.90
75.50
75.48
75.61
75.74
75.33
75.0s
74.45
7 4.77
7 4.41
74.53
74.81
74.38
74.50
74.53
74.64
74.44
74.12
73.43
7 4.33
73.90
74.49
IJ.dI
73.99
73.65
72.89
73.07
73.t5
73.31
72.60
72.80
72.8t
73.18
73.24
73.23
73.38
73.58
73.73
73.44
73.37
73.22
72.57
72.44
72.32
99.37
r00.00
0.92
0.90
0.91
100.30
99.21
99.76
77.40
77.48
76.72
76.77
78.93
75.90
75.63
76.75
76.37
76.56
75.53
74.65
7 4.67
73.61
73.46
74.3t
76.39
73.62
74.61
73.6r
76.59
74.95
76.85
51.38
74.84
75.40
74.89
76.31
74.r2
55.15
109.45
135.06
136.60
134.72
98.24
tt4.2l
123.62
125.61
t22.46
94.20
71.89
93.04
133.48
129.72
t20.7 4
139.48
r37.62
136.9r
134.85
140.47
126.90
38.65
t42.08
136.26
135.68
136.04
139.20
t 34.1 4
t38.13
t37.25
500.00
0.10
-0. l9
-0.05
476.81
480.24
478.53
4l of 124
AIErce
TEfi[-{N:CAL GFTJIJF
Run3-RMData
Lmation: Ameresco. Hill Air Force Base - Davis Counl
Source: Unit 51 Enpine 3 Blended Fuel
P.oj""t No.,
Ilete: 1216123
Time
Unia
O, - Outlet
oh dry
9.84
12.00
0.15
0.16
0.16
I 1.88
I1.87
l 1.88
547.71
s00.00
0.19
L95
0.88
480.24
480.69
480.47
570.10
50.00
2.02
r.92
1.97
50.40
48.96
49.68
73.84
99.77
100.00
0.90
0.93
0.92
99.21
99.8{
99.53
NA
107.80
107.60
107.37
108.84
107.51
107.58
108.04
105.80
106.05
108.57
106.94
73.32
t04.12
106.23
109.66
109.41
106.73
105.35
106.93
107.96
108.0 l
106. l6
104.4 I
105.74
104.56
62.51
53.48
105.11
t02.77
100.14
86.14
102.88
92.25
106. l9
99.18
93.00
104.63
9t.24
81.12
35.51
107.76
l 10.54
109. l I
r03.08
107.05
106.20
104.{6
r06.40
r07.94
90.65
96.89
90.32
91.86
93.34
93.45
t01.60
t02.t2
105.54
106.17
COr - Outlet C0 - Outlet
Yo dry ppmvd
Valid Valid
7.83
12.00
0.04
0.07
0.06
tl.84
tl.82
I 1.83
7.92
NOr - Outlea NMHC - Outlet
ppmvd ppmw
Valid Valid
Uncorrected Run Average (Co5)
Cal Gas Concentrstion (CMA)
Pretest System Zero Response
Posttest System Zero Respo6e
Average Zero Resporee (Co)
Pret€st System Cal Responsc
Posttest System Cal Response
Avcragc Cal Response (Cs)
1 5:10
15:l I
l5:12
1 5:13
15: l4
1 5:15
15: l6
15;17
1 5;18
l 5:19
l5:20
l5:21
I5:22
l5:23
I5:24
l5:25
l5:26
l5:27
15:28
l5:29
l5:30
l5:31
l5:32
l5:33
l5:34
l5:35
l5:36
l5:37
l5:38
l5:39
l5:40
l5:41
15:42
15:43
15:44
15:45
l5:46
15:47
l5:48
l5:49
l5:50
l5:51
L5:52
l5:53
I 5:54
l5:55
l5:56
l5:57
l5:58
l5:59
l6:00
l6:01
l6:02
l6:03
l6:04
l6:05
l6:06
l6:07
l6:08
l6:09
9.80
9.80
9.80
9.80
9.80
9.80
9.80
9.80
9.82
9.84
9.87
9.84
9.82
9.89
9.85
9.86
9.87
9.86
9.86
9.86
9.88
9.80
9.75
9.78
9.78
9.77
9.83
9.83
9.85
9.89
9.85
9.85
9.85
9.84
9.87
9.87
9.85
9.88
9.90
9.88
9.84
9.91
9.86
9.87
9.87
9.87
9.86
9.83
9.83
9.87
9.88
9.88
9.86
9.87
9.83
9.85
9.83
9.88
9.85
9.83
7.79
7.80
7.79
7.82
7.81
7.81
7.83
7.82
7.83
7.85
7.90
7.83
7.81
7.87
7.81
7.82
7.84
7.83
7.83
7.83
7.86
7.83
7.86
7.91
7.93
7.87
7.90
7.87
7.85
7.87
7.83
7.81
7.82
7.78
7.82
7.82
7.80
7.86
7.86
7.86
7.79
7.85
7.79
7.82
7.81
7.80
7.82
7.79
7.77
7.81
7.81
7.80
7.81
7.81
7.77
7.81
7.80
7.85
7.82
7.80
549.82
548.93
547.36
546.90
549.20
548.94
547. I I
545.7 4
548.98
552.t4
553.1s
550.98
548.82
5s2.39
548.26
545.19
546.r8
547.36
548.53
s48.00
547.81
548.55
551.31
555.89
559.67
553.78
554.63
551.88
547.89
547.86
546.27
544.65
5{7.88
544. I I
546.50
546.54
5{7.68
546.61
548.93
549.2r
544.51
548.79
543.47
543.67
545.90
544.11
546.09
543.86
542.43
545.04
545.09
545.94
545.31
545.57
544.38
546.47
545.04
548.42.
546.16
545.7 4
66.97
68.24
68.80
69.26
70.37
70.61
70.82
70.11
70.08
?0.32
70.61
70.69
7 r.l4
7 r.4l
70.91
71.18
7 r.32
7 r.25
71.88
72.09
72.25
72.15
72.96
73.06
73.84
73.63
7 4.36
74.07
73.79
73.01
73.10
73.91
73.73
7 4.25
73.83
73.59
7 4.13
73.76
73.62
73.73
73.50
73.82
73.53
73.50
72.69
73.29
72.73
72.76
72.59
72.76
72.69
72.93
73.25
73.65
73.81
7 4.51
7 4.03
74.t3
73.30
73.05
42 of 124
43 of 124
44 of 124
45 of 124
tfCAMi
Engrn! OaL
r.crrqi iu Ca
tnom sofr rdl lll
Sdrh,nB il(r.l
ljp{ilbE ld{ !t?q lh
Jwtw r5l r f
sut lNt f
Jwtu.n ?r EIO
t-lttwI-ryr 9i 5 f
IrHlff -;iii'r
OlIrFru. tm 3 T
dFr3D rj FS
FrrllhlfhrD t?c? t
O(aba.Pdri ro u t
ffifEtu teo I
Tratila rr I I
pv."i"l"iEt"
trh{ur 6.r ImFWt
elu{ luMrF 37'l
Orh4! X
C)liod )
qlnfrl
&lm,lr l
C![io E
Ctffi I
Crruh 9
Ohe. !0
omrlqmr?
otffl0qmta
qtlrlt
Ot,,6tt
t'i
4f
,l I
20'
16t
3t'r
20 ''
il_ a,,
' 1.!r
22 '.l
?i'l
I
Gcneral Alarms & Permis3ives
Prnl C Slqt
':itrsrrl# (drdhr t go
Engine Slalcs/Alarms
tupdFuhBB€
ffirud
Jqtdldrtryer
Jd.rtrPffi
OlFw
ot Irrla,abe
d t.d
aLJT6
rudhlfifrtEs
ct{a (hnbnt
raltfiols.l|r
*tlFfr
&!rImg.qrFraa
LFG(t3
ENOI|E COt'tTrlOI
5'J0. 1060
(BVl
RUUWJI
-'|m
hlusail lm
EEEapOl[C.
Generator / Electrical Data Errlqfiq
cffimo,d.rnrdn I lrctFlr&o
pM gy-r U r(W td\itfaptwtffi o*i rm 116rrureaM*|M 7Qfl lvm RrytRtfrqxq Sl M
Ealtaavner ll4 o vttt tdbgm'm
Plnfrfia 26 u vf bdf''l
ft.eqEr 123e o lc gnrrr
<aar-taE,^&. nrt
Atsm I PEil oifll ' d2 on-! '
3m i 3sm 3m | 3ogr lctrr..:..-!_-
USIltnd I
EnginG Oala
rurrrrn ir cflrnqesod vii lr{
$nlh.hE ll0r
oFr.try lns vrE lit
Sewt ul a .f
ffLryt rtu z f
JBtuHm ir ltrF
ilMtfi $u'F
llmlffi - ilfii ?
OiI{lpltlB tS r .F
tnPrq$ ti flil,
Fsdlhffb] lu.t lF
OsI{}PtUr rrjr t.
Vafifni*n ', lNU l
.Iillliilii rl8 i.
Pyrgmat€r Oata
f rn.orG.! Try&.
bdN luffiF tz'i
rryI
qat,ntu 1 t0i, F .1 f
L\hfr2 rQ*.r ?ai
!1[nqJ r07lf 0F
or,6i rF't .'t 1
Ctlffil re i tB r
ft[M6 ruAr'r a1 I
(ttd, rila p li, tr
rrkrB 1n72 F 2 F
Q(dlt rG/ ,t z).1qffil, ryc.r ?t 1
lElt, : 1m5 F 1{ r
Wttt 16r'r t,e
Chr{ -irii ir
rrkrB 1n72 F 2 F
0A69 rB.r r:r'
qlrr& l0 r@ ,F 18 ,r
clffirt ls1 ,r I 1 )o[r{ 1? tf,2 .t l .r i(iru 17 tt7'f t 'r Iqm ll rmA't .r ,r i
Ora!fita rfl4 'F 2? I I
ryffarl5 tw'r 1f 1 l
General Alarms & Permissiveg
P.f,t f stry
(imrrJfi (t6ffit 3D
Engine Status/Alarmi
Rfl+NFukbsE
offid
.ffiuiI6e..eG
Jd.alh.Plw.
OlPrEe
(ll lirtiaua
dtd
OaaTm
f !.4 tartuc tiErdtt
Ola &tbnl
sdrf lrioar&a
rrfin!fr.
EF.trireqr.r5*a
LFGGS
ENqXECO|TIIOLs-tB
(sv)
. - nuuuiirII
khlin6, a,fmntr
-
rdtultit
*lEnrrpnc.
Ed6fb5
t[qrry
t ddQvltor
PlIi\,!h,,iFrgltr
Ldrilqwt
lltrFr{E
ld!fa.
tlor@
RwsrFfr
t.l Ftmfim
hCfrd
I 1UXA ff'-- oiiri rm
2fr 0 tvAR
m0 it
110 o lrtt
20! 0 ltl
1201 0 Er lXrai
t.i (^b rE ar' filI
46 ol 124
T--- RrffiIIhk r-#
*ikt ffi
Eng,re O.t
r6rh f ffi
tmrsd i- t^P
*rcanrrl lrrm(D..r.{ IE [-- irre
JeEln f- r6ii
.rlvn T trod
rYAm t-'-'r?u+teff I--s!$t0lri T t t
Iltrtlla,. I Uqf
EnOinG Si.ludAl.m
l&ETrn
,lllldFol-r5r':r
oalDid
(kort
Sr*bn f-F
Jrak1trirr0
idbhr i
Enginc St tur^lrrm
ftEEIrn r:
hEfrIffi
(lu!!aa
Orftd
S|5oifdi :.
fr*lfui l
StlraaG.r'boltila
47 of 124
lu.illw l1 Cfll
tnoesDM r^,L fil
Std (h,nH 1113
0F rtBl'n{ 1a{7q ltt
JWtW 1* 2 :F
JWLM rlai 'FJwturc 22 Frl
Lt rr.t twl si u f
rlffirrvr -' ii; i 'r
OlTftpar.n tcr T f(Xlrru tl PB
fulr*ihnu rlr r !F
eutJtMdt rou tE'
ffirflrlb . i(,u I
rmiffi l!61
Pyrorct€r Drt-
f rhiu! G!! T.@.e
hk{lffiF izlr
2.r
.,6 l
lst
al .t
tt-F
4t
n'r
16a
!:l- :i:i
?78
tr i
22 'l
?1 1
1a'r
Efrrmm I
Prntf srp
i;ffi.rJd (mwt gtr
General AIarms & Permis3iv€c
Eogine Statuy'Alarmr
tuI* Fo lhnBwE
ClvEd
Jdatrt|' TryrtuD
JMtt8rhre
OlPrEi
ot Irla,ab€
d(.d
G.iTu
fdSaihfrt[
Cl{a (*it
lryIQ!...a
r6tn,.qtrtl[O
tIoLtthIr
LFGC3
ENOTXE COll1nOL
5J0. fi89
(sv)
RU[I[I6
-tm
earilaa..r Im
ila*ro*ac. i.rc
Generator / Eleclical Dat hrqrfiq
keorsr** I Hoirrtofirl
Pffi lulr9 fl tflritta!lMfe olrr tre l|e|wEHEI]m INolVm nffirHfr4..ry tn 0 Hr
tstarl* l1r o l/* ldb${filss
fbi/*r 260 rrlar EdFd'l
lholti !1740 lt g.Waf15 !r,.u.a ywc
itaafr* da r^ l rg ct *im
Enqine Oate
tro6s@
JWtWI
TIttwfwl
ttru 19,
Ol Tff?{rrh
qAw
F{dttrtfrkS
G.s.li*PdE
llftltt*
'Il|ri!filE
r! Cfl- ]rjv I,f
lfrl
T& tB
1!^i 3 f
116z f;' zz tqi
goi rtr
"- i.ii:,';
rlra f
',1 ?ql
ttl i rs
lou t.
lrau t
90-F
-
Py.*at"r-Oata
f (nru* G.r lryt&
*.loffiF 32 1
rqI
ft1fl€l rG f 0_F
C/ d-Y 2 r6t .r 2 ,a
gYligi 1n71'F t F
Or.ffi I rur .r 't ic\ffi5 riiir'i A''a
CtkG 6 tE: it tt :t
Bffir -iirri * ,i-i
otffi! ro/1 f ?'f
OrrdE 9 rogt 't 3\ 'r
qllr.t l0 r65'F !6 t
omrr -rorj.i - ,jqffil? rtr{'r ,t'f
Qml. l3 16l .r .a 'fqi6*u tM, F ?2 F
qhf lt tsr r 1r'r
OrlElt rN/ ,r 21 .l
q*! t, rur, ,r 8,1
ffiA rBl'F r{ r
:t|l*tt 16r t ,'F,ffill lrur r t'l
General Alarms & Parmrssives
P.d [ $p
(;mff.re (ktrd6 t 9m
Engi6e StaturAlarmg
thldFu ilfi@r*
(N!0d
JHdwlrTrssi
Jf,fafb.. hM
OIFi@r
orlru.&e
drd
O.rTm
tttdl.rfihlldE
4{ffi
fid{Iealr|
*t|sf!}
sr.Itllaf'.OhF
LFOG3
ENdr{ECOXTRoL
5r0- 169
otv,
RUUI[1G
sfr.*td*.hfilht A'inrn.
-
.3lauEfil lm
:HErhftEt+tE: 86c
Gen€ralor / Electncal Dat.
affimorolrBd6 IPm Y]-10 M
M[u, -ii,sr rru
adE Fos ?ol 0 tvln
t|wy mn ro
Crdioo V(:t .)s o lltt
falrttr 2S0 t^b
iAo|'f torg o Ltrl
6r.C! /-c Ch
Ldr6qfiq
Illi Frllmq
td\&,r
tlol lUlP
nrffilAx
Fd btilmhlqg
rfr{rdd
gilnt
ffifl
48ofl24
FmlE-9ry
hJo(mttlD
Fmm F-SO
lp f--:;a tii
fitl lEif lc.Irrm
49 of 124
50 of 124
Pyrgrcter Date
Irh&9G!! TmFUr
MrlffiF
tlln*r z
clrffi J
r)lnfr I
ohff 5
crlilh 6
qleS
qtM I
OlNb, l0
Otnff tl
qffi12
qrn- 13
o:llta
Otrxr t5
Qr4rc
qhlrl,
-srrllrgEl,,qpro
1t
.,{ i
i,t
15.t_r{:f
2!'r
r8 ,.
9.r- .i,i
4'l
-r5 F
t! I
22',l
2\ 'l
1t ''
GGncral Alarmr & Permis3ivas
' rnl [.gp
atmJff (kddbt 9{
Engine Si.tus/Alarms
kpdFalhtua6
(Ntd
JruISiT@src
Jdafbt PtGn
OiAru
frToFr&r.
(I l.a
al$Tu
flaltrn rrr!-[
cll onh{
tlaqEdn
Ht!0,
EFtfr
ir.iqru'rF
LFCG3
ENOINE COITROL
59- tGg(tr)
RUrrn16
kc*d
*fiPfu
-'tm
tultt3$ti l(n
nffiarclac. n6
Edgrne Dal-
Iu.Jrl(n ?O CfI
rnooosgm - 1ml iDra
Sdth.nB ll0l
oFnolryl'nn ?@ lF
flt|t l*o +
sLrYr ril'l r
#B@,e il F$f
Lrlrwrwr ,ri f
tllHrrl - lru,i 'f
O, Tnparffir tc: 1 rF
dFis ri ifi,
fllrftsriD !.11 4 ,F
(bbPdct tntl t,
IfflDlr rmo ftSlnir Bo *
Generator / Elec{rical Data Hr(rrEt
aa*incra*ard' f rronrfr[e
Fmr !010 ru td\aiF
,*t& roii rre hrr\mMslk rutolyN n6xFiltqdtcy m 0 tlr
E cdovfi r.r{ o v!n! }d56ildi[a
turrrlaE 2s5 0 lrilr hcfgl,
it-Ort r4eo.lqr (Ena
Engrn! O-L
rud,liil Z I Cry
tn^cspd '- r-&i lFt
sdh$h 1t0l
Ot4r!,0 l,nr lag lb
JwEru re2 r iF
JwLfl ira t .F
JwA@m zr FtXl
ttliwtwl cr z *
tlrfi,tfi -' iai:i f
ollfiTlrdoE tor a f
d66 .3 FIS
furlirlntl! llr t ,
Olalr-Pddr lr 0 +
ilrnr$f& rmu t
fibliilla I I *
Pyrmtcr Datt
f rn.!*GE! TryPa
LEb'IffiIF
qlnff 3
f}l ndrr I
okffis
&[FGi
qhrS
Orh{ro I
Qln&. l0
onno|li
f)ldr t2
qr0r!
mrllta
qE(r15
@ttqutttff,
.Qcitll
'*ra}ilqil.-a
2;r
r(i r
{i l_ -lrar
?9 'f
,E.f
?)t
1!-t
201
?31
a,
I,-J
General Alarms & Parmis3ives
A rn( L SIE
(rffi.rlr(ffirtS
Engin. StatuJAl.rmr
ftqr6FdU!0hre
iHSd
Jr*aX? Trr?.&r
Jdt t$.r Fm!.n
(XPrtgn
O T6Fa,&.
dld
0.rTran
f !d l&nr l-I.d[
ols6l:rt
t{eaae Bnqr.
qTErf
BFag-aqi
LFGG3
EN6II{E COiITROL
59- l(bg
(r\lY)
RUI'II(
-
-'|m
tulrred rm
uffirrEaip. Rd
Goneratof / Elecirical Daur wrdrfrt
&ntrffior*rrBrdn f Erturult
Pffr tSO l(rv tfr\,lt r
tryr.m ---oiiia rm rerr&EeMEl* zuolvm |mFEtlw tno |t
E ca,att/Ar 1.190 lur FdbtxEnEE
a.vt z85o ttt rdfli
mtrr , Ilt?o /l8t $nf*
6a:(^ ! rc r'& qaf
atsn I Ert Oildl Gd.t2 Oiuaf ' U:3m j t= ,- ry -r:=-. t- , lf -
51 of 124
IT
m.nFtr! 1 ffi
enilr S9d
grn (bffi
opnd.E I@
Jrafl
.rw twl
.fthin
trlfiart$firfi,CTffi
r--iEi--fiii rrir
t- rfiI rnfo[-nfi
T'_Erfrt
f- ra;
I rrio
lii
l- iii;r66
l-16or--lir
Enginc
E to'a S0r!
s.n&fr
Otqdig fW
Jr 6tn
,ruYl
JWfr-F
Ln*er}r,mttllr
qIffiE
D.t
r-in
i--TtrI tintx5
I rlli
TiE
T'--?il--_I'T-]fiI rda,l .i'3
i[ r.riilf 6ure
If
}Eb
iti.ii*' t aIIl*Engiru Strtur/Alm
CffisT,e
Sm,raFuffr3rc
mlldrt
(}sqi*
grl&iili
Jflf*kar
L.:kiar-
Ufrtm
0rffi'
52 of 124
itn f.i, r.: i.,r,,t *it
Atsm ! Arr . Oarer (mZ omS , Ugscm i s.nqr : 3ffi !.rn t* ; t5t- 1.:"
tfCFBr.
Pyrmoter Datr
f rh.DsG!) IrW&r
ldritffiF 31 |
rqI
Cyhfr I ,0ij F
L\lr& 2 rd, .r
oloB J rfl7r 'f
()l.n8l iEl I
Olm 5 1€/ r
C.![FIE 6 r&{ 'l
c\lmfi , ri3.i'r
qml $t? f
Ctitu g r09d.'r
Otirh. l0 r ! Nt 'r
qrffr t imz 't
Ort!ffu -id6.|'i
qrffr It 16l f
qJlcta rg{ F
q$0115 ' ,Bl I
qkEr6 tvt,l
qull 17 ruq it
,qlfr$ lffi, r
"ffitl 1@2.F
q*a ', iuiti
Gcnrrsl Alarms & Permiagiv"s
PrntE SIS
(m!iE(rdhlgQ
Engine StatudAlermr
krdFdlfirffiilE
msd
J:tdVHrtf,Eu.
Jrra*rftmn
OlPrts
(x L.r!aa6r.
Od t.'a
oaTm
fudfdftEI-lE
ctra od5
tgta-- :..lrryifrtqF?tq'E
]E'#fiiF
LFGCl
ENOIIIE CO$ITROL
lr,- i(bg
fiw)
eltdntr{i
--
k.*td A,ifrrilr.
fn'|m
a.LUrrs*d lm
H;llrlritetit. tua
Engrn€ O.ta
ru.rrhr. ?! Cna
lionow - rru iX
$d tbDb llol
0FolT Ln. l$r ltt
tr twl 1&2 D f-
srwr titi +
rv&ego ij ?!lC
uHwLw rr ) .F
rllmlrY' lrgi !F
OifuTir*. rc: r .F
OFr.{- i,1 F*
filrhrati! tr r f
OobF&r tnu ?
ticttffrl* tmg l.
fmH t1?1L
GGncrator / Eleclrical Oala wrElftt
&n*fficrdilBrdr I finrrrxr
Pffi lwlo l(f, lc\rlE,
rwrffi irqJi rm BO.-*h.cabfbE mo lvm EfrirEEtlw fi]C h
Eraadoryf,r J'rr o w! tdblllx'IE
rtdavul. zr o ulr rdFc'
Erq[rr !1160 r4 9,q-
t5th]fr1{-5{-s('4 fttI
Gcncrar irarms a Fcrmissives
P rnr (. SIE
fi<lm.ilr (mdert 3s
Engine Statu!y'Alarmt
k!61F0lhnhiE
atcrd
Jf,t.lua.Irn?qm
.HlS.FhB[
(}tIma.&r.
dtd
GaaT6
fldhfrLrFl[
CtLOnhl
umeLndt
!ar*Hr!Q'
F*iHFiE
Engin! Oata
ru,:,|q. f! CfH
tnq^csod rioi Etl
$n rb,nh l(il
oF6r! { l,m ISI }b
JWLtn \il2 t
JwLfi ttr I I
Jwprffio zr ?I9
ilffittr $I f
tTNLvrr .- in, t
OllffiMa 1ol ., {F
(Iftrrd[ 11
frah|,rBa! tt: ? ,lF
Odkffit llu *
thflilafu tcou t
iDE {r I
PyrmlGr Oata
f r!{u* G.! lUffie.
L*r lMtlp J21
t@I
(}infr ! rm3 f -l' t
Llh&.v 2 16l ,r -5,a
Btr0fiI tfl71 t 2 f
frln&l t6l I .,4-i
qinfi5 rrp.t t rt t
cllnh 6 rUr 't a! -l
rlrd I iirl 'r riir
OrWo l072f 4t
('tDd6 9 j r09( ,r 27 'rqtnd..lo r@s ,r 2(r'c
omfl,mz't t'l
Ohtrt, rrg |r't
qiilt t! r6t 'r .a.,,
(,bffll iB{ F ?1 t
qrqllS 'mr 11
Qhibla I ru/ .t 2z.l
qlao, 17 I 1H. 't ?5'r
qtfli , 1Br 'r 11 't
,qlll.lt 16r.r .5'r
q:rjl Irur.r 5r
LFGG3
ENqNE COflTNOL
5r- t(Eg
fiw)
ruilttt
-'im
tUIlYS*€r lm
.IffiTBEi&. Rd
Genotator / Eleclrical Data Er,lc.ttc,
crmffiorixra*r f [lnFtErral
P(ffi 1Ul o l(tY t filtltr
rwFffi ---riiui rre norqrEf,k 2030 lvm tmffitrw tao lt
E c:nrrrtr tJ{ o vrrr fdb{tttdEs
PE V[Et Us 0 rrra! LdcFrd
tuOm !1.r0 tr. F r
rrF35. ar D- = iE ifE
Atsn Pffi Crull Oag2 Ceil!3 Ussmirffi rrytry ryi -ry-.
53 of 124
#E EnglmStnuy'Alm
Od.(.BTe
BilrdFofffirfi
o,ralad
Oe.*
$bifdi
{ilfirhi,J.**SFfurflmr, I
ohlt*
54 of 124
55 of 124
LFGGI
ENOIIIE COIITROT
5ro- ilr50
(tvv)
I RUrfr[iG
--
k.*rd
*<hFrtu Alor'altr
T,*
rdturgad rffi
tIEffirEnC. i.{a
Engrn! D-tt
rudlld ? I Cfl|
tnooo SgM nrur ltrl
sn rlA.nE 1ftil
0tilohT Io! l4l lll
JWtW rai 6 ':F
&rwr rirr fg*o@o rr IIO
uil,Lwr 9r , ?rrilrrr - Hi.r
OITnfile 1sc f
filtG.e t3 F!*I
rrlirftllhLr! rsB iF
O.$afr-Fdo.r ru u T
ta*tbitfi iou a
ISIaE. lti I
Pyrometer Data
a\h.u, &! I@&!
Hoil#MF J? I
rry I
ffl,n@ t lilil f
Cy'ru! 2 rm: ir
L][nG 3 il71 'f
Oln*l !H1 I
CYlnfrS rw t
cYkf,A E 1U:{ |
otd I ritr ir
qlffiE !nt! f
Clkih I rO9! -r
qild l0 rB7 iF
c,h(l!I 161 'l
qtr,frl? 'lva'l
qro te 16l 't
qn.t ta rfl{ f
qroaarlS tm r
ql-rlo lB/1
qld 17 1u{ 1
Fll tB1 r
{|E'lt ,6}'r
til! rw:. t
General Alarms & Permissives
Frrr I Sq
iicfrlJo' (r-@hr l stp
Engine StatuJAlams
tupNFolluErr6
ctdrd
JHf ilt Tirlrr0m
lmnfrP|r'rn
olIFEatu
&tx
G6T6
fla hti LrDal[
(l{mil
n-aeEdt
Irrtrli
F|iitEt
E'Fmafr
Gencrator / Elccirical Data tdreqlilt
kffic..rrn.ds I HrrF.lom
Plml $-U U l(W I d\rlrl.lwle o1&, t& l{$t!EHE|M ,P0 IVA |ktP[fr.qr.r, 1il0 lL
&crrovQ. t:oo ttlr f'lEa{Egm
Ffaafrta 25 o lff ItcFLE
fl!.tolUt I7e o l{. (lr-r-
s*r{:; da(bcech *i#
arG nN! t.a P3G
lgtaAtsln ; PEr , odrat 1uaz 'GdH!sgm I Salr,r 8qs tffi 3Gr Ug
lErd hd' ]F;--
LFGG3
ENGIrE CO!|TROL
5lo- 169
{$v)
iumnc
-
-*
hdflgl'ri Im
HEffiT.IETtr!,
trqa sod
JW EWl
rlliwtlyl
tl}tw urr
Ol Tilp.r$rr
OaFrE{r
f{{tlilm*n)
O.[lbdrPfrri*iirlhr*fffrffi.
?u CfI' rls lll
1lal
tr& l|rr
rm i ',f
rric iF
ir ltlo- s! "f-'iiii .r
1$ I rF
i1 f8l
rsff lF
rou i
.1ryqr
r!r *
Pyrometer Data
arh.u5r 6!! Try&
!ukr{ Iuffig,
Orltor 2
Crlffi J
Ol.ntu {
OlDfr 6
qffi!
Orrrxfr 9
qldt0
q,m.I
cfffit,
qffi13
otfita
q(rl5
Qr.tlt
qhnl?
ffirr.ffirl
q*Il I rer.r z.l
IOnmrm --J
General Alarms & Permissives
trlnt tStS
a;cnqJc (?d&ts ss
Engine Status/Alarme
tuldFolhnBEE
odr6d
./Mlb$Til'p.reQ
lf,llvhB Pn$ro
0rTry&.
ot L.d
CarTrm
fudlbD fiEdE
cfir &nad
lltraral{*ar
Ei.art*
eF15it,
B0.mF
Gancrator / El€ctricat Oate Ldr iqEq
.am'ddorarrhdd I r$iFilt*t
nmr rG,0 ff tdl*aptr*r* '*ouii rrc rfirrrr*BdEM 1970 lv&
trqx.ry ur o lia RtsrL
E ddavdlll! J{90 r t f'lblil'nm'
Pnrrr/qE zs o \lra LEcrai
',lirf Qt[r r fln o ,c txrr.itar'(b ac rq ffi
AEm ' m O.rnt O.rg2 Oeit! | ur i
* r Y= . T--, g-. !-j H -j
56 of 124
Pyrffieter Data
f rn.tcGr TfiW&t
*.Iu,Merat
C)ln0,2
(,tlffiJ
()l.nk I
o[ffit
Crlna 6
qffin
Olndr 9
Olnd..l0
olfftrlt
oM1?
qhfi13
o|ilta
qtnflt,
qrdil
qr|{t lt
'qr#rl'qr*rr
ih*eo
'5 'r
-14 t
15 .l
l! t
?t
?9',f
m'F
1l
ilr
?1 t
gt
201
?) 'l
ll 'r
oinerat etermi e iermissives
Plnt f SIQ
limq.iltr (ffihr t 9*
Engine Status/Al.rmi
tutd Fd hnkfirtE
(mffid
JrillurrTry.m
ffiltrPffin
dftffi
frInar&6
dLd
OGTs
fqrldE rnp.*E
o{4ffiil
Had{Iqdi.
nt'Br :
41.E9lial-at
LFCGS
ENOINE COIITROL
5r - tolg(w)
niirunr;I-
sftG*!d
*nFinM
-
&l rrUg.5.ra
rmrielnD.
EngrnG O.t-
|uorl.q ,I CRa
tno^ossm ta; itl
*d(h,rB 1l0l
opnol4 l,ns !& lh
&tfr rm 3 't
JTJLIVI 1r?6 f
#BMo zr tUO
L|HWLWI 9?r t
rrhrvrjYr - iyt f
Ollmffr ts? iF
OaFrqe 11 FIE
f$rrhranip tm3 tf
Giarbal,[dct l{r D !i
tHrlal,rlt. im0 *
fibtlL. 116 i
Generator / Eledrical Oata eFlsarB
caffimo,.rr*di I {olrrflrffi,
Pm H0 ff td\&.
Mrs '--'onai rre h,\dhbslk ruo lvm RilrFHrl,st, 110 tt
E daa,tarF ilr o vt* rd.lml'*
Fhtrlb ?s 0 rria rd&'s
na*t ltrso l.Er gefa
A.(brcr.h qllf
Gencral AIarms & Pcrmis3iveg
Plnt f $e
(kfl3.ilr (ddror I 310
Engine StatuCAlarms
fkldf(rhhrE
(ffir6d
ffiftairTrtFet
JdirbrPBfl
or,t!En
o t p.ra.c
oa t^.{
G3T*
rdldFhp.*r
O{. (btlil
ulqlEdrr
!.r!"!rEipH'n
6iaar*lt!
Enginr O.li
,,r,1fl i r ClI
tno$:{M rm:r iN
Sun thrnh ircl
0p.l!9 l,nn Y& lS
Jwttm !8 1 f
JWLH \t2A +
Jw*@m zl Ptre
tlH!fltrfl --etrf
lrHw!ff - iir,i rr
Ollrn9trd6 tqo f
qtu$ 51 Fm
flallilnftqp lm3 tf
O.rlhFdrf0 1o u !l
aidaf*'!- , rsu t
*ff 11 a !b
ey.o.e.e.b-t"
f lnrusG!!rry&.
r&! luffilF l? |
^qIGind I lfnl f .l r
Lll.&-' 2 rdi'r .t :r
qIffi ] lnTr -f 2 f
Otlffil l6i'l i{ I
ol'nff t icr i rE I
ctltrrE6 r@ r {l'l
oh& , rlti'r ii ;r
tlh*! 1ol?t it
q5ffi I r{88 .f ?9 't
Olnf !0 t@7 ,r 18 'f
orlnffll 1u2 l ttI
OlDra,l, lfiF '!F,
qii4l ll I rm2 ,r t ,r :
qlr*tl lim{ r ?5 f
qhrtrl, I !m r l! 1
Qloiltl , 16r .r '8 ,l
(rLl- t? I 1U{ 'l 2} 1
0ilrlll i rB, f 11 'f
'alEll ,ra?,F ?'.
.obl$ riui:i 4i
LFGG3
ENOTTE COflTnOL
5r- i69
(rcv)
HUtrI{TI(
-I
k.*td
*hF,tu Arinrnr
-'!m
AJUttri lm
EEfrraElr4. tEd
Generator / Electrical Data Ldr(t;Et
.€Mmcrontu# I EolFil[q
PM r{U ff t0\ilt
|ets .-'-u-irir rre notta.If
MEFffi tq80 lVm ,omfryq tIo )t
Ect r*E Iffo vr,. Fdb{irdm
tu vcltr zso l,!tl rEdrrllt
.hh tileo.rcr grFl
7 lt (tf c (*a qhl
57 ol 124
lfGI\Ev. aaPlE
LFGG3
ENGINE CONT,IOL
5!0- r(xo
(rilv)
I - tuuutII
s.w.*w
k.hF,ibr ArIftf in.
-'!ffi
hatISarr lm
ETTIFiEFA. REr
rddrlv. 1 | GFU
tnom soM r-wr ltl
tud(h.nE ll0l
ijr$otT l'tr. lrp Ua
Jwtwl lftt 2 f
Jwlwl tit u i
JW&@ro ?r PIXO
ur\f,f,wt gis r
rtnvuv, -- iii'z .l
orTGffi rrqq f
(ItPreD i] f,&
fialhuatm, rnn f
Oael,o.dr ruo f,,
ffittBfD rorj *ilare rz8 t
Pyromler Oata
(.h.ur 6!! Tfr9str!
Ek,.lut{draF l? I
^q. Iofnffl lml F -t'F
orlru-lz rdi;r lT
LUnGI r077'f 4'F
altffil !m I .9 |
CYlmfi 5 rut i lti r
CttffiE 1u?{ | a5 I
cvffiI rirj r 'rii;r
(lffia \ll? t 4 t
Cllnh g r09a -r 2q ,r
Ofnfi.l0 im7 'F ra'r
qm. tr !h2 -t t 'l
qAdt? -r&{'F ,r'i
qhtr li 16l-r .n r
oIlta rur F ?3 f
qt(I. !6r l lt I
qld 16 tBt 1 ?2 'lqlr- l, ruz .r ?t I
qt:frll I lml r 1. r
#19 16? r r.r
frfO 'rur i 'ir
G€neral Alarmc & Permis3ivcs
P.ntC SrA
aimri3te (:@hrt g+
Engine Statuy'Alarms
tupdFulhnhr.6
8ffid
J&ffilrlryoE
JdLls.Fri@
Olftwt
frLr!l&.
dtd
O.rls
fldbritrfdE
cllaa*{
trrurrarada
llfrtiua.qbrso
oh{tFFt
Generator / Electrical Oata
c*MoGrR.*i IPffi 9-tr0 l(W
Mla oM tm
ga.lhtlora. 2ro n tvAn
[lgEI il)o ro
EElavffc. l-!to l,/l&
Plf,\rdt 2ub o Vt
llQqfftf tlor o l[r
ta.(b/*Et^h
tffl-aqcll
H(,'F6qu.q
tff\tlo
lrortds.
ntrEfur,
tdbgtdm.
tfrdFrd
gfitri-
tfrl
c.rut I o.-2 i
rffilaffil..-.....--,.-J
lnon l it"-;
---.-:J,
Enqrn€ D.la
rucrrlil lU Cf
r6mw - l;* ffr
$dh,nB llol
r)FaIE ltrri !& llal
JsEwI r&r $
JwLwr ril ! fJwft@m -:r IIO
uflw['ff g r 'r:LltltYtff - i;ii T
(X T!w!U! re c t
U frEm r1 FtlC
r{dtfrnrlp lnr lf(h&r*frd6 t0 u t:
Wdrlrrf* 10u f
.lt#trl xt t
Pyromter Data
t \h.uJ Gr! Tqr?rfr.
rrokr6 loffift t2 I
^ry I
ftline I IOB F -t 'F
cil.nrr 2 rdi :r i 'f
Cf[06J rn7)f 2f
Dr,6t !ffi-r ,r i
Cllffii rg: i 1,j r
CtkG6 lu?a r l!'l
qld I irit'r nr
qffi8 $1? t 1 t
qkb 9 r(aE 'r 2t 'rqho. t0 16r 'r 18 'r
li:;lr't,mrr roz r r'l
ft!tr l? rm 'r n 'r
qld ll 16r'r .1 .r
qrrtta ior{ F ?t F
qfd(l,!5 !ru r rr 1
fut, !u/.r 22 t
qnr 17 rgq 'r ?5 1
-qttr3lG i tmr 'F 11 r
,WalS r6r.F .a,t
Ot{ Iir:. i .'l
General Alarms & Permisives
Prnr ( 'sIS
CgGJfi(,:@a ef
E;91* St"i""/A#;-
RqdFotumrro
oiGd
Icrl ltl, Tip.r&ri
Jrl(r 9ara. Frrsn
Ol AtBn
Ot Ld?arrua
ot tra
GarTt,l
fld frtur tlEqi{a
Ofl (}nlnt
ul{4rdI#r!.
ffllrtm
6il.ltritf
Bdrrqfna6
LFGG3
ENOINE COI'TROL
5f,,- t69
(tw)
- tumutcr -
-
-
,ddrlv!-o'r rm
.HEHtEilE, RE'I
Gcnerator / Elactrical crat
C^MffiO,tr{Brdw IPmr 91I? U fl
hw|# - J,iiir rrc
tudE Bs 1! 0 IVAR
trqr*y m 0 ru
atlkrf.oep loo r/ra
Prrvql 205 o !t
llhaqfi. lnqo ,q.
6r f D:f'c t^
6f.lcft'
llcr r.qEc
laltar
tllglrwl
lmm
fatpl(lma
t6Cfrd
gf,rd
Lill
58 of 124
LFCe]
EXOIEQilIl
$rLr&
ofi'
I
SnaoaLHrt*ib
L*Odll
Engin. St tuJAl.m
Odldw L"
tutrlf(farlffi
(,5trd
akd
gr&mfatil
,ldflrlsrffir'3t*arfi,
Ctn
DhNF
59 of 124
60 of 124
6l of 124
#+Engim SEtur/Al.mr
CCdET.C
nqrFdrlrr-r
oil3d
(hurt
grk Fii
iHrErh*fl
dfrlnf,
Cin
1rlG*
,rnrii'
AldmE & Parmi]aivai
k&ffiE*
;twF-So
Engim st.tur/Alrm
clldrdT{t ;r,l
fr{frFalmim t:,
onE ,llOwr* i'*brfd6
EiErffi,
J*rb
CEr
ilffifir#
,qq1gr'ir 1,, , ,
62 of 124
hh ---
*+rr-6 , mr
Al.rG E Parnirdvra
qdE.gD :
mecqtdfE\lnD
fiEm F€O#+€ion 60-
*r&lnl
(&.*ro In
'YENtvl.rl
.Sls
urirErt
Lfltovr
63 of 124
ss&fi I Xm
Q'drsrn f ilin
JwEYn l- r!60.r*uvr r-tnlwkr I au,ffewr t-liuirrlfrtflr r--ia;AHr I rrr
64 of 124
#*
F_t
65 of 124
I ir7tota: rlt $BsaE cE
l--;;l r@
-
i.r:-;;n tiffi;;
trx eilicii clt
-
?I.f,?Pf,I'lE
Etr,? *lr.rII
muDt
;lf,t Hrt
llrn i rn i osHt i orr.2 i ol3 i u* i: r- *T-:- *:r E-i=9r-::-r
I .,! 6 tcHa i rllt .ae ? Gt atf
;-646 ro -- r,rcr----ilrr iliEiil
o( cli 06 gll
-
tfll rn
ilt ilt
Onxf i qrLz i O.Ilg j U* j
-tErF.,.5. -E-:-r
66 ol 124
abn ! art I o.rriil -I2 : o.d! i ucryr1g".litqiF_i.F,-9.=
i rratota.- ltt rcrid cE
l-oii tc -- E ----I-r ;r'caGril
I ir, rco il-ref,ctt iuctu
-
I rr c tc,ra j rrt !87., ctl cE
r--07, tc
-
rc-r ?3 ?.d6d;
i -lil rcl,t ?!G- 0x Cll-ix cl,
-
T1,1"-t-"" l'"m'
ttrr?tararl s
EJI' *TLIII
arfltErrs
EJT? M'lI
YEalt E i 574.p
nrr *tt f,axr
lllElllli I oao'r
Flrt nxt ;llr
orr2 i od, Ildnrlmi
uir lH'
67 of 124
T
68 of 124
69 of 124
70 of 124
oDraoe Te [- urr]
Jwtlvl I ur 6
,rVt,W T tcr l
JwFn[ f-r-LrlffErT t to16
I,fi1ft Ir.!r0rc* I tsq!!a!rl: j. I I
#!H
I luflrxr#+
tudrh I a5 t
€rcmso-r l- ffi
*roqr I
oDrLIId l-,ti
#f,{, I !m
.0!rr*t' I rei r
7l of 124
l.rF
. -.rjl*,
-_ 1:!|:".
..--IrL -,
'Ar''
{h
I .Jo td{a , rE r8c8 ct cE
, ocr, tc - rc--mrr -ciffiril
I 33s tco h,E 0(clll rrrcnt
-
fiflttqlt*!Iflll!tr! I er r
ill 'lrl mrt
tEr odlrtl oil2 oJrttttcrrr,}Er, tffi lrF
I s,r tdta rlt $r?at cIE Iarr'Ellrrr Ylrlr.qliq
Flrl nll
Abr I!mi g" ffiJ ffi H:' i*. i*","-[-l?ffi
13 of 124
rJ r tGt{ rrt $7 l Gtl tE
ffi rc - - Lfr - ai rr 'c-.fEir[i
I rrircq ar1eoxci0icL
-
I& s,zc'l CE
---- i*r-_-Eo rI ,;;i;;;
itaer:oK c i oh ct!
-
'l-0t?ElrSrttE{D ETIIII
YI'IIIIEX
BL',rII
r,r c iCHa
o;{- ro
3ln tE
TqN.^H
mf ilt
ALD t art ogr.ti r ccr,z ot!L:. : NT. T
74 of 124
:i-l' -* l*ffi
Oln*t ?
75 ol 124
Alh
76 of 124
LFGGiS
ENGTHE Co.l.ttt(,|..
.j i,rF
fr
1
|qi
,r, U!,LJ,r. irr,rrnr,rnr,!
ENGINE CONTRC,L
\ ro talla
l(jeneral Alatrrts & Pern-
f".rrll:;k{, t,{
r',rralf,rr, #
ur{r(nJn, (rr[(Irin F Slqp !:d. .4,',,-'.',..,*-. ..'.*j
Fn(]rne Status/Alarn-
I*-t-I
t.i.I*:
t-cI "1i,
J"Ei - .,f.*j -i.r
I "oi
i rfr'
I --t!ii
i----i!a
I --ox
[ '- cr*-
LFGG3
, ', .l
& rhr ,!V k!o6-
IaFdfd!r'46R nlEg ta.C llrril
Rrqu.{.t I ur Mdral6ni4@
Shultr)Pn I aililro
Ji.tgl WBter f.rtrlEr6ru.o
,icldwrtor ll.rturc
Or! ftYr!r..itUrg
ts0at Mttnre ,$rDo?rturo
aA h CNt nt
wlrtrn^q IrmFrtrB
B*rrI VotEE
En.Ifra lrn,iro
Eqgna tHon.tol
I OR Slotu.
Ccne/dror / E ertrrc.t t)rra
;;:""' " "'''' FE*1: :I:;;:;"
t:.I.,. ;,t<qB i iii*L'GG*ta
Scrk G.od!
Scram Usrtr.nd
77 ol lll
rFU -OPs
ENG'FIE F rrrJlna. f)ilta
Lnlttr,;14t-6
09u{lno I,tu
JWIM
t[[rrEWl
rttmlw,
lrl hrrtre.turx
I unl i*rruO TEpg.* htg, p6Do4
f hrotthr t/iE. ra9
turDo ttttt!$
IiFltlrslar.
i,^r.t[ < ( ],6olla,e
--ryEn{tr ne art.aL/{.A la. rtr€
r"&rqn'w.6iri;.ltEl' --r,
.. rr', ;61rrir
1, -rt' nr{s?^{fr!.ntu:ARC llpa{
( i..rltsrrto, .. L tectr,(.rt u.lt.!
cioie,q-
9'" o.i.:;
B.afun\l , d lrnrd6n{6F
5hukir)m f,rrIn
/..1.{ MAtd tcr,B...rturs
Jr.lll Wdr.r tirr*rbr{r
lidLnvr!'.,kr '. '^'
. r\,urr.oq,,( r
t-r.ruum v(rhl. .
",;,.Phs vduo,e,*qnJrr .... , llil
I ucl Mrrlrn f.mFfi5&ro
Wiidr,q fentnq.tur
tn(&tro ltrug
EtrUd, UxsDton
Atrhscm I
Pl.ntlffi (}Gdr
8qa Goet 2Eqm G6.ol 5Sqrl .l2tcE ,Oa:OgrtO
t.tt, .r
' PUrt
rlfrr
-
II
-
r
-
fr
-l
7ztGl;rt
78 o1' 12,1
oa:to_-a?
79 of 124
80 of 124
8l of124
AlErce
TECHNICN L GBQUP
Location Ameresco, Hill Air Force Base - Davis
QA Data
Source
Project No.
ne3-NaturalGas
-4300
Parameter Oz - Outlet COu - Outlet CO - Outlet NOx - Outlet NMHC - Outlet
Make
Model
S/N
Ooeratine Ranse
Servomex
1400
1420c-2
0-25
Servomex
1400
l4l5c-6
o-25
Thermo
48C
8CTL074507 37
0-100
Thermo
42i'.
I 32 l 95897 r
0-500
THC - Outlet
55i
1202108608
0-500
Cylinder ID
Zero
Low
Mid
Hish
NA
NA
cc719736
cc719736
NA
NA
cc719736
cc719736
NA
NA
scg140339
scg140339
NA
NA
EB0098461
EB0098461
NA
E80098694
EB0098694
E80098694
Cylinder Certifed Values
Z.cro
Low
Mid
Hieh
NA
NA
24
24
NA
NA
23.7
23.7
NA
NA
4510
4510
NA
NA
486.3
486.3
NA
509
509
509
Cylinder Expiration Date
Zero
Low
Mid
Hieh
NA
NA
8lt6l28
8/16128
NA
NA
8lt6l28
8lt6l28
NA
NA
3125127
3125127
NA
NA
6lt9l25
6l19/25
NA
4lr8l29
4118129
4lr8l29
Tvoe of Samole Line Heated Samp Line
82 of 124
AlErceTECHNIGAL CROUP
Response Times
Location: Ameresco, Hill Air Force Base - Davis Countv
Source: Unit 5l Ensine 3 - Natural Gas
Project No.: AST-2023-4300
seconds
Perameter O" - Outlel COr - Outlet CO - Outlet NOx - Outlet NMHC - Outlet
Zero
Low
Mid
Hish
20
NA
20
NA
25
NA
25
NA
20
NA
20
NA
l5
NA
l5
NA
l5
l5
l5
l5
Averase 20.0 25.0 20.0 r5.0 r 5.0
83 of 124
Alt6trcpTECH\ICAL EF.OUP Calibration Data
Location: Ameresco, Hill Air Force Base - Davis County
Source: Unit 51 Ensine 3 - Natural Gas
Project No.: A$?Q?!:4!QQ
Date: l2l7l23
Parameter Oz - Outlet COr - Outlet CO - Outlet NOx - Outlet NMHC - 0utlet
Exoected Averase Concentration 10.00 10.00 600.00 50.00 100.00
Span Between
Low
High
Desired Span
10.00
50.00
24.00
10.00
50.00
23.70
600.00
3000.00
1000.00
50.00
250.00
100.00
r50.00
250.00
200.00
Low Range Gas
Low
llioh
NA
NA
NA
NA
NA
NA
NA
NA
50.00
70.00
Mid Range Gas
Low
Hioh
9.60
14.40
9.48
t4.22
400.00
600.00
40.00
60.00
90.00
r 10.00
High Range Gas
Low
Hish
NA
NA
NA
NA
NA
NA
NA
NA
160.00
r80.00
Actual Concentration (7o or ppm)
Zero
Low
Mid
Hioh
0.00
NA
12.00
24.00
0.00
NA
I1.85
23.70
0.00
NA
500.00
r000.00
0.00
NA
50.00
100.00
0.00
60.00
100.00
170.00
UDscalc Calibration Gas (Cur)Mid Mid Mid Mid Mid
Instrument Response (% or ppm)
Zero
Low
Mid
Hioh
0.03
NA
l 1.99
23.69
0.09
NA
11.94
23.48
0.1I
NA
499. l 5
996.77
0.25
NA
50.60
100.00
0.90
60.1 8
99.38
168.91
Performance (7o of Span or Cal. Gas Conc.)
Zero
Low
Mid
Hish
0.13
NA
0.04
1.29
0.38
NA
0.38
0.93
0.01
NA
0.09
o-32
0.25
NA
0.60
0.00
0.00
-0.03
-0.35
0.00
Zero
Low
Mid
Hiph
PASS
NA
PASS
PASS
PASS
NA
PASS
PASS
PASS
NA
PASS
PASS
PASS
NA
PASS
PASS
PASS
PASS
PASS
PASS
84 of 124
Allfrlrce
IEGHNICI\L GR(fUP
Location: Ameresco, Hill Air Force Base - Davis County
Bias/Drift Determinations
Source: Unit 51 Engine 3 - Natural Gas
Project No.: AST-2023-4300
Parameter Oz - Outlet COz - Outlet CO - Outlet NOx - Outlet NMHC - Outlet
Run I Date l2l7l23
Span Value
Initial Instrument Zero Cal Response
Initial Instrument Upscale Cal Response
Pretest System Zero Response
Posttest System Zero Response
Pretest System Upscale Response
Posttest Svstem Upscale Response
24.00
0.03
11.99
0.00
0.00
12.01
11.93
23.70
0.09
11.94
0.08
0.04
1 1.86
I1.89
1,000.00
0.1I
499. r 5
0.08
2.22
499.21
484.36
100.00
0.25
50.60
0.16
0.23
50.30
5 r.04
200.00
0.90
99.38
0.90
2.98
99.38
100.45
Bias (7o)
Pretest Zero
Posttest Zero
Pretest Span
Posttest Span
-0.13
-0.13
0.08
-0.25
-0.04
-0.21
-0.34
-0.2r
0.00
0.2r
0.01
-1.48
-0.09
-0.02
-0.30
0.44
NA
NA
NA
NA
Drift (7d
Zero
Mid
0.00
-0.33
-0.17
0.13
0.2r
-1.49
0.07
0.7 4
1.04
0.54
Run 2 Date l2l7l23
Span Value
Instrument Zero Cal Response
Instrument Upscale Cal Response
Pretest System Zero Response
Posttest System Zero Response
Pretest System Upscale Response
Posttest Svstem Uoscale Response
24.00
0.03
l1.99
0.00
0.00
11.93
t2.04
23.70
0.09
I1.94
0.04
0.09
11.89
11.89
r,000.00
0.1I
499.15
2.22
0.95
484.36
478.78
100.00
0.25
50.60
0.23
0.25
5 1.04
5 1.00
200.00
0.90
99.38
2.98
2.62
100.45
99.93
Bias (%o)
Pretest Zero
Posttest Zero
Pretest Span
Posttest SDan
-0.13
-0.r3
-0.25
o.2l
-0.2
-0.0
-0.2
-0.2
0.2r
0.08
-1.48
-2.04
-0.02
0.00
0.44
0.40
NA
NA
NA
NA
Drift (7o)
Zero
Mid
0.00
0.46
0.20
0.00
-0. l3
-0.56
0.02
-0.04
-0. l8
-0.26
Run 3 Date l2l7l23
Span Value
Instrument Zero Cal Response
Instrument Upscale Cal Response
Pretest System Zero Response
Posttest System Zero Response
Pretest System Upscale Response
Posttest Svstem Upscale Response
24.00
0.03
11.99
0.00
0.00
12.04
12.00
23.70
0.09
11.94
0.09
0.09
r 1.89
11.88
1,000.00
0.1 I
499.r5
0.95
0.10
478.78
489.42
100.00
0.25
s0.60
0.25
0.33
5 1.00
51.55
200.00
0.90
99.38
2.62
2.8t
99.93
98.94
Bias (7o)
Pretest Zero
Posttest Zero
Pretest Span
Posttest SDan
-0.13
-0.r3
0.2t
0.04
-0.01
0.00
-0.21
-0.25
0.08
0.00
-2.04
-0.97
0.00
0.08
0.40
0.95
NA
NA
NA
NA
Drift (7o)
Zero
Mid
0.00
-0.17
0.01
-0.04
-0.09
1.06
0.08
0.55
0.10
-0.50
85 of 124
AlErceTECHNICAL GFIOU9
QA Data
Location
Source
Project No.
Hill Air Force Base - Davis
Parameter Oz - Outlet COr - Outlet CO - Outlet NOx - Outlet NMHC - Outlet
Make
Model
SAI
Oneretins Rense
Servomex
1400
t420c-2
0-25
Servomex
1400
1415C-6
0-25
Thermo
48C
3CTL074507 3i
0-100
Thermo
42i',
1321958971
0-500
THC - Outlet
55i
1202108608
0-500
Cylinder ID
7*ro
Low
Mid
Hioh
NA
NA
cc7r9736
cc719736
NA
NA
cc719736
cc719736
NA
NA
scg140339
sG9140339
NA
NA
EB0098461
EB0098461
NA
EB0098694
880098694
EB0098694
Cylinder Certifed Values
Z-cro
Low
Mid
Hioh
NA
NA
24
24
NA
NA
23.7
23.7
NA
NA
4510
4510
NA
NA
486.3
486.3
NA
509
509
509
Cylinder Expiration Date
Zero
Low
Mid
Hioh
NA
NA
8lt6lz8
8lt6l28
NA
NA
8lt6/28
8lt6l28
NA
NA
3125127
3/25/27
NA
NA
6lt9l25
6n9125
NA
4lt8l29
4lt\l29
4lt8/29
fvne of Samole Line Heated Sample Line
86 of 124
AIErce
TECHNICAL CROUTT
Response Times
Location: Ameresco, Hill Air Force Base - Davis
Source: Unit 5l Ensine 3 -
Project No.: AST-2023-4300
seconds
Parameter Or - Outlet COz - Outlet CO - Outlet NOx - Outlet NMHC - Outlet
Zero
Low
Mid
Hish
20
NA
20
NA
Z5
NA
25
NA
20
NA
20
NA
15
NA
l5
NA
15
l5
l5
l5
Averase 20.0 25.0 20.0 r 5.0 15.0
87 of 124
AlErceTECH\IGAL GF.OUP
Location: Ameresco, Hill Air Force Base - Davis County
Calibration Data
Source: Unit 51 Eneine 3 - Blended Fuel
Project No.: AST-2023-4300
Datez 12/6123
Parameter Oz - Outlet COz - Outlet CO - Outlet NOx - Outlel NMHC - Outlet
Exoected Averase Concentration 10.00 10.00 600.00 50.00 80_00
Span Between
Low
High
Dpsirpd Snen
10.00
50.00
24.00
10.00
50.00
23.70
600.00
3000.00
1000.00
50.00
250.00
100.00
r 20.00
200.00
200.00
Low Range Gas
Low
Hioh
NA
NA
NA
NA
NA
NA
NA
NA
50.00
70.00
Mid Range Gas
Low
Hish
9.60
r4.40
9.48
t4.22
400.00
600.00
40.00
60.00
90.00
I10.00
High Range Gas
Low
Hioh
NA
NA
NA
NA
NA
NA
NA
NA
160.00
r80.00
Actual Concentratioa (o/o or ppm)
Zero
Low
Mid
Hioh
0.00
NA
12.00
24.00
0.00
NA
12.00
23.70
0.00
NA
500.00
1000.00
0.00
NA
50.00
100.00
0.00
60.00
r00.00
r70.00
Uoscale Calibration Gas (C-^)Mid Mid Mid Mid Mid
Instrument Response (7o or ppm)
Zero
Low
Mid
Hish
0.m
NA
11.80
24.40
-0.03
NA
1 1.84
24.00
l.l9
NA
496.70
996.83
0.04
NA
51.27
r00.67
0.90
60.41
99.90
169.49
Performance (7o of Span or Cal. Gas Conc.)
Zero
Low
Mid
Hioh
0.00
NA
0.83
1.67
0.13
NA
0.68
1.27
0.12
NA
0.33
0.32
0.04
NA
1.27
0.67
0.00
0.01
-0.17
0.00
Zero
Low
Mid
Hish
PASS
NA
PASS
PASS
PASS
NA
PASS
PASS
PASS
NA
PASS
PASS
PASS
NA
PASS
PASS
PASS
PASS
PASS
PASS
88 of 124
AllErrrce.TECHNIC.AL GROUP
Location: Ameresco, Hill Air Force Base - Davis County
Bias/Drift Determinations
Source: Unit 5l Eneine 3 - Blended Fuel
Project No.: AST-2023-43QQ
Parameter O, - Outlet COz - 0utlet CO - Outlet NOx - 0utlet NMHC - Outlet
Run I Date 1216123
Span Value
Initial Instrument Zero Cal Response
Initial Instrument Upscale Cal Response
Pretest System Zero Response
Posttest System Zero Response
Pretest System Upscale Response
Posttest Svstem Upscale Response
24.00
0.00
11.80
0.13
0.17
1 1.85
I 1.58
23.70
-0.03
11.84
0.02
0.07
1 1.87
I1.78
l,000.00
Ll9
496.70
1.44
0.10
500.14
476.81
r00.00
0.04
5t.27
3.89
2.08
49.97
49.99
200.00
0.90
99.90
0.90
0.92
99.90
100.30
Bias (%o)
Pretest Zero
Posttest Zero
Pretest Span
Posttest Span
0.54
0.71
0.21
0.92
0.21
0.42
0.13
-0.25
0.03
-0.1 l
0.34
- 1.99
3.85
2.04
-1.30
- 1.28
NA
NA
NA
NA
Drift (%)
Zero
Mid
0.17
- 1.13
0.2r
-0.38
-0.13
-2.33
- l.8l
0.02
0.01
0.20
Run 2 Date 1216123
Span Value
lnstrument Zero Cal Response
Instrument Upscale Cal Response
Pretest System Zero Response
Posttest System Zero Response
Pretest System Upscale Response
Posttest Svstem Uoscale Response
24.00
0.00
11.80
0.17
0.15
l1.58
11.88
23.70
-0.03
I 1.84
0.07
0.04
I1.78
l1.84
r,000.00
1.19
496.70
0.10
-0.19
476.81
480.24
100.00
0.04
51.27
2.08
2.02
49.99
50.40
200.00
0.90
99.90
0.92
0.90
100.30
99.21
Bias (7o)
Pretest Zero
Posttest Zero
Pretest Span
Posttest SDan
0.71
0.63
-0.92
0.33
0.42
0.30
-0.25
0.00
-0.1 I
-0. 14
- 1.99
-1.65
2.04
1.98
-1.28
-0.87
NA
NA
NA
NA
Drift (%)
Zerc
Mid
-0.08
t.25
-0.13
0.25
-0.03
0.34
-0.06
0.41
0.01
-0.55
Run 3 Date 1216123
Span Value
Instrument Zero Cal Response
Instrument Upscale Cal Response
Pretest System Zero Response
Posttest System Zero Response
Pretest System Upscale Response
Posttest Svstem Upscale Response
24.00
0.00
I1.80
0.15
0.16
11.88
11.87
23.70
-0.03
I1.84
0.04
0.07
t 1.84
11.82
r.000.00
1.19
496.70
-0.19
1.95
480.24
480.69
100.00
0.04
51.27
2.02
t.92
50.40
48.96
200.00
0.90
99.90
0.90
0.93
99.21
99.84
Bias (%)
Pretest Zero
Posttest Zero
Pretest Span
Posttest SDan
0.63
0.67
0.33
0.29
0.30
0.42
0.00
-0.08
-0. l4
0.08
1.65
-1.60
1.98
1.88
-0.87
-2.31
NA
NA
NA
NA
Drift (%)
Zero
Mid
0.04
-0.04
0. 13
-0.08
0.21
0.04
-0.10
-1.44
0.02
0.32
89 of 124
k
--*f,**!-..Accreditation ,162754
Red Ball Technical Gas Service
555 Craig Kennedy Way
Shreveport, LA 7'1107
800-5514150
PGVP Vendor lD #G12020
EPA PROTOCOL GAS CERTIFICATE OF ANALYSIS
Cylinder Number:
Product lD Numbor:
Cylinder Pressure:
coA #
Gustomer PO, NO.:
Customer:
)c719736
1279tlt
r900 PS|G
JQ I 19 t36.20200410-0
Certification Date:
Expiration Date:
MFG Facility:
Lot Number:
Tracking Number:
Previous Certifi cation Dates:
)u14t2020
)4116t2024
1c719736.20200810
198506945
calibration standard has b€en certified per the May 201 2 12t531.
G1.
SMART-CERT
Concontrrton Unctrteinty Analytlc.l Principlo A$ayod On
,0:18 o/o
t0:12 o/o
E8004 1 474.20 1 80504
E80089906.201 90405
EB0097897.201 7'10'tE
071001
2659a
c1 3094'10.01
1162980025 08t03t2020
1162960025 07t2312020
This is to certify the gases referenced have been calibrated/tested, and verified to meet the defined speciflcations. This
calibration/test was performed using Gases or Scales that are traceable through National lnstitute of Standards and
Technology (NIST) to the lnternational System of Units (Sl). The basis of compliance stated is a comparison of the
measurement parameters to the specified or required calibration/testing process. The expanded uncertainties use a coverage
factor of k=2 to approximate the 95% confidence level of the measurement, unless otheMise noted. This calibration certificate
applies only to the item described and shall not be reproduced other than in full, without written approval from Red Ball
Technical Gas Services. lf not included, the uncertainty of calibrations are available upon request and were taken into account
when determining pass or fall.
,l'** fuw
Jasmine Godfrey
AnaMical Chemist
Assay Laboratory: Red Ball TGS
Version 02-J. Revised on 2018-09-17
90 of 124
Airgas
Part Number:
Cylinder Number:
Laboratory:
PGVP Number:
Gas Code:
CERTIFICATE OF AI\IALYSIS
Grade of Product: EPA Protocol
E02NI99E15A01Dl Reference Number:
E8009M61 Cylinder Volume:
124 - Tooele (SAP) - UT Cylinder Pressure:
872017 Valve Outlet:NO,NOX,BALN Certification Date:
Expiration Date: Jun i9.2025
153-124623815-1
'144.4 CF
2015 PSIG
660
Jun 19,2017
Certification performed in accordance with "EPA Traceability Protocol for Assay and Certification of Gaseous Calibration Standards (May 2012)'document EPA
600/R-1 2/531 , using the assay procedures listed. Analytical Methodology does not require conection for analytical interference. This cylinder has a total analytical
uncertainty as stated below with a confidence level of 950/5. There are no significant impurities which affect the use of this calibration mixture. All concentrations are on a
Do Not Use This below 100
NOX
NITRIC OXIDE
NITROGEN
485.0 PPM
485.0 PPM
Balance
486.3 PPM
483.7 PPM
G1
G1
+l- 0.8o/o NIST Traceable
+l- 0.8o/o NIST Traceable
06t 1 2t20 1 7, 06t 1 I t2017
06t 1 2t20 17 . 06t 1 I t2017
Triad Data Available Upon Request
Sionature on file
mole/mole basis unless otherwise noted
Requested
Concentration
ANALYTICAL RESULTS
Actual Protocol Total Relative Assay
Dates
CALIBRATION STANDARDS
Type Lot !D Cylinder No Concentration Uncertainty Expiration Date
NTRM 15060425
PRM 12367
GM|S 1114201604
CC,149859 496.8 PPM NITRIC OXIDUNITROGEN
APEX1099237 9.S2PPMNITROGENDIOXIDE/NITROGEN
cc507567 4.955 PPM NITROGEN DIOXIDE/NITROGEN
The SRM. PRM or RGM noted above is onlv in referenc€ to the GMIS used in the assay and not part of the analvsis.
0.5
1.60/o
2.0Yo
May O4,2021
May 29,2016
Nov 14,2019
lnstrumenUMake/Model
ANALYTICAL EQTIIPMENT
Analytical Principle Last Multipoint Galibration
Nicolet 6700 AHR0801550 NO MNO
Nicolet 6700 AHR0801550 NO2 imDuriw
FTIR
FTIR NO2 imDuritv
May 31,2O17
Jun 01,2017
Approved for Release
9l of 124
Page 1 of 153-'12462381$1
slruas"
an Ail Liquid. cdnpany
-J s-'-
Airgas USA, LLC
525 North Industrial loop Rmd
Tooele, LIT 8+oz4
Airgas,oom
E02Nt99E15A0473
SGg14O339BAL
124 - Tooele (SAP) - UT
872019
CO,BALN
Reference Number:
CylinderVolume:
Cylinder Pressure:
Valve Outlet
Certification Date:
153-401457055-1
144.4 CF
2015 PSIG
350
Mar 25, 2019
0qyR-12r531, uEang thc 6s.y proc.dures l5t6d. Analy{ic.l nol require conacfon lor analydcal lnbtforoncc. Thls cylrder has a toElanalyt-rrd
uncartahty as st8ted bslow witi a confidGnco lavel of 05%. ThoG ar6 no fn0lJritcs s,tich 8'figcf thc ugc of thls calibralion mixturo' All @ncfitaliona ars on a
vlrlume^.ohma traois unle$ olicilaso notsd.
100 oih. i.c.0.7
+l- 1.Oolo NIST Traccable 0312512019,1510 PPMCARBON MONOXIDE
NITROGEN
Triad Data Avallable Upon Regueat
CERTIFICATE OF AIYALYSIS
Grade of Product: EPA Protocol
Part Number:
Cylinder Number
Laboratory:
PGVP Number:
Gas Gode:
AIVALYTICAL RE,SiT.'LTSActual ProtocolConcentratlon Method
NTRM 080t2328 I(qLO(l466I 4857 PPM CARBO}.I MONOXIDE/NITROGEN Jun 07,202i1
ANALYTICAL EQI.IIPMENT
Hodba MA-510 7EYAW21 LCO CO NOIR Oixon) Mar 13' 2019
,f i{
Approved for R*Cse
92 of 124
Page I of 153-001a57055-l
&
PJI.A
ffihdE.
Accreditation #62754
Red Ball Technical Gas Service
555 Craig Kennedy Way
Shreveport, lA 71107
800-551{150
PGVP Vendor lD # G12021
EPA PROTOCOL GAS CERTIFICATE OF ANALYSIS
Cylinder Number:
Product lD Number:
Cylinder Pressure:
coA #
Customer PO. NO.:
Customer:
4B009E694
12423E
1900 PstG
-80098694.2021 0405-0
Certification Date:
Expiration Date:
MFG Facility:
Lot Number:
Tracking Number:
Previous Certification Dates:
tat?ot20?1
,4t1412029
:ts0098694.2021 O4O5
)95 /041 93
SMART-CERT
This calibration standard has been certified per the May 201 2 12t531,
Gl.
-t
Anah^ical Measurement Data Available Online.
Reference Standard(s)
Certifi ed Goncentration(s)
Propane
Coocontrdon
509 PPtt
UncertainV
t4 PPM
Anelytcrl Prlnclple
FTlR
Ar..y6d On
c/}not2021
Balance
E80057205 E80057206.20160107 0511712024 GMIS N2 c3H8 750 PPM 0.634 5647A
MKS MKS 2031DJG2EKVS13T 017146467 03124t2021
This is to certify the gases referenced have been calibrated^ested, and verified to meet the defined specifications. This
calibration/test was performed using Gases or Scales that are traceable through National lnstitute of Standards and
Technology (NIST) to the lntemational System of Unils (Sl). The basis of compliance stated is a comparison of the
measurement parameters to the specified or required calibrationnesting process. The expanded uncertainties use a coverage
factor of k=2 to approximate the 95% confidence level of the measurement, unless otherwise noted. This calibration certificate
applies only to the item described and shall not be reproduced other than in full, without written approval from Red Ball
Technical Gas Services. lf not included, the uncertainty of calibrations are available upon request and were taken into accounl
when determining pass or fail.
Anthony Cyr
Assistant Operations Manager
Assay Laboratory: Red Ball TGS
Version 02-J. Revised on 2018-0917
9f of 124
Al6rceTECHNICAL CROU'-'
Location: Ameresco, Hill Air Force Base - Davis County
Project No.: AST-2023-4300
NOz Converter Check - Outlet
Analyzer Make Thermo
Analyzer Model 42i'
Serial Number 132195897.
Cylinder ID Number 8005833t
tUtS/24:I|llH 3fl;3"11",,.n. D,m 48s
Prq'Test Date Time
Pre-Test Concentration, ppm
Pre-Test Efficiency, 7o
Post-Test Date l2l7lz3 Time
Post-Test Concentration, ppm
Post-Test Efficiencv, 7o
l3:36
46.21
95
94 of 124
&*PJ!l}*.
Accreditation t 62754
Red Ball Technical Gas Service
555 Craig Kennedy Way
Shreveport, LA 7'1107
800-55't{150
PGVP Vendor lD #G12021
EPA PROTOCOL GAS CERTIFICATE OF ANALYSIS
Crinder Number:
Product lO Number:
Cylinder Pressure:
coA #
Customer PO, NO,:
Customer:
:tsO05E339
130113
1550 PS|G
E80058339.202 I 0922-0
Certification Date:
Expiration Date:
MFG Facility:
Lot Number:
Tracking Number:
Previous Certilication Dates:
1t19t2021
1111812024
- Shreveoort - LA
:80058339.2021 0922
)74330E1
standard per EPA€00/R-l 2/531,
procedure G2.
SMART-CERT
This is to certify the gases referenced have been calibrated/tested, and verifled to meet the defined specifications. This
calibration/test was performed using Gases or Scales that are traceable through National lnstitute of Standards and
Technology (NIST) to the lntemational System of Units (Sl). The basis of compliance stated is a comparison of the
measurement parameters to the specified or required calibration/testing process. The expanded uncertainties use a coverage
factor of k=2 to approximate the 950/0 confidence level of the measurement, unless otherwise noted. This calibration certificate
applies only to the item described and shall not be reproduced other than in full, without written approval from Red Ball
Technical Gas Services. lf not included, the uncertainty of calibrations are available upon request and were taken into account
when determining pass orfail.
,/ -\ ,rt-z----X
I----
Brandon Theus
Laboratory Supervisor
Assay Laboratory: Red Ball TGS
Version 02-J. Revased on 20'l&0$17
Conc.ntretion Uncertalnty AnrMicd Prlnclph Asryod o't
1 U 1 5 n021, 1 1 t05t2021, 1 1 t 1 9t2021
E80069E63.201 91 01 7
E80078072.201 80504
E80043217.20161201
E80085260.201 90 1 02
E801 00438.201 90 1 02
6.01 %
24 0k
28.3 PPM
87,3 PPM
60 9 PPM
410i
MKS 2O3,IDJG2EKVS13T
MKS 2031 DJG2EKVSl 3T
MKS 2031 DJG2EKVSl3T
1162980025 10t01t2021
017146467 09t17t2021
017146467 1012212021
0'17146467 11t19t2021
95 of 124
pultErlrce
Projfft No.:
Date
Analyzer Make:
Analyzer Model:
Analyzer SN:
Environics lD:
Component/Balance Gas:
Cylinder Gas ID (Dilution):
Cylinder Gas Concentration (Dilution), %:
Cylinder Gas ID (Mid-kvel):
1400
cc719736
24
EB0093372
Cylinder Gas Concentration Mid-t€vel), %: 10.98
AYerage
Analyrr
Concentration
lo/^\
Injcction I
Error
( + 2./.\
Injection 2
Enor
I + 2./.\
Injection 3
Enor
( +2%\
I I :t{l oov"O.lo/"
12.09 O.ZYo 'O.lYo -O.lYo
4.76 1.30/o 0.60/0 n.60/0
-O.lo/"-o.to/"0.30/"
Mid-Level Grs Calibrstion Dircct to
Calibration
Gas
Concentration
to/^\
Injetion 1
Analyar
Concentration
(o/^\
Injction 2
Analyrer
Concentration
Injection 3
Amlyzer
Concentrrtion
(o/^\
Avemge
Analyzer
Conccntrstion
to/^\
Difrerence
to/^\
Avcrsge
Enor
( +2o/o\
10.98 10.98 t00 I t .U{l lo 99 0.01 o.10/"
96 of 124
Alrfur=.
SOURCE TESTING
Mass Flow Controller Calibration
Note: The mass flow controller's calibration values are used by the dilution system's operating software to improve accuracy. These calibrations are not
necessarily indicative of the systems overall performance. Performance is verified by conducting a Method 205 prior to each field use.
calibration Performed By Ryan Lyons
Dilution System Make:
Dilution System Model:
Dilution System S/N:
Calibration Equipment Make:
Calibration Equipment Model:
Calibration Equipment S/N:
Flow Cell S/N:
Flow Cell S/N:
Calibration Gas:
Barometric Pr€ssure, mmHg:
Ambient Temperature,'F:
9
Scientific
10sLPD/5MM-D/sM,M.15LPM.D/5I
797206;797208
797208
797206
Nitrogen
25.6
72
Mass Flow Controller lD
Size, ccm:
Make:
Model:
S/N:
#1
10,000
Environics
4040
45s242003
#2
10,000
Environics
4040
455242004
#3
1,000
Environics
4040
455242002
Set Flow True Flow Difference
cclmin cc/min
Set Flow True Flow Difference
cc/min cc/min
Set Flow True Flow Difference
cc/min cc/min
5%
lOlo
20%
30%
40%
so%
60%
70%
80%
90%
too%
s00 502 0.4%
1,000 1,015 7.5%
2,000 2,040 2.O%
3,000 3,060 2.0%
4,000 4,083 2.r%
5,000 5,093 7.9%
6,000 6,110 t.8%
7,000 7,724 1.8%
8,000 8,150 7.9%
9,000 9,172 7.9%
10,000 ro,2L4 2.7%
500 495 7.OYo
1,000 7,074 7.4/o
2,000 2,037 t.9%
3,000 3,0s7 L.9%
4,000 4,071 7.8%
5,000 5,082 7.6%
6,000 5,100 1.7%
7,OOO 7,730 t.9%
8,000 8,1s0 7.9%
9,000 9,t76 2.O%
10,000 70,202 2.O%
50 47 s.8%
100 98 2'4/o
200 199 0.3%
300 301 0.4%
400 403 0.6%
500 504 0.7%
600 606 0.9%
7N 709 t.2%
800 814 7.7%
900 919 2.2%
1,000 7,028 2.8%
Date 4/26123
97 of 124
Red Ball Technical Gas Service
555 Cralg Kenno$ Way
Shrevepo( LA 71107
800-5513150
PGVP Vendor !D * G1m21
EPA PROTOCOL GAS CERTIFICATE OF ANALYSIS
Cylinder Number:
Product lD Numb6r:
qilindrr Pr€esure:
coA#
Customer PO. NO.:
Customen
480093<t7z
125371
r900 PsrG
=wo93372.2o21ofj.Z3-O
Cerdfrc.don m:
Explradon Dats:
MFG Facility:
Lot Number:
Tracldng Number:
Previoue Cerflfi caf on D&s:
,7mn021
17DODO2g
-!nt
ztsOoS3sl2.2OZ10,6.23
,s5465SEE
standard has been Fr
Conccntrdon Uncft inty Anllytcal Prlnclple As€ryed On
01052029 GM|S N2 0ZolnTau)s GMts N2 02
GrOE/2@9 GU|S N2 CO2
This is to certiry he gases referenced have been calibratedtested, and vedfied b meet tle defined specifcations. Thts
calibration/Est twE pcrftrmed uslng Gas€s or Scal6 tha are tracealbte liro|.{h Na0onal lnstitJE of Standards and
Technology (NIST) b tre lnEnational Syrtem ot Units (Sl), The basis of conlpliance staEd is a comparison of tfie
measurcment paEmeters b the specified or t€quir€d calibration/Esting proce6s. The er<panded uncartaartiE use a coverage
faclor of l(=2 to apProdmate the 95% cottfidence level of lfie measurement unless offie'YUise noEd. This calibrstion certificate
appli€s only to tl6 iEm dscribed and shau not be reprcduced otEr than in tutl without rr^'itten approval fiom Faed Bail
Technical Gas SeMceE. lf not induded, the uncarbinty of calibrations are ayaihble upon reque6t and !t ere taken into accourt
when determining pass or fail.
SMARTCERT
%
Anthony Cyr
Asistant Operetions llanager
Assry Laboratory. Red Ball TGS
Versbn O2-J. Rwised oo 2018S17
98 of 124
AlErceT'E(]HNI()AL GFOI.JP
QA Data
Lo""tion
Source Unit 51 Ensine 3 - Natural Gas
Project No. AST
Parameter(s) BWS
Drte Pitot ID Evidence of
damase?
Evidence of
-3- -I:--*^-rq
Calibration or
f,lcnqir ronrrircd?
tzl5l23 PT-1208 no no no
Date Probe or
Thermocouple ID
Reference
Temp. (oF;
Indicated
Temp. (oF;Difference Criteria
tzl5l23 Pr-704-l 80.0 85.0 0.9o/o t 1.5 % (absolute)
Field Balance Check
Dete t2t0st23
Balance ID:scale-23
Test Weight ID:SLC-1KG-3
Certified Weight (g):r000.0
Measured Weight (g):999.9
Weight Difference (g)0.I
Date Barometric
Pretsrrre
Evidence of Reading
Verified
Calibration or
Qpnqir recrrired?Weather Station Location
tzt5t23 Weather Station NA NA NA Layton, UT
I)ate Meter Box ID Positive Pressure Leak Check
tzt5t23 M5-2600 Pass
99 of 124
AlErce
T'ECHNICAL $FIC]tJP
QA Data
Location Ameresco, Hill Air Force Base - Davis County
Source Unit 51 Enpine 3 - Blended Fuel
Project No. AST-2023-4300
Parameter(s) BWS
Date Pitot ID Evidence of
dqmroe?
Evidence of
mis-olionment?
Calibration or
Reoair reouired?
tzt5t23 PT-1208 no no no
Date Probe or
Thermocouple ID
Reference
Temp. (oF)
Indicated
Temp. (or;Difference Criteria
t2/5t23 Pr-704-1 80.0 85.0 0.90/o r 1.5 o/o (absolute)
Field Balance Check
Dete t2t05t23
Balance ID:scale-23
Test Weight ID:SLC.1KG.3
Certified Weight (g):1000.0
Measured Weight (g):999.9
Weight Difference (g):0.1
Date Barometric
Pressrrre
Evidence of Reading
Walifiod
Calibration or
Reneir reouired?Weather Station Location
12/5t23 Weather Station NA NA NA Layton, UT
Date Meter Box ID Positive Prcssure Leak Check
tzl5/23 M5-2600 Pass
100 of 124
DGM Calibration-Orifices
Document lI 6?0.OO4
Revisior 23.0
Effective Dat(v2s/23
lssuinq Department Te.h Serui.es Paq(1of 1
Equipment Detall - Dry Gas Meter
Console lD: M5-2600
Meter s/N: 22071022
Critical Orifice S/N: 1330
Calibration Detail
lnitial Barometric Pressure, in. Hg (Pb)
Final Barometric Pressure, in. Hg (Pb,
Averaqe Barometric Pressure, in. Hq (Pb)
25.51
25.48
25.50
Critifcal Orifice lD (Y)
K' Factor, ft3.R1/2 / in. wc.min (K)
Vacuum Pressure, in. Hg (Vp)
lnitial DGM Volume, ftr (Vm,)
Final DGM Volume, ftr (Vm,
Total DGM Volume. ft3 (Vm)
1330-31
0.8429
13.0
717.434
728.517
11.083
1330-31 "r330-2s
0 6728
15.0
745.717
754.532
8 815
1330-25 1330-19
0 5186
15.0
764.979
771.978
6.999
1330{9
0.8429 0.673 0.519
13.0
728.517
739.631
11120
15.0
754.532
763.392
8.860
160
771.978
778992
7.014
Ambient Temperature, 'F (Ta)
nitial DGM Temperature, 'F (Iml)
Final DGM Temperature,'F 0mr)
Averaqe DGM Temperature,'F ( Tm)
68
63
u
u
68
@
66
65
69
67
69
68
69
69
71
70
68
71
73
72
69
73
75
74
Elapsed Time (O)
Meter Orifice Pressure, in. WC (AH)
Standard Meter volume, ftr (Vmstd)
Standard Critical Orifice Volume, ftr (Vcr)
l,,leter Correction Factor (Y)
Tolerance
Orifice Calibration Value (AH @)
Tolerance
Orifice Cal Check
10.00
3.50
9.6231
9.3550
0.972
0 003
1.953
0 004
10.00
3.50
9.6276
9.3550
0.972
0 004
1948
0.009
10.00
7.56cl
7.460
0.987
0.011
1.907
0.050
10.00
220
7.5703
7.460
0.985
0 0'10
1.900
0.057
10.00
1.40
s.9440
5.7557
0.968
0.007
2.019
0.062
10.00
1.40
5.9344
5.7503
0.969
0.007
2.015
0 058
1.44 180 1n
Veter Correction Factor ff)o.976
)rifice Calibration Value (AH @)1.957
)ositive Pressure Leak Check Yes
EouiDment Detail - Thermocouole Sensor
Reference Calibrator Make: OMEGA
Reference Calibrator Model: CL23A
Reference Calibrator S/N: T-197207
Calibration Detail
Reference Temp.Disolav Temo Accuracv Difference
F
.R .F .R o/o
0
68
100
460
528
560
0
66
98
460
s26
558
0.0
0.4
0.4
0
2
2
223
248
)74
683
708
133
223
249
214
683
709
134
00
-0.1
-0.'1
0
1
1
300
400
500
600
700
800
900
1,000
1,100
1.200
760
860
960
1,060
1,160
1,260
1,360
1,460
1,560
1,660
300
399
498
600
701
801
901
1,002
1,102
1,202
760
859
958
1,060
1,161
1,261
'1,361
1,462
1,562
1,662
0.c
0.1
0.2
0.c
-0.
-0
-0.
-0.
-0.
-0.
0
'1
2
0
1
1
,l
2
2
2
Personnel
10/27/2023
l0l of124
Calibration By
Calibration Date
Reviewed By
RYAN LYONS
AIETEe
TEOHNIOAL €FIOUP
Location: Ameresco, Hill Air Force Base - Davis County
Source: Unit 5l Ensine 3 - Natural Gas
Project No.: AST-2023-4300
Datez 121712023
Traverse Point Time o2
(o/o\
Coz
(oh\
CO
(ppm)
NOx
(nnm)
A-l
2
3
8:47
8:48
8:49
9.94
9.96
9.96
10.0
6.56
6.56
6.57
6.6
593.50
588.77
59t.47
591.2
59.72
60.1 5
60.27
60.0Averase
Criteria Met Sinsle Point Sinele Point Sinele Point Sinele Point
102 of 124
pulrErlpe
TECHNIL:AL TIBOUP
Location: Ameresco, Hill Air Force Base - Davis County
Source: Unit 51 Enqine 3 - Blended Fuel
Project No.: AST-2023-4300
Date: 121612023
Traverse Point Time o2
(o/o\
Coz
(ol
CO
(oom)
NOx
(nnm)
A-l
2
3
12:20
12:21
12:22
9.94
9.9r
9.93
9.9
7.66
7.70
7.7t
7.7
529.53
53r.21
533.s4
531.4
107.69
1 1 1.82
109.00
109.5Averase
Criteria Met Single Point Single Point Sinsle Point Sinsle Point
103 of.l24
104 of 124
ffiF*Alhre
Site Specific Test Plan
Ameresco Federal Solutions
520 W. Summit Hill Drive, Suite #401
Knoxville, TN 37902
Hill Air Force Base
Landfill Gas Fired Power Generation Facility (Unit 51)
Davis County, Utah
Source to be Tested: One (1) Jenbacher JGS320 RICE
(Engine 3)
Proposed Test Dates: December 4 & 5,2023
Project No. AST-2023 -4300
Prepared By
Alliance Technical Group, LLC
3683 W 2270 S, Suite E
West Valley City, UT 84120
li:
105 of 124
All6lpe
TECI]NICAL GBOLJP
Site Specific Test Plan
Test Program Sunmary
Resulatorv Information
Permit No.
Regulatory Citation
Source Information
UDAQ Title V Operating Permit I100007004
40 CFR Part 60, Subpart JJJJ
Source Name
One (l) Jenbacher JGS320 RICE
Contact Information
Source ID
Unit 5l / Engine 3
Target Parameters
NOx. CO. VOC
Tesl Locqtion
75 CEG/CEIEA
Air Quality Program
Building 737
Hill Air Force Base, UT 84056
Air Program Manager
Dr. Erik Dettenmaier
erik.dettenmaier. I @us.af.mil
(801) 777-0888
Ameresco Federal Solutions
520 W. Summit HillDrive, Suite
#401 Knoxville, TN 37902
Operations Engineer
Jonathan Driskill
jdriskill@ameresco.com
(86s) 330-7196
(865) 604-2031 (cell)
Test Company
Alliance Technical Group, LLC
3683 W 2270 S, Suite E
West Valley City, UT 84120
Project Manager
Charles Horton
charles.horton@alliancetg.com
(3s2) 663-7s68
Field Team Leader
Robert Burton
robert.burton@al liancetg.com
(224)3s8-s0ss
(subject to change)
QA/QC Manager
Kathleen Shonk
katie.shonk@alliancetg.com
(812) 4s2-478s
Test PlanlReport Coordinator
Colton Basinger
colton.basinger@alliancetg.com
(972) 93r-7127
Regtlatory Agency
Utah DAQ
195 North 1950 West
Salt Lake city, uT 84116
Air Quality Engineer
Harold Burge
hburge@utah.gov
(801) 536-4129
Amercsco- Hill AFB, UT
106 of 124
AST-2023-4300 Page i
pilt6rrce
Site Specifc Test Plan
Table ofContents
TABLE OF CONTENTS
1.1 Process/Control System Descriptions .....".....'. l-l
2.0 Summar of Test Program........ ......2-l
2.2 Process/Control System Parameters to be Monitored and Recorded ..............' ...............-..2-l
2.3 Proposed Test Schedule .....-.......2-l
3.1 U.S. EPA Reference Test Methods 7 and2- Sampling/Traverse Points and Volumetric Flow Rate.....3-l
3.2 U.S. EPA Reference Test Method 3,A, - Oxygen/Carbon Dioxide....'.... ...... 3-l
3.3 U.S. EPA Reference Test Method 4 - Moisture Content......... ................-...3-2
3.4 U.S. EPA Reference Test Method 7E - Nitrogen Oxides.......... ..................3'2
3.5 U.S. EPA Reference Test Method l0 - Carbon Monoxide.".. .....................3-2
3.6 U.S. EPA Reference Test Method l8 - Ethane... ................---3-2
3.7 U.S. EPA Reference Test Method 25A - Volatile Organic Compounds .....3-2
3.8 U.S. EPA Alternative Test Method ALT-096 - Non-Methane Hydrocarbons....................................-..-.3-2
3.9 U.S. EPA Reference Test Method 205 - Gas Dilution System Certification. ....................3-3
3.10 Quality Assurance/Quality Control - U.S. EPA Reference Test Methods 3A,78 and 10.......................3-3
3.1I Quality Assurance/Quality Control- U.S. EPA Reference Test Method 18 (Bag Sampling Procedure) 3-4
3.12 Quality Assurance/Quality Control - U.S. EPA Reference Test Method 25A ........................................ 3-4
3.13 Quality Assurance/Quality Control - u.s. EPA Reference Method ALT-096 .................. 3-5
LIST OF TABLES
Table 2-l: Program Outline and Tentative Test Schedule ...............-......2-2
Ameresco - Hill AFB, UT
107 of 124
AST-2023-4300 Page ii
puthrpe
T i- (l ri l'i iO ri Gno.,r Site Specific Test Plan
Introduction
1.0 Introduction
Alliance Technical Group, LLC (Alliance) was retained by Ameresco Federal Solutions (Ameresco) for emission
testing services at the Hill Air Force Base (AFB). Portions of the facility are subject to provisions of the Utah
Department of Environmental Qualiry, Division of Air Quality (UDAQ) Title V Operating Permit 1100007004,
condition II.B.40.e and 40 CFR Part 60, Subpart JJJJ. Testing will be conducted to determine the emission rates of
nitrogen oxides (NOx), carbon monoxide (CO) and volatile organic compounds (VOC) from the exhaust of one (l)
Jenbacher JGS320 reciprocating intemal combustion engine (RICE) (Engine 3) used for power generation (Unit 5l).
Testing will be conducted at two (2) fuel conditions: I ) a blended fuel consisting of Landfill Gas and Natural Gas
(percentages of each will be determined based on quality of Landfill Gas being supplied during testing) and 2) 100%
Natural Gas.
This site-specific test plan (SSTP) has been prepared to address the notification and testing requirements of the UDAQ
permit.
1.1 Process/ControlSystemDescriptions
The HAFB Main Base is located in Davis and Weber Counties about 30 miles north of Salt Lake City, Utah. The
Landfill Gas Fired Power Generation Facility (Unit 5l) consists of three (3) landfill gas fired,4-cycle standard lean
bum (4SLB) reciprocating internal combustion engines (RICE): 814 brake horsepower (bhp) Caterpillar 35l2LE
(Engine l), 1,148 bhp Caterpillar 35l6LE (Engine 2) and 1,350 bhp, Jenbacher JGS320 (Engine 3). Engine 3 is the
subject of this test program.
1.2 Project Team
Personnel planned to be involved in this project are identihed in the following table.
Table l-l: Project Team
1.3 Safety Requirements
Testing personnel will undergo site-specific safety training for all applicable areas upon arrival at the site. Alliance
personnel will have current OSHA or MSHA safety training and be equipped with hard hats, safety glasses with side
shields, steel-toed safety shoes, hearing protection, fire resistant clothing, and fall protection (including shock corded
lanyards and full-body hamesses). Alliance personnel will conduct themselves in a manner consistent with Client and
Alliance's safety policies.
A Job Safety Analysis (JSA) will be completed daily by the Alliance Field Team Leader.
Ameresco - Hill AFB, UT
108 of 124
Ameresco Personnel Jonathan Driskill
Regulatory Agency UDAQ
Alliance Personnel Robert Burton
other field personnel assigned at time oftesting event
AST-2023-4300 Page l-l
pul6rrpE)
TECIlNICAL GNOUP Site Specific Test Plan
Smmary ofTest Programs
2.0 Summary of Test Program
To satisfu the requirements of the UDAQ permit and 40 CFR Part 60, Subpart JJJJ, the facility will conduct a
performance test program to determine the compliance status of Engine 3.
2,1 General Description
All testing will be performed in accordance with specifications stipulated in U.S. EPA Reference Test Methods 1, 2,
3A,4,7E,l0,25AorALT-096. Table2-l presentsanoutlineandtentativeschedulefortheemissionstestingprogram.
The following is a summary of the test objectives.
Testing will be performed to demonstrate compliance with the UDAQ permit and 40 CFR Part 60, Subpart
JJJJ.
Emissions testing will be conducted on the exhaust of Engine 3. Testing will be conducted at two (2) fuel
conditions: 1) a blended fuel consisting of Landfill Gas and Natural Gas (percentages of each will be
determined based on quality of Landfill Gas being supplied during testing) and 2) 1007o Natural Gas.
Performance testing will be conducted within 90 percant of peak load or at the highest achievable load for
the source.
Each of the three (3) test runs will be 60 minutes in duration per condition.
Concentration data will be combined with concurrently collected oxygen (O2), carbon dioxide (COz),
moisture (HzO) and gas velocity data to determine volumetric flow rate (VFR) and mass emission rates of
each analyte in units of pounds per hour (lb/hr). Mass emissions will be combined with engine operating load
to calculate emissions in units of grams per brake-horsepower hour (g/bhp-hr).
If necessary, an integrated sample of stack gas will be collected in a clean, leak-free Tedlar bag for optional
ethane analysis offsite via gas-chromatography in accordance with EPA RM 18. If needed, the ethane
concentration will be used to correct non-methane organic compounds (NMOC) data to non-methane / non-
ethane organic compound (NMEOC) concentrations. NMOC or NMEOC data will be reported for VOC
compliance.
2.2 Process/Control System Parameters to be Monitored and Recorded
Plant personnel will collect operational and parametric data at least once every 15 minutes during the testing. The
following list identifies the measurements, observations and records that will be collected during the testing progr.rm:
Load data in units of bhp or kilowatts (Kw)
Landfill gas flow rate
Natural gas flow rate
2.3 Proposed Test Schedule
Table 2-l presents an outline and tentative schedule for the emissions testing program.
a
a
a
a
a
AST-2023-4300 Page 2-lAmeresco- Hill AFB, UT
109 of 124
pul6rpe
TECHNICAL GROUP
2.4 Emission Limits
Emission limits for each pollutant are below.
Site Specific Test Plan
Table2-l: Program and Tentative Test Schedule
Equipment Setup & Pretest QA/QC Checks
Unit 5l
One (l) Jenbacher
JGS32O 4SLB RICE
ID: Engine 3
One (l) Condition
Unit 5l
One (l) Jenbacher
JGS32O 4SLB RICE
ID: Engine 3
One (l) Condition
Contingency Day (if needed)
Unit 51
One (l) Jenbacher JGS320
4SLB RICE
ID: Engine 3
TECHNICAL GROUP Site Specific Test Plan
&,onmary of Test Programs
2.5 Test Report
The final test report must be submitted within 60 days of the completion of the performance test and will include the
following information.
o Introduction - Brief discussion of project scope of work and activities.
o Results and Discussion - A summary of test results and process/control system operational data with
comparison to regulatory requirements or vendor guarantees along with a description of process conditions
and/or testing deviations that may have affected the testing results.
c Methodolog - A description of the sampling and analytical methodologies.
. Sample Calculations - Example calculations for each target parameter.
o Field Data - Copies of actual handwritten or electronic field data sheets.
c Laboratory Data-Copies oflaboratory report(s) and chain ofcustody(s).
c Quality Control Data- Copies of all instrument calibration data and/or calibration gas certificates.
o Process OperatinglControl System Data - Process operating and control system data (as provided by
Ameresco) to support the test results.
Ameresco-Hill AFB, UT
lll ofl24
AST-20234300 Page2-3
pulhrpe
T F C I] N IC A L G R O L-J P
Site Specific Test Plan
Testing Methodologlt
3.0 Testing Methodolory
This section provides a description of the sampling and analytical procedures for each test method that will be
employed during the test program. All equipment procedures and quality assurance measures necessary for the
completion of the test program meet or exceed the specifications of each relevant test method. The emission testing
program will be conducted in accordance with the test methods listed in Table 3-1.
Table 3-l: Source Testing Methodology
All stack diameters, depths, widths, upstream and downstream disturbance distances and nipple lengths will be
measured on site with a verification measurement provided by the Field Team Leader.
3.1 U.S. EPA Reference Test Methods I and 2 - Sampling/Trayerse Points and Volumetric Flow Rate
The sampling location and number of traverse (sampling) points will be selected in accordance with U.S. EPA
Reference Test Method l. To determine the minimum number of traverse points, the upstream and downstream
distances will be equated into equivalent diameters and compared to Figure l-2 in U.S. EPA Reference Test Method
l.
Full velocity traverses will be conducted in accordance with U.S. EPA Reference Test Method 2 to determine the
average stack gas velocity pressure, static pressure and temperature. The velocity and static pressure measurement
system will consist of a pitot tube and inclined manometer. The stack gas temperature will be measured with a K-
type thermocouple and pyrometer.
Stack gas velocity pressure and temperature readings will be recorded during each test run. The data collected will be
utilized to calculate the volumetric flow rate in accordance with U.S. EPA Reference Test Method 2.
3.2 U.S. EPA Reference Test Method 3A - Oxygen/Carbon Dioxide
The oxygen (Oz) and carbon dioxide (COz) testing will be conducted in accordance with U.S. EPA Reference Test
Method 3A. Data will be collected online and reported in one-minute averages. The sampling system will consist of
a stainless steel probe, Teflon sample line(s), gas conditioning system and the identified gas analyzer. The gas
Ameresco - Hill AFB, UT
l12 of 124
Full Velocity Traverses
Volatile Organic Compounds
Gas Dilution System Certification
* Ethane Concentrations will be determined as needed
AST-2023-4300 Page 3-l
pul6rrrcG)
Site Specific Test Plan
Testing MethodologtTf CIINICAL GNOLJP
conditioning system will be a non-contact condenser used to remove moisture from the stack gas. If an unheated
Teflon sample line is used, then a portable non-contact condenser will be placed in the system directly after the probe.
Otherwise, a heated Teflon sample line will be used. The quality control measures are described in Section 3.10.
3.3 U.S. EPA Reference Test Method 4 - Moisture Content
The stack gas moisture content will be determined in accordance with U.S. EPA Reference Test Method 4. The gas
conditioning train will consist of a series of chilled impingers. Prior to testing, each impinger will be filled with a
known quantity of water or silica gel. Each impinger will be analyzed gravimetrically before and after each test run
on the same analytical balance to determine the amount of moisture condensed.
3.4 U.S. EPA Reference Test Method 7E - Nitrogen Oxides
The nitrogen oxides (NOx) testing will be conducted in accordance with U.S. EPA Reference Test Method 7E. Data
will be collected online and reported in one-minute averages. The sampling system will consist of a stainless steel
probe, Teflon sample line(s), gas conditioning system and the identified gas analyzer. The gas conditioning syst€m
will be a non-contact condenser used to remove moisture from the stack gas. If an unheated Teflon sample line is
used, then a portable non-contact condenser will be placed in the system directly after the probe. Otherwise, a heated
Teflon sample line will be used. The quality control measures are described in Section 3.10.
3.5 U.S. EPA Reference Test Method l0 - Carbon Monoxide
The carbon monoxide (CO) testing will be conducted in accordance with U.S. EPA Reference Test Method 10. Data
will be collected online and reported in one-minute averages. The sampling system will consist of a stainless steel
probe, Teflon sample line(s), gas conditioning system, and the identified gas analyzer. The gas conditioning system
will be a non-contact condenser used to remove moisture from the gas. If an unheated Teflon sample line is used,
then a portable non-contact condenser will be placed in the system directly after the probe. Otherwise, a heated Teflon
sample line will be used. The quality control measures are described in Section 3.10.
3.6 U.S. EPA Reference Test Method 18 - Ethane
If needed, the ethane testing will be conducted in accordance with U.S. EPA Reference Test Method 18. The stack
gas will be withdrawn at a constant rate through a stainless sample probe, heated Teflon sample line and gas
conditioning system and collected in a leak-free Tedlar bag. All samples will be sealed and labeled for transport to
the identified laboratory for analysis. The analytical lab once receiving the samples will analyze them using gas
chromatography / flame ionization detector (GC/pID) following the analytical procedures outlined in U.S. EPA
Reference Test Method 18. The quality control measures are described in Section 3. I I .
3.7 U.S. EPA Reference Test Method 25A - Volatile Organic Compounds
The volatile organic compounds (VOC) testing will be conducted in accordance with U.S. EPA Reference Test Method
25A. Data will be collected online and reported in one-minute averages. The sampling system will consist of a stainless
steel probe, heated Teflon sample line(s) and the identified gas analyzer. The quality control measures are described in
Section 3.12.
3.8 U.S. EPA Alternative Test Method ALT-096 * Non-Methane Hydrocarbons
The non-methane hydrocarbons (NMHC) testing will be conducted in accordance with U.S. EPA Altemate Test Method
ALT-096. EPA Method 25A is incorporated by reference. The sampling system will consist of a stainless steel probe,
heated Teflon sample line(s) and a Thermo 55i analyzer. NMVOC data will be collected in one (l) minute averages. The
quality control measures are described in Section 3.13.
Ameresco- Hill AFB, UT
113 of 124
AST-2023-4300 Page 3-2
pilt6rpe
Site Specific Test Plan
Testing MethodologtTf CIiNiCAL GNOLjP
3.9 U.S. EPA Reference Test Method 205 - Gas Dilution System Certification
A calibration gas dilution system field check will be conducted in accordance with U.S. EPA Reference Method 205.
Multiple dilution rates and total gas flow rates will be utilized to force the dilution system to perform two dilutions on
each mass flow controller. The diluted calibration gases will be sent directly to the analyzer, and the analyzer response
recorded in an electronic field data sheet. The analyzer response must agree within 2Yo of the actual diluted gas
concentration. A second Protocol I calibration gas, with a cylinder concentration within l0% of one of the gas divider
settings described above, will be introduced directly to the analyzer, and the analyzer response recorded in an
electronic field data sheet. The cylinder concentration and the analyzer response must agree within2o/o. These steps
will be repeated three (3) times.
3.10 Quality Assurance/Quality Control - U.S. EPA Reference Test Methods 3A, 7E and 10
Cylinder calibration gases will meet EPA Protocol I (+l-2o/o) standards. Copies of all calibration gas certificates will
be included in the Quality Assurance/Quality Control Appendix of the report.
Low Level gas will be introduced directly to the analyzer. After adjusting the analyzer to the Low Level gas
concentration and once the analyzer reading is stable, the analyzer value will be recorded. This process will be
repeated for the High Level gas. For the Calibration Error Test, Low, Mid, and High Level calibration gases will be
sequentially introduced directly to the analyzer. The Calibration Error for each gas must be within 2.0 percent of the
Calibration Span or 0.5 ppmvlo/o absolute difference.
High or Mid Level gas (whichever is closer to the stack gas concentration) will be introduced at the probe and the
time required for the analyzer reading to reach 95 percent or 0.5 ppm/% (whichever was less restrictive) of the gas
concentration will be recorded. The analyzer reading will be observed until it reaches a stable value, and this value
will be recorded. Next, Low Level gas will be introduced at the probe and the time required for the analyzer reading
to decrease to a value within 5.0 percent or 0.5 ppm/% (whichever was less restrictive) will be recorded. If the Low
Level gas is zero gas, the acceptable response must be 5.0 percent of the upscale gas concentration or 0.5 ppm/o/o
(whichever was less restrictive). The analyzer reading will be observed until it reaches a stable value and this value
will be recorded. The measurement system response time and initial system bias will be determined from these data.
The System Bias for each gas must be within 5.0 percent of the Calibration Span or 0.5 ppmv/%o absolute difference.
High or Mid Level gas (whichever is closer to the stack gas concentration) will be introduced at the probe. After the
analyznr response is stable, the value will be recorded. Next, Low Level gas will be introduced at the probe, and the
analyzsr value will be recorded once it reaches a stable response. The System Bias for each gas must be within 5.0
percent of the Calibration Span or 0.5 ppmv/% absolute difference or the data is invalidated and the Calibration Error
Test and System Bias must be repeated.
The Drift between pre- and post-run System Bias must be within 3 percent of the Calibration Span or 0.5 ppmv/%
absolute difference or the Calibration Error Test and System Bias must be repeated.
To determine the number of sampling points, a gas stratification check will be conducted prior to initiating testing.
The pollutant concentrations will be measured at twelve traverse points (as described in Method l) or three points
(16.7, 50.0 and 83.3 percent of the measurement line). Each traverse point will be sampled for a minimum of twice
the system response time.
Ameresco - Hill AFB, UT
ll4 of 124
AST-2023-4300 Page 3-3
pilr6rpe
Site SpeciJic Test Plan
Testing MethodologtTECIlNICAL GNCUP
If the pollutant concentration at each traverse point do not differ more than 5o/o or 0.5 ppmlO.3o/o (whichever is less
restrictive) of the average pollutant concentration, then single point sampling will be conducted during the test runs.
If the pollutant concentration does not meet these specifications but differs less than l0%o or I .0 ppm/0.5% from the
average concentration, then three (3) point sampling will be conducted (stacks less than 7.8 feet in diameter - 16.7,
50.0 and 83.3 percent of the measurement line; stacks greater than 7.8 feet in diameter - 0.4, 1.0, and 2.0 meters from
the stack wall). If the pollutant concentration differs by more than l0%o or 1.0 ppm/0.5% from the average
concentration, then sampling will be conducted at a minimum of twelve (12) traverse points. Copies of stratification
check data will be included in the Quality Assurance/Quality Control Appendix of the report.
An NOz - NO converter check will be performed on the analyzer prior to initiating testing or at the completion of
testing. An approximately 50 ppm nitrogen dioxide cylinder gas will be introduced directly to the NOx analyzer and
the instrument response will be recorded in an electronic data sheet. The instrument response must be within +/- l0
percent of the cylinder concentration.
A Data Acquisition System with battery backup will be used to record the instrument response in one (l) minute
averages. The data will be continuously stored as a *.CSV file in Excel format on the hard drive of a computer. At
the completion of testing, the data will also be saved to the Alliance server. All data will be reviewed by the Field
Team Leader before leaving the facility. Once arriving at Alliance's office, all written and electronic data will be
relinquished to the report coordinator and then a final review will be performed by the Project Manager.
3.11 Quality Assurance/Quality Control - U.S. EPA Reference Test Method 18 (Bag Sampling Procedure)
The bag sample spike and recovery will be checked as per the procedures outlined in U.S. EPA Method l8 Section
8.4.2. After analyzing all three bag samples, one bag will be chosen and tagged as the spiked bag. This bag will be
spiked with a known mixture (gaseous or liquid) of all the target pollutants. The amount that is spiked in the bag is
targeted to be within 40 to 60 percent of the target pollutant concertation measured during the analysis. If the target
compound is not detected in the bag samples, then a concentration of that compound is spiked at 5 times its limit of
detection. The spiked bag, after spiking, is stored for the same period of the time as the bag samples collected in the
field to their time of analysis. After the appropriate storage time, the spiked bags will be analyzed three times. The
average fraction recovered of each spiked target compound is calculated as per equations outlined in U.S. EPA Method
l8 section 12.7.
3.12 Quality Assurance/Quality Control - U.S. EPA Reference Test Method 25A
Cylinder calibration gases will meet EPA Protocol I (+l- 2%) standards. Copies of all calibration gas certificates will
be included in the Quality Assurance/Quality Control Appendix of the report.
Within truo (2) hours prior to testing, zero gas will be introduced through the sampling system to the analyzer. After
adjusting the analyzer to the Zero gas concentration and once the analyzer reading is stable, the analyzer value will be
recorded. This process will be repeated for the High Level gas, and the time required for the analyzer reading to reach
95 percent of the gas concentration will be recorded to determine the response time. Next, Low and Mid Level gases
will be introduced through the sampling system to the analyzer, and the response will be recorded when it is stable.
All values must be less than +/- 5 percent of the calibration gas concentrations.
Mid Level gas will be introduced through the sampling system. After the analyzer response is stable, the value will
be recorded. Next, Zero gas will be introduced through the sampling system, and the analyzer value recorded once it
reaches a stable response. The Analyzer Drift must be less than +/- 3 percent of the span value.
Ameresco- Hill AIB, UT
ll5of124
AST-2023-4300 Page 3-4
AI Site Specrfic Test Plan
Testing Methodoloqy
A Data Acquisition System with battery backup will be used to record the instrument response in one (l) minute
averages. The data will be continuously stored as a *.CSV file in Excel format on the hard drive of a computer. At
the completion of testing, the data will also be saved to the Alliance server. All data will be reviewed by the Field
Team Leader before leaving the facility. Once arriving at Alliance's office, all written and electronic data will be
relinquished to the report coordinator and then a final review will be performed by the Project Manager.
3.13 Quality Assurance/Quality Control - U.S. EPA Reference Method ALT-096
EPA Protocol I Calibration Gases - Cylinder calibration gases used will meet EPA Protocol | (+l- 2%)
standards. Copies of all calibration gas certificates will be provided in the Quality Assurance/Quality Control
Appendix.
Zero gas will be introduced through the sampling system to the analyzer. After adjusting the analyzer to the Zero gas
concentration and once the analyzer reading is stable, the analyzer value will be recorded. This process will be
repeated for the High Level gas, and the time required for the analyzer reading to reach 95 percent of the gas
concentration will be recorded to determine the response time. Next, Mid and Low Level gases will be introduced
through the sampling system to the analyzer, and the response will be recorded when it is stable. All values must be
within +/- 5% of the calibration gas concentrations.
Post Test Drift Checks - Mid Level gas will be introduced through the sampling system. After the analyzer response
is stable, the value will be recorded. Next, Zero gas will be introduced through the sampling system, and the analyzer
value recorded once it reaches a stable response. The Analyzer Drift must be less than 3 percent of the Calibration
Span.
Data Collection - A Data Acquisition System with bauery backup will be used to record the instrument response
(analog 0-10 volt signal) in one (1) minute averages. The data will be continuously stored as a *.CSV file in Excel
format on the hard drive of a desktop computer. At the completion of the emissions testing the data will be also saved
to the Alliance server. All data will be reviewed by the Field Team Leader before leaving the facility. Once arriving
at Alliance's office, all written and electronic data will be relinquished to the report coordinator and then a final review
will be performed by the Project Manager.
rta lEe
i-\ i) /--. r Ta. tr t
Ameresco - Hill AFB, UT
I l6 of 124
AST-2023-4300 Page 3-5
pilt6rpe
T f C I.IN IC A L G R O U P Site Specific Test Plan
Qwlity A s suranc e P ro gram
4.0 Quality Assurance Program
Alliance follows the procedures outlined in the Quality Assurance/Quality Control Management Plan to ensure the
continuous production of useful and valid data throughout the course of this test program. The QC checks and
procedures described in this section represent an integral part of the overall sampling and analytical scheme.
Adherence to prescribed procedures is quite often the most applicable QC check.
4.1 Equipment
Field test equipment is assigned a unique, permanent identification number. Prior to mobilizing for the test program,
equipment is inspected before being packed to detect equipment problems prior to aniving on site. This minimizes
lost time on the job site due to equipment failure. Occasional equipment failure in the field is unavoidable despite the
most rigorous inspection and maintenance procedures. Therefore, replacements for critical equipment or components
are brought to the job site. Equipment retuming from the field is inspected before it is retumed to storage. During
the course of these inspections, items are cleaned, repaired, reconditioned and recalibrated where necessary.
Calibrations are conducted in a manner, and at a frequency, which meets or exceeds U.S. EPA specifications. The
calibration procedures outlined in the U.S. EPA Methods, and those recommended within the Quality Assurance
Handbook for Air Pollution Measurement Systems: Volume III (EPA-600/R-94/038c, September 1994) are utilized.
When these methods are inapplicable, methods such as those prescribed by the American Society for Testing and
Materials (ASTM) or other nationally recognized agency may be used. Data obtained during calibrations is checked
for completeness and accuracy. Copies of calibration forms are included in the report.
The following sections elaborate on the calibration procedures followed by Alliance for these items of equipment.
Dry Gas Meter and Orifice. A full meter calibration using critical orifices as the calibration standard is
conducted at least semi-annually, more frequently if required. The meter calibration procedure determines
the meter correction factor (Y) and the meter's orifice pressure differential (AH@). Alliance uses approved
Altemative Method 009 as a post-test calibration check to ensure that the correction factor has not changed
more than 5%o since the last full meter calibration. This check is performed after each test series.
Pitot Tubes and Manometers. Type-S pitot tubes that meet the geometric criteria required by U.S. EPA
Reference Test Method 2 are assigned a coefficient of 0.84 unless a specific coefficient has been determined
from a wind tunnel calibration. If a specific coefficient from a wind tunnel calibration has been obtained that
coefficient will be used in lieu of 0.84. Standard pitot tubes that meet the geometric criteria required by U.S.
EPA Reference Test Method 2 are assigned a coefTicient of 0.99. Any pitot tubes not meeting the appropriate
geometric criteria are discarded and replaced. Manometers are verified to be level and zeroed prior to each
test run and do not require further calibration.
Temperature Measuring Devices. All thermocouple sensors mounted in Dry Gas Meter Consoles are
calibrated semi-annually with a NlST-traceable thermocouple calibrator (temperature simulator) and verified
during field use using a second NlST-traceable meter. NlST-traceable thermocouple calibrators are
calibrated annually by an outside laboratory.
Nozzles. Nozzles are measured three (3) times prior to initiating sampling with a caliper. The maximum
difference between any two (2) dimensions is 0.004 in.
. Disital Calipers. Calipers are calibrated annually by Alliance by using gage blocks that are calibrated
annually by an outside laboratory.
Ameresco - Hill AFB, UT
ll7 of 124
AST-2023-4300 Page 4-l
pur6rpe
Site Specrfic Test Plan
Quality Assurance Program
Barometer. The barometric pressure is obtained from a nationally recognized agency or a calibrated
barometer. Calibrated barometers are checked prior to each field trip against a mercury barometer. The
barometer is acceptable if the values agree within + 2 percent absolute. Barometers not meeting this
requirement are adjusted or taken out of service.
Balances and Weights. Balances are calibrated annually by an outside laboratory. A functional check is
conducted on the balance each day it is use in the field using a calibration weight. Weights are re-certified
every two (2) years by an outside laboratory or intemally. If conducted internally, they are weighed on a
NIST traceable balance. If the weight does not meet the expected criteria, they are replaced.
Other Equipment. A mass flow controller calibration is conducted on each Environics system annually
following the procedures in the Manufacturer's Operation manual. A methane/ethane penetration factor
check is conducted on the total hydrocarbon analyzers equipped with non-methane cutters every six (6)
months following the procedures in 40 CFR 60, Subpart JJJJ. Other equipment such as probes, umbilical
lines, cold boxes, etc. are routinely maintained and inspected to ensure that they are in good working order.
They are repaired or replaced as needed.
4.2 Field Sampling
Field sampling will be done in accordance with the Standard Operating Procedures (SOP) for the applicable test
method(s). General QC measures for the test program include:
o Cleaned glassware and sample train components will be sealed until assembly.
o Sample trains will be leak checked before and after each test run.
. Appropriate probe, filter and impinger temperatures will be maintained.
r The sampling port will be sealed to prevent air from leaking from the port.
. Dry gas meter, AP, AH, temperature and pump vacuum data will be recorded during each sample point.
o An isokinetic sampling rate of 90-l l0% will be maintained, as applicable.
o All raw data will be maintained in organized manner.
o All raw data will be reviewed on a daily basis for completeness and acceptability.
4.3 Analytical Laboratory
Analytical laboratory selection for sample analyses is based on the capabilities, certifications and accreditations that
the laboratory possesses. An approved analytical laboratory subcontractor list is maintained with a copy of the
certificate and analyte list as evidence of compliance. Alliance assumes responsibility to the client for the
subcontractor's work. Alliance maintains a verifiable copy of the results with chain of custody documentation.
Ameresco - Hill AFB, UT
ll8ofl24
AST-2023-4300 Page 4-2
1 19 of 124
Schematic Diag of the EPA Method 2 Sampling
for Flow Rate
/
S-Type
Pitot
Tube
u
Source
Wall
Schematic Diagram of the EPA Method 4 Sampling
Train
Teflon Sample
tr! u"e
fist"int"rrst"a
u
Source
Wall
oc
J
6.9
-o
El
By-Pass
Valve
Stack
o)u
=o
o(Eoo
oN
oo
=oo(E
(9
E6oa
Reference Method Monitors Sampling System
(EPA Methods 3A, 7E, and 10)
3-Way
Valve
\Heated Teflon
Sample Line
Heated
Probe
Teflon Calibration Line
Manifold System Bypass Flow
Regulator
Flow
Regulators
Stack
Reference Method Monitor Sampling System
(Method ALT-096)
Heated Teflon Sample Line
3-Way
Valve
Teflon Calibration Line
*k
Pump
Bypass Flow
Regulator
123 of 124
Exhaust
124 of 124
Hill AFB Landfill Gas Engine 3 2023 rev
Reference Methods 2, 3A, 6C, 7E, 10, & 19
Source Information
Company Name Hill Air Force Base
Company Contact:Dr. Erik Dettenmaier
Contact Phone No.801-777-0888
Stack Designation:Landfill Gas Engine 3
Test & Review Dates
Test Date:12/7/2023 High Flow Test Date: 1/0/1900
Review Date: 1/25/2024 Mid Flow Test Date: 1/0/1900
Observer: none Low Flow Test Date: 1/0/1900
Reviewer:Robert Sirrine
Emission Limits Emission Rates
NMHC NOX CO NOX CO
g/bhp-hr 1.00 1.00 2.50 0.333 0.36 2.20
lbs/hr 20.0 20.0 20.0 1.01 1.093 6.650
ppm
Percent
%O2 Correction as a whole #
Test Information Heat Input
Stack I.D. inches As ft^2 Y Dl H @ Cp Pbar Pq (static)
fuel flow rate
(Btu/hr)
Heat Input
(Btu/hr.)
13.00 0.92 0.9760 1.957 0.84 25.51 0.02
Contractor Information
Contact: Charels Horton
Contracting Company: Alliance Technical Group, LLC
Address: 3683 W 2270 S Suite E West Valley UT
Phone No.: 352-663-7568
Project No.:
8710
Round
Division of Air Quality
Instrumental Reference Methods - Gaseous Measurements
Method 19 - F factors for Coal, Oil, and Gas
Fd Fw Fc
scf/MMBtu scf/MMBtu scf/MMBtu
Diluent
F factor used
O2
CO2
Anthrocite 2
Bituminous 2
Lignite
Natural
Propane
Butane
10100
COAL
OIL
GAS
9780
9860
9190
8710
8710
8710
10540
10640
11950
320
10610
10200
10390
1970
1800
1910
1420
1040
1190
1250
Wet CEM
Yes
Yes
Correct For O2
CO2 Interferece w/CO
Yes
Hill AFB Landfill Gas Engine 3 2023 rev
Division of Air Quality
NSPS Relative Accuracy Performance Specification Test - CEMS Certification
Hill Air Force Base
Landfill Gas Engine 3
Average Emission
Dry NMHC NOX CO
g/bhp/hr 0.33 0.36 2.20 Average % concentration
lbs/hr 1.01 1.09 6.65 CO2 O2
ppm 58.88 61.44 613.64 6.59 10.00
Run 1 Enter O2 or CO2
Dry NMHC NOX CO CO2 O2 O2
Atomic Weight 44.1 46 28
lbs/MMBtu (O2)1.12E-01 1.23E-01 7.37E-01 E=Cd x Fd x (20.9/(20.9-%O2d))
lbs/MMBtu (CO2)E=Cd x Fc x (100 / % CO2d)
lbs/cu.ft 6.69E-06 7.3E-06 4.4E-05
lbs/hr 0.985 1.081 6.502 6.61 10.00
ppm 58.43 61.461 607.32 6.65 9.97
Run 2
Dry NMHC NOX CO CO2 O2
Atomic Weight 44.1 46 28
lbs/MMBtu (O2)1.12E-01 1.23E-01 7.47E-01 E=Cd x Fd x (20.9/(20.9-%O2d))
lbs/MMBtu (CO2)E=Cd x Fc x (100 / % CO2d)
lbs/cu.ft 6.76E-06 7.4E-06 4.49E-05
lbs/hr 1.01678 1.10929 6.75467 6.58 9.97
ppm 59.00 61.70 617.26 6.63 9.95 Raw Value
Run 3
Dry NMHC NOX CO CO2 O2
Atomic Weight 44.1 46 28
lbs/MMBtu (O2)1.13E-01 1.22E-01 7.50E-01 E=Cd x Fd x (20.9/(20.9-%O2d))
lbs/MMBtu (CO2)E=Cd x Fc x (100 / % CO2d)
lbs/cu.ft 6.78E-06 7.3E-06 4.48E-05
lbs/hr 1.013292 1.09172 6.69620 6.58 10.02
ppm 59.22 61.17 616.341 6.64 10.03 Raw Value
Run 4
Dry NMHC NOX CO CO2 O2
Atomic Weight 64 46 28
lbs/MMBtu (O2)E=Cd x Fd x (20.9/(20.9-%O2d))
lbs/MMBtu (CO2)E=Cd x Fc x (100 / % CO2d)
lbs/cu.ft
lbs/hr
ppm 0.00 0.00 Raw Value
Raw Value
C For Cal Drift
ppm
C For Cal Drift
C For Cal Drift
C For Cal Drift
O2
CO2
Clear
lbs/MMBTU
Hill AFB Landfill Gas Engine 3 2023 rev
Calibration Error Test
Test Date December 7, 2023 O2
CS - Cal. Span 24.00
Units %
Cylinder No. Expiration
Date Cal. Gas CV- Certified
Concentration
CDir or CS -
Measured
Concentration
Difference
ACE Eq. 7E-1
Analyzer Cal.
Error
Status
Low-level 0.00 0.03 0.03 0.13% Passed Cal.
Mid-level 12.00 11.99 0.01 0.04% Passed Cal.
High-level 24.00 23.69 0.31 1.29% Passed Cal.
% of Span Sec. 8.2.1 Cal Gas Verification
0 to 20% of CS - Cal. Span Low-Level 0.00%
40 to 60% of Cal. Span Mid-level 50.00%
100% of Cal. Span High-level 100.00%
Test Date December 7, 2023 CO2
CS - Cal. Span 23.70
Units %
Cylinder
No.
Expiration
Date Cal. Gas CV- Certified
Concentration
CDir or CS -
Measured
Concentration
Difference
ACE Eq. 7E-1
Analyzer Cal.
Error
Status
Low-level 0.00 0.09 0.09 0.380% Passed Cal.
Mid-level 11.85 11.94 0.09 0.380% Passed Cal.
High-level 23.70 23.48 0.22 0.928% Passed Cal.
% of Span Sec. 8.2.1 Cal Gas Verification
0 to 20% of Cal. Span Low-Level 0.00%
40 to 60% of Cal. Span Mid-level 50.00%
100% of Cal. Span High-level 100.00%
Test Date December 7, 2023 NMHC
CS - Cal. Span 170.00
Units ppm
Cylinder
No.
Expiration
Date Cal. Gas CV- Certified
Concentration
CDir or CS -
Measured
Concentration
Difference
ACE Eq. 7E-1
Analyzer Cal.
Error
Status
Low-level 0.00 0.90 0.90 0.529% Passed Cal.
Mid-level 100.00 99.38 0.62 0.365% Passed Cal.
High-level 170.00 168.91 1.09 0.641% Passed Cal.
% of Span Sec. 8.2.1 Cal Gas Verification
0 to 20% of Cal. Span Low-Level 0.00%
40 to 60% of Cal. Span Mid-level 58.82%
100% of Cal. Span High-level 100.00%
Test Date December 7, 2023 NOx
CS - Cal. Span 100.00
Units ppm
Cylinder
No.
Expiration
Date Cal. Gas CV- Certified
Concentration
CDir or CS -
Measured
Concentration
Difference
ACE Eq. 7E-1
Analyzer Cal.
Error
Status
Low-level 0.00 0.25 0.25 0.250% Passed Cal.
Mid-level 50.00 50.60 0.60 0.600% Passed Cal.
High-level 100.00 100.00 0.00 0.000% Passed Cal.
% of Span Sec. 8.2.1 Cal Gas Verification
0 to 20% of Cal. Span Low-Level 0.00%
40 to 60% of Cal. Span Mid-level 50.00%
100% of Cal. Span High-level 100.00%
Test Date December 7, 2023 CO
20 CS - Cal. Span 1,000.00
Units ppm
Cylinder
No.
Expiration
Date Cal. Gas CV- Certified
Concentration
CDir or CS -
Measured
Concentration
Difference
ACE Eq. 7E-1
Analyzer Cal.
Error
Status
Low-level 0.00 0.11 0.11 0.011% Passed Cal.
Mid-level 500.00 499.15 0.85 0.085% Passed Cal.
High-level 1,000.00 996.77 3.23 0.323% Passed Cal.
% of Span Sec. 8.2.1 Cal Gas Verification
0 to 20% of Cal. Span Low-Level 0.00%
40 to 60% of Cal. Span Mid-level 50.00%
100% of Cal. Span High-level 100.00%
Hill AFB Landfill Gas Engine 3 2023 rev
Division of Air Quality Stack Test Review of
Hill Air Force Base
NMHC NOX CO CO2 O2 Landfill Gas Engine 3
CS Calibration Span 170.00 100.00 1000.00 23.70 24.00
Units ppm ppm ppm % %Unprotected
CV - Cylinder Value:NMHC NOX CO CO2 O2
Low-Level 0.00 0.00 0.00 0.00 0.00
Mid-Level 100.00 50.00 500.00 11.85 12.00
High-Level 170.00 100.00 1000.00 23.70 24.00
0 to 20% of Cal. Span 0.00% 0.00% 0.00% 0.00% 0.00%
40 to 60% of Cal. Span 58.8% 50.0% 50.0% 50.0% 50.0%
100% of Cal. Span 100.0% 100.0% 100.0% 100.0% 100.0%
Cdir - Enter Actual Up-scale Cylinder Value Used To Correct Emission Concentration.
CDir CMA 100.00 50.00 500.00 11.85 12.00
Calibration Error Test
Cs - Measured Concentration NMHC NOX CO CO2 O2
Low-Level 0.90 0.25 0.11 0.09 0.03
Mid-Level 99.38 50.60 499.15 11.94 11.99
High-Level 168.91 100.00 996.77 23.48 23.69
Enter Up-scale Analyzer Response to be used during testing.
ACE Eq. 7E-1 99.38 50.60 499.15 11.94 11.99
Low-Level 0.53% 0.25% 0.01% 0.38% 0.13%
ppmdv Difference 0.9 0.25 0.11 0.09 0.03
Status Passed Cal. Passed Cal. Passed Cal. Passed Cal. Passed Cal.
Mid-Level 0.36% 0.60% 0.09% 0.38% 0.04%
ppmdv Difference 0.62 0.6 0.85 0.09 0.01
Status Passed Cal. Passed Cal. Passed Cal. Passed Cal. Passed Cal.
High-Level 0.64% 0.00% 0.32% 0.93% 1.29%
ppmdv Difference 1.09 0 3.23 0.22 0.31
Status Passed Cal. Passed Cal. Passed Cal. Passed Cal. Passed Cal.
Pre-Test Sampling System Bias
Initial Values NMHC NOX CO CO2 O2
CO - Low-Level 0.90 0.16 0.08 0.08 0.00 System Bias.
SBi - Zero Bias 0.00% 0.09% 0.00% 0.04% 0.13%± 5% of Span
Difference 0 0.09 0.03 0.01 0.03
Pass or Failed Invalid Run Passed Cal. Passed Cal. Passed Cal. Passed Cal. Passed Cal.
CM - Up-scale Gas 99.38 50.30 499.21 11.86 12.01
SBi - Up-Scale Bias 0.00% 0.30% 0.01% 0.34% 0.08%
Difference 0.00 0.30 0.06 0.08 0.02
Pass or Failed Invalid Run Passed Cal. Passed Cal. Passed Cal. Passed Cal. Passed Cal.
Raw Test Data Time Start Stop
Test Date:12/7/2023 NMHC
NMHC NOX CO CO2 O2 NOX
58.87 62.24 597.09 6.65 9.97 CO
34.6% 62.2% 59.7% 28.1% 41.5% CO2/O2
Post-Test System Bias 7E-2 SB=(Cs - Cdir)/CS x 100
Final Values NMHC NOX CO CO2 O2
CO - Low-Level 2.98 0.23 2.22 0.04 0.00 System Bias.
SBi - Zero Bias 1.22% 0.02% 0.21% 0.21% 0.13%± 5% of Span
Difference 2.1 0.0 2.1 0.1 0.0
Pass or Invalid Run Passed Cal. Passed Cal. Passed Cal. Passed Cal. Passed Cal.
CM - Up-scale Gas 99.38 51.04 484.36 11.89 11.93
SBi - Up-Scale Bias 0.00% 0.44% 1.48% 0.21% mn jh k
Difference 0.0 0.4 14.8 0.0 0.1
Pass or Invalid Run Passed Cal. Passed Cal. Passed Cal. Passed Cal. Passed Cal.
Calibration Drift % of Span - D=ABS(SBf - SBi)
Low-Level Drift 1.22% 0.07% 0.21% 0.17% 0.00% Drift
Difference 2.1 0.1 2.1 0.0 0.0 3% of Span
Pass or Re-Calibrate Pass Pass Pass Pass Pass
Up-scale Gas Drift 0.00% 0.14% 1.47% 0.13% #VALUE!
Difference 0.0 0.7 14.9 0.0 0.1
Pass or Re-Calibrate Pass Pass Pass Pass #VALUE!
Landfill Gas Engine 3 Flow & Moisture
As ft^2 Pbar Pq (static) Ps Avg Ts F CO2 - FCO2 O2 N2+C Md Ms
0.92 25.51 0.02 25.51 870 6.61 10.00 83.39 29.46 27.97
Y Cp Vm cf Vlc AVG Tm F Vm std Vw std Bws S Bws 617.6386
0.9760 0.84 35.615 95.10 62 29.943 4.476 0.1301 0.9990 0.999
Load - Megawatts
AvgSqrtDlp Vs scfm wet acfm Qsd dscfh
Heat Input
Btu/hr Low Mid High
1.5368 150.7 2,821 8,332 1.472E+5
#1 - Times
Date
Point No.dl "p"sqrt dl "p"ts F tm F (in) tm F (out)Cp 3D Probe Final
Vf
Initial
Vi
1 2.20 1.48 872 62 894.7 816 78.7
2 2.20 1.48 872 62 772.5 768 4.5
3 2.30 1.52 872 62 651.2 648.7 2.5
4 2.30 1.52 870 62 1066.2 1056.8 9.4
5 2.30 1.52 870 63 0
6 2.40 1.55 870 63
7 2.40 1.55 871 63
8 2.30 1.52 871 63
9 2.40 1.55 868 62
10 2.40 1.55 868 62
11 2.40 1.55 868 62
12 2.40 1.55 869 62
13 2.40 1.55 869 63
14 2.50 1.58 869
15 2.50 1.58 869
16 2.40 1.55 869
17
18
19
20
21
22
23
24
NOTE
These cells scans for the
appropriate C
after the Cm -
entered.
If this scan is incorrect change
the Cma and Cdir to the correct
gas value.
Failed
Failed
Failed Cal
CO
Wet CEM Yes
Yes
Correct For O2
CO2 Interference w/COYe
Correct For O2
Failed
Hill AFB Landfill Gas Engine 3 2023 rev
Division of Air Quality Stack Test Review of
Hill Air Force Base
NMHC NOX CO CO2 O2 Landfill Gas Engine 3
CS Calibration Span 170.00 100.00 1000.00 23.70 24.00
Units ppm ppm ppm % %
CV - Cylinder Value:NMHC NOX CO CO2 O2
Low-Level 0.00 0.00 0.00 0.00 0.00
Mid-Level 100.00 50.00 500.00 11.85 12.00
High-Level 170.00 100.00 1000.00 23.70 24.00
0 to 20% of Cal. Span 0.00% 0.00% 0.00% 0.00% 0.00%
40 to 60% of Cal. Span 58.8% 50.0% 50.0% 50.0% 50.0%
100% of Cal. Span 100.0% 100.0% 100.0% 100.0% 100.0%
Cdir - Enter Actual Up-scale Cylinder Value Used To Correct Emission Concentration.
CMA 100.00 50.00 500.00 11.85 12.00
Calibration Error Test
Measured Concentration NMHC NOX CO CO2 O2
Low-Level 0.90 0.25 0.11 0.09 0.03
Mid-Level 99.38 50.60 499.15 11.94 11.99
High-Level 168.91 100.00 996.77 23.48 23.69
Enter Up-scale Analyzer Response to be used during testing.
ACE Eq. 7E-1 99.38 50.60 499.15 11.94 11.99
Low-Level 0.53% 0.25% 0.01% 0.38% 0.13%
ppmdv Difference 0.9 0.25 0.11 0.09 0.03
Status Passed Cal. Passed Cal. Passed Cal. Passed Cal. Passed Cal.
Mid-Level 0.36% 0.60% 0.09% 0.38% 0.04%
ppmdv Difference 0.62 0.6 0.85 0.09 0.01
Status Passed Cal. Passed Cal. Passed Cal. Passed Cal. Passed Cal.
High-Level 0.64% 0.00% 0.32% 0.93% 1.29%
ppmdv Difference 1.09 0 3.23 0.22 0.31
Status Passed Cal. Passed Cal. Passed Cal. Passed Cal. Passed Cal.
Pre-Test Sampling System Bias
Initial Values NMHC NOX CO CO2 O2
CO - Low-Level 2.98 0.25 2.22 0.04 0.00 System Bias.
SBi - Zero Bias 1.22% 0.00% 0.21% 0.21% 0.13%± 5% of Span
Difference 2.08 0 2.11 0.05 0.03
Pass or Invalid Run Passed Cal. Passed Cal. Passed Cal. Passed Cal. Passed Cal.
CM - Up-scale Gas 99.38 51.00 484.36 11.89 11.93
SBi - Up-Scale Bias 0.00% 0.40% 1.48% 0.21% 0.25%
Difference 0 0.4 14.79 0.05 0.06
Pass or Invalid Run Passed Cal. Passed Cal. Passed Cal. Passed Cal. Passed Cal.
Raw Test Data Time Start Stop
Test Date:12/7/2023 NMHC
NMHC NOX CO CO2 O2 NOX
59.9 62.9 594.1 6.6 10.0 CO
35.3% 62.9% 59.4% 28.0% 41.5% CO2/O2
Post-Test System Bias 7E-2 SB=(Cs - Cdir)/CS x 100
Final Values NMHC NOX CO CO2 O2
CO - Low-Level 2.62 0.25 0.95 0.09 0.00 System Bias.
SBi - Zero Bias 1.01% 0.00% 0.08% 0.00% 0.13%± 5% of Span
Difference 1.7 0.0 0.8 0.0 0.0
Pass or Invalid Run Passed Cal. Passed Cal. Passed Cal. Passed Cal. Passed Cal.
CM - Up-scale Gas 99.93 51.00 478.78 11.89 12.04
SBi - Up-Scale Bias 0.32% 0.40% 2.04% 0.21% 0.21%
Difference 0.6 0.4 20.4 0.0 0.0
Pass or Invalid Run Passed Cal. Passed Cal. Passed Cal. Passed Cal. Passed Cal.
Calibration Drift % of Span - D=ABS(SBf - SBi)
Low-Level Drift 0.21% 0.00% 0.13% 0.21% 0.00% Response Spec.
Difference 0.4 0.0 1.3 0.1 0.0 3% of Span
Pass or Re-Calibrate Pass Pass Pass Pass Pass
Up-scale Gas Drift 0.32% 0.00% 0.56% 0.00% 0.04%
Difference 0.6 0.0 5.6 0.0 0.1
Pass or Re-Calibrate Pass Pass Pass Pass Pass
Landfill Gas Engine 3 Flow & Moisture
As ft^2 Pbar Pq (static) Ps Avg Ts F CO2 - FCO2 O2 N2+C Md Ms
0.92 25.51 0.01 25.51 867 6.58 9.97 83.45 29.45 28.14
Y Cp Vm cf Vlc AVG Tm F Vm std Vw std Bws S Bws 610.9994
0.9760 0.84 36.490 84.40 63 30.656 3.973 0.1147 0.9990 0.999
Load - Megawatts
AvgSqrtDlp Vs scfm wet acfm Qsd dscfh
Heat Input
Btu/hr Low Mid High
1.5469 151.1 2,833 8,355 1.505E+5
#1 - Times
Date
Point No.dl "p"sqrt dl "p"ts F tm F (in) tm F (out)Cp 3D Probe Final
Vf
Initial
Vi
1 2.300 1.52 865 63 800.1 731.6 68.5
2 2.300 1.52 865 63 775.4 772.5 2.9
3 2.300 1.52 865 63 654 651.2 2.8
4 2.300 1.52 867 63 1076.4 1066.2 10.2
5 2.400 1.55 867 62 0
6 2.400 1.55 867 62
7 2.500 1.58 865 63
8 2.500 1.58 865 63
9 2.300 1.52 869 63
10 2.300 1.52 869 62
11 2.500 1.58 869 63
12 2.500 1.58 869 63
13 2.500 1.58 869 63
14 2.400 1.55 869 63
15 2.400 1.55 869
16 2.400 1.55 870
17
18
19
20
21
22
23
24
Failed
Failed
Failed Cal
WET CEM Yes
YesCorrect For O2
CO2 Interference w/COYe
Correct For O2
Correct For O2
Failed
Hill AFB Landfill Gas Engine 3 2023 rev
Division of Air Quality Stack Test Review of
Hill Air Force Base
NMHC NOX CO CO2 O2 Landfill Gas Engine 3
CS Calibration Span 170.00 100.00 1000.00 23.70 24.00
Units ppm ppm ppm % %
CV - Cylinder Value:NMHC NOX CO CO2 O2
Low-Level 0.00 0.00 0.00 0.00 0.00
Mid-Level 100.00 50.00 500.00 11.85 12.00
High-Level 170.00 100.00 1000.00 23.70 24.00
0 to 20% of Cal. Span 0.00% 0.00% 0.00% 0.00% 0.00%
40 to 60% of Cal. Span 58.8% 50.0% 50.0% 50.0% 50.0%
100% of Cal. Span 100.0% 100.0% 100.0% 100.0% 100.0%
Cdir - Enter Actual Up-scale Cylinder Value Used To Correct Emission Concentration.
CMA 100.00 50.00 500.00 11.85 12.00
Calibration Error Test
Measured Concentration NMHC NOX CO CO2 O2
Low-Level 0.90 0.25 0.11 0.09 0.03
Mid-Level 99.38 50.60 499.15 11.94 11.99
High-Level 168.91 100.00 996.77 23.48 23.69
Enter Up-scale Analyzer Response to be used during testing.
ACE Eq. 7E-1 99.38 50.60 499.15 11.94 11.99
Low-Level 0.53% 0.25% 0.01% 0.38% 0.13%
ppmv Difference 0.9 0.25 0.11 0.09 0.03
Status Passed Cal. Passed Cal. Passed Cal. Passed Cal. Passed Cal.
Mid-Level 0.36% 0.60% 0.09% 0.38% 0.04%
ppmv Difference 0.62 0.6 0.85 0.09 0.01
Status Passed Cal. Passed Cal. Passed Cal. Passed Cal. Passed Cal.
High-Level 0.64% 0.00% 0.32% 0.93% 1.29%
ppmv Difference 1.09 0 3.23 0.22 0.31
Status Passed Cal. Passed Cal. Passed Cal. Passed Cal. Passed Cal.
Pre-Test Sampling System Bias
Initial Values NMHC NOX CO CO2 O2
CO - Low-Level 2.62 0.25 0.95 0.09 0.00 System Bias.
SBi - Zero Bias 1.01% 0.00% 0.08% 0.00% 0.13%± 5% of Span
Difference 1.72 0 0.84 0 0.03
Pass or Invalid Run Passed Cal. Passed Cal. Passed Cal. Passed Cal. Passed Cal.
CM - Up-scale Gas 99.93 51.00 478.78 11.89 12.04
SBi - Up-Scale Bias 0.32% 0.40% 2.04% 0.21% 0.21%
Difference 0.55 0.4 20.37 0.05 0.05
Pass or Invalid Run Passed Cal. Passed Cal. Passed Cal. Passed Cal. Passed Cal.
Raw Test Data Time Start Stop
Test Date:12/7/2023 NMHC
NMHC NOX CO CO2 O2 NOX
60.0 62.7 596.6 6.6 10.0 CO
35.3% 62.7% 59.7% 28.0% 41.8% CO2/O2
Post-Test System Bias 7E-2 SB=(Cs - Cdir)/CS x 100
Final Values NMHC NOX CO CO2 O2
CO - Low-Level 2.81 0.33 0.10 0.09 0.00 System Bias.
SBi - Zero Bias 1.12% 0.08% 0.00% 0.00% 0.13%± 5% of Span
Difference 1.9 0.1 0.0 0.0 0.0
Pass or Invalid Run Passed Cal. Passed Cal. Passed Cal. Passed Cal. Passed Cal.
CM - Up-scale Gas 98.94 51.55 489.42 11.88 12.00
SBi - Up-Scale Bias 0.26% 0.95% 0.97% 0.25% 0.04%
Difference 0.4 0.9 9.7 0.1 0.0
Pass or Invalid Run Passed Cal. Passed Cal. Passed Cal. Passed Cal. Passed Cal.
Calibration Drift % of Span - D=ABS(SBf - SBi)
Low-Level Drift 0.11% 0.08% 0.08% 0.00% 0.00% Response Spec.
Difference 0.2 0.1 0.9 0.0 0.0 3% of Span
Pass or Re-Calibrate Pass Pass Pass Pass Pass
Up-scale Gas Drift 0.06% 0.55% 1.06% 0.04% 0.17%
Difference 1.0 0.5 10.6 0.0 0.0
Pass or Re-Calibrate Pass Pass Pass Pass Pass
Landfill Gas Engine 3 Flow & Moisture
As ft^2 Pbar Pq (static) Ps Avg Ts F CO2 - FCO2 O2 N2+C Md Ms
0.92 25.51 0.02 25.51 868 6.58 10.02 83.40 29.45 28.10
Y Cp Vm cf Vlc AVG Tm F Vm std Vw std Bws S Bws 613.7789
0.9760 0.84 36.600 85.90 71 30.268 4.043 0.1178 0.9990 0.999
Load - Megawatts
AvgSqrtDlp Vs scfm wet acfm Qsd dscfh
Heat Input
Btu/hr Low Mid High
1.5409 150.6 2,823 8,330 1.494E+5
#1 - Times
Date
Point No.dl "p"sqrt dl "p"ts F tm F (in) tm F (out)Cp 3D Probe Final
Vf
Initial
Vi
1 2.300 1.52 866 73 871.3 800.1 71.2
2 2.300 1.52 866 73 780.4 775.4 5
3 2.300 1.52 866 73 655.5 654 1.5
4 2.400 1.55 867 73 1084.6 1076.4 8.2
5 2.400 1.55 868 73 0
6 2.400 1.55 868 71
7 2.500 1.58 868 71
8 2.300 1.52 870 71
9 2.300 1.52 870 69
10 2.300 1.52 872 69
11 2.400 1.55 868 69
12 2.400 1.55 869 69
13 2.400 1.55 869 70
14 2.500 1.58 869 71
15 2.500 1.58 869
16 2.300 1.52 870
17
18
19
20
21
22
23
24
Failed
Failed Cal
Wet CEM Yes
YesCorrect For O2
CO2 Interference w/COYe
Correct For O2
Failed
Correct For O2
Failed
Hill AFB Landfill Gas Blended Engine 3 2023 rev
Reference Methods 2, 3A, 6C, 7E, 10, & 19
Source Information
Company Name Hill Air Force Base
Company Contact:Dr. Erik Dettenmaier
Contact Phone No.801-777-0888
Stack Designation:Landfill Gas Engine 3 Blended Gas
Test & Review Dates
Test Date:12/6/2023 High Flow Test Date: 1/0/1900
Review Date: 1/25/2024 Mid Flow Test Date: 1/0/1900
Observer: none Low Flow Test Date: 1/0/1900
Reviewer:Robert Sirrine
Emission Limits Emission Rates
NMHC NOX CO NOX CO
g/bhp-hr 1.0 1.0 2.5 0.674 0.45 2.05
lbs/hr 20.0 20.0 20.0 2.00 1.337 6.093
ppm
Percent
%O2 Correction as a whole #
Test Information Heat Input
Stack I.D. inches As ft^2 Y Dl H @ Cp Pbar Pq (static)
fuel flow rate
(Btu/hr)
Heat Input
(Btu/hr.)
13.00 0.92 0.9760 1.957 0.84 25.51 0.02
Contractor Information
Contact: Charels Horton
Contracting Company: Alliance Technical Group, LLC
Address: 3683 W 2270 S Suite E West Valley UT
Phone No.: 352-663-7568
Project No.:
8710
Round
Division of Air Quality
Instrumental Reference Methods - Gaseous Measurements
Method 19 - F factors for Coal, Oil, and Gas
Fd Fw Fc
scf/MMBtu scf/MMBtu scf/MMBtu
Diluent
F factor used
O2
CO2
Anthrocite 2
Bituminous 2
Lignite
Natural
Propane
Butane
10100
COAL
OIL
GAS
9780
9860
9190
8710
8710
8710
10540
10640
11950
320
10610
10200
10390
1970
1800
1910
1420
1040
1190
1250
Wet CEM
Yes
Yes
Correct For O2
CO2 Interferece w/CO
Yes
Hill AFB Landfill Gas Blended Engine 3 2023 rev
Division of Air Quality
NSPS Relative Accuracy Performance Specification Test - CEMS Certification
Hill Air Force Base
Landfill Gas Engine 3 Blended Gas
Average Emission
Dry NMHC NOX CO
g/bhp/hr 0.67 0.451 2.055 Average % concentration
lbs/hr 2.00 1.34 6.09 CO2 O2
ppm 117.03 75.22 562.65 7.89 10.04
Run 1 Enter O2 or CO2
Dry NMHC NOX CO CO2 O2 O2
Atomic Weight 44.1 46 28
lbs/MMBtu (O2)2.42E-01 1.57E-01 6.75E-01 E=Cd x Fd x (20.9/(20.9-%O2d))
lbs/MMBtu (CO2)E=Cd x Fc x (100 / % CO2d)
lbs/cu.ft 1.43E-05 9.3E-06 4.0E-05
lbs/hr 2.136 1.384 5.963 7.86 10.12
ppm 125.07 77.715 549.99 7.76 9.90
Run 2
Dry NMHC NOX CO CO2 O2
Atomic Weight 44.1 46 28
lbs/MMBtu (O2)2.17E-01 1.49E-01 6.95E-01 E=Cd x Fd x (20.9/(20.9-%O2d))
lbs/MMBtu (CO2)E=Cd x Fc x (100 / % CO2d)
lbs/cu.ft 1.29E-05 8.8E-06 4.13E-05
lbs/hr 1.92915 1.32332 6.17391 7.89 10.08
ppm 112.66 74.09 567.86 7.78 9.88 Raw Value
Run 3
Dry NMHC NOX CO CO2 O2
Atomic Weight 44.1 46 28
lbs/MMBtu (O2)2.15E-01 1.46E-01 6.87E-01 E=Cd x Fd x (20.9/(20.9-%O2d))
lbs/MMBtu (CO2)E=Cd x Fc x (100 / % CO2d)
lbs/cu.ft 1.30E-05 8.8E-06 4.15E-05
lbs/hr 1.927688 1.30965 6.15481 7.92 9.92
ppm 113.37 73.84 570.107 7.83 9.84 Raw Value
Run 4
Dry NMHC NOX CO CO2 O2
Atomic Weight 64 46 28
lbs/MMBtu (O2)E=Cd x Fd x (20.9/(20.9-%O2d))
lbs/MMBtu (CO2)E=Cd x Fc x (100 / % CO2d)
lbs/cu.ft
lbs/hr
ppm 0.00 0.00 Raw Value
Raw Value
C For Cal Drift
ppm
C For Cal Drift
C For Cal Drift
C For Cal Drift
O2
CO2
Clear
lbs/MMBTU
Hill AFB Landfill Gas Blended Engine 3 2023 rev
Calibration Error Test
Test Date December 6, 2023 O2
CS - Cal. Span 24.00
Units %
Cylinder No. Expiration
Date Cal. Gas CV- Certified
Concentration
CDir or CS -
Measured
Concentration
Difference
ACE Eq. 7E-1
Analyzer Cal.
Error
Status
Low-level 0.00 0.00 0.00 0.00% Passed Cal.
Mid-level 12.00 11.80 0.20 0.83% Passed Cal.
High-level 24.00 24.40 0.40 1.67% Passed Cal.
% of Span Sec. 8.2.1 Cal Gas Verification
0 to 20% of CS - Cal. Span Low-Level 0.00%
40 to 60% of Cal. Span Mid-level 50.00%
100% of Cal. Span High-level 100.00%
Test Date December 6, 2023 CO2
CS - Cal. Span 23.70
Units %
Cylinder
No.
Expiration
Date Cal. Gas CV- Certified
Concentration
CDir or CS -
Measured
Concentration
Difference
ACE Eq. 7E-1
Analyzer Cal.
Error
Status
Low-level 0.00 -0.03 0.03 0.127% Passed Cal.
Mid-level 12.00 11.84 0.16 0.675% Passed Cal.
High-level 23.70 24.00 0.30 1.266% Passed Cal.
% of Span Sec. 8.2.1 Cal Gas Verification
0 to 20% of Cal. Span Low-Level 0.00%
40 to 60% of Cal. Span Mid-level 50.63%
100% of Cal. Span High-level 100.00%
Test Date December 6, 2023 NMHC
CS - Cal. Span 170.00
Units ppm
Cylinder
No.
Expiration
Date Cal. Gas CV- Certified
Concentration
CDir or CS -
Measured
Concentration
Difference
ACE Eq. 7E-1
Analyzer Cal.
Error
Status
Low-level 0.00 0.90 0.90 0.529% Passed Cal.
Mid-level 100.00 99.90 0.10 0.059% Passed Cal.
High-level 170.00 169.49 0.51 0.300% Passed Cal.
% of Span Sec. 8.2.1 Cal Gas Verification
0 to 20% of Cal. Span Low-Level 0.00%
40 to 60% of Cal. Span Mid-level 58.82%
100% of Cal. Span High-level 100.00%
Test Date December 6, 2023 NOx
CS - Cal. Span 100.00
Units ppm
Cylinder
No.
Expiration
Date Cal. Gas CV- Certified
Concentration
CDir or CS -
Measured
Concentration
Difference
ACE Eq. 7E-1
Analyzer Cal.
Error
Status
Low-level 0.00 0.04 0.04 0.040% Passed Cal.
Mid-level 50.00 51.27 1.27 1.270% Passed Cal.
High-level 100.00 100.00 0.00 0.000% Passed Cal.
% of Span Sec. 8.2.1 Cal Gas Verification
0 to 20% of Cal. Span Low-Level 0.00%
40 to 60% of Cal. Span Mid-level 50.00%
100% of Cal. Span High-level 100.00%
Test Date December 6, 2023 CO
20 CS - Cal. Span 1,000.00
Units ppm
Cylinder
No.
Expiration
Date Cal. Gas CV- Certified
Concentration
CDir or CS -
Measured
Concentration
Difference
ACE Eq. 7E-1
Analyzer Cal.
Error
Status
Low-level 0.00 1.19 1.19 0.119% Passed Cal.
Mid-level 500.00 496.70 3.30 0.330% Passed Cal.
High-level 1,000.00 996.83 3.17 0.317% Passed Cal.
% of Span Sec. 8.2.1 Cal Gas Verification
0 to 20% of Cal. Span Low-Level 0.00%
40 to 60% of Cal. Span Mid-level 50.00%
100% of Cal. Span High-level 100.00%
Hill AFB Landfill Gas Blended Engine 3 2023 rev
Division of Air Quality Stack Test Review of
Hill Air Force Base
NMHC NOX CO CO2 O2 Landfill Gas Engine 3 Blended Gas
CS Calibration Span 170.00 100.00 1000.00 23.70 24.00
Units ppm ppm ppm % %Unprotected
CV - Cylinder Value:NMHC NOX CO CO2 O2
Low-Level 0.00 0.00 0.00 0.00 0.00
Mid-Level 100.00 50.00 500.00 12.00 12.00
High-Level 170.00 100.00 1000.00 23.70 24.00
0 to 20% of Cal. Span 0.00% 0.00% 0.00% 0.00% 0.00%
40 to 60% of Cal. Span 58.8% 50.0% 50.0% 50.6% 50.0%
100% of Cal. Span 100.0% 100.0% 100.0% 100.0% 100.0%
Cdir - Enter Actual Up-scale Cylinder Value Used To Correct Emission Concentration.
CDir CMA 100.00 50.00 500.00 12.00 12.00
Calibration Error Test
Cs - Measured Concentration NMHC NOX CO CO2 O2
Low-Level 0.90 0.04 1.19 -0.03 0.00
Mid-Level 99.90 51.27 496.70 11.84 11.80
High-Level 169.49 100.00 996.83 24.00 24.40
Enter Up-scale Analyzer Response to be used during testing.
ACE Eq. 7E-1 99.90 51.27 496.70 11.84 11.80
Low-Level 0.53% 0.04% 0.12% 0.13% 0.00%
ppmdv Difference 0.9 0.04 1.19 0.03 0
Status Passed Cal. Passed Cal. Passed Cal. Passed Cal. Passed Cal.
Mid-Level 0.06% 1.27% 0.33% 0.68% 0.83%
ppmdv Difference 0.1 1.27 3.3 0.16 0.2
Status Passed Cal. Passed Cal. Passed Cal. Passed Cal. Passed Cal.
High-Level 0.30% 0.00% 0.32% 1.27% 1.67%
ppmdv Difference 0.51 0 3.17 0.3 0.4
Status Passed Cal. Passed Cal. Passed Cal. Passed Cal. Passed Cal.
Pre-Test Sampling System Bias
Initial Values NMHC NOX CO CO2 O2
CO - Low-Level 0.90 3.89 1.44 0.02 0.13 System Bias.
SBi - Zero Bias 0.00% 3.85% 0.03% 0.21% 0.54%± 5% of Span
Difference 0 3.85 0.25 0.05 0.13
Pass or Failed Invalid Run Passed Cal. Passed Cal. Passed Cal. Passed Cal. Passed Cal.
CM - Up-scale Gas 99.90 49.97 500.14 11.87 11.85
SBi - Up-Scale Bias 0.00% 1.30% 0.34% 0.13% 0.21%
Difference 0.00 1.30 3.44 0.03 0.05
Pass or Failed Invalid Run Passed Cal. Passed Cal. Passed Cal. Passed Cal. Passed Cal.
Raw Test Data Time Start Stop
Test Date:12/6/2023 NMHC
NMHC NOX CO CO2 O2 NOX
110.69 76.03 537.24 7.76 9.90 CO
65.1% 76.0% 53.7% 32.7% 41.3% CO2/O2
Post-Test System Bias 7E-2 SB=(Cs - Cdir)/CS x 100
Final Values NMHC NOX CO CO2 O2
CO - Low-Level 0.92 2.08 0.10 0.07 0.17 System Bias.
SBi - Zero Bias 0.01% 2.04% 0.11% 0.42% 0.71%± 5% of Span
Difference 0.0 2.0 1.1 0.1 0.2
Pass or Invalid Run Passed Cal. Passed Cal. Passed Cal. Passed Cal. Passed Cal.
CM - Up-scale Gas 100.30 49.99 476.81 11.78 11.58
SBi - Up-Scale Bias 0.24% 1.28% 1.99% 0.25% mn jh k
Difference 0.4 1.3 19.9 0.1 0.2
Pass or Invalid Run Passed Cal. Passed Cal. Passed Cal. Passed Cal. Passed Cal.
Calibration Drift % of Span - D=ABS(SBf - SBi)
Low-Level Drift 0.01% 1.81% 0.08% 0.21% 0.17% Drift
Difference 0.0 1.8 1.3 0.1 0.0 3% of Span
Pass or Re-Calibrate Pass Pass Pass Pass Pass
Up-scale Gas Drift 0.24% 0.02% 1.65% 0.13% #VALUE!
Difference 0.4 0.0 23.3 0.1 0.3
Pass or Re-Calibrate Pass Pass Pass Pass #VALUE!
Landfill Gas Engine 3 Blended Gas Flow & Moisture
As ft^2 Pbar Pq (static) Ps Avg Ts F CO2 - FCO2 O2 N2+C Md Ms
0.92 25.51 0.02 25.51 887 7.86 10.12 82.02 29.66 28.31
Y Cp Vm cf Vlc AVG Tm F Vm std Vw std Bws S Bws 666.6680
0.9760 0.84 36.789 85.90 62 30.949 4.043 0.1155 0.9990 0.999
Load - Megawatts
AvgSqrtDlp Vs scfm wet acfm Qsd dscfh
Heat Input
Btu/hr Low Mid High
1.5501 152.0 2,810 8,406 1.491E+5
#1 - Times
Date
Point No.dl "p"sqrt dl "p"ts F tm F (in) tm F (out)Cp 3D Probe Final
Vf
Initial
Vi
1 2.30 1.52 885 62 795.9 733.1 62.8
2 2.30 1.52 885 62 756.4 749.6 6.8
3 2.40 1.55 885 62 643.5 640.2 3.3
4 2.40 1.55 886 62 961.9 948.9 13
5 2.40 1.55 887 62 0
6 2.40 1.55 887 62
7 2.45 1.57 889 62
8 2.40 1.55 889 61
9 2.40 1.55 885 61
10 2.40 1.55 885 62
11 2.40 1.55 886 63
12 2.40 1.55 886 63
13 2.40 1.55 886 63
14 2.50 1.58 889
15 2.50 1.58 889
16 2.40 1.55 890
17
18
19
20
21
22
23
24
NOTE
These cells scans for the
appropriate C
after the Cm -
entered.
If this scan is incorrect change
the Cma and Cdir to the correct
gas value.
Failed
Failed
Failed Cal
CO
Wet CEM Yes
Yes
Correct For O2
CO2 Interference w/COYe
Correct For O2
Failed
Hill AFB Landfill Gas Blended Engine 3 2023 rev
Division of Air Quality Stack Test Review of
Hill Air Force Base
NMHC NOX CO CO2 O2 Landfill Gas Engine 3 Blended Gas
CS Calibration Span 170.00 100.00 1000.00 23.70 24.00
Units ppm ppm ppm % %
CV - Cylinder Value:NMHC NOX CO CO2 O2
Low-Level 0.00 0.00 0.00 0.00 0.00
Mid-Level 100.00 50.00 500.00 12.00 12.00
High-Level 170.00 100.00 1000.00 23.70 24.00
0 to 20% of Cal. Span 0.00% 0.00% 0.00% 0.00% 0.00%
40 to 60% of Cal. Span 58.8% 50.0% 50.0% 50.6% 50.0%
100% of Cal. Span 100.0% 100.0% 100.0% 100.0% 100.0%
Cdir - Enter Actual Up-scale Cylinder Value Used To Correct Emission Concentration.
CMA 100.00 50.00 500.00 12.00 12.00
Calibration Error Test
Measured Concentration NMHC NOX CO CO2 O2
Low-Level 0.90 0.04 1.19 -0.03 0.00
Mid-Level 99.90 51.27 496.70 11.84 11.80
High-Level 169.49 100.00 996.83 24.00 24.40
Enter Up-scale Analyzer Response to be used during testing.
ACE Eq. 7E-1 99.90 51.27 496.70 11.84 11.80
Low-Level 0.53% 0.04% 0.12% 0.13% 0.00%
ppmdv Difference 0.9 0.04 1.19 0.03 0
Status Passed Cal. Passed Cal. Passed Cal. Passed Cal. Passed Cal.
Mid-Level 0.06% 1.27% 0.33% 0.68% 0.83%
ppmdv Difference 0.1 1.27 3.3 0.16 0.2
Status Passed Cal. Passed Cal. Passed Cal. Passed Cal. Passed Cal.
High-Level 0.30% 0.00% 0.32% 1.27% 1.67%
ppmdv Difference 0.51 0 3.17 0.3 0.4
Status Passed Cal. Passed Cal. Passed Cal. Passed Cal. Passed Cal.
Pre-Test Sampling System Bias
Initial Values NMHC NOX CO CO2 O2
CO - Low-Level 0.92 2.08 0.10 0.07 0.17 System Bias.
SBi - Zero Bias 0.01% 2.04% 0.11% 0.42% 0.71%± 5% of Span
Difference 0.02 2.04 1.09 0.1 0.17
Pass or Invalid Run Passed Cal. Passed Cal. Passed Cal. Passed Cal. Passed Cal.
CM - Up-scale Gas 100.30 49.99 476.81 11.78 11.58
SBi - Up-Scale Bias 0.24% 1.28% 1.99% 0.25% 0.92%
Difference 0.4 1.28 19.89 0.06 0.22
Pass or Invalid Run Passed Cal. Passed Cal. Passed Cal. Passed Cal. Passed Cal.
Raw Test Data Time Start Stop
Test Date:12/6/2023 NMHC
NMHC NOX CO CO2 O2 NOX
99.37 73.39 543.48 7.78 9.88 CO
58.5% 73.4% 54.3% 32.8% 41.2% CO2/O2
Post-Test System Bias 7E-2 SB=(Cs - Cdir)/CS x 100
Final Values NMHC NOX CO CO2 O2
CO - Low-Level 0.90 2.02 -0.19 0.04 0.15 System Bias.
SBi - Zero Bias 0.00% 1.98% 0.14% 0.30% 0.63%± 5% of Span
Difference 0.0 2.0 1.4 0.1 0.2
Pass or Invalid Run Passed Cal. Passed Cal. Passed Cal. Passed Cal. Passed Cal.
CM - Up-scale Gas 99.21 50.40 480.24 11.84 11.88
SBi - Up-Scale Bias 0.41% 0.87% 1.65% 0.00% 0.33%
Difference 0.7 0.9 16.5 0.0 0.1
Pass or Invalid Run Passed Cal. Passed Cal. Passed Cal. Passed Cal. Passed Cal.
Calibration Drift % of Span - D=ABS(SBf - SBi)
Low-Level Drift 0.01% 0.06% 0.03% 0.13% 0.08% Response Spec.
Difference 0.0 0.1 0.3 0.0 0.0 3% of Span
Pass or Re-Calibrate Pass Pass Pass Pass Pass
Up-scale Gas Drift 0.17% 0.41% 0.34% 0.25% 0.58%
Difference 1.1 0.4 3.4 0.1 0.3
Pass or Re-Calibrate Pass Pass Pass Pass Pass
Landfill Gas Engine 3 Blended Gas Flow & Moisture
As ft^2 Pbar Pq (static) Ps Avg Ts F CO2 - FCO2 O2 N2+C Md Ms
0.92 25.51 0.01 25.51 867 7.89 10.08 82.03 29.67 28.29
Y Cp Vm cf Vlc AVG Tm F Vm std Vw std Bws S Bws 610.9994
0.9760 0.84 35.047 82.60 70 29.030 3.888 0.1181 0.9990 0.999
Load - Megawatts
AvgSqrtDlp Vs scfm wet acfm Qsd dscfh
Heat Input
Btu/hr Low Mid High
1.5469 150.7 2,826 8,333 1.495E+5
#1 - Times
Date
Point No.dl "p"sqrt dl "p"ts F tm F (in) tm F (out)Cp 3D Probe Final
Vf
Initial
Vi
1 2.300 1.52 865 68 862.1 795.9 66.2
2 2.300 1.52 865 68 761.7 756.4 5.3
3 2.300 1.52 865 68 646.7 643.5 3.2
4 2.300 1.52 867 68 969.8 961.9 7.9
5 2.400 1.55 867 70 0
6 2.400 1.55 867 70
7 2.500 1.58 865 71
8 2.500 1.58 865 72
9 2.300 1.52 869 72
10 2.300 1.52 869 72
11 2.500 1.58 869 72
12 2.500 1.58 869 71
13 2.500 1.58 869 71
14 2.400 1.55 869
15 2.400 1.55 869
16 2.400 1.55 870
17
18
19
20
21
22
23
24
Failed
Failed
Failed Cal
WET CEM Yes
YesCorrect For O2
CO2 Interference w/COYe
Correct For O2
Correct For O2
Failed
Hill AFB Landfill Gas Blended Engine 3 2023 rev
Division of Air Quality Stack Test Review of
Hill Air Force Base
NMHC NOX CO CO2 O2 Landfill Gas Engine 3 Blended Gas
CS Calibration Span 170.00 100.00 1000.00 23.70 24.00
Units ppm ppm ppm % %
CV - Cylinder Value:NMHC NOX CO CO2 O2
Low-Level 0.00 0.00 0.00 0.00 0.00
Mid-Level 100.00 50.00 500.00 12.00 12.00
High-Level 170.00 100.00 1000.00 23.70 24.00
0 to 20% of Cal. Span 0.00% 0.00% 0.00% 0.00% 0.00%
40 to 60% of Cal. Span 58.8% 50.0% 50.0% 50.6% 50.0%
100% of Cal. Span 100.0% 100.0% 100.0% 100.0% 100.0%
Cdir - Enter Actual Up-scale Cylinder Value Used To Correct Emission Concentration.
CMA 100.00 50.00 500.00 12.00 12.00
Calibration Error Test
Measured Concentration NMHC NOX CO CO2 O2
Low-Level 0.90 0.04 1.19 -0.03 0.00
Mid-Level 99.90 51.27 496.70 11.84 11.80
High-Level 169.49 100.00 996.83 24.00 24.40
Enter Up-scale Analyzer Response to be used during testing.
ACE Eq. 7E-1 99.90 51.27 496.70 11.84 11.80
Low-Level 0.53% 0.04% 0.12% 0.13% 0.00%
ppmv Difference 0.9 0.04 1.19 0.03 0
Status Passed Cal. Passed Cal. Passed Cal. Passed Cal. Passed Cal.
Mid-Level 0.06% 1.27% 0.33% 0.68% 0.83%
ppmv Difference 0.1 1.27 3.3 0.16 0.2
Status Passed Cal. Passed Cal. Passed Cal. Passed Cal. Passed Cal.
High-Level 0.30% 0.00% 0.32% 1.27% 1.67%
ppmv Difference 0.51 0 3.17 0.3 0.4
Status Passed Cal. Passed Cal. Passed Cal. Passed Cal. Passed Cal.
Pre-Test Sampling System Bias
Initial Values NMHC NOX CO CO2 O2
CO - Low-Level 0.90 2.02 -0.19 0.04 0.15 System Bias.
SBi - Zero Bias 0.00% 1.98% 0.14% 0.30% 0.63%± 5% of Span
Difference 0 1.98 1.38 0.07 0.15
Pass or Invalid Run Passed Cal. Passed Cal. Passed Cal. Passed Cal. Passed Cal.
CM - Up-scale Gas 99.21 50.40 480.24 11.84 11.88
SBi - Up-Scale Bias 0.41% 0.87% 1.65% 0.00% 0.33%
Difference 0.69 0.87 16.46 0 0.08
Pass or Invalid Run Passed Cal. Passed Cal. Passed Cal. Passed Cal. Passed Cal.
Raw Test Data Time Start Stop
Test Date:12/6/2023 NMHC
NMHC NOX CO CO2 O2 NOX
99.8 72.4 547.7 7.8 9.8 CO
58.7% 72.4% 54.8% 33.0% 41.0% CO2/O2
Post-Test System Bias 7E-2 SB=(Cs - Cdir)/CS x 100
Final Values NMHC NOX CO CO2 O2
CO - Low-Level 0.93 1.92 1.95 0.07 0.16 System Bias.
SBi - Zero Bias 0.02% 1.88% 0.08% 0.42% 0.67%± 5% of Span
Difference 0.0 1.9 0.8 0.1 0.2
Pass or Invalid Run Passed Cal. Passed Cal. Passed Cal. Passed Cal. Passed Cal.
CM - Up-scale Gas 99.84 48.96 480.69 11.82 11.87
SBi - Up-Scale Bias 0.04% 2.31% 1.60% 0.08% 0.29%
Difference 0.1 2.3 16.0 0.0 0.1
Pass or Invalid Run Passed Cal. Passed Cal. Passed Cal. Passed Cal. Passed Cal.
Calibration Drift % of Span - D=ABS(SBf - SBi)
Low-Level Drift 0.02% 0.10% 0.06% 0.13% 0.04% Response Spec.
Difference 0.0 0.1 2.1 0.0 0.0 3% of Span
Pass or Re-Calibrate Pass Pass Pass Pass Pass
Up-scale Gas Drift 0.37% 1.44% 0.04% 0.08% 0.04%
Difference 0.6 1.4 0.4 0.0 0.0
Pass or Re-Calibrate Pass Pass Pass Pass Pass
Landfill Gas Engine 3 Blended Gas Flow & Moisture
As ft^2 Pbar Pq (static) Ps Avg Ts F CO2 - FCO2 O2 N2+C Md Ms
0.92 25.51 0.02 25.51 868 7.92 9.92 82.16 29.66 28.27
Y Cp Vm cf Vlc AVG Tm F Vm std Vw std Bws S Bws 613.7789
0.9760 0.84 36.831 88.00 71 30.467 4.142 0.1197 0.9990 0.999
Load - Megawatts
AvgSqrtDlp Vs scfm wet acfm Qsd dscfh
Heat Input
Btu/hr Low Mid High
1.5389 150.0 2,811 8,295 1.485E+5
#1 - Times
Date
Point No.dl "p"sqrt dl "p"ts F tm F (in) tm F (out)Cp 3D Probe Final
Vf
Initial
Vi
1 2.300 1.52 866 71 816 742.6 73.4
2 2.300 1.52 866 71 768 761.7 6.3
3 2.300 1.52 866 71 648.7 646.7 2
4 2.300 1.52 867 72 976.1 969.8 6.3
5 2.400 1.55 868 72 0
6 2.400 1.55 868 72
7 2.400 1.55 868 71
8 2.500 1.58 870 71
9 2.300 1.52 870 70
10 2.300 1.52 872 70
11 2.300 1.52 868 70
12 2.400 1.55 869 70
13 2.400 1.55 869 71
14 2.500 1.58 869 71
15 2.500 1.58 869
16 2.300 1.52 870
17
18
19
20
21
22
23
24
Failed
Failed Cal
Wet CEM Yes
YesCorrect For O2
CO2 Interference w/COYe
Correct For O2
Failed
Correct For O2
Failed