Loading...
HomeMy WebLinkAboutDAQ-2024-0047721 DAQC-074-24 Site ID 10121 (B4) MEMORANDUM TO: STACK TEST FILE – HILL AIR FORCE BASE THROUGH: Harold Burge, Major Source Compliance Section Manager FROM: Robert Sirrine, Environmental Scientist DATE: January 25, 2024 SUBJECT: Contact: Dr. Erik Dettenmaier – 801-777-0888 Location: Hill Airforce Base, Davis County, Utah Tester: Alliance Technical Group, LLC 352-663-7568 Sources: Bldg 737, Unit 51 Landfill Gas RICE Engine 3 FRS ID #: UT00000049901100007 Permit: Title V operating permit 1100007004 dated June 30, 2022 Action Code: Tr Subject: Review of Stack Test Report dated January 8, 2024 On January 18, 2024, the Utah Division of Air Quality (DAQ) received a test report for the Hill Air Force Base Unit 51, Landfill Gas RICE Engine 3 located in Building 737, at Hill Air Force Base, Utah. Testing was performed on December 6-7, 2023, to demonstrate compliance with the NOX, CO, and NMHC emission limits found in Permit Condition II.B.40.e, and 40 CFR 60 Subpart JJJJ. The DAQ-calculated test results are: Source Test Date RM/Pollutant DAQ Result Test Result Limit Engine 3 NG 12/7/23 7E/NOX 0.36 g/bhp-hr 0.34 g/bhp-hr 1.0 g/bhp-hr 10/CO 2.2 g/bhp-hr 2.1 g/bhp-hr 2.5 g/bhp-hr ALT-096/NMHC 0.38 g/bhp-hr 0.37 g/bhp-hr 1.0 g/bhp-hr Engine 3 Blend 12/6/23 7E/NOX 0.45 g/bhp-hr 0.45 g/bhp-hr 1.0 g/bhp-hr 10/CO 2.1 g/bhp-hr 2.1 g/bhp-hr 2.5 g/bhp-hr ALT-096/NMHC 0.67 g/bhp-hr 0.67 g/bhp-hr 1.0 g/bhp-hr DEVIATIONS: None noted. CONCLUSION: The stack test report for Engine 3 appears to be acceptable. Testing was conducted on December 6, 2023, with Engine 3 operating on a blend of natural gas and landfill gas, and on December 7, 2023, with Engine 3 operating on natural gas only. There is a typo for run 1 NG on page 30 where the temperature was typed in as 8,369 degrees F and it should be 869 degrees F. This has caused a discrepancy in the emission values for run 1 which is causing the differences seen in the test results vs DAQ results for testing conducted December 7, 2023, in the chart above. 2 RECOMMENDATION: Hill AFB, Unit 51, Engine 3 CO, NMHC, and NOX stack emissions appear to have been in compliance with the applicable limits at the time of testing. No further action is necessary. HPV: No. ATTACHMENTS: Hill Air Force Base stack test report received January 18, 2024. DAQ generated excel test review spreadsheets. DEPARTMENT OFTHE AIR FORCE HEADQUARTERS 75TH AIR BASE WING GFMC) HILL AIR FORCE BASE UTAH lQ Jelnuatyo6y Colonel Jeffrey G. Holland Installation Commander 7981 Georgia Street, Building I 102, Suite 100 Hill AFB UT 84056-5824 Director Utah Division of Air Quality Attention: Compliance Section P.O. Box 144820 Salt Lake ciry uT 84114-4820 Dear Director I,TAH DEPARTMENT OF ENVIRONMENIAL OUAI.JTY It tl L1JAt{ i. , i DIVISION OF AIR OUALTTY This notification and report are submitted pursuant to condition ILB.40.e.3 of Title V Operating Permit I 100007004, which states, "For affected emission units that are subject to performance testing, the permittee shall submit a copy of each performance test as conducted in Title 40 Code of Federal Regulations (CFR) 60.4244 within 60 days after the test has been completed. Reports shall be submitted in accordance with 40 CFR 60.4245(d) and Section I of this permit." Stack testing for the 1,350 brake horsepower (bhp) lean burn landfill gas engine Jenbacher JGS320 4SLB RICE (landfill gas engine 3) subject to 40 CFR Part 60 Subpart JJJJ was completed on 7 December 2023. The attached report concludes that carbon monoxide (CO), nitrogen oxide (NOx), and volatile organic compound (VOC) were in compliance. CO emissions were less than 2.5 gramslbhp-hr. NOx emissions were less than 1.0 gramsibhp-hr. VOC emissions were less than 1.0 grams/bhp-hr. In accordance with Utah Administrative Code R307-415-5d and based on information and belief formed after reasonable inquiry, the statements and information in this report are true, accurate, and complete. If you have any questions or would like to discuss this report further, my point of contact is Dr. Erik Dettenmaier 75 CEGICEIEA, at (801) 777-0888 or erik.dettenmaier.l@us.af.mil. Sincerely Attachment: Source Test Report . Alili= I,lt Source Test Report Ameresco Federal Solutions 520 W. Summit Hill Drive, Suite #401 Knoxville, TN 37902 Hill Air Force Base Landfill Gas Fired Pow1$.r;:ton Facility (unit s I ) Source Tested: One (1) Jenbacher JGS320 4SLB RICE (Engine 3) Test Dates: December 6 & 7,2023 Project No. AST-2023 -4300 Prepared By Alliance Technical Group, LLC 3683 W 2270 S, Suite E West Valley City, UT 84120 r'\lr,_t Allffirpe T=CI-.INiCAL GNOLF)Source Test Report Test Program Summary Resulatorv Information Permit No. Regulatory Citation Source Information UDAQ Title V Operating Permit I100007004 40 CFR Part 60, Subpart JJJJ Source Name One (l) Jenbacher JGS320 zuCE Contact Information Source ID Unit 5l / Engine 3 Target Parameters NOx, CO, NMHC Test Location 75 CEG/CEIEA Air Quality Program Building 737 Hill Air Force Base, UT 84056 Air Program Manager Dr. Erik Dettenmaier erik.dettenmaier. I @us.af.mil (801) 777-0888 Ameresco Federal Solutions 520 W. Summit Hill Drive, Suite #401 Knoxville, TN 37902 Operations Engineer Jonathan Driskill jdriskill@ameresco.com (86s) 330-7196 (865) 604-2031 (cell) Test Company Alliance Technical Group, LLC 3683 W 2270 S, Suite E West Valley City, UT 84120 Project Manager Charles Horton charles.horton@alliancetg.com (3s2) 663-7s68 Field Team Leader Robert Burton robert. burton@alliancetg.com (224) 3s8-s0ss Q,{/QC Manager Kathleen Shonk katie. shonk@alliancetg.com (Et2) 4s2-478s Report Coordinator Delaine Spangler -delaine.spangler@alliancetg.com Regulalory Agency Utah DAQ 195 North 1950 West Salt Lake City, UT 84116 Air Quality Engineer Harold Burge hburge@utah.gov (801) s36-4129 Ameresco - Hill AFB, UT 2 of 124 AST-20234300 Page i Atfu Source Test Report C e rtifi c ation Stateme ntTECHNICAL GROt,P Alliance Technical Group, LLC (Alliance) has completed the source testing as described in this report. Results apply only to the source(s) tested and operating condition(s) for the specific test date(s) and time(s) identified within this report. All results are intended to be considered in their entirety, and Alliance is not responsible for use of less than the complete test report without written consent. This report shall not be reproduced in full or in part without written approval from the customer. To the best of my knowledge and abilities, all information, facts and test data are correct. Data presented in this report has been checked for completeness and is accurate, error-free and legible. Onsite testing was conducted in accordance with approved internal Standard Operating Procedures. Any deviations or problems are detailed in the relevant sections in the test report. This report is only considered valid once an authorized representative ofAlliance has signed in the space provided below; any other version is considered draft. This document was prepared in portable document format (.pd| and contains pages as identified in the bottom footer of this document. dJ il*01to8t2024 Charles Horton, QSTI Alliance Technical Group, LLC AST-2023-4300 Page iiAmeresco - Hill AFB, UT 1 of 124 Altfu Sowce Test Report Table ofContentsTECHNICAL GNOLF' TABLE OF CONTENTS l.l Process/Control System Descriptions .............. l-l 1.3 Site-Specific Test Plan & Notification................... ................ l-l 3.1 U.S. EPA Reference Test Methods I and2 - Sampling/Traverse Points and Volumetric Flow Rate.....3-l 3.2 U.S. EPA Reference Test Method 3A - Oxygen/Carbon Dioxide......... ...... 3-l 3.3 U.S. EPA Reference Test Method 4 - Moisture Content......... .................... 3-l 3.4 U.S. EPA Reference Test Method 7E - Nitrogen Oxides.......... ..................3-2 3.5 U.S. EPA Reference Test Method l0 - Carbon Monoxide..... .....................3-2 3.6 U.S. EPA Alternative Test Method ALT-096- Non-Methane Hydrocarbons ................... 3-2 3.7 U.S. EPA Reference Test Method 205 - Gas Dilution System Certification. ....................3-2 3.8 Quality Assurance/Quality Control- U.S. EPA Reference Test Methods 3A,7E and 10.......................3-2 3.9 Quality Assurance/Quality Control - U.S. EPA Reference Method ALT-096...... ............ 3-3 LIST OF'TABLES Table 2-l: Summary of Results - ENG-3 -Natural Gas............... .........2-2 Table2-2: Summary of Results - ENG-3 - Blended Fuel .............. .......2-3 APPENDICES Appendix A Sample Calculations Appendix B Field Data Appendix C Engine Operating Data Appendix D Quality Assurance/Quality Control Data Appendix E Site-Specific Test Plan & Associated Documentation Appendix F Schematics Ameresco - Hill AFB, UT 4 of 124 AST-2023-4300 Page iii 5 of 124 piltffiiEe Source Test Report IntroductionTtrCI'I NNCAL GNcL.F 1.0 Introduction Alliance Technical Group, LLC (Alliance) was retained by Ameresco Federal Solutions (Ameresco) to conduct emission testing services at the Hill Air Force Base (AFB). Portions of the facility are subject to provisions of the Utah Department of Environmental Quality, Division of Air Quality (UDAQ) Title V Operating Permit 1100007004, condition II.B.40.e and 40 CFR Part 60, Subpart JJJJ. Testing was conducted to determine the emission rates of nitrogen oxides (NOx), carbon monoxide (CO) and non-methane hydrocarbons Orl\4}{C) from the exhaust of one (l) Jenbacher JGS320 reciprocating internal combustion engine (RICE) (Engine 3) used for power generation (Unit 5l). Testing was conducted at two (2) fuel conditions: (l) a blended fuel consisting of Landfill Gas and Natural Gas and (2) 100% Natural Gas. l.l Process/ControlSystemDescriptions The HAFB Main Base is located in Davis and Weber Counties about 30 miles north of Salt Lake City, Utah. The Landfill Gas Fired Power Generation Facility (Unit 5l) consists of three (3) landfill gas fired,4-cycle standard lean bum (4SLB) reciprocating intemal combustion engines (RICE): 814 brake horsepower (bhp) Caterpillar 35l2LE (Engine l), I,148 bhp Caterpillar 35l6LE (Engine 2) and 1,350 bhp, Jenbacher JGS320 (Engine 3). Engine 3 is the subject of this test program. 1.2 Project Team Personnel involved in this project are identified in the following table. Table 1-l: Project Team 1.3 Site.Specific Test Plan & Notification Testing was conducted in accordance with the Site-Specific Test Plan (SSTP) submitted to UDAQ by Ameresco. A copy ofthe SSTP can be found in Appendix E - Site-Specific Test Plan. Ameresco - Hill AFB, UT 6 of 124 Ameresco Personnel Jonathan Driskill Nate Hackwell Alliance Personnel Robert Burton Dillon Brown AST-2023-4300 Page l-l 7 of 124 Alfu-N'ECHNICAL GFOLF Source Test Report Summary of Results 2.0 Summary of Results Alliance conducted compliance testing at the Hill AFB located in Davis County, Utah on December 6 and 7,2023. Three l-hour test runs were conducted to determine the emission rates of NOx, CO, and NMHC from the exhaust of Engine 3. Concurrent stack gas velocity, oxygen (O2), carbon dioxide (COz), and moisture (BWS) content were me$ured to determine mass emission rates. NMHC data is reported for VOC compliance. Testing was conducted at two (2) fuel conditions: (l) a blended fuel consisting of Landfill Gas and Natural Gas and (2) 100% Natural Gas. Tables 2-l ud2-2 provide summaries of the emission testing results with comparisons to 40 CFR 60, Subpart JJJJ and the UDAQ air permit limits. Any emissions parameters not found in the table may be found in Appendix B - Field Data. Any difference between the summary results listed in the following table and the detailed results contained in appendices is due to rounding for presentation. The following terms are used in the table: a a a a a a oF - temperature in degrees Fahrenheit %vd - diluent concentration, dry volume percent dscfm - volumetric flow, dry standard cubic feet per minute o/ovw - concentration, percent volume wet ppmvd - parts per millions, dry volume basis g/bhp-hr - gftrms per brake horse power - hour Ameresco - Hill AFB, UT I of 124 AST-2023-4300 Page 2-l AlfuTECHNICAL GROUP Sowce Test Report Smrmary of Results Table 2-1: Summary of Results - ENG-3 - Netural Gas itart Time lnd Time ingine Brake Horsepower (bhp) itack Temperature ("F) fas Flow (dscfm) )z(o/ovd) iOz(o/ovd) lWS, dimensionless ingine Load, To * 8:55 9:55 1,372 1338.6 2,105 10.00 6.61 0.132 102 l0:20 ll:.20 1,373 867.4 2,500 r0.02 6.58 0.1l8 102 I l:45 12:45 1,368 868.4 2,485 10.01 6.58 0.120 l0l 1,371 t024.8 2,363 10.01 6.59 0.r22 t02 Yitrogen Oxides Data Emission Factor, g/HP-hr NSPS JJJJ Limit, g/HP-hr Percent of Limit,7o 0.3r 0.37 0.36 0.34 2.0 t7 Permit Limit, g/[IP-hr Percent of Limit, 7o 1.0 34 Carbon Monoxide Data Emission Factor, g/IP-hr NSPS JJJJ Limit, g/HP-hr Percent of Limit,7" 1.8 2.2 2.2 2.1 5.0 42 Permit Limit, g/HP-hr Percent ofLimitro/o 2.5 76 {on-Methane Hydrocarbons Data Emission Factor, g/FIP-hr NSPS JJJJ Limit, gAIP-hr Percent of Limit, 7o 0.32 0.39 0.39 0.37 1.0 37 * Performance testing was conducted while the engine was operating at the highest achievable load at current site conditions. Ameresco - Hill AFB, UT 9 of 124 AST-20234300 Page2-Z AtfuTECHNICAL GROUP Table2-2: Summary Results - ENG-3 - Blended Fuel Sowce Test Report iunmam of Results itart Time lnd Time 3ngine Brake Horsepower (bhp) itack Temperature ("F) ias Flow (dscfin) )2(o/ovd) )Oz(o/ovd) lWS, dimensionless ingine Load, %o * 12:30 l3:31 1,300 886.8 2,484 10.12 7.86 0.1l5 96 l3:53 l4:54 1,371 867.4 2,491 10.08 7.89 0.1 l8 102 l5:10 l6:l I 1,364 868.4 2,477 9.92 7.92 0.120 l0l 1,345 874.2 2,484 10.04 7.89 0.1l8 100 {itrogen Oxides Data Emission Factor, g/tlP-hr NSPS JJJJ Limit, g/flP-hr Percent of Limit, 7o 0.48 0.44 0.44 0.4s 2.0 23 Permit Limit, gAIP-hr Percent of Limit,7o 1.0 45 larbon Monoxide Data Emission Factor, gfif -hr NSPS JJJJ Limit, g/HP-hr Percent of Limit, 7o 2.1 2.0 2.1 2.1 5.0 4t PermitLimit, g/If-hr Percent olLimilo/o 2.5 82 {on-Methane Hydrocarbons Data Emission Factor, g^f-hr NSPS JJJJ Limit, g/HP-hr Percent of Limit, o/o 0.74 0.64 0.64 0.67 1.0 67 Performance testing was conducted while the engine AST-20234300 operating at the highest achievable load at current site conditions. o - Hill AFB, UT l0 of 124 pyll6rrpe TEQHNICAL GNOLF Source Test Report Testing Methodologt 3.0 Testing Methodology The emission testing program was conducted in apcordance with the test methods listed in Table 3-1. Method descriptions are provided below while quality assurance/quality control data is provided in Appendix D. Table 3-l: SoUrce Testing Methodolory 3.1 U.S. EPA Reference Test Methods I and 2 - Sampling/Traverse Points and Volumetric Flow Rate The sampling location and number of traverse (sampling) points were selected in accordance with U.S. EPA Reference Test Method l. To determine the minimum numberof traverse points, the upstream and downsffeam distances were equated into equivalent diameters and compared to Figure l-2 in U.S. EPA Reference Test Method l. Full velocity traverses were conducted in accordance with U.S. EPA Reference Test Method 2 to determine the average stack gas velocity pressure, static pressure find temperature. The velocity and static pressure measurement system consisted of a pitot tube and inclined manorneter. The stack gas temperature was measured with a K-type thermocouple and pyrometer. Stack gas velocity pressure and temperature readings were recorded during each test run. The data collected was utilized to calculate the volumetric flow rate in accordance with U.S. EPA Reference Test Method 2. 3.2 U.S. EPA Reference Test Method 3A - Oxygen/Carbon Dioxide The oxygen (Oz) and carbon dioxide (CO2) testing were conducted in accordance with U.S. EPA Reference Test Method 3A. Data was collected online and reported in one-minute averages. The sampling system consisted of a stainless-steel probe, heated Teflon sample line(s), gas conditioning system and the identified gas analyzer. The gas conditioning system was a non-contact condenser used to remove moisture from the stack gas. The quality control measures are described in Section 3.8. 3.3 U.S. EPA Reference Test Method 4 - Moisture Content The stack gas moisture content (BWS) was determined in accordance with U.S. EPA Reference Test Method 4. The gas conditioning train consisted of a series of chilled impingers. Prior to testing, each impinger was filled with a known quantity of water or silica gel. Each impinger was analyzed gravimetrically before and after each test run on the same balance to determine the amount of moisture condensed. Ameresco - Hill AFB, UT 12 of 124 Full Velocity Traverses Gas Dilution System Certification AST-2023-4300 Page 3-l Alfu-TEEHNIEAL GNOLFl Source Test Report Testing Methodologt 3,4 U.S. EPA Reference Test Method 7E - Nitrogen Oxides The nitrogen oxides (NOx) testing was conducted in accordance with U.S. EPA Reference Test Method 7E. Data was collected online and reported in one-minute averages. The sampling system consisted of a stainless-steel probe, heated Teflon sample line(s), gas conditioning system and the identified gas analyzer. The gas conditioning system was a non-contact condenser used to remove moisture from the stack gas. The quality control measures are described in Section 3.8. 3.5 U.S. EPA Reference Test Method l0 - Carbon Monoxide The carbon monoxide (CO) testing was conducted in accordance with U.S. EPA Reference Test Method 10. Data was collected online and reported in one-minute averages. The sampling system consisted of a stainless-steel probe, heated Teflon sample line(s), gas conditioning system, and the identified gas analyzer. The gas conditioning system was a non-contact condenser used to remove moisture from the gas. The quality control measures are described in Section 3.8. 3.6 U.S. EPA Alternative Test Method ALT-096- Non-Methane Hydrocarbons The non-methane hydrocarbons (NMHC) testing was conducted in accordance with U.S. EPA Altemate Test Method ALT-096. EPA Method 25A is incorporated by reference. The sampling system consisted of a stainless steel probe, heated Teflon sample lines and a Thermo 55i analyzer. NMVOC data was collected in one (l) minute averages. The quality control measures are described in Section 3.9. 3.7 U.S. EPA Reference Test Method 205 - Gas Dilution System Certification A calibration gas dilution system field check was conducted in accordance with U.S. EPA Reference Method 205. Multiple dilution rates and total gas flow rates were utilized to force the dilution system to perform two dilutions on each mass flow controller. The diluted calibration gases were sent directly to the analyzer, and the analyzer response recorded in an electronic field data sheet. The analyzer response agreed within 2%o of the actual diluted gas concentration. A second Protocol I calibration gas, with a cylinder concentration within l0% of one of the gas divider settings described above, was introduced directly to the analyzer, and the analyzer response recorded in an electronic field data sheet. The cylinder concentration and the analyzer response agreed within 27o. These steps were repeated three (3) times. Copies of the Method 205 data can be found in the Quality Assurance/Quality Control Appendix. 3.8 Quality Assurance/Quality Controt - U.S. EPA Reference Test Methods 3A' 7E and l0 Cylinder calibration gases used met EPA Protocol I (+/- 2o/o) standards. Copies of all calibration gas certificates can be found in the Quality Assurance/Quality Control Appendix. Low Level gas was introduced directly to the analyzer. After adjusting the analyzer to the Low-Level gas concentration and once the analyzer reading was stable, the analyzer value was recorded. This process was repeated for the High-Level gas. For the Calibration Error Test, Low, Mid, and High Level calibration gases were sequentially introduced directly to the analyzer. All values were within 2.0 percent of the Calibration Span or 0.5 ppmv lo/o absolute difference. High or Mid Level gas (whichever was closer to the stack gas concentration) was introduced at the probe and the time required for the analyzer reading to reach 95 percent or 0.5 ppmv/% (whichever was less restrictive) of the gas concentration was recorded. The analyzer reading was observed until it reached a stable value, and this value was recorded. Next, Low Level gas was inhoduced at the probe and the time required for the analyzsr reading to Ameresco - Hill AFB, UT 13 of 124 AST-2023-4300 Page 3-2 pillffiipe TEOHNICAL GNSLF Source Tesl Reporl Tesling Methodology decrease to a value within 5.0 percent or 0.5 ppmv/7o (whichever was less restrictive) was recorded. If the Low- Level gas was zero gas, the response was 0.5 ppmvlo/o or 5.0 percent of the upscale gas concentration (whichever was less restrictive). The analyzer reading was observed until it reached a stable value and this value was recorded. The measurement system response time and initial system bias were determined from these data. The System Bias was within 5.0 percent of the Calibration Span or 0.5 ppmvl%o absolute difference. High or Mid Level gas (whichever was closer to the stack gas concentration) was introduced at the probe. After the analyzer response was stable, the value was recorded. Next, Low Level gas was introduced at the probe, and the analyzer value recorded once it reached a stable response. The System Bias was within 5.0 percent of the Calibration Span or 0.5 ppmvlo/o absolute difference or the data was invalidated and the Calibration Error Test and System Bias were repeated. Drift between pre- and post-run System Bias was within 3 percent of the Calibration Span or 0.5 ppmv/% absolute difference. If the drift exceeded 3 percent or 0.5 ppmv/%o, the Calibration Error Test and System Bias were repeated. To determine the number of sampling points, a gas stratification check was conducted prior to initiating testing. The pollutant concentrations were measured at three points (16.7, 50.0 and 83.3 percent of the measurement line). Each traverse point was sampled for a minimum of twice the system response time. If the pollutant concentration at each traverse point did not differ more than 5 percent or 0.5 ppmv/0.3% (whichever was less restrictive) of the average pollutant concentration, then single point sampling was conducted during the test runs. If the pollutant concentration did not meet these specifications but differed less than l0 percent or 1.0 ppmvl0.5%o from the average concentration, then three (3) point sampling was conducted (stacks less than 7.8 feet in diameter - 16.7,50.0 and 83.3 percent of the measurement line; stacks greater than 7.8 feet in diameter- 0.4, 1.0, and 2.0 meters from the stack wall). If the pollutant concentration differed by more than l0 percent or 1.0 ppmvl0.5o/o from the average concentration, then sampling was conducted at a minimum of twelve (12) traverse points. Copies of stratification check data can be found in the Quality Assurance/Quality Control Appendix. An NOz - NO converter check was performed on the analyznr at the completion of testing. An approximately 50 ppm nitrogen dioxide cylinder gas w:rs introduced directly to the NOx analyzer and the instrument response was recorded in an electronic data sheet. The instrument response was within +/- 10 percent of the cylinder concentration. A Data Acquisition System with battery backup was used to record the instrument response in one (l) minute averages. The data was continuously stored as a *.CSV file in Excel format on the hard drive of a computer. At the completion of testing, the data was also saved to the Alliance server. All data was reviewed by the Field Team Leader before leaving the facility. Once arriving at Alliance's office, all written and electronic data was relinquished to the report coordinator and then a final review was performed by the Project Manager. 3.9 Quality Assurance/Quality Control - U.S. EPA Reference Method ALT-096 EPA Protocol I Calibration Gases - Cylinder calibration gases used met EPA Protocol 1 (+l- 2o/o) standards. Copies of all calibration gas certificates are provided in the Quality Assurance/Quality Control Appendix. Zero gas was introduced through the sampling system to the analyzer. After adjusting the analyzer to the Zero gas concentration and once the analyzer reading was stable, the analyzer value was recorded. This process was repeated Ameresco - Hill AFB, UT 14 of 124 AST-2023-4300 Page 3-3 TEC N ROU Source Test Report Testing Methodologt for the High Level gas, and the time required for the analy"Er reading to reach 95 percent of the gas concentration was recorded to determine the response time. Next, Mid and Low Level gases were intnoduced through the sampling system to the analyzer, and the response was recorded when it is stable. All values must be within +/- 5% of the calibration gas concentrations. Post Test Drift Checks - Mid Level gas was introduced through the sampling system. After the malyzer response was stable, the value was recorded. Next, Zero gas was introduced through the sampling system, and the analyzer value recorded once it reached a stable response. The Analyzer Drift must be less than 3 percent of the Calibration Span. Data Collection - A Data Acquisition System with battery backup was used to record the instrument response (analog 0-10 volt signal) in one (l) minute averages. The data was continuously stored as a *.CSV file in Excel format on the hard drive of a desktop computer. At the completion of the emissions testing the data was also saved to disk. Ameresco - Hill AFB, UT 15 of 124 AST-2023-4300 Page34 16 of 124 pull6lrce TtrCIINICAL GRC)UP Laation Source Projat No. Run No. I Hill Ail Force Bxample Calculations Parameter(s) BWS Meter Pressure (Pm), itr. Hg AHPm = Pbl:. IJ.bwhCrcr Pb 25.01 = baoretric pressure, in. Hg AH 1.000 = prcsure differential oforifice, in H2Opm..........F=in.ttg Absolute St8ck Gas Prdsurc (Ps), iD. Hg Ps .n"... Pt = Pb + 136 Pb 25.51 = buometric pressure, in. flg Pg 0.02 = static pressure, in. H2O Ps 25, =in.Hg Strtrdrrd Mctcr Vdtrm (Vrutd), dscf Vmtd = l7.636xVmxPmxY where. Y 0.976 = meter corection factor v. TEt s- " meter volume, cf Pm 25.14 = absolute meter pressure, in. llg t^T = absolute meter temp€rature, "R vmtd-....ffi=d""f Stardard Wet Volume (Vwstd), 3cf where, Vmtd: 0.04716 x Vlc Vlc 95.1 = Volume ofIIzO collected, ml VMtd 4485 =scf Moisture Fraction (BWSsat), dimemionle$ (th@rcticrl rt srturstcd conditioN) ,oe.rz-ffi*r!{=)BWSsat = - whcrc. D. Tt -!ff!JL = stack tempeBture, 'F Pt-?!L= ubsolute stack gG pressure, in. Hg BWSsat 1.000 = dimensionless Moisturc Frrction (BWS), dimcnsionlcs Vwstd BWS =m;:Ilffiffi Vstd 4.485 = stmdild ret volume, scf v*ta-.....ffi= stmdtrd meter volume, dscf Bws -o1.i3l-= dimereionless Moisture Fraction (BWS), dimensionless BWS = BWSmsd unless BWSsat < BWSmsd where, BWSsat-lL= moisture fraction (theoretical at satuated conditions) BWSmd ;[!!= moisture fraction (rcaured) BWS 0.132 Molaular wcight (DRY) (Md), lb[b-trplc 146 = (0.u14 xo/oCO2) + (0.32 xo/oO2) + (0.28(100- 0/oCO2 -o/oO2)) where, CO, L= crbon dioxide concentration, 7o OrA= orygen concentration, 7o Md 29.46 = lMb mol Tm 17 of 124 AIErce-ff(]IINIC.AL GR(}U P Example Calculations Loa"tion Sor""" P"oj""t No, Run No. I Parameter(s) Molecular Weight (WET) (Ms), lb/lLmolc Ms = Md (1 - BWS) + 18.015 (BWS) where, = molecular weight (DRY). lbilb mol = moisture fraction, drmemionless = Ib/lb mol Average Velaity (Vs), ftlsc , Vs = 85.49 x Cp x (Apr/z)avg xwbefe, Cp]qgl-= pitot tube c@fficient oPt'' ___f!f_: average pr€lpost test velocity head of stack go, (in. H2O)r'l T"-|4L= uverage pre/post test absolute stack tempqature, oR Ps 25.51 = absolute stack 96 pressure, in Hg M" .@ = molecular weight ofstack gas, lb/lb mol Vs 175.2 : i/sec Aver8ge Stack Gas Flow aa Strck Conditions (Qa), acfm Qa=60xVsxAs where, Vs t75.2 = stack gm velocity, fusec As 0.92 = cross{ectional area ofstack, ft2 Qu.@=u"f. Average Stack Gas Flow at St8rdard Condiaioos (Qs), dscfm Qsd= l7.636xQax(r -Bws)x ft where, Qu_ry_= average stack 96 flow at stack conditions, acftn BWS 0.132 = morsture fraction, dimensionless Ps 25 5l = absolute stack g6 pressure, in. Hg T" __)]jj2-= uverage pre/post test absolute stack tempsature, oR Qs 2,105 = dscfm Dry Gas Meter Calibration Chcck (Yqa), percent Y_ x 100 Md BWS Ms 29.46 -6' r i2-T Y 0.976 : meter correction factor. dimensionless o-06-: .un time, min. 35.615 I.957 @ l 000 29.46 1.000---i:a- **)/s (* Yqa = where, Tm LH@ Pb AH avg Md (a r0"' Yqa = total meter volume, dcf = absolute meter temperature, oR = ori6ce meter calibration coefficient, in. H2O = bdometric pressure, in. Hg = average pressure differential oforifice, in H2O = molecula weight (DRY), lb/lb mol = average square root pressure differential oforifice, (in = percent Hro'|"' l8 of 124 Al6rceTECH\iCAL GROUP Location: Ameiesco, Hill Air Force Base - Davis County Source:@ Project No.: AST-2023-4300 Run No. /Dlethod Run I / Method 3A Oz - Outlet Concentration (Co), Vo dry Co,: (Cou,-C.)* ( affi;J where, Cou,{: average analyzervalue during test, % dry Co 0.00 : average ofpretest & posttest zero responses,%o dry CMA 12.00 : actual concentration ofcalibration gas,Yodry CM I 1.97 : average ofpretest & posttest calibration responses, %o dry C6, 10.00 : Oz Concentration,o/o dry 19 of 124 AITECH\ICAL GROUP Location: Ameiesco. t{ill Air Force Base - Davis COu - Outlet Concentration (CcoJ, %o dry cco= (cou,-c.)* ( #q-) where, Cou, ..;![: average analyzer' Co 0.06 : average of pretest CM,{ 11.85 : actual CM 11.88 : average ofpretest Cco, 6.61 : COz Concentratio FlafEe during test, oZ dry posttest zero responses,%o dry of calibration gas, Yo dry posttest calibration responses, 7o dry o/o dry pllt6rlEe TECH\ICAL GROUP Location: Ameresco, Hill Air Force Base - Davis CounW Source: Unit 5l Engine 3 - Natural Gas Project No.: AST-2023-4300 Run No. /ivlethodRun I / Method 7E NOx - Outlet Concentration (Cro,), ppmvd Cr.ro*: (Co6,-C6)x f ,9*, t\ rq-=;f/ where, C*, L: average wtalyzer value during test, ppmvd Co 0.20 = average ofpretest & posttest zero responses, ppmvd CMA 50.00 : actual concentration of calibration gas, ppmvd CM 50.67 : average ofpretest & posttest calibration responses, ppmvd CNo* 61.46 : NOx Concentration, ppmvd NOx - Outlet Concentration (Cxo,"rs), ppmvd @ l5o Oz CNo^",, : CNo* x r 20.9-15 \ -l \ zo.s -o, ) where, CNo* co, CNo*cts ERNo,: where, CNo* MW Qs ERNo, NOx - Outlet Emission Rate (ERNSJ, lb/hr 61.46 46.0055 2.105 0.93 NOx - Outlet Emission Rate (ER16,1py), ton/yr : NOx - Outlet Concentration, ppmvd : oxygen concentration, 7o : ppmvd @15%O, : NOx - Outlet Concentration, ppmvd : NOx molecular weight, g/g-mole: stack gas volumetric flow rate at standard conditions, dscfin: lb/hr 61.46 10.00 33.26 Cro* x MW x Qs x60 # x28.32 24.04 --i-x 1.0E06 x453.592g - moLe ERNo*rpy - ERNg-I!'760 f 2,000;.. where, ERN6" 0.93 : NOx - Outlet Emission Rate, lb/hr ERNo*rpy 4.1 : ton/yr NOx - Outlet Emission Factor (EFnoJ, g/hp-hr Er - ERNo* x 453.592 ft,.*o*_.........ffi where, ERNq* 0.93 : NOx - Outlet Emission Rate, lb/hr EBW 1,372 : engine brake work, FIP EF*o*-d3T-: g/hp-hr 2l of 124 plllf,lrce TECH\ICAL GROUP Location: Ameresco, Hill Air Force Base - Davis County Source: Unit 5l Ensine 3 - Natural Gas Project No.: AST-2023:4399 Run No. /Method Run 1 / Method l0 CO - Outlet Concentration (Cco), ppmvd Cco= (Co6,-C6)x /,,C"o. \\ rcffi'l/ where, Cor,;[!!= average analyzer value duringtest, ppmvd Co l.15 : average ofpretest & posttest zero responses, ppmvd CroA: actual concentration of calibration gas, ppmvd CM 491.79 : average of pretest & posttest calibration responses, ppmvd Cco 607.31 : CO Concentration, ppmvd CO - Outlet Concentration (Cco"rs), ppmvd @ l5o/" Oz cco"rs: ccox (## where, Cco 607.31 : CO - Outlet Concentration, ppmvd Co, 10.00 : oxygen concentration, %o Cco"rs 328.65 : ppmvd @l5o 02 CO - Outlet Emission Rate (ERss), Ib/hr - CcoxMWxQsx60#x25.32 hanro - where, Cco 607.31 : CO - Outlet Concentration, ppmvd MW 28.01 : CO molecular weight, g/g-mole qr Z,f OS : stack gas volumetric flow rate at standard conditions, dscfm ERco 5.6 : lb/hr CO - Outlet Emission Rate (ER6mpy), ton/yr ERco,p": tY;ilutu,ffo it where, ERco 5.6 : CO - Outlet Emission Rate, lb/hr ERcorpv 24.4 : ton/yr CO - Outlet Emission Factor (EFco), g/hp-hr ED - ERco x453.592ft EBW where, ERco 5.6 : CO - Outlet Emission Rate, lb/lr EBW 1,372 : engine brake work, FIP EFco-:g/hp-hr 22 of 124 pult6rlrce TECH\ICAL GROUP' - -Lircitioni Ameresco, Hill Air Force Base - Davis County Source: Unit 5l Engine 3 - Natural Gas Project No.: AST-2023-4300 Run No. /Ivlethod Run I / Method Alt-096 NMHC - Outlet Concentration (as C3H8) (Cxr'rrc)' ppmvd v - C*rnc*.*rrrc_EWS_ where, C*rr.*1[!|: NMHC - Outlet Concentration (as C3H8), ppmvw BWS 0.13 : moisture fraction, unitless C"rr.E:ppmvd NMHC - Outtet Concentration (as C3H8) (Cxnrsc"rs), ppmvd @ lSVo Oz where, NMHC - Outlet Emission Rate (as C3H8) (ERumucrpv), ton/yr - ERNrranc x 8,760 :DnNMHcr?y_W, where, ER*rr. .;![: NMHC - Outlet Emission Rate (as C3H8), lb/hr ERNrrcrpy 4.3 = ton/yr CNvsc x MW x Qs x 60 {} 2852 n EI(NUUC - NMHC - Outlet Emission Factor (as C3H8) (EFxnrnc)' g/hp-hr EE - ERNr,aHc x 454 *4ETNMHC __ggW where, ERN1anc 0.9S : NMHC - Outlet Emission Rate (as C3H8), lb/hr Crrr. 1[!|: NMHC - Outlet Concentration (as C3H8), ppmvd MW 44.1 : NMHC molecular weight, g/g-mole Qs 2,105 : stack gas volumetric flow rate at standard conditions, dscfrn ERNr,,rnc 0.98 : lb/hr cNuHc"rs: cNruHc. (-r.4or - J where, Co-,.&:NMHC.outletConcentration(asC3H8),ppmvd Co" 10.00 : oxygen concentration, %o CN1auc"rs 36.70 : ppmvd @15%Oz NMHC - Outlet Emission Rate (as C3H8) (ERxys6)' lb/hr EBW 1,372 : engine brake work, HP EFur'ruc 0.32 : g/hp-hr 23 of 124 24 of 124 25 of 124 altfrre TECHNICAL GFIOUP Emissions Calculations Location Ameresco, Hill Air Force Base - Davis County Source Unit 5l Engine 3 - Natural Gas Project No. AST-2023-4300 Run Number Runl Run2 Run3 Average Date Start Time Stop Time tzl7l23 8:55 9:55 t2t7t23 t2t7t23 10:20 I l:45 ll:20 12:45 Engine Data Engine Manufacturer Engine Model Engine Serial Number Engine Type Engine Date of Manufacturer Engine Hour Meter Reading DOM EMR Jenbacher JGS320 1238786 Spark Ignition - 4SLB 2017-01-12 34,482 Generator Output, kW Engine Brake Work, HP Maximum Brake Work, HP Engine Load, 7o Ambient Temperature Relative Humidity, % Barometric Pressure, in. Hg 1,001 1,372 1,350 102 45 60 25.75 Gen OP EBW MaxEBW EL Te.u RH Pb 1,002 1,373 1,350 102 50 60 25.75 999 1,000 1,368 1,371 1,350 1,350 l0l 102 50 48 60 60 25.75 25.',15 Input Data - Outlet Moisture Fraction, dimensionless Volumetric Flow Rate (Ml-4), dscfm BWS Qs 0.t32 2,105 0.118 2,500 0.120 0.123 2,485 2,363 Calculated Data - Outlet )z Concentration, o/o dry co, 10.00 10.02 10.01 10.01 3Oz Concentration, % dry cco, 6.61 6.58 6.58 6.59 3O Concentration, ppmvd lO Concentration, ppmvd @ 15 Yo 02 lO Emission Rate, lb/hr CO Emission Rate, tor/yr 30 Emission Factor, p/HP-hr 607.31 328.65 5.6 24.4 1.8 Cco Cco",t ERco ERcorpv EFco 617.26 334.60 6.7 29.5 2.2 6t6.35 613.64 333.91 332.39 6.7 6.3 29.3 27.7 2.2 2.1 \Ox Concentration, ppmvd !,lOx Concentration, ppmvd @ 15 %oOz \Ox Emission Rate, lb/hr \lOx Emission Rate, ton/yr \lOx Emission Factor. e/[IP-hr 61.46 33.26 0.93 4.1 0.31 CNo* CNo*ct s ERNo* ERNo*rpv EF*.r* 61.68 33.44 l.l 4.8 0.37 61. 16 61.43 33.13 33.28 l.r 1.0 4.8 4.6 0.36 0.34 ),IMHC (as C:Hr) Concentration, ppmvd !{MHC (as C:Ht) Concentration, ppmvw \IMHC (as C:Hs) Concentration, ppmvd @ \MHC (as C:Hr) Emission Rate, lb/hr ),IMHC (as C,Hr) Emission Rate, ton/yr \MHC (as C:Hr) Emission Factor, dHP-hr 67.83 58.87 36.70 0.98 4.3 0.32 C**rc C*rc* CrrraHc"ts ERNrr,mc ERNlrHcrpv EF"-rr. 67.96 59.94 36.84 1.2 5.1 0.39 68.17 67.98 59.99 59.60 36.93 36.82 1.2 1.1 5.I 4.8 0.39 0.37 15 o/o Oz 26 of 124 llllf,irce T =i: t"'t N I c AL ti r{ft tJ P Locdion Arer6co, Hill Air Forc€ Bse - Dxvis Couily Method I Data Source Unil 5l Eneine 3 - Nat Projd No. AST-2023-4300 D^k l2lo7l23 DudOrientstion: Vdical Dud D6ign; Circular Disruft from Ftr wrll ro Ortside of Pon, ----i'ili-in Nippl" l*ogrh' -----ii3- in Deptt of orc: ----illd-in Crosi sfttioorl AM of Du"t,----i167-R' No. ofTd Pon!: 2 Numb€r ofRddin$ pcr Poitrt: I ,r.,** ^,-----7i-nDistmce A Dud Dixrm..,-----7I--1.rst be, 0.51 DiltDe B: 4J ft Dirrmc€ B Dtrd Dixmrcrs: 43 (must be > 2) Mioimum Number ofTrrveme Poinb: 16 Adurl f{umber of Trrv".." Point., -----li- Mesurer (lnitiel ud Dste): DBR l215/23 Reiser (lnirirl md Drt"1, -F-BEiTEZ- rrar!{, ,16 LOCATION OF TRAVERSE POINTS Numba of trarqv poin^ on a diatud I 2 3 4 6 1 E 9 t0 ll t2 2 3 1 5 6 1 E 9 l0 il t2 14.6 6.7 4.4 1.2 2.6 2t 85.4 25.0 10.5 8.2 e,7 19.4 r4 6 93.3 70.4 32.3 226 85.4 67.7 142 25.0 95.6 80.6 658 3s6 89.5 774 644 96.8 85.4 75.0 91 8 E2.3 97.4 88.2 93.3 97.9 'Peteil of sbck dianetetton hside wall to trMrce poiht Tnrerle Poin( 6/o ol Dirtte from Dirmer wsI ouride of t 3 .l 5 6 7 8 9 l0 ll t2 Z 10.5 19.4 323 6t.7 80.6 89.5 968 1.37 2.52 4.20 8.80 r0.48 I 1.64 t2.50 2.25 3.12 4.27 5.95 10.55 \2.23 l 3.39 t4.25 Stack Diagranl A = 2.9 fr. B = 4.7 fi. Depth of Ducl = 13 in. Cross Seclioml Area ooaaoooo Up*,eam Dlsturbance Alr6tr- T'EOHNICAL {lROI.JP Cyclonic Flow Check Location Ameresco, Hill Air Force Base - Davis County Source Unit 5l Ensine 3 - Natural Gas Project No. AS!-zQ!!QQQ Date l2l7l23 Sample Polnt Angle (AP=0) I 2 3 4 5 6 7 8 9 10 11 t2 13 t4 l5 t6 Average 3.6 28 of 124 pult6rrrce IE(;HNi(;A.L GIIC}UP Field Data Method 2Data Location Ameresco. Hill Air Force Bese - Davis Countv Source Unit 51 Ensine 3 - Naturrl Gas Projecr No. AST-2023-4300 I 12/7/23 VALID 9:05 9:16 Pass , r2l7l23 VALID l0:30 l0:41 Pass 3 1217123 VALID 1 l:51 l2:05 Pass 865 865 865 867 867 867 865 865 869 869 869 869 869 869 869 870 2.30 2.30 2.30 2.40 2.40 2.40 2.50 2.30 2.30 2.30 2.40 2.40 2.40 2.50 2.50 2.30 866 866 866 867 868 868 868 870 870 872 868 869 869 869 869 870 al 2 3 4 5 6 7 8 b1 ,, 3 4 5 6 7 8 2.20 2.20 2.30 2.30 2.30 2.40 2.40 2.30 2.40 2.40 2.40 2.40 2.40 2.50 2.50 2.40 872 872 872 870 870 870 871 871 868 868 868 869 869 8369 869 869 2.30 2.30 2.30 2.30 2.40 2.40 2.50 2.50 2.30 2.30 2.50 2.50 2.50 2.40 2.40 2.40 1.537 2.36 0.840 25.51 0.02 25.51 1338.6 1798.2 0.132 1.000 0.1 32 10.00 6.61 29.46 27.95 175.2 9,692 145,517 2.425 t.547 2.39 0.840 25.51 0.01 25.5t 867.4 1327.1 0.1r8 1.000 0.1 18 10.02 6.58 29.45 28.1 0 151.1 8,358 170,034 2,834 2,500 1.541 2.38 0.840 25.5 l 0.02 25.51 868.4 l 328. l 0.1 20 1.000 0.1 20 10.01 6.58 25.45 28.09 150.6 8,331 r69,363 2.823 1.542 2.38 0.840 25.51 0.02 25.51 1024.8 1484.5 0.123 1.000 0.1 23 10.0 6.6 29.45 28.05 159.0 8,794 161,638 2.694 2.363 Square Root of AP, (in. WC)rn Averrge AP, in. WC Pitot Tube Coeflicient Barometric Pressure, in, IIg Stetic Pressure, in. WC Stack Pressure, in. Hg Average Tempereture, oF Averege Temperature, oR Measu red Moisture Fraction Moisture Frection @ Saturation Moisture Fraction 02 Concentration, 7o CO2 Concentration, 7o (AP),,, (P) (cp) (Pb) (Pe) (Ps) (Ts) (Ts) (BWSmsd) (BwSsat) (Bws) (02) (c()2) (Md) (Ms) (vs) (Qa) (Qsw) (Qsw) Weight, lb/lFmole(dry) Weight, lbflb-mole (wet) Velocity, ft/sec VFR at stack conditions, acfm VFR at standard conditions, sclh VFR at standard conditions. scfm 29 of 124 Al6rceTECHNICAL GROUP Method 4 Data lotr No. )rtc ;hto! iffiTime lnd Time lutr Timq mir (0) tter U) I tznl23 VALTD 8:55 9:55 60 M5 2600 tznn3 VALID l0:20 ll:20 60 3 ta1n3 VALID ll:45 12t45 60 M5-26{n t&r Cormion tr.cor (Y) )rili.G Cdibr.lion V.luc (AII @) ilu V..uum, ir, Hg ,et lal ClftlL ft3/min (rl frr vrcl 0.976 1.957 l5 0.001 0.976 1.957 t5 0.976 1.957 l5 0 001 flder Volumq ft3 0 5 l0 l5 n 3t) 35 .10 45 50 55 @ lorrl M€h. V 402.835 405.925 408.790 41 1.850 414.680 4t7.420 420.720 423.960 426.855 429.720 432.850 435.650 438.450 35.615 43E.720 441.650 444.780 447.580 451.210 454.350 457.2t0 460.020 463.210 466.315 469.450 472.520 475.210 36.490 475.510 478.625 4Et.350 484.720 4E7.5t0 490.670 493.255 496.535 499.440 503.320 506.215 509.450 512.1 l0 lcmperrtuG 0 5 l0 l5 20 25 30 35 ,l() 45 v) 60 \veng. Topo.turq "F (Im) \venge TdD.r.aurq oR (Im) l|inioum Tmpd.torc' otr Mclcr 62 62 62 62 63 63 63 63 62 62 62 62 63 62 522 62 Pob€triltr Vlcucm 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 0p. Eti 54 54 54 52 52 53 53 51 54 54 55 5 5 52 Mds 63 63 63 63 62 62 63 63 62 63 63 7t 531 62 Probc Filter Vtauum 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 Imp. Ed 56 5l 5l 49 49 49 49 48 48 49 50 56 48 56 M&l 73 73 73 73 7t 7l 69 69 69 69 70 7l 53t 69 73 Pobc FilGr Vacuom 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 1 lmp. Edl 56 56 56 55 5{ 54 53 55 55 56 56 55 53 l.rcmdricPr6,c&in, Hg (Pb) ilder Ori6e PBlure, io. WC (AIl) {ecr PB,u& ir. Ilg (PD) 25.07 l.m0 25.14 25.07 1.000 25.14 25.07 1.000 25.r1 \!iyri! TlDc opine.r I, PrdPon Td, g mpitrgF 2, PrdPon T6L 8 mpirgcr 3, PrdPort T6t, 8 mpinger 4, Pre/Polt Tst, g /olume Wrbr Collcctd, mL (Vlc) ihd.rd W&rvolumq d (Vw!td) iloirluE Frrdion Molrrd (BWS) ;a Mderlt Wcithl, lMEmd€ (dry) (Md) nzv H20 Empty Silica 816.0 768.0 648.7 1056-8 8S4.7 772.5 65r.2 1066.2 78.7 4.5 2.5 s.4 dzv H20 Erpty Sillca 731.6 772.5 651.2 1066.2 E00. I 775.4 654.0 1076.4 68 5 2.9 2.8 to.2 H20 It20 Empty Silica 800. I 775.4 654.0 1076.4 871.3 780.4 655.5 71.2 5.0 1.5 a2 95.1 4.485 0.132 29.46 84.4 3.980 0.il8 29.45 85.9 4.051 0.120 29.45 30 of 124 pultfrlrce TECHNi(:AL GFOTJIE Runl-RMData L@rtion: Sourcc: Project No,: Drtel Ameresco- Hill Air Force Base - Davis Time Unit Staaus Or - Outlet COr - Outlct CO - Outlet ln dry o/o dty ppmvd Valid Valid Valid 9.9? 12.00 0.00 0.00 0.00 12.0r r r.93 11.97 NOr - Outlet ITIMHC - Outlct ppmvd ppmw Average Cal Gas Concentration (Cya) Pretest System Zero Response Posttest System Zrro Respome Average Zero Resporoe (Co) Pretcst System Crl Rspotrse Posltesl System Cal Response Average Cal Response (Cy) Corrected Run Aver 8:55 8:56 8:57 8:58 8:59 9:00 g:01 9:02 9:03 9:04 9:05 9:06 9:07 9:08 9;09 9: l0 9rl I 9: l2 9:13 9: l4 9:15 9:16 9;17 9: l8 9:19 9:20 9:21 9.22 9:23 9:24 9:25 9:26 9:27 9:28 9:29 9:30 9:31 9:32 9:33 9:34 9:35 9:36 9:37 9:38 9:39 9:40 9:41 9:42 9:43 9:44 9:45 9:46 9:47 9:48 9:49 9:50 9:51 9:52 9:53 9:54 6.65 597.09 9.92 9.93 9.94 9.94 9.94 9.92 9.92 9.89 9.91 9.92 9.94 9.94 9.94 9.93 9.94 9.95 9.94 9.94 9.95 9.97 9.97 9,96 10.00 9.96 r0.00 t0.01 9.97 9.96 10.03 r0.00 9.99 9.96 9.98 9.98 9.99 9.98 10.00 r0.03 10.03 9.99 9.96 9.94 9.97 10.00 10.00 10.03 10.04 9.98 10.02 10.03 9.99 10.02 9.98 9.96 10.01 9.94 9.99 9.97 10.06 10.00 596.88 599.7 598.91 598.82 597.18 599.36 599.03 601.54 597.78 597.38 597.93 596.98 595.73 596.33 s96.95 597.94 597.00 s96.86 599.02 597.54 595.92 594.86 598.15 597.66 598.24 598.07 592.50 592.98 600.69 595.0s 595.91 596.41 595.24 595.30 597.17 598.52 600.91 597.88 596.13 595.73 595.08 594.57 594.31 599.77 596.96 600.1 I 599.30 593.80 599.1 5 595.93 595.84 596.76 597.14 594.60 600.25 594.36 597.01 593.51 600.80 593.77 11.85 0.08 0.04 0.06 I 1.86 I 1.89 l 1.88 6.62 6.62 6.62 6.62 6.6r 6.64 6.63 6.66 6.65 6.6s 6.63 6.62 6.63 6.64 6.63 6.62 6.63 6.64 6.66 6.63 6.65 6.66 6.62 6.68 hb6 6.62 6.62 6.68 6.68 6.66 6.65 6.65 6.65 6.66 6.65 6.69 bb6 6.67 6.64 6.61 6.62 6.65 6.66 6.66 6.67 6.68 6.64 6.66 6.68 6.63 6.65 6.62 6.63 6.72 6.66 6.68 6.64 6.7 | 6.65 s00.00 0.08 l.l5 499.21 484.36 491.79 62.24 50.00 0.16 0.23 0.20 50.30 51.04 50.67 61.03 60.75 60.93 60.67 60.31 59.65 59.86 60.30 60.90 60.72 6l.20 61.14 61.44 61.26 6l.79 61.68 61.88 61.95 61.78 62.08 62.0r 62.33 62.92 63.05 62.5 l 62.35 62.43 62.22 62.39 62.32 62.t2 62.55 62.83 62.90 63.18 62.91 63.06 62.84 62.56 62.85 63.15 63.55 63.63 63.44 63.55 62.54 62.82 62.78 62.43 62.58 62.19 62.93 62.84 63.t2 62.89 63.19 63.31 63.12 63.30 62.91 58.87 100.00 0.90 2.98 1.94 99.38 100.45 99.92 NA 61.69 61.48 61.63 6l.69 61.62 61.60 62.05 62.58 62.02 61.32 61.46 61.71 61.79 6t.72 61.91 62.38 62.82 61.68 62.32 63.29 60.70 59.04 61.58 56.97 61.46 60.06 60.2 r 60.99 60.81 19.90 51.63 55.15 58.49 60.59 6t.52 6t.52 61.14 61.20 57.03 57.28 61.53 61.17 60.1 1 58.2t 56.54 60.50 5r.50 35.08 56.81 55.57 34.29 61.00 61.67 61.78 62.49 60.40 62.60 61.72 61.60 6r.80 3l of 124 Ailfrlrce TECHNifiAL GHOIJP Run2-RMData Lmrtion: Ameresco. Hill Air Force Base - Davis Coutv Soo."", P.^i-.r N^ ' AST-2n2?-r1nn Drae: l2l7l23 Time Unia (}2 - Outlet COr - Outlet C0 - 0utlet lo dry '/" dry ppmvd Valid Valid Valid NOr - Outlet NMHC - Outlet ppmvd ppmw Valid Valid Utrcorrected Rutr Average (C.5) Crl Gas Conc€ntrstion (CMA) Pretest System Zero Responre P6ttest System Zcro RespoNe Average Z€ro Respome (Co) Pretst System Cal R6ponre Posttesl System Cal Response Average Cal Response (Cy) Corrected Run 10.00 12.00 0.00 0.00 0.00 I 1.93 t2 04 9.95 9.95 9.96 9.97 9.96 9.99 10.00 10.00 9.99 ooo 10.02 9.99 10.01 10.01 t0.01 10.04 10.01 9.99 10.01 10.02 10.02 10.01 10.01 9.99 9.99 10.01 10.03 10.02 10.07 10.03 r0.02 10.06 9.99 10.01 9.98 9.97 9.98 10.04 9.99 9.99 9.98 10.01 9.98 9.99 10.08 10.00 9.98 9.99 10.00 10.02 10.00 10.02 10.00 10.03 9.99 10.00 10.00 r0.06 10.02 6.63 11.85 0.04 0.09 0.06 I 1.89 11.89 I 1.89 6.58 594. l4 500.00 2.22 0.95 1.59 484.36 478.78 48t.57 617.26 50.00 100.00 0.23 2.98 0.25 2.62 0.24 2.80 51.04 100.45 51.00 99.93 51.02 100.19 61.68 NA l0:20 l0tzl l0:22 l0:23 10124 10125 l0:26 10127 l0:28 l0:29 l0:30 l0:31 l0:32 10:33 l0:34 l0:35 l0:36 l0:37 l0:38 l0:39 l0:40 l0:41 10142 l0:43 10r44 l0:45 l0:46 l0:47 l0;48 10:49 l0:50 l0:51 10:52 10;53 10:54 l0:55 10:56 l0:57 l0:58 l0:59 I l:00 I l:01 I l:02 I l:03 l1:04 l1:05 l1:06 l1:07 l1:08 l1:09 I l:10 ll:ll !ltl2 I l:13 llrl4 I l:15 I l:16 I l:17 1 l:18 I l:19 6.63 6.63 6.63 6.63 6.62 6.63 6.62 6.63 6.65 6.64 6.66 6.61 6.64 6.62 6.6r 6.64 6.63 6.60 6.61 6.63 6.63 6.66 6.65 6.60 6.61 6.61 6.61 6.64 6.66 6.64 6.63 6.67 6.6r 6.63 6.60 6.59 6.60 6.62 6.68 6.63 6.61 6.61 6.64 6.59 6.60 6.68 6.62 6.59 6.60 6.62 6.64 6.59 6.65 6.62 6.65 6.63 6.6s 6.62 6.66 6.63 593.80 595.26 595.47 594.14 594.82 596.53 596.23 59{.61 595.83 596.31 596.68 594. I 7 594.95 592.66 591.97 594.48 595.85 593.50 593.74 592.28 592.15 594.42 597.46 592.98 593.69 589.95 593.19 592.53 597.60 593.56 592.93 597.82 591.08 595.76 590.09 592.67 593.68 594.66 601.40 595.26 592.04 592.90 595.39 590.61 590.45 s95.81 594.52 592.3r 595.96 595.18 593.98 592.7 r 594.53 593.42 59{.20 592.3 l 594.81 593.73 593.89 593.43 61.68 6l.79 62.44 62.58 62.44 62.33 62.45 62.64 62.75 62.89 63.00 62.73 63.06 62.60 62.68 62.69 62.80 63.01 63.32 63.04 63.19 62.84 62.37 62.91 62.87 62.59 62.88 62.57 62.90 62.42 62.83 62.84 62.7 5 62.73 62.76 62.84 62.66 62.7 | 63.04 62.85 62.80 62.52 62.21 62.48 62.67 62.58 62.48 63.21 63.46 63.29 63.38 63.36 63.33 63.52 63.54 63.68 63.27 64.23 64.30 64.t7 61.44 61.33 61.73 6t.20 61.26 60.95 60.81 61.42 61.77 61.73 61.31 57.96 60.20 61.36 6l.00 61.67 61.79 6 t.13 61.10 61.64 61.61 42.98 25.49 62.87 62.04 60.88 61.66 6t.42 60.96 58.58 6r.93 60.62 60.79 61.05 61.42 61.43 61.22 61.45 61.89 60.72 57.11 60.12 62.00 61.94 62.06 62.03 58.1r 58.17 61.33 59.31 58.18 58.82 57.89 60.62 59.87 61.12 60.81 61.20 61. l9 60.63 32 of 124 pultffirlrce TtrCHN]CAL GtrOIJIs Run3-RMData Lcraion: Source: Project No.r Date: Time Utrit Strius 11:45 ll:46 ll:47 I l:48 I l:49 I l:50 1l:51 I l:52 11:53 I l:54 ll:55 ll:56 I l:57 I l:58 I l;59 l2:00 l2:01 l2:02 l2:03 12t04 12:05 l2:06 12:O7 l2:08 l2:09 l2:10 l2:l I lZtl2 l 2:13 12:14 12:15 I 2:16 l2:17 l2:18 l2:19 l2:20 l2:21 12:22 12:23 12t24 12:25 l2:26 12t27 l2:28 12:29 l2:30 12:31 12:32 12:33 12134 I 2:35 12:36 12:37 12:38 l2:39 lZ:40 12:41 12:42 l2:43 12:44 Or - Outlet oh dty Valid 10.03 12.00 0.00 0.00 0.00 12.04 12.00 12.02 9.97 9.96 9.98 9.98 9.97 9.99 9.98 9.98 9.99 10.00 9.99 r0.12 10.03 r0.00 r0.02 10.01 10.04 10.02 r0.02 10.06 10.05 10.02 10.02 10.03 10.0 r r0.01 10.01 10.02 10.05 10.05 r0.03 t0.01 10.04 10.07 10.02 10.03 10.03 10.07 r0.01 r0.06 10.06 10.08 10.07 10.04 10.01 r0.05 10.04 10.03 10.07 10.0 I 10.03 10.02 10.02 10.02 10.01 r0.06 10.08 10.08 10.07 6.64 1 1.85 0.09 0.09 0.09 11.89 1 1.88 1 1.89 6.60 6.59 6.61 6.61 6.65 6.61 6.61 6.63 6.64 6.61 6.64 6.63 6.73 6.68 6.63 6.62 6.63 6.65 6.64 6.63 6.66 6.68 6.67 6.64 6.65 6.61 6.61 6.62 6.61 6.67 6.65 6.64 6.61 6.65 6.68 6.63 6.62 6.66 6.67 6.60 6.63 6.66 6.65 6.64 6.63 6.60 6.67 6.64 6.64 6.67 6.6r 6.64 6.60 6.62 6.64 6.6t 6.67 6.67 6.65 6.64 s96.62 500.00 0.9s 0. t0 0.53 478.78 489.42 484. l0 616.35 62.66 50.00 0.25 0.33 0.29 51.00 51.55 51.28 61.l6 62.21 62.46 62.60 62.75 62.67 63.29 63.28 63.62 63.62 63.56 63.32 63.39 63.1 1 62.96 63.37 63.45 63.06 63.20 63.03 62.37 62.34 62.53 62.68 62.65 62.62 62.81 62.96 62.98 62.90 62.75 62.33 62.36 62.50 62.97 62.59 62.65 62.55 62.56 62.37 62.45 62.39 6r.92 61.95 62. l8 62.02 62.4t 62.55 62.35 61.98 61.8{ 62.23 62.2t 62.20 62.86 62.92 62.52 62.47 62.34 61.95 62.18 100.00 2.62 2.81 2.72 99.93 98.94 99.{4 NA 61.92 62.44 63.26 61.93 61.74 60.43 62.r3 62.08 62.23 61.91 62.07 56.26 61.81 57.77 59.92 61.14 60.90 61.07 62.00 62.09 61.15 60.85 60.72 60.70 61. l8 60.77 60.41 60.61 59.09 58.r3 59.66 59.83 59.48 59.81 58.91 58.92 59.23 58.07 59.81 57.81 6 r.18 6r.05 50.25 58.10 60.34 59.65 60.73 59.69 60.29 61.01 61.01 60.40 56.00 57.98 60.80 60.87 61.31 60.05 50.25 58.10 COu - Outlet CO - Outlea 7" dry ppmvd NOr - Outlet NMHC - Outlet ppmvd ppmw Valid Valid Uncorrected Run Crl Gas Concetrtrstion (CMA) Pretesl System Zcro Response Posttest System Zero Response Average Zero Rcsponse (Co) Pretest System Cal Rspome P6ttesl System Cal Responsc Average Crl Response (CM) Corrected Rutr 590.87 590.44 595.71 592.23 596.75 593.46 595.90 595.96 593.53 593.31 596.12 593.88 605.4 I 597.15 599.08 594.24 594.98 598.00 595.59 593.43 593.06 597.37 598.4 t 597.90 598.84 595.18 594.09 595.41 595.46 596.53 s97.89 s96.02 593.71 598.39 600.68 600.04 595.26 596.87 600.21 590.67 596.42 598.71 598.35 598.52 s96.78 598.77 600.54 598.01 599.74 597.70 593.12 596.74 597.09 s97.95 598.04 596.14 60r.36 598.60 598.3s 598.52 33 of 124 purtErre TECHNICAL GFIOUP Emissions Calculations Location Ameresco, Hill Air Force Base - Davis County Souraa Project No. AST-2023-4300 Run Number Runl Run2 Run3 Average Date Start Time Stop Time t2l6l23 12/6123 13:53 15:10 14:54 16:ll t2t6l23 l2:30 l3:31 Engine Data Engine Manufacturer Engine Model Engine Serial Number Engine Type Engine Date of Manufacturer Engine Hour Meter Reading Jenbacher JGS320 1238786 Spark Ignition - 4SLB 2017-01-12 34,476 DOM EMR Generator Output, kW Engine Brake Work, HP Maximum Brake Work, HP Engine Load, % Ambient Temperature Relative Humidity, o/o Barometric Pressure. in. Hg 998 983 r,364 r,345 1,350 1,350 l0l 100 48 47 60 60 25.51 25.51 Gen OP EBW MaxEBW EL Te.o RH Pb 950 1,300 1,350 96 45 60 25.51 1,002 r,371 1,350 102 47 60 25.51 Input Data - Outlet Moisture Fraction, dimensionless Volumetric Flow Rate (Ml-4), dscfm BWS Qs 0.115 2,484 0.118 2,49r 0.120 0.1 18 2,477 2,484 Calculated Data - Outlet Oz Concentration,%o dry co, 10.12 10.08 9.92 10.04 COz Concentration, 7o dry cco, 7.86 7.89 7.92 7.89 CO Concentration, ppmvd CO Concentration, ppmvd @ 15 %:o Oz CO Emission Rate, lb/hr CO Emission Rate, ton/yr CO Emission Factor, g/HP-hr Cco Cco",t ERco ERcorpv EFco 550.00 301.03 6.0 26.1 2.1 567.86 309.67 6.2 27.0 2.0 570.10 562.66 306.32 305.68 6.2 6.1 27.0 26.7 2.1 2.1 NOx Concentration, ppmvd NOx Concentration, ppmvd @ 15 o/o Oz NOx Emission Rate, lb/hr NOx Emission Rate. ton/yr NOx Emission Factor, s/FIP-hr CNo* CNoxct5 ERNo" ERNo*rpv EFNo* 77.72 42.54 1.4 6.1 0.48 74.09 40.41 1.3 5.8 0.44 73.84 75.22 39.68 40.87 1.3 1.3 5.7 5.9 0.44 0.45 NMHC (as C:Ha) Concentration, PPmvd NMHC (as C:Ha) Concentration, ppmvw NMHC (as CrHs) Concentration, ppmvd @ NMHC (as CrHr) Emission Rate, lblhr NMHC (as C:Hs) Emission Rate, ton/yr NMHC (as C,Hs) Emission Factor, g/HP-hr Cuprnc C*uHc* CNprsc"r s ERNrr,arc ERmurcrpv EFr.n"crc 125.07 l10.69 68.45 2.1 9.4 0.74 n2.66 99.37 61.44 t.9 8.4 0.64 113.37 I17.03 99.77 103.27 60.91 63.60 1.9 2.0 8.5 8.8 0.64 0.67 15 o/" O, 35 of 124 pultErre TECHNICJAL fiTiOIIP Method I Data Locrtion Amr6co. Hill Air Force Be - Drvis Soufts U.it 5l Endnc 3 - Blcnd€d Fuel Projd No. AST-202.1-{300 Dac lA06123 sr&r w1a - Trsvcrse Point o/" nI Dimd€r Distuce 'rom inside ndl outside of I 3 d 6 1 8 9 l0 ll 3.2 10.5 19.4 67.7 80.6 89.5 96.E 0.50 1.37 2.52 4.20 8.80 r0.48 11.64 12.50 3.t2 4.27 5.95 10.55 t2.23 13.39 t4.25 DoctOri€ntrtion: Vdical ouct naig,, ---tiiilili- Distue from Fe wrll to Orrid. of pon,----iiJ6-io Nippl* Lngti, ------3- in oepttr of ourt: -ili0--- in Cross S(lionrl A(s of Du.t, 092 ft' No, ofT6t Pofrs: 2 Nuffir or K*qrngr pcr ro,n,,--l- ,*,** ^,----ll-nDistue A Dr( Dim".,r----ll-(.usr be > 0.s) Distme B: 4.7 ft Disrme B Dud Dim^,---i--1.rrr b., z1 Mirimum Numb€r ofTrrvene Points: 16 Aod Numbrr ofTrrv".r" Poiot,, -----G- Mesurer (Inirial ed Date):_PeBlljzl4_ Rsiser otritiel ud Dxe): RBB 1215/23 I-l .*t- I I-l r' ''i "i_ LocAttoN ots'l mvf,Rst PotNTs Number ol tavffi points on a diwter I 3 { 6 1 8 9 l0 ll t2 2 3 {s 6 1 t 9 lo il l2 14.6 85.4 6.7 25.0 75.0 93.3 4.4 14.6 29.6 ?0.4 85.4 95.6 3.2 r0.5 19.4 32.3 67.7 80.6 89.5 96.8 2.6 8.2 14.6 22.6 34.2 65.8 77.4 85.4 91.8 97.4 z.l 6.7 I 1.8 17.7 25.0 35.6 64.4 750 82.3 88.2 93.3 s79 *Petcenl ol stac* dianeler from inside wal] to travese poinl Slack Diagram A = 2.9 ft. B = 4.7 ft. Depth of Ducr = 13 in. CrNs SacfioMl Are, Oownstream Disturbance aaoooooo Upstream Disturbance NtAtre T'ECHNIC;AL (lFIOLJP Cyclonic Flow Check Location Ameresco, Hill Air Force Base - Davis County Source Unit 5l Ensine 3 - Blended Fuel Project No. AST-20234300 Date 1216123 3 Sample Point Angle (AP:0) I 2 3 4 5 6 7 8 9 l0 u t2 13 t4 15 16 Averaqe 3.6 37 of 124 lllaErrrce I-E(;11 Ni(.)AL G'{(iUP Field Data Method 2Data Location Ameresco, Hill Air Force Base - Davis County Source Unit 5l Ensine 3 - Blended Fuel Project No. AST-2023-4300 I t2l6/23 VALID 12:35 12:45 Pass 2 tzt6t23 VALID l3:58 l4: l0 Pass 3 1216123 VALID I 4:50 15:07 Pass al I 3 4 5 6 7 I bl , 3 4 5 6 7 8 2.30 2.30 2.40 2.40 2.40 2.40 2.45 2.40 2.40 2.40 2.40 2.40 2.40 2.50 2.50 2.40 885 885 885 886 887 887 889 889 885 885 886 886 886 889 889 890 2.30 2.30 2.30 2.30 2.40 2.40 2.50 2.50 2.30 2.30 2.50 2.50 2.50 2.40 2.40 2.40 865 865 865 867 867 867 865 865 869 869 869 869 869 869 869 870 2.30 2.30 2.30 2.40 2.40 2.40 2.s0 2.30 2.30 2.30 2.40 2.40 2.40 2.50 2.50 2.30 866 866 866 867 868 868 868 870 870 872 868 869 869 869 869 870 Square Root of AP, (in. \trC)rn (AP)t" Average AP, in. WC (AP) Pitot Tube Coellicient (Cp) Barometric Pressure, in. IIg (Pb) Static Pressure, in. WC (Pg) Stack Pressure, in. Hg (Ps) Average Temperaturg oF (Ts) Average Temperaturg oR (To MeasuredMoistureFraction (BWSmsd) Moisture Fraction @ Saturation (BWSset) Moisture Fraction (BWS) 02 Concentration, To (O2) CO2Concentretion,9/o (CO2) r Weight, lbflb-mole (dry) (Md) \Yeight, lbflb-mole (wet) (Ms) Velocity, fUsec (Vs) VFR at strck conditions, acfm (Qa) VFR at standard conditions, sclh (Qsw) VFR at standard conditions, scfm (Qsw) r.550 2.40 0.840 25.5r 0.02 25.51 886.8 1346.5 0.1 15 1.000 0.1 15 10.12 7.86 29.66 28.32 152.0 8,404 168,514 2,809 2.484 1.547 2.39 0.840 25.51 0.01 25.51 867.4 1327.1 0.1 18 1.000 0.1 l8 10.08 7.89 29.67 28.29 150.6 8,33r 169,476 2,825 1.541 2.38 0.840 25.51 0.02 25.51 868.4 1328.1 0.120 1.000 0.1 20 9.92 7.92 29.66 28.27 1 50.1 8,304 168,807 2,8r3 1.546 2.39 0.840 25.51 0.02 25.5r 87 4.2 1 333.9 0.1 18 1.000 0.1 18 r0.0 7.9 29.66 28.25 150.9 8,346 168,932 2,816 38 of 124 Al61rce TECHNICAL GNOU> Method 4 Data lrcrtion Amer6co. Soure Proied No. D.r.md.d.l RWS Console Urits / Mdhod fi3 M4 lon No. )rte itrtus itsn Time lnd Time lun Timq min (0) I t2t6t23 VALID l2:30 l3:30 60 M5 2600 2 t2/6t23 VALID l3:53 l4:53 60 3 tzl6t23 VALID 15:10 l6: l0 60 M5-2600 vlder CorGtion Frdor (Y) )rifice Cilibrrtion vdue (AH @) ils Vrcuum, in. Hg ,o.r lf,rk Chmk- fr3/min (.1 mrr vrc.l 0.976 r.957 l5 0 00i 0 976 r.957 l5 0.002 0.976 1.957 l5 l{derVoltrme, ft3 0 5 l0 l5 20 25 v) 35 {0 45 so 55 60 rar.l Md.r Vnhm. ftl 293.735 296.829 299.785 302.689 305.992 308.721 3r r.857 314.856 317.755 320.658 323.641 327.0r1 330.524 36.789 330 7l 5 333.752 336.826 339.650 342.751 34s.852 347.910 350.64r 353.751 356.845 359.748 362.65S 365.762 35 047 365.928 368.752 371.824 374.957 378.02r 381.01 1 384.21 5 387.365 390.468 393.378 396.521 39S.488 402.759 36.831 'emperrturq oF 0 5 l0 l5 20 25 30 35 ,10 t5 5{) 60 \verxge Tdperrturg oF lverrgc T@perxlorq oR finihum Impe]sturq "F Gm) (Tm) Mder 62 62 62 62 62 62 62 6l 6l 62 63 63 63 62 522 6l 63 Probe Filtcr Vac Ium lmp. Exi( 59 s8 56 54 54 54 54 54 53 53 53 53 5 5 Meter 68 68 68 68 70 70 7t 72 72 72 'tt 7l 7t 531 68 72 Probc Filter Vtcuum 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 mp. Oril 56 56 55 55 54 54 56 56 56 57 5l 57 57 56 54 57 Mder 71 7l 7t 72 72 72 7t 7t t0 70 70 70 7l 7t 531 70 72 Prcbe Filtr Vrcuum 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 Imp. Eril 56 56 56 55 54 54 54 54 53 55 55 56 56 55 53 irrometric Presurq in. Hg {der Orifie PBstrre, io. WC Ylder Pmsurc, itr. Hg (Pb) (AH) (Pm) 25.51 1.000 25.58 11 n50 25.51 1.000 25.58 29.083 25.5t 1.000 25.58 [nalysis Type mpitrgcr I, Pre/Post T6t, g mpinger 2, Pre/Post Test, g mpitrg€r 3, Pre/Post T6t, g mpinger 4, PrefPost Tst, g /olume Wrter Colld€d, mL (Vlc) ;rrndrrd Wrter Volumq d (Vwstd) [oisttrrc Fridioo Mqsured (BwS) ;s Moletrlrr Weight,lbflFmole (dry) (Md) )CM C.lihrulinr ahmk Vdu€ (Yor) Cravimeri( H20 H20 Empty Silica 733.1 74S.6 640.2 948.9 795.9 756.4 643.5 961.9 62.8 6.8 3.3 13.0 H20 H20 Empty 795.9 756.4 643.5 862.1 761.7 646.7 s69 I 66.2 5.3 3.2 H20 H20 Empty Silica 742.6 76t.7 646.7 816.0 768.0 648.7 73.4 6.3 2.0 85.9 4.051 0.1 l5 29.66 47 82.6 3.89s 0.1 18 29.67 0.8 88.0 4.150 0.120 29.66 40 39 of 124 AlErce TECHNlCAL GHOII P Runl-RMData Lmstion: Source: Project No.: Dale: Time Unit Or - Outlet CO, - Outlct CO - Outlet lo dty Yo dty ppmvd Valid Valid Valid NOr - Outlet NMHC - Outlea ppmvd ppmw Valid Valid Uncorrected Run Average Cal Gas Concentration (Cya) Pretest Syst€m Zcro Responsc Posttesl System Zcro Respome Average Zero Resporoe (Co) Pretest System Cal Response P6ttest System Cal Response Average Cal Roponse (Cy) 12.00 0.13 0.17 0. l5 11.85 11.58 11.72 12.00 0.02 0.07 0.05 l 1.87 r 1.78 I 1.83 537.24 500.00 t.44 0.10 0.77 500.14 476.81 488.48 76.03 50.00 3.89 2.08 2.99 49.97 49.99 49.98 r00.00 0.90 0.92 0.9r 99.90 100.30 100. l0 12t3O l2:31 12:32 l2:33 12134 12135 12:36 12:37 l2:38 12:39 12140 lZt4l 12142 12i43 12:44 12:45 12:46 12:47 l2:48 l2:49 l2:50 l2:51 l2:52 l2:53 l2:54 12:55 l2:56 l2:57 12:58 l2:59 l3:00 l3:01 13toz 13:03 l3:04 l3:05 l3:06 l3:07 l3:08 13r09 l3; l0 l3rll 13tlz 13: l3 13r l4 1 3:15 1 3:16 13tl7 13:18 13:19 l3:20 l3:21 l3:22 l3:23 13:24 l3:25 l3:26 13t27 l3:28 '13:29 9.92 9.96 9.95 9.89 9.90 9.95 9.93 9.89 9.90 9.94 10.01 9.86 9.91 9.99 9.95 9.87 9.91 9.95 9.95 9.90 9.90 9.95 r0.00 9.95 9.92 9.94 9.96 9.91 9.89 r0.00 9.9r 9.88 9.90 9.87 9.89 9.89 9.88 9.87 9.85 9.89 9.85 9.89 9.89 9.87 9.85 9.89 9.89 9.90 9.88 9.87 9.88 9.89 9.89 9.86 9.86 9.85 9.85 9.84 9.88 9.86 7.70 7.67 7.74 7.76 7.71 7.65 7.68 7.79 7.73 7.67 7.75 7.74 7.72 7.75 7.69 7.78 7.7s 7.72 7.78 ?.73 7.7 t 7.67 7.82 7.75 7.70 7.76 7.73 7.72 7.83 7.78 7.74 7 .77 7.74 7 .77 7.79 7.78 7.77 7.75 7.81 7.74 7.81 7.83 7.79 7.76 7.79 7.77 7.79 7.79 7.78 7.79 7.81 7.80 7.79 7.78 7.78 7.79 7.78 ?.84 7.82 532.40 531.7 521.61 523.50 533.22 532.68 522.95 524.37 533.12 533.85 531.72 521.57 532.05 535.94 524.07 52t.72 530.10 533.10 527.37 521.69 530.r2 533.34 528.40 522.58 526.88 531.03 538.33 536.54 538.19 542.72 542.14 541.59 541.70 540.86 544.08 545.75 543.94 545.09 543.71 546.85 543.83 547.40 547.94 547.66 544.72 545.88 542.59 543. r0 543.31 546.25 544.97 544.20 541.90 541.03 542. u 546.02 541.96 541.30 547.83 546.87 79.61 78.00 79.5s 83.35 79.80 ?7.70 78.06 83.32 79.87 77.98 77.26 81.89 80.39 77.56 77.13 82.40 80.62 77.6r 76.90 81.35 81.32 77.71 75.79 79.20 80.88 7?.28 76.30 75.50 75.54 74.92 73.23 73.66 73.26 73.0r 72.89 73.02 73.04 72.67 72.87 73.t7 72.57 72.81 73.t2 73.35 73.85 73.63 73.11 72.72 73.01 73.74 73.92 73.83 73.28 73.08 73.69 74.25 74.22 73.54 73.73 73.39 l 10.85 99.20 97.66 I 14.48 r06.91 96.22 l 10.79 I 15.18 I 13.92 112.33 107.56 80.96 tt5.22 I 12.93 r 10.29 l 17.38 112.90 108.22 I 10.94 l 15.33 112.82 I 10.89 l 10.47 l 10.39 111.53 108.43 108.03 l 10.49 lll.54 I 10.93 104.6 I 105.49 I 15.51 115.40 I 13.94 114.25 113.48 t15.42 1 15.82 I 13.17 tt7.02 I 16.66 I 15.41 I 18.54 tt2.28 r 17.05 1 I 1.80 I 16.45 u3.71 1 16.10 u5.08 u2.85 112.90 64.02 97.04 r 16.97 I 16.13 r 15.78 I 15.47 I 14.69 40 of 124 gltfllrce TECHNICAL GEOIJI= Run2-RMData NMHC - Outlet Locrtion: Source: Project No.: Date: Uncorrsted Run Average Cal Grs Concentrltiotr (CMA) Pretcst System Zero R6ponse P6tt6l System Zero Resporee Average Zero Respome (Co) Pretst System Csl Response Pmttsa System Cal Resporce Average Cal Rapoose (Cy) Corrmted Run l3:53 l3:54 l3:55 l3:56 13:57 l3:58 l3:59 l4:00 14:01 l4:02 l4:03 l4:04 l4:05 l4:06 l4:07 l4:08 l4:09 l4:10 l4:l I l4:12 l4:13 l4: l4 l4:1 5 l4:1 6 l4:17 l4il8 l4;19 14t20 l4t2l l4:22 l4:23 14t24 l4:25 l4:26 l4:27 l4:28 l4:29 l4:30 l4:31 l4:32 l4:33 14:34 1{:35 l4:36 l4:37 14:38 l4:39 l,l:40 l4:41 l4:42 14t43 14144 l4:45 l4:46 l4:47 l4:48 l4:49 l4:50 l4:51 l4:52 Or - Outlet CO, - Outlet oh dry Y. dr! Valid Valid 9.88 12.00 0.17 0.15 0.16 1 1.58 l 1.88 I 1.73 10.08 7.78 543.48 12.00 0.07 0.04 0.06 I 1.78 1 1.84 1l 8l Time Unit Status CO - Outlet ppmvd NOx - Outlet ppmvd pplrlw Valid 9.85 9.86 9.87 9.86 9.87 9.88 9.88 9.83 9.78 9.75 9.78 9.86 9.91 9.9r 9.94 9.92 9.92 9.88 9.88 9.94 9.90 9.98 9.91 9.90 9.92 9.88 9.89 9.90 9.90 9.90 9.88 9.88 9.93 9.89 9.91 9.88 9.89 9.93 9.88 9.91 9.89 9.87 9.86 9.89 9.91 9.87 9.90 9.89 9.85 9.87 9.86 9.86 9.87 9.86 9.87 9.87 9.8? 9.88 9.84 7.70 7.72 7.',12 7 .72 7.74 7.72 7.73 7.80 7.79 7.82 7.84 7.81 7.82 7.81 7.79 7.81 7.78 7.78 7.73 7.73 7.80 7.?8 7.85 7.75 7.7s 7.78 7 .75 7 .77 7.78 7 .79 7.79 7.77 7.77 7.83 7.76 7.80 7 .77 7.79 7.84 7.78 7.81 7.78 7.77 7.78 7.81 7.78 7.80 7.80 7.78 ?.80 ?.80 7.81 7.82 7.82 7.81 7.81 7.82 7.82 7.80 541.68 539.39 539.44 538.01 54r.03 539.50 541.69 544.60 548.05 551.97 553.39 551.94 550.75 546.49 542.89 543.02 542.24 54r.24 538.18 537.35 541.28 539.99 545.84 538.10 538.78 540.r9 538.02 540.05 538.55 542.06 537.78 538.31 538.92 542.44 541.61 544.22 542.02 544.1 I 545.86 543.55 s43.83 541.66 542.78 544.52 544.85 547.93 542.46 544.22 546.51 544.76 545.36 545.59 547.11 548.27 546.51 547. I l 545.30 545.15 545.46 548.14 73.39 50.00 2.08 2.02 2.05 49.99 50.40 50.20 62.45 66.43 68.32 68.89 70.82 7 t.32 72.02 72.59 73.71 74.70 74.68 7 4.82 75.54 75.00 75.26 74.96 74.90 75.50 75.48 75.61 75.74 75.33 75.0s 74.45 7 4.77 7 4.41 74.53 74.81 74.38 74.50 74.53 74.64 74.44 74.12 73.43 7 4.33 73.90 74.49 IJ.dI 73.99 73.65 72.89 73.07 73.t5 73.31 72.60 72.80 72.8t 73.18 73.24 73.23 73.38 73.58 73.73 73.44 73.37 73.22 72.57 72.44 72.32 99.37 r00.00 0.92 0.90 0.91 100.30 99.21 99.76 77.40 77.48 76.72 76.77 78.93 75.90 75.63 76.75 76.37 76.56 75.53 74.65 7 4.67 73.61 73.46 74.3t 76.39 73.62 74.61 73.6r 76.59 74.95 76.85 51.38 74.84 75.40 74.89 76.31 74.r2 55.15 109.45 135.06 136.60 134.72 98.24 tt4.2l 123.62 125.61 t22.46 94.20 71.89 93.04 133.48 129.72 t20.7 4 139.48 r37.62 136.9r 134.85 140.47 126.90 38.65 t42.08 136.26 135.68 136.04 139.20 t 34.1 4 t38.13 t37.25 500.00 0.10 -0. l9 -0.05 476.81 480.24 478.53 4l of 124 AIErce TEfi[-{N:CAL GFTJIJF Run3-RMData Lmation: Ameresco. Hill Air Force Base - Davis Counl Source: Unit 51 Enpine 3 Blended Fuel P.oj""t No., Ilete: 1216123 Time Unia O, - Outlet oh dry 9.84 12.00 0.15 0.16 0.16 I 1.88 I1.87 l 1.88 547.71 s00.00 0.19 L95 0.88 480.24 480.69 480.47 570.10 50.00 2.02 r.92 1.97 50.40 48.96 49.68 73.84 99.77 100.00 0.90 0.93 0.92 99.21 99.8{ 99.53 NA 107.80 107.60 107.37 108.84 107.51 107.58 108.04 105.80 106.05 108.57 106.94 73.32 t04.12 106.23 109.66 109.41 106.73 105.35 106.93 107.96 108.0 l 106. l6 104.4 I 105.74 104.56 62.51 53.48 105.11 t02.77 100.14 86.14 102.88 92.25 106. l9 99.18 93.00 104.63 9t.24 81.12 35.51 107.76 l 10.54 109. l I r03.08 107.05 106.20 104.{6 r06.40 r07.94 90.65 96.89 90.32 91.86 93.34 93.45 t01.60 t02.t2 105.54 106.17 COr - Outlet C0 - Outlet Yo dry ppmvd Valid Valid 7.83 12.00 0.04 0.07 0.06 tl.84 tl.82 I 1.83 7.92 NOr - Outlea NMHC - Outlet ppmvd ppmw Valid Valid Uncorrected Run Average (Co5) Cal Gas Concentrstion (CMA) Pretest System Zero Response Posttest System Zero Respo6e Average Zero Resporee (Co) Pret€st System Cal Responsc Posttest System Cal Response Avcragc Cal Response (Cs) 1 5:10 15:l I l5:12 1 5:13 15: l4 1 5:15 15: l6 15;17 1 5;18 l 5:19 l5:20 l5:21 I5:22 l5:23 I5:24 l5:25 l5:26 l5:27 15:28 l5:29 l5:30 l5:31 l5:32 l5:33 l5:34 l5:35 l5:36 l5:37 l5:38 l5:39 l5:40 l5:41 15:42 15:43 15:44 15:45 l5:46 15:47 l5:48 l5:49 l5:50 l5:51 L5:52 l5:53 I 5:54 l5:55 l5:56 l5:57 l5:58 l5:59 l6:00 l6:01 l6:02 l6:03 l6:04 l6:05 l6:06 l6:07 l6:08 l6:09 9.80 9.80 9.80 9.80 9.80 9.80 9.80 9.80 9.82 9.84 9.87 9.84 9.82 9.89 9.85 9.86 9.87 9.86 9.86 9.86 9.88 9.80 9.75 9.78 9.78 9.77 9.83 9.83 9.85 9.89 9.85 9.85 9.85 9.84 9.87 9.87 9.85 9.88 9.90 9.88 9.84 9.91 9.86 9.87 9.87 9.87 9.86 9.83 9.83 9.87 9.88 9.88 9.86 9.87 9.83 9.85 9.83 9.88 9.85 9.83 7.79 7.80 7.79 7.82 7.81 7.81 7.83 7.82 7.83 7.85 7.90 7.83 7.81 7.87 7.81 7.82 7.84 7.83 7.83 7.83 7.86 7.83 7.86 7.91 7.93 7.87 7.90 7.87 7.85 7.87 7.83 7.81 7.82 7.78 7.82 7.82 7.80 7.86 7.86 7.86 7.79 7.85 7.79 7.82 7.81 7.80 7.82 7.79 7.77 7.81 7.81 7.80 7.81 7.81 7.77 7.81 7.80 7.85 7.82 7.80 549.82 548.93 547.36 546.90 549.20 548.94 547. I I 545.7 4 548.98 552.t4 553.1s 550.98 548.82 5s2.39 548.26 545.19 546.r8 547.36 548.53 s48.00 547.81 548.55 551.31 555.89 559.67 553.78 554.63 551.88 547.89 547.86 546.27 544.65 5{7.88 544. I I 546.50 546.54 5{7.68 546.61 548.93 549.2r 544.51 548.79 543.47 543.67 545.90 544.11 546.09 543.86 542.43 545.04 545.09 545.94 545.31 545.57 544.38 546.47 545.04 548.42. 546.16 545.7 4 66.97 68.24 68.80 69.26 70.37 70.61 70.82 70.11 70.08 ?0.32 70.61 70.69 7 r.l4 7 r.4l 70.91 71.18 7 r.32 7 r.25 71.88 72.09 72.25 72.15 72.96 73.06 73.84 73.63 7 4.36 74.07 73.79 73.01 73.10 73.91 73.73 7 4.25 73.83 73.59 7 4.13 73.76 73.62 73.73 73.50 73.82 73.53 73.50 72.69 73.29 72.73 72.76 72.59 72.76 72.69 72.93 73.25 73.65 73.81 7 4.51 7 4.03 74.t3 73.30 73.05 42 of 124 43 of 124 44 of 124 45 of 124 tfCAMi Engrn! OaL r.crrqi iu Ca tnom sofr rdl lll Sdrh,nB il(r.l ljp{ilbE ld{ !t?q lh Jwtw r5l r f sut lNt f Jwtu.n ?r EIO t-lttwI-ryr 9i 5 f IrHlff -;iii'r OlIrFru. tm 3 T dFr3D rj FS FrrllhlfhrD t?c? t O(aba.Pdri ro u t ffifEtu teo I Tratila rr I I pv."i"l"iEt" trh{ur 6.r ImFWt elu{ luMrF 37'l Orh4! X C)liod ) qlnfrl &lm,lr l C![io E Ctffi I Crruh 9 Ohe. !0 omrlqmr? otffl0qmta qtlrlt Ot,,6tt t'i 4f ,l I 20' 16t 3t'r 20 '' il_ a,, ' 1.!r 22 '.l ?i'l I Gcneral Alarms & Permis3ives Prnl C Slqt ':itrsrrl# (drdhr t go Engine Slalcs/Alarms tupdFuhBB€ ffirud Jqtdldrtryer Jd.rtrPffi OlFw ot Irrla,abe d t.d aLJT6 rudhlfifrtEs ct{a (hnbnt raltfiols.l|r *tlFfr &!rImg.qrFraa LFG(t3 ENOI|E COt'tTrlOI 5'J0. 1060 (BVl RUUWJI -'|m hlusail lm EEEapOl[C. Generator / Electrical Data Errlqfiq cffimo,d.rnrdn I lrctFlr&o pM gy-r U r(W td\itfaptwtffi o*i rm 116rrureaM*|M 7Qfl lvm RrytRtfrqxq Sl M Ealtaavner ll4 o vttt tdbgm'm Plnfrfia 26 u vf bdf''l ft.eqEr 123e o lc gnrrr <aar-taE,^&. nrt Atsm I PEil oifll ' d2 on-! ' 3m i 3sm 3m | 3ogr lctrr..:..-!_- USIltnd I EnginG Oala rurrrrn ir cflrnqesod vii lr{ $nlh.hE ll0r oFr.try lns vrE lit Sewt ul a .f ffLryt rtu z f JBtuHm ir ltrF ilMtfi $u'F llmlffi - ilfii ? OiI{lpltlB tS r .F tnPrq$ ti flil, Fsdlhffb] lu.t lF OsI{}PtUr rrjr t. Vafifni*n ', lNU l .Iillliilii rl8 i. Pyrgmat€r Oata f rn.orG.! Try&. bdN luffiF tz'i rryI qat,ntu 1 t0i, F .1 f L\hfr2 rQ*.r ?ai !1[nqJ r07lf 0F or,6i rF't .'t 1 Ctlffil re i tB r ft[M6 ruAr'r a1 I (ttd, rila p li, tr rrkrB 1n72 F 2 F Q(dlt rG/ ,t z).1qffil, ryc.r ?t 1 lElt, : 1m5 F 1{ r Wttt 16r'r t,e Chr{ -irii ir rrkrB 1n72 F 2 F 0A69 rB.r r:r' qlrr& l0 r@ ,F 18 ,r clffirt ls1 ,r I 1 )o[r{ 1? tf,2 .t l .r i(iru 17 tt7'f t 'r Iqm ll rmA't .r ,r i Ora!fita rfl4 'F 2? I I ryffarl5 tw'r 1f 1 l General Alarms & Permissiveg P.f,t f stry (imrrJfi (t6ffit 3D Engine Status/Alarmi Rfl+NFukbsE offid .ffiuiI6e..eG Jd.alh.Plw. OlPrEe (ll lirtiaua dtd OaaTm f !.4 tartuc tiErdtt Ola &tbnl sdrf lrioar&a rrfin!fr. EF.trireqr.r5*a LFGGS ENqXECO|TIIOLs-tB (sv) . - nuuuiirII khlin6, a,fmntr - rdtultit *lEnrrpnc. Ed6fb5 t[qrry t ddQvltor PlIi\,!h,,iFrgltr Ldrilqwt lltrFr{E ld!fa. tlor@ RwsrFfr t.l Ftmfim hCfrd I 1UXA ff'-- oiiri rm 2fr 0 tvAR m0 it 110 o lrtt 20! 0 ltl 1201 0 Er lXrai t.i (^b rE ar' filI 46 ol 124 T--- RrffiIIhk r-# *ikt ffi Eng,re O.t r6rh f ffi tmrsd i- t^P *rcanrrl lrrm(D..r.{ IE [-- irre JeEln f- r6ii .rlvn T trod rYAm t-'-'r?u+teff I--s!$t0lri T t t Iltrtlla,. I Uqf EnOinG Si.ludAl.m l&ETrn ,lllldFol-r5r':r oalDid (kort Sr*bn f-F Jrak1trirr0 idbhr i Enginc St tur^lrrm ftEEIrn r: hEfrIffi (lu!!aa Orftd S|5oifdi :. fr*lfui l StlraaG.r'boltila 47 of 124 lu.illw l1 Cfll tnoesDM r^,L fil Std (h,nH 1113 0F rtBl'n{ 1a{7q ltt JWtW 1* 2 :F JWLM rlai 'FJwturc 22 Frl Lt rr.t twl si u f rlffirrvr -' ii; i 'r OlTftpar.n tcr T f(Xlrru tl PB fulr*ihnu rlr r !F eutJtMdt rou tE' ffirflrlb . i(,u I rmiffi l!61 Pyrorct€r Drt- f rhiu! G!! T.@.e hk{lffiF izlr 2.r .,6 l lst al .t tt-F 4t n'r 16a !:l- :i:i ?78 tr i 22 'l ?1 1 1a'r Efrrmm I Prntf srp i;ffi.rJd (mwt gtr General AIarms & Permis3iv€c Eogine Statuy'Alarmr tuI* Fo lhnBwE ClvEd Jdatrt|' TryrtuD JMtt8rhre OlPrEi ot Irla,ab€ d(.d G.iTu fdSaihfrt[ Cl{a (*it lryIQ!...a r6tn,.qtrtl[O tIoLtthIr LFGC3 ENOTXE COll1nOL 5J0. fi89 (sv) RU[I[I6 -tm earilaa..r Im ila*ro*ac. i.rc Generator / Eleclical Dat hrqrfiq keorsr** I Hoirrtofirl Pffi lulr9 fl tflritta!lMfe olrr tre l|e|wEHEI]m INolVm nffirHfr4..ry tn 0 Hr tstarl* l1r o l/* ldb${filss fbi/*r 260 rrlar EdFd'l lholti !1740 lt g.Waf15 !r,.u.a ywc itaafr* da r^ l rg ct *im Enqine Oate tro6s@ JWtWI TIttwfwl ttru 19, Ol Tff?{rrh qAw F{dttrtfrkS G.s.li*PdE llftltt* 'Il|ri!filE r! Cfl- ]rjv I,f lfrl T& tB 1!^i 3 f 116z f;' zz tqi goi rtr "- i.ii:,'; rlra f ',1 ?ql ttl i rs lou t. lrau t 90-F - Py.*at"r-Oata f (nru* G.r lryt& *.loffiF 32 1 rqI ft1fl€l rG f 0_F C/ d-Y 2 r6t .r 2 ,a gYligi 1n71'F t F Or.ffi I rur .r 't ic\ffi5 riiir'i A''a CtkG 6 tE: it tt :t Bffir -iirri * ,i-i otffi! ro/1 f ?'f OrrdE 9 rogt 't 3\ 'r qllr.t l0 r65'F !6 t omrr -rorj.i - ,jqffil? rtr{'r ,t'f Qml. l3 16l .r .a 'fqi6*u tM, F ?2 F qhf lt tsr r 1r'r OrlElt rN/ ,r 21 .l q*! t, rur, ,r 8,1 ffiA rBl'F r{ r :t|l*tt 16r t ,'F,ffill lrur r t'l General Alarms & Parmrssives P.d [ $p (;mff.re (ktrd6 t 9m Engi6e StaturAlarmg thldFu ilfi@r* (N!0d JHdwlrTrssi Jf,fafb.. hM OIFi@r orlru.&e drd O.rTm tttdl.rfihlldE 4{ffi fid{Iealr| *t|sf!} sr.Itllaf'.OhF LFOG3 ENdr{ECOXTRoL 5r0- 169 otv, RUUI[1G sfr.*td*.hfilht A'inrn. - .3lauEfil lm :HErhftEt+tE: 86c Gen€ralor / Electncal Dat. affimorolrBd6 IPm Y]-10 M M[u, -ii,sr rru adE Fos ?ol 0 tvln t|wy mn ro Crdioo V(:t .)s o lltt falrttr 2S0 t^b iAo|'f torg o Ltrl 6r.C! /-c Ch Ldr6qfiq Illi Frllmq td\&,r tlol lUlP nrffilAx Fd btilmhlqg rfr{rdd gilnt ffifl 48ofl24 FmlE-9ry hJo(mttlD Fmm F-SO lp f--:;a tii fitl lEif lc.Irrm 49 of 124 50 of 124 Pyrgrcter Date Irh&9G!! TmFUr MrlffiF tlln*r z clrffi J r)lnfr I ohff 5 crlilh 6 qleS qtM I OlNb, l0 Otnff tl qffi12 qrn- 13 o:llta Otrxr t5 Qr4rc qhlrl, -srrllrgEl,,qpro 1t .,{ i i,t 15.t_r{:f 2!'r r8 ,. 9.r- .i,i 4'l -r5 F t! I 22',l 2\ 'l 1t '' GGncral Alarmr & Permis3ivas ' rnl [.gp atmJff (kddbt 9{ Engine Si.tus/Alarms kpdFalhtua6 (Ntd JruISiT@src Jdafbt PtGn OiAru frToFr&r. (I l.a al$Tu flaltrn rrr!-[ cll onh{ tlaqEdn Ht!0, EFtfr ir.iqru'rF LFCG3 ENOINE COITROL 59- tGg(tr) RUrrn16 kc*d *fiPfu -'tm tultt3$ti l(n nffiarclac. n6 Edgrne Dal- Iu.Jrl(n ?O CfI rnooosgm - 1ml iDra Sdth.nB ll0l oFnolryl'nn ?@ lF flt|t l*o + sLrYr ril'l r #B@,e il F$f Lrlrwrwr ,ri f tllHrrl - lru,i 'f O, Tnparffir tc: 1 rF dFis ri ifi, fllrftsriD !.11 4 ,F (bbPdct tntl t, IfflDlr rmo ftSlnir Bo * Generator / Elec{rical Data Hr(rrEt aa*incra*ard' f rronrfr[e Fmr !010 ru td\aiF ,*t& roii rre hrr\mMslk rutolyN n6xFiltqdtcy m 0 tlr E cdovfi r.r{ o v!n! }d56ildi[a turrrlaE 2s5 0 lrilr hcfgl, it-Ort r4eo.lqr (Ena Engrn! O-L rud,liil Z I Cry tn^cspd '- r-&i lFt sdh$h 1t0l Ot4r!,0 l,nr lag lb JwEru re2 r iF JwLfl ira t .F JwA@m zr FtXl ttliwtwl cr z * tlrfi,tfi -' iai:i f ollfiTlrdoE tor a f d66 .3 FIS furlirlntl! llr t , Olalr-Pddr lr 0 + ilrnr$f& rmu t fibliilla I I * Pyrmtcr Datt f rn.!*GE! TryPa LEb'IffiIF qlnff 3 f}l ndrr I okffis &[FGi qhrS Orh{ro I Qln&. l0 onno|li f)ldr t2 qr0r! mrllta qE(r15 @ttqutttff, .Qcitll '*ra}ilqil.-a 2;r r(i r {i l_ -lrar ?9 'f ,E.f ?)t 1!-t 201 ?31 a, I,-J General Alarms & Parmis3ives A rn( L SIE (rffi.rlr(ffirtS Engin. StatuJAl.rmr ftqr6FdU!0hre iHSd Jr*aX? Trr?.&r Jdt t$.r Fm!.n (XPrtgn O T6Fa,&. dld 0.rTran f !d l&nr l-I.d[ ols6l:rt t{eaae Bnqr. qTErf BFag-aqi LFGG3 EN6II{E COiITROL 59- l(bg (r\lY) RUI'II( - -'|m tulrred rm uffirrEaip. Rd Goneratof / Elecirical Daur wrdrfrt &ntrffior*rrBrdn f Erturult Pffr tSO l(rv tfr\,lt r tryr.m ---oiiia rm rerr&EeMEl* zuolvm |mFEtlw tno |t E ca,att/Ar 1.190 lur FdbtxEnEE a.vt z85o ttt rdfli mtrr , Ilt?o /l8t $nf* 6a:(^ ! rc r'& qaf atsn I Ert Oildl Gd.t2 Oiuaf ' U:3m j t= ,- ry -r:=-. t- , lf - 51 of 124 IT m.nFtr! 1 ffi enilr S9d grn (bffi opnd.E I@ Jrafl .rw twl .fthin trlfiart$firfi,CTffi r--iEi--fiii rrir t- rfiI rnfo[-nfi T'_Erfrt f- ra; I rrio lii l- iii;r66 l-16or--lir Enginc E to'a S0r! s.n&fr Otqdig fW Jr 6tn ,ruYl JWfr-F Ln*er}r,mttllr qIffiE D.t r-in i--TtrI tintx5 I rlli TiE T'--?il--_I'T-]fiI rda,l .i'3 i[ r.riilf 6ure If }Eb iti.ii*' t aIIl*Engiru Strtur/Alm CffisT,e Sm,raFuffr3rc mlldrt (}sqi* grl&iili Jflf*kar L.:kiar- Ufrtm 0rffi' 52 of 124 itn f.i, r.: i.,r,,t *it Atsm ! Arr . Oarer (mZ omS , Ugscm i s.nqr : 3ffi !.rn t* ; t5t- 1.:" tfCFBr. Pyrmoter Datr f rh.DsG!) IrW&r ldritffiF 31 | rqI Cyhfr I ,0ij F L\lr& 2 rd, .r oloB J rfl7r 'f ()l.n8l iEl I Olm 5 1€/ r C.![FIE 6 r&{ 'l c\lmfi , ri3.i'r qml $t? f Ctitu g r09d.'r Otirh. l0 r ! Nt 'r qrffr t imz 't Ort!ffu -id6.|'i qrffr It 16l f qJlcta rg{ F q$0115 ' ,Bl I qkEr6 tvt,l qull 17 ruq it ,qlfr$ lffi, r "ffitl 1@2.F q*a ', iuiti Gcnrrsl Alarms & Permiagiv"s PrntE SIS (m!iE(rdhlgQ Engine StatudAlermr krdFdlfirffiilE msd J:tdVHrtf,Eu. Jrra*rftmn OlPrts (x L.r!aa6r. Od t.'a oaTm fudfdftEI-lE ctra od5 tgta-- :..lrryifrtqF?tq'E ]E'#fiiF LFGCl ENOIIIE CO$ITROL lr,- i(bg fiw) eltdntr{i -- k.*td A,ifrrilr. fn'|m a.LUrrs*d lm H;llrlritetit. tua Engrn€ O.ta ru.rrhr. ?! Cna lionow - rru iX $d tbDb llol 0FolT Ln. l$r ltt tr twl 1&2 D f- srwr titi + rv&ego ij ?!lC uHwLw rr ) .F rllmlrY' lrgi !F OifuTir*. rc: r .F OFr.{- i,1 F* filrhrati! tr r f OobF&r tnu ? ticttffrl* tmg l. fmH t1?1L GGncrator / Eleclrical Oala wrElftt &n*fficrdilBrdr I finrrrxr Pffi lwlo l(f, lc\rlE, rwrffi irqJi rm BO.-*h.cabfbE mo lvm EfrirEEtlw fi]C h Eraadoryf,r J'rr o w! tdblllx'IE rtdavul. zr o ulr rdFc' Erq[rr !1160 r4 9,q- t5th]fr1{-5{-s('4 fttI Gcncrar irarms a Fcrmissives P rnr (. SIE fi<lm.ilr (mdert 3s Engine Statu!y'Alarmt k!61F0lhnhiE atcrd Jf,t.lua.Irn?qm .HlS.FhB[ (}tIma.&r. dtd GaaT6 fldhfrLrFl[ CtLOnhl umeLndt !ar*Hr!Q' F*iHFiE Engin! Oata ru,:,|q. f! CfH tnq^csod rioi Etl $n rb,nh l(il oF6r! { l,m ISI }b JWLtn \il2 t JwLfi ttr I I Jwprffio zr ?I9 ilffittr $I f tTNLvrr .- in, t OllffiMa 1ol ., {F (Iftrrd[ 11 frah|,rBa! tt: ? ,lF Odkffit llu * thflilafu tcou t iDE {r I PyrmlGr Oata f r!{u* G.! lUffie. L*r lMtlp J21 t@I (}infr ! rm3 f -l' t Llh&.v 2 16l ,r -5,a Btr0fiI tfl71 t 2 f frln&l t6l I .,4-i qinfi5 rrp.t t rt t cllnh 6 rUr 't a! -l rlrd I iirl 'r riir OrWo l072f 4t ('tDd6 9 j r09( ,r 27 'rqtnd..lo r@s ,r 2(r'c omfl,mz't t'l Ohtrt, rrg |r't qiilt t! r6t 'r .a.,, (,bffll iB{ F ?1 t qrqllS 'mr 11 Qhibla I ru/ .t 2z.l qlao, 17 I 1H. 't ?5'r qtfli , 1Br 'r 11 't ,qlll.lt 16r.r .5'r q:rjl Irur.r 5r LFGG3 ENqNE COflTNOL 5r- t(Eg fiw) ruilttt -'im tUIlYS*€r lm .IffiTBEi&. Rd Genotator / Eleclrical Data Er,lc.ttc, crmffiorixra*r f [lnFtErral P(ffi 1Ul o l(tY t filtltr rwFffi ---riiui rre norqrEf,k 2030 lvm tmffitrw tao lt E c:nrrrtr tJ{ o vrrr fdb{tttdEs PE V[Et Us 0 rrra! LdcFrd tuOm !1.r0 tr. F r rrF35. ar D- = iE ifE Atsn Pffi Crull Oag2 Ceil!3 Ussmirffi rrytry ryi -ry-. 53 of 124 #E EnglmStnuy'Alm Od.(.BTe BilrdFofffirfi o,ralad Oe.* $bifdi {ilfirhi,J.**SFfurflmr, I ohlt* 54 of 124 55 of 124 LFGGI ENOIIIE COIITROT 5ro- ilr50 (tvv) I RUrfr[iG -- k.*rd *<hFrtu Alor'altr T,* rdturgad rffi tIEffirEnC. i.{a Engrn! D-tt rudlld ? I Cfl| tnooo SgM nrur ltrl sn rlA.nE 1ftil 0tilohT Io! l4l lll JWtW rai 6 ':F &rwr rirr fg*o@o rr IIO uil,Lwr 9r , ?rrilrrr - Hi.r OITnfile 1sc f filtG.e t3 F!*I rrlirftllhLr! rsB iF O.$afr-Fdo.r ru u T ta*tbitfi iou a ISIaE. lti I Pyrometer Data a\h.u, &! I@&! Hoil#MF J? I rry I ffl,n@ t lilil f Cy'ru! 2 rm: ir L][nG 3 il71 'f Oln*l !H1 I CYlnfrS rw t cYkf,A E 1U:{ | otd I ritr ir qlffiE !nt! f Clkih I rO9! -r qild l0 rB7 iF c,h(l!I 161 'l qtr,frl? 'lva'l qro te 16l 't qn.t ta rfl{ f qroaarlS tm r ql-rlo lB/1 qld 17 1u{ 1 Fll tB1 r {|E'lt ,6}'r til! rw:. t General Alarms & Permissives Frrr I Sq iicfrlJo' (r-@hr l stp Engine StatuJAlams tupNFolluErr6 ctdrd JHf ilt Tirlrr0m lmnfrP|r'rn olIFEatu &tx G6T6 fla hti LrDal[ (l{mil n-aeEdt Irrtrli F|iitEt E'Fmafr Gencrator / Elccirical Data tdreqlilt kffic..rrn.ds I HrrF.lom Plml $-U U l(W I d\rlrl.lwle o1&, t& l{$t!EHE|M ,P0 IVA |ktP[fr.qr.r, 1il0 lL &crrovQ. t:oo ttlr f'lEa{Egm Ffaafrta 25 o lff ItcFLE fl!.tolUt I7e o l{. (lr-r- s*r{:; da(bcech *i# arG nN! t.a P3G lgtaAtsln ; PEr , odrat 1uaz 'GdH!sgm I Salr,r 8qs tffi 3Gr Ug lErd hd' ]F;-- LFGG3 ENGIrE CO!|TROL 5lo- 169 {$v) iumnc - -* hdflgl'ri Im HEffiT.IETtr!, trqa sod JW EWl rlliwtlyl tl}tw urr Ol Tilp.r$rr OaFrE{r f{{tlilm*n) O.[lbdrPfrri*iirlhr*fffrffi. ?u CfI' rls lll 1lal tr& l|rr rm i ',f rric iF ir ltlo- s! "f-'iiii .r 1$ I rF i1 f8l rsff lF rou i .1ryqr r!r * Pyrometer Data arh.u5r 6!! Try& !ukr{ Iuffig, Orltor 2 Crlffi J Ol.ntu { OlDfr 6 qffi! Orrrxfr 9 qldt0 q,m.I cfffit, qffi13 otfita q(rl5 Qr.tlt qhnl? ffirr.ffirl q*Il I rer.r z.l IOnmrm --J General Alarms & Permissives trlnt tStS a;cnqJc (?d&ts ss Engine Status/Alarme tuldFolhnBEE odr6d ./Mlb$Til'p.reQ lf,llvhB Pn$ro 0rTry&. ot L.d CarTrm fudlbD fiEdE cfir &nad lltraral{*ar Ei.art* eF15it, B0.mF Gancrator / El€ctricat Oate Ldr iqEq .am'ddorarrhdd I r$iFilt*t nmr rG,0 ff tdl*aptr*r* '*ouii rrc rfirrrr*BdEM 1970 lv& trqx.ry ur o lia RtsrL E ddavdlll! J{90 r t f'lblil'nm' Pnrrr/qE zs o \lra LEcrai ',lirf Qt[r r fln o ,c txrr.itar'(b ac rq ffi AEm ' m O.rnt O.rg2 Oeit! | ur i * r Y= . T--, g-. !-j H -j 56 of 124 Pyrffieter Data f rn.tcGr TfiW&t *.Iu,Merat C)ln0,2 (,tlffiJ ()l.nk I o[ffit Crlna 6 qffin Olndr 9 Olnd..l0 olfftrlt oM1? qhfi13 o|ilta qtnflt, qrdil qr|{t lt 'qr#rl'qr*rr ih*eo '5 'r -14 t 15 .l l! t ?t ?9',f m'F 1l ilr ?1 t gt 201 ?) 'l ll 'r oinerat etermi e iermissives Plnt f SIQ limq.iltr (ffihr t 9* Engine Status/Al.rmi tutd Fd hnkfirtE (mffid JrillurrTry.m ffiltrPffin dftffi frInar&6 dLd OGTs fqrldE rnp.*E o{4ffiil Had{Iqdi. nt'Br : 41.E9lial-at LFCGS ENOINE COIITROL 5r - tolg(w) niirunr;I- sftG*!d *nFinM - &l rrUg.5.ra rmrielnD. EngrnG O.t- |uorl.q ,I CRa tno^ossm ta; itl *d(h,rB 1l0l opnol4 l,ns !& lh &tfr rm 3 't JTJLIVI 1r?6 f #BMo zr tUO L|HWLWI 9?r t rrhrvrjYr - iyt f Ollmffr ts? iF OaFrqe 11 FIE f$rrhranip tm3 tf Giarbal,[dct l{r D !i tHrlal,rlt. im0 * fibtlL. 116 i Generator / Eledrical Oata eFlsarB caffimo,.rr*di I {olrrflrffi, Pm H0 ff td\&. Mrs '--'onai rre h,\dhbslk ruo lvm RilrFHrl,st, 110 tt E daa,tarF ilr o vt* rd.lml'* Fhtrlb ?s 0 rria rd&'s na*t ltrso l.Er gefa A.(brcr.h qllf Gencral AIarms & Pcrmis3iveg Plnt f $e (kfl3.ilr (ddror I 310 Engine StatuCAlarms fkldf(rhhrE (ffir6d ffiftairTrtFet JdirbrPBfl or,t!En o t p.ra.c oa t^.{ G3T* rdldFhp.*r O{. (btlil ulqlEdrr !.r!"!rEipH'n 6iaar*lt! Enginr O.li ,,r,1fl i r ClI tno$:{M rm:r iN Sun thrnh ircl 0p.l!9 l,nn Y& lS Jwttm !8 1 f JWLH \t2A + Jw*@m zl Ptre tlH!fltrfl --etrf lrHw!ff - iir,i rr Ollrn9trd6 tqo f qtu$ 51 Fm flallilnftqp lm3 tf O.rlhFdrf0 1o u !l aidaf*'!- , rsu t *ff 11 a !b ey.o.e.e.b-t" f lnrusG!!rry&. r&! luffilF l? | ^qIGind I lfnl f .l r Lll.&-' 2 rdi'r .t :r qIffi ] lnTr -f 2 f Otlffil l6i'l i{ I ol'nff t icr i rE I ctltrrE6 r@ r {l'l oh& , rlti'r ii ;r tlh*! 1ol?t it q5ffi I r{88 .f ?9 't Olnf !0 t@7 ,r 18 'f orlnffll 1u2 l ttI OlDra,l, lfiF '!F, qii4l ll I rm2 ,r t ,r : qlr*tl lim{ r ?5 f qhrtrl, I !m r l! 1 Qloiltl , 16r .r '8 ,l (rLl- t? I 1U{ 'l 2} 1 0ilrlll i rB, f 11 'f 'alEll ,ra?,F ?'. .obl$ riui:i 4i LFGG3 ENOTTE COflTnOL 5r- i69 (rcv) HUtrI{TI( -I k.*td *hF,tu Arinrnr -'!m AJUttri lm EEfrraElr4. tEd Generator / Electrical Data Ldr(t;Et .€Mmcrontu# I EolFil[q PM r{U ff t0\ilt |ets .-'-u-irir rre notta.If MEFffi tq80 lVm ,omfryq tIo )t Ect r*E Iffo vr,. Fdb{irdm tu vcltr zso l,!tl rEdrrllt .hh tileo.rcr grFl 7 lt (tf c (*a qhl 57 ol 124 lfGI\Ev. aaPlE LFGG3 ENGINE CONT,IOL 5!0- r(xo (rilv) I - tuuutII s.w.*w k.hF,ibr ArIftf in. -'!ffi hatISarr lm ETTIFiEFA. REr rddrlv. 1 | GFU tnom soM r-wr ltl tud(h.nE ll0l ijr$otT l'tr. lrp Ua Jwtwl lftt 2 f Jwlwl tit u i JW&@ro ?r PIXO ur\f,f,wt gis r rtnvuv, -- iii'z .l orTGffi rrqq f (ItPreD i] f,& fialhuatm, rnn f Oael,o.dr ruo f,, ffittBfD rorj *ilare rz8 t Pyromler Oata (.h.ur 6!! Tfr9str! Ek,.lut{draF l? I ^q. Iofnffl lml F -t'F orlru-lz rdi;r lT LUnGI r077'f 4'F altffil !m I .9 | CYlmfi 5 rut i lti r CttffiE 1u?{ | a5 I cvffiI rirj r 'rii;r (lffia \ll? t 4 t Cllnh g r09a -r 2q ,r Ofnfi.l0 im7 'F ra'r qm. tr !h2 -t t 'l qAdt? -r&{'F ,r'i qhtr li 16l-r .n r oIlta rur F ?3 f qt(I. !6r l lt I qld 16 tBt 1 ?2 'lqlr- l, ruz .r ?t I qt:frll I lml r 1. r #19 16? r r.r frfO 'rur i 'ir G€neral Alarmc & Permis3ivcs P.ntC SrA aimri3te (:@hrt g+ Engine Statuy'Alarms tupdFulhnhr.6 8ffid J&ffilrlryoE JdLls.Fri@ Olftwt frLr!l&. dtd O.rls fldbritrfdE cllaa*{ trrurrarada llfrtiua.qbrso oh{tFFt Generator / Electrical Oata c*MoGrR.*i IPffi 9-tr0 l(W Mla oM tm ga.lhtlora. 2ro n tvAn [lgEI il)o ro EElavffc. l-!to l,/l& Plf,\rdt 2ub o Vt llQqfftf tlor o l[r ta.(b/*Et^h tffl-aqcll H(,'F6qu.q tff\tlo lrortds. ntrEfur, tdbgtdm. tfrdFrd gfitri- tfrl c.rut I o.-2 i rffilaffil..-.....--,.-J lnon l it"-; ---.-:J, Enqrn€ D.la rucrrlil lU Cf r6mw - l;* ffr $dh,nB llol r)FaIE ltrri !& llal JsEwI r&r $ JwLwr ril ! fJwft@m -:r IIO uflw['ff g r 'r:LltltYtff - i;ii T (X T!w!U! re c t U frEm r1 FtlC r{dtfrnrlp lnr lf(h&r*frd6 t0 u t: Wdrlrrf* 10u f .lt#trl xt t Pyromter Data t \h.uJ Gr! Tqr?rfr. rrokr6 loffift t2 I ^ry I ftline I IOB F -t 'F cil.nrr 2 rdi :r i 'f Cf[06J rn7)f 2f Dr,6t !ffi-r ,r i Cllffii rg: i 1,j r CtkG6 lu?a r l!'l qld I irit'r nr qffi8 $1? t 1 t qkb 9 r(aE 'r 2t 'rqho. t0 16r 'r 18 'r li:;lr't,mrr roz r r'l ft!tr l? rm 'r n 'r qld ll 16r'r .1 .r qrrtta ior{ F ?t F qfd(l,!5 !ru r rr 1 fut, !u/.r 22 t qnr 17 rgq 'r ?5 1 -qttr3lG i tmr 'F 11 r ,WalS r6r.F .a,t Ot{ Iir:. i .'l General Alarms & Permisives Prnr ( 'sIS CgGJfi(,:@a ef E;91* St"i""/A#;- RqdFotumrro oiGd Icrl ltl, Tip.r&ri Jrl(r 9ara. Frrsn Ol AtBn Ot Ld?arrua ot tra GarTt,l fld frtur tlEqi{a Ofl (}nlnt ul{4rdI#r!. ffllrtm 6il.ltritf Bdrrqfna6 LFGG3 ENOINE COI'TROL 5f,,- t69 (tw) - tumutcr - - - ,ddrlv!-o'r rm .HEHtEilE, RE'I Gcnerator / Elactrical crat C^MffiO,tr{Brdw IPmr 91I? U fl hw|# - J,iiir rrc tudE Bs 1! 0 IVAR trqr*y m 0 ru atlkrf.oep loo r/ra Prrvql 205 o !t llhaqfi. lnqo ,q. 6r f D:f'c t^ 6f.lcft' llcr r.qEc laltar tllglrwl lmm fatpl(lma t6Cfrd gf,rd Lill 58 of 124 LFCe] EXOIEQilIl $rLr& ofi' I SnaoaLHrt*ib L*Odll Engin. St tuJAl.m Odldw L" tutrlf(farlffi (,5trd akd gr&mfatil ,ldflrlsrffir'3t*arfi, Ctn DhNF 59 of 124 60 of 124 6l of 124 #+Engim SEtur/Al.mr CCdET.C nqrFdrlrr-r oil3d (hurt grk Fii iHrErh*fl dfrlnf, Cin 1rlG* ,rnrii' AldmE & Parmi]aivai k&ffiE* ;twF-So Engim st.tur/Alrm clldrdT{t ;r,l fr{frFalmim t:, onE ,llOwr* i'*brfd6 EiErffi, J*rb CEr ilffifir# ,qq1gr'ir 1,, , , 62 of 124 hh --- *+rr-6 , mr Al.rG E Parnirdvra qdE.gD : mecqtdfE\lnD fiEm F€O#+€ion 60- *r&lnl (&.*ro In 'YENtvl.rl .Sls urirErt Lfltovr 63 of 124 ss&fi I Xm Q'drsrn f ilin JwEYn l- r!60.r*uvr r-tnlwkr I au,ffewr t-liuirrlfrtflr r--ia;AHr I rrr 64 of 124 #* F_t 65 of 124 I ir7tota: rlt $BsaE cE l--;;l r@ - i.r:-;;n tiffi;; trx eilicii clt - ?I.f,?Pf,I'lE Etr,? *lr.rII muDt ;lf,t Hrt llrn i rn i osHt i orr.2 i ol3 i u* i: r- *T-:- *:r E-i=9r-::-r I .,! 6 tcHa i rllt .ae ? Gt atf ;-646 ro -- r,rcr----ilrr iliEiil o( cli 06 gll - tfll rn ilt ilt Onxf i qrLz i O.Ilg j U* j -tErF.,.5. -E-:-r 66 ol 124 abn ! art I o.rriil -I2 : o.d! i ucryr1g".litqiF_i.F,-9.= i rratota.- ltt rcrid cE l-oii tc -- E ----I-r ;r'caGril I ir, rco il-ref,ctt iuctu - I rr c tc,ra j rrt !87., ctl cE r--07, tc - rc-r ?3 ?.d6d; i -lil rcl,t ?!G- 0x Cll-ix cl, - T1,1"-t-"" l'"m' ttrr?tararl s EJI' *TLIII arfltErrs EJT? M'lI YEalt E i 574.p nrr *tt f,axr lllElllli I oao'r Flrt nxt ;llr orr2 i od, Ildnrlmi uir lH' 67 of 124 T 68 of 124 69 of 124 70 of 124 oDraoe Te [- urr] Jwtlvl I ur 6 ,rVt,W T tcr l JwFn[ f-r-LrlffErT t to16 I,fi1ft Ir.!r0rc* I tsq!!a!rl: j. I I #!H I luflrxr#+ tudrh I a5 t €rcmso-r l- ffi *roqr I oDrLIId l-,ti #f,{, I !m .0!rr*t' I rei r 7l of 124 l.rF . -.rjl*, -_ 1:!|:". ..--IrL -, 'Ar'' {h I .Jo td{a , rE r8c8 ct cE , ocr, tc - rc--mrr -ciffiril I 33s tco h,E 0(clll rrrcnt - fiflttqlt*!Iflll!tr! I er r ill 'lrl mrt tEr odlrtl oil2 oJrttttcrrr,}Er, tffi lrF I s,r tdta rlt $r?at cIE Iarr'Ellrrr Ylrlr.qliq Flrl nll Abr I!mi g" ffiJ ffi H:' i*. i*","-[-l?ffi 13 of 124 rJ r tGt{ rrt $7 l Gtl tE ffi rc - - Lfr - ai rr 'c-.fEir[i I rrircq ar1eoxci0icL - I& s,zc'l CE ---- i*r-_-Eo rI ,;;i;;; itaer:oK c i oh ct! - 'l-0t?ElrSrttE{D ETIIII YI'IIIIEX BL',rII r,r c iCHa o;{- ro 3ln tE TqN.^H mf ilt ALD t art ogr.ti r ccr,z ot!L:. : NT. T 74 of 124 :i-l' -* l*ffi Oln*t ? 75 ol 124 Alh 76 of 124 LFGGiS ENGTHE Co.l.ttt(,|.. .j i,rF fr 1 |qi ,r, U!,LJ,r. irr,rrnr,rnr,! ENGINE CONTRC,L \ ro talla l(jeneral Alatrrts & Pern- f".rrll:;k{, t,{ r',rralf,rr, # ur{r(nJn, (rr[(Irin F Slqp !:d. .4,',,-'.',..,*-. ..'.*j Fn(]rne Status/Alarn- I*-t-I t.i.I*: t-cI "1i, J"Ei - .,f.*j -i.r I "oi i rfr' I --t!ii i----i!a I --ox [ '- cr*- LFGG3 , ', .l & rhr ,!V k!o6- IaFdfd!r'46R nlEg ta.C llrril Rrqu.{.t I ur Mdral6ni4@ Shultr)Pn I aililro Ji.tgl WBter f.rtrlEr6ru.o ,icldwrtor ll.rturc Or! ftYr!r..itUrg ts0at Mttnre ,$rDo?rturo aA h CNt nt wlrtrn^q IrmFrtrB B*rrI VotEE En.Ifra lrn,iro Eqgna tHon.tol I OR Slotu. Ccne/dror / E ertrrc.t t)rra ;;:""' " "'''' FE*1: :I:;;:;" t:.I.,. ;,t<qB i iii*L'GG*ta Scrk G.od! Scram Usrtr.nd 77 ol lll rFU -OPs ENG'FIE F rrrJlna. f)ilta Lnlttr,;14t-6 09u{lno I,tu JWIM t[[rrEWl rttmlw, lrl hrrtre.turx I unl i*rruO TEpg.* htg, p6Do4 f hrotthr t/iE. ra9 turDo ttttt!$ IiFltlrslar. i,^r.t[ < ( ],6olla,e --ryEn{tr ne art.aL/{.A la. rtr€ r"&rqn'w.6iri;.ltEl' --r, .. rr', ;61rrir 1, -rt' nr{s?^{fr!.ntu:ARC llpa{ ( i..rltsrrto, .. L tectr,(.rt u.lt.! cioie,q- 9'" o.i.:; B.afun\l , d lrnrd6n{6F 5hukir)m f,rrIn /..1.{ MAtd tcr,B...rturs Jr.lll Wdr.r tirr*rbr{r lidLnvr!'.,kr '. '^' . r\,urr.oq,,( r t-r.ruum v(rhl. . ",;,.Phs vduo,e,*qnJrr .... , llil I ucl Mrrlrn f.mFfi5&ro Wiidr,q fentnq.tur tn(&tro ltrug EtrUd, UxsDton Atrhscm I Pl.ntlffi (}Gdr 8qa Goet 2Eqm G6.ol 5Sqrl .l2tcE ,Oa:OgrtO t.tt, .r ' PUrt rlfrr - II - r - fr -l 7ztGl;rt 78 o1' 12,1 oa:to_-a? 79 of 124 80 of 124 8l of124 AlErce TECHNICN L GBQUP Location Ameresco, Hill Air Force Base - Davis QA Data Source Project No. ne3-NaturalGas -4300 Parameter Oz - Outlet COu - Outlet CO - Outlet NOx - Outlet NMHC - Outlet Make Model S/N Ooeratine Ranse Servomex 1400 1420c-2 0-25 Servomex 1400 l4l5c-6 o-25 Thermo 48C 8CTL074507 37 0-100 Thermo 42i'. I 32 l 95897 r 0-500 THC - Outlet 55i 1202108608 0-500 Cylinder ID Zero Low Mid Hish NA NA cc719736 cc719736 NA NA cc719736 cc719736 NA NA scg140339 scg140339 NA NA EB0098461 EB0098461 NA E80098694 EB0098694 E80098694 Cylinder Certifed Values Z.cro Low Mid Hieh NA NA 24 24 NA NA 23.7 23.7 NA NA 4510 4510 NA NA 486.3 486.3 NA 509 509 509 Cylinder Expiration Date Zero Low Mid Hieh NA NA 8lt6l28 8/16128 NA NA 8lt6l28 8lt6l28 NA NA 3125127 3125127 NA NA 6lt9l25 6l19/25 NA 4lr8l29 4118129 4lr8l29 Tvoe of Samole Line Heated Samp Line 82 of 124 AlErceTECHNIGAL CROUP Response Times Location: Ameresco, Hill Air Force Base - Davis Countv Source: Unit 5l Ensine 3 - Natural Gas Project No.: AST-2023-4300 seconds Perameter O" - Outlel COr - Outlet CO - Outlet NOx - Outlet NMHC - Outlet Zero Low Mid Hish 20 NA 20 NA 25 NA 25 NA 20 NA 20 NA l5 NA l5 NA l5 l5 l5 l5 Averase 20.0 25.0 20.0 r5.0 r 5.0 83 of 124 Alt6trcpTECH\ICAL EF.OUP Calibration Data Location: Ameresco, Hill Air Force Base - Davis County Source: Unit 51 Ensine 3 - Natural Gas Project No.: A$?Q?!:4!QQ Date: l2l7l23 Parameter Oz - Outlet COr - Outlet CO - Outlet NOx - Outlet NMHC - 0utlet Exoected Averase Concentration 10.00 10.00 600.00 50.00 100.00 Span Between Low High Desired Span 10.00 50.00 24.00 10.00 50.00 23.70 600.00 3000.00 1000.00 50.00 250.00 100.00 r50.00 250.00 200.00 Low Range Gas Low llioh NA NA NA NA NA NA NA NA 50.00 70.00 Mid Range Gas Low Hioh 9.60 14.40 9.48 t4.22 400.00 600.00 40.00 60.00 90.00 r 10.00 High Range Gas Low Hish NA NA NA NA NA NA NA NA 160.00 r80.00 Actual Concentration (7o or ppm) Zero Low Mid Hioh 0.00 NA 12.00 24.00 0.00 NA I1.85 23.70 0.00 NA 500.00 r000.00 0.00 NA 50.00 100.00 0.00 60.00 100.00 170.00 UDscalc Calibration Gas (Cur)Mid Mid Mid Mid Mid Instrument Response (% or ppm) Zero Low Mid Hioh 0.03 NA l 1.99 23.69 0.09 NA 11.94 23.48 0.1I NA 499. l 5 996.77 0.25 NA 50.60 100.00 0.90 60.1 8 99.38 168.91 Performance (7o of Span or Cal. Gas Conc.) Zero Low Mid Hish 0.13 NA 0.04 1.29 0.38 NA 0.38 0.93 0.01 NA 0.09 o-32 0.25 NA 0.60 0.00 0.00 -0.03 -0.35 0.00 Zero Low Mid Hiph PASS NA PASS PASS PASS NA PASS PASS PASS NA PASS PASS PASS NA PASS PASS PASS PASS PASS PASS 84 of 124 Allfrlrce IEGHNICI\L GR(fUP Location: Ameresco, Hill Air Force Base - Davis County Bias/Drift Determinations Source: Unit 51 Engine 3 - Natural Gas Project No.: AST-2023-4300 Parameter Oz - Outlet COz - Outlet CO - Outlet NOx - Outlet NMHC - Outlet Run I Date l2l7l23 Span Value Initial Instrument Zero Cal Response Initial Instrument Upscale Cal Response Pretest System Zero Response Posttest System Zero Response Pretest System Upscale Response Posttest Svstem Upscale Response 24.00 0.03 11.99 0.00 0.00 12.01 11.93 23.70 0.09 11.94 0.08 0.04 1 1.86 I1.89 1,000.00 0.1I 499. r 5 0.08 2.22 499.21 484.36 100.00 0.25 50.60 0.16 0.23 50.30 5 r.04 200.00 0.90 99.38 0.90 2.98 99.38 100.45 Bias (7o) Pretest Zero Posttest Zero Pretest Span Posttest Span -0.13 -0.13 0.08 -0.25 -0.04 -0.21 -0.34 -0.2r 0.00 0.2r 0.01 -1.48 -0.09 -0.02 -0.30 0.44 NA NA NA NA Drift (7d Zero Mid 0.00 -0.33 -0.17 0.13 0.2r -1.49 0.07 0.7 4 1.04 0.54 Run 2 Date l2l7l23 Span Value Instrument Zero Cal Response Instrument Upscale Cal Response Pretest System Zero Response Posttest System Zero Response Pretest System Upscale Response Posttest Svstem Uoscale Response 24.00 0.03 l1.99 0.00 0.00 11.93 t2.04 23.70 0.09 I1.94 0.04 0.09 11.89 11.89 r,000.00 0.1I 499.15 2.22 0.95 484.36 478.78 100.00 0.25 50.60 0.23 0.25 5 1.04 5 1.00 200.00 0.90 99.38 2.98 2.62 100.45 99.93 Bias (%o) Pretest Zero Posttest Zero Pretest Span Posttest SDan -0.13 -0.r3 -0.25 o.2l -0.2 -0.0 -0.2 -0.2 0.2r 0.08 -1.48 -2.04 -0.02 0.00 0.44 0.40 NA NA NA NA Drift (7o) Zero Mid 0.00 0.46 0.20 0.00 -0. l3 -0.56 0.02 -0.04 -0. l8 -0.26 Run 3 Date l2l7l23 Span Value Instrument Zero Cal Response Instrument Upscale Cal Response Pretest System Zero Response Posttest System Zero Response Pretest System Upscale Response Posttest Svstem Upscale Response 24.00 0.03 11.99 0.00 0.00 12.04 12.00 23.70 0.09 11.94 0.09 0.09 r 1.89 11.88 1,000.00 0.1 I 499.r5 0.95 0.10 478.78 489.42 100.00 0.25 s0.60 0.25 0.33 5 1.00 51.55 200.00 0.90 99.38 2.62 2.8t 99.93 98.94 Bias (7o) Pretest Zero Posttest Zero Pretest Span Posttest SDan -0.13 -0.r3 0.2t 0.04 -0.01 0.00 -0.21 -0.25 0.08 0.00 -2.04 -0.97 0.00 0.08 0.40 0.95 NA NA NA NA Drift (7o) Zero Mid 0.00 -0.17 0.01 -0.04 -0.09 1.06 0.08 0.55 0.10 -0.50 85 of 124 AlErceTECHNICAL GFIOU9 QA Data Location Source Project No. Hill Air Force Base - Davis Parameter Oz - Outlet COr - Outlet CO - Outlet NOx - Outlet NMHC - Outlet Make Model SAI Oneretins Rense Servomex 1400 t420c-2 0-25 Servomex 1400 1415C-6 0-25 Thermo 48C 3CTL074507 3i 0-100 Thermo 42i', 1321958971 0-500 THC - Outlet 55i 1202108608 0-500 Cylinder ID 7*ro Low Mid Hioh NA NA cc7r9736 cc719736 NA NA cc719736 cc719736 NA NA scg140339 sG9140339 NA NA EB0098461 EB0098461 NA EB0098694 880098694 EB0098694 Cylinder Certifed Values Z-cro Low Mid Hioh NA NA 24 24 NA NA 23.7 23.7 NA NA 4510 4510 NA NA 486.3 486.3 NA 509 509 509 Cylinder Expiration Date Zero Low Mid Hioh NA NA 8lt6lz8 8lt6l28 NA NA 8lt6/28 8lt6l28 NA NA 3125127 3/25/27 NA NA 6lt9l25 6n9125 NA 4lt8l29 4lt\l29 4lt8/29 fvne of Samole Line Heated Sample Line 86 of 124 AIErce TECHNICAL CROUTT Response Times Location: Ameresco, Hill Air Force Base - Davis Source: Unit 5l Ensine 3 - Project No.: AST-2023-4300 seconds Parameter Or - Outlet COz - Outlet CO - Outlet NOx - Outlet NMHC - Outlet Zero Low Mid Hish 20 NA 20 NA Z5 NA 25 NA 20 NA 20 NA 15 NA l5 NA 15 l5 l5 l5 Averase 20.0 25.0 20.0 r 5.0 15.0 87 of 124 AlErceTECH\IGAL GF.OUP Location: Ameresco, Hill Air Force Base - Davis County Calibration Data Source: Unit 51 Eneine 3 - Blended Fuel Project No.: AST-2023-4300 Datez 12/6123 Parameter Oz - Outlet COz - Outlet CO - Outlet NOx - Outlel NMHC - Outlet Exoected Averase Concentration 10.00 10.00 600.00 50.00 80_00 Span Between Low High Dpsirpd Snen 10.00 50.00 24.00 10.00 50.00 23.70 600.00 3000.00 1000.00 50.00 250.00 100.00 r 20.00 200.00 200.00 Low Range Gas Low Hioh NA NA NA NA NA NA NA NA 50.00 70.00 Mid Range Gas Low Hish 9.60 r4.40 9.48 t4.22 400.00 600.00 40.00 60.00 90.00 I10.00 High Range Gas Low Hioh NA NA NA NA NA NA NA NA 160.00 r80.00 Actual Concentratioa (o/o or ppm) Zero Low Mid Hioh 0.00 NA 12.00 24.00 0.00 NA 12.00 23.70 0.00 NA 500.00 1000.00 0.00 NA 50.00 100.00 0.00 60.00 r00.00 r70.00 Uoscale Calibration Gas (C-^)Mid Mid Mid Mid Mid Instrument Response (7o or ppm) Zero Low Mid Hish 0.m NA 11.80 24.40 -0.03 NA 1 1.84 24.00 l.l9 NA 496.70 996.83 0.04 NA 51.27 r00.67 0.90 60.41 99.90 169.49 Performance (7o of Span or Cal. Gas Conc.) Zero Low Mid Hioh 0.00 NA 0.83 1.67 0.13 NA 0.68 1.27 0.12 NA 0.33 0.32 0.04 NA 1.27 0.67 0.00 0.01 -0.17 0.00 Zero Low Mid Hish PASS NA PASS PASS PASS NA PASS PASS PASS NA PASS PASS PASS NA PASS PASS PASS PASS PASS PASS 88 of 124 AllErrrce.TECHNIC.AL GROUP Location: Ameresco, Hill Air Force Base - Davis County Bias/Drift Determinations Source: Unit 5l Eneine 3 - Blended Fuel Project No.: AST-2023-43QQ Parameter O, - Outlet COz - 0utlet CO - Outlet NOx - 0utlet NMHC - Outlet Run I Date 1216123 Span Value Initial Instrument Zero Cal Response Initial Instrument Upscale Cal Response Pretest System Zero Response Posttest System Zero Response Pretest System Upscale Response Posttest Svstem Upscale Response 24.00 0.00 11.80 0.13 0.17 1 1.85 I 1.58 23.70 -0.03 11.84 0.02 0.07 1 1.87 I1.78 l,000.00 Ll9 496.70 1.44 0.10 500.14 476.81 r00.00 0.04 5t.27 3.89 2.08 49.97 49.99 200.00 0.90 99.90 0.90 0.92 99.90 100.30 Bias (%o) Pretest Zero Posttest Zero Pretest Span Posttest Span 0.54 0.71 0.21 0.92 0.21 0.42 0.13 -0.25 0.03 -0.1 l 0.34 - 1.99 3.85 2.04 -1.30 - 1.28 NA NA NA NA Drift (%) Zero Mid 0.17 - 1.13 0.2r -0.38 -0.13 -2.33 - l.8l 0.02 0.01 0.20 Run 2 Date 1216123 Span Value lnstrument Zero Cal Response Instrument Upscale Cal Response Pretest System Zero Response Posttest System Zero Response Pretest System Upscale Response Posttest Svstem Uoscale Response 24.00 0.00 11.80 0.17 0.15 l1.58 11.88 23.70 -0.03 I 1.84 0.07 0.04 I1.78 l1.84 r,000.00 1.19 496.70 0.10 -0.19 476.81 480.24 100.00 0.04 51.27 2.08 2.02 49.99 50.40 200.00 0.90 99.90 0.92 0.90 100.30 99.21 Bias (7o) Pretest Zero Posttest Zero Pretest Span Posttest SDan 0.71 0.63 -0.92 0.33 0.42 0.30 -0.25 0.00 -0.1 I -0. 14 - 1.99 -1.65 2.04 1.98 -1.28 -0.87 NA NA NA NA Drift (%) Zerc Mid -0.08 t.25 -0.13 0.25 -0.03 0.34 -0.06 0.41 0.01 -0.55 Run 3 Date 1216123 Span Value Instrument Zero Cal Response Instrument Upscale Cal Response Pretest System Zero Response Posttest System Zero Response Pretest System Upscale Response Posttest Svstem Upscale Response 24.00 0.00 I1.80 0.15 0.16 11.88 11.87 23.70 -0.03 I1.84 0.04 0.07 t 1.84 11.82 r.000.00 1.19 496.70 -0.19 1.95 480.24 480.69 100.00 0.04 51.27 2.02 t.92 50.40 48.96 200.00 0.90 99.90 0.90 0.93 99.21 99.84 Bias (%) Pretest Zero Posttest Zero Pretest Span Posttest SDan 0.63 0.67 0.33 0.29 0.30 0.42 0.00 -0.08 -0. l4 0.08 1.65 -1.60 1.98 1.88 -0.87 -2.31 NA NA NA NA Drift (%) Zero Mid 0.04 -0.04 0. 13 -0.08 0.21 0.04 -0.10 -1.44 0.02 0.32 89 of 124 k --*f,**!-..Accreditation ,162754 Red Ball Technical Gas Service 555 Craig Kennedy Way Shreveport, LA 7'1107 800-5514150 PGVP Vendor lD #G12020 EPA PROTOCOL GAS CERTIFICATE OF ANALYSIS Cylinder Number: Product lD Numbor: Cylinder Pressure: coA # Gustomer PO, NO.: Customer: )c719736 1279tlt r900 PS|G JQ I 19 t36.20200410-0 Certification Date: Expiration Date: MFG Facility: Lot Number: Tracking Number: Previous Certifi cation Dates: )u14t2020 )4116t2024 1c719736.20200810 198506945 calibration standard has b€en certified per the May 201 2 12t531. G1. SMART-CERT Concontrrton Unctrteinty Analytlc.l Principlo A$ayod On ,0:18 o/o t0:12 o/o E8004 1 474.20 1 80504 E80089906.201 90405 EB0097897.201 7'10'tE 071001 2659a c1 3094'10.01 1162980025 08t03t2020 1162960025 07t2312020 This is to certify the gases referenced have been calibrated/tested, and verified to meet the defined speciflcations. This calibration/test was performed using Gases or Scales that are traceable through National lnstitute of Standards and Technology (NIST) to the lnternational System of Units (Sl). The basis of compliance stated is a comparison of the measurement parameters to the specified or required calibration/testing process. The expanded uncertainties use a coverage factor of k=2 to approximate the 95% confidence level of the measurement, unless otheMise noted. This calibration certificate applies only to the item described and shall not be reproduced other than in full, without written approval from Red Ball Technical Gas Services. lf not included, the uncertainty of calibrations are available upon request and were taken into account when determining pass or fall. ,l'** fuw Jasmine Godfrey AnaMical Chemist Assay Laboratory: Red Ball TGS Version 02-J. Revised on 2018-09-17 90 of 124 Airgas Part Number: Cylinder Number: Laboratory: PGVP Number: Gas Code: CERTIFICATE OF AI\IALYSIS Grade of Product: EPA Protocol E02NI99E15A01Dl Reference Number: E8009M61 Cylinder Volume: 124 - Tooele (SAP) - UT Cylinder Pressure: 872017 Valve Outlet:NO,NOX,BALN Certification Date: Expiration Date: Jun i9.2025 153-124623815-1 '144.4 CF 2015 PSIG 660 Jun 19,2017 Certification performed in accordance with "EPA Traceability Protocol for Assay and Certification of Gaseous Calibration Standards (May 2012)'document EPA 600/R-1 2/531 , using the assay procedures listed. Analytical Methodology does not require conection for analytical interference. This cylinder has a total analytical uncertainty as stated below with a confidence level of 950/5. There are no significant impurities which affect the use of this calibration mixture. All concentrations are on a Do Not Use This below 100 NOX NITRIC OXIDE NITROGEN 485.0 PPM 485.0 PPM Balance 486.3 PPM 483.7 PPM G1 G1 +l- 0.8o/o NIST Traceable +l- 0.8o/o NIST Traceable 06t 1 2t20 1 7, 06t 1 I t2017 06t 1 2t20 17 . 06t 1 I t2017 Triad Data Available Upon Request Sionature on file mole/mole basis unless otherwise noted Requested Concentration ANALYTICAL RESULTS Actual Protocol Total Relative Assay Dates CALIBRATION STANDARDS Type Lot !D Cylinder No Concentration Uncertainty Expiration Date NTRM 15060425 PRM 12367 GM|S 1114201604 CC,149859 496.8 PPM NITRIC OXIDUNITROGEN APEX1099237 9.S2PPMNITROGENDIOXIDE/NITROGEN cc507567 4.955 PPM NITROGEN DIOXIDE/NITROGEN The SRM. PRM or RGM noted above is onlv in referenc€ to the GMIS used in the assay and not part of the analvsis. 0.5 1.60/o 2.0Yo May O4,2021 May 29,2016 Nov 14,2019 lnstrumenUMake/Model ANALYTICAL EQTIIPMENT Analytical Principle Last Multipoint Galibration Nicolet 6700 AHR0801550 NO MNO Nicolet 6700 AHR0801550 NO2 imDuriw FTIR FTIR NO2 imDuritv May 31,2O17 Jun 01,2017 Approved for Release 9l of 124 Page 1 of 153-'12462381$1 slruas" an Ail Liquid. cdnpany -J s-'- Airgas USA, LLC 525 North Industrial loop Rmd Tooele, LIT 8+oz4 Airgas,oom E02Nt99E15A0473 SGg14O339BAL 124 - Tooele (SAP) - UT 872019 CO,BALN Reference Number: CylinderVolume: Cylinder Pressure: Valve Outlet Certification Date: 153-401457055-1 144.4 CF 2015 PSIG 350 Mar 25, 2019 0qyR-12r531, uEang thc 6s.y proc.dures l5t6d. Analy{ic.l nol require conacfon lor analydcal lnbtforoncc. Thls cylrder has a toElanalyt-rrd uncartahty as st8ted bslow witi a confidGnco lavel of 05%. ThoG ar6 no fn0lJritcs s,tich 8'figcf thc ugc of thls calibralion mixturo' All @ncfitaliona ars on a vlrlume^.ohma traois unle$ olicilaso notsd. 100 oih. i.c.0.7 +l- 1.Oolo NIST Traccable 0312512019,1510 PPMCARBON MONOXIDE NITROGEN Triad Data Avallable Upon Regueat CERTIFICATE OF AIYALYSIS Grade of Product: EPA Protocol Part Number: Cylinder Number Laboratory: PGVP Number: Gas Gode: AIVALYTICAL RE,SiT.'LTSActual ProtocolConcentratlon Method NTRM 080t2328 I(qLO(l466I 4857 PPM CARBO}.I MONOXIDE/NITROGEN Jun 07,202i1 ANALYTICAL EQI.IIPMENT Hodba MA-510 7EYAW21 LCO CO NOIR Oixon) Mar 13' 2019 ,f i{ Approved for R*Cse 92 of 124 Page I of 153-001a57055-l & PJI.A ffihdE. Accreditation #62754 Red Ball Technical Gas Service 555 Craig Kennedy Way Shreveport, lA 71107 800-551{150 PGVP Vendor lD # G12021 EPA PROTOCOL GAS CERTIFICATE OF ANALYSIS Cylinder Number: Product lD Number: Cylinder Pressure: coA # Customer PO. NO.: Customer: 4B009E694 12423E 1900 PstG -80098694.2021 0405-0 Certification Date: Expiration Date: MFG Facility: Lot Number: Tracking Number: Previous Certification Dates: tat?ot20?1 ,4t1412029 :ts0098694.2021 O4O5 )95 /041 93 SMART-CERT This calibration standard has been certified per the May 201 2 12t531, Gl. -t Anah^ical Measurement Data Available Online. Reference Standard(s) Certifi ed Goncentration(s) Propane Coocontrdon 509 PPtt UncertainV t4 PPM Anelytcrl Prlnclple FTlR Ar..y6d On c/}not2021 Balance E80057205 E80057206.20160107 0511712024 GMIS N2 c3H8 750 PPM 0.634 5647A MKS MKS 2031DJG2EKVS13T 017146467 03124t2021 This is to certify the gases referenced have been calibrated^ested, and verified to meet the defined specifications. This calibration/test was performed using Gases or Scales that are traceable through National lnstitute of Standards and Technology (NIST) to the lntemational System of Unils (Sl). The basis of compliance stated is a comparison of the measurement parameters to the specified or required calibrationnesting process. The expanded uncertainties use a coverage factor of k=2 to approximate the 95% confidence level of the measurement, unless otherwise noted. This calibration certificate applies only to the item described and shall not be reproduced other than in full, without written approval from Red Ball Technical Gas Services. lf not included, the uncertainty of calibrations are available upon request and were taken into accounl when determining pass or fail. Anthony Cyr Assistant Operations Manager Assay Laboratory: Red Ball TGS Version 02-J. Revised on 2018-0917 9f of 124 Al6rceTECHNICAL CROU'-' Location: Ameresco, Hill Air Force Base - Davis County Project No.: AST-2023-4300 NOz Converter Check - Outlet Analyzer Make Thermo Analyzer Model 42i' Serial Number 132195897. Cylinder ID Number 8005833t tUtS/24:I|llH 3fl;3"11",,.n. D,m 48s Prq'Test Date Time Pre-Test Concentration, ppm Pre-Test Efficiency, 7o Post-Test Date l2l7lz3 Time Post-Test Concentration, ppm Post-Test Efficiencv, 7o l3:36 46.21 95 94 of 124 &*PJ!l}*. Accreditation t 62754 Red Ball Technical Gas Service 555 Craig Kennedy Way Shreveport, LA 7'1107 800-55't{150 PGVP Vendor lD #G12021 EPA PROTOCOL GAS CERTIFICATE OF ANALYSIS Crinder Number: Product lO Number: Cylinder Pressure: coA # Customer PO, NO,: Customer: :tsO05E339 130113 1550 PS|G E80058339.202 I 0922-0 Certification Date: Expiration Date: MFG Facility: Lot Number: Tracking Number: Previous Certilication Dates: 1t19t2021 1111812024 - Shreveoort - LA :80058339.2021 0922 )74330E1 standard per EPA€00/R-l 2/531, procedure G2. SMART-CERT This is to certify the gases referenced have been calibrated/tested, and verifled to meet the defined specifications. This calibration/test was performed using Gases or Scales that are traceable through National lnstitute of Standards and Technology (NIST) to the lntemational System of Units (Sl). The basis of compliance stated is a comparison of the measurement parameters to the specified or required calibration/testing process. The expanded uncertainties use a coverage factor of k=2 to approximate the 950/0 confidence level of the measurement, unless otherwise noted. This calibration certificate applies only to the item described and shall not be reproduced other than in full, without written approval from Red Ball Technical Gas Services. lf not included, the uncertainty of calibrations are available upon request and were taken into account when determining pass orfail. ,/ -\ ,rt-z----X I---- Brandon Theus Laboratory Supervisor Assay Laboratory: Red Ball TGS Version 02-J. Revased on 20'l&0$17 Conc.ntretion Uncertalnty AnrMicd Prlnclph Asryod o't 1 U 1 5 n021, 1 1 t05t2021, 1 1 t 1 9t2021 E80069E63.201 91 01 7 E80078072.201 80504 E80043217.20161201 E80085260.201 90 1 02 E801 00438.201 90 1 02 6.01 % 24 0k 28.3 PPM 87,3 PPM 60 9 PPM 410i MKS 2O3,IDJG2EKVS13T MKS 2031 DJG2EKVSl 3T MKS 2031 DJG2EKVSl3T 1162980025 10t01t2021 017146467 09t17t2021 017146467 1012212021 0'17146467 11t19t2021 95 of 124 pultErlrce Projfft No.: Date Analyzer Make: Analyzer Model: Analyzer SN: Environics lD: Component/Balance Gas: Cylinder Gas ID (Dilution): Cylinder Gas Concentration (Dilution), %: Cylinder Gas ID (Mid-kvel): 1400 cc719736 24 EB0093372 Cylinder Gas Concentration Mid-t€vel), %: 10.98 AYerage Analyrr Concentration lo/^\ Injcction I Error ( + 2./.\ Injection 2 Enor I + 2./.\ Injection 3 Enor ( +2%\ I I :t{l oov"O.lo/" 12.09 O.ZYo 'O.lYo -O.lYo 4.76 1.30/o 0.60/0 n.60/0 -O.lo/"-o.to/"0.30/" Mid-Level Grs Calibrstion Dircct to Calibration Gas Concentration to/^\ Injetion 1 Analyar Concentration (o/^\ Injction 2 Analyrer Concentration Injection 3 Amlyzer Concentrrtion (o/^\ Avemge Analyzer Conccntrstion to/^\ Difrerence to/^\ Avcrsge Enor ( +2o/o\ 10.98 10.98 t00 I t .U{l lo 99 0.01 o.10/" 96 of 124 Alrfur=. SOURCE TESTING Mass Flow Controller Calibration Note: The mass flow controller's calibration values are used by the dilution system's operating software to improve accuracy. These calibrations are not necessarily indicative of the systems overall performance. Performance is verified by conducting a Method 205 prior to each field use. calibration Performed By Ryan Lyons Dilution System Make: Dilution System Model: Dilution System S/N: Calibration Equipment Make: Calibration Equipment Model: Calibration Equipment S/N: Flow Cell S/N: Flow Cell S/N: Calibration Gas: Barometric Pr€ssure, mmHg: Ambient Temperature,'F: 9 Scientific 10sLPD/5MM-D/sM,M.15LPM.D/5I 797206;797208 797208 797206 Nitrogen 25.6 72 Mass Flow Controller lD Size, ccm: Make: Model: S/N: #1 10,000 Environics 4040 45s242003 #2 10,000 Environics 4040 455242004 #3 1,000 Environics 4040 455242002 Set Flow True Flow Difference cclmin cc/min Set Flow True Flow Difference cc/min cc/min Set Flow True Flow Difference cc/min cc/min 5% lOlo 20% 30% 40% so% 60% 70% 80% 90% too% s00 502 0.4% 1,000 1,015 7.5% 2,000 2,040 2.O% 3,000 3,060 2.0% 4,000 4,083 2.r% 5,000 5,093 7.9% 6,000 6,110 t.8% 7,000 7,724 1.8% 8,000 8,150 7.9% 9,000 9,172 7.9% 10,000 ro,2L4 2.7% 500 495 7.OYo 1,000 7,074 7.4/o 2,000 2,037 t.9% 3,000 3,0s7 L.9% 4,000 4,071 7.8% 5,000 5,082 7.6% 6,000 5,100 1.7% 7,OOO 7,730 t.9% 8,000 8,1s0 7.9% 9,000 9,t76 2.O% 10,000 70,202 2.O% 50 47 s.8% 100 98 2'4/o 200 199 0.3% 300 301 0.4% 400 403 0.6% 500 504 0.7% 600 606 0.9% 7N 709 t.2% 800 814 7.7% 900 919 2.2% 1,000 7,028 2.8% Date 4/26123 97 of 124 Red Ball Technical Gas Service 555 Cralg Kenno$ Way Shrevepo( LA 71107 800-5513150 PGVP Vendor !D * G1m21 EPA PROTOCOL GAS CERTIFICATE OF ANALYSIS Cylinder Number: Product lD Numb6r: qilindrr Pr€esure: coA# Customer PO. NO.: Customen 480093<t7z 125371 r900 PsrG =wo93372.2o21ofj.Z3-O Cerdfrc.don m: Explradon Dats: MFG Facility: Lot Number: Tracldng Number: Previoue Cerflfi caf on D&s: ,7mn021 17DODO2g -!nt ztsOoS3sl2.2OZ10,6.23 ,s5465SEE standard has been Fr Conccntrdon Uncft inty Anllytcal Prlnclple As€ryed On 01052029 GM|S N2 0ZolnTau)s GMts N2 02 GrOE/2@9 GU|S N2 CO2 This is to certiry he gases referenced have been calibratedtested, and vedfied b meet tle defined specifcations. Thts calibration/Est twE pcrftrmed uslng Gas€s or Scal6 tha are tracealbte liro|.{h Na0onal lnstitJE of Standards and Technology (NIST) b tre lnEnational Syrtem ot Units (Sl), The basis of conlpliance staEd is a comparison of tfie measurcment paEmeters b the specified or t€quir€d calibration/Esting proce6s. The er<panded uncartaartiE use a coverage faclor of l(=2 to apProdmate the 95% cottfidence level of lfie measurement unless offie'YUise noEd. This calibrstion certificate appli€s only to tl6 iEm dscribed and shau not be reprcduced otEr than in tutl without rr^'itten approval fiom Faed Bail Technical Gas SeMceE. lf not induded, the uncarbinty of calibrations are ayaihble upon reque6t and !t ere taken into accourt when determining pass or fail. SMARTCERT % Anthony Cyr Asistant Operetions llanager Assry Laboratory. Red Ball TGS Versbn O2-J. Rwised oo 2018S17 98 of 124 AlErceT'E(]HNI()AL GFOI.JP QA Data Lo""tion Source Unit 51 Ensine 3 - Natural Gas Project No. AST Parameter(s) BWS Drte Pitot ID Evidence of damase? Evidence of -3- -I:--*^-rq Calibration or f,lcnqir ronrrircd? tzl5l23 PT-1208 no no no Date Probe or Thermocouple ID Reference Temp. (oF; Indicated Temp. (oF;Difference Criteria tzl5l23 Pr-704-l 80.0 85.0 0.9o/o t 1.5 % (absolute) Field Balance Check Dete t2t0st23 Balance ID:scale-23 Test Weight ID:SLC-1KG-3 Certified Weight (g):r000.0 Measured Weight (g):999.9 Weight Difference (g)0.I Date Barometric Pretsrrre Evidence of Reading Verified Calibration or Qpnqir recrrired?Weather Station Location tzt5t23 Weather Station NA NA NA Layton, UT I)ate Meter Box ID Positive Pressure Leak Check tzt5t23 M5-2600 Pass 99 of 124 AlErce T'ECHNICAL $FIC]tJP QA Data Location Ameresco, Hill Air Force Base - Davis County Source Unit 51 Enpine 3 - Blended Fuel Project No. AST-2023-4300 Parameter(s) BWS Date Pitot ID Evidence of dqmroe? Evidence of mis-olionment? Calibration or Reoair reouired? tzt5t23 PT-1208 no no no Date Probe or Thermocouple ID Reference Temp. (oF) Indicated Temp. (or;Difference Criteria t2/5t23 Pr-704-1 80.0 85.0 0.90/o r 1.5 o/o (absolute) Field Balance Check Dete t2t05t23 Balance ID:scale-23 Test Weight ID:SLC.1KG.3 Certified Weight (g):1000.0 Measured Weight (g):999.9 Weight Difference (g):0.1 Date Barometric Pressrrre Evidence of Reading Walifiod Calibration or Reneir reouired?Weather Station Location 12/5t23 Weather Station NA NA NA Layton, UT Date Meter Box ID Positive Prcssure Leak Check tzl5/23 M5-2600 Pass 100 of 124 DGM Calibration-Orifices Document lI 6?0.OO4 Revisior 23.0 Effective Dat(v2s/23 lssuinq Department Te.h Serui.es Paq(1of 1 Equipment Detall - Dry Gas Meter Console lD: M5-2600 Meter s/N: 22071022 Critical Orifice S/N: 1330 Calibration Detail lnitial Barometric Pressure, in. Hg (Pb) Final Barometric Pressure, in. Hg (Pb, Averaqe Barometric Pressure, in. Hq (Pb) 25.51 25.48 25.50 Critifcal Orifice lD (Y) K' Factor, ft3.R1/2 / in. wc.min (K) Vacuum Pressure, in. Hg (Vp) lnitial DGM Volume, ftr (Vm,) Final DGM Volume, ftr (Vm, Total DGM Volume. ft3 (Vm) 1330-31 0.8429 13.0 717.434 728.517 11.083 1330-31 "r330-2s 0 6728 15.0 745.717 754.532 8 815 1330-25 1330-19 0 5186 15.0 764.979 771.978 6.999 1330{9 0.8429 0.673 0.519 13.0 728.517 739.631 11120 15.0 754.532 763.392 8.860 160 771.978 778992 7.014 Ambient Temperature, 'F (Ta) nitial DGM Temperature, 'F (Iml) Final DGM Temperature,'F 0mr) Averaqe DGM Temperature,'F ( Tm) 68 63 u u 68 @ 66 65 69 67 69 68 69 69 71 70 68 71 73 72 69 73 75 74 Elapsed Time (O) Meter Orifice Pressure, in. WC (AH) Standard Meter volume, ftr (Vmstd) Standard Critical Orifice Volume, ftr (Vcr) l,,leter Correction Factor (Y) Tolerance Orifice Calibration Value (AH @) Tolerance Orifice Cal Check 10.00 3.50 9.6231 9.3550 0.972 0 003 1.953 0 004 10.00 3.50 9.6276 9.3550 0.972 0 004 1948 0.009 10.00 7.56cl 7.460 0.987 0.011 1.907 0.050 10.00 220 7.5703 7.460 0.985 0 0'10 1.900 0.057 10.00 1.40 s.9440 5.7557 0.968 0.007 2.019 0.062 10.00 1.40 5.9344 5.7503 0.969 0.007 2.015 0 058 1.44 180 1n Veter Correction Factor ff)o.976 )rifice Calibration Value (AH @)1.957 )ositive Pressure Leak Check Yes EouiDment Detail - Thermocouole Sensor Reference Calibrator Make: OMEGA Reference Calibrator Model: CL23A Reference Calibrator S/N: T-197207 Calibration Detail Reference Temp.Disolav Temo Accuracv Difference F .R .F .R o/o 0 68 100 460 528 560 0 66 98 460 s26 558 0.0 0.4 0.4 0 2 2 223 248 )74 683 708 133 223 249 214 683 709 134 00 -0.1 -0.'1 0 1 1 300 400 500 600 700 800 900 1,000 1,100 1.200 760 860 960 1,060 1,160 1,260 1,360 1,460 1,560 1,660 300 399 498 600 701 801 901 1,002 1,102 1,202 760 859 958 1,060 1,161 1,261 '1,361 1,462 1,562 1,662 0.c 0.1 0.2 0.c -0. -0 -0. -0. -0. -0. 0 '1 2 0 1 1 ,l 2 2 2 Personnel 10/27/2023 l0l of124 Calibration By Calibration Date Reviewed By RYAN LYONS AIETEe TEOHNIOAL €FIOUP Location: Ameresco, Hill Air Force Base - Davis County Source: Unit 5l Ensine 3 - Natural Gas Project No.: AST-2023-4300 Datez 121712023 Traverse Point Time o2 (o/o\ Coz (oh\ CO (ppm) NOx (nnm) A-l 2 3 8:47 8:48 8:49 9.94 9.96 9.96 10.0 6.56 6.56 6.57 6.6 593.50 588.77 59t.47 591.2 59.72 60.1 5 60.27 60.0Averase Criteria Met Sinsle Point Sinele Point Sinele Point Sinele Point 102 of 124 pulrErlpe TECHNIL:AL TIBOUP Location: Ameresco, Hill Air Force Base - Davis County Source: Unit 51 Enqine 3 - Blended Fuel Project No.: AST-2023-4300 Date: 121612023 Traverse Point Time o2 (o/o\ Coz (ol CO (oom) NOx (nnm) A-l 2 3 12:20 12:21 12:22 9.94 9.9r 9.93 9.9 7.66 7.70 7.7t 7.7 529.53 53r.21 533.s4 531.4 107.69 1 1 1.82 109.00 109.5Averase Criteria Met Single Point Single Point Sinsle Point Sinsle Point 103 of.l24 104 of 124 ffiF*Alhre Site Specific Test Plan Ameresco Federal Solutions 520 W. Summit Hill Drive, Suite #401 Knoxville, TN 37902 Hill Air Force Base Landfill Gas Fired Power Generation Facility (Unit 51) Davis County, Utah Source to be Tested: One (1) Jenbacher JGS320 RICE (Engine 3) Proposed Test Dates: December 4 & 5,2023 Project No. AST-2023 -4300 Prepared By Alliance Technical Group, LLC 3683 W 2270 S, Suite E West Valley City, UT 84120 li: 105 of 124 All6lpe TECI]NICAL GBOLJP Site Specific Test Plan Test Program Sunmary Resulatorv Information Permit No. Regulatory Citation Source Information UDAQ Title V Operating Permit I100007004 40 CFR Part 60, Subpart JJJJ Source Name One (l) Jenbacher JGS320 RICE Contact Information Source ID Unit 5l / Engine 3 Target Parameters NOx. CO. VOC Tesl Locqtion 75 CEG/CEIEA Air Quality Program Building 737 Hill Air Force Base, UT 84056 Air Program Manager Dr. Erik Dettenmaier erik.dettenmaier. I @us.af.mil (801) 777-0888 Ameresco Federal Solutions 520 W. Summit HillDrive, Suite #401 Knoxville, TN 37902 Operations Engineer Jonathan Driskill jdriskill@ameresco.com (86s) 330-7196 (865) 604-2031 (cell) Test Company Alliance Technical Group, LLC 3683 W 2270 S, Suite E West Valley City, UT 84120 Project Manager Charles Horton charles.horton@alliancetg.com (3s2) 663-7s68 Field Team Leader Robert Burton robert.burton@al liancetg.com (224)3s8-s0ss (subject to change) QA/QC Manager Kathleen Shonk katie.shonk@alliancetg.com (812) 4s2-478s Test PlanlReport Coordinator Colton Basinger colton.basinger@alliancetg.com (972) 93r-7127 Regtlatory Agency Utah DAQ 195 North 1950 West Salt Lake city, uT 84116 Air Quality Engineer Harold Burge hburge@utah.gov (801) 536-4129 Amercsco- Hill AFB, UT 106 of 124 AST-2023-4300 Page i pilt6rrce Site Specifc Test Plan Table ofContents TABLE OF CONTENTS 1.1 Process/Control System Descriptions .....".....'. l-l 2.0 Summar of Test Program........ ......2-l 2.2 Process/Control System Parameters to be Monitored and Recorded ..............' ...............-..2-l 2.3 Proposed Test Schedule .....-.......2-l 3.1 U.S. EPA Reference Test Methods 7 and2- Sampling/Traverse Points and Volumetric Flow Rate.....3-l 3.2 U.S. EPA Reference Test Method 3,A, - Oxygen/Carbon Dioxide....'.... ...... 3-l 3.3 U.S. EPA Reference Test Method 4 - Moisture Content......... ................-...3-2 3.4 U.S. EPA Reference Test Method 7E - Nitrogen Oxides.......... ..................3'2 3.5 U.S. EPA Reference Test Method l0 - Carbon Monoxide.".. .....................3-2 3.6 U.S. EPA Reference Test Method l8 - Ethane... ................---3-2 3.7 U.S. EPA Reference Test Method 25A - Volatile Organic Compounds .....3-2 3.8 U.S. EPA Alternative Test Method ALT-096 - Non-Methane Hydrocarbons....................................-..-.3-2 3.9 U.S. EPA Reference Test Method 205 - Gas Dilution System Certification. ....................3-3 3.10 Quality Assurance/Quality Control - U.S. EPA Reference Test Methods 3A,78 and 10.......................3-3 3.1I Quality Assurance/Quality Control- U.S. EPA Reference Test Method 18 (Bag Sampling Procedure) 3-4 3.12 Quality Assurance/Quality Control - U.S. EPA Reference Test Method 25A ........................................ 3-4 3.13 Quality Assurance/Quality Control - u.s. EPA Reference Method ALT-096 .................. 3-5 LIST OF TABLES Table 2-l: Program Outline and Tentative Test Schedule ...............-......2-2 Ameresco - Hill AFB, UT 107 of 124 AST-2023-4300 Page ii puthrpe T i- (l ri l'i iO ri Gno.,r Site Specific Test Plan Introduction 1.0 Introduction Alliance Technical Group, LLC (Alliance) was retained by Ameresco Federal Solutions (Ameresco) for emission testing services at the Hill Air Force Base (AFB). Portions of the facility are subject to provisions of the Utah Department of Environmental Qualiry, Division of Air Quality (UDAQ) Title V Operating Permit 1100007004, condition II.B.40.e and 40 CFR Part 60, Subpart JJJJ. Testing will be conducted to determine the emission rates of nitrogen oxides (NOx), carbon monoxide (CO) and volatile organic compounds (VOC) from the exhaust of one (l) Jenbacher JGS320 reciprocating intemal combustion engine (RICE) (Engine 3) used for power generation (Unit 5l). Testing will be conducted at two (2) fuel conditions: I ) a blended fuel consisting of Landfill Gas and Natural Gas (percentages of each will be determined based on quality of Landfill Gas being supplied during testing) and 2) 100% Natural Gas. This site-specific test plan (SSTP) has been prepared to address the notification and testing requirements of the UDAQ permit. 1.1 Process/ControlSystemDescriptions The HAFB Main Base is located in Davis and Weber Counties about 30 miles north of Salt Lake City, Utah. The Landfill Gas Fired Power Generation Facility (Unit 5l) consists of three (3) landfill gas fired,4-cycle standard lean bum (4SLB) reciprocating internal combustion engines (RICE): 814 brake horsepower (bhp) Caterpillar 35l2LE (Engine l), 1,148 bhp Caterpillar 35l6LE (Engine 2) and 1,350 bhp, Jenbacher JGS320 (Engine 3). Engine 3 is the subject of this test program. 1.2 Project Team Personnel planned to be involved in this project are identihed in the following table. Table l-l: Project Team 1.3 Safety Requirements Testing personnel will undergo site-specific safety training for all applicable areas upon arrival at the site. Alliance personnel will have current OSHA or MSHA safety training and be equipped with hard hats, safety glasses with side shields, steel-toed safety shoes, hearing protection, fire resistant clothing, and fall protection (including shock corded lanyards and full-body hamesses). Alliance personnel will conduct themselves in a manner consistent with Client and Alliance's safety policies. A Job Safety Analysis (JSA) will be completed daily by the Alliance Field Team Leader. Ameresco - Hill AFB, UT 108 of 124 Ameresco Personnel Jonathan Driskill Regulatory Agency UDAQ Alliance Personnel Robert Burton other field personnel assigned at time oftesting event AST-2023-4300 Page l-l pul6rrpE) TECIlNICAL GNOUP Site Specific Test Plan Smmary ofTest Programs 2.0 Summary of Test Program To satisfu the requirements of the UDAQ permit and 40 CFR Part 60, Subpart JJJJ, the facility will conduct a performance test program to determine the compliance status of Engine 3. 2,1 General Description All testing will be performed in accordance with specifications stipulated in U.S. EPA Reference Test Methods 1, 2, 3A,4,7E,l0,25AorALT-096. Table2-l presentsanoutlineandtentativeschedulefortheemissionstestingprogram. The following is a summary of the test objectives. Testing will be performed to demonstrate compliance with the UDAQ permit and 40 CFR Part 60, Subpart JJJJ. Emissions testing will be conducted on the exhaust of Engine 3. Testing will be conducted at two (2) fuel conditions: 1) a blended fuel consisting of Landfill Gas and Natural Gas (percentages of each will be determined based on quality of Landfill Gas being supplied during testing) and 2) 1007o Natural Gas. Performance testing will be conducted within 90 percant of peak load or at the highest achievable load for the source. Each of the three (3) test runs will be 60 minutes in duration per condition. Concentration data will be combined with concurrently collected oxygen (O2), carbon dioxide (COz), moisture (HzO) and gas velocity data to determine volumetric flow rate (VFR) and mass emission rates of each analyte in units of pounds per hour (lb/hr). Mass emissions will be combined with engine operating load to calculate emissions in units of grams per brake-horsepower hour (g/bhp-hr). If necessary, an integrated sample of stack gas will be collected in a clean, leak-free Tedlar bag for optional ethane analysis offsite via gas-chromatography in accordance with EPA RM 18. If needed, the ethane concentration will be used to correct non-methane organic compounds (NMOC) data to non-methane / non- ethane organic compound (NMEOC) concentrations. NMOC or NMEOC data will be reported for VOC compliance. 2.2 Process/Control System Parameters to be Monitored and Recorded Plant personnel will collect operational and parametric data at least once every 15 minutes during the testing. The following list identifies the measurements, observations and records that will be collected during the testing progr.rm: Load data in units of bhp or kilowatts (Kw) Landfill gas flow rate Natural gas flow rate 2.3 Proposed Test Schedule Table 2-l presents an outline and tentative schedule for the emissions testing program. a a a a a AST-2023-4300 Page 2-lAmeresco- Hill AFB, UT 109 of 124 pul6rpe TECHNICAL GROUP 2.4 Emission Limits Emission limits for each pollutant are below. Site Specific Test Plan Table2-l: Program and Tentative Test Schedule Equipment Setup & Pretest QA/QC Checks Unit 5l One (l) Jenbacher JGS32O 4SLB RICE ID: Engine 3 One (l) Condition Unit 5l One (l) Jenbacher JGS32O 4SLB RICE ID: Engine 3 One (l) Condition Contingency Day (if needed) Unit 51 One (l) Jenbacher JGS320 4SLB RICE ID: Engine 3 TECHNICAL GROUP Site Specific Test Plan &,onmary of Test Programs 2.5 Test Report The final test report must be submitted within 60 days of the completion of the performance test and will include the following information. o Introduction - Brief discussion of project scope of work and activities. o Results and Discussion - A summary of test results and process/control system operational data with comparison to regulatory requirements or vendor guarantees along with a description of process conditions and/or testing deviations that may have affected the testing results. c Methodolog - A description of the sampling and analytical methodologies. . Sample Calculations - Example calculations for each target parameter. o Field Data - Copies of actual handwritten or electronic field data sheets. c Laboratory Data-Copies oflaboratory report(s) and chain ofcustody(s). c Quality Control Data- Copies of all instrument calibration data and/or calibration gas certificates. o Process OperatinglControl System Data - Process operating and control system data (as provided by Ameresco) to support the test results. Ameresco-Hill AFB, UT lll ofl24 AST-20234300 Page2-3 pulhrpe T F C I] N IC A L G R O L-J P Site Specific Test Plan Testing Methodologlt 3.0 Testing Methodolory This section provides a description of the sampling and analytical procedures for each test method that will be employed during the test program. All equipment procedures and quality assurance measures necessary for the completion of the test program meet or exceed the specifications of each relevant test method. The emission testing program will be conducted in accordance with the test methods listed in Table 3-1. Table 3-l: Source Testing Methodology All stack diameters, depths, widths, upstream and downstream disturbance distances and nipple lengths will be measured on site with a verification measurement provided by the Field Team Leader. 3.1 U.S. EPA Reference Test Methods I and 2 - Sampling/Trayerse Points and Volumetric Flow Rate The sampling location and number of traverse (sampling) points will be selected in accordance with U.S. EPA Reference Test Method l. To determine the minimum number of traverse points, the upstream and downstream distances will be equated into equivalent diameters and compared to Figure l-2 in U.S. EPA Reference Test Method l. Full velocity traverses will be conducted in accordance with U.S. EPA Reference Test Method 2 to determine the average stack gas velocity pressure, static pressure and temperature. The velocity and static pressure measurement system will consist of a pitot tube and inclined manometer. The stack gas temperature will be measured with a K- type thermocouple and pyrometer. Stack gas velocity pressure and temperature readings will be recorded during each test run. The data collected will be utilized to calculate the volumetric flow rate in accordance with U.S. EPA Reference Test Method 2. 3.2 U.S. EPA Reference Test Method 3A - Oxygen/Carbon Dioxide The oxygen (Oz) and carbon dioxide (COz) testing will be conducted in accordance with U.S. EPA Reference Test Method 3A. Data will be collected online and reported in one-minute averages. The sampling system will consist of a stainless steel probe, Teflon sample line(s), gas conditioning system and the identified gas analyzer. The gas Ameresco - Hill AFB, UT l12 of 124 Full Velocity Traverses Volatile Organic Compounds Gas Dilution System Certification * Ethane Concentrations will be determined as needed AST-2023-4300 Page 3-l pul6rrrcG) Site Specific Test Plan Testing MethodologtTf CIINICAL GNOLJP conditioning system will be a non-contact condenser used to remove moisture from the stack gas. If an unheated Teflon sample line is used, then a portable non-contact condenser will be placed in the system directly after the probe. Otherwise, a heated Teflon sample line will be used. The quality control measures are described in Section 3.10. 3.3 U.S. EPA Reference Test Method 4 - Moisture Content The stack gas moisture content will be determined in accordance with U.S. EPA Reference Test Method 4. The gas conditioning train will consist of a series of chilled impingers. Prior to testing, each impinger will be filled with a known quantity of water or silica gel. Each impinger will be analyzed gravimetrically before and after each test run on the same analytical balance to determine the amount of moisture condensed. 3.4 U.S. EPA Reference Test Method 7E - Nitrogen Oxides The nitrogen oxides (NOx) testing will be conducted in accordance with U.S. EPA Reference Test Method 7E. Data will be collected online and reported in one-minute averages. The sampling system will consist of a stainless steel probe, Teflon sample line(s), gas conditioning system and the identified gas analyzer. The gas conditioning syst€m will be a non-contact condenser used to remove moisture from the stack gas. If an unheated Teflon sample line is used, then a portable non-contact condenser will be placed in the system directly after the probe. Otherwise, a heated Teflon sample line will be used. The quality control measures are described in Section 3.10. 3.5 U.S. EPA Reference Test Method l0 - Carbon Monoxide The carbon monoxide (CO) testing will be conducted in accordance with U.S. EPA Reference Test Method 10. Data will be collected online and reported in one-minute averages. The sampling system will consist of a stainless steel probe, Teflon sample line(s), gas conditioning system, and the identified gas analyzer. The gas conditioning system will be a non-contact condenser used to remove moisture from the gas. If an unheated Teflon sample line is used, then a portable non-contact condenser will be placed in the system directly after the probe. Otherwise, a heated Teflon sample line will be used. The quality control measures are described in Section 3.10. 3.6 U.S. EPA Reference Test Method 18 - Ethane If needed, the ethane testing will be conducted in accordance with U.S. EPA Reference Test Method 18. The stack gas will be withdrawn at a constant rate through a stainless sample probe, heated Teflon sample line and gas conditioning system and collected in a leak-free Tedlar bag. All samples will be sealed and labeled for transport to the identified laboratory for analysis. The analytical lab once receiving the samples will analyze them using gas chromatography / flame ionization detector (GC/pID) following the analytical procedures outlined in U.S. EPA Reference Test Method 18. The quality control measures are described in Section 3. I I . 3.7 U.S. EPA Reference Test Method 25A - Volatile Organic Compounds The volatile organic compounds (VOC) testing will be conducted in accordance with U.S. EPA Reference Test Method 25A. Data will be collected online and reported in one-minute averages. The sampling system will consist of a stainless steel probe, heated Teflon sample line(s) and the identified gas analyzer. The quality control measures are described in Section 3.12. 3.8 U.S. EPA Alternative Test Method ALT-096 * Non-Methane Hydrocarbons The non-methane hydrocarbons (NMHC) testing will be conducted in accordance with U.S. EPA Altemate Test Method ALT-096. EPA Method 25A is incorporated by reference. The sampling system will consist of a stainless steel probe, heated Teflon sample line(s) and a Thermo 55i analyzer. NMVOC data will be collected in one (l) minute averages. The quality control measures are described in Section 3.13. Ameresco- Hill AFB, UT 113 of 124 AST-2023-4300 Page 3-2 pilt6rpe Site Specific Test Plan Testing MethodologtTf CIiNiCAL GNOLjP 3.9 U.S. EPA Reference Test Method 205 - Gas Dilution System Certification A calibration gas dilution system field check will be conducted in accordance with U.S. EPA Reference Method 205. Multiple dilution rates and total gas flow rates will be utilized to force the dilution system to perform two dilutions on each mass flow controller. The diluted calibration gases will be sent directly to the analyzer, and the analyzer response recorded in an electronic field data sheet. The analyzer response must agree within 2Yo of the actual diluted gas concentration. A second Protocol I calibration gas, with a cylinder concentration within l0% of one of the gas divider settings described above, will be introduced directly to the analyzer, and the analyzer response recorded in an electronic field data sheet. The cylinder concentration and the analyzer response must agree within2o/o. These steps will be repeated three (3) times. 3.10 Quality Assurance/Quality Control - U.S. EPA Reference Test Methods 3A, 7E and 10 Cylinder calibration gases will meet EPA Protocol I (+l-2o/o) standards. Copies of all calibration gas certificates will be included in the Quality Assurance/Quality Control Appendix of the report. Low Level gas will be introduced directly to the analyzer. After adjusting the analyzer to the Low Level gas concentration and once the analyzer reading is stable, the analyzer value will be recorded. This process will be repeated for the High Level gas. For the Calibration Error Test, Low, Mid, and High Level calibration gases will be sequentially introduced directly to the analyzer. The Calibration Error for each gas must be within 2.0 percent of the Calibration Span or 0.5 ppmvlo/o absolute difference. High or Mid Level gas (whichever is closer to the stack gas concentration) will be introduced at the probe and the time required for the analyzer reading to reach 95 percent or 0.5 ppm/% (whichever was less restrictive) of the gas concentration will be recorded. The analyzer reading will be observed until it reaches a stable value, and this value will be recorded. Next, Low Level gas will be introduced at the probe and the time required for the analyzer reading to decrease to a value within 5.0 percent or 0.5 ppm/% (whichever was less restrictive) will be recorded. If the Low Level gas is zero gas, the acceptable response must be 5.0 percent of the upscale gas concentration or 0.5 ppm/o/o (whichever was less restrictive). The analyzer reading will be observed until it reaches a stable value and this value will be recorded. The measurement system response time and initial system bias will be determined from these data. The System Bias for each gas must be within 5.0 percent of the Calibration Span or 0.5 ppmv/%o absolute difference. High or Mid Level gas (whichever is closer to the stack gas concentration) will be introduced at the probe. After the analyznr response is stable, the value will be recorded. Next, Low Level gas will be introduced at the probe, and the analyzsr value will be recorded once it reaches a stable response. The System Bias for each gas must be within 5.0 percent of the Calibration Span or 0.5 ppmv/% absolute difference or the data is invalidated and the Calibration Error Test and System Bias must be repeated. The Drift between pre- and post-run System Bias must be within 3 percent of the Calibration Span or 0.5 ppmv/% absolute difference or the Calibration Error Test and System Bias must be repeated. To determine the number of sampling points, a gas stratification check will be conducted prior to initiating testing. The pollutant concentrations will be measured at twelve traverse points (as described in Method l) or three points (16.7, 50.0 and 83.3 percent of the measurement line). Each traverse point will be sampled for a minimum of twice the system response time. Ameresco - Hill AFB, UT ll4 of 124 AST-2023-4300 Page 3-3 pilr6rpe Site SpeciJic Test Plan Testing MethodologtTECIlNICAL GNCUP If the pollutant concentration at each traverse point do not differ more than 5o/o or 0.5 ppmlO.3o/o (whichever is less restrictive) of the average pollutant concentration, then single point sampling will be conducted during the test runs. If the pollutant concentration does not meet these specifications but differs less than l0%o or I .0 ppm/0.5% from the average concentration, then three (3) point sampling will be conducted (stacks less than 7.8 feet in diameter - 16.7, 50.0 and 83.3 percent of the measurement line; stacks greater than 7.8 feet in diameter - 0.4, 1.0, and 2.0 meters from the stack wall). If the pollutant concentration differs by more than l0%o or 1.0 ppm/0.5% from the average concentration, then sampling will be conducted at a minimum of twelve (12) traverse points. Copies of stratification check data will be included in the Quality Assurance/Quality Control Appendix of the report. An NOz - NO converter check will be performed on the analyzer prior to initiating testing or at the completion of testing. An approximately 50 ppm nitrogen dioxide cylinder gas will be introduced directly to the NOx analyzer and the instrument response will be recorded in an electronic data sheet. The instrument response must be within +/- l0 percent of the cylinder concentration. A Data Acquisition System with battery backup will be used to record the instrument response in one (l) minute averages. The data will be continuously stored as a *.CSV file in Excel format on the hard drive of a computer. At the completion of testing, the data will also be saved to the Alliance server. All data will be reviewed by the Field Team Leader before leaving the facility. Once arriving at Alliance's office, all written and electronic data will be relinquished to the report coordinator and then a final review will be performed by the Project Manager. 3.11 Quality Assurance/Quality Control - U.S. EPA Reference Test Method 18 (Bag Sampling Procedure) The bag sample spike and recovery will be checked as per the procedures outlined in U.S. EPA Method l8 Section 8.4.2. After analyzing all three bag samples, one bag will be chosen and tagged as the spiked bag. This bag will be spiked with a known mixture (gaseous or liquid) of all the target pollutants. The amount that is spiked in the bag is targeted to be within 40 to 60 percent of the target pollutant concertation measured during the analysis. If the target compound is not detected in the bag samples, then a concentration of that compound is spiked at 5 times its limit of detection. The spiked bag, after spiking, is stored for the same period of the time as the bag samples collected in the field to their time of analysis. After the appropriate storage time, the spiked bags will be analyzed three times. The average fraction recovered of each spiked target compound is calculated as per equations outlined in U.S. EPA Method l8 section 12.7. 3.12 Quality Assurance/Quality Control - U.S. EPA Reference Test Method 25A Cylinder calibration gases will meet EPA Protocol I (+l- 2%) standards. Copies of all calibration gas certificates will be included in the Quality Assurance/Quality Control Appendix of the report. Within truo (2) hours prior to testing, zero gas will be introduced through the sampling system to the analyzer. After adjusting the analyzer to the Zero gas concentration and once the analyzer reading is stable, the analyzer value will be recorded. This process will be repeated for the High Level gas, and the time required for the analyzer reading to reach 95 percent of the gas concentration will be recorded to determine the response time. Next, Low and Mid Level gases will be introduced through the sampling system to the analyzer, and the response will be recorded when it is stable. All values must be less than +/- 5 percent of the calibration gas concentrations. Mid Level gas will be introduced through the sampling system. After the analyzer response is stable, the value will be recorded. Next, Zero gas will be introduced through the sampling system, and the analyzer value recorded once it reaches a stable response. The Analyzer Drift must be less than +/- 3 percent of the span value. Ameresco- Hill AIB, UT ll5of124 AST-2023-4300 Page 3-4 AI Site Specrfic Test Plan Testing Methodoloqy A Data Acquisition System with battery backup will be used to record the instrument response in one (l) minute averages. The data will be continuously stored as a *.CSV file in Excel format on the hard drive of a computer. At the completion of testing, the data will also be saved to the Alliance server. All data will be reviewed by the Field Team Leader before leaving the facility. Once arriving at Alliance's office, all written and electronic data will be relinquished to the report coordinator and then a final review will be performed by the Project Manager. 3.13 Quality Assurance/Quality Control - U.S. EPA Reference Method ALT-096 EPA Protocol I Calibration Gases - Cylinder calibration gases used will meet EPA Protocol | (+l- 2%) standards. Copies of all calibration gas certificates will be provided in the Quality Assurance/Quality Control Appendix. Zero gas will be introduced through the sampling system to the analyzer. After adjusting the analyzer to the Zero gas concentration and once the analyzer reading is stable, the analyzer value will be recorded. This process will be repeated for the High Level gas, and the time required for the analyzer reading to reach 95 percent of the gas concentration will be recorded to determine the response time. Next, Mid and Low Level gases will be introduced through the sampling system to the analyzer, and the response will be recorded when it is stable. All values must be within +/- 5% of the calibration gas concentrations. Post Test Drift Checks - Mid Level gas will be introduced through the sampling system. After the analyzer response is stable, the value will be recorded. Next, Zero gas will be introduced through the sampling system, and the analyzer value recorded once it reaches a stable response. The Analyzer Drift must be less than 3 percent of the Calibration Span. Data Collection - A Data Acquisition System with bauery backup will be used to record the instrument response (analog 0-10 volt signal) in one (1) minute averages. The data will be continuously stored as a *.CSV file in Excel format on the hard drive of a desktop computer. At the completion of the emissions testing the data will be also saved to the Alliance server. All data will be reviewed by the Field Team Leader before leaving the facility. Once arriving at Alliance's office, all written and electronic data will be relinquished to the report coordinator and then a final review will be performed by the Project Manager. rta lEe i-\ i) /--. r Ta. tr t Ameresco - Hill AFB, UT I l6 of 124 AST-2023-4300 Page 3-5 pilt6rpe T f C I.IN IC A L G R O U P Site Specific Test Plan Qwlity A s suranc e P ro gram 4.0 Quality Assurance Program Alliance follows the procedures outlined in the Quality Assurance/Quality Control Management Plan to ensure the continuous production of useful and valid data throughout the course of this test program. The QC checks and procedures described in this section represent an integral part of the overall sampling and analytical scheme. Adherence to prescribed procedures is quite often the most applicable QC check. 4.1 Equipment Field test equipment is assigned a unique, permanent identification number. Prior to mobilizing for the test program, equipment is inspected before being packed to detect equipment problems prior to aniving on site. This minimizes lost time on the job site due to equipment failure. Occasional equipment failure in the field is unavoidable despite the most rigorous inspection and maintenance procedures. Therefore, replacements for critical equipment or components are brought to the job site. Equipment retuming from the field is inspected before it is retumed to storage. During the course of these inspections, items are cleaned, repaired, reconditioned and recalibrated where necessary. Calibrations are conducted in a manner, and at a frequency, which meets or exceeds U.S. EPA specifications. The calibration procedures outlined in the U.S. EPA Methods, and those recommended within the Quality Assurance Handbook for Air Pollution Measurement Systems: Volume III (EPA-600/R-94/038c, September 1994) are utilized. When these methods are inapplicable, methods such as those prescribed by the American Society for Testing and Materials (ASTM) or other nationally recognized agency may be used. Data obtained during calibrations is checked for completeness and accuracy. Copies of calibration forms are included in the report. The following sections elaborate on the calibration procedures followed by Alliance for these items of equipment. Dry Gas Meter and Orifice. A full meter calibration using critical orifices as the calibration standard is conducted at least semi-annually, more frequently if required. The meter calibration procedure determines the meter correction factor (Y) and the meter's orifice pressure differential (AH@). Alliance uses approved Altemative Method 009 as a post-test calibration check to ensure that the correction factor has not changed more than 5%o since the last full meter calibration. This check is performed after each test series. Pitot Tubes and Manometers. Type-S pitot tubes that meet the geometric criteria required by U.S. EPA Reference Test Method 2 are assigned a coefficient of 0.84 unless a specific coefficient has been determined from a wind tunnel calibration. If a specific coefficient from a wind tunnel calibration has been obtained that coefficient will be used in lieu of 0.84. Standard pitot tubes that meet the geometric criteria required by U.S. EPA Reference Test Method 2 are assigned a coefTicient of 0.99. Any pitot tubes not meeting the appropriate geometric criteria are discarded and replaced. Manometers are verified to be level and zeroed prior to each test run and do not require further calibration. Temperature Measuring Devices. All thermocouple sensors mounted in Dry Gas Meter Consoles are calibrated semi-annually with a NlST-traceable thermocouple calibrator (temperature simulator) and verified during field use using a second NlST-traceable meter. NlST-traceable thermocouple calibrators are calibrated annually by an outside laboratory. Nozzles. Nozzles are measured three (3) times prior to initiating sampling with a caliper. The maximum difference between any two (2) dimensions is 0.004 in. . Disital Calipers. Calipers are calibrated annually by Alliance by using gage blocks that are calibrated annually by an outside laboratory. Ameresco - Hill AFB, UT ll7 of 124 AST-2023-4300 Page 4-l pur6rpe Site Specrfic Test Plan Quality Assurance Program Barometer. The barometric pressure is obtained from a nationally recognized agency or a calibrated barometer. Calibrated barometers are checked prior to each field trip against a mercury barometer. The barometer is acceptable if the values agree within + 2 percent absolute. Barometers not meeting this requirement are adjusted or taken out of service. Balances and Weights. Balances are calibrated annually by an outside laboratory. A functional check is conducted on the balance each day it is use in the field using a calibration weight. Weights are re-certified every two (2) years by an outside laboratory or intemally. If conducted internally, they are weighed on a NIST traceable balance. If the weight does not meet the expected criteria, they are replaced. Other Equipment. A mass flow controller calibration is conducted on each Environics system annually following the procedures in the Manufacturer's Operation manual. A methane/ethane penetration factor check is conducted on the total hydrocarbon analyzers equipped with non-methane cutters every six (6) months following the procedures in 40 CFR 60, Subpart JJJJ. Other equipment such as probes, umbilical lines, cold boxes, etc. are routinely maintained and inspected to ensure that they are in good working order. They are repaired or replaced as needed. 4.2 Field Sampling Field sampling will be done in accordance with the Standard Operating Procedures (SOP) for the applicable test method(s). General QC measures for the test program include: o Cleaned glassware and sample train components will be sealed until assembly. o Sample trains will be leak checked before and after each test run. . Appropriate probe, filter and impinger temperatures will be maintained. r The sampling port will be sealed to prevent air from leaking from the port. . Dry gas meter, AP, AH, temperature and pump vacuum data will be recorded during each sample point. o An isokinetic sampling rate of 90-l l0% will be maintained, as applicable. o All raw data will be maintained in organized manner. o All raw data will be reviewed on a daily basis for completeness and acceptability. 4.3 Analytical Laboratory Analytical laboratory selection for sample analyses is based on the capabilities, certifications and accreditations that the laboratory possesses. An approved analytical laboratory subcontractor list is maintained with a copy of the certificate and analyte list as evidence of compliance. Alliance assumes responsibility to the client for the subcontractor's work. Alliance maintains a verifiable copy of the results with chain of custody documentation. Ameresco - Hill AFB, UT ll8ofl24 AST-2023-4300 Page 4-2 1 19 of 124 Schematic Diag of the EPA Method 2 Sampling for Flow Rate / S-Type Pitot Tube u Source Wall Schematic Diagram of the EPA Method 4 Sampling Train Teflon Sample tr! u"e fist"int"rrst"a u Source Wall oc J 6.9 -o El By-Pass Valve Stack o)u =o o(Eoo oN oo =oo(E (9 E6oa Reference Method Monitors Sampling System (EPA Methods 3A, 7E, and 10) 3-Way Valve \Heated Teflon Sample Line Heated Probe Teflon Calibration Line Manifold System Bypass Flow Regulator Flow Regulators Stack Reference Method Monitor Sampling System (Method ALT-096) Heated Teflon Sample Line 3-Way Valve Teflon Calibration Line *k Pump Bypass Flow Regulator 123 of 124 Exhaust 124 of 124 Hill AFB Landfill Gas Engine 3 2023 rev Reference Methods 2, 3A, 6C, 7E, 10, & 19 Source Information Company Name Hill Air Force Base Company Contact:Dr. Erik Dettenmaier Contact Phone No.801-777-0888 Stack Designation:Landfill Gas Engine 3 Test & Review Dates Test Date:12/7/2023 High Flow Test Date: 1/0/1900 Review Date: 1/25/2024 Mid Flow Test Date: 1/0/1900 Observer: none Low Flow Test Date: 1/0/1900 Reviewer:Robert Sirrine Emission Limits Emission Rates NMHC NOX CO NOX CO g/bhp-hr 1.00 1.00 2.50 0.333 0.36 2.20 lbs/hr 20.0 20.0 20.0 1.01 1.093 6.650 ppm Percent %O2 Correction as a whole # Test Information Heat Input Stack I.D. inches As ft^2 Y Dl H @ Cp Pbar Pq (static) fuel flow rate (Btu/hr) Heat Input (Btu/hr.) 13.00 0.92 0.9760 1.957 0.84 25.51 0.02 Contractor Information Contact: Charels Horton Contracting Company: Alliance Technical Group, LLC Address: 3683 W 2270 S Suite E West Valley UT Phone No.: 352-663-7568 Project No.: 8710 Round Division of Air Quality Instrumental Reference Methods - Gaseous Measurements Method 19 - F factors for Coal, Oil, and Gas Fd Fw Fc scf/MMBtu scf/MMBtu scf/MMBtu Diluent F factor used O2 CO2 Anthrocite 2 Bituminous 2 Lignite Natural Propane Butane 10100 COAL OIL GAS 9780 9860 9190 8710 8710 8710 10540 10640 11950 320 10610 10200 10390 1970 1800 1910 1420 1040 1190 1250 Wet CEM Yes Yes Correct For O2 CO2 Interferece w/CO Yes Hill AFB Landfill Gas Engine 3 2023 rev Division of Air Quality NSPS Relative Accuracy Performance Specification Test - CEMS Certification Hill Air Force Base Landfill Gas Engine 3 Average Emission Dry NMHC NOX CO g/bhp/hr 0.33 0.36 2.20 Average % concentration lbs/hr 1.01 1.09 6.65 CO2 O2 ppm 58.88 61.44 613.64 6.59 10.00 Run 1 Enter O2 or CO2 Dry NMHC NOX CO CO2 O2 O2 Atomic Weight 44.1 46 28 lbs/MMBtu (O2)1.12E-01 1.23E-01 7.37E-01 E=Cd x Fd x (20.9/(20.9-%O2d)) lbs/MMBtu (CO2)E=Cd x Fc x (100 / % CO2d) lbs/cu.ft 6.69E-06 7.3E-06 4.4E-05 lbs/hr 0.985 1.081 6.502 6.61 10.00 ppm 58.43 61.461 607.32 6.65 9.97 Run 2 Dry NMHC NOX CO CO2 O2 Atomic Weight 44.1 46 28 lbs/MMBtu (O2)1.12E-01 1.23E-01 7.47E-01 E=Cd x Fd x (20.9/(20.9-%O2d)) lbs/MMBtu (CO2)E=Cd x Fc x (100 / % CO2d) lbs/cu.ft 6.76E-06 7.4E-06 4.49E-05 lbs/hr 1.01678 1.10929 6.75467 6.58 9.97 ppm 59.00 61.70 617.26 6.63 9.95 Raw Value Run 3 Dry NMHC NOX CO CO2 O2 Atomic Weight 44.1 46 28 lbs/MMBtu (O2)1.13E-01 1.22E-01 7.50E-01 E=Cd x Fd x (20.9/(20.9-%O2d)) lbs/MMBtu (CO2)E=Cd x Fc x (100 / % CO2d) lbs/cu.ft 6.78E-06 7.3E-06 4.48E-05 lbs/hr 1.013292 1.09172 6.69620 6.58 10.02 ppm 59.22 61.17 616.341 6.64 10.03 Raw Value Run 4 Dry NMHC NOX CO CO2 O2 Atomic Weight 64 46 28 lbs/MMBtu (O2)E=Cd x Fd x (20.9/(20.9-%O2d)) lbs/MMBtu (CO2)E=Cd x Fc x (100 / % CO2d) lbs/cu.ft lbs/hr ppm 0.00 0.00 Raw Value Raw Value C For Cal Drift ppm C For Cal Drift C For Cal Drift C For Cal Drift O2 CO2 Clear lbs/MMBTU Hill AFB Landfill Gas Engine 3 2023 rev Calibration Error Test Test Date December 7, 2023 O2 CS - Cal. Span 24.00 Units % Cylinder No. Expiration Date Cal. Gas CV- Certified Concentration CDir or CS - Measured Concentration Difference ACE Eq. 7E-1 Analyzer Cal. Error Status Low-level 0.00 0.03 0.03 0.13% Passed Cal. Mid-level 12.00 11.99 0.01 0.04% Passed Cal. High-level 24.00 23.69 0.31 1.29% Passed Cal. % of Span Sec. 8.2.1 Cal Gas Verification 0 to 20% of CS - Cal. Span Low-Level 0.00% 40 to 60% of Cal. Span Mid-level 50.00% 100% of Cal. Span High-level 100.00% Test Date December 7, 2023 CO2 CS - Cal. Span 23.70 Units % Cylinder No. Expiration Date Cal. Gas CV- Certified Concentration CDir or CS - Measured Concentration Difference ACE Eq. 7E-1 Analyzer Cal. Error Status Low-level 0.00 0.09 0.09 0.380% Passed Cal. Mid-level 11.85 11.94 0.09 0.380% Passed Cal. High-level 23.70 23.48 0.22 0.928% Passed Cal. % of Span Sec. 8.2.1 Cal Gas Verification 0 to 20% of Cal. Span Low-Level 0.00% 40 to 60% of Cal. Span Mid-level 50.00% 100% of Cal. Span High-level 100.00% Test Date December 7, 2023 NMHC CS - Cal. Span 170.00 Units ppm Cylinder No. Expiration Date Cal. Gas CV- Certified Concentration CDir or CS - Measured Concentration Difference ACE Eq. 7E-1 Analyzer Cal. Error Status Low-level 0.00 0.90 0.90 0.529% Passed Cal. Mid-level 100.00 99.38 0.62 0.365% Passed Cal. High-level 170.00 168.91 1.09 0.641% Passed Cal. % of Span Sec. 8.2.1 Cal Gas Verification 0 to 20% of Cal. Span Low-Level 0.00% 40 to 60% of Cal. Span Mid-level 58.82% 100% of Cal. Span High-level 100.00% Test Date December 7, 2023 NOx CS - Cal. Span 100.00 Units ppm Cylinder No. Expiration Date Cal. Gas CV- Certified Concentration CDir or CS - Measured Concentration Difference ACE Eq. 7E-1 Analyzer Cal. Error Status Low-level 0.00 0.25 0.25 0.250% Passed Cal. Mid-level 50.00 50.60 0.60 0.600% Passed Cal. High-level 100.00 100.00 0.00 0.000% Passed Cal. % of Span Sec. 8.2.1 Cal Gas Verification 0 to 20% of Cal. Span Low-Level 0.00% 40 to 60% of Cal. Span Mid-level 50.00% 100% of Cal. Span High-level 100.00% Test Date December 7, 2023 CO 20 CS - Cal. Span 1,000.00 Units ppm Cylinder No. Expiration Date Cal. Gas CV- Certified Concentration CDir or CS - Measured Concentration Difference ACE Eq. 7E-1 Analyzer Cal. Error Status Low-level 0.00 0.11 0.11 0.011% Passed Cal. Mid-level 500.00 499.15 0.85 0.085% Passed Cal. High-level 1,000.00 996.77 3.23 0.323% Passed Cal. % of Span Sec. 8.2.1 Cal Gas Verification 0 to 20% of Cal. Span Low-Level 0.00% 40 to 60% of Cal. Span Mid-level 50.00% 100% of Cal. Span High-level 100.00% Hill AFB Landfill Gas Engine 3 2023 rev Division of Air Quality Stack Test Review of Hill Air Force Base NMHC NOX CO CO2 O2 Landfill Gas Engine 3 CS Calibration Span 170.00 100.00 1000.00 23.70 24.00 Units ppm ppm ppm % %Unprotected CV - Cylinder Value:NMHC NOX CO CO2 O2 Low-Level 0.00 0.00 0.00 0.00 0.00 Mid-Level 100.00 50.00 500.00 11.85 12.00 High-Level 170.00 100.00 1000.00 23.70 24.00 0 to 20% of Cal. Span 0.00% 0.00% 0.00% 0.00% 0.00% 40 to 60% of Cal. Span 58.8% 50.0% 50.0% 50.0% 50.0% 100% of Cal. Span 100.0% 100.0% 100.0% 100.0% 100.0% Cdir - Enter Actual Up-scale Cylinder Value Used To Correct Emission Concentration. CDir CMA 100.00 50.00 500.00 11.85 12.00 Calibration Error Test Cs - Measured Concentration NMHC NOX CO CO2 O2 Low-Level 0.90 0.25 0.11 0.09 0.03 Mid-Level 99.38 50.60 499.15 11.94 11.99 High-Level 168.91 100.00 996.77 23.48 23.69 Enter Up-scale Analyzer Response to be used during testing. ACE Eq. 7E-1 99.38 50.60 499.15 11.94 11.99 Low-Level 0.53% 0.25% 0.01% 0.38% 0.13% ppmdv Difference 0.9 0.25 0.11 0.09 0.03 Status Passed Cal. Passed Cal. Passed Cal. Passed Cal. Passed Cal. Mid-Level 0.36% 0.60% 0.09% 0.38% 0.04% ppmdv Difference 0.62 0.6 0.85 0.09 0.01 Status Passed Cal. Passed Cal. Passed Cal. Passed Cal. Passed Cal. High-Level 0.64% 0.00% 0.32% 0.93% 1.29% ppmdv Difference 1.09 0 3.23 0.22 0.31 Status Passed Cal. Passed Cal. Passed Cal. Passed Cal. Passed Cal. Pre-Test Sampling System Bias Initial Values NMHC NOX CO CO2 O2 CO - Low-Level 0.90 0.16 0.08 0.08 0.00 System Bias. SBi - Zero Bias 0.00% 0.09% 0.00% 0.04% 0.13%± 5% of Span Difference 0 0.09 0.03 0.01 0.03 Pass or Failed Invalid Run Passed Cal. Passed Cal. Passed Cal. Passed Cal. Passed Cal. CM - Up-scale Gas 99.38 50.30 499.21 11.86 12.01 SBi - Up-Scale Bias 0.00% 0.30% 0.01% 0.34% 0.08% Difference 0.00 0.30 0.06 0.08 0.02 Pass or Failed Invalid Run Passed Cal. Passed Cal. Passed Cal. Passed Cal. Passed Cal. Raw Test Data Time Start Stop Test Date:12/7/2023 NMHC NMHC NOX CO CO2 O2 NOX 58.87 62.24 597.09 6.65 9.97 CO 34.6% 62.2% 59.7% 28.1% 41.5% CO2/O2 Post-Test System Bias 7E-2 SB=(Cs - Cdir)/CS x 100 Final Values NMHC NOX CO CO2 O2 CO - Low-Level 2.98 0.23 2.22 0.04 0.00 System Bias. SBi - Zero Bias 1.22% 0.02% 0.21% 0.21% 0.13%± 5% of Span Difference 2.1 0.0 2.1 0.1 0.0 Pass or Invalid Run Passed Cal. Passed Cal. Passed Cal. Passed Cal. Passed Cal. CM - Up-scale Gas 99.38 51.04 484.36 11.89 11.93 SBi - Up-Scale Bias 0.00% 0.44% 1.48% 0.21% mn jh k Difference 0.0 0.4 14.8 0.0 0.1 Pass or Invalid Run Passed Cal. Passed Cal. Passed Cal. Passed Cal. Passed Cal. Calibration Drift % of Span - D=ABS(SBf - SBi) Low-Level Drift 1.22% 0.07% 0.21% 0.17% 0.00% Drift Difference 2.1 0.1 2.1 0.0 0.0 3% of Span Pass or Re-Calibrate Pass Pass Pass Pass Pass Up-scale Gas Drift 0.00% 0.14% 1.47% 0.13% #VALUE! Difference 0.0 0.7 14.9 0.0 0.1 Pass or Re-Calibrate Pass Pass Pass Pass #VALUE! Landfill Gas Engine 3 Flow & Moisture As ft^2 Pbar Pq (static) Ps Avg Ts F CO2 - FCO2 O2 N2+C Md Ms 0.92 25.51 0.02 25.51 870 6.61 10.00 83.39 29.46 27.97 Y Cp Vm cf Vlc AVG Tm F Vm std Vw std Bws S Bws 617.6386 0.9760 0.84 35.615 95.10 62 29.943 4.476 0.1301 0.9990 0.999 Load - Megawatts AvgSqrtDlp Vs scfm wet acfm Qsd dscfh Heat Input Btu/hr Low Mid High 1.5368 150.7 2,821 8,332 1.472E+5 #1 - Times Date Point No.dl "p"sqrt dl "p"ts F tm F (in) tm F (out)Cp 3D Probe Final Vf Initial Vi 1 2.20 1.48 872 62 894.7 816 78.7 2 2.20 1.48 872 62 772.5 768 4.5 3 2.30 1.52 872 62 651.2 648.7 2.5 4 2.30 1.52 870 62 1066.2 1056.8 9.4 5 2.30 1.52 870 63 0 6 2.40 1.55 870 63 7 2.40 1.55 871 63 8 2.30 1.52 871 63 9 2.40 1.55 868 62 10 2.40 1.55 868 62 11 2.40 1.55 868 62 12 2.40 1.55 869 62 13 2.40 1.55 869 63 14 2.50 1.58 869 15 2.50 1.58 869 16 2.40 1.55 869 17 18 19 20 21 22 23 24 NOTE These cells scans for the appropriate C after the Cm - entered. If this scan is incorrect change the Cma and Cdir to the correct gas value. Failed Failed Failed Cal CO Wet CEM Yes Yes Correct For O2 CO2 Interference w/COYe Correct For O2 Failed Hill AFB Landfill Gas Engine 3 2023 rev Division of Air Quality Stack Test Review of Hill Air Force Base NMHC NOX CO CO2 O2 Landfill Gas Engine 3 CS Calibration Span 170.00 100.00 1000.00 23.70 24.00 Units ppm ppm ppm % % CV - Cylinder Value:NMHC NOX CO CO2 O2 Low-Level 0.00 0.00 0.00 0.00 0.00 Mid-Level 100.00 50.00 500.00 11.85 12.00 High-Level 170.00 100.00 1000.00 23.70 24.00 0 to 20% of Cal. Span 0.00% 0.00% 0.00% 0.00% 0.00% 40 to 60% of Cal. Span 58.8% 50.0% 50.0% 50.0% 50.0% 100% of Cal. Span 100.0% 100.0% 100.0% 100.0% 100.0% Cdir - Enter Actual Up-scale Cylinder Value Used To Correct Emission Concentration. CMA 100.00 50.00 500.00 11.85 12.00 Calibration Error Test Measured Concentration NMHC NOX CO CO2 O2 Low-Level 0.90 0.25 0.11 0.09 0.03 Mid-Level 99.38 50.60 499.15 11.94 11.99 High-Level 168.91 100.00 996.77 23.48 23.69 Enter Up-scale Analyzer Response to be used during testing. ACE Eq. 7E-1 99.38 50.60 499.15 11.94 11.99 Low-Level 0.53% 0.25% 0.01% 0.38% 0.13% ppmdv Difference 0.9 0.25 0.11 0.09 0.03 Status Passed Cal. Passed Cal. Passed Cal. Passed Cal. Passed Cal. Mid-Level 0.36% 0.60% 0.09% 0.38% 0.04% ppmdv Difference 0.62 0.6 0.85 0.09 0.01 Status Passed Cal. Passed Cal. Passed Cal. Passed Cal. Passed Cal. High-Level 0.64% 0.00% 0.32% 0.93% 1.29% ppmdv Difference 1.09 0 3.23 0.22 0.31 Status Passed Cal. Passed Cal. Passed Cal. Passed Cal. Passed Cal. Pre-Test Sampling System Bias Initial Values NMHC NOX CO CO2 O2 CO - Low-Level 2.98 0.25 2.22 0.04 0.00 System Bias. SBi - Zero Bias 1.22% 0.00% 0.21% 0.21% 0.13%± 5% of Span Difference 2.08 0 2.11 0.05 0.03 Pass or Invalid Run Passed Cal. Passed Cal. Passed Cal. Passed Cal. Passed Cal. CM - Up-scale Gas 99.38 51.00 484.36 11.89 11.93 SBi - Up-Scale Bias 0.00% 0.40% 1.48% 0.21% 0.25% Difference 0 0.4 14.79 0.05 0.06 Pass or Invalid Run Passed Cal. Passed Cal. Passed Cal. Passed Cal. Passed Cal. Raw Test Data Time Start Stop Test Date:12/7/2023 NMHC NMHC NOX CO CO2 O2 NOX 59.9 62.9 594.1 6.6 10.0 CO 35.3% 62.9% 59.4% 28.0% 41.5% CO2/O2 Post-Test System Bias 7E-2 SB=(Cs - Cdir)/CS x 100 Final Values NMHC NOX CO CO2 O2 CO - Low-Level 2.62 0.25 0.95 0.09 0.00 System Bias. SBi - Zero Bias 1.01% 0.00% 0.08% 0.00% 0.13%± 5% of Span Difference 1.7 0.0 0.8 0.0 0.0 Pass or Invalid Run Passed Cal. Passed Cal. Passed Cal. Passed Cal. Passed Cal. CM - Up-scale Gas 99.93 51.00 478.78 11.89 12.04 SBi - Up-Scale Bias 0.32% 0.40% 2.04% 0.21% 0.21% Difference 0.6 0.4 20.4 0.0 0.0 Pass or Invalid Run Passed Cal. Passed Cal. Passed Cal. Passed Cal. Passed Cal. Calibration Drift % of Span - D=ABS(SBf - SBi) Low-Level Drift 0.21% 0.00% 0.13% 0.21% 0.00% Response Spec. Difference 0.4 0.0 1.3 0.1 0.0 3% of Span Pass or Re-Calibrate Pass Pass Pass Pass Pass Up-scale Gas Drift 0.32% 0.00% 0.56% 0.00% 0.04% Difference 0.6 0.0 5.6 0.0 0.1 Pass or Re-Calibrate Pass Pass Pass Pass Pass Landfill Gas Engine 3 Flow & Moisture As ft^2 Pbar Pq (static) Ps Avg Ts F CO2 - FCO2 O2 N2+C Md Ms 0.92 25.51 0.01 25.51 867 6.58 9.97 83.45 29.45 28.14 Y Cp Vm cf Vlc AVG Tm F Vm std Vw std Bws S Bws 610.9994 0.9760 0.84 36.490 84.40 63 30.656 3.973 0.1147 0.9990 0.999 Load - Megawatts AvgSqrtDlp Vs scfm wet acfm Qsd dscfh Heat Input Btu/hr Low Mid High 1.5469 151.1 2,833 8,355 1.505E+5 #1 - Times Date Point No.dl "p"sqrt dl "p"ts F tm F (in) tm F (out)Cp 3D Probe Final Vf Initial Vi 1 2.300 1.52 865 63 800.1 731.6 68.5 2 2.300 1.52 865 63 775.4 772.5 2.9 3 2.300 1.52 865 63 654 651.2 2.8 4 2.300 1.52 867 63 1076.4 1066.2 10.2 5 2.400 1.55 867 62 0 6 2.400 1.55 867 62 7 2.500 1.58 865 63 8 2.500 1.58 865 63 9 2.300 1.52 869 63 10 2.300 1.52 869 62 11 2.500 1.58 869 63 12 2.500 1.58 869 63 13 2.500 1.58 869 63 14 2.400 1.55 869 63 15 2.400 1.55 869 16 2.400 1.55 870 17 18 19 20 21 22 23 24 Failed Failed Failed Cal WET CEM Yes YesCorrect For O2 CO2 Interference w/COYe Correct For O2 Correct For O2 Failed Hill AFB Landfill Gas Engine 3 2023 rev Division of Air Quality Stack Test Review of Hill Air Force Base NMHC NOX CO CO2 O2 Landfill Gas Engine 3 CS Calibration Span 170.00 100.00 1000.00 23.70 24.00 Units ppm ppm ppm % % CV - Cylinder Value:NMHC NOX CO CO2 O2 Low-Level 0.00 0.00 0.00 0.00 0.00 Mid-Level 100.00 50.00 500.00 11.85 12.00 High-Level 170.00 100.00 1000.00 23.70 24.00 0 to 20% of Cal. Span 0.00% 0.00% 0.00% 0.00% 0.00% 40 to 60% of Cal. Span 58.8% 50.0% 50.0% 50.0% 50.0% 100% of Cal. Span 100.0% 100.0% 100.0% 100.0% 100.0% Cdir - Enter Actual Up-scale Cylinder Value Used To Correct Emission Concentration. CMA 100.00 50.00 500.00 11.85 12.00 Calibration Error Test Measured Concentration NMHC NOX CO CO2 O2 Low-Level 0.90 0.25 0.11 0.09 0.03 Mid-Level 99.38 50.60 499.15 11.94 11.99 High-Level 168.91 100.00 996.77 23.48 23.69 Enter Up-scale Analyzer Response to be used during testing. ACE Eq. 7E-1 99.38 50.60 499.15 11.94 11.99 Low-Level 0.53% 0.25% 0.01% 0.38% 0.13% ppmv Difference 0.9 0.25 0.11 0.09 0.03 Status Passed Cal. Passed Cal. Passed Cal. Passed Cal. Passed Cal. Mid-Level 0.36% 0.60% 0.09% 0.38% 0.04% ppmv Difference 0.62 0.6 0.85 0.09 0.01 Status Passed Cal. Passed Cal. Passed Cal. Passed Cal. Passed Cal. High-Level 0.64% 0.00% 0.32% 0.93% 1.29% ppmv Difference 1.09 0 3.23 0.22 0.31 Status Passed Cal. Passed Cal. Passed Cal. Passed Cal. Passed Cal. Pre-Test Sampling System Bias Initial Values NMHC NOX CO CO2 O2 CO - Low-Level 2.62 0.25 0.95 0.09 0.00 System Bias. SBi - Zero Bias 1.01% 0.00% 0.08% 0.00% 0.13%± 5% of Span Difference 1.72 0 0.84 0 0.03 Pass or Invalid Run Passed Cal. Passed Cal. Passed Cal. Passed Cal. Passed Cal. CM - Up-scale Gas 99.93 51.00 478.78 11.89 12.04 SBi - Up-Scale Bias 0.32% 0.40% 2.04% 0.21% 0.21% Difference 0.55 0.4 20.37 0.05 0.05 Pass or Invalid Run Passed Cal. Passed Cal. Passed Cal. Passed Cal. Passed Cal. Raw Test Data Time Start Stop Test Date:12/7/2023 NMHC NMHC NOX CO CO2 O2 NOX 60.0 62.7 596.6 6.6 10.0 CO 35.3% 62.7% 59.7% 28.0% 41.8% CO2/O2 Post-Test System Bias 7E-2 SB=(Cs - Cdir)/CS x 100 Final Values NMHC NOX CO CO2 O2 CO - Low-Level 2.81 0.33 0.10 0.09 0.00 System Bias. SBi - Zero Bias 1.12% 0.08% 0.00% 0.00% 0.13%± 5% of Span Difference 1.9 0.1 0.0 0.0 0.0 Pass or Invalid Run Passed Cal. Passed Cal. Passed Cal. Passed Cal. Passed Cal. CM - Up-scale Gas 98.94 51.55 489.42 11.88 12.00 SBi - Up-Scale Bias 0.26% 0.95% 0.97% 0.25% 0.04% Difference 0.4 0.9 9.7 0.1 0.0 Pass or Invalid Run Passed Cal. Passed Cal. Passed Cal. Passed Cal. Passed Cal. Calibration Drift % of Span - D=ABS(SBf - SBi) Low-Level Drift 0.11% 0.08% 0.08% 0.00% 0.00% Response Spec. Difference 0.2 0.1 0.9 0.0 0.0 3% of Span Pass or Re-Calibrate Pass Pass Pass Pass Pass Up-scale Gas Drift 0.06% 0.55% 1.06% 0.04% 0.17% Difference 1.0 0.5 10.6 0.0 0.0 Pass or Re-Calibrate Pass Pass Pass Pass Pass Landfill Gas Engine 3 Flow & Moisture As ft^2 Pbar Pq (static) Ps Avg Ts F CO2 - FCO2 O2 N2+C Md Ms 0.92 25.51 0.02 25.51 868 6.58 10.02 83.40 29.45 28.10 Y Cp Vm cf Vlc AVG Tm F Vm std Vw std Bws S Bws 613.7789 0.9760 0.84 36.600 85.90 71 30.268 4.043 0.1178 0.9990 0.999 Load - Megawatts AvgSqrtDlp Vs scfm wet acfm Qsd dscfh Heat Input Btu/hr Low Mid High 1.5409 150.6 2,823 8,330 1.494E+5 #1 - Times Date Point No.dl "p"sqrt dl "p"ts F tm F (in) tm F (out)Cp 3D Probe Final Vf Initial Vi 1 2.300 1.52 866 73 871.3 800.1 71.2 2 2.300 1.52 866 73 780.4 775.4 5 3 2.300 1.52 866 73 655.5 654 1.5 4 2.400 1.55 867 73 1084.6 1076.4 8.2 5 2.400 1.55 868 73 0 6 2.400 1.55 868 71 7 2.500 1.58 868 71 8 2.300 1.52 870 71 9 2.300 1.52 870 69 10 2.300 1.52 872 69 11 2.400 1.55 868 69 12 2.400 1.55 869 69 13 2.400 1.55 869 70 14 2.500 1.58 869 71 15 2.500 1.58 869 16 2.300 1.52 870 17 18 19 20 21 22 23 24 Failed Failed Cal Wet CEM Yes YesCorrect For O2 CO2 Interference w/COYe Correct For O2 Failed Correct For O2 Failed Hill AFB Landfill Gas Blended Engine 3 2023 rev Reference Methods 2, 3A, 6C, 7E, 10, & 19 Source Information Company Name Hill Air Force Base Company Contact:Dr. Erik Dettenmaier Contact Phone No.801-777-0888 Stack Designation:Landfill Gas Engine 3 Blended Gas Test & Review Dates Test Date:12/6/2023 High Flow Test Date: 1/0/1900 Review Date: 1/25/2024 Mid Flow Test Date: 1/0/1900 Observer: none Low Flow Test Date: 1/0/1900 Reviewer:Robert Sirrine Emission Limits Emission Rates NMHC NOX CO NOX CO g/bhp-hr 1.0 1.0 2.5 0.674 0.45 2.05 lbs/hr 20.0 20.0 20.0 2.00 1.337 6.093 ppm Percent %O2 Correction as a whole # Test Information Heat Input Stack I.D. inches As ft^2 Y Dl H @ Cp Pbar Pq (static) fuel flow rate (Btu/hr) Heat Input (Btu/hr.) 13.00 0.92 0.9760 1.957 0.84 25.51 0.02 Contractor Information Contact: Charels Horton Contracting Company: Alliance Technical Group, LLC Address: 3683 W 2270 S Suite E West Valley UT Phone No.: 352-663-7568 Project No.: 8710 Round Division of Air Quality Instrumental Reference Methods - Gaseous Measurements Method 19 - F factors for Coal, Oil, and Gas Fd Fw Fc scf/MMBtu scf/MMBtu scf/MMBtu Diluent F factor used O2 CO2 Anthrocite 2 Bituminous 2 Lignite Natural Propane Butane 10100 COAL OIL GAS 9780 9860 9190 8710 8710 8710 10540 10640 11950 320 10610 10200 10390 1970 1800 1910 1420 1040 1190 1250 Wet CEM Yes Yes Correct For O2 CO2 Interferece w/CO Yes Hill AFB Landfill Gas Blended Engine 3 2023 rev Division of Air Quality NSPS Relative Accuracy Performance Specification Test - CEMS Certification Hill Air Force Base Landfill Gas Engine 3 Blended Gas Average Emission Dry NMHC NOX CO g/bhp/hr 0.67 0.451 2.055 Average % concentration lbs/hr 2.00 1.34 6.09 CO2 O2 ppm 117.03 75.22 562.65 7.89 10.04 Run 1 Enter O2 or CO2 Dry NMHC NOX CO CO2 O2 O2 Atomic Weight 44.1 46 28 lbs/MMBtu (O2)2.42E-01 1.57E-01 6.75E-01 E=Cd x Fd x (20.9/(20.9-%O2d)) lbs/MMBtu (CO2)E=Cd x Fc x (100 / % CO2d) lbs/cu.ft 1.43E-05 9.3E-06 4.0E-05 lbs/hr 2.136 1.384 5.963 7.86 10.12 ppm 125.07 77.715 549.99 7.76 9.90 Run 2 Dry NMHC NOX CO CO2 O2 Atomic Weight 44.1 46 28 lbs/MMBtu (O2)2.17E-01 1.49E-01 6.95E-01 E=Cd x Fd x (20.9/(20.9-%O2d)) lbs/MMBtu (CO2)E=Cd x Fc x (100 / % CO2d) lbs/cu.ft 1.29E-05 8.8E-06 4.13E-05 lbs/hr 1.92915 1.32332 6.17391 7.89 10.08 ppm 112.66 74.09 567.86 7.78 9.88 Raw Value Run 3 Dry NMHC NOX CO CO2 O2 Atomic Weight 44.1 46 28 lbs/MMBtu (O2)2.15E-01 1.46E-01 6.87E-01 E=Cd x Fd x (20.9/(20.9-%O2d)) lbs/MMBtu (CO2)E=Cd x Fc x (100 / % CO2d) lbs/cu.ft 1.30E-05 8.8E-06 4.15E-05 lbs/hr 1.927688 1.30965 6.15481 7.92 9.92 ppm 113.37 73.84 570.107 7.83 9.84 Raw Value Run 4 Dry NMHC NOX CO CO2 O2 Atomic Weight 64 46 28 lbs/MMBtu (O2)E=Cd x Fd x (20.9/(20.9-%O2d)) lbs/MMBtu (CO2)E=Cd x Fc x (100 / % CO2d) lbs/cu.ft lbs/hr ppm 0.00 0.00 Raw Value Raw Value C For Cal Drift ppm C For Cal Drift C For Cal Drift C For Cal Drift O2 CO2 Clear lbs/MMBTU Hill AFB Landfill Gas Blended Engine 3 2023 rev Calibration Error Test Test Date December 6, 2023 O2 CS - Cal. Span 24.00 Units % Cylinder No. Expiration Date Cal. Gas CV- Certified Concentration CDir or CS - Measured Concentration Difference ACE Eq. 7E-1 Analyzer Cal. Error Status Low-level 0.00 0.00 0.00 0.00% Passed Cal. Mid-level 12.00 11.80 0.20 0.83% Passed Cal. High-level 24.00 24.40 0.40 1.67% Passed Cal. % of Span Sec. 8.2.1 Cal Gas Verification 0 to 20% of CS - Cal. Span Low-Level 0.00% 40 to 60% of Cal. Span Mid-level 50.00% 100% of Cal. Span High-level 100.00% Test Date December 6, 2023 CO2 CS - Cal. Span 23.70 Units % Cylinder No. Expiration Date Cal. Gas CV- Certified Concentration CDir or CS - Measured Concentration Difference ACE Eq. 7E-1 Analyzer Cal. Error Status Low-level 0.00 -0.03 0.03 0.127% Passed Cal. Mid-level 12.00 11.84 0.16 0.675% Passed Cal. High-level 23.70 24.00 0.30 1.266% Passed Cal. % of Span Sec. 8.2.1 Cal Gas Verification 0 to 20% of Cal. Span Low-Level 0.00% 40 to 60% of Cal. Span Mid-level 50.63% 100% of Cal. Span High-level 100.00% Test Date December 6, 2023 NMHC CS - Cal. Span 170.00 Units ppm Cylinder No. Expiration Date Cal. Gas CV- Certified Concentration CDir or CS - Measured Concentration Difference ACE Eq. 7E-1 Analyzer Cal. Error Status Low-level 0.00 0.90 0.90 0.529% Passed Cal. Mid-level 100.00 99.90 0.10 0.059% Passed Cal. High-level 170.00 169.49 0.51 0.300% Passed Cal. % of Span Sec. 8.2.1 Cal Gas Verification 0 to 20% of Cal. Span Low-Level 0.00% 40 to 60% of Cal. Span Mid-level 58.82% 100% of Cal. Span High-level 100.00% Test Date December 6, 2023 NOx CS - Cal. Span 100.00 Units ppm Cylinder No. Expiration Date Cal. Gas CV- Certified Concentration CDir or CS - Measured Concentration Difference ACE Eq. 7E-1 Analyzer Cal. Error Status Low-level 0.00 0.04 0.04 0.040% Passed Cal. Mid-level 50.00 51.27 1.27 1.270% Passed Cal. High-level 100.00 100.00 0.00 0.000% Passed Cal. % of Span Sec. 8.2.1 Cal Gas Verification 0 to 20% of Cal. Span Low-Level 0.00% 40 to 60% of Cal. Span Mid-level 50.00% 100% of Cal. Span High-level 100.00% Test Date December 6, 2023 CO 20 CS - Cal. Span 1,000.00 Units ppm Cylinder No. Expiration Date Cal. Gas CV- Certified Concentration CDir or CS - Measured Concentration Difference ACE Eq. 7E-1 Analyzer Cal. Error Status Low-level 0.00 1.19 1.19 0.119% Passed Cal. Mid-level 500.00 496.70 3.30 0.330% Passed Cal. High-level 1,000.00 996.83 3.17 0.317% Passed Cal. % of Span Sec. 8.2.1 Cal Gas Verification 0 to 20% of Cal. Span Low-Level 0.00% 40 to 60% of Cal. Span Mid-level 50.00% 100% of Cal. Span High-level 100.00% Hill AFB Landfill Gas Blended Engine 3 2023 rev Division of Air Quality Stack Test Review of Hill Air Force Base NMHC NOX CO CO2 O2 Landfill Gas Engine 3 Blended Gas CS Calibration Span 170.00 100.00 1000.00 23.70 24.00 Units ppm ppm ppm % %Unprotected CV - Cylinder Value:NMHC NOX CO CO2 O2 Low-Level 0.00 0.00 0.00 0.00 0.00 Mid-Level 100.00 50.00 500.00 12.00 12.00 High-Level 170.00 100.00 1000.00 23.70 24.00 0 to 20% of Cal. Span 0.00% 0.00% 0.00% 0.00% 0.00% 40 to 60% of Cal. Span 58.8% 50.0% 50.0% 50.6% 50.0% 100% of Cal. Span 100.0% 100.0% 100.0% 100.0% 100.0% Cdir - Enter Actual Up-scale Cylinder Value Used To Correct Emission Concentration. CDir CMA 100.00 50.00 500.00 12.00 12.00 Calibration Error Test Cs - Measured Concentration NMHC NOX CO CO2 O2 Low-Level 0.90 0.04 1.19 -0.03 0.00 Mid-Level 99.90 51.27 496.70 11.84 11.80 High-Level 169.49 100.00 996.83 24.00 24.40 Enter Up-scale Analyzer Response to be used during testing. ACE Eq. 7E-1 99.90 51.27 496.70 11.84 11.80 Low-Level 0.53% 0.04% 0.12% 0.13% 0.00% ppmdv Difference 0.9 0.04 1.19 0.03 0 Status Passed Cal. Passed Cal. Passed Cal. Passed Cal. Passed Cal. Mid-Level 0.06% 1.27% 0.33% 0.68% 0.83% ppmdv Difference 0.1 1.27 3.3 0.16 0.2 Status Passed Cal. Passed Cal. Passed Cal. Passed Cal. Passed Cal. High-Level 0.30% 0.00% 0.32% 1.27% 1.67% ppmdv Difference 0.51 0 3.17 0.3 0.4 Status Passed Cal. Passed Cal. Passed Cal. Passed Cal. Passed Cal. Pre-Test Sampling System Bias Initial Values NMHC NOX CO CO2 O2 CO - Low-Level 0.90 3.89 1.44 0.02 0.13 System Bias. SBi - Zero Bias 0.00% 3.85% 0.03% 0.21% 0.54%± 5% of Span Difference 0 3.85 0.25 0.05 0.13 Pass or Failed Invalid Run Passed Cal. Passed Cal. Passed Cal. Passed Cal. Passed Cal. CM - Up-scale Gas 99.90 49.97 500.14 11.87 11.85 SBi - Up-Scale Bias 0.00% 1.30% 0.34% 0.13% 0.21% Difference 0.00 1.30 3.44 0.03 0.05 Pass or Failed Invalid Run Passed Cal. Passed Cal. Passed Cal. Passed Cal. Passed Cal. Raw Test Data Time Start Stop Test Date:12/6/2023 NMHC NMHC NOX CO CO2 O2 NOX 110.69 76.03 537.24 7.76 9.90 CO 65.1% 76.0% 53.7% 32.7% 41.3% CO2/O2 Post-Test System Bias 7E-2 SB=(Cs - Cdir)/CS x 100 Final Values NMHC NOX CO CO2 O2 CO - Low-Level 0.92 2.08 0.10 0.07 0.17 System Bias. SBi - Zero Bias 0.01% 2.04% 0.11% 0.42% 0.71%± 5% of Span Difference 0.0 2.0 1.1 0.1 0.2 Pass or Invalid Run Passed Cal. Passed Cal. Passed Cal. Passed Cal. Passed Cal. CM - Up-scale Gas 100.30 49.99 476.81 11.78 11.58 SBi - Up-Scale Bias 0.24% 1.28% 1.99% 0.25% mn jh k Difference 0.4 1.3 19.9 0.1 0.2 Pass or Invalid Run Passed Cal. Passed Cal. Passed Cal. Passed Cal. Passed Cal. Calibration Drift % of Span - D=ABS(SBf - SBi) Low-Level Drift 0.01% 1.81% 0.08% 0.21% 0.17% Drift Difference 0.0 1.8 1.3 0.1 0.0 3% of Span Pass or Re-Calibrate Pass Pass Pass Pass Pass Up-scale Gas Drift 0.24% 0.02% 1.65% 0.13% #VALUE! Difference 0.4 0.0 23.3 0.1 0.3 Pass or Re-Calibrate Pass Pass Pass Pass #VALUE! Landfill Gas Engine 3 Blended Gas Flow & Moisture As ft^2 Pbar Pq (static) Ps Avg Ts F CO2 - FCO2 O2 N2+C Md Ms 0.92 25.51 0.02 25.51 887 7.86 10.12 82.02 29.66 28.31 Y Cp Vm cf Vlc AVG Tm F Vm std Vw std Bws S Bws 666.6680 0.9760 0.84 36.789 85.90 62 30.949 4.043 0.1155 0.9990 0.999 Load - Megawatts AvgSqrtDlp Vs scfm wet acfm Qsd dscfh Heat Input Btu/hr Low Mid High 1.5501 152.0 2,810 8,406 1.491E+5 #1 - Times Date Point No.dl "p"sqrt dl "p"ts F tm F (in) tm F (out)Cp 3D Probe Final Vf Initial Vi 1 2.30 1.52 885 62 795.9 733.1 62.8 2 2.30 1.52 885 62 756.4 749.6 6.8 3 2.40 1.55 885 62 643.5 640.2 3.3 4 2.40 1.55 886 62 961.9 948.9 13 5 2.40 1.55 887 62 0 6 2.40 1.55 887 62 7 2.45 1.57 889 62 8 2.40 1.55 889 61 9 2.40 1.55 885 61 10 2.40 1.55 885 62 11 2.40 1.55 886 63 12 2.40 1.55 886 63 13 2.40 1.55 886 63 14 2.50 1.58 889 15 2.50 1.58 889 16 2.40 1.55 890 17 18 19 20 21 22 23 24 NOTE These cells scans for the appropriate C after the Cm - entered. If this scan is incorrect change the Cma and Cdir to the correct gas value. Failed Failed Failed Cal CO Wet CEM Yes Yes Correct For O2 CO2 Interference w/COYe Correct For O2 Failed Hill AFB Landfill Gas Blended Engine 3 2023 rev Division of Air Quality Stack Test Review of Hill Air Force Base NMHC NOX CO CO2 O2 Landfill Gas Engine 3 Blended Gas CS Calibration Span 170.00 100.00 1000.00 23.70 24.00 Units ppm ppm ppm % % CV - Cylinder Value:NMHC NOX CO CO2 O2 Low-Level 0.00 0.00 0.00 0.00 0.00 Mid-Level 100.00 50.00 500.00 12.00 12.00 High-Level 170.00 100.00 1000.00 23.70 24.00 0 to 20% of Cal. Span 0.00% 0.00% 0.00% 0.00% 0.00% 40 to 60% of Cal. Span 58.8% 50.0% 50.0% 50.6% 50.0% 100% of Cal. Span 100.0% 100.0% 100.0% 100.0% 100.0% Cdir - Enter Actual Up-scale Cylinder Value Used To Correct Emission Concentration. CMA 100.00 50.00 500.00 12.00 12.00 Calibration Error Test Measured Concentration NMHC NOX CO CO2 O2 Low-Level 0.90 0.04 1.19 -0.03 0.00 Mid-Level 99.90 51.27 496.70 11.84 11.80 High-Level 169.49 100.00 996.83 24.00 24.40 Enter Up-scale Analyzer Response to be used during testing. ACE Eq. 7E-1 99.90 51.27 496.70 11.84 11.80 Low-Level 0.53% 0.04% 0.12% 0.13% 0.00% ppmdv Difference 0.9 0.04 1.19 0.03 0 Status Passed Cal. Passed Cal. Passed Cal. Passed Cal. Passed Cal. Mid-Level 0.06% 1.27% 0.33% 0.68% 0.83% ppmdv Difference 0.1 1.27 3.3 0.16 0.2 Status Passed Cal. Passed Cal. Passed Cal. Passed Cal. Passed Cal. High-Level 0.30% 0.00% 0.32% 1.27% 1.67% ppmdv Difference 0.51 0 3.17 0.3 0.4 Status Passed Cal. Passed Cal. Passed Cal. Passed Cal. Passed Cal. Pre-Test Sampling System Bias Initial Values NMHC NOX CO CO2 O2 CO - Low-Level 0.92 2.08 0.10 0.07 0.17 System Bias. SBi - Zero Bias 0.01% 2.04% 0.11% 0.42% 0.71%± 5% of Span Difference 0.02 2.04 1.09 0.1 0.17 Pass or Invalid Run Passed Cal. Passed Cal. Passed Cal. Passed Cal. Passed Cal. CM - Up-scale Gas 100.30 49.99 476.81 11.78 11.58 SBi - Up-Scale Bias 0.24% 1.28% 1.99% 0.25% 0.92% Difference 0.4 1.28 19.89 0.06 0.22 Pass or Invalid Run Passed Cal. Passed Cal. Passed Cal. Passed Cal. Passed Cal. Raw Test Data Time Start Stop Test Date:12/6/2023 NMHC NMHC NOX CO CO2 O2 NOX 99.37 73.39 543.48 7.78 9.88 CO 58.5% 73.4% 54.3% 32.8% 41.2% CO2/O2 Post-Test System Bias 7E-2 SB=(Cs - Cdir)/CS x 100 Final Values NMHC NOX CO CO2 O2 CO - Low-Level 0.90 2.02 -0.19 0.04 0.15 System Bias. SBi - Zero Bias 0.00% 1.98% 0.14% 0.30% 0.63%± 5% of Span Difference 0.0 2.0 1.4 0.1 0.2 Pass or Invalid Run Passed Cal. Passed Cal. Passed Cal. Passed Cal. Passed Cal. CM - Up-scale Gas 99.21 50.40 480.24 11.84 11.88 SBi - Up-Scale Bias 0.41% 0.87% 1.65% 0.00% 0.33% Difference 0.7 0.9 16.5 0.0 0.1 Pass or Invalid Run Passed Cal. Passed Cal. Passed Cal. Passed Cal. Passed Cal. Calibration Drift % of Span - D=ABS(SBf - SBi) Low-Level Drift 0.01% 0.06% 0.03% 0.13% 0.08% Response Spec. Difference 0.0 0.1 0.3 0.0 0.0 3% of Span Pass or Re-Calibrate Pass Pass Pass Pass Pass Up-scale Gas Drift 0.17% 0.41% 0.34% 0.25% 0.58% Difference 1.1 0.4 3.4 0.1 0.3 Pass or Re-Calibrate Pass Pass Pass Pass Pass Landfill Gas Engine 3 Blended Gas Flow & Moisture As ft^2 Pbar Pq (static) Ps Avg Ts F CO2 - FCO2 O2 N2+C Md Ms 0.92 25.51 0.01 25.51 867 7.89 10.08 82.03 29.67 28.29 Y Cp Vm cf Vlc AVG Tm F Vm std Vw std Bws S Bws 610.9994 0.9760 0.84 35.047 82.60 70 29.030 3.888 0.1181 0.9990 0.999 Load - Megawatts AvgSqrtDlp Vs scfm wet acfm Qsd dscfh Heat Input Btu/hr Low Mid High 1.5469 150.7 2,826 8,333 1.495E+5 #1 - Times Date Point No.dl "p"sqrt dl "p"ts F tm F (in) tm F (out)Cp 3D Probe Final Vf Initial Vi 1 2.300 1.52 865 68 862.1 795.9 66.2 2 2.300 1.52 865 68 761.7 756.4 5.3 3 2.300 1.52 865 68 646.7 643.5 3.2 4 2.300 1.52 867 68 969.8 961.9 7.9 5 2.400 1.55 867 70 0 6 2.400 1.55 867 70 7 2.500 1.58 865 71 8 2.500 1.58 865 72 9 2.300 1.52 869 72 10 2.300 1.52 869 72 11 2.500 1.58 869 72 12 2.500 1.58 869 71 13 2.500 1.58 869 71 14 2.400 1.55 869 15 2.400 1.55 869 16 2.400 1.55 870 17 18 19 20 21 22 23 24 Failed Failed Failed Cal WET CEM Yes YesCorrect For O2 CO2 Interference w/COYe Correct For O2 Correct For O2 Failed Hill AFB Landfill Gas Blended Engine 3 2023 rev Division of Air Quality Stack Test Review of Hill Air Force Base NMHC NOX CO CO2 O2 Landfill Gas Engine 3 Blended Gas CS Calibration Span 170.00 100.00 1000.00 23.70 24.00 Units ppm ppm ppm % % CV - Cylinder Value:NMHC NOX CO CO2 O2 Low-Level 0.00 0.00 0.00 0.00 0.00 Mid-Level 100.00 50.00 500.00 12.00 12.00 High-Level 170.00 100.00 1000.00 23.70 24.00 0 to 20% of Cal. Span 0.00% 0.00% 0.00% 0.00% 0.00% 40 to 60% of Cal. Span 58.8% 50.0% 50.0% 50.6% 50.0% 100% of Cal. Span 100.0% 100.0% 100.0% 100.0% 100.0% Cdir - Enter Actual Up-scale Cylinder Value Used To Correct Emission Concentration. CMA 100.00 50.00 500.00 12.00 12.00 Calibration Error Test Measured Concentration NMHC NOX CO CO2 O2 Low-Level 0.90 0.04 1.19 -0.03 0.00 Mid-Level 99.90 51.27 496.70 11.84 11.80 High-Level 169.49 100.00 996.83 24.00 24.40 Enter Up-scale Analyzer Response to be used during testing. ACE Eq. 7E-1 99.90 51.27 496.70 11.84 11.80 Low-Level 0.53% 0.04% 0.12% 0.13% 0.00% ppmv Difference 0.9 0.04 1.19 0.03 0 Status Passed Cal. Passed Cal. Passed Cal. Passed Cal. Passed Cal. Mid-Level 0.06% 1.27% 0.33% 0.68% 0.83% ppmv Difference 0.1 1.27 3.3 0.16 0.2 Status Passed Cal. Passed Cal. Passed Cal. Passed Cal. Passed Cal. High-Level 0.30% 0.00% 0.32% 1.27% 1.67% ppmv Difference 0.51 0 3.17 0.3 0.4 Status Passed Cal. Passed Cal. Passed Cal. Passed Cal. Passed Cal. Pre-Test Sampling System Bias Initial Values NMHC NOX CO CO2 O2 CO - Low-Level 0.90 2.02 -0.19 0.04 0.15 System Bias. SBi - Zero Bias 0.00% 1.98% 0.14% 0.30% 0.63%± 5% of Span Difference 0 1.98 1.38 0.07 0.15 Pass or Invalid Run Passed Cal. Passed Cal. Passed Cal. Passed Cal. Passed Cal. CM - Up-scale Gas 99.21 50.40 480.24 11.84 11.88 SBi - Up-Scale Bias 0.41% 0.87% 1.65% 0.00% 0.33% Difference 0.69 0.87 16.46 0 0.08 Pass or Invalid Run Passed Cal. Passed Cal. Passed Cal. Passed Cal. Passed Cal. Raw Test Data Time Start Stop Test Date:12/6/2023 NMHC NMHC NOX CO CO2 O2 NOX 99.8 72.4 547.7 7.8 9.8 CO 58.7% 72.4% 54.8% 33.0% 41.0% CO2/O2 Post-Test System Bias 7E-2 SB=(Cs - Cdir)/CS x 100 Final Values NMHC NOX CO CO2 O2 CO - Low-Level 0.93 1.92 1.95 0.07 0.16 System Bias. SBi - Zero Bias 0.02% 1.88% 0.08% 0.42% 0.67%± 5% of Span Difference 0.0 1.9 0.8 0.1 0.2 Pass or Invalid Run Passed Cal. Passed Cal. Passed Cal. Passed Cal. Passed Cal. CM - Up-scale Gas 99.84 48.96 480.69 11.82 11.87 SBi - Up-Scale Bias 0.04% 2.31% 1.60% 0.08% 0.29% Difference 0.1 2.3 16.0 0.0 0.1 Pass or Invalid Run Passed Cal. Passed Cal. Passed Cal. Passed Cal. Passed Cal. Calibration Drift % of Span - D=ABS(SBf - SBi) Low-Level Drift 0.02% 0.10% 0.06% 0.13% 0.04% Response Spec. Difference 0.0 0.1 2.1 0.0 0.0 3% of Span Pass or Re-Calibrate Pass Pass Pass Pass Pass Up-scale Gas Drift 0.37% 1.44% 0.04% 0.08% 0.04% Difference 0.6 1.4 0.4 0.0 0.0 Pass or Re-Calibrate Pass Pass Pass Pass Pass Landfill Gas Engine 3 Blended Gas Flow & Moisture As ft^2 Pbar Pq (static) Ps Avg Ts F CO2 - FCO2 O2 N2+C Md Ms 0.92 25.51 0.02 25.51 868 7.92 9.92 82.16 29.66 28.27 Y Cp Vm cf Vlc AVG Tm F Vm std Vw std Bws S Bws 613.7789 0.9760 0.84 36.831 88.00 71 30.467 4.142 0.1197 0.9990 0.999 Load - Megawatts AvgSqrtDlp Vs scfm wet acfm Qsd dscfh Heat Input Btu/hr Low Mid High 1.5389 150.0 2,811 8,295 1.485E+5 #1 - Times Date Point No.dl "p"sqrt dl "p"ts F tm F (in) tm F (out)Cp 3D Probe Final Vf Initial Vi 1 2.300 1.52 866 71 816 742.6 73.4 2 2.300 1.52 866 71 768 761.7 6.3 3 2.300 1.52 866 71 648.7 646.7 2 4 2.300 1.52 867 72 976.1 969.8 6.3 5 2.400 1.55 868 72 0 6 2.400 1.55 868 72 7 2.400 1.55 868 71 8 2.500 1.58 870 71 9 2.300 1.52 870 70 10 2.300 1.52 872 70 11 2.300 1.52 868 70 12 2.400 1.55 869 70 13 2.400 1.55 869 71 14 2.500 1.58 869 71 15 2.500 1.58 869 16 2.300 1.52 870 17 18 19 20 21 22 23 24 Failed Failed Cal Wet CEM Yes YesCorrect For O2 CO2 Interference w/COYe Correct For O2 Failed Correct For O2 Failed