Loading...
HomeMy WebLinkAboutDAQ-2025-0017701 DAQC-300-25 Site ID 10742 (B4) MEMORANDUM TO: STACK TEST FILE – INTREPID POTASH WENDOVER, LLC – Wendover Potash Plant THROUGH: Rik Ombach, Minor Source Oil and Gas Section Manager FROM: Paul Bushman, Environmental Scientist DATE: March 21, 2025 SUBJECT: Sources: Venturi Wet Scrubber Contact: Todd Stubbs: 435-259-1282 Location: Exit 4, Interstate 80 (the Blair exit) and the Frontage Road, Tooele County, Utah Test Contractor: TETCO Permit/AO#: Approval Order (AO) DAQE-AN107420014-19 dated July 22, 2019 Action Code: TR Subject: Review of stack test report dated March 5, 2025 On March 19, 2025, Utah Division of Air Quality (DAQ) received a test report for a Venturi Wet Scrubber at Intrepid Potash Wendover, LLC – Wendover Potash Plant in Tooele County, Utah. Testing was performed on March 5, 2025, to demonstrate compliance with the emission limits found in condition II.B.4.a of DAQE-AN107420014-19. The calculated test results are: Source Test Date Pollutants Test Methods Tester Results DAQ Results Limits Venturi Wet Scrubber March 5, 2024 PM 5/202 2.54 lb/hr 2.5324 lb/hr 6.0 lb/hr 0.040 gr/dscf 0.0396 gr/dscf 0.05 gr/dscf DEVIATIONS: None. CONCLUSION: This was a retest of the Venturi Wet Scrubber after a failed stack test (DAQC-17-25). RECOMMENDATION: The emissions from the above listed unit should be considered to have been in compliance with the emission limits condition II.B.4.a of DAQE-AN107420014-17 during the time of testing. ATTACHMENTS: DAQ stack test review excel spreadsheets, Intrepid Potash stack test report. Source Information Division of Air Quality Compliance Demonstration Source Information Company Name Intrepid Potash - Wendover - Venturi Wet Scrubber Company Contact:Todd Stubbs Contact Phone No.435-259-1282 Source Designation:Venturi Wet Scrubber Test & Review Dates Test Date: 3/5/2025 Review Date: 3/21/2025 Tabs Are Shown Observer:None Reviewer:Paul Bushman Particulate Emission Limits lbs/MMBtu lbs/hr gr/dscf 6.000 0.050 Emission Rates - "Front Half" lbs/MMBtu lbs/hr gr/dscf 2.5324 0.0396 Test Information Stack_I.D._inches As ft^2 Y Dl H @ Cp Pbar Pq (static)Dn 24.75 3.34 0.9900 1.488 0.84 25.75 -0.38 0.2366 Contractor Information Contracting Company: TETCO Contact: Dean Kitchen Phone No.: 801-492-9106 Project No.: Circular 10100 9780 9860 9190 8710 8710 8710 10540 10640 11950 320 10610 10200 10390 1970 1800 1910 1420 1040 1190 1250 F factor usedF factors for Coal, Oil, and Gas Anthrocite 2 Lignite Natural Propane Butane COAL OIL GAS Bituminous 2 Fd Fw Fc scf/MMBtu scf/MMBtu scf/MMBtu O2 CO2 lbs/MMBtu Page 1 Summary Division of Air Quality Reference Methods 5 - TSP Compliance Demonstration of Intrepid Potash - Wendover - Venturi Wet Scrubber Testing Results Lab Data - grams collected Test Date 3/5/2025 3/5/2025 3/5/2025 3/5/2025 Lab Data Probe Filter Back Circular Run 1 Run 2 Run 3 Run 4 Run 1 0.0077 0.1003 0.0068 As ft^2 3.34 3.34 3.34 Run 2 0.004 0.1008 0.0078 Pbar 25.75 25.75 25.75 Run 3 0.006 0.0876 0.0055 Pq (static)-0.38 -0.38 -0.38 Run 4 Ps 25.72 25.72 25.72 Avg. Ts F 110.67 106.83 109.00 Front Half Emissions Summary CO2 - FCO2 2.30 1.80 1.80 Run 1 Run 2 Run 3 Run 4 Avg. O2 18.20 18.80 18.60 gr./dscf 0.0340 0.0430 0.0419 0.0396 N2+C 79.50 79.40 79.60 lbs/hr 2.2109 2.7943 2.5919 2.5324 Md 29.10 29.04 29.03 lbs/MMBtu Ms 28.65 28.46 28.43 Y 0.99 0.99 0.99 Cp 0.84 0.84 0.84 Total Emissions Summary w/back half condensable Vm cf 57.66 45.39 41.92 Run 1 Run 2 Run 3 Run 4 Avg. Vlc 43.30 44.10 42.60 gr./dscf 0.0361 0.0463 0.0443 0.0422 AVG. Tm F 71.84 85.29 87.92 lbs/hr 2.3502 3.0023 2.7442 2.6989 Vm std 49.05 37.57 34.51 lbs/MMBtu Vw std 2.04 2.08 2.01 Bws 0.04 0.05 0.05 S Bws 0.10 0.09 0.10 Avg. Sqrt Dlp 0.78 0.79 0.75 Vs 49.58 49.77 47.80 F factor used scfm wet 7905.45 7989.87 7643.63 acfm 9938.70 9977.37 9581.48 Qsd dscfh 455404.27 454291.53 433435.93 # Sample Points 12.00 12.00 12.00 Dn 0.259 0.227 0.226 An 3.64E-04 2.80E-04 2.79E-04 Start Time 10:36 12:51 14:20 End Time 11:39 13:55 15:22 Total Test time 60.00 60.00 60.00 Time @ point 5.00 5.00 5.00 O2 CO2 lbs/MMBtu Page 2 Summary 80.00 90.00 100.00 110.00 120.00 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 % I s o k i n e t i c Points Run 1 PxP Isokinetic 80.00 90.00 100.00 110.00 120.00 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 % I s o k i n e t i c Sample Points Run 2 PxP Isokinetic 80.00 90.00 100.00 110.00 120.00 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 % I s o k i n e t i c Sample Points Run 3 PxP Isokinetic 80.00 90.00 100.00 110.00 120.00 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 Sample Points Run 4 PxP Isokinetic Page 3 Run 1 Intrepid Potash - Wendover - Venturi Wet Scrubber Flow & Moisture Test Date 3/5/2025 As ft^2 Pbar Pq (static) Ps Avg. Ts F CO2 - FCO2 O2 N2+C Md Ms 3.34 25.75 -0.38 25.72 111 2.30 18.20 79.50 29.10 28.65 Y Cp Vm cf Vlc Avg. Tm F Vm std Vw std Bws S Bws 0.1032 0.9900 0.84 57.663 43.30 71.84 49.051 2.038 0.0399 0.1032 0.999 Avg. Sqrt Dlp Vs scfm wet acfm Qsd dscfh # Sample Points Dn Total Test time (minutes) Time @ point (minutes)Avg. Dlh 0.785 49.58 7,905 9,939 4.55E+05 12 0.2585 60 5.00 2.125000 TRUE Point No.Meter (cf)dl "p"dl "h"ts F tm F (in)tm F (out)Imp. Liquid Collected 1 73.607 0.50 1.75 112 65 66 Wt. (Final)Wt. (Initial)lc 2 78.050 0.54 1.89 110 66 65 397.1 375.3 21.8 3 82.500 0.70 2.40 114 71 69 627.4 619.3 8.1 4 87.560 0.70 2.40 115 77 70 703.8 701.0 2.8 5 92.500 0.67 2.30 112 82 73 931.0 920.4 10.6 6 97.800 0.60 2.06 110 85 74 0.0 7 102.547 0.65 2.23 108 86 77 8 107.445 0.65 2.23 110 82 77 Isokinetics 98.8 9 112.500 0.70 2.40 111 87 80 Test Date 3/5/2025 10 117.490 0.60 2.06 109 89 81 Start Time 10:36 enter 11 122.370 0.55 1.89 109 88 83 End Time 11:39 12 126.820 0.55 1.89 108 87 87 13 131.270 0 14 0 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 Page 4 Run 2 Intrepid Potash - Wendover - Venturi Wet Scrubber Flow & Moisture Test Date 5/13/2009 As ft^2 Pbar Pq (static) Ps Avg. Ts F CO2 - FCO2 O2 N2+C Md Ms 3.34 25.75 -0.38 25.72 107 1.80 18.80 79.40 29.04 28.46 Y Cp Vm cf Vlc Avg. Tm F Vm std Vw std Bws S Bws 0.0923 0.9900 0.84 45.393 44.10 85 37.569 2.076 0.0524 0.0923 0.999 Avg. Sqrt Dlp Vs scfm wet acfm Qsd dscfh # Sample Points Dn Total Test time (minutes) Time @ point (minutes)Avg. Dlh 0.788 49.77 7,990 9,977 4.54E+05 12 0.2265 60 5.00 1.26 TRUE Point No.Meter (cf)dl "p"dl "h"ts F tm F (in)tm F (out)Imp. Liquid Collected 1 32.599 0.60 1.21 107 84 82 Wt. (Final)Wt. (Initial)lc 2 36.750 0.60 1.21 106 78 78 378.60 361.00 17.6 3 40.050 0.75 1.52 112 80 79 614.80 606.10 8.7 4 44.222 0.55 1.11 108 84 80 703.60 696.00 7.6 5 47.765 0.65 1.31 110 86 81 857.90 847.70 10.2 6 51.600 0.65 1.31 106 89 82 0.0 7 55.490 0.70 1.41 110 89 83 8 59.470 0.75 1.52 107 91 84 Isokinetics 98.8 9 63.680 0.75 1.52 105 93 84 Test Date 3/5/2025 10 67.865 0.50 1.01 105 94 85 Start Time 12:51 11 71.200 0.40 0.81 105 95 85 End Time 13:55 12 74.460 0.60 1.21 101 95 86 13 77.992 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 Page 5 Run 3 Intrepid Potash - Wendover - Venturi Wet Scrubber Flow & Moisture Test Date 5/13/2009 As ft^2 Pbar Pq (static) Ps Avg. Ts F CO2 - FCO2 O2 N2+C Md Ms 3.34 25.75 -0.38 25.72 109 1.80 18.60 79.60 29.03 28.43 Y Cp Vm cf Vlc Avg. Tm F Vm std Vw std Bws S Bws 0.0984 0.9900 0.84 41.917 42.60 88 34.514 2.005 0.0549 0.0984 0.999 Avg. Sqrt Dlp Vs scfm wet acfm Qsd dscfh # Sample Points Dn Total Test time (minutes) Time @ point (minutes)Avg. Dlh 0.755 47.80 7,644 9,581 4.33E+05 12 0.226 60 5.00 1.14 TRUE Point No.Meter (cf)dl "p"dl "h"ts F tm F (in)tm F (out)Imp. Liquid Collected 1 79.416 0.60 1.21 109.0 84.0 82.0 Wt. (Final)Wt. (Initial)lc 2 83.160 0.60 1.21 104.0 84.0 82.0 374.8 352.7 22.1 3 86.800 0.60 1.21 109.0 87.0 83.0 599.0 593.2 5.8 4 90.600 0.55 1.11 109.0 89.0 86.0 721.2 716.6 4.6 5 94.150 0.50 1.01 108.0 91.0 86.0 943.8 933.7 10.1 6 97.700 0.50 1.01 107.0 92.0 85.0 0.0 7 101.199 0.65 1.21 107.0 92.0 86.0 8 104.735 0.65 1.21 110.0 93.0 86.0 Isokinetics 95.5 9 108.340 0.55 1.11 110.0 94.0 89.0 Test Date 3/5/2025 10 111.920 0.65 1.31 111.0 92.0 86.0 Start Time 14:20 11 115.300 0.50 1.01 111.0 93.0 87.0 End Time 15:22 12 118.500 0.50 1.01 113.0 94.0 87.0 13 121.333 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 Page 6 PARTICULATE MATTER COMPLIANCE TESTS CONDUCTED FOR INTREPID POTASH, WENDOVER, LLC WENDOVER, UTAH SOURCE TESTED: VENTURI WET SCRUBBER March 5, 2025 by: TETCO 391 East 620 South American Fork, UT 84003 Prepared for: Intrepid Potash - Wendover, LLC P.O. Box 580 Wendover UT, 84083 Date of Report: March 30, 2025 CERTIFICATION OF REPORT INTEGRITY Technical Emissions Testing Company (TETCO) certifies that this report represents the truth as well as can be derived by the methods employed. Every effort was made to obtain accurate and representative data and to comply with pro'cedures set forth in the Federal Register. Dean Kitchen Reviewer: ~ .,;;,,,> Xuan Dang Date: _____ Jf--,l/-t ..... t...--l-t,_,... ___ _ 11 iii TABLE OF CONTENTS PAGE Introduction Test Purpose, Location and Type of Process .......................................................................1 Test Dates.............................................................................................................................1 Pollutants Tested and Methods Applied ............................................................................. 1 Test Participants .................................................................................................................. 2 Deviations from EPA Methods ............................................................................................2 Errors or Irregularities..........................................................................................................2 Quality Assurance ................................................................................................................2 Summary of Results Emission Results ..................................................................................................................3 Allowable Emissions ...........................................................................................................3 Process Data .........................................................................................................................3 Description of Collected Samples ........................................................................................3 Percent Isokinetic Sampling ................................................................................................4 Source Operation Process Control Devices Operation .....................................................................................5 Process Representativeness ..................................................................................................5 Sampling and Analytical Procedures Sampling Port Location .......................................................................................................6 Sampling Point Location......................................................................................................6 Sampling Train Description .................................................................................................6 Sampling and Analytical Procedures ...................................................................................7 Quality Assurance ................................................................................................................7 Appendices A: Complete Results and Sample Calculations B: Raw Field Data C: Laboratory Data and Chain of Custody D: Facility Schematics E: Calibration Procedures and Results F: Related Correspondence iv LIST OF TABLES Table PAGE I Measured Particulate Matter Emissions ...............................................................................3 II Percent Isokinetic Sampling ................................................................................................4 III Sampling Point Location......................................................................................................6 IV Complete Results, Venturi Wet Scrubber ......................................................... Appendix A LIST OF FIGURES Figure 1 Facility Schematic Representation Venturi Wet Scrubber ................................ Appendix D 2 Schematic of Method 5/202 Sampling Train ..................................................... Appendix E 1 INTRODUCTION Test Purpose, Location and Type of Process This test was conducted to fulfill the testing requirements of Intrepid Potash- Wendover, LLC’s Approval Order Number DAQE-AN107420014-19 dated July 22, 2019. Those requirements include testing the Venturi Wet Scrubber exhaust for PM10 emissions. The Venturi Wet Scrubber exhaust serves the dryer heated by a 21 MMBtu/hr burner. The burner is fired with propane. The Intrepid Potash, Wendover LLC facility is located on the frontage road approximately 4 (four) miles east of Wendover, Utah. Emissions are expressed in terms of grains per dry standard cubic foot (gr/dscf) and pounds per hour (lb/hr). A schematic of process representation is given in Figure 1, located in Appendix D. Test Dates All testing was completed on March 5, 2025. Individual run times are on the Particulate Field Data sheets and the complete results table in Appendix A. Pollutants Tested and Methods Applied EPA Methods 201 and 201A are the acceptable methods for determining filterable PM10 particulate. However, Methods 201 and 201A are not appropriate for stacks that contain entrained water droplets. For this reason, 40 CFR 60, Appendix A, Reference Methods 1-5 were used to measure total particulate matter (PM) emissions from the Venturi Wet Scrubber exhaust. The Method 5 test is a gravimetric determination of PM particulate. Particulate matter is withdrawn isokinetically from the source and collected on a glass fiber filter. The particulate mass is determined gravimetrically after removal of uncombined moisture. This method is applicable for the determination of the particulate emissions from stationary sources. Condensable particulate matter (CPM) emissions were sampled in accordance with EPA Method 202. Method 202 is not for compliance purposes but for information only. A schematic of the sampling train is given in Figure 2. 2 Test Participants Intrepid Potash Todd Stubbs State None TETCO Dean Kitchen Xuan Dang Deviations From EPA Methods There were none. Errors or Irregularities There were no irregularities during the test project. Quality Assurance Testing Procedures and sample recovery techniques were according to those outlined in the Federal Register and the Quality Assurance Handbook for Air Pollution Measurement Systems. 3 SUMMARY OF RESULTS Emission Results Table I presents the PM test results. Table IV in Appendix A has more detailed testing data. Table I. Measured PM and Emissions Run PM Concentration (gr/dscf) Emission Rate (lb/hr) 1 0.034 2.23 2 0.043 2.79 3 0.042 2.59 Avg. 0.040 2.54 Allowable Emissions The allowable PM10 emissions for this source are 0.05 grains per dry standard cubic foot (gr/dscf) and 6.0 pounds per hour (lb/hr), as listed in the Facility Approval Order AO DAQE-AN107420014- 19. Process Data The facility was operated according to standard procedures. All pertinent process data was available for recording by agency personnel. Scrubber water flow rate and pressure drop readings across the Venturi Scrubber were recorded on the individual run sheets. Description of Collected Samples The filters for all three 3 test runs were covered with a moderate amount of particulate that was pink in color. The CPM filters were slightly gray in color. Impingers and water from the front-half catch of each run appeared slightly cloudy. 4 Percent Isokinetic Sampling Each test run was isokinetic within the ±10% of 100% criterion specified in the Federal Register. The isokinetic value for each EPA Method 5 test run is presented in Table II. Table II. Testing Isokinetics Run # Percent Isokinetic 1 98 2 99 3 97 5 SOURCE OPERATION Process Control Devices Operation All control devices were operated normally during the tests. The facility was operated according to standard procedures. The Venturi Wet Scrubber water flow rate and pressure drop readings across the scrubber were recorded and included in Appendix D. Process Representativeness The facility operated normally during the tests. Production rates were maintained by Intrepid Potash personnel. 6 SAMPLING AND ANALYTICAL PROCEDURES Sampling Port Location The stack inside diameter was 24.75 inches. Port location is depicted in Figure 1. The ports were located 7.3 diameters (15 feet) downstream from the last disturbance and 7.3 diameters (15 feet) upstream from the next disturbance. Sampling Point Location Table III shows the distance of each sampling point from the inside wall. Each point is marked with a glass tape wrapping and numbered. These points are determined by measuring the distance from the inside wall and adding the reference (port) measurement. Table III Sampling Point Location Point # Distance (inches) from Inside Wall 1 1.09 2 3.61 3 7.33 4 17.42 5 21.14 6 23.66 .Sampling Train Description All sampling trains were made of inert materials, (i.e., stainless steel and glass, etc.) to prevent sampled gas and particulate interference. The stack analyzer used to conduct these tests is constructed to meet the specifications outlined in 40 CFR 60, Appendix A, Method 5. The temperature sensors are K-type thermocouples. Heater, vacuum and pitot line connections have been designed to be interchangeable with all units used by the tester. The probe liners are of 316 grade stainless steel. Figure 2 in Appendix F is a sketch of the Method 5/202 sampling train. Sample boxes were prepared for testing by following the prescribed procedures outlined in 40 CFR 60, Appendix A, Methods 5. 7 Sampling and Analytical Procedures All test and analytical procedures employed were as specified in 40 CFR 60 Appendix A, Reference Method 5 and 40 CFR 51, Appendix M, Method 202. Quality Assurance All equipment set-up, sampling procedures, sample recovery and equipment calibrations were carried out according to the procedures specified in 40 CFR 60, Appendix A, Method 5, 40 CFR 51, Appendix M, Method 202 and the Quality Assurance Handbook for Air Pollution Measurement Systems. 8 APPENDICES A: Complete Results and Sample Calculations B: Raw Field Data C: Laboratory Data and Chain of Custody D: Facility Schematics E: Calibration Procedures and Results F: Related Correspondence A APPENDIX A Table IV Complete Results, Venturi Wet Scrubber Nomenclature Sample Equations Complete Results ScrubberTABLE IV COMPLETE RESULTS INTREPID WENDOVER, WENDOVER, UTAH DRYER VENTURI SCRUBBER EXHAUST Symbol Description Dimensions Run #1 Run #2 Run #3 Date Date 3/5/25 3/5/25 3/5/25 Filter #7904 7905 7906 Begin Time Test Began 10:36 12:51 14:20 End Time Test Ended 11:39 13:55 15:22 Pbm Meter Barometric Pressure In. Hg. Abs 25.75 25.75 25.75 DH Orifice Pressure Drop In. H2O 2.125 1.263 1.152 Y Meter Calibration Y Factor dimensionless 0.990 0.990 0.990 Vm Volume Gas Sampled--Meter Conditions cf 57.663 45.393 41.917 Tm Avg Meter Temperature oF 77.7 85.3 87.9 DP Sq Root Velocity Head Root In. H2O 0.7846 0.7877 0.7545 Wtwc Weight Water Collected Grams 43.3 44.6 42.6 Tt Duration of Test Minutes 60 60 60 Cp Pitot Tube Coefficient Dimensionless 0.84 0.84 0.84 Dn Nozzle Diameter Inches 0.2585 0.2265 0.2250 CO2 Volume % Carbon Dioxide Percent 2.30 1.80 1.80 O2 Volume % Oxygen Percent 18.20 18.80 18.60 N2 & CO Volume % Nitrogen and Carbon Monoxide Percent 79.50 79.40 79.60 Vmstd Volume Gas Sampled (Standard)dscf 48.537 37.584 34.530 Vw Volume Water Vapor scf 2.042 2.103 2.009 Bws (measured)Fraction H2O in Stack Gas (Measured)Fraction 0.040 0.053 0.055 Bws (calculated)Fraction H2O in Stack Gas (Calculated)Fraction 0.103 0.092 0.098 Bws Fraction H2O in Stack Gas Fraction 0.040 0.053 0.055 Xd Fraction of Dry Gas Fraction 0.960 0.947 0.945 Md Molecular Wt. Dry Gas lb/lbmol 29.10 29.04 29.03 Ms Molecular Wt. Stack Gas lb/lbmol 28.65 28.46 28.43 %I Percent Isokinetic Percent 97.8 98.9 96.5 AVG Ts Avg Stack Temperature oF 110.7 106.8 109.0 108.8 As Stack Cross Sectional Area Sq. Ft.3.341 3.341 3.341 PG Stack Static Pressure In. H2O -0.38 -0.38 -0.38 Pbp Sample Port Barometric Pressure In. Hg. Abs 25.72 25.72 25.72 Ps Stack Pressure In. Hg. Abs 25.692 25.692 25.692 Qs Stack Gas Volumetric Flow Rate (Std)dscfm 7.58E+03 7.56E+03 7.22E+03 7.45E+03 Qa Stack Gas Volumetric Flow Rate (Actual)cfm 9.95E+03 9.98E+03 9.59E+03 9.84E+03 Vs Velocity of Stack Gas fpm 2.98E+03 2.99E+03 2.87E+03 2.94E+03 Mfilter Mass of Particulate on Filter milligrams 100.3 100.8 87.6 Mp Mass of Particulate in Wash milligrams 7.7 4.0 6.0 MF Mass of Front Half milligrams 108.0 104.8 93.6 MB Mass of Back Half milligrams 6.8 7.8 5.5 CF Concentration of Front Half gr / dscf 0.0343 0.0430 0.0418 0.0397 Ccond Concentration of Condensibles gr / dscf 0.0022 0.0032 0.0025 0.0026 ERF Emission Rate of Front Half lb / hr 2.23 2.79 2.59 2.54 ERcond Emission Rate of Condensibles lb / hr 0.14 0.21 0.15 0.17 %I =percent isokinetic As =stack cross-sectional area (ft3) AS∆P =see √∆P Btu =unit heat value (British thermal unit) Bws =fraction of water in stack gas Ccpm =concentration of condensibles (grain/dscf) Cf =concentration of particulate matter, front half (gr/dscf,lb/dscf, etc.) Cmetal =concentration of metals (ppm, µg/ft3, etc.) atomic symbol replaces "metal" CO2 =percent carbon dioxide in the stack gas Cp =pitot tube coefficient (0.84) CX (avg)=species symbol replaces x . CX (corr)=actual gas concentration corrected to required percent O2 ∆H =orifice pressure drop (inches H2O) ∆H@ =orifice pressure (inches H2O) Dn =nozzle diameter (inches) Dn des =calculated desired nozzle size (inches) ∆P =stack flow pressure differential (inches H2O) Ds =diameter of the stack (feet) EA =percent excess air ERcpm =emission rate of condensibles (lb/hr) ERF =emission rate of front half particulate (lb/hr) ERmmBtu =emission rate per mmBtu or ton of fuel etc. ERX =emission rate of compound which replaces x K-fact =multiplier of test point ∆P to determine test point ∆H L =length of rectangular stack (inches) mBtu =thousand Btu Mcpm =mass of condensibles (milligrams) Md =molecular weight of stack gas, dry basis (lb/lb-mol) MF =mass of particulate on filter (mg) MFP =mass of particulate matter on filter and probe (mg) mmBtu =million Btu MP =mass of particulate matter in probe (mg) Ms =molecular weight of stack gas, wet basis (g/gmol) N2 =percent nitrogen in the stack gas O2 =percent oxygen in the stack gas √∆P =average of the square roots of ∆P (may also be referred to as AS∆P) Pbm =absolute barometric pressure at the dry gas meter (inches Hg) Pbp =absolute barometric pressure at the sample location (inches Hg) PG =stack static pressure (inches H2O) Ps =absolute stack pressure (inches Hg) Pstd =absolute pressure at standard conditions (29.92 inches Hg.) θ =time of test (minutes) Qa =stack gas volumetric flow rate (acfm) Method 5 / 202 Nomenclature Method 5 / 202 Nomenclature Qs =stack gas volumetric flow rate (dscfm) Qw =wet stack gas std. volumetric flow (ft3/min, wscfm) Tm =meter temperature (oF) Ts =stack temperature (oF) Tstd =absolute temperature at standard conditions (528oR) Tt =see θ Vm =sample volume (ft3) at meter conditions Vmstd =volume standard (dscf), sample volume adjusted to 68oF and 29.92 inches Hg. Vs =velocity of stack gas (fpm) Vw =volume water vapor (scf) at 68oF and 29.92 inches Hg. W =width of rectangular stack (inches) Wtwc =weight of the condensed water collected (grams) Xd =fraction of dry gas Y =meter calibration Y-factor (dimensionless) %I =Vmstd • (Ts + 460) • 1039 / (θ • Vs • Ps • Xd • Dn2) As =(Ds2 / 4) • π Bws =Vw / (Vmstd +Vw) Ccpm =Mcpm • 0.01543 / Vmstd Ccors =Mcors • 0.01543 / Vmstd Cf =Mfp • 0.01543 / Vmstd CX (corr)=CX (avg) • (20.9 - desired %O2) / (20.9 - actual %O2) Deq =2 • L • W / (L + W) Dn des =√{0.0269 • (Pbm + 0.0735) / [(Tm + 460) • Cp • Xd • √[(Ts + 460) • Ms) / (Ps • ∆P)]]} EA =(%O2 - 0.5 %CO) / [0.264 %N2 - (%O2 - 0.5 %CO)] ERcpm =Ccpm • Qs • 0.00857 ERF =Cf • Qs • 0.00857 ERmmBtu =ERX / (mmBtu / hr) K-fact =846.72 • Dn4 • ∆H@ • Cp2 • Xd2 • Md • Ps • (Tm + 460) / [Ms • (Ts + 460) • (Pbm + ∆H / 13.6)] Md =CO2 • 0.44 + O2 • 0.32 + N2 •0.28 Ms =(Md • Xd) + (18 • Bws) Ps =Pbp + (PG / 13.6) Qa =Vs • As Qs =Qa • Xd • Ps • Tstd / [(Ts + 460) • Pstd] Qw =Qs / Xd Vmstd =Vm • Y • Tstd • (Pbm + ∆H / 13.6) / [Pstd • (Tm + 460)] Vs =85.49 • 60 • Cp • √∆P • √ [(Ts + 460) / (Ps • Ms)] Vw =Wtwc • 0.04715 Xd =1 - Bws Method 5 / 202 Sample Equations B APPENDIX B Preliminary Velocity Traverse and Sampling Point Location Data Particulate Field Data Preliminary Venturi Scrubber Facility Intrepid Potash, Wendover Stack Identification Venturi Scrubber N Date u--1..i.~ i Barometric Pressure Pbm ld=,* in Hg Pbv l,:; le~ in Hg ' I-B Static Pressure (PG) ..-1 ) a, inH2O Estimated Moisture (Bws) 2-4 % Sample Height from Ground 33 feet I A Comments: Stack Dia. 24.75 Reference: 6.25 Ports are 15 Upstream from next disturbance Ports are 15 Downstream from last disturbance Traverse Percent Distance From: Ports Point Diameter ID Reference A B C D E F 1 4.4 1.09 7.34 U> 8!- 2 14.6 3.61 9.86 /o h- 3 29.6 7.33 13.58 "1 9 4 70.4 17.42 23.67 )-It, 5 85.4 21.14 27.39 ..y 1, 6 95.6 23.66 29.91 } ~ Averages: Ts LFlow -------- AP ✓AP ---- KEY=> '-IT_s ___ A_P __ L._F_lo_w .... 1 J/'~d:).. Field Data Sheet TETCO Filter 7 9(/tf Sample Box-{2.-Page_L_of_J_ Run#_}_- Plant: Intrepid Potash, Wendover Date: ) -:f'"'-=-). /''.-- ' Location: Venturi Scrubber Operator: jJ, J(; £c,, /a~-P'2 , , , Traverse II ---;·: •. ·-· II DGM Vacumn II Temperatures _('F) II DGM Temp CT ml N I •0" -4_1 2 Stack Diameter 24.75 ('. Port Reference~ -L II I 1e 11 ~...!,... ~-JI 2 E ~ 114 .. :Z"Q h·14j ;f, 111_ ':'L¥'"1~ 12'.J u_ '?I ~ I jt(~l.JI 11:.. z: I L t ,fforts are 4 5 6 Total .rz 66,l ✓~ ~Lvo i,t;>g .. f}t[t:; / ll_/ :!.§'._ Upstream from next disturbance 15' Downstream from last disturbance Assumed Moisture 2-4 % Probe .).BG Cp 0.84 Nozzle Calibration t¥b .»-e -~ -UL/- Avg D. .>,Jtl/mches • ),,J1f!J.,1- Gas Bag A:~ t:?7 Console~ Y-Factor ~ t,:J ilH@~ H20 Barometric· Pressures Pbm ),.J: L f-• Pbp ,.J-,2=-, Po -=;J , in Hg in Hg inH20 Leak Check: Pre Post ft3/min I c::?~ h vacinHg~ Pilot Rate InH20 o,,t:) ~ 1'%~ Water Collected "J·'J',) g Time Sampled hi:;I ..,, · min IIH@ Flow Rate ________ cc/min K= @Tm K= @Tm Average ✓ I 7 9 Yb ). ·():.;-. /(CJ, [ .,..._ Comments: If iJiP f Time !Water flo~ 9P'!1 I Scru!>b__er ~P "' Jf/) r ;Pp~/ /J-/Pf?·-~ t)..fO I . J- ,f/trlrField Data Sheet Plant: Intrepid Potash, Wendover Date: J --;r-:-->./ '-., .. Traverse II -•·i·: __ ... II DGM ~p ~H (;nH,O) TETCO , Filter H~Sample Box----1!:__ Page ---l--of~_/ Run #_2._ Location: Venturi Scrubber Operator: ,t:7. ,K/.:~ .-,.:::; Vacumn II Temperatures c"Fl II DGM Tem_p__('I"m) N I ·O· -=--11 I // II-"¥'...:'_:' ....... ,11 •cz,.e: 111.'rf I l ., / I ,/ I IV.,, 1<,LU: I' , , I LY V 1-, II L ,.,,1 F ,,., ,Stack Diameter 24.15 f.. 2 ___ • -• .#,II# ,i__l., •---A,1__. Port Reference ~ Total 'l.r. J~} ✓ ~ iD).. ~_;, Average ✓•l.ig Comments: Scrubber .tlP J}:.i)- /t16: 8 ~ ~lf7 9r:J_ Ports are ,)-,-.6 . >>-7 1.§'.__ Upstream from next disturbance 15' Downstream from last disturbance Assumed Moisture 2-4 % Probe Cp 0.84 Avg Dn , ~mches .,,J-e-e-, ,P'# / e-t- Gas Bag "/J: '(;I 7 Console ,,,J,=- Y-Factor ~ ~H@ ~n H20 Barometric Pressures Pb,,, _zf'": 7 J ::p~:& Leak Check: Pre ft3/min ,7. c;? / CJ vacinHg 20 in Hg in Hg inH20 PitotRate lnH20 ~ ~cl O¼O ~() Water Collected 7':Z1< g Time Sampled 't: min il.H@ Flow Rate cc/min K= K= @Tm @Tm . ), >-6 1;>-),7 - ~> c.r-,L~hv"" 4~ield Data Sheet Plant: Intrepid Potash, Wendover Date: z~~h' Traverse JI Time Ii 'Min (0) 4 5 6 DOM (fl) .1P .1H (inH,O) (i11H10) Desired I Actual .J:ETCO . Filter ;?·J't::J'(, Sample Box _ ___/5' Location: Venturi Scrubber Operator: J:1. /(7 hht?&, Vacumn II Temperatures ('Fl DOM Temp_ CT ml Stack (Ts) I Probe I Oven I CPM Filter! Effluent Out In --l' I I ~· -+--- ~ I I _;r--t-- .. Total YJ,917 ✓ ~'fr( Average ✓ ·'Jr!t_JL- Comments: I~ ~ lttn l2P8 t[liO hl_lO ii' UY --~. Page -1--orL Run #____;J N I ·0" Stack Diameter 24. 75 Port Reference --------6.25 Ports are Ports are ~ Upstream from next disturbance 15' Downstream from last disturbance Assumed Moisture 2-4 % Probe ) et}; Cp 0.84 Nozzle Calibration 1#--61 --¥AJ,... ~ ~ Avg Dn I W'Uinches Gas Bag , /9--t?7 Console ,,r-- Y-Factor~ .1H@ ~&i H2O Barometric Pressures Pbrr~2.,J'::=~ in Hg PbP27L:'~ inHg P0_ ~_!___J_~ in H20 Le,k Check: Fre Post ft3/mie dOP }---c?~:;z.. vac in Hg~-0/ Pitot Rate CJ, 0 lnH20 tl.d. L/Ld ------at::! 0 ,bft; 9,d WaterCollected ~ ~J,),·Og Time Sampled C(2 min '1H@ Flow Rate ________ cc/min K= K= @Tm @Tm C APPENDIX C Sample Recovery Particulate Analysis Sheets Condensable Particulate Analysis Sheets Gas Analysis Data (Fyrite) Chain of Custody M5 202 lmpinger Field Sheet Facility: Intrepid Wendover Stack ldentification:j,('t: Jll/v,a r Date: > c::J-;;;.... 2-J - .~.,/ ~;.;,;,~ / Method: -----'-5"--/2-'-02'----- IMPINGERS Run:_.,,_/___ Sample Box: -~I>...__ Filter Number: lmpmger Number Dry I I 2 I Cold ..L I 4-. s 6 Initial Volume of liquid (H20) in impingers,'(ml) pm filter description Final (g)'r£--L--L...e+-f-~~-+fi~7 CL\,f'-;:,..._,~--'-'-¥----t---- Initial (g)_· J..!1'""'--''-.h-+_,,.,'-:4'....._++-'l.,_.,_.~-+-'--"";ite-~-+----+---- Net (g) =#aa#:!!============f=~===--~:!:=-!!===!:!:=============== M ')p/ql> J, r==v.=-u~=------====~~==--------H20 Acetone Hexane Purge start //1µ Purge end / >:,rr ml H20 added J7} IMPINGE RS Run: 1.. " Sample Box: E Filter Number: lmpmger Number Dry ..L I I Cold ..L I 4-. A ,Ji__ Initial Volume of liquid (H20) in impingers, (ml) pm filter description Final (g) ..L...L-Jll<.!...-=---!P-,__-'-'-~~;..a:'--"""~1-1-=~"-1-1----1---- Initial (g'..,:) ~"lz::!'~H-=~~L...t_,.,,~~=t=--:f.1.!'-':a--t-----t----Net (g) · =l':,,t!!,.~====#!:!=;iE=;~6======='=,£/;,~~b:======'==== I~~ "L /1/.,, I Purge start / ff/~ . Purge.end lJ;7fJ _m_l _H"-20_a_dd_e_d __ n_ll IMPINGERS RINSES Hexane Run: f -~.,----Sample Box: -~f,_ __ lmpmger Number Filter Number: Dry ..L I i. I Cold ..L I 4-. A Initial Volume ofliquid (H20) in impingers, (ml) pm filter description weigh & analyze _ ___,/::...·-"-Q'-'-1,,,"--"'!--'t:,==~~(i, /,() "'t.,. Total (g) .. Purge start /f,tf/j Purge end / ~ 't /) ml H20 added FlJ ~ RINSES H2O Acetone 6 Hexane Initials X1J Facility: Intrepid Wendover Date:· 3/5/25 __ ____,.__ __________________ _ Stack Identification: Venturi Scrbber Run: --------------------------- Filter Number: 7904 Sample Box: D ------------ Blanks & Rinses Blanks Rinses Acetone (CH3COCH3) 0.0000 g/l00ml Filter Final,: 0.7814 g Date: 3/6/25 Time: 10:00 ------------Fin al 2: 0.7816 g Date: 3/7 /25 Time: 9:00 --------FinalAvo: 0.7815 g Filter Preweight: 0.6812 g CRITERIA Net 0.1003 g Process Weight Time Net 100.3 mg Final Pass Pass -·--· -···-·----------------------- Front Half Final 1: 124.7136 g Date: 3/6/25 Time: 10:00 -------------Fin al 2: 124.7134 g Date: 3/7 /25 Time: 9:00 --------Fina!Avo: 124.7135 g Initial 1: 124.7057 g Date: 9/4/24 Time: 8:00 --------Initial 2: 124.7058 g Date: 9/2/24 Time: 14:00 --------Initial Ava: 124.7058 g Gross: 0.0077 g CRITERIA Beaker Number: 36 Blank: 0.0000 g Process Weight Time Net 0.0077 g Final Pass Pass Net 7.7 mg Initial Pass Pass ----·---·--.. . .. ·----·-··----- RESULTS Front Half Filter 100.3 mg Wash 7.7 mg Total 108.0 mg ----·--------------·---·------------··-·--------------··--··-----------·-·-·-··---··----··-·-----------·--------·--·--·- Comments: Lab Technician: D Kitchen Date: 3/5/25 ---- Lab Technician: M McNamara Date: 3/7/25 ---- Facility: Intrepid Wendover -----------------------Date: 3/5/25 St a ck Identification: Venturi Scrbber Run: 2 --------------------------- Filter Number: 7905 Sample Box: E Blanks & Rinses Filter Front Half Blanks Acetone (CH3COCH3) 0.0000 g/l00ml Final 1: 0.7733 g --------Fin al 2: 0.7733 g --------FinalAvo: 0.7733 Filter Preweight: 0.6725 Net 0.1008 Net 100.8 Final 1: 103.4112 g --------Fin al 2: 103.4110 g --------FinalAvo: 103.4111 lnitial1: 103.4072 g --------l nit i al 2: 103 .4069 g --------Initial A vo: 103.4071 Gross: 0.0040 g g g mg g g g ---- Rinses ml Date: 3/6/25 Time: 10:00 ----Date: 3/7 /25 Time: 9:00 CRITERIA Process Weight Time Final Pass Pass -----····-····· ---·-· Date: 3/6/25 Time: 10:00 Date: 3/7/25 Time: 9:00 Date: 9/4/24 Time: 8:00 Date: 9/2/24 Time: 14:00 CRITERIA Beaker Number: 37 Blank: 0.0000 g Process Weight Time Net 0.0040 g Final Pass Pass Net 4.0 mg Initial Pass Pass ----·-----·--···- RESULTS Front Half Filter 100.8 mg Wash 4.0 mg Total 104.8 mg Comments: Criteria: I) We_i!lhts are± 0.5 mg of each other, or within I% of the net weight. 2) There shall be at least 6 hrs between weighings.--~---·-·--··--····-·------______ _ Lab Technician: D Kitchen Date: 3/5/25 ----- Lab Technician: M McNamara Date: 3/7/25 ----- Facility: Intrepid Wendover -----''---------------------Date: 3/5/25 St a ck Identification: Venturi Scrbber Run: 3 --------------------------- Filter Number: 7906 Sample Box: F Blanks & Rinses Filter -----·----·-------- Front Half -------- Blanks Acetone (CH3COCH3) 0.0000 g/l00ml Final 1: 0.7584 g --------Fin a I 2: 0.7583 g FinalAvo: 0.7584 g Filter Preweight: 0.6708 g Net 0.0876 g Net 87.6 mg Final1: 92.8313 g Final2: 92.8312 g FinalAvo: 92.8313 g Initial1: 92.8253 g Initial 2: 92.8253 g Initial A vo: 92.8253 g Gross: 0.0060 g ---- Rinses ml Date: 3/6/25 Time: 10:00 -----Date: 3/7 /25 Time: 9:00 CRITERIA Process Weight Time Final Pass Pass ----- Date: 3/6/25 Time: 10:00 Date: 3/7 /25 Time: 9:00 Date: 9/4/24 Time: 8:00 Date: 9/2/24 Time: 14:00 CRITERIA Beaker Number: 38 Blank: 0.0000 g Process Weight Time Net 0.0060 g Final Pass Pass Net 6.0 mg Initial Pass Pass RESULTS Front Half Filter 87.6 mg Wash 6.0 mg Total 93.6 mg --------···· ·-------- Comments: Criteria:. I) Weights are± 0.5 mg of each other, or within I% of the net weight._ 2) There shall be at least 6 hrs between.weighings.··--·---····· . ··········-··-. Lab Technician: D Kitchen Date: 3/5/25 ----- Lab Technician: M McNamara Date: 3/7/25 Facilty: Intrepid Potash, Wendover Stack Identification: Venturi Scrubber Sample Description/ID # Run 1 Inorganic CPM Beaker/Tin# 34 Date Time Final Weight (1), g 2.1394 3;12125 I 8:oo I Final Weight (2), g 2.1394 3112125 I 14:oo I Ave. Final Weight, g 2.1394 Initial Weight (1), g 2.1360 9;4;24 I 10:00 I Initial Weight (2), g 2.1362 9;5;24 I 9:oo I Ave. Initial Weight, g 2.1361 m,: Initial Inorganic Wt, mg 3.30 H2O added in Extractions, ml 60 pH pH Reconstituted H2O Volume, ml Start End N: Normality ofNH4OH I I \ V1: Volume ofNH4OH, ml m0: Mass ofNH4 Added, mg mi (or mib): Final Inorganic Wt, mg 3.30 Organic CPM Beaker/Tin # 37 Date Time Final Weight (1), g 2.1736 3112125 I 8:oo I Final Weight (2), g 2.1737 3112125 I 14:oo I Ave. Final Weight, g 2.1737 Initial Weight (1), g 2.1680 9;4124 I 10:00 I Initial Weight (2), g 2.1683 915124 I 9:oo I Ave. Initial Weight, g 2.1682 m0 (or m0b): Net Organic Wt, mg 5.50 m00m : Gross CPM, mg 8.8 mcpm: Blank CPM, mg 2.0 mcpm: Net CPM, mg 6.8 pH Meter: Oakton pHTestr BNC, Electrode Model: 35801-00 Fisher pH Buffer 4.001 pH I Date I Fisher pH Buffer 7.00 .__ _____ ...., f=j Method 202 Laboratory Form Run2 Rel. Hum Rel. Hum % 35 Date Time % <1 2.1716 3112125 I 8:oo I <1 < 1 2.1714 3112125 I 14:oo I <l 2.1715 < 1 2.1682 914124 I 10:00 I < 1 < 1 2.1683 915124 I 9:oo I <1 2.1683 3.25 60 pH pH Start End I I 3.25 Rel. Hum Rel. Hum % 38 Date Time % <1 2.1705 3112125 I 8:oo I <1 <1 2.1703 3112125 I 14:oo I <l 2.1704 < 1 2.1638 9;4;24 I 10:00 I <l <l 2.1639 9;5;24 I 9:oo I < l 2.1639 6.55 9.8 2.0 7.8 Lab Technician: Lab Technician: 3/5/25 Test Date(s): _________ _ Run3 Rel. Hum 36 Date Time % 2.1495 3112125 I 8:oo I <l 2.1497 3112125 I 14:oo I < 1 2.1496 2.1453 9;4124 I 10:00 I <1 2.1457 9;5124 I 9:oo I <1 2.1455 4.10 60 pH pH Start End I I 4.10 Rel. Hum 39 Date Time % 2.2035 3112125 I 8:oo I <1 2.2036 3112125 I 14:oo I <l 2.2036 2.2001 9;4;24 I 10:00 I < 1 2.2002 9;5;24 I 9:oo I· <l 2.2002 3.40 7.5 2.0 5.5 Mike McNamara Date: 3/5/25 Dean Kitchen Date: 3/12/25 Form Date: 10/21/15 Facilty: Intrepid Potash, Wendover Stack Identification: Venturi Scrubber Method 202 Laboratory Form Sample Description/ID # Recovery Blank Inorganic CPM Rel. Hum Beaker/tin # 40 Date Time % 41 Final Weight (1), g 2.1255 <l 2.1522 Final Weight (2), g 2.1257 <l 2.1525 Ave. Final Weight, g 2.1256 2.1524 Initial Weight (1), g 2.1243 9/4/24 10:00 <l 2.1515 Initial Weight (2), g 2.1245 9/5/24 9:00 <l 2.1512 Ave. Initial Weight, g 2.1244 2.1514 mr: Initial Inorganic Wt, mg 1.20 1.00 H2O added in Extractions, ml 60 pH pH 60 Reconstituted H2O Volume, ml Start End N: Normality ofNH4OH Vt: Volume ofNH4OH, ml me: Mass ofNH4 Added, mg m; (or mib): Final Inorganic Wt, mg 1.20 1.00 Organic CPM Rel. Hum Beaker/tin # 42 Date Time % 43 Final Weight (1), g 2.1652 <l 2.1467 Final Weight (2), g 2.1651 <l 2.1466 Ave. Final Weight, g 2.1652 2.1467 Initial Weight (1), g 2.1644 9/4/24 10:00 <l 2.1458 Initial Weight (2), g 2.1640 9/5/24 9:00 <l 2.1460 Ave. Initial Weight, g 2.1642 2.1459 m0 ( or m0b): Net Organic Wt, mg 0.95 0.75 mcpm (or mfb): Total CPM, mg 2.2 1.8 Test Date(s): 3/5/25 Proof Blank Date Time Rel.Hum% <l <l 9/4/24 10:00 <l 9/5/24 9:00 <l pH pH Start End Date Time Rel.Hum% <l <l 9/4/24 10:00 <l 9/5/24 9:00 <l pH Meter: Oakton pHTestr BNC, Electrode Model: 35801-00 I Time I Lab Tech.: Mike McNamara Fisher pH Buffer 4.001 pH I Date I Date: 3/5/25 Fisher pH Buffer 7.00 ,.._ _____ _. Lab Tech.: Dean Kitchen Date: 3/12/25 Form Date: I 0/21115 Method 202 Field Reagent Blank Form Facilty: Intrepid Potash, Wendover Stack Identification: Venturi Scrubber Blank Description/ID # Water RJCCA Reagent Lot# 2307F47 Rel. Hum Beaker/tin # 44 Date Time % Final Weight (1), g 2.1678 3112125 I 8:oo I <1 Final Weight (2), g 2.1677 3;12125 I 14:oo I <1 Ave. Final Weight, g 2.1678 Initial Weight (1), g 2.1677 9;4;24 I 10:00 I <1 Initial Weight (2), g 2.1676 9;5;24 I 9:oo I <1 Ave. Initial Weight, g 2.1677 Blank Residual Mass, mg 0.10 Water Blank Mass, g 224 Blank Volume, ml 224 Max Blank Residulal Mass, mg 0.22 Acetone 220983 45 2.1746 2.1748 2.1747 2.1747 2.1744 2.1746 0.15 138 176 0.18 Test Date(s): 11/11/24 ---------- Fisher ACS Hexane Sigma-Aldrich SHBQ-7084 Rel. Hum Rel. Hum Date Time % 46 Date Time % 3112125 I 8:oo I <l 2.1899 3112125 I 8:oo I <l 3112125 I 14:oo I <l 2.1896 3112125 I 14:oo I <l 2.1898 9;4124 I 10:00 I <1 2.1896 9;4124 I 10:00 I <l 9;5;24 I 9:oo I <l 2.1897 915124 I 9:oo I <1 2.1897 Acetone 0.10 Hexane 149 223 0.22 Lab Technician: Mike McNamara Date: 3/5/25 Lab Technician: Dean Kitchen Date: 3/12/25 Form Date: 10/21/15 Method 202 Laboratory Reagent Blank Form Blank Description/ID # Water RICCA Reagent Acetone Fisher ACS Hexane Sigma-Aldrich Lot# 4203D42 220983 ShBS-1350 Rel. Hum Rel. Hum Rel. Hum Beaker/tin# 31 Date Time % 32 Date Time % 33 Date Time % Final Weight (1), g 2.1669 3/12125 I 8:oo <l 2.1265 3/12125 I 8:oo I <l 2.1168 3/12/25 8:00 <l Final Weight (2), g 2.1669 3/12/25 I 14:00 <l 2.1265 3n2125 I 14:oo I <l 2.1168 3/12/25 14:00 <l Ave. Final Weight, g 2.1669 2.1265 2.1168 Initial Weight (1), g 2.1667 914124 I 10:00 <l 2.1263 914124 I 1 o:oo I <l 2.1165 9/4/24 10:00 <l Initial Weight (2), g 2.1668 915124 I 9:oo < 1 2.1265 9;5124 I 9:oo I < 1 2.1167 9/5/24 9:00 <l Ave. Initial Weight, g 2.1668 2.1264 2.1166 Blank Residual Mass, mg 0.15 Water 0.10 Acetone 0.20 Hexane Blank Mass, g 250 175 173 Blank Volume, ml 250 223 259 Max Blank Residulal Mass, mg 0.25 0.22 0.26 Lab Technician: Mike McNamara Date: 3/5/25 Lab Technician: Dean Kitchen Date: 3/12/25 Form Date: 10/21/15 Plant: Intrepid, Wendover, UT Analytical Method: Orsat/Fyrite ----~--------------- Date ]-?°' -J-;J- Test No. / Gas Bag No. -}:~-=--(7~~7- Ambient Temp~ Operator~ Gas CO2 0 2 (Net is Actual 0 2 Reading Minus Actual CO2 Reading). N2 (Net is 100 Minus Actual 0 2 Reading). Gas Actual Reading )-> Actual Location: Venturi Scrubber RUN 2 Net Actual Net Actual Reading Reading )-) J...-> J..-> J--> 1/f r)---I~,)-- RUN 2 Net Actual Net Actual Date }-,,;r-;)--J -1=========:::=======l=====ll======*==~i== TestNo.~ Reading Reading Reading Gas Bag No. -t1 Ambient Temp~ Operator~ °'" 2---:rz-Test No. GasBagNo.~ Ambient Temp Operator Date -----Test No. ____ _ Gas Bag No. ____ _ Ambient Temp ____ _ Operator ____ _ 0 2 (Net is Actual 0 2 Reading Minus Actual CO2 Reading). N2 (Net is 100 Minus Actual 0 2 Reading). Gas 0 2 (Net is Actual 0 2 Reading Minus Actual CO2 Reading). N2 (Net is 100 Minus Actual 02 Reading). Gas CO2 0 2 (Net is Actual 0 2 Reading Minus Actual CO2 Reading). N2 (Net is 100 Minus Actual 0 2 Reading). /,~ ..__ Actual Reading Actual Reading /, ffe !$, B Net Net /,~ /1& /F're RUN Actual Reading 2 RUN 2 Net Actual Net Reading CO is not measured as it has the same molecular weight as N2 /, £5 Actual Reading Actual Reading 3 Net )_-) /@',;_ 3 Net /1~ It?-&! 3 Net 3 Net Average Net Volume ).. ,.J,:::::7 /t;. Average Net Volume /,8 /f. Average Net Volume Average Net Volume TETCO Stack Emission Analysis Accurate • Reliable • Qualified Chain of Custodi ~,L Facility (& Source): W~th><Ar" ..s::: l,<J-U: S't.,,ll.l.J( <.r--gJ v~~ ] ~ ~ E ..s::: 8 gJ E ~ ~ 8 i:i.. i:i.. II) iZ Method(s) of E r/l i'3 (I) :;8 Sample ID Date Analysis 8 = 0 i:i.. iZ u ,::i... 14 n ...-::J.,#, ,-, ~ llJ/,..,,.. ..r-/i.ot.. \JJ(' )< R~ ~ ,1-t'.)r,,.r Ir [ I~ Ix o > ..-+ero~ ' t I;( /'1-~-l,1-.. .tZ. l fir IJ.,.. ,-, .. _.. .. /)c, __ ;., .. _,,., -Pt--L -l a- .1) ....... -,._;__ o, .. _r_ l \ IJ Sampled By: Recovered By: Analyzed By: Relinquished By: Received By: Relinquished By: Received By: All samples remained in the custody ofTETCO unless otherwise indicated. Comments: )< (]) (]) "' "' = = ~ ~ II) o'd {/) "' = (]) 1 ~ § o?3 ~ u ... ..s::: 0 ~ u o'd § ~ iZ (I) u = 0.. ~ e ~ 0 0.. N u 0 u ::c < ,.:!l }( ·>< 'X ~ '')< )( x :x IX ~ lx lX IX x IX ~ // I * (]) II) "' "' = = ~ ~ "O o?3 § -5 -5 ~ ~ u j u ... 0 0 r:FJ £ "O u u < IY r/l ~ ... II) ~ (I) ~ ::c Ix k" 391 E 620 S, American Fork, UT 84003 801-492-9106 •' 801-492-9107 Notes Date: Date: Date: Date: Date: I D APPENDIX D Figure 1. Facility Schematic Representation Venturi Wet Scrubber Raw production data was retained by Intrepid personnel Facility: Stack Identification:  33'g: Distance of Sample Level to Ground, feet Intrepid Potach, Wendover 4-5 Venturi Scrubber 15' 15' a: Distance upstream from next disturbance, feet b: Distance downstream from last disturbance, feet Salt DryerType: Number of Ports Process Type: Control Unit 2 Estimated Temperature, oF Figure 1. Facilty Schematice Representation Estimated Velocity, fpm 24.75" Venturi Scrubber  Stack Inside Diameter, inches Estimated Moisture, percent 120 2,600 a g b E APPENDIX E Calibration of the console dry gas meter(s), pitot tubes, nozzles diameters, and temperature sensors were carried out in accordance with the procedures outlined in the Quality Assurance Handbook. The appropriate calibration data are presented in the following pages. The nozzle calibrations are recorded on the first page of the field data sheets. Figure 2. Schematic of Method 5/202 Sampling Train Meter Box Calibration Data and Calculations Forms Meter Box Post-test Calibration Sheet Type-S Pitot Tube Inspection Data Sample Box Temperature Sensor Calibration Filter Balance Calibration Figure 2. Schematic of Method 5/202 Sampling Train Temperature Sensor t t Type S Pitot Tube Probe Temperature Sensortl Gooseneck ! . . Nozzle "" / Type S Pitot Tube Stack Wall Orifice HecatTracecl Probe Temperature Sensor Glass Filter Holder Heated Area Manometer Temperature Sensors I Dry Gas \ ! Meter l \_) Thermocouple Recirculation Pump Empty Impinge rs Valve METHOD 5 DRY GAS METER CALIBRATION USING CRITICAL ORIFICES 1) Select three critical orifices to calibrate the dry gas meter which bracket the expected operating range. 2) Record barometric pressure before and after calibration procedure. 3) Run at tested vacuum (from Orifice Calibration Report), for a period of time necessary to achieve a minimum total volume of 5 cubic feet. 4) Record data and information in the GREEN cells, YELLOW cells are calculated. TECHNICIAN: A. Kitchen DATE: 12/19/2024 METER SERIAL#: 26144 BAROMETRIC PRESSURE (in Hg): INITIAL 25.80 METER PART#: Console 5 CRITICAL ORIFICE SET SERIAL#: 1453S EQUIPMENT ID#: Console#5 ORIFICE # I RUN# I G G G 2 3 2 3 2 3 K' FACTOR (AVG) 0.8137 0.8137 0.8137 0.5317 0.5317 0.5317 0.3307 0.3307 0.3307 ~ VACUUM (in Hg) 13 13 13 13 13 13 14 14 14 DGM READINGS (FT3) INITIAL 0.416 5.713 11.030 83.552 88.669 93.841 17.300 22.400 28.298 FINAL 5.713 11.030 16.357 88.669 93.841 99.045 22.400 28.298 33.427 NET(Vm) 5.297 5.317 5.327 5.117 5.172 5.204 5.100 5.898 5.129 USING THE CRITICAL ORIFICES AS CALIBRATION STANDARDS: TEMPERATURES °F AMBIENT DGMINLET DGMOUTLET DGM INITIAL FINAL INITIAL FINAL AVG 71 87 91 78 79 83.8 71 90 96 79 80 86.3 71 94 98 80 82 88.5 70 77 81 73 74 76.3 70 80 85 75 76 79.0 70 84 89 76 79 82.0 70 93 92 82 85 88.0 70 91 93 84 87 88.8 70 92 96 86 88 90.5 FINAL I 25.80 I ELAPSED TIME~MIN)I 4.75 4.76 4.76 7.26 7.36 7.26 11.51 13.26 11.51 AVG(Pbarl 25.80 I DGM!>.H (in H20) 2.80 2.80 2.80 1.10 1.10 1.10 0.41 0.41 0.41 (1) Vm(STD) 4.4715 4.4678 4.4578 4.3591 4.3833 4.3860 4.2429 4.9001 4.2476 2025 Pre-Calibration IF Y VARIATION EXCEEDS 2.00%, ORIFICE SHOULD BE RECALIBRATED (2) Ver (STD) 4.3287 4.3378 4.3378 AVG= 4.3273 4.3869 4.3273 AVG= 4.2670 4.9157 4.2670 AVG= (3) y 0.968 0.971 0.973 0.971 0.993 1.001 0.987 0.993 1.006 1.003 1.005 1.004 l y VARIATION(%) -1.90 0.39 1.51 The following equations are used to calculate the standard·volumes of air passed through the DGM, Vm (sld), and the critical orifice, Va (std), and the DGM calibration factor, Y. These equations are automatically calculated in the spreadsheet above. AVERAGE DRY GAS METER CALIBRATION FACTOR, y = I 0.990 (1) (2) (3) Vm{,M) = K, ,. Vin* Pbar + (l!H /13.6) Tm = Net volume of gas sample passed through DGM, corrected to standard conditions K1 = 17.64 uR/in. Hg (English), 0.3858 uK/mm Hg (Metric) Vcr(ud) "'K'* Pbar * e ✓Tamb Vc1(ud) Y= --·-- Vm1,,d) Tm= Absolute DGM avg. temperature ("R -English, "K -Metric) = Volume of gas sample passed through the critical orifice, corrected to standard conditions T,mb = Absolute ambient temperature ("R -English, "K -Metric) K' = Average K' factor from Critical Orifice Calibration = DGM calibration factor AVERAGE !>.H@ =1 1.488 !>.H@= ( 0.75 0 )2 t>.H (Vm(std)) Vcr(std) Vm TEMPERATURESENSORS°F REFERENCE IN OUT 32 33 32 72 73 73 203 203 202 1.601 1.594 1.587 1.484 1.476 1.468 1.396 1.394 1.390 METHOD 5 DRY GAS METER CALIBRATION USING CRITICAL ORIFICES 1) Select three critical orifices to calibrate the dry gas meter which bracket the expected operating range. 2) Record barometric pressure before and after calibration procedure. 3) Run at tested vacuum (from Orifice Calibration Report), for a period of time necessary to achieve a minimum total volume of 5 cubic feet. 4) Record data and information in the GREEN cells, YELLOW cells are calculated. TECHNICIAN: Xuan Dang 7 DA TE: 03/06/25 METER SERIAL #: 26144 METER PART#: Console 5 :RITICAL ORIFICE SET SERIAL#: 1453S K' TESTED FACTOR I VACUUM I ORIFICE# I RUN# I {AVG) {in Hg) DGM READINGS {FT') INITIAL FINAL G: □:ma □:ma 0.5317 11 0.5317 11 0.5317 11 48.360 53.988 .53.988 60.732 60.732 67.379 USING THE CRITICAL ORIFICES AS CALIBRATION STANDARDS: NET(Vml 5.628 6.744 6.647 INITIAL BAROMETRIC PRESSURE {in Hg): 24.85 EQUIPMENT ID #: Console #5 TEMPERATURES °F AMBIENT I DGM INLET I DGM OUTLET I DGM INITIAL FINAL I INITIAL FINAL I AVG u ro n ~ ~ 81.0 ~ n ~ ~ ~ 87.0 ~ M ~ ff 1~ 92.0 I I I I I I I I I I I I FINAL 24.85 ELAPSED TIME{MIN) 0 7.68 8.97 8.73 AVG{P .. ,) 24,85 DGM.<l.H {inH,O) 1.15 1.15 1.15 §§ §§ (1) Vm{STD) 4.5783 5.4260 5.2995 Post Calibration Intrepid Wendover Venturi Wet Scrubber IF Y VARIATION EXCEEDS 2.00%, ORIFICE SHOULD BE RECALIBRATED (2) Vc,{STD) 4.4216 5.1594 5.0213 AVG= AVG= AVG= (3) y 0.966 0.951 0.948 0.955 1 y VARIATION(%) 0.00 The following equations are used to calculate the standard volumes of air passed through the DGM, Vm (std), and the critical olifice, Va {std), and the DGM calibration factor, Y. These equations are automatically calculated in the spreadsheet above. AVERAGE DRY GAS METER CALIBRATION FACTOR, Y = I 0.955 (1) (2) (3) Vm(.ml) = K, *Vm* Pbar+(ilH /13.6) Tm ~ = Netvolume of gas sample passed through DGM, corrected to standard conditions K, = 17.64 °R/in. Hg (English), 0.3858 'Kimm Hg (Metric) Pbar *0 -K'* Vcr(,tdl-~ Tm = Absolute DGM avg. temperature ("R -English, "K -Metric) = Volume of gas sample passed through the critical orifice, corrected to standard conditions T,m, = Absolute ambient temperature (0R -English, 'K -Metric) K' = Average K' factor from Critical Orifice Calibration Vc1(,tdJ Y= ---------= DGM calibration factor Vi11(,,dl AVERAGE .<l.H@ =1 1.573 I .<l.H@= ( 0.75 9'\ . .<l.H (Vm(std\ Vc,(Std)} Vm } TEMPERATURE SENSORS °F REFERENCE IN OUT 1.588 1.573 1.559 Date: __ __:.;_l/.=6/-=2=-5 __ Type S Pi tot Tube Inspection Data Pitot Tube Identification: ____ ___:3:..:8:..cG::.,_ ___ _ Technician: M. McNamara D = 0.375 in. Is PA= Pa ? ___ _..;;Y..:.e:;..s __ _ --''--------Is l.05•D1 :<; PA&P8 $ l.50•D,? ___ _..;;Y..:.e:;..s __ _ 0.486 in. P8 = 0.486 in. a 1 <10° a1= _____ _ a 2 <10° a2= ___ 2 __ _ Z::<;0.125in. W ::<; 0.03125 in. W> 3 inches Z > 3/4 inch Z = __ o.:,;•..;_0::.;32=----in. W = __ o;;_,;'_;0_;15'--_in. W = __ 6.:..;·..;_87cc5'--_ in. Z= __ _;J_.2_5 __ in. Y = _ ____c.3_1"-/2 __ in. The pitot tube meets the specifications for a calibration factor of 0.84? Yes Temperature Sensor Calibration Reference· Omega CL3512A Continuity Check Yes Probe Heat Check 248 Yes 1emperature 1 emoerature l emperature Source Keterence Sensor Difference (Medium) ("F) ("F) (OF) Probe AIR 66 66 0 AIR 66 67 I Stack ICE WATER 33 33 0 BOIL WATER 204 204 0 SILICONE OIL TETCO Sample Box Temperature Sensor Calibration Date: 1/2/25 Calibrator: Alan Kitchen Reference: Omega CL3512A Thermocouple Temperature Tern erature Temperature Unit ID Source Reference Sensor Difference Location (°F) ("F) {°F) (Medium) Oven (3) Water 33 32 -1 A Water 205 203 -2 Water 3 2 ~ Oven (4) Water 205 207 Oven (3) Water 33 32 B Water 204 202 2 ater ~ Oven (4) Water 204 206 Oven (3) Water 33 32 C Water 203 203 Water 3 Oven (4) Water 204 205 1 Oven (3) Water 33 33 0 D Water 205 207 2 ater Oven (4) Water 205 206 Oven (3) Water 33 32 -1 E Water 204 206 2 Water 33 Oven (4) Water 204 203 -1 F Oven Water 33 32 -1 Water 205 207 2 G Oven Water 3 32 -1 Water 205 206 1 H Oven Water 33 33 0 Water 203 204 1 lmpinger Out A Water 33 34 Water 203 203 0 Impinger Out B Water 34 Water 203 0 Impinger Out C Water 34 Water 202 -1 Impinger Out D Water 33 0 Water 201 -2 Impinger Out E Water 34 1 Water 203 202 -1 lmpinger Out F Water 33 34 1 Water 203 203 0 lmpinger Out G Water 33 34 Water 203 204 1 Impinger Out H Water 33 33 0 Water 203 202 -1 Impinger Out I Water 33 33 0 Water 201 -2 Impinger Out J Water 34 Water 202 -1 Impinger Out K Water 34 1 Water 203 0 TETCO Annual Balance Calibration Check Date 1 /02/25 Balance Denver Instruments, Model A-250, SN B045284 Weights Used Troemner Weight Set, SN 98-115146 Certified Weight grams 0.1000 0.5000 1.0000 10.0000 50.0000 100.0000 120.0000 150.0000 Technician Michael McNamara Measured Weight grams 0.1000 0.5000 1.0000 10.0000 50.0000 100.0001 119.9999 149.9999 ; Difference grams 0.0000 0.0000 0.0000 0.0000 0.0000 -0.0001 0.0001 0.0001 F APPENDIX F Test Protocol and Related Correspondence COMPLIANCE EMISSION TESTING PROTOCOL FOR PARTICULATE MATTER INTREPID WENDOVER POTASH, WENDOVER, UTAH VENTURI WET SCRUBBER Project Organization and Responsibility The following personnel and the testing contractor are presently anticipated to be involved in the testing program. The Utah Department of Environmental Quality, Division of Air Quality (DAQ) and EPA may have their own personnel to observe all phases including the process Company Contacts Intrepid Potash, Wendover LLC Todd Stubbs 435 259-1282 P O Box 580 Wendover, UT 84083 TETCO Dean Kitchen 801 492-9106 391 East 620 South American Fork, UT 84003 Facility and Location The facility to be tested is Intrepid Potash, Wendover LLC located on the frontage road approximately 4 (four) miles east of Wendover, Utah. The source to be tested is the Venturi Wet Scrubber exhaust that serves the dryer heated by a 21 MMBtu/hr burner. The burner is fired with propane. Test Objective The test objective is to comply with the facility’s approval order number DAQE- AN0107420014-19. Testing procedures will include accumulating process and production data as well as testing for PM10 particulate matter emissions using EPA Method 5. Condensable particulate matter (CPM) will be measured according to EPA Method 202 and is not for compliance but informational purposes only. The allowable PM10 emission limits for this source are 0.05 gr/dscf and 6.0 lb/hr. Test Date and Time It is planned to complete this test November 11-12, 2024. The testing crew will arrive and set up the testing equipment November 11th and begin testing that afternoon if production permits. Testing will continue on November 12th as needed. A pre-test meeting may be scheduled by EPA, DAQ or Intrepid Potash. Process Data and Instrumentation All process and instrumentation data will be made available to DAQ personnel. The venturi scrubber water flow rate and pressure drop will be recorded by TETCO personnel during each test run. The amount of material processed through the kiln dryer will be recorded by Intrepid Potash Wendover personnel. The facility will run at normal conditions. Site Access Sample location access is by man-lift. Full-body harnesses will be used for anyone ascending in the man-lift. Potential Hazards Moving Equipment Yes Hot Equipment Yes Chemical Pot Ash, Corrosive Other Noise Test Site The stack inside diameter is 24.75 inches. Port location is depicted in Appendix 1 of this protocol. The sample ports are located 7.3 diameters (15 feet) downstream from the last disturbance and approximately 7.3 diameters (15 feet) upstream from the next disturbance. Sample port placement conforms to the requirements of EPA Method 1. Quality Assurance All testing and analysis in these tests will be conducted according to Methods 5, 202 and appropriate sections of 40 CFR 51 Appendix M. Reporting Reporting will be prepared by the testing contractor according to EPA Quality Assurance Guidelines. A complete copy of raw data and test calculations summary will be included in the reports. All process and production data will be recorded by Intrepid Potash, Wendover personnel for inspection by DAQ and EPA, if requested. Estimates of Test Parameters Flow 19,000 fpm Moisture 4-5 % Temperature 125o F Test Procedures Particulate matter testing will be conducted on the Venturi Scrubber exhaust stack according to EPA Method 5. The reason for using EPA Method 5 instead of Method 201A for PM10 is because there are water droplets in the stack exhaust. The back-half of the Method 5 sampling train will be sampled according to EPA Method 202 as specified in 40 CFR Part 51 Appendix M. Specific procedures are as follows: 1. The total number of sample points will be 12 according to EPA Method 1. Six points will be sampled on each port. Test run time will be at least 60 minutes. 2. EPA Method 2 will be used to determine the gas stream velocity. Calibration data for the geometrically calibrated type “S” pitot tubes are included with this protocol. Dual inclined/vertical manometers with graduations in .01 of an inch of water will be used. Direction of gas flow will be checked for gas cyclonics prior to testing. 3. EPA Method 3 will be used to determine the gas stream dry molecular weight if the exhaust gas is not ambient. An integrated flue gas sample will be taken from the exhaust line after the dry gas meter orifice during each test run and analyzed at the completion of the test with a Fyrite to determine the molecular weight of the effluent gas stream. If the exhaust gas is ambient air then TETCO will use a dry molecular weight of 28.84 lb/lbmol (20.9 percent O2, 79.1 percent N2) in all calculations. 4. EPA Method 4 will be used to determine the gas stream moisture content. 5. The back-half, or condensible particulate matter will be handled according to EPA Method 202 and will be for informational purposes only. 6. The barometric pressure will be measured with a barometer which is periodically checked against a mercury barometer. The barometer will be checked prior to testing to assure an accurate barometric pressure. 7. All current calibration data is submitted with this protocol, except nozzle calibration which will be done at the test site. Nozzle calibration will be included on the first page of each set of run sheets for each respective test run. Any calibration that is not current will be re-calibrated prior to the test dates. 8. The glass fiber filters that will be used conform to the requirements of EPA Method 5. 9. Probe liners will be 316 stainless steel for all Method 5 tests. 10. Test preparation and sample recovery will be performed in the contractor's sampling trailer or a clean area on Intrepid Potash’s property. The laboratory work and analysis will be done by the contractor as soon as possible after the test project at 391 East 620 South, American Fork, Utah. 11. Verbal results will be reported to a representative of Intrepid Potash, Wendover. The written report will follow within 30 days following the completion of the test. 12. If maintenance or operating problems arise during the test, the test may be stopped. This determination will be made by Intrepid Potash, Wendover representatives and operating personnel in consultation with DAQ representatives APPENDIX A Facility Schematic Facility: Stack Identification:  33'g: Distance of Sample Level to Ground, feet Intrepid Potach, Wendover 4-5 Venturi Scrubber 15' 15' a: Distance upstream from next disturbance, feet b: Distance downstream from last disturbance, feet Salt DryerType: Number of Ports Process Type: Control Unit 2 Estimated Temperature, oF Figure 1. Facilty Schematice Representation Estimated Velocity, fpm 24.75" Venturi Scrubber  Stack Inside Diameter, inches Estimated Moisture, percent 120 2,600 a g b APPENDIX B Calibration Data METHOD 5 DRY GAS METER CALIBRATION USING CRITICAL ORIFICES 1) Select three critical orifices to calibrate the dry gas meter which bracket the expected operating range. 2) Record barometric pressure before and after calibration procedure. 3) Run at tested vacuum (from Orifice Calibration Report), for a period of time necessary to achieve a minimum total volume of 5 cubic feet. 4) Record data and information in the GREEN cells, YELLOW cells are calculated. TECHNICIAN:INITIAL FINAL AVG (Pbar) DATE:12/18/2023 METER SERIAL #:26144 BAROMETRIC PRESSURE (in Hg):25.45 25.45 25.45 IF Y VARIATION EXCEEDS 2.00%, METER PART #:Console 5 CRITICAL ORIFICE SET SERIAL #:1453S EQUIPMENT ID #:ORIFICE SHOULD BE RECALIBRATED K'TESTED TEMPERATURES °F ELAPSED FACTOR VACUUM DGM READINGS (FT3)AMBIENT DGM INLET DGM OUTLET DGM TIME (MIN)DGM DH (1)(2)(3)Y ORIFICE #RUN #(AVG)(in Hg)INITIAL FINAL NET (Vm)INITIAL FINAL INITIAL FINAL AVG q (in H2O)Vm (STD)Vcr (STD)Y VARIATION (%)DH@ 1 0.8137 10 61.712 70.918 9.206 73 99 110 85 90 96.0 8.25 2.70 7.4955 7.4023 0.988 1.536 2 0.8137 10 70.918 77.963 7.045 73 107 112 90 91 100.0 6.25 2.70 5.6950 5.6078 0.985 1.525 3 0.8137 10 77.963 92.694 14.731 73 110 115 91 94 102.5 13.00 2.70 11.8552 11.6643 0.984 1.518 AVG = 0.985 -0.08 1 0.5317 13 39.754 44.884 5.130 72 75 84 67 74 75.0 7.25 1.10 4.3210 4.2546 0.985 1.513 2 0.5317 13 44.884 53.841 8.957 72 83 95 74 81 83.3 12.50 1.10 7.4298 7.3356 0.987 1.490 3 0.5317 13 53.841 61.606 7.765 72 94 100 81 85 90.0 10.75 1.10 6.3619 6.3086 0.992 1.472 AVG = 0.988 0.17 1 0.3307 13 92.841 100.319 7.478 75 81 85 78 83 81.8 16.75 0.40 6.2076 6.0966 0.982 1.410 2 0.3307 13 100.319 110.209 9.890 75 85 94 83 88 87.5 22.00 0.40 8.1236 8.0074 0.986 1.395 3 0.3307 13 110.209 117.677 7.468 75 94 98 88 91 92.8 16.50 0.40 6.0759 6.0056 0.988 1.382 AVG = 0.985 -0.08 AVERAGE DRY GAS METER CALIBRATION FACTOR, Y = 0.986 AVERAGE DH@ = 1.471 (1)=Net volume of gas sample passed through DGM, corrected to standard conditions K1 =17.64 oR/in. Hg (English), 0.3858 oK/mm Hg (Metric) Tm =Absolute DGM avg. temperature (oR - English, oK - Metric) DH@ = 0.75 q DH Vm(std) Vcr(std) Vm (2)=Volume of gas sample passed through the critical orifice, corrected to standard conditions Tamb =Absolute ambient temperature (oR - English, oK - Metric) K' = Average K' factor from Critical Orifice Calibration REFERENCE IN OUT (3)=DGM calibration factor 32 33 32 72 73 73 203 203 202 TEMPERATURE SENSORS oF 2024 Pre-Calibration Console #5 30 19 12 Joseph Wells ENVIRONMENTAL SUPPLY COMPANY USING THE CRITICAL ORIFICES AS CALIBRATION STANDARDS: The following equations are used to calculate the standard volumes of air passed through the DGM, Vm (std), and the critical orifice, Vcr(std), and the DGM calibration factor, Y. These equations are automatically calculated in the spreadsheet above. ()2 () Type S Pitot Tube Inspection Data Date:Pitot Tube Identification: Technician: Dt=0.375 Is PA = PB ? Is 1.05 • Dt  PA & PB  1.50 • Dt ? PA = 0.479 PB =0.479 a1 < 10o a1 = o a2 < 10o a2 = o b1 < 5o b1 = o b2 < 5o b2 = o Z  0.125 in.Z = in. W W  0.03125 in.W = in. W > 3 inches W = in. Z > 3/4 inch Z = in. Y ≥ 3 inches Y = in. The pitot tube meets the specifications for a calibration factor of 0.84?Yes Reference: TemperatureSource Reference Sensor (Medium)(oF)(oF) Probe AIR 64 64 AIR 64 63 ICE WATER 33 33 BOIL WATER 204 205 SILICONE OIL Heat Check 248 Temperature Sensor Calibration 1 0 1Stack Omega CL3512A Probe Yes Yes Continuity Check Temperature TemperatureDifference (oF) 0 in. in. Yes Yes 0.002 4 0.875 3 3/4 1/16/2024 38 G M. McNamara in. 0.018 1 1 2 1 b2 b1 B A w Dt PA PB Date:1/2/24 Calibrator:Reference: Temperature Temperature Source Difference (Medium)(oF) Water 0 Water -2 Water 0 Water -2 Water 0 Water -1 Water 0 Water -2 Water 0 Water 0 Water 0 Water 0 Water 0 Water 0 Water 0 Water 0 Water 0 Water 0 Water 0 Water 0 Water 0 Water -1 Water 0 Water -1 Water 0 Water 0 Water 0 Water 0 Water 0 Water -1 Water 0 Water -1 Water 0 Water 0 Water 1 Water 0 Water 0 Water -2 Water 0 Water -1 Water 0 Water 0 Water 0 Water 0 Water 0 Water 0 Water 0 Water 0 202 33 33 Impinger Out K 33 33 203 203 33 33 Impinger Out J Impinger Out H Impinger Out I 33 203 33 203 33 203 33 203 203 201 33 G H Oven (3)33 33 203 203 Oven (4)33 203 Oven 33 33 203 203 Oven 33 33 33 203 202 Oven (3) A 201203 33 Oven (3)33 33 Oven (4) Thermocouple Location 203 201 Impinger Out F 33 33 203 203 203 203 202 203 203 33 33 Impinger Out G 203 201 Oven (3)33 203 203 33 33 203Oven (4) 203 Impinger Out D 33 33 203 203 Impinger Out E 33 34 203 203 203 33 33 203Impinger Out B Impinger Out C 33 33 203 202 202 Impinger Out A 33 33 203 Oven (3) Oven (4) TETCO Sample Box Temperature Sensor Calibration B C 203 203 33 33 33 33 203 33 33 Xuan N. Dang Omega CL3512A Unit ID Reference (oF) Sensor (oF) Temperature 33 D E Oven 33 33 203 202F Oven (4) Balance Denver Instruments, Model A-250, SN B045284 Weights Used Troemner Weight Set, SN 98-115146 Certified Weight Measured Weight Difference grams grams grams 0.1000 0.1000 0.0000 0.5000 0.5000 0.0000 1.0000 1.0000 0.0000 10.0000 10.0000 0.0000 50.0000 50.0001 -0.0001 100.0000 100.0000 0.0000 120.0000 120.0001 -0.0001 150.0000 150.0000 0.0000 Technician Michael McNamara TETCO Annual Balance Calibration Check Date 1/23/24