HomeMy WebLinkAboutDAQ-2025-0017701
DAQC-300-25
Site ID 10742 (B4)
MEMORANDUM
TO: STACK TEST FILE – INTREPID POTASH WENDOVER, LLC – Wendover
Potash Plant
THROUGH: Rik Ombach, Minor Source Oil and Gas Section Manager
FROM: Paul Bushman, Environmental Scientist
DATE: March 21, 2025
SUBJECT: Sources: Venturi Wet Scrubber
Contact: Todd Stubbs: 435-259-1282
Location: Exit 4, Interstate 80 (the Blair exit) and the Frontage Road,
Tooele County, Utah
Test Contractor: TETCO
Permit/AO#: Approval Order (AO) DAQE-AN107420014-19 dated July 22,
2019
Action Code: TR
Subject: Review of stack test report dated March 5, 2025
On March 19, 2025, Utah Division of Air Quality (DAQ) received a test report for a Venturi Wet
Scrubber at Intrepid Potash Wendover, LLC – Wendover Potash Plant in Tooele County, Utah. Testing
was performed on March 5, 2025, to demonstrate compliance with the emission limits found in condition
II.B.4.a of DAQE-AN107420014-19. The calculated test results are:
Source Test Date Pollutants Test
Methods Tester Results DAQ Results Limits
Venturi Wet
Scrubber
March 5,
2024 PM 5/202
2.54 lb/hr 2.5324 lb/hr 6.0 lb/hr
0.040 gr/dscf 0.0396 gr/dscf 0.05 gr/dscf
DEVIATIONS: None.
CONCLUSION: This was a retest of the Venturi Wet Scrubber after a failed stack test
(DAQC-17-25).
RECOMMENDATION: The emissions from the above listed unit should be considered to have
been in compliance with the emission limits condition II.B.4.a of
DAQE-AN107420014-17 during the time of testing.
ATTACHMENTS: DAQ stack test review excel spreadsheets, Intrepid Potash stack test
report.
Source Information
Division of Air Quality
Compliance Demonstration
Source Information
Company Name Intrepid Potash - Wendover - Venturi Wet Scrubber
Company Contact:Todd Stubbs
Contact Phone No.435-259-1282
Source Designation:Venturi Wet Scrubber
Test & Review Dates
Test Date: 3/5/2025
Review Date: 3/21/2025 Tabs Are Shown
Observer:None
Reviewer:Paul Bushman
Particulate Emission Limits
lbs/MMBtu lbs/hr gr/dscf
6.000 0.050
Emission Rates - "Front Half"
lbs/MMBtu lbs/hr gr/dscf
2.5324 0.0396
Test Information
Stack_I.D._inches As ft^2 Y Dl H @ Cp Pbar Pq (static)Dn
24.75 3.34 0.9900 1.488 0.84 25.75 -0.38 0.2366
Contractor Information
Contracting Company: TETCO
Contact: Dean Kitchen
Phone No.: 801-492-9106
Project No.:
Circular
10100
9780
9860
9190
8710
8710
8710
10540
10640
11950
320
10610
10200
10390
1970
1800
1910
1420
1040
1190
1250
F factor usedF factors for Coal, Oil, and Gas
Anthrocite 2
Lignite
Natural
Propane
Butane
COAL
OIL
GAS
Bituminous 2
Fd Fw Fc
scf/MMBtu scf/MMBtu scf/MMBtu
O2
CO2
lbs/MMBtu
Page 1
Summary
Division of Air Quality
Reference Methods 5 - TSP
Compliance Demonstration of
Intrepid Potash - Wendover - Venturi Wet Scrubber
Testing Results Lab Data - grams collected
Test Date 3/5/2025 3/5/2025 3/5/2025 3/5/2025 Lab Data Probe Filter Back
Circular Run 1 Run 2 Run 3 Run 4 Run 1 0.0077 0.1003 0.0068
As ft^2 3.34 3.34 3.34 Run 2 0.004 0.1008 0.0078
Pbar 25.75 25.75 25.75 Run 3 0.006 0.0876 0.0055
Pq (static)-0.38 -0.38 -0.38 Run 4
Ps 25.72 25.72 25.72
Avg. Ts F 110.67 106.83 109.00 Front Half Emissions Summary
CO2 - FCO2 2.30 1.80 1.80 Run 1 Run 2 Run 3 Run 4 Avg.
O2 18.20 18.80 18.60 gr./dscf 0.0340 0.0430 0.0419 0.0396
N2+C 79.50 79.40 79.60 lbs/hr 2.2109 2.7943 2.5919 2.5324
Md 29.10 29.04 29.03 lbs/MMBtu
Ms 28.65 28.46 28.43
Y 0.99 0.99 0.99
Cp 0.84 0.84 0.84 Total Emissions Summary w/back half condensable
Vm cf 57.66 45.39 41.92 Run 1 Run 2 Run 3 Run 4 Avg.
Vlc 43.30 44.10 42.60 gr./dscf 0.0361 0.0463 0.0443 0.0422
AVG. Tm F 71.84 85.29 87.92 lbs/hr 2.3502 3.0023 2.7442 2.6989
Vm std 49.05 37.57 34.51 lbs/MMBtu
Vw std 2.04 2.08 2.01
Bws 0.04 0.05 0.05
S Bws 0.10 0.09 0.10
Avg. Sqrt Dlp 0.78 0.79 0.75
Vs 49.58 49.77 47.80 F factor used
scfm wet 7905.45 7989.87 7643.63
acfm 9938.70 9977.37 9581.48
Qsd dscfh 455404.27 454291.53 433435.93
# Sample
Points 12.00 12.00 12.00
Dn 0.259 0.227 0.226
An 3.64E-04 2.80E-04 2.79E-04
Start Time 10:36 12:51 14:20
End Time 11:39 13:55 15:22
Total Test
time 60.00 60.00 60.00
Time @ point 5.00 5.00 5.00
O2
CO2
lbs/MMBtu
Page 2
Summary
80.00
90.00
100.00
110.00
120.00
1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47
% I
s
o
k
i
n
e
t
i
c
Points
Run 1 PxP Isokinetic
80.00
90.00
100.00
110.00
120.00
1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47
%
I
s
o
k
i
n
e
t
i
c
Sample Points
Run 2 PxP Isokinetic
80.00
90.00
100.00
110.00
120.00
1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47
% I
s
o
k
i
n
e
t
i
c
Sample Points
Run 3 PxP Isokinetic
80.00
90.00
100.00
110.00
120.00
1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47
Sample Points
Run 4 PxP Isokinetic
Page 3
Run 1
Intrepid Potash - Wendover - Venturi Wet Scrubber Flow & Moisture Test Date 3/5/2025
As ft^2 Pbar Pq (static) Ps Avg. Ts F CO2 - FCO2 O2 N2+C Md Ms
3.34 25.75 -0.38 25.72 111 2.30 18.20 79.50 29.10 28.65
Y Cp Vm cf Vlc Avg. Tm F Vm std Vw std Bws S Bws 0.1032
0.9900 0.84 57.663 43.30 71.84 49.051 2.038 0.0399 0.1032 0.999
Avg. Sqrt
Dlp Vs scfm wet acfm Qsd dscfh
# Sample
Points Dn
Total Test
time (minutes)
Time @ point
(minutes)Avg. Dlh
0.785 49.58 7,905 9,939 4.55E+05 12 0.2585 60 5.00 2.125000
TRUE
Point No.Meter (cf)dl "p"dl "h"ts F tm F (in)tm F (out)Imp. Liquid Collected
1 73.607 0.50 1.75 112 65 66 Wt. (Final)Wt. (Initial)lc
2 78.050 0.54 1.89 110 66 65 397.1 375.3 21.8
3 82.500 0.70 2.40 114 71 69 627.4 619.3 8.1
4 87.560 0.70 2.40 115 77 70 703.8 701.0 2.8
5 92.500 0.67 2.30 112 82 73 931.0 920.4 10.6
6 97.800 0.60 2.06 110 85 74 0.0
7 102.547 0.65 2.23 108 86 77
8 107.445 0.65 2.23 110 82 77 Isokinetics 98.8
9 112.500 0.70 2.40 111 87 80 Test Date 3/5/2025
10 117.490 0.60 2.06 109 89 81 Start Time 10:36 enter
11 122.370 0.55 1.89 109 88 83 End Time 11:39
12 126.820 0.55 1.89 108 87 87
13 131.270 0
14 0
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
Page 4
Run 2
Intrepid Potash - Wendover - Venturi Wet Scrubber Flow & Moisture Test Date 5/13/2009
As ft^2 Pbar Pq (static) Ps Avg. Ts F CO2 - FCO2 O2 N2+C Md Ms
3.34 25.75 -0.38 25.72 107 1.80 18.80 79.40 29.04 28.46
Y Cp Vm cf Vlc Avg. Tm F Vm std Vw std Bws S Bws 0.0923
0.9900 0.84 45.393 44.10 85 37.569 2.076 0.0524 0.0923 0.999
Avg. Sqrt
Dlp Vs scfm wet acfm Qsd dscfh
# Sample
Points Dn
Total Test
time (minutes)
Time @ point
(minutes)Avg. Dlh
0.788 49.77 7,990 9,977 4.54E+05 12 0.2265 60 5.00 1.26
TRUE
Point No.Meter (cf)dl "p"dl "h"ts F tm F (in)tm F (out)Imp. Liquid Collected
1 32.599 0.60 1.21 107 84 82 Wt. (Final)Wt. (Initial)lc
2 36.750 0.60 1.21 106 78 78 378.60 361.00 17.6
3 40.050 0.75 1.52 112 80 79 614.80 606.10 8.7
4 44.222 0.55 1.11 108 84 80 703.60 696.00 7.6
5 47.765 0.65 1.31 110 86 81 857.90 847.70 10.2
6 51.600 0.65 1.31 106 89 82 0.0
7 55.490 0.70 1.41 110 89 83
8 59.470 0.75 1.52 107 91 84 Isokinetics 98.8
9 63.680 0.75 1.52 105 93 84 Test Date 3/5/2025
10 67.865 0.50 1.01 105 94 85 Start Time 12:51
11 71.200 0.40 0.81 105 95 85 End Time 13:55
12 74.460 0.60 1.21 101 95 86
13 77.992
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
Page 5
Run 3
Intrepid Potash - Wendover - Venturi Wet Scrubber Flow & Moisture Test Date 5/13/2009
As ft^2 Pbar Pq (static) Ps Avg. Ts F CO2 - FCO2 O2 N2+C Md Ms
3.34 25.75 -0.38 25.72 109 1.80 18.60 79.60 29.03 28.43
Y Cp Vm cf Vlc Avg. Tm F Vm std Vw std Bws S Bws 0.0984
0.9900 0.84 41.917 42.60 88 34.514 2.005 0.0549 0.0984 0.999
Avg. Sqrt
Dlp Vs scfm wet acfm Qsd dscfh
# Sample
Points Dn
Total Test
time (minutes)
Time @ point
(minutes)Avg. Dlh
0.755 47.80 7,644 9,581 4.33E+05 12 0.226 60 5.00 1.14
TRUE
Point No.Meter (cf)dl "p"dl "h"ts F tm F (in)tm F (out)Imp. Liquid Collected
1 79.416 0.60 1.21 109.0 84.0 82.0 Wt. (Final)Wt. (Initial)lc
2 83.160 0.60 1.21 104.0 84.0 82.0 374.8 352.7 22.1
3 86.800 0.60 1.21 109.0 87.0 83.0 599.0 593.2 5.8
4 90.600 0.55 1.11 109.0 89.0 86.0 721.2 716.6 4.6
5 94.150 0.50 1.01 108.0 91.0 86.0 943.8 933.7 10.1
6 97.700 0.50 1.01 107.0 92.0 85.0 0.0
7 101.199 0.65 1.21 107.0 92.0 86.0
8 104.735 0.65 1.21 110.0 93.0 86.0 Isokinetics 95.5
9 108.340 0.55 1.11 110.0 94.0 89.0 Test Date 3/5/2025
10 111.920 0.65 1.31 111.0 92.0 86.0 Start Time 14:20
11 115.300 0.50 1.01 111.0 93.0 87.0 End Time 15:22
12 118.500 0.50 1.01 113.0 94.0 87.0
13 121.333
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
Page 6
PARTICULATE MATTER COMPLIANCE TESTS
CONDUCTED FOR
INTREPID POTASH, WENDOVER, LLC
WENDOVER, UTAH
SOURCE TESTED:
VENTURI WET SCRUBBER
March 5, 2025
by:
TETCO
391 East 620 South
American Fork, UT 84003
Prepared for:
Intrepid Potash - Wendover, LLC
P.O. Box 580
Wendover UT, 84083
Date of Report:
March 30, 2025
CERTIFICATION OF REPORT INTEGRITY
Technical Emissions Testing Company (TETCO) certifies that this report represents the truth as
well as can be derived by the methods employed. Every effort was made to obtain accurate and
representative data and to comply with pro'cedures set forth in the Federal Register.
Dean Kitchen
Reviewer: ~ .,;;,,,>
Xuan Dang
Date: _____ Jf--,l/-t ..... t...--l-t,_,... ___ _
11
iii
TABLE OF CONTENTS
PAGE
Introduction
Test Purpose, Location and Type of Process .......................................................................1
Test Dates.............................................................................................................................1
Pollutants Tested and Methods Applied ............................................................................. 1
Test Participants .................................................................................................................. 2
Deviations from EPA Methods ............................................................................................2
Errors or Irregularities..........................................................................................................2
Quality Assurance ................................................................................................................2
Summary of Results
Emission Results ..................................................................................................................3
Allowable Emissions ...........................................................................................................3
Process Data .........................................................................................................................3
Description of Collected Samples ........................................................................................3
Percent Isokinetic Sampling ................................................................................................4
Source Operation
Process Control Devices Operation .....................................................................................5
Process Representativeness ..................................................................................................5
Sampling and Analytical Procedures
Sampling Port Location .......................................................................................................6
Sampling Point Location......................................................................................................6
Sampling Train Description .................................................................................................6
Sampling and Analytical Procedures ...................................................................................7
Quality Assurance ................................................................................................................7
Appendices
A: Complete Results and Sample Calculations
B: Raw Field Data
C: Laboratory Data and Chain of Custody
D: Facility Schematics
E: Calibration Procedures and Results
F: Related Correspondence
iv
LIST OF TABLES
Table PAGE
I Measured Particulate Matter Emissions ...............................................................................3
II Percent Isokinetic Sampling ................................................................................................4
III Sampling Point Location......................................................................................................6
IV Complete Results, Venturi Wet Scrubber ......................................................... Appendix A
LIST OF FIGURES
Figure
1 Facility Schematic Representation Venturi Wet Scrubber ................................ Appendix D
2 Schematic of Method 5/202 Sampling Train ..................................................... Appendix E
1
INTRODUCTION
Test Purpose, Location and Type of Process
This test was conducted to fulfill the testing requirements of Intrepid Potash- Wendover, LLC’s
Approval Order Number DAQE-AN107420014-19 dated July 22, 2019. Those requirements
include testing the Venturi Wet Scrubber exhaust for PM10 emissions. The Venturi Wet
Scrubber exhaust serves the dryer heated by a 21 MMBtu/hr burner. The burner is fired with
propane.
The Intrepid Potash, Wendover LLC facility is located on the frontage road approximately 4
(four) miles east of Wendover, Utah.
Emissions are expressed in terms of grains per dry standard cubic foot (gr/dscf) and pounds per
hour (lb/hr).
A schematic of process representation is given in Figure 1, located in Appendix D.
Test Dates
All testing was completed on March 5, 2025. Individual run times are on the Particulate Field
Data sheets and the complete results table in Appendix A.
Pollutants Tested and Methods Applied
EPA Methods 201 and 201A are the acceptable methods for determining filterable PM10
particulate. However, Methods 201 and 201A are not appropriate for stacks that contain
entrained water droplets. For this reason, 40 CFR 60, Appendix A, Reference Methods 1-5 were
used to measure total particulate matter (PM) emissions from the Venturi Wet Scrubber exhaust.
The Method 5 test is a gravimetric determination of PM particulate. Particulate matter is
withdrawn isokinetically from the source and collected on a glass fiber filter. The particulate mass
is determined gravimetrically after removal of uncombined moisture. This method is applicable
for the determination of the particulate emissions from stationary sources. Condensable particulate
matter (CPM) emissions were sampled in accordance with EPA Method 202. Method 202 is not
for compliance purposes but for information only. A schematic of the sampling train is given in
Figure 2.
2
Test Participants
Intrepid Potash Todd Stubbs
State None
TETCO Dean Kitchen Xuan Dang
Deviations From EPA Methods
There were none.
Errors or Irregularities
There were no irregularities during the test project.
Quality Assurance
Testing Procedures and sample recovery techniques were according to those outlined in the
Federal Register and the Quality Assurance Handbook for Air Pollution Measurement Systems.
3
SUMMARY OF RESULTS
Emission Results
Table I presents the PM test results. Table IV in Appendix A has more detailed testing data.
Table I. Measured PM and Emissions
Run
PM
Concentration
(gr/dscf)
Emission Rate
(lb/hr)
1 0.034 2.23
2 0.043 2.79
3 0.042 2.59
Avg. 0.040 2.54
Allowable Emissions
The allowable PM10 emissions for this source are 0.05 grains per dry standard cubic foot (gr/dscf)
and 6.0 pounds per hour (lb/hr), as listed in the Facility Approval Order AO DAQE-AN107420014-
19.
Process Data
The facility was operated according to standard procedures. All pertinent process data was available
for recording by agency personnel.
Scrubber water flow rate and pressure drop readings across the Venturi Scrubber were recorded on
the individual run sheets.
Description of Collected Samples
The filters for all three 3 test runs were covered with a moderate amount of particulate that was pink
in color. The CPM filters were slightly gray in color. Impingers and water from the front-half catch
of each run appeared slightly cloudy.
4
Percent Isokinetic Sampling
Each test run was isokinetic within the ±10% of 100% criterion specified in the Federal Register.
The isokinetic value for each EPA Method 5 test run is presented in Table II.
Table II. Testing Isokinetics
Run # Percent Isokinetic
1 98
2 99
3 97
5
SOURCE OPERATION
Process Control Devices Operation
All control devices were operated normally during the tests. The facility was operated according to
standard procedures.
The Venturi Wet Scrubber water flow rate and pressure drop readings across the scrubber were
recorded and included in Appendix D.
Process Representativeness
The facility operated normally during the tests. Production rates were maintained by Intrepid
Potash personnel.
6
SAMPLING AND ANALYTICAL PROCEDURES
Sampling Port Location
The stack inside diameter was 24.75 inches. Port location is depicted in Figure 1. The ports were
located 7.3 diameters (15 feet) downstream from the last disturbance and 7.3 diameters (15 feet)
upstream from the next disturbance.
Sampling Point Location
Table III shows the distance of each sampling point from the inside wall. Each point is marked with
a glass tape wrapping and numbered. These points are determined by measuring the distance from
the inside wall and adding the reference (port) measurement.
Table III Sampling Point Location
Point # Distance (inches)
from Inside Wall
1 1.09
2 3.61
3 7.33
4 17.42
5 21.14
6 23.66
.Sampling Train Description
All sampling trains were made of inert materials, (i.e., stainless steel and glass, etc.) to prevent
sampled gas and particulate interference. The stack analyzer used to conduct these tests is
constructed to meet the specifications outlined in 40 CFR 60, Appendix A, Method 5. The
temperature sensors are K-type thermocouples. Heater, vacuum and pitot line connections have
been designed to be interchangeable with all units used by the tester. The probe liners are of 316
grade stainless steel. Figure 2 in Appendix F is a sketch of the Method 5/202 sampling train.
Sample boxes were prepared for testing by following the prescribed procedures outlined in 40 CFR
60, Appendix A, Methods 5.
7
Sampling and Analytical Procedures
All test and analytical procedures employed were as specified in 40 CFR 60 Appendix A,
Reference Method 5 and 40 CFR 51, Appendix M, Method 202.
Quality Assurance
All equipment set-up, sampling procedures, sample recovery and equipment calibrations were
carried out according to the procedures specified in 40 CFR 60, Appendix A, Method 5, 40 CFR
51, Appendix M, Method 202 and the Quality Assurance Handbook for Air Pollution
Measurement Systems.
8
APPENDICES
A: Complete Results and Sample Calculations B: Raw Field Data
C: Laboratory Data and Chain of Custody
D: Facility Schematics E: Calibration Procedures and Results
F: Related Correspondence
A
APPENDIX A
Table IV Complete Results, Venturi Wet Scrubber Nomenclature
Sample Equations
Complete Results ScrubberTABLE IV
COMPLETE RESULTS
INTREPID WENDOVER, WENDOVER, UTAH
DRYER VENTURI SCRUBBER EXHAUST
Symbol Description Dimensions Run #1 Run #2 Run #3
Date Date 3/5/25 3/5/25 3/5/25
Filter #7904 7905 7906
Begin Time Test Began 10:36 12:51 14:20
End Time Test Ended 11:39 13:55 15:22
Pbm Meter Barometric Pressure In. Hg. Abs 25.75 25.75 25.75
DH Orifice Pressure Drop In. H2O 2.125 1.263 1.152
Y Meter Calibration Y Factor dimensionless 0.990 0.990 0.990
Vm Volume Gas Sampled--Meter Conditions cf 57.663 45.393 41.917
Tm Avg Meter Temperature oF 77.7 85.3 87.9
DP Sq Root Velocity Head Root In. H2O 0.7846 0.7877 0.7545
Wtwc Weight Water Collected Grams 43.3 44.6 42.6
Tt Duration of Test Minutes 60 60 60
Cp Pitot Tube Coefficient Dimensionless 0.84 0.84 0.84
Dn Nozzle Diameter Inches 0.2585 0.2265 0.2250
CO2 Volume % Carbon Dioxide Percent 2.30 1.80 1.80
O2 Volume % Oxygen Percent 18.20 18.80 18.60
N2 & CO Volume % Nitrogen and Carbon Monoxide Percent 79.50 79.40 79.60
Vmstd Volume Gas Sampled (Standard)dscf 48.537 37.584 34.530
Vw Volume Water Vapor scf 2.042 2.103 2.009
Bws (measured)Fraction H2O in Stack Gas (Measured)Fraction 0.040 0.053 0.055
Bws (calculated)Fraction H2O in Stack Gas (Calculated)Fraction 0.103 0.092 0.098
Bws Fraction H2O in Stack Gas Fraction 0.040 0.053 0.055
Xd Fraction of Dry Gas Fraction 0.960 0.947 0.945
Md Molecular Wt. Dry Gas lb/lbmol 29.10 29.04 29.03
Ms Molecular Wt. Stack Gas lb/lbmol 28.65 28.46 28.43
%I Percent Isokinetic Percent 97.8 98.9 96.5 AVG
Ts Avg Stack Temperature oF 110.7 106.8 109.0 108.8
As Stack Cross Sectional Area Sq. Ft.3.341 3.341 3.341
PG Stack Static Pressure In. H2O -0.38 -0.38 -0.38
Pbp Sample Port Barometric Pressure In. Hg. Abs 25.72 25.72 25.72
Ps Stack Pressure In. Hg. Abs 25.692 25.692 25.692
Qs Stack Gas Volumetric Flow Rate (Std)dscfm 7.58E+03 7.56E+03 7.22E+03 7.45E+03
Qa Stack Gas Volumetric Flow Rate (Actual)cfm 9.95E+03 9.98E+03 9.59E+03 9.84E+03
Vs Velocity of Stack Gas fpm 2.98E+03 2.99E+03 2.87E+03 2.94E+03
Mfilter Mass of Particulate on Filter milligrams 100.3 100.8 87.6
Mp Mass of Particulate in Wash milligrams 7.7 4.0 6.0
MF Mass of Front Half milligrams 108.0 104.8 93.6
MB Mass of Back Half milligrams 6.8 7.8 5.5
CF Concentration of Front Half gr / dscf 0.0343 0.0430 0.0418 0.0397
Ccond Concentration of Condensibles gr / dscf 0.0022 0.0032 0.0025 0.0026
ERF Emission Rate of Front Half lb / hr 2.23 2.79 2.59 2.54
ERcond Emission Rate of Condensibles lb / hr 0.14 0.21 0.15 0.17
%I =percent isokinetic
As =stack cross-sectional area (ft3)
AS∆P =see √∆P
Btu =unit heat value (British thermal unit)
Bws =fraction of water in stack gas
Ccpm =concentration of condensibles (grain/dscf)
Cf =concentration of particulate matter, front half (gr/dscf,lb/dscf, etc.)
Cmetal =concentration of metals (ppm, µg/ft3, etc.) atomic symbol replaces "metal"
CO2 =percent carbon dioxide in the stack gas
Cp =pitot tube coefficient (0.84)
CX (avg)=species symbol replaces x .
CX (corr)=actual gas concentration corrected to required percent O2
∆H =orifice pressure drop (inches H2O)
∆H@ =orifice pressure (inches H2O)
Dn =nozzle diameter (inches)
Dn des =calculated desired nozzle size (inches)
∆P =stack flow pressure differential (inches H2O)
Ds =diameter of the stack (feet)
EA =percent excess air
ERcpm =emission rate of condensibles (lb/hr)
ERF =emission rate of front half particulate (lb/hr)
ERmmBtu =emission rate per mmBtu or ton of fuel etc.
ERX =emission rate of compound which replaces x
K-fact =multiplier of test point ∆P to determine test point ∆H
L =length of rectangular stack (inches)
mBtu =thousand Btu
Mcpm =mass of condensibles (milligrams)
Md =molecular weight of stack gas, dry basis (lb/lb-mol)
MF =mass of particulate on filter (mg)
MFP =mass of particulate matter on filter and probe (mg)
mmBtu =million Btu
MP =mass of particulate matter in probe (mg)
Ms =molecular weight of stack gas, wet basis (g/gmol)
N2 =percent nitrogen in the stack gas
O2 =percent oxygen in the stack gas
√∆P =average of the square roots of ∆P (may also be referred to as AS∆P)
Pbm =absolute barometric pressure at the dry gas meter (inches Hg)
Pbp =absolute barometric pressure at the sample location (inches Hg)
PG =stack static pressure (inches H2O)
Ps =absolute stack pressure (inches Hg)
Pstd =absolute pressure at standard conditions (29.92 inches Hg.)
θ =time of test (minutes)
Qa =stack gas volumetric flow rate (acfm)
Method 5 / 202 Nomenclature
Method 5 / 202 Nomenclature
Qs =stack gas volumetric flow rate (dscfm)
Qw =wet stack gas std. volumetric flow (ft3/min, wscfm)
Tm =meter temperature (oF)
Ts =stack temperature (oF)
Tstd =absolute temperature at standard conditions (528oR)
Tt =see θ
Vm =sample volume (ft3) at meter conditions
Vmstd =volume standard (dscf), sample volume adjusted to 68oF and 29.92 inches Hg.
Vs =velocity of stack gas (fpm)
Vw =volume water vapor (scf) at 68oF and 29.92 inches Hg.
W =width of rectangular stack (inches)
Wtwc =weight of the condensed water collected (grams)
Xd =fraction of dry gas
Y =meter calibration Y-factor (dimensionless)
%I =Vmstd • (Ts + 460) • 1039 / (θ • Vs • Ps • Xd • Dn2)
As =(Ds2 / 4) • π
Bws =Vw / (Vmstd +Vw)
Ccpm =Mcpm • 0.01543 / Vmstd
Ccors =Mcors • 0.01543 / Vmstd
Cf =Mfp • 0.01543 / Vmstd
CX (corr)=CX (avg) • (20.9 - desired %O2) / (20.9 - actual %O2)
Deq =2 • L • W / (L + W)
Dn des =√{0.0269 • (Pbm + 0.0735) / [(Tm + 460) • Cp • Xd • √[(Ts + 460) • Ms) / (Ps • ∆P)]]}
EA =(%O2 - 0.5 %CO) / [0.264 %N2 - (%O2 - 0.5 %CO)]
ERcpm =Ccpm • Qs • 0.00857
ERF =Cf • Qs • 0.00857
ERmmBtu =ERX / (mmBtu / hr)
K-fact =846.72 • Dn4 • ∆H@ • Cp2 • Xd2 • Md • Ps • (Tm + 460) / [Ms • (Ts + 460) • (Pbm + ∆H / 13.6)]
Md =CO2 • 0.44 + O2 • 0.32 + N2 •0.28
Ms =(Md • Xd) + (18 • Bws)
Ps =Pbp + (PG / 13.6)
Qa =Vs • As
Qs =Qa • Xd • Ps • Tstd / [(Ts + 460) • Pstd]
Qw =Qs / Xd
Vmstd =Vm • Y • Tstd • (Pbm + ∆H / 13.6) / [Pstd • (Tm + 460)]
Vs =85.49 • 60 • Cp • √∆P • √ [(Ts + 460) / (Ps • Ms)]
Vw =Wtwc • 0.04715
Xd =1 - Bws
Method 5 / 202 Sample Equations
B
APPENDIX B
Preliminary Velocity Traverse and Sampling Point Location Data Particulate Field Data
Preliminary Venturi Scrubber
Facility Intrepid Potash, Wendover
Stack Identification Venturi Scrubber
N Date u--1..i.~ i Barometric Pressure
Pbm ld=,* in Hg Pbv l,:; le~ in Hg
' I-B Static Pressure (PG) ..-1 ) a, inH2O
Estimated Moisture (Bws) 2-4 %
Sample Height from Ground 33 feet I
A
Comments:
Stack Dia. 24.75 Reference: 6.25
Ports are 15 Upstream from next disturbance
Ports are 15 Downstream from last disturbance
Traverse Percent Distance From: Ports
Point Diameter ID Reference A B C D E F
1 4.4 1.09 7.34 U> 8!-
2 14.6 3.61 9.86 /o h-
3 29.6 7.33 13.58 "1 9
4 70.4 17.42 23.67 )-It,
5 85.4 21.14 27.39 ..y 1,
6 95.6 23.66 29.91 } ~
Averages:
Ts LFlow --------
AP ✓AP ----
KEY=> '-IT_s ___ A_P __ L._F_lo_w .... 1
J/'~d:).. Field Data Sheet
TETCO
Filter 7 9(/tf Sample Box-{2.-Page_L_of_J_ Run#_}_-
Plant: Intrepid Potash, Wendover
Date: ) -:f'"'-=-). /''.--
'
Location: Venturi Scrubber
Operator: jJ, J(; £c,, /a~-P'2 , , ,
Traverse II ---;·: •. ·-· II DGM Vacumn II Temperatures _('F) II DGM Temp CT ml
N
I •0" -4_1
2 Stack Diameter 24.75 ('. Port Reference~ -L II I 1e 11 ~...!,... ~-JI 2 E ~ 114 .. :Z"Q h·14j ;f, 111_ ':'L¥'"1~ 12'.J u_ '?I ~ I jt(~l.JI 11:.. z: I L t ,fforts are
4
5
6
Total .rz 66,l ✓~ ~Lvo i,t;>g
..
f}t[t:; /
ll_/
:!.§'._ Upstream from next disturbance
15' Downstream from last disturbance
Assumed Moisture 2-4 %
Probe .).BG Cp 0.84
Nozzle Calibration t¥b .»-e -~ -UL/-
Avg D. .>,Jtl/mches • ),,J1f!J.,1-
Gas Bag A:~ t:?7
Console~
Y-Factor ~ t,:J ilH@~ H20
Barometric· Pressures
Pbm ),.J: L f-•
Pbp ,.J-,2=-,
Po -=;J ,
in Hg
in Hg
inH20
Leak Check: Pre Post
ft3/min I c::?~ h
vacinHg~
Pilot Rate
InH20
o,,t:) ~
1'%~
Water Collected "J·'J',) g
Time Sampled hi:;I ..,, · min
IIH@ Flow Rate ________ cc/min
K= @Tm
K= @Tm Average ✓ I 7 9 Yb ). ·():.;-. /(CJ, [ .,..._
Comments: If iJiP f
Time !Water flo~ 9P'!1 I Scru!>b__er ~P "' Jf/) r ;Pp~/ /J-/Pf?·-~ t)..fO I
. J-
,f/trlrField Data Sheet
Plant: Intrepid Potash, Wendover
Date: J --;r-:-->./ '-., ..
Traverse II -•·i·: __ ... II DGM ~p ~H (;nH,O)
TETCO ,
Filter H~Sample Box----1!:__ Page ---l--of~_/ Run #_2._
Location: Venturi Scrubber
Operator: ,t:7. ,K/.:~ .-,.:::;
Vacumn II Temperatures c"Fl II DGM Tem_p__('I"m)
N
I ·O·
-=--11 I // II-"¥'...:'_:' ....... ,11 •cz,.e: 111.'rf I l ., / I ,/ I IV.,, 1<,LU: I' , , I LY V 1-, II L ,.,,1 F ,,., ,Stack Diameter 24.15
f.. 2 ___ • -• .#,II# ,i__l., •---A,1__. Port Reference ~
Total 'l.r. J~} ✓ ~ iD).. ~_;,
Average ✓•l.ig
Comments:
Scrubber .tlP
J}:.i)-
/t16: 8
~
~lf7
9r:J_
Ports are
,)-,-.6 . >>-7
1.§'.__ Upstream from next disturbance
15' Downstream from last disturbance
Assumed Moisture 2-4 %
Probe Cp 0.84
Avg Dn , ~mches .,,J-e-e-, ,P'# / e-t-
Gas Bag "/J: '(;I 7
Console ,,,J,=-
Y-Factor ~
~H@ ~n H20
Barometric Pressures
Pb,,, _zf'": 7 J
::p~:&
Leak Check: Pre
ft3/min ,7. c;? / CJ
vacinHg 20
in Hg
in Hg
inH20
PitotRate
lnH20
~ ~cl
O¼O ~()
Water Collected 7':Z1< g
Time Sampled 't: min
il.H@
Flow Rate cc/min
K=
K=
@Tm
@Tm
. ), >-6 1;>-),7 -
~> c.r-,L~hv""
4~ield Data Sheet
Plant: Intrepid Potash, Wendover
Date: z~~h'
Traverse JI Time Ii
'Min (0)
4
5
6
DOM
(fl)
.1P .1H (inH,O)
(i11H10) Desired I Actual
.J:ETCO .
Filter ;?·J't::J'(, Sample Box _ ___/5'
Location: Venturi Scrubber
Operator: J:1. /(7 hht?&,
Vacumn II Temperatures ('Fl DOM Temp_ CT ml
Stack (Ts) I Probe I Oven I CPM Filter! Effluent Out In
--l' I I ~· -+---
~ I I _;r--t--
..
Total YJ,917 ✓ ~'fr(
Average ✓ ·'Jr!t_JL-
Comments:
I~ ~ lttn
l2P8
t[liO
hl_lO ii'
UY
--~.
Page -1--orL Run #____;J
N
I ·0"
Stack Diameter 24. 75 Port Reference --------6.25
Ports are
Ports are
~ Upstream from next disturbance
15' Downstream from last disturbance
Assumed Moisture 2-4 %
Probe ) et}; Cp 0.84
Nozzle Calibration
1#--61 --¥AJ,... ~ ~
Avg Dn I W'Uinches
Gas Bag , /9--t?7
Console ,,r--
Y-Factor~
.1H@ ~&i H2O
Barometric Pressures
Pbrr~2.,J'::=~ in Hg
PbP27L:'~ inHg
P0_ ~_!___J_~ in H20
Le,k Check: Fre Post
ft3/mie dOP }---c?~:;z..
vac in Hg~-0/
Pitot Rate CJ, 0
lnH20 tl.d.
L/Ld
------at::! 0 ,bft; 9,d
WaterCollected ~ ~J,),·Og
Time Sampled C(2 min
'1H@ Flow Rate ________ cc/min
K=
K=
@Tm
@Tm
C
APPENDIX C
Sample Recovery Particulate Analysis Sheets
Condensable Particulate Analysis Sheets
Gas Analysis Data (Fyrite)
Chain of Custody
M5 202 lmpinger Field Sheet
Facility: Intrepid Wendover
Stack ldentification:j,('t: Jll/v,a r
Date: > c::J-;;;.... 2-J -
.~.,/ ~;.;,;,~ / Method: -----'-5"--/2-'-02'-----
IMPINGERS
Run:_.,,_/___ Sample Box: -~I>...__
Filter Number: lmpmger Number
Dry
I I 2 I Cold ..L I 4-. s 6
Initial Volume of liquid (H20) in impingers,'(ml)
pm filter description
Final (g)'r£--L--L...e+-f-~~-+fi~7 CL\,f'-;:,..._,~--'-'-¥----t----
Initial (g)_· J..!1'""'--''-.h-+_,,.,'-:4'....._++-'l.,_.,_.~-+-'--"";ite-~-+----+----
Net (g) =#aa#:!!============f=~===--~:!:=-!!===!:!:===============
M ')p/ql> J, r==v.=-u~=------====~~==--------H20 Acetone Hexane
Purge start //1µ
Purge end / >:,rr
ml H20 added J7}
IMPINGE RS
Run: 1.. " Sample Box: E
Filter Number: lmpmger Number
Dry
..L I I Cold ..L I 4-. A ,Ji__
Initial Volume of liquid (H20) in impingers, (ml)
pm filter description
Final (g) ..L...L-Jll<.!...-=---!P-,__-'-'-~~;..a:'--"""~1-1-=~"-1-1----1----
Initial (g'..,:) ~"lz::!'~H-=~~L...t_,.,,~~=t=--:f.1.!'-':a--t-----t----Net (g) · =l':,,t!!,.~====#!:!=;iE=;~6======='=,£/;,~~b:======'====
I~~ "L /1/.,, I
Purge start / ff/~
. Purge.end lJ;7fJ
_m_l _H"-20_a_dd_e_d __ n_ll
IMPINGERS
RINSES Hexane
Run: f -~.,----Sample Box: -~f,_ __
lmpmger Number Filter Number:
Dry
..L I i. I Cold ..L I 4-. A
Initial Volume ofliquid (H20) in impingers, (ml)
pm filter description weigh & analyze
_ ___,/::...·-"-Q'-'-1,,,"--"'!--'t:,==~~(i, /,() "'t.,. Total (g) ..
Purge start /f,tf/j
Purge end / ~ 't /)
ml H20 added FlJ ~
RINSES H2O Acetone
6
Hexane
Initials
X1J
Facility: Intrepid Wendover Date:· 3/5/25 __ ____,.__ __________________ _
Stack Identification: Venturi Scrbber Run: ---------------------------
Filter Number: 7904 Sample Box: D ------------
Blanks &
Rinses
Blanks Rinses
Acetone (CH3COCH3) 0.0000 g/l00ml
Filter Final,: 0.7814 g Date: 3/6/25 Time: 10:00 ------------Fin al 2: 0.7816 g Date: 3/7 /25 Time: 9:00 --------FinalAvo: 0.7815 g
Filter Preweight: 0.6812 g
CRITERIA
Net 0.1003 g Process Weight Time
Net 100.3 mg Final Pass Pass
-·--· -···-·-----------------------
Front Half Final 1: 124.7136 g Date: 3/6/25 Time: 10:00 -------------Fin al 2: 124.7134 g Date: 3/7 /25 Time: 9:00 --------Fina!Avo: 124.7135 g
Initial 1: 124.7057 g Date: 9/4/24 Time: 8:00 --------Initial 2: 124.7058 g Date: 9/2/24 Time: 14:00 --------Initial Ava: 124.7058 g
Gross: 0.0077 g CRITERIA
Beaker Number: 36 Blank: 0.0000 g Process Weight Time
Net 0.0077 g Final Pass Pass
Net 7.7 mg Initial Pass Pass
----·---·--.. . .. ·----·-··-----
RESULTS Front Half
Filter 100.3 mg
Wash 7.7 mg
Total 108.0 mg
----·--------------·---·------------··-·--------------··--··-----------·-·-·-··---··----··-·-----------·--------·--·--·-
Comments:
Lab Technician: D Kitchen Date: 3/5/25 ----
Lab Technician: M McNamara Date: 3/7/25 ----
Facility: Intrepid Wendover -----------------------Date: 3/5/25
St a ck Identification: Venturi Scrbber Run: 2 ---------------------------
Filter Number: 7905 Sample Box: E
Blanks &
Rinses
Filter
Front Half
Blanks
Acetone (CH3COCH3) 0.0000 g/l00ml
Final 1: 0.7733 g --------Fin al 2: 0.7733 g --------FinalAvo: 0.7733
Filter Preweight: 0.6725
Net 0.1008
Net 100.8
Final 1: 103.4112 g --------Fin al 2: 103.4110 g --------FinalAvo: 103.4111
lnitial1: 103.4072 g --------l nit i al 2: 103 .4069 g --------Initial A vo: 103.4071
Gross: 0.0040
g
g
g
mg
g
g
g
----
Rinses
ml
Date: 3/6/25 Time: 10:00 ----Date: 3/7 /25 Time: 9:00
CRITERIA
Process Weight Time
Final Pass Pass
-----····-····· ---·-·
Date: 3/6/25 Time: 10:00
Date: 3/7/25 Time: 9:00
Date: 9/4/24 Time: 8:00
Date: 9/2/24 Time: 14:00
CRITERIA
Beaker Number: 37 Blank: 0.0000 g Process Weight Time
Net 0.0040 g Final Pass Pass
Net 4.0 mg Initial Pass Pass
----·-----·--···-
RESULTS Front Half
Filter 100.8 mg
Wash 4.0 mg
Total 104.8 mg
Comments: Criteria: I) We_i!lhts are± 0.5 mg of each other, or within I% of the net weight. 2) There shall be at least 6 hrs between weighings.--~---·-·--··--····-·------______ _
Lab Technician: D Kitchen Date: 3/5/25 -----
Lab Technician: M McNamara Date: 3/7/25 -----
Facility: Intrepid Wendover -----''---------------------Date: 3/5/25
St a ck Identification: Venturi Scrbber Run: 3 ---------------------------
Filter Number: 7906 Sample Box: F
Blanks &
Rinses
Filter
-----·----·--------
Front Half
--------
Blanks
Acetone (CH3COCH3) 0.0000 g/l00ml
Final 1: 0.7584 g --------Fin a I 2: 0.7583 g
FinalAvo: 0.7584 g
Filter Preweight: 0.6708 g
Net 0.0876 g
Net 87.6 mg
Final1: 92.8313 g
Final2: 92.8312 g
FinalAvo: 92.8313 g
Initial1: 92.8253 g
Initial 2: 92.8253 g
Initial A vo: 92.8253 g
Gross: 0.0060 g
----
Rinses
ml
Date: 3/6/25 Time: 10:00 -----Date: 3/7 /25 Time: 9:00
CRITERIA
Process Weight Time
Final Pass Pass
-----
Date: 3/6/25 Time: 10:00
Date: 3/7 /25 Time: 9:00
Date: 9/4/24 Time: 8:00
Date: 9/2/24 Time: 14:00
CRITERIA
Beaker Number: 38 Blank: 0.0000 g Process Weight Time
Net 0.0060 g Final Pass Pass
Net 6.0 mg Initial Pass Pass
RESULTS Front Half
Filter 87.6 mg
Wash 6.0 mg
Total 93.6 mg
--------···· ·--------
Comments: Criteria:. I) Weights are± 0.5 mg of each other, or within I% of the net weight._ 2) There shall be at least 6 hrs between.weighings.··--·---····· . ··········-··-.
Lab Technician: D Kitchen Date: 3/5/25 -----
Lab Technician: M McNamara Date: 3/7/25
Facilty: Intrepid Potash, Wendover
Stack Identification: Venturi Scrubber
Sample Description/ID # Run 1
Inorganic CPM
Beaker/Tin# 34 Date Time
Final Weight (1), g 2.1394 3;12125 I 8:oo I
Final Weight (2), g 2.1394 3112125 I 14:oo I
Ave. Final Weight, g 2.1394
Initial Weight (1), g 2.1360 9;4;24 I 10:00 I
Initial Weight (2), g 2.1362 9;5;24 I 9:oo I
Ave. Initial Weight, g 2.1361
m,: Initial Inorganic Wt, mg 3.30
H2O added in Extractions, ml 60 pH pH
Reconstituted H2O Volume, ml Start End
N: Normality ofNH4OH I I
\ V1: Volume ofNH4OH, ml
m0: Mass ofNH4 Added, mg
mi (or mib): Final Inorganic Wt, mg 3.30
Organic CPM
Beaker/Tin # 37 Date Time
Final Weight (1), g 2.1736 3112125 I 8:oo I
Final Weight (2), g 2.1737 3112125 I 14:oo I
Ave. Final Weight, g 2.1737
Initial Weight (1), g 2.1680 9;4124 I 10:00 I
Initial Weight (2), g 2.1683 915124 I 9:oo I
Ave. Initial Weight, g 2.1682
m0 (or m0b): Net Organic Wt, mg 5.50
m00m : Gross CPM, mg 8.8
mcpm: Blank CPM, mg 2.0
mcpm: Net CPM, mg 6.8
pH Meter: Oakton pHTestr BNC, Electrode Model: 35801-00
Fisher pH Buffer 4.001 pH I Date I
Fisher pH Buffer 7.00 .__ _____ ....,
f=j
Method 202 Laboratory Form
Run2
Rel. Hum Rel. Hum
% 35 Date Time %
<1 2.1716 3112125 I 8:oo I <1
< 1 2.1714 3112125 I 14:oo I <l
2.1715
< 1 2.1682 914124 I 10:00 I < 1
< 1 2.1683 915124 I 9:oo I <1
2.1683
3.25
60 pH pH
Start End
I I
3.25
Rel. Hum Rel. Hum
% 38 Date Time %
<1 2.1705 3112125 I 8:oo I <1
<1 2.1703 3112125 I 14:oo I <l
2.1704
< 1 2.1638 9;4;24 I 10:00 I <l
<l 2.1639 9;5;24 I 9:oo I < l
2.1639
6.55
9.8
2.0
7.8
Lab Technician:
Lab Technician:
3/5/25 Test Date(s): _________ _
Run3
Rel. Hum
36 Date Time %
2.1495 3112125 I 8:oo I <l
2.1497 3112125 I 14:oo I < 1
2.1496
2.1453 9;4124 I 10:00 I <1
2.1457 9;5124 I 9:oo I <1
2.1455
4.10
60 pH pH
Start End
I I
4.10
Rel. Hum
39 Date Time %
2.2035 3112125 I 8:oo I <1
2.2036 3112125 I 14:oo I <l
2.2036
2.2001 9;4;24 I 10:00 I < 1
2.2002 9;5;24 I 9:oo I· <l
2.2002
3.40
7.5
2.0
5.5
Mike McNamara Date: 3/5/25
Dean Kitchen Date: 3/12/25
Form Date: 10/21/15
Facilty: Intrepid Potash, Wendover
Stack Identification: Venturi Scrubber
Method 202 Laboratory Form
Sample Description/ID # Recovery Blank
Inorganic CPM
Rel. Hum
Beaker/tin # 40 Date Time % 41
Final Weight (1), g 2.1255 <l 2.1522
Final Weight (2), g 2.1257 <l 2.1525
Ave. Final Weight, g 2.1256 2.1524
Initial Weight (1), g 2.1243 9/4/24 10:00 <l 2.1515
Initial Weight (2), g 2.1245 9/5/24 9:00 <l 2.1512
Ave. Initial Weight, g 2.1244 2.1514
mr: Initial Inorganic Wt, mg 1.20 1.00
H2O added in Extractions, ml 60 pH pH 60
Reconstituted H2O Volume, ml Start End
N: Normality ofNH4OH
Vt: Volume ofNH4OH, ml
me: Mass ofNH4 Added, mg
m; (or mib): Final Inorganic Wt, mg 1.20 1.00
Organic CPM
Rel. Hum
Beaker/tin # 42 Date Time % 43
Final Weight (1), g 2.1652 <l 2.1467
Final Weight (2), g 2.1651 <l 2.1466
Ave. Final Weight, g 2.1652 2.1467
Initial Weight (1), g 2.1644 9/4/24 10:00 <l 2.1458
Initial Weight (2), g 2.1640 9/5/24 9:00 <l 2.1460
Ave. Initial Weight, g 2.1642 2.1459
m0 ( or m0b): Net Organic Wt, mg 0.95 0.75
mcpm (or mfb): Total CPM, mg 2.2 1.8
Test Date(s): 3/5/25
Proof Blank
Date Time Rel.Hum%
<l
<l
9/4/24 10:00 <l
9/5/24 9:00 <l
pH pH
Start End
Date Time Rel.Hum%
<l
<l
9/4/24 10:00 <l
9/5/24 9:00 <l
pH Meter: Oakton pHTestr BNC, Electrode Model: 35801-00 I Time I Lab Tech.: Mike McNamara
Fisher pH Buffer 4.001 pH I Date I Date: 3/5/25
Fisher pH Buffer 7.00 ,.._ _____ _. Lab Tech.: Dean Kitchen Date: 3/12/25
Form Date: I 0/21115
Method 202 Field Reagent Blank Form
Facilty: Intrepid Potash, Wendover
Stack Identification: Venturi Scrubber
Blank Description/ID # Water RJCCA Reagent
Lot# 2307F47
Rel. Hum
Beaker/tin # 44 Date Time %
Final Weight (1), g 2.1678 3112125 I 8:oo I <1
Final Weight (2), g 2.1677 3;12125 I 14:oo I <1
Ave. Final Weight, g 2.1678
Initial Weight (1), g 2.1677 9;4;24 I 10:00 I <1
Initial Weight (2), g 2.1676 9;5;24 I 9:oo I <1
Ave. Initial Weight, g 2.1677
Blank Residual Mass, mg 0.10 Water
Blank Mass, g 224
Blank Volume, ml 224
Max Blank Residulal Mass, mg 0.22
Acetone
220983
45
2.1746
2.1748
2.1747
2.1747
2.1744
2.1746
0.15
138
176
0.18
Test Date(s): 11/11/24 ----------
Fisher ACS Hexane Sigma-Aldrich
SHBQ-7084
Rel. Hum Rel. Hum
Date Time % 46 Date Time %
3112125 I 8:oo I <l 2.1899 3112125 I 8:oo I <l
3112125 I 14:oo I <l 2.1896 3112125 I 14:oo I <l
2.1898
9;4124 I 10:00 I <1 2.1896 9;4124 I 10:00 I <l
9;5;24 I 9:oo I <l 2.1897 915124 I 9:oo I <1
2.1897
Acetone 0.10 Hexane
149
223
0.22
Lab Technician: Mike McNamara Date: 3/5/25
Lab Technician: Dean Kitchen Date: 3/12/25
Form Date: 10/21/15
Method 202 Laboratory Reagent Blank Form
Blank Description/ID # Water RICCA Reagent Acetone Fisher ACS Hexane Sigma-Aldrich
Lot# 4203D42 220983 ShBS-1350
Rel. Hum Rel. Hum Rel. Hum
Beaker/tin# 31 Date Time % 32 Date Time % 33 Date Time %
Final Weight (1), g 2.1669 3/12125 I 8:oo <l 2.1265 3/12125 I 8:oo I <l 2.1168 3/12/25 8:00 <l
Final Weight (2), g 2.1669 3/12/25 I 14:00 <l 2.1265 3n2125 I 14:oo I <l 2.1168 3/12/25 14:00 <l
Ave. Final Weight, g 2.1669 2.1265 2.1168
Initial Weight (1), g 2.1667 914124 I 10:00 <l 2.1263 914124 I 1 o:oo I <l 2.1165 9/4/24 10:00 <l
Initial Weight (2), g 2.1668 915124 I 9:oo < 1 2.1265 9;5124 I 9:oo I < 1 2.1167 9/5/24 9:00 <l
Ave. Initial Weight, g 2.1668 2.1264 2.1166
Blank Residual Mass, mg 0.15 Water 0.10 Acetone 0.20 Hexane
Blank Mass, g 250 175 173
Blank Volume, ml 250 223 259
Max Blank Residulal Mass, mg 0.25 0.22 0.26
Lab Technician: Mike McNamara Date: 3/5/25
Lab Technician: Dean Kitchen Date: 3/12/25
Form Date: 10/21/15
Plant: Intrepid, Wendover, UT
Analytical Method: Orsat/Fyrite ----~---------------
Date ]-?°' -J-;J-
Test No. /
Gas Bag No. -}:~-=--(7~~7-
Ambient Temp~
Operator~
Gas
CO2
0 2 (Net is Actual 0 2
Reading Minus Actual
CO2 Reading).
N2 (Net is 100 Minus
Actual 0 2 Reading).
Gas
Actual
Reading
)->
Actual
Location: Venturi Scrubber
RUN
2
Net Actual Net Actual
Reading Reading
)-) J...-> J..-> J-->
1/f r)---I~,)--
RUN
2
Net Actual Net Actual
Date }-,,;r-;)--J -1=========:::=======l=====ll======*==~i==
TestNo.~
Reading Reading Reading
Gas Bag No. -t1
Ambient Temp~
Operator~
°'" 2---:rz-Test No.
GasBagNo.~
Ambient Temp
Operator
Date -----Test No. ____ _
Gas Bag No. ____ _
Ambient Temp ____ _
Operator ____ _
0 2 (Net is Actual 0 2
Reading Minus Actual
CO2 Reading).
N2 (Net is 100 Minus
Actual 0 2 Reading).
Gas
0 2 (Net is Actual 0 2
Reading Minus Actual
CO2 Reading).
N2 (Net is 100 Minus
Actual 02 Reading).
Gas
CO2
0 2 (Net is Actual 0 2
Reading Minus Actual
CO2 Reading).
N2 (Net is 100 Minus
Actual 0 2 Reading).
/,~
..__
Actual
Reading
Actual
Reading
/, ffe
!$, B
Net
Net
/,~ /1&
/F're
RUN
Actual
Reading
2
RUN
2
Net
Actual Net
Reading
CO is not measured as it has the same molecular weight as N2
/, £5
Actual
Reading
Actual
Reading
3
Net
)_-)
/@',;_
3
Net
/1~
It?-&!
3
Net
3
Net
Average
Net
Volume
).. ,.J,:::::7
/t;.
Average
Net
Volume
/,8
/f.
Average
Net
Volume
Average
Net
Volume
TETCO Stack Emission Analysis
Accurate • Reliable • Qualified
Chain of Custodi
~,L Facility (& Source): W~th><Ar"
..s:::
l,<J-U: S't.,,ll.l.J( <.r--gJ v~~ ] ~
~ E ..s::: 8 gJ E ~ ~ 8 i:i..
i:i.. II) iZ Method(s) of E r/l
i'3 (I)
:;8 Sample ID Date Analysis 8 = 0
i:i.. iZ u ,::i...
14 n ...-::J.,#, ,-, ~ llJ/,..,,.. ..r-/i.ot.. \JJ(' )<
R~ ~ ,1-t'.)r,,.r Ir [ I~ Ix
o > ..-+ero~ ' t I;(
/'1-~-l,1-.. .tZ. l fir IJ.,.. ,-, .. _.. ..
/)c, __ ;., .. _,,., -Pt--L -l a-
.1) ....... -,._;__ o, .. _r_ l \
IJ
Sampled By:
Recovered By:
Analyzed By:
Relinquished By: Received By:
Relinquished By: Received By:
All samples remained in the custody ofTETCO unless otherwise indicated.
Comments:
)<
(]) (])
"' "' = = ~ ~ II) o'd {/) "' = (]) 1 ~ §
o?3 ~ u ... ..s::: 0 ~ u o'd § ~ iZ (I) u = 0..
~ e
~ 0 0.. N u 0 u ::c < ,.:!l
}( ·>< 'X
~ '')< )( x :x IX
~ lx lX
IX x IX
~ //
I
*
(]) II)
"' "' = = ~ ~
"O o?3 § -5 -5 ~ ~ u j u ...
0 0
r:FJ
£ "O u u <
IY
r/l
~
... II)
~ (I) ~ ::c
Ix k"
391 E 620 S, American Fork, UT 84003
801-492-9106 •' 801-492-9107
Notes
Date:
Date:
Date:
Date:
Date:
I
D
APPENDIX D
Figure 1. Facility Schematic Representation Venturi Wet Scrubber
Raw production data was retained by Intrepid personnel
Facility:
Stack Identification:
33'g: Distance of Sample Level to Ground, feet
Intrepid Potach, Wendover
4-5
Venturi Scrubber
15'
15'
a: Distance upstream from next disturbance, feet
b: Distance downstream from last disturbance, feet
Salt DryerType:
Number of Ports
Process
Type:
Control Unit
2
Estimated Temperature, oF
Figure 1. Facilty Schematice Representation
Estimated Velocity, fpm
24.75"
Venturi Scrubber
Stack Inside Diameter, inches
Estimated Moisture, percent
120
2,600
a
g
b
E
APPENDIX E
Calibration of the console dry gas meter(s), pitot tubes, nozzles diameters, and temperature sensors were carried out in accordance with the procedures outlined in the Quality Assurance Handbook.
The appropriate calibration data are presented in the following pages. The nozzle calibrations are
recorded on the first page of the field data sheets.
Figure 2. Schematic of Method 5/202 Sampling Train
Meter Box Calibration Data and Calculations Forms
Meter Box Post-test Calibration Sheet Type-S Pitot Tube Inspection Data
Sample Box Temperature Sensor Calibration
Filter Balance Calibration
Figure 2. Schematic of Method 5/202 Sampling Train
Temperature Sensor
t
t
Type S Pitot
Tube
Probe
Temperature
Sensortl
Gooseneck ! . . Nozzle
""
/
Type S Pitot
Tube Stack
Wall
Orifice
HecatTracecl
Probe
Temperature
Sensor
Glass Filter
Holder
Heated Area
Manometer
Temperature
Sensors
I Dry Gas \ ! Meter l \_)
Thermocouple
Recirculation
Pump Empty
Impinge rs
Valve
METHOD 5 DRY GAS METER CALIBRATION USING CRITICAL ORIFICES
1) Select three critical orifices to calibrate the dry gas meter which bracket the expected operating range.
2) Record barometric pressure before and after calibration procedure.
3) Run at tested vacuum (from Orifice Calibration Report), for a period of time
necessary to achieve a minimum total volume of 5 cubic feet.
4) Record data and information in the GREEN cells, YELLOW cells are calculated.
TECHNICIAN: A. Kitchen
DATE: 12/19/2024 METER SERIAL#: 26144 BAROMETRIC PRESSURE (in Hg):
INITIAL
25.80
METER PART#: Console 5 CRITICAL ORIFICE SET SERIAL#: 1453S EQUIPMENT ID#: Console#5
ORIFICE # I RUN# I
G
G
G
2
3
2
3
2
3
K'
FACTOR
(AVG)
0.8137
0.8137
0.8137
0.5317
0.5317
0.5317
0.3307
0.3307
0.3307
~ VACUUM
(in Hg)
13
13
13
13
13
13
14
14
14
DGM READINGS (FT3)
INITIAL
0.416
5.713
11.030
83.552
88.669
93.841
17.300
22.400
28.298
FINAL
5.713
11.030
16.357
88.669
93.841
99.045
22.400
28.298
33.427
NET(Vm)
5.297
5.317
5.327
5.117
5.172
5.204
5.100
5.898
5.129
USING THE CRITICAL ORIFICES AS CALIBRATION STANDARDS:
TEMPERATURES °F
AMBIENT DGMINLET DGMOUTLET DGM
INITIAL FINAL INITIAL FINAL AVG
71 87 91 78 79 83.8
71 90 96 79 80 86.3
71 94 98 80 82 88.5
70 77 81 73 74 76.3
70 80 85 75 76 79.0
70 84 89 76 79 82.0
70 93 92 82 85 88.0
70 91 93 84 87 88.8
70 92 96 86 88 90.5
FINAL
I 25.80 I
ELAPSED
TIME~MIN)I
4.75
4.76
4.76
7.26
7.36
7.26
11.51
13.26
11.51
AVG(Pbarl
25.80
I DGM!>.H
(in H20)
2.80
2.80
2.80
1.10
1.10
1.10
0.41
0.41
0.41
(1)
Vm(STD)
4.4715
4.4678
4.4578
4.3591
4.3833
4.3860
4.2429
4.9001
4.2476
2025 Pre-Calibration
IF Y VARIATION EXCEEDS 2.00%,
ORIFICE SHOULD BE RECALIBRATED
(2)
Ver (STD)
4.3287
4.3378
4.3378
AVG=
4.3273
4.3869
4.3273
AVG=
4.2670
4.9157
4.2670
AVG=
(3)
y
0.968
0.971
0.973
0.971
0.993
1.001
0.987
0.993
1.006
1.003
1.005
1.004
l
y
VARIATION(%)
-1.90
0.39
1.51
The following equations are used to calculate the standard·volumes of air passed through the DGM, Vm (sld), and the critical orifice,
Va (std), and the DGM calibration factor, Y. These equations are automatically calculated in the spreadsheet above. AVERAGE DRY GAS METER CALIBRATION FACTOR, y = I 0.990
(1)
(2)
(3)
Vm{,M) = K, ,. Vin* Pbar + (l!H /13.6) Tm
= Net volume of gas sample passed through DGM, corrected to standard conditions
K1 = 17.64 uR/in. Hg (English), 0.3858 uK/mm Hg (Metric)
Vcr(ud) "'K'* Pbar * e ✓Tamb
Vc1(ud) Y= --·--
Vm1,,d)
Tm= Absolute DGM avg. temperature ("R -English, "K -Metric)
= Volume of gas sample passed through the critical orifice, corrected to standard conditions
T,mb = Absolute ambient temperature ("R -English, "K -Metric)
K' = Average K' factor from Critical Orifice Calibration
= DGM calibration factor
AVERAGE !>.H@ =1 1.488
!>.H@=
(
0.75 0 )2
t>.H (Vm(std))
Vcr(std) Vm
TEMPERATURESENSORS°F
REFERENCE IN OUT
32 33 32
72 73 73
203 203 202
1.601
1.594
1.587
1.484
1.476
1.468
1.396
1.394
1.390
METHOD 5 DRY GAS METER CALIBRATION USING CRITICAL ORIFICES
1) Select three critical orifices to calibrate the dry gas meter which bracket the expected operating range.
2) Record barometric pressure before and after calibration procedure.
3) Run at tested vacuum (from Orifice Calibration Report), for a period of time
necessary to achieve a minimum total volume of 5 cubic feet.
4) Record data and information in the GREEN cells, YELLOW cells are calculated.
TECHNICIAN: Xuan Dang 7
DA TE: 03/06/25 METER SERIAL #: 26144
METER PART#: Console 5 :RITICAL ORIFICE SET SERIAL#: 1453S
K' TESTED
FACTOR I VACUUM I ORIFICE# I RUN# I {AVG) {in Hg)
DGM READINGS {FT')
INITIAL FINAL
G: □:ma □:ma
0.5317 11
0.5317 11
0.5317 11
48.360 53.988
.53.988 60.732
60.732 67.379
USING THE CRITICAL ORIFICES AS CALIBRATION STANDARDS:
NET(Vml
5.628
6.744
6.647
INITIAL
BAROMETRIC PRESSURE {in Hg): 24.85
EQUIPMENT ID #: Console #5
TEMPERATURES °F
AMBIENT I DGM INLET I DGM OUTLET I DGM
INITIAL FINAL I INITIAL FINAL I AVG
u ro n ~ ~ 81.0
~ n ~ ~ ~ 87.0
~ M ~ ff 1~ 92.0
I I I I I I
I I I I I I
FINAL
24.85
ELAPSED
TIME{MIN)
0
7.68
8.97
8.73
AVG{P .. ,)
24,85
DGM.<l.H
{inH,O)
1.15
1.15
1.15 §§ §§
(1)
Vm{STD)
4.5783
5.4260
5.2995
Post Calibration
Intrepid Wendover
Venturi Wet Scrubber
IF Y VARIATION EXCEEDS 2.00%,
ORIFICE SHOULD BE RECALIBRATED
(2)
Vc,{STD)
4.4216
5.1594
5.0213
AVG=
AVG=
AVG=
(3)
y
0.966
0.951
0.948
0.955
1
y
VARIATION(%)
0.00
The following equations are used to calculate the standard volumes of air passed through the DGM, Vm (std), and the critical olifice,
Va {std), and the DGM calibration factor, Y. These equations are automatically calculated in the spreadsheet above. AVERAGE DRY GAS METER CALIBRATION FACTOR, Y = I 0.955
(1)
(2)
(3)
Vm(.ml) = K, *Vm* Pbar+(ilH /13.6) Tm ~ = Netvolume of gas sample passed through DGM, corrected to standard conditions
K, = 17.64 °R/in. Hg (English), 0.3858 'Kimm Hg (Metric)
Pbar *0 -K'* Vcr(,tdl-~ Tm = Absolute DGM avg. temperature ("R -English, "K -Metric)
= Volume of gas sample passed through the critical orifice, corrected to standard conditions
T,m, = Absolute ambient temperature (0R -English, 'K -Metric)
K' = Average K' factor from Critical Orifice Calibration
Vc1(,tdJ Y= ---------= DGM calibration factor
Vi11(,,dl
AVERAGE .<l.H@ =1 1.573 I
.<l.H@=
(
0.75 9'\ . .<l.H (Vm(std\
Vc,(Std)} Vm }
TEMPERATURE SENSORS °F
REFERENCE IN OUT
1.588
1.573
1.559
Date: __ __:.;_l/.=6/-=2=-5 __
Type S Pi tot Tube Inspection Data
Pitot Tube Identification: ____ ___:3:..:8:..cG::.,_ ___ _
Technician: M. McNamara
D = 0.375 in. Is PA= Pa ? ___ _..;;Y..:.e:;..s __ _
--''--------Is l.05•D1 :<; PA&P8 $ l.50•D,? ___ _..;;Y..:.e:;..s __ _
0.486 in.
P8 = 0.486 in.
a 1 <10° a1= _____ _
a 2 <10° a2= ___ 2 __ _
Z::<;0.125in.
W ::<; 0.03125 in.
W> 3 inches
Z > 3/4 inch
Z = __ o.:,;•..;_0::.;32=----in.
W = __ o;;_,;'_;0_;15'--_in.
W = __ 6.:..;·..;_87cc5'--_ in.
Z= __ _;J_.2_5 __ in.
Y = _ ____c.3_1"-/2 __ in.
The pitot tube meets the specifications for a calibration factor of 0.84? Yes
Temperature Sensor Calibration
Reference· Omega CL3512A
Continuity Check Yes Probe Heat Check 248 Yes
1emperature 1 emoerature l emperature
Source Keterence Sensor Difference
(Medium) ("F) ("F) (OF)
Probe AIR 66 66 0
AIR 66 67 I
Stack ICE WATER 33 33 0
BOIL WATER 204 204 0
SILICONE OIL
TETCO
Sample Box Temperature Sensor Calibration
Date: 1/2/25 Calibrator: Alan Kitchen Reference: Omega CL3512A
Thermocouple Temperature Tern erature Temperature
Unit ID Source Reference Sensor Difference Location (°F) ("F) {°F) (Medium)
Oven (3) Water 33 32 -1
A Water 205 203 -2
Water 3 2 ~ Oven (4) Water 205 207
Oven (3) Water 33 32
B Water 204 202 2
ater ~ Oven (4) Water 204 206
Oven (3) Water 33 32
C Water 203 203
Water 3 Oven (4) Water 204 205 1
Oven (3) Water 33 33 0
D Water 205 207 2
ater Oven (4) Water 205 206
Oven (3) Water 33 32 -1
E Water 204 206 2
Water 33 Oven (4) Water 204 203 -1
F Oven Water 33 32 -1
Water 205 207 2
G Oven Water 3 32 -1
Water 205 206 1
H Oven Water 33 33 0
Water 203 204 1
lmpinger Out A Water 33 34
Water 203 203 0
Impinger Out B Water 34
Water 203 0
Impinger Out C Water 34
Water 202 -1
Impinger Out D Water 33 0
Water 201 -2
Impinger Out E Water 34 1
Water 203 202 -1
lmpinger Out F Water 33 34 1
Water 203 203 0
lmpinger Out G Water 33 34
Water 203 204 1
Impinger Out H Water 33 33 0
Water 203 202 -1
Impinger Out I Water 33 33 0
Water 201 -2
Impinger Out J Water 34
Water 202 -1
Impinger Out K Water 34 1
Water 203 0
TETCO
Annual Balance Calibration Check
Date 1 /02/25
Balance Denver Instruments, Model A-250, SN B045284
Weights Used Troemner Weight Set,
SN 98-115146
Certified Weight
grams
0.1000
0.5000
1.0000
10.0000
50.0000
100.0000
120.0000
150.0000
Technician Michael McNamara
Measured Weight
grams
0.1000
0.5000
1.0000
10.0000
50.0000
100.0001
119.9999
149.9999
;
Difference
grams
0.0000
0.0000
0.0000
0.0000
0.0000
-0.0001
0.0001
0.0001
F
APPENDIX F
Test Protocol and Related Correspondence
COMPLIANCE EMISSION TESTING PROTOCOL
FOR PARTICULATE MATTER
INTREPID WENDOVER POTASH, WENDOVER, UTAH
VENTURI WET SCRUBBER
Project Organization and Responsibility
The following personnel and the testing contractor are presently anticipated to be involved in the
testing program. The Utah Department of Environmental Quality, Division of Air Quality (DAQ)
and EPA may have their own personnel to observe all phases including the process
Company Contacts
Intrepid Potash, Wendover LLC Todd Stubbs 435 259-1282
P O Box 580
Wendover, UT 84083
TETCO Dean Kitchen 801 492-9106
391 East 620 South
American Fork, UT 84003
Facility and Location
The facility to be tested is Intrepid Potash, Wendover LLC located on the frontage road
approximately 4 (four) miles east of Wendover, Utah. The source to be tested is the Venturi Wet
Scrubber exhaust that serves the dryer heated by a 21 MMBtu/hr burner. The burner is fired with
propane.
Test Objective
The test objective is to comply with the facility’s approval order number DAQE-
AN0107420014-19. Testing procedures will include accumulating process and production data as
well as testing for PM10 particulate matter emissions using EPA Method 5. Condensable
particulate matter (CPM) will be measured according to EPA Method 202 and is not for
compliance but informational purposes only.
The allowable PM10 emission limits for this source are 0.05 gr/dscf and 6.0 lb/hr.
Test Date and Time
It is planned to complete this test November 11-12, 2024. The testing crew will arrive and set up
the testing equipment November 11th and begin testing that afternoon if production permits.
Testing will continue on November 12th as needed. A pre-test meeting may be scheduled by EPA,
DAQ or Intrepid Potash.
Process Data and Instrumentation
All process and instrumentation data will be made available to DAQ personnel. The venturi
scrubber water flow rate and pressure drop will be recorded by TETCO personnel during each test
run. The amount of material processed through the kiln dryer will be recorded by Intrepid Potash
Wendover personnel. The facility will run at normal conditions.
Site Access
Sample location access is by man-lift. Full-body harnesses will be used for anyone ascending in
the man-lift.
Potential Hazards
Moving Equipment Yes
Hot Equipment Yes
Chemical Pot Ash, Corrosive
Other Noise
Test Site
The stack inside diameter is 24.75 inches. Port location is depicted in Appendix 1 of this protocol.
The sample ports are located 7.3 diameters (15 feet) downstream from the last disturbance and
approximately 7.3 diameters (15 feet) upstream from the next disturbance. Sample port placement
conforms to the requirements of EPA Method 1.
Quality Assurance
All testing and analysis in these tests will be conducted according to Methods 5, 202 and
appropriate sections of 40 CFR 51 Appendix M.
Reporting
Reporting will be prepared by the testing contractor according to EPA Quality Assurance
Guidelines. A complete copy of raw data and test calculations summary will be included in the
reports. All process and production data will be recorded by Intrepid Potash, Wendover personnel
for inspection by DAQ and EPA, if requested.
Estimates of Test Parameters
Flow 19,000 fpm
Moisture 4-5 %
Temperature 125o F
Test Procedures
Particulate matter testing will be conducted on the Venturi Scrubber exhaust stack according to
EPA Method 5. The reason for using EPA Method 5 instead of Method 201A for PM10 is because
there are water droplets in the stack exhaust. The back-half of the Method 5 sampling train will be
sampled according to EPA Method 202 as specified in 40 CFR Part 51 Appendix M. Specific
procedures are as follows:
1. The total number of sample points will be 12 according to EPA Method 1. Six points will
be sampled on each port. Test run time will be at least 60 minutes.
2. EPA Method 2 will be used to determine the gas stream velocity. Calibration data for the
geometrically calibrated type “S” pitot tubes are included with this protocol. Dual
inclined/vertical manometers with graduations in .01 of an inch of water will be used.
Direction of gas flow will be checked for gas cyclonics prior to testing.
3. EPA Method 3 will be used to determine the gas stream dry molecular weight if the exhaust
gas is not ambient. An integrated flue gas sample will be taken from the exhaust line after
the dry gas meter orifice during each test run and analyzed at the completion of the test
with a Fyrite to determine the molecular weight of the effluent gas stream. If the exhaust
gas is ambient air then TETCO will use a dry molecular weight of 28.84 lb/lbmol (20.9
percent O2, 79.1 percent N2) in all calculations.
4. EPA Method 4 will be used to determine the gas stream moisture content.
5. The back-half, or condensible particulate matter will be handled according to EPA
Method 202 and will be for informational purposes only.
6. The barometric pressure will be measured with a barometer which is periodically checked
against a mercury barometer. The barometer will be checked prior to testing to assure an
accurate barometric pressure.
7. All current calibration data is submitted with this protocol, except nozzle calibration which
will be done at the test site. Nozzle calibration will be included on the first page of each set
of run sheets for each respective test run. Any calibration that is not current will be
re-calibrated prior to the test dates.
8. The glass fiber filters that will be used conform to the requirements of EPA Method 5.
9. Probe liners will be 316 stainless steel for all Method 5 tests.
10. Test preparation and sample recovery will be performed in the contractor's sampling trailer
or a clean area on Intrepid Potash’s property. The laboratory work and analysis will be
done by the contractor as soon as possible after the test project at 391 East 620 South,
American Fork, Utah.
11. Verbal results will be reported to a representative of Intrepid Potash, Wendover.
The written report will follow within 30 days following the completion of the test.
12. If maintenance or operating problems arise during the test, the test may be stopped. This
determination will be made by Intrepid Potash, Wendover representatives and operating
personnel in consultation with DAQ representatives
APPENDIX A
Facility Schematic
Facility:
Stack Identification:
33'g: Distance of Sample Level to Ground, feet
Intrepid Potach, Wendover
4-5
Venturi Scrubber
15'
15'
a: Distance upstream from next disturbance, feet
b: Distance downstream from last disturbance, feet
Salt DryerType:
Number of Ports
Process
Type:
Control Unit
2
Estimated Temperature, oF
Figure 1. Facilty Schematice Representation
Estimated Velocity, fpm
24.75"
Venturi Scrubber
Stack Inside Diameter, inches
Estimated Moisture, percent
120
2,600
a
g
b
APPENDIX B
Calibration Data
METHOD 5 DRY GAS METER CALIBRATION USING CRITICAL ORIFICES
1) Select three critical orifices to calibrate the dry gas meter which bracket the expected operating range.
2) Record barometric pressure before and after calibration procedure.
3) Run at tested vacuum (from Orifice Calibration Report), for a period of time
necessary to achieve a minimum total volume of 5 cubic feet.
4) Record data and information in the GREEN cells, YELLOW cells are calculated.
TECHNICIAN:INITIAL FINAL AVG (Pbar)
DATE:12/18/2023 METER SERIAL #:26144 BAROMETRIC PRESSURE (in Hg):25.45 25.45 25.45 IF Y VARIATION EXCEEDS 2.00%,
METER PART #:Console 5 CRITICAL ORIFICE SET SERIAL #:1453S EQUIPMENT ID #:ORIFICE SHOULD BE RECALIBRATED
K'TESTED TEMPERATURES °F ELAPSED
FACTOR VACUUM DGM READINGS (FT3)AMBIENT DGM INLET DGM OUTLET DGM TIME (MIN)DGM DH (1)(2)(3)Y
ORIFICE #RUN #(AVG)(in Hg)INITIAL FINAL NET (Vm)INITIAL FINAL INITIAL FINAL AVG q (in H2O)Vm (STD)Vcr (STD)Y VARIATION (%)DH@
1 0.8137 10 61.712 70.918 9.206 73 99 110 85 90 96.0 8.25 2.70 7.4955 7.4023 0.988 1.536
2 0.8137 10 70.918 77.963 7.045 73 107 112 90 91 100.0 6.25 2.70 5.6950 5.6078 0.985 1.525
3 0.8137 10 77.963 92.694 14.731 73 110 115 91 94 102.5 13.00 2.70 11.8552 11.6643 0.984 1.518
AVG = 0.985 -0.08
1 0.5317 13 39.754 44.884 5.130 72 75 84 67 74 75.0 7.25 1.10 4.3210 4.2546 0.985 1.513
2 0.5317 13 44.884 53.841 8.957 72 83 95 74 81 83.3 12.50 1.10 7.4298 7.3356 0.987 1.490
3 0.5317 13 53.841 61.606 7.765 72 94 100 81 85 90.0 10.75 1.10 6.3619 6.3086 0.992 1.472
AVG = 0.988 0.17
1 0.3307 13 92.841 100.319 7.478 75 81 85 78 83 81.8 16.75 0.40 6.2076 6.0966 0.982 1.410
2 0.3307 13 100.319 110.209 9.890 75 85 94 83 88 87.5 22.00 0.40 8.1236 8.0074 0.986 1.395
3 0.3307 13 110.209 117.677 7.468 75 94 98 88 91 92.8 16.50 0.40 6.0759 6.0056 0.988 1.382
AVG = 0.985 -0.08
AVERAGE DRY GAS METER CALIBRATION FACTOR, Y = 0.986
AVERAGE DH@ = 1.471
(1)=Net volume of gas sample passed through DGM, corrected to standard conditions
K1 =17.64 oR/in. Hg (English), 0.3858 oK/mm Hg (Metric)
Tm =Absolute DGM avg. temperature (oR - English, oK - Metric) DH@ = 0.75 q DH Vm(std)
Vcr(std) Vm
(2)=Volume of gas sample passed through the critical orifice, corrected to standard conditions
Tamb =Absolute ambient temperature (oR - English, oK - Metric)
K' = Average K' factor from Critical Orifice Calibration REFERENCE IN OUT
(3)=DGM calibration factor 32 33 32
72 73 73
203 203 202
TEMPERATURE SENSORS oF
2024 Pre-Calibration
Console #5
30
19
12
Joseph Wells
ENVIRONMENTAL SUPPLY COMPANY
USING THE CRITICAL ORIFICES AS CALIBRATION STANDARDS:
The following equations are used to calculate the standard volumes of air passed through the DGM, Vm (std), and the critical orifice, Vcr(std), and the DGM calibration factor, Y. These equations are automatically calculated in the spreadsheet above.
()2 ()
Type S Pitot Tube Inspection Data
Date:Pitot Tube Identification:
Technician:
Dt=0.375 Is PA = PB ?
Is 1.05 • Dt PA & PB 1.50 • Dt ?
PA = 0.479
PB =0.479
a1 < 10o a1 = o
a2 < 10o a2 = o
b1 < 5o b1 = o
b2 < 5o b2 = o
Z 0.125 in.Z = in.
W W 0.03125 in.W = in.
W > 3 inches W = in.
Z > 3/4 inch Z = in.
Y ≥ 3 inches Y = in.
The pitot tube meets the specifications for a calibration factor of 0.84?Yes
Reference:
TemperatureSource Reference Sensor
(Medium)(oF)(oF)
Probe AIR 64 64
AIR 64 63
ICE WATER 33 33
BOIL WATER 204 205
SILICONE OIL
Heat Check 248
Temperature Sensor Calibration
1
0
1Stack
Omega CL3512A
Probe Yes
Yes
Continuity Check
Temperature TemperatureDifference
(oF)
0
in.
in.
Yes
Yes
0.002
4
0.875
3 3/4
1/16/2024 38 G
M. McNamara
in.
0.018
1
1
2
1
b2
b1
B
A
w
Dt
PA
PB
Date:1/2/24 Calibrator:Reference:
Temperature Temperature
Source Difference
(Medium)(oF)
Water 0
Water -2
Water 0
Water -2
Water 0
Water -1
Water 0
Water -2
Water 0
Water 0
Water 0
Water 0
Water 0
Water 0
Water 0
Water 0
Water 0
Water 0
Water 0
Water 0
Water 0
Water -1
Water 0
Water -1
Water 0
Water 0
Water 0
Water 0
Water 0
Water -1
Water 0
Water -1
Water 0
Water 0
Water 1
Water 0
Water 0
Water -2
Water 0
Water -1
Water 0
Water 0
Water 0
Water 0
Water 0
Water 0
Water 0
Water 0
202
33 33
Impinger Out K 33 33
203 203
33 33
Impinger Out J
Impinger Out H
Impinger Out I
33
203
33
203
33
203
33
203
203
201
33
G
H
Oven (3)33 33
203 203
Oven (4)33
203
Oven 33 33
203 203
Oven 33 33
33
203 202
Oven (3)
A
201203
33
Oven (3)33 33
Oven (4)
Thermocouple
Location
203 201
Impinger Out F 33 33
203
203
203
203 202
203 203
33
33
Impinger Out G
203 201
Oven (3)33
203 203
33 33
203Oven (4)
203
Impinger Out D 33 33
203 203
Impinger Out E 33 34
203 203
203
33 33
203Impinger Out B
Impinger Out C 33 33
203 202
202
Impinger Out A 33 33
203
Oven (3)
Oven (4)
TETCO
Sample Box Temperature Sensor Calibration
B
C 203 203
33 33
33 33
203
33 33
Xuan N. Dang Omega CL3512A
Unit ID Reference
(oF)
Sensor
(oF)
Temperature
33
D
E
Oven 33 33
203 202F
Oven (4)
Balance Denver Instruments, Model A-250, SN B045284
Weights Used Troemner Weight Set,
SN 98-115146
Certified Weight Measured Weight Difference
grams grams grams
0.1000 0.1000 0.0000
0.5000 0.5000 0.0000
1.0000 1.0000 0.0000
10.0000 10.0000 0.0000
50.0000 50.0001 -0.0001
100.0000 100.0000 0.0000
120.0000 120.0001 -0.0001
150.0000 150.0000 0.0000
Technician Michael McNamara
TETCO
Annual Balance Calibration Check
Date 1/23/24