Loading...
HomeMy WebLinkAboutDRC-2001-001101 - 0901a06880acc23cIrtERx,rtroO Unaxruvr (use) ConronATroN Independence Plaza, Suite 950 r 1050 Seventeenth Street o Denver, CO 80265 . 303 628 7798 (main) . 303 389 + I25 r f rrx) January 28,2000 Via Facsimile and Overnisht Mail Don A. Ostler, P.E. Executive Secretary Utah Water Quality Board P.O. Box 16690 288 North 1460 West Salt Lake City, UT 841l6-0690 Re: Transmittal of Program for Delineation of Elevated Chloroform at lvfW-4, for Chloroform lnvestigation Phase 4 - Utah DEQ Groundwater Corrective Action Order, UDEQ Docket No. August 23,1999 Dear Mr. Ostler: in Perched Groundwater Notice of Violation and UGQ-20-01, Issued on Attached is International Uranium (USA) Corporation's ("[USA's") report, "Program for Delineation of Elevated Chloroform in Perched Groundwater at M'W-4" ("Program for Delineation"), which is being submitted by IUSA in accordance with the Revised Schedule for Contamination Investigation Submittals (Revision l) dated October ?2, 1999. This report follows implementation of the Revised Phase 2 Work Plan on November 2, 1999, which included a significant drilling program. Based on the analysis of the data by our independent hydrologists and geochemists, IUSA has been advised that the data from the accelerated drilling program have been sufficient to essentially delineate the occurrence of elevated chloroform in perched groundwater in the vicinity of MW-4 Therefore, it is intended that one additional round of sampling, to ensure that the samples collected from the temporary wells are representative of the perched groundwater, will be used to corroborate the results found to date. Mr. Don A. Ostler January 28,2000 Page2 ofZ Please note that the remaining tasks identified in Section 4.2 of the Program for Delineation will be implemented on March 6, 2000, as stated in the updated Schedule for Submittals of October 22, 1999. If you have any questions regarding this Program for Delineation, please contact Michelle Rehmann at (303) 389-413I ice President and General Counsel DCF:smc Attachment cclatt. Dianne Nielson, DEQ William J. Sinclair, DEQ Loren Morton, DRC David Cunningham, DEQ, SE District Health Department Dave Arrioti, DEQ, SE District Health Department Fred Nelson, Utah Asst. Attorney General Terry Brown, U.S. EPA Region VIII Milt Lammering, U.S. EPA Region VIII Thomas H. Essig, U.S. NRC, Washington, D.C. Bill von Till, U.S. NRC, Washington, D.C. Charles Hackney, U.S. NRC, Region IV Michelle R. Rehmann EarlE. Hoellen Ronald F. Hochstein William N. Deal Ronald E. Berg PROGRAM FOR DELINEATION OF ELEVATED CHLOROFORM IN PERCHED GROUNDWATER AT MW.4 JANUARY 28,2OOO Submitted to: U.S. Nuclear Regulatory Commission Utah Department of Environmental Quality U. S. Environmental Protection Agency Prepared by: Stewart Smith Hydro Geo Chem, Inc. Tucson, Arizona Roman Z. Pyrih, Ph.D. Geochem Ventures International Golden, Colorado Roman S. Popielak Knight Piesold Denver, Colorado Submitted by: International Uranium (USA) Corporation Denver, Colorado Contact: Michelle Rehmann 303 389 4r3 I 1.0 2.0 TABLE OF CONTENTS INTRODUCTION AND SUMMARY S OI,JRCE I}N/ESTIGATION On-Site Sources of Chloroform Evaluation of Cells as a Potential Source Chloroform 2.3 Evaluation of Leach Fields as a Potential Source of Chloroform 2.4 Soil Gas Survey. 2.5 Pumping Tests. 3.0 SOTJRCEIDENTIFICATION Page I 5 5 6 lnstalling Temporary Wells TW 4-l and TW 4-2. 9 Sampling Temporary Wells TW 4-l and \\N 4-2 I I lnstalling Temporary Wells TW 4-3, TW 4-7, and TW 4-8.... I I Sampling Temporary Wells TW 4-3, TW 4-7, and TW 4-8. . , . 12 Installing Temporary Wells TW 4-5 and TW 4-9. 13 Sampling Temporary Wells TW 4-5 and TW 4-9. 14 2.1 2.2 40 3.1 3.2 3.3 3.4 3.5 3.6 5.0 CONCLUSIONS FIGURE I FIGURE 2 TABLE I APPENDIX DELINEATTON OF THE EXTENT OF ELEVATED CHLOROFORM CONCENTRATIONS TN PERCHED GROI.INDWATER. ... .. .. 15 4.1 AdditionalWork. 7 7 8 l6 t7 1.0 INTRODUCTION AND SUMMARY Chloroform was detected at the White Mesa Mill in monitoring well MW-4 during groundwater split sampling conducted on May ll, 1999 The results of the sampling and analyses indicated chloroform present in groundwater from MW-4, at concentrations of 4,520 and 4,700 p,glL. Subsequent sampling of MW-4 on September 28, 1999, reported similar concentrations of chloroform, at 5,820 and 6,200 1tglL. Monitoring well MW-4 is located about 1,800 feet southeast of the Mill process buildings and about 600 feet east of tailings Cell No. 2. Monitoring well MW-4 is situated cross- gradient to the direction of groundwater flow. At the mill site, the hydraulic gradient is generally to the south / southwest. Possible historic sources for the presence of chloroform in groundwater were evaluated and reported previously; these include: Upgradient agricultural, industrial, and/or defense activities An historic septic system and leach field, that was designed to accept both sanitary and laboratory wastes, and that was located immediately southwest of the existing scale house, and inspected and approved by the Utah Division of Health. Another possible source that was considered was direct introduction of chloroform into MW4 as a result of well tampering. As reported previously, hydrological and geochemical evidence indicates that the Mill tailings cells are not the source of the chloroform in MW4 A soil gas survey conducted in September of 1999 indicated that chloroform originating in the historic leach field could have entered the soil in the past by way of the leach field and migrated to the south toward MW-4. The leach field is approximately 1,000 feet north of MW-4. However, although the soil gas results indicate that no significant soil source currently exists in the sampled areas, the soil gas results alone could not rule out tampering as an explanation for the elevated levels of chloroform in monitoring well MW-4. Pumping tests conducted at NAry-4 during September of 1999 were used to (l) estimate how far dissolved chloroform may have migrated downgradient of well MW-4 if introduced into the well in the early 1990's as a result of tampering, and (2) to determine the feasibility of removing groundwater containing chloroform by pumping MW-4, based on estimating how much pumping would be required. Based on a preliminary analysis of the pump test data, the average hydraulic conductivity of at least a portion of the Dakota./Burro Canyon Formation in the vicinity of MW-4 was estimated to be higher than the average for perched zone wells at the site. This finding resulted in a reevaluation of the approach to determining whether chloroform observed in WM-4 originated from an upgradient location, or could have been introduced by well tampering. Therefore, in order to collect additional hydrological and geochemical information to help delineate the extent of chloroform occurrences in the perched groundwater in the vicinity of MW-4, and in accordance with the revised work plan "Interim Results and Revisions to Work Plan (October22, 1999)", an expedited drilling program was implemented during the week of November l, 1999. This drilling program was designed to provide data necessary to evaluate the upgradient source area vs. tampering question. A total of seven borings were completed and temporary groundwater monitoring wells were installed and sampled for chloroform. Details of the drilling and sampling program are provided in Section 3.0, Source ldentification. The chloroform results from the drilling and sampling program essentially rule out the hypothesis that chloroform in MW-4 originated as a result of well tampering. Because higher concentrations were found upgradient of MW-4, and lower concentrations at downgradient and cross-gradient locations, the results clearly point to an upgradient source, to the north of MW-4. Based upon the initial groundwater sampling of the temporary wells, on historical perched hydraulic gradients at the site, and other background data from the site, the highest chloroform concentration in the perched groundwater occurs at monitoring well MW-4. The concentrations drop off in the upgradient and downgradient directions, and cross-gradient of MW-4. Concentrations drop off most rapidly in the downgradient direction (to the south) and cross-gradient (to the east and west); while concentrations decrease gradually in the upgradient direction (to the north). Extensive sampling of perched groundwater to the west of MW-4, at numerous monitoring wells located in the footprint of the tailings cells, has indicated non-detectable chloroform (at less than I pgL), with the only exception being a concentration of 1.2 tlglL detected at upgradient well MW-I. Within the area of perched groundwater affected by chloroform, the highest chloroform concentration continues to be in the immediate vicinity of monitoring well MW-4. The sharp decrease in concentrations between MW-4 and the nearest downgradient temporary boring is consistent with movement of groundwater through the coarser-grained, higher permeability zone observed at depths between approximately 70 and 100 feet below land surface during drilling. The more gradual drop off of concentrations in the upgradient direction is consistent with residual chloroform in the perched water zone left behind by the passing of a high concentration "slug" that is now centered near MW-4. It is likely that chloroform "bled" into surrounding lower permeability materials that are now slowly releasing chloroform into upgradient water that is moving through the system, resulting in reduction of chloroform concentrations in the previously affected materials. The distribution of chloroform in the perched water in the vicinity of MW-4, based on the initial sampling of the temporary wells, is consistent with a past release of chloroform to the perched water over a short period of time at an upgradient location, most likely at the abandoned leach field near the present scale house, located to the north of MW-4 Section 4.1 contains recommendations for additional work The sampling results to date indicate that elevated chlorolonr concentrations are confined to a relatively narrow zone, and that elevated concentrations have not moved significantly downgradient of MW-4 at the present time. Details of this preliminary scenario may change as the temporary wells continue to recover, and additional sampling of the wells is performed. To obtain additional data to corroborate these results, additional chloroform samples will be collected and analyzed from each of the temporary borings and from MW-4 during March of 2000. The results of this additional sampling and analysis, and other relevant data collected to date, will be used to formulate decisions regarding whether or not any or all of the temporary wells will be either abandoned or converted into permanent monitoring wells. The key conclusions of this report are that (l) the data are consistent with an upgradient source of chloroform, most likely the abandoned leach field near the scale house, located to the north of MW-4; and (2) subject to the results of the additional work planned (as detailed in Section 4.1), the zone of elevated chloroform concentrations in the perched water is considered to be substantially delineated. 2.0 SOURCE INVESTTGATION Possible sources for the presence of chloroform in MW-4 were reconstructed through personal interviews, searches of records, and examination of aerial photographs from the USGS and BLM. Land and properties upgradient of the White Mesa Uranium Mill were used for various agricultural, industrial, and defense activities. It is likely that chemicals such as chloroform were used in these activities. An irrigation ditch that historically provided water to ponds and fields north of the mill site, and that extended as far as MW-4, may have served as a pathway for chloroform, as well as other agricultural or industrial contaminants. 2.1 On-Site Sources of Chloroform Chloroform was never used in mill processing operations, and essentially none of the alternate feeds that have arrived at the mill for processing have contained detectable levels of chloroform. Since the beginning of activities at the White Mesa Uranium Mill, the only use for chloroform was in laboratory analyses of uranium, Between 1977 and 1979, a temporary laboratory analyzed ore samples and conducted amenability testing on uranium ore. Liquid eflluent that would have included chloroform from the volumetric analyses of uranium was discharged to a septic system and leach field constructed in L977 by Energy Fuels Nuclear. This septic system and leach field, that was designed to accept both sanitary and laboratory wastes, located immediately southwest of the existing scale house and approximately 1,000 feet north of MW-4, was inspected and approved by the Utah Division of Health. Prior to 1980, all of the laboratory wastes, which would have included chloroform, were discharged to the leach field. Currently, laboratory wastes are pumped directly to the tailing cells. 22 Evaluation of Cells as a Potential Source of Chloroform Since 1980, Cell No. I has received laboratory eflluent containing small amounts of chloroform. As reported in the "Hydrogeological Evaluation of White Mesa Uranium Mill," prepared by TITAN Environmental Corporation in 1994, tailings solution from the slimes drain indicated only traces (17 p,glL) of chloroform. This concentration is orders of magnitude lower than the levels reported in MW-4 (4,520 and 4,700 VglL) during the split sampling in May 1999. Hydrological and geochemical evidence indicates that the cells are not the source of the chloroform in MW-4. Monitoring well MW-4 is situated cross-gradient to groundwater flow in the area. The hydraulic gradient is to the south/southwest, and there is no basis to assume that chloroform or any other constituent would have migrated laterally to MW-4. Secondly, there has been no temporal change in the major ion chemistry of the groundwater in MW-4, or for that matter, in any of the monitoring wells located in the footprint of the tailings cells, or downgradient of the tailings impoundment. Had seepage from the tailings cells somehow migrated cross-gradient to NfW-4, a change in the water- quality fingerprint of the groundwater would have been observed. Tailings solutions impounded in the cells are highly acidic, and elevated in magnesium, chloride, and sulfate concentrations. The groundwater in MW-4 is presently calcium-sulfate type water, and has always had a calcium-sulfate fingerprint. Finally, chloroform has not been detected in monitoring wells located in the footprint of the tailings cells or immediately downgradient of the tailings impoundments. The only exception was upgradient monitoring well MW-1, in which chloroform was detected at a concentration of 1.2 ytglL 23 Evaluation of Leach Fields as a Potential Source of Chloroform Prior to 1980, as discussed previously, liquid effluent was discharged from a temporary laboratory into a State-approved leach field that is located immediately southwest of the existing scale house. These efTluents probably contained chloroform. Although unlikely, another leach field located southeast of the offrce/lab building may have received liquid effluent from early 1979 to mid 1980. Both areas were targeted for further investigation. 2.4 Soil Gas Survey In September of 1999, IUSA commissioned a soil gas survey of the soils in and around the leach fields, the irrigation ditch, and monitoring well MW-4. The soil gas sampling was conducted by Tracer Research Corporation, under oversight from IUSA and Hydro Geo Chem, Inc., primarily to delineate any shallow soil (alluvial) source areas that may have caused the chloroform occurrences in MW-4. The survey was also designed to test the hypothesis that chloroform originating in the leach field could have migrated to the south toward MW-4. Soil gas at approximately 37 locations was sampled and analyzed on-site for chloroform, methylene chloride, and carbon tetrachloride using a hydraulically activated drive-point rig and separate mobile laboratory. Samples were collected in the areas of the leach fields located southwest of the existing scale house and southeast of the offrce/lab building, along the irrigation ditch, and near monitoring well MW-4. Chloroform concentrationswere low and ranged from non-detectto 0.5 micrograms per liter. Slightly higher concentrations of chloroform were reported in soil gas samples from the leach field areas than from the area around monitoring well MW-4. Higher concentrations detected at the leach fields suggest that chloroform could have entered the soil in the past by way of the leach fields. However, the soil gas results indicate that no significant soil source of chloroform currently exists in the sampled areas. The soil gas results alone could not be used to rule out tampering as an explanation for the elevated levels of chloroform in monitoring well MW-4. Results of the soil gas survey are presented in the "Chloroform Source Assessment Report", which was transmitted on September 30, 1999. 25 Pumping Tests Pumping tests were conducted at IvtW-4 during the week of September 27,1999 to (1) estimate how far dissolved chloroform may have migrated downgradient of well MW4 if introduced intothe well in the early 1990's as a result of tampering, and (2) to determine the feasibility of removing groundwater containing chloroform by pumping MW-4, and to estimate how much pumping would be required Based on a preliminary analysis of the pump test dat4 the average hydraulic conductivity of at least a portion of the Dakota./Burro Canyon Formation in the vicinity of MW-4 was estimated to be one to two orders of magnitude higher than previously estimated. This is likely due to water levels on the east side of the site having risen into higher permeability materials over the last several years based on measurements at MW-4 and two other monitoring wells on the northeastern side of the site. Based on calculations presented in the revised work plan, "[nterim Results and Revisions to Work Plan" (October 22, 1999), it was determined that chloroform introduced into MW-4 in l99l could have traveled as much as approximately 130 leet downgradient ofMW-4. Because the volume of water potentially affected by chloroform was too large to pump back unless a method for management of large volumes of water were to be devised, a decision was made to install temporary borings in the vicinity of MW-4 to delineate the extent of elevated chloroform concentrations in the perched water. The higher hydraulic conductivity estimates likely resulting from water levels rising into higher permeability materials also suggested the possibility of an upgradient source area, such as the abandoned leaching field near the scale house. 3.0 SOURCE 1DENTIFICATION In order to collect additional hydrological and geochemical information to help delineate the extent of chloroform occurrences in the perched groundwater in the vicinity of MW-4, and in accordance with the revised work plan "lnterim Results and Revisions to Work Plan (October 22, 1999)", several borings were completed and temporary groundwater monitoring wells were installed. Installation of the temporary wells was staged. The first boring, TW 4-2, was located approximately 125 feet north (upgradient) of MW-4, and the second boring, TW 4-1, was located approximately 130 leet south (downgradient) of N V-4. The downgradient boring was located at approximately the distance that chloroform dissolved in groundwater would have traveled, had MW4 been tampered with, and chloroform introduced into the well in the early 1990s Installing Temporary Wells TW 4-l and TW 4-2 The temporary wells that were installed and sampled at the site are located approximately as shown in Figure l. The well identification numbers reflect the numbering of the wells on the permit application and do not reflect the order of installation. As indicated above, the first temporary well to be installed (TW 4-2) was located upgradient of MW4 and the second temporary well (TW 4-l) was located downgradient of MW-4, based on historical perched groundwater elevation measurements at the site. These two borings were constructed during the week of November l, using an air-rotary drilling rig. Prior to drilling, a pit was excavated adjacent to each boring and lined with plastic sheeting to capture any liquids brought to the surface during drilling. Ten feet of 8-inch diameter polyvinylchloride (PVC) conductor casing was installed in the upper l0 feet of each boring after drilling to lO-foot depth using an I l- inch tricone bit. Upon installation of the conductor casing, drilling proceeded using a 6t/+-inch diameter tricone bit to a depth of approximately 52t/z feet below land surface 3.1 (bls) using air as a drilling fluid. From this depth to the total depth of each boring, a 2- inch diameter coring bit was used. The borin-es were then reamed to a diameter of 6t/q inches using the tricone bit. Total depth of the upgradient boring (TW 4-2 on Figure l) was approximately 120 feet bls, and of the downgradient boring (TW 4-l on Figure l), approximately I l0 feet bls. A small volume of drilling foam was injected into boring TW 4-l beginning at a depth of approximately 77 feet bls to improve lost circulation. First water was encountered at a depth of greater than 80 feet bls in boring TW 4-l and at a depth of approximately 8l feet bls in boring TW 4-2 Each boring was completed with temporary casing and well screen. Casing and well screen consisted of 4-inch diameter, flush-thread, schedule 40 PVC. The screen was equipped with 0.02 inch factory slots. [n each boring, the lower 40 feet was screened. Boring TW 4-l was screened between approximately 70 and ll0 feet bls, and TW 4-2 between approximately 80 and 120 feet bls. The temporary surface completions consisted of 5-gallon plastic buckets inverted over the well casing, conductor casing, and annular space. A 4-inch (approximate) diameter hole was cut into the base of each bucket to allow the 4-inch well casing to pass through the base of the bucket. Each well casing was capped with a PVC cap. This completion protects each boring from entry of surface debris or precipitation, until a decision is reached whether to abandon the boring or to convert it into a perrnanent perched water monitoring well. Drill cuttings and drill core recovered from each boring were logged by a licensed, professional geologist at intervals of approximately Lt/z feet of drilled depth. Samples of cuttings and core were placed in plastic Ziplock@ bags and core boxes, labeled with the boring location and depth interval, and stored on-site. Lithologic logs of the borings prepared by the geologist are provided in the Appendix. As shown in the lithologic logs, a conglomeratic zone was encountered between depths of approximately 75 feet bls and 95 feet bls in boring TW 4-l and between depths of approximately 77.5 and 97.5 feet bls in boring TW 4-2. ln both cases, these zones were underlain by sands containing finer-grained silt and shale materials. First water was l0 encountered within this zone in boring TW 4-2, and circulation was temporarily lost within this zone in boring TW 4- I . Because the static perched water level in this area is approximately 68 feet bls based on recent water level measurements in MW-4, this suggests that formation materials above this conglomeratic zone have a lower permeability. These observations are consistent with the results of pumping tests conducted at MW-4 during the week of September 27,1999. The contact between the Burro Canyon/Dakota sandstone and the Brushy Basin shale was located at approximately 105 feet bls in both borings. 3.2 Sampling Temporary Wells TW 4-l and TW 4-2 Sampling of the first two temporary wells was conducted during the week of November 8, 1999. Each well was purged of 3 casing volumes or until dry by using a submersible and/or bladder pump and was allowed to recover sufficiently for sample collection. During the purge, temperature, electrical conductivity, and pH were measured. Perched groundwater samples were collected using disposable polyethylene bailers from approximately the center of the water column in each well. Samples were placed in 40 ml VOA vials with no headspace, capped, labeled, and temporarily stored in a cooler at approximately 4"C for shipment to the analytical laboratory for chloroform analysis. Chloroform was detected in groundwater of the upgradient well (2,510 pgll in TW a-2); very little chloroform was detected in groundwater of the downgradient well (5 8 p/L in TW 4-l) as shown in Figure 2. Copies of the analytical reports are provided in the Appendix. Well completion and analytical parameters are provided in Table l. 3.3 Installing Temporary Wells TW 4-3, TW 4-7, and TW 4-8 Based on the results of sampling temporary wells TW4-l and TW 4-2, and the criteria detailed in the revised work plan, temporary well TW 4-3, located upgradient of temporary well TW 4-2 , and temporary wells TW 4-7 and TW 4-8, located cross- ll gradient of well MW-4, were installed at the approximate locations shown in Figure l, during the week of November 15. The presence of a soil pile prevented installation of TW 4-7 at a distance greater than about 30 feet west of MW-4. Drilling procedures were similar to those for temporary wells TW 4- l and TW 4-2, except that borings were drilled entirely with a 6t/q-inch tricone bit, using small volumes of drilling foam to improve circulation in the deeper portions of the borings. As during the previous drilling, lined pits were installed adjacent to the borings to capture any liquids brought to the surface Cuttings brought to the surface during drilling were logged by the professional geologist at approximately ZYz foot intervals and samples of cuttings stored in labeled Ziplock@ bags. Copies of the drilling logs are provided in the Appendix. The lithology of borings TW 4-3 and TW 4-7 was similar to the first two borings drilled, with coarser grained materials between approximately 75 and 95 feet bls underlain by sands containing finer-grained silty and shaly materials. The contact with the Brushy Basin Shale was at approximately 97.5 feet bls in borings TW 4-3 and TW 4- 7, and at approximately 102.5 feet bls in boring TW 4-8. Although the coarser grained zone was evident in borings TW 4-3 and TW 4-7, recovery of water in the borings soon after installation was observed to be much slower than in boring TW 4-8, suggesting a lower permeability for this zone. Boring TW 4-3 was screened between approximately 67 and 97 feet bls, boring TW4-7 between approximately 80 and 120 bls, and boring TW 4-8 between approximately 85 and 125 feet bls, using the same type of well screen and casing as used in the first two temporary wells. The surface completions of these wells were also similar to that of the initial wells. Sampling Temporary Wells TW 4-3, TW 4-7, and TW 4-8 Perched groundwater sampling of wells TW 4-3, TW 4-7, and TW 4-8 followed the same procedures as the sampling of temporary wells TW 4-l and TW 4-2, and was performed during the week of November 29, 1999. As shown in Figure 2 and Table l, 3.4 t2 chloroform was detected at a concentration of 702 p,glL in temporary well TW 4-3 (approximately 700 leet north of MW-4), at a concentration of 256 pgll in temporary well TW 4-7 (approximately 30 leet west of MW-4), but was not detected at a I VdL detection limit in temporary well TW 4-8 (approximately 120 feet east of MW-4). Copies of the laboratory analytical reports are provided in the Appendix. The chloroform results essentially rule out the hypothesis that chloroform in MW-4 originated as a result of well tampering. Because higher concentrations were found upgradient of MW-4, and lower concentrations at downgradient and cross-gradient locations, the results clearly point to an upgradient source, to the north of N/tW-4. Installing Temporary Wells TW 4-5 and TW 4-9 Based on the results of sampling the previously installed temporary wells, and the criteria detailed in the work plan, temporary wells TW 4-5 and TW 4-9 were installed at the approximate locations shown in Figure l, during the week of December 13, 1999. Both wells are located upgradient of temporary well TW 4-3 (and MW-4) based on historical perched water elevations measured at the site. Temporary well TW 4-9 is located approximately 200 feet north of temporary well TW 4-3, and temporary well TW 4-5 approximately 400 feet north of temporary well TW 4-3 Drilling and logging procedures were identical to those used for drilling borings TW 4-3, TW 4-7, and TW 4-8. Copies of lithologic logs for the borings prepared by the professional geologist are provided in the Appendix. Well completion and analytical parameters are provided in Table l. First water was encountered at slightly deeper depths in temporary borings TW 4- 5 and TW 4-9 than in the previous borings, at approximately 92 feet bls in temporary boring TW 4-5, and at approximately 87 feet bls in temporary boring TW 4-9. Lithology was generally similar to previous borings except that in boring TW 4-5 conglomeratic materials were not encountered until a depth of approximately 97 feet bls. The larger 3.5 li depths to frrst water and to the conglomeratic zone are to be expected considering the higher land surface elevations in this area compared with the more downgradient wells. Both borings were drilled to a total depth of approximately 120 feet bls. The contact with the Brushy Basin shale was encountered at a depth of approximately 102 feet bls in boring TW 4-5 and at a depth of approximately 105 feet bls in boring TW 4-9. The casing and screen used to complete the temporary wells was the same as used in previous installations. Both temporary installations were screened in the lower 40 feet, between approximately 80 and 120 feet bls. Surface completions were slightly different than in previous borings, with the 4-inch well casing extending through a 4-inch diameter hole cut in an 8-inch diameter PVC cap covering the 8-inch conductor casing. This provides each temporary installation with additional protection from surface debris or precipitation, until the installations are abandoned or converted to permanent monitoring wells. Sampling Temporary Wells TW 4-5 and TW 4-9 Perched groundwater in temporary wells TW 4-5 and TW 4-9 was sampled during the week of December 20, 1999, using the same procedures employed at previously installed wells. Chloroform was detected at a concentration of 29.5 ltglL in the sample from well TW 4-5, and at a concentration of a 2a p,glL in the sample from well TW 4-9. Copies of the laboratory analytical reports are provided in the Appendix. Well completion and analytical parameters are provided in Table l. 3.6 l{ 40 DELINEATION OF THE EXTENT OF ELEVATED CHLOROFORM CONCENTRATIONS TN PERCFIED GROUNDWATER Based upon the initial groundwater sampling of the temporary wells, on historical perched hydraulic gradients at the site, and other background data from the site, the highest chloroform concentration in the perched groundwater occurs at monitoring well MW-4. The concentrations drop off in the upgradient and downgradient directions, and cross-gradient of MW4 (Figure 2). Concentrations drop off most rapidly in the downgradient direction (to the south) and cross-gradient (to the east and west); while concentrations decrease gradually in the upgradient direction (to the north). To the south, at temporary well TW 4-1, the concentration of chloroform was reported to be 5.8 pglL; to the east, at temporary well TW 4-8, the concentration was reported to be non- detectable (at less than I p/L); and to the west, at temporary well TW 4-7, the concentration was 256 y:,glL (about 30 feet west of monitoring well MW-4) As indicated earlier, the presence of a soil pile prevented installation of TW 4-7 at a distance greater than about 30 feet west of MW-4. Extensive sampling of perched groundwater to the west of MW-4, at numerous monitoring wells located in the footprint of the tailings cells, has indicated non-detectable chloroform (at less than I pgL), with the only exception being a concentration of I 2 VdL detected at upgradient well MW- I . The direction olthe perched groundwater hydraulic gradient at the present time is approximately north to south near MW-4, consistent with past measurements at the site, based on depths to water measured in the temporary wells, and land surface elevations estimated from the site land surface elevation contour map. An accurate estimate of the hydraulic gradient will require more time for water levels in the temporary wells to fully recover, and the casing elevations to be surveyed. The distribution of chloroform in the perched water in the vicinity of MW-4, based on the initial sampling of the temporary wells, is consistent with a past release of chloroform to the perched water over a relatively short period of time at an upgradient location, most likely at the abandoned leach field near the present scale house (Figure 2) l5 Within the area of perched groundwater aflected by chloroform, the highest chloroform concentration continues to be in the immediate vicinity of monitoring well MW-4. The sharp decrease in concentrations between MW-4 and TW 4-l is consistent with movement of groundwater through the coarser-grained, higher permeability zone observed at depths between approximately 70 and 100 feet bls during drilling. The more gradual drop off of concentrations in the upgradient direction is consistent with residual chloroform in the perched water zone left behind by the passing of a high concentration "slug" that is now documented to be near MW-4. lt is likely that chloroform "bled" into surrounding lower permeability materials that are now slowly releasing chloroform into upgradient water that is moving through the system, resulting in reduction of chloroform concentrations in the previously affected materials. 4.1 Recommendations for Additional Work The sampling results to date indicate that elevated chloroform concentrations are confined to a relatively narrow zone, and that elevated concentrations have not moved significantly downgradient of MW-4. To ensure that samples collected from the temporary wells are representative of the perched groundwater, at least one additional round of sampling will be needed after the wells have had more time for recovery and equilibration. The water levels in the temporary wells will be observed to aid in selecting the appropriate time to collect the additional round of samples. It is anticipated that the additional samples could be collected no later than mid-March of 2000. Field measurements will include depth to water, electrical conductivity, temperature, and pH. Chloroform sampling procedures will be the same as described previously. Based on the results of this additional sampling and analysis, and other relevant data collected to date, a decision will be made for each temporary well whether to abandon it or convert it into a permanent monitoring well. Abandonment and/or conver- sion procedures will follow State of Utah Administrative Rules for Water Well Drillers. l6 50 CONCLUSIONS Data collected at the site to date indicate that elevated chloroform concentrations in perched water are confined to a relatively narrow zone, and do not extend significantly downgradient of MW-4 at the present time. The data are also consistent with an upgradient source of chloroform, most likely the abandoned leach field near the scale house, located to the north of MW-4. Subject to the results of the additional work planned (as detailed on Section 4.1 above), which may modify this interpretation, the zone of elevated chloroform concentrations in the perched water is considered to be substantial ly del i neated. t7 o I UEAI',r - - -\J'F '"- **)} r-'r-.' \ I\ l! -)---i-,.=-ii-ia -/-:--a--F \ t( -l\ \* ((\\ .5 oul{r o I (E UJFr<; =C)z J o (E oFa- xo(E (L TL I I i i I ./L/ \\--/)A Ir I ; MW-4 W\t4)Q 8r i61('t.-._z \ ) tw4-'1 1\.,,*rr-.r/ -2 t.) 4 ;'1 NOTE: WELL LOCATIONS APPROXIMATE +,l APPROXIMATE TEMPORARY WELL LOCATIONS AND CHLOROFORM CONCENTRATIONS (ug/l) BASED ON INITIAL SAMPLING \pproved Oare R6laren@ sure 2 TABLE 1 TEMPORARY WELL COMPLETION DATA, FIELD MEASUREMENTS, AND CHLOROFORM ANALYSES t =Depth to water measured on January 3, 2OOO 2 =Only 30 feet of undamaged screen available at time of instaltation TW+1 TW4-2 TW4-3 TW4-5 TW4-7 Tw/t-8 TW4-9 Approximate screened interval (feet bls) 70-1 10 80-120 67-972 80-120 80-120 85-1 25 80-120 Depth to Waterl (feet below measuring wint) 81.1 76.4 65.3 61.4 67.5 75.2 60.5 PH 6.80 7.06 6.72 6.24 6.87 6.97 6.26 Electrical Conductivity (mS/cm) 4063 3581 3655 't787 4056 3402 3049 r emPerarure (o c)13.1 14.4 13.4 14.5 14.4 14.2 13.3 untorororm (pilL)5.8 2510 702 29.5 256 <1 4.2 Note: H :\7 1 800\Well_Completion_Tablel APPENDIx [)EI ti ro Dote //- s-Q'i Georogrs , ?rrr,.,- Driring 9.6 vnnrts Ex)r,,r-.,u:rltcr.:1tl,I- Propertytrl|rcAtsA /il,i{ prolecl /l il.q P*nsc l,No -.---- Sec.- Twp _ Rge Elev. - o z) 5o 7,J )o.o /2,t /to t79 2o.o 22.f 2iD zz.i 9.o 37.;. ,not f or I ro. PnoeE ro. ontLL /i0.(\ FLUIO LEVEL R€MARK 5 hcq {", t-35 r7,5 ttO,0 4?.5 t/ t, ,azi. T o.o 52.f :oD - /) 5i.o boo a;.0 boo 85 tt io,t '7'i o /D0 / ot. lto.o fD. PERCEIITAGE COUPOSITIOX ITIAGE @@7t rot / oti a.- .' /rr,/r;A 4,/,8 ^+ )a .o$0, YRITE NI N IJ N ^l_ .N N Il tu J'l i I 1i,l'i.i($.':hHa:tQQQQ t5l @@qB SAI'IPLE DESCRIPTION KEY DEPTH SCALEScaIAE-F-so' for drirtsamples and 1"-5| for core. SAMPLE TAKEN Mark t.hrough interval whichspecial chip sample is saved, with an rxn markthrough core interval with shad i ng . GRAPHIC LOGscaitlEitiEck symbol forinterval. ALTERATION-TE,[Eion + Dissolutionf 8 oxidation GAMLS ANOMALY (probe) T 3xBG ; .009 TraceI .010 .049 Low Mineral2 .050 .199 High Mineral IRON OXIDE H - HernatiteL LimoniteG Geothite Abundan t Modera te Trace PYRITE-MARCAS ITE@ent. -Habi tE-;-ggregate C Interangular cement,G GlobulesI IndividualM MassiveMT Marcas i t ic tex t.ureO Organic replacement Al terat ionFEE-T TarnishedP Pseudomorphs af ter pyr i t.e METATLIC MINERALS ffiand clarify inremarks and metallic minerals observed. ( Mosr rNis rpbs ttJorrcu2o, etc. ) NON-IIETALLIC MINERALS clari fy inremarks any non-metallicminerals observed. (Barite, Anhydrite, Gypsumr Calcite,etc. ) REACTION -1Og HCL@S StrongM Mode ra t.eW Weak VW Very WeakN None CARBON MATERIAL Amount In percent Tvpe C CoalF Dist.inct woody fragmentsH HumicHY HydrocarbonI Interbedded trashL Lignit ic BRECCIA NOMENCLATURE=--See s@use grainsize, sorting and angularitycolumns for classification ind ,.iescr ipt ion . REMARKS Use to clar!-fy and expand onthe columnar data. ExflrinanythiUg not evident or anr/special characteristics suihas: heavy rninerals, tuffaceou-ness, cvclic sedimentation,fossils, sedimentarv struc-tures, fornation picks, etc. A l'1 T I BRECCIA PIPE I Definate I unsure Peb vc c mt vf ore LITHOLOGYStanAffi-abbreviation for rocktype. COLORffiTocf-Color Chart of wet samples. GRAIN SIZESE[.iAffine Ca rbona tes Pebble Very Coarse Coarse Med ium Fine Very Fine SORTING W Well-sortedl,l Moderately-sortedP Poorly-sortedU Un-sorted ANGULARITY VA Very AngularA Angulara subangularr SubroundedR Rounded WR Weil Rounded CEMENT-MATRIX A Argillaceous C CarbonateD DolomiteS SilicaF Ferrug inous vc c m f vf ' oo* s-o,.$ Dote //'02-1? Geologist I C ^''do./cs 8,4//€) €x"i,t'<'/'1D,c)iD4lole No. /2. Properly d)H/rE UESAnt& Prolect mA'4 " 'Z Unil No. Sec. - Twp. - Rge PAOE - OF - r.o. PaocE r.o. OntLL lZ0,f FLUIO L€Y€L RE TIA RK S ^+ od) o 2.5 5.0 7,f, /ao /2,f, /f, t7,, 20.0 225 Jr.O x'),s 30.0 3z( lsa 37,t 10.o q2.f 45. .17 t- S0o 5z,f 57,5 bzt o7,s 72.f 77; 0zs 8t.s 5n*lt 1/r Qt€ )07s /tz tt7'f- tzi.f f.a PERCET{YAGE CO' QQQQQ@. 'ox llt^oE ttl @@qB{@@ SAMPLE DESCRIPTION KEY DEPTH SCALEScaltfs-F-5o' for drirt samples and 1"-5t for core. SAMPLE TAKEN IRON OXIDE Hema t i te L imon i t.e Geoth i t.e Abundant Mode ra te Trace A M T H L G l,-ryFoush| :5$:'-ifi, through core shad i ng . .049 Low Mineral . t99 High Mineral Ore PYRITE-I'IARCASITE Amount, - In percent.. -Habi tE-:-ggregate C Interangular cementc GlobulesI IndividualM MassiveMT Marcasitic textureO Organic replacement Al tera t, ion F--FresE_T TarnishedP Pseudomorphs af ter pyr i t,e METALLIC MINERALSffiand clarify inremarks and metallic minerals observed. ( I'tos2, N is' Pbs'IJOa' CU2O' etc . ) NON-METALLIC MINERALS clar i fy inremarks any non-metaIlicminerals observed. (Barite, Anhydrite, Gypsum, CitIcite,etc. ) REACTION -1OI HCL@S StrongM ModerateW Weak VW Very WeakN None CARBON MATERIALAryolqt In percent TvpeC CoaIF Distinct woody fragmentsH HumicHY HydrocarbonI Int.erbedded trashL Lignitic BRECCI A NOI'IENCLATURE use grainsize, sorting and angularitycolumns for classification anddescription. REMARKS Use to clari-fy and expand onthe columnar data. Xxplrinanything not evident or an\,,special characteristics suchas: heavy rninerals, tuffaceou-ness, cvcl ic sedimentat ion ,fossils, sedimentarv struc-tures, fornnation picks. etc. interval which sample is an 'xu mark int,erval with GRAPHIC LOG StantiEEI rock symbol forint.erval. ALTERATION=T-[ffiion Dissolut ion Ox idat ion ++ oo I .010 ?.0503 .200 Peb vc c m t vf SORTING BRECCIA PIPE--l-Dffi;te I unsure LITHOLOGY StanaarA-abbreviation for rock type. COLORffiTock-Color Chart of wet samples. GRAIN SIZE ffiAsEone Carbona tes PebbIe Very Coarse Coarse l'led ium Fine Very Fine W }le I l- sor tedl,t Moderately-sortedP PoorIy-sortedU Un-sorted ANGULARITY VA Very AngularA Angulara subangularr SubroundedR Rounded WR WelI Rounded CEMENT-MATRIXA ArgillaceousC CarbonateD DolomiteS Silica vc c m tvf GAMMA ANOMALY (Probe) T 3xBG - .009 Trace Ferrug inous 'oo Dote //-tA-?? Geologrst z,(asCE;-' Dritling Co.4A/rt) f,,-r,i. ,'. . rru?. Hote No ,* -7 Progerly/)HriY mt'rrqr* Prolect AU-q /AA:E L Unit No Sec. _ Twp __ Rge Counly ,n^sfM,) Stote qrAa Locotron Elev. --eaot f or r0. Paor€ r.o.0ntLL FLUIO LEV E L R€NARK S 0 z,) 5'.0 7,f /00 /2f /S.D /7f 2dc) zzi :\. u 4 t,). 3o 3zf 35 ,1) :- t/a0 t/2,f. t/sl0 't 7t' foo 4'z ?- ,i75. 600 (.-z f +: trl- r, .tr q.,., tr , v ---j_--1_1- Ab14^l.t^- (i, b7.i 70 ,2 77 \- go 82. g7r 1a 7z.f- I't.;. loot) t'02i' /of i) / tz., il7t lZa lzl rZl o ct< 1l r C. kQp roLl L'-n n lar4 4rrgr ( LFr Lz PERr:FrrY^ ^- colPostTtolt tuAGC,fr/, rtI. ...\. '; \-,a @@ o,i {d "or *J /*7, o" o:f /,tt ,; /,r)'(*ri PYntre Isl.,r r: :i 3li:l a r r5t i0r QQQQ ,.L+rpJ,\a-.!' SAI"IPLE DESCRI PTION KEY DEPTH SCALE scaie--Is-TT-50' for driIlsamples and 1u-5r for core. SAMPLE TAKEN Mark through interval whichspecial chip sample is saved, wit,h an ,Xn markthrough core inEerval with shad i ng . GRAPHIC LOGFtEnG-rciEck symbol forint,erval. ATTERATION--]--[ffiion + Dissolutionf 8 ox idat ion G,/U!!MA ANOMALY ( probe )T 3xBG .009 TraceI .010 .049 Low Mineral2 .050 .199 High Mineral3 .200 > Ore BRECCIA PIPE|-Dffiere I unsure LITHOLOGY Standard abbreviat.ion for rocktype. COLOR6ffiock-Color Chart of wet, samp Ies . GRAIN SIZEsanffi;e Carbona tes IRON OXIDEE----TErnatTte A AbundantL Limoni te M ModerateG Geothite T Trace PYRITE-MARCAS I TE@ent. -Habi t,E-Tqgregate C Interangular cementG GlobulesI IndividualH MassiveMT Marcasitic textureO Organ ic replacement, Al t.era t ionF-EE= T TarnishedP Pseudomorphs af ter pyr i t,e METALLIC MINERALS ffiand clarify inremarks and met,allic minerals observed. ( Mosr,N is,pbs,uor,ctJ 20, etc. ) NON-METALLIC MINERALSM clarify inremarks any non-metatlicminerals observed. ( earite, Anhydr i te , Gypsum, CErlc i t,e ,etc. ) REACTION -IOt HCL@S StrongM ModerateW Weak VW Very WeakN None CARBON MATERIAL4rngulrt I n percent TvpeC CoaIF Distinct woody fragmentsH HumicHY HydrocarbonI Interbedded trashL Lignitic BRECCIA NOMENCLATURE use grainsize, sorting and angularitycolumns for classification inddescr ipt ion. REMARKS Use to clari-fy and expand on tha an'l rrmno- rlolo rtrh'l - : --gui4. !/rPr*lrranything not evident or an:,special characteristics suchas: heavy rninerals, tuffaceou- ness , cvcl ic sedimentat ion ,fossils, sedimentarv struc- tures , f ornnat ion p icks . etc . Peb vc c m f vf Pebble Very Coarse Coarse Med i um Fine Very Fine SORTING W WeII-sortedM Moderately-sortedP PoorIy-sortedU Un-sorted ANGULARITY VA Very AngularA Angulara subangularr subroundedR Rounded WR Well Rounded CEI,lENT-MATRI XA ArgillaceousC CarbonateD DolomiteS SilicaF perrug inous vc c m fvf Dote J/-/Z:31-- Geologist t C "s tLEotl Drilling Properly /u//fg 4ESA ltltLL Prolecl M Counly 3a o f ua) 51s1s u rAl Loco lron Co. 8,a:tuEJ f vPiu,l,t-t'J. lDc H o le No <)F!' Unil No. Sec. - Twp - Rge Elev" - PA6E - OF ro. PeocE r.o.0etLL FLUIO LEVEL REMARK S /?t.o /27i lSoo /)2.i. /3t. /37, fo. ori t*"o, *i /$d"olt' zt : s.' QQQQ PERCETTAGE COUPOSITIOX ITTAGE @@@@ffi,r rot i-sr )6-r i5r {ffi aot Fr,4li:{:9 t0t DEPTH SCALE scaltisfT-50' for driII samples and 1"-5| for core. SAMPLE TAKEN GRAPHIC LOG S can-GEiEck symbol f orint,erval. ALTERATIONJlffiion Di ssolut ion Ox idat ion I .010 .049 Low Mineral2 .050 .I99 High Mineral3 .200 > ore Mark through interval whichspecial chip sample is saved, with an uX' mark t.hrough core interval with shad i ng . SAI'1PLE DESCRIPTION KEY rock IRON OXIDE H ---He-rna [Tte L LimoniEe G Geothite Abundan t Modera t,e Trace PYRITE-MARCAS ITE@ent. -Habi tE-Tggregate C InEerangular cementG GlobuIesI IndividualM Massive MT Marcasitic text.ureO Organic replacement AlteraEionF-n'".h-- T TarnishedP Pseudomorphs after pyrite METALLIC MINERALS ffiand clarify inremarks and met.allic minerals observed. ( ttos, , N is r pbs ,tJo2,cu2o, e tc . ) NON-METALLIC MINERALS clari fy inremarks any non-metallicminerals observed. ( Barite,Anhydrite, Gypsum, Calcite,etc. ) REACTION -IOT HCL@S StrongM ModerateW Weak VW Very Weak N None CARBON MATERIAL Amount - In percent CoaI Oistinct woody fragments Humic Hydrocarbon Interbedded trashL Lignitic BRECCI A NOI.IENCLATURE See sample manual - use grainsize, sorting and angularitycolumns for classif ication ind descr ipt ion. REMARKS Use to clarify and expand onthe colrrmna-r da-ta" I:.pl-arnanything not evident or an'special characteristics suchas: heavy ruinerals, tuf f aceou-ness, cvcl ic sedimentat ion ,fossils, sedimentarv struc- tures , f orrnat ion p icks , etc . A M T ++ oo BRECCIA PIPE-]-oeEE;te I unsure LITHOLOGY StanAila-abbrev iat ion f or Lype. COLOR GSA Rock-Color Chart of wet samples. GRAIN SIZESanAilone Carbona tes Peb vc c m f vf SORTING PebbIe Very Coarse Coarse Med i um F ine Very Fine W WeII-sorted M Moderat.ely-sortedP Poorly-sortedU Un-sorted ANGULARITY VA Very AngularA Angulara subangularr subroundedR Rounded WR WeIl Rounded CEMENT-MATRI XA ArgillaceousC CarbonateD Dolom i teS SiIicaF Ferrug inous vc c m t vf Tvpe C P H HY I GAI{MA ANOMALY ( PTobe )T 3xBG .009 Trace Dote -//: /2 11 Geologisl / Ca;( Lt /: Drilling Properly u)tit?E nes^ ittLv Prolect ruW-tl l)l;ll5E Z Counly SAo:atn"'l Slote tli-lrt Locotron gs. fiAy'LLs r yftoi.-4:. c/i /r,e Hqt g Unil No. Sec. - Twp No. "/' - - Rge Elev. -^t.e' ael onoe I oF - r.D. PnoaE r 0. ontLL FLUIO L€Y € L REMARK S 0 2.f 5,t) 7i /o.t) l1: ,,.: l) r7d 'ioa 250 z7.f 30,0 32.' 3 37.f 4 D.b 42,5 lio t 7.i 9D.o s2,f 5)0 57.f bo. bz., bi, G7,; 7o o- /2.> 79.o /7r- 82.r 85,0 87,t ?o,D- tu.r- 1i.0 - ?7,i /00.o / D2f llo 11l,f, tt7.f hc-{ & rbor a t,r 4f il"t, rrr C{t ,1n 1-lt tS {'rrr r.1, -o *.td GE COUPOSTT|OX tilAOt @@15t 201 6e ' oo* .,,ro , f ,(fl /"t/*7 ,-ttt0 --1---l -l -. I .-l ., . ' l tn - li orbn lza QQQQq, r.cqlt. ^ €B30t SAMPLE DESCRIPTION KEY DEPTH SCALE ScaTe--Is-Trr-50' f or drill samples and 1u-5, for core. SAMPLE TAKEN Mark through inEerval whichspecial chip sample is saved, wit.h an uxn mark through core interval with shad i ng . GRAPHIC LOGffinffil rocf symbol for i nt.erva I . ALTERATION-l-TEffiion Dissol ut ion Ox idat ion E44!tA ANoMALY ( probe ) eI .010 .049 Loh, Mineral? .050 .199 High Mineral3 .200 ) Ore BRECCIA PIPE--l-Dtrin-ere I unsure LITHOLOGY Standffi-abbreviation for rock type. COLOR MTock-Color Chart of wet samples. GRAIN SIZESndsEne Carbona tes PebbIe Very Coarse Coarse Med ium Fine Very Fine W WeII-sorted l'! Moderately-sortedP PoorIy-sortedU Un-sorted ANGULARITY VA Very AngularA Angulara subangularr SubroundedR Rounded WR Well Rounded CEMENT-MATRI Xa-T@ffIEEous C CarbonateD DolomiteS Silica P YRI TE-I"IARCAS I TE Amount - In percent.. -Habi tE--Tgg reg a teC Int,erangular cementc GlobulesI IndividualM MassiveMT Marcasitic textureO Organic replacement, AI tera t ion F _EE_ T Tarnished P Pseudomorphs after pyrit,e METALLIC MINERALS ffiand clarify inremarks and metallic minerals observed. ( MoS, , N is , Pbs luo2 t cu2o, e t,c . ) NON.METALLIC MINERALSt',tafficlarify inremarks any non-metailicminerals observed. ( Barite, Anhyd r i te , Gypsum , Ca lc i t,e ,etc. ) REACTION -lot HCL@S StrongM ModerateW Weak VW Very Weak N None CARBON MATERIAL Amount In percent Tvpe C CoaIF Distinct woody fragmentsH HumicHY HydrocarbonI Int,erbedded trashL Lignit ic BRECCIA NOMENCLATURE use grainsize, sorting and angularitycolumns for classification anddescri.ption. REMARKS Use to clari-fy and expand onthe eol-umnar data. Xxplatnanything not evident or anr,/special characteristics suchas: heavy lninerals, tuffaceou- ness , cvcl ic sedimentat ion ,fossils, sedimentarv struc-tures, fornation picks. etc. IRON OXIDE Hema t i te L imon i te Geoth i te Abundant Modera t,e Trace A M T H L G ++ oo Peb vc c m t vf SORTING vc c m E vf Ferrug inous gqls -//-/7'4? Geolog rst L. Cast,tct/' Drilling Co. Properly A),//rE tlE54 t'llLProlect W Uni Counly S,qi'fual Srcle ur,-,ttr Locolron a 64 qLL-.': ./VPloRA,-/otr' ,-tl. H o le I No - Sec. - Twp no ri - Rge Elev. - ,nu, / o, r.0. PnocE r 0. 0RtLL FLUIO LEV E L R€MARKS 0 2.i 5.D 7.i to.o /2.i /;0 t 7.f zoo 22.t 25.o 2?., b,o 32., 35o 37,s q0,0 42.i 15,0 . tl7'{ fo.o 52.r tto 57s h0,0 "2';b5.o b7,r 70.o 72.i. 7iD 77.i 80. ?2,;- tt, 62t- ?7r lo0,o /oz, ID /07.t= ilz.5 I t:1 lt7, lt /Z7S /2; 7D, m?tT ro ll rh0rl ll PERCEXTAG€COI'POS,. IUAGE QQQQQQ(. @@qB'ffi68 ' oo* sg ,$'{c PYflITE t. --.t_::l::. I :.:l_-. l: --F,-t-. - t-- t-'- SAMPLE DESCRIPTION KEY DEPTH SCALE Scale is I -50r for drill l "-5 r for core.samples and SAMPLE TAKEN Mark through interval whichspecial chip sample is saved, with an 'Xo mark through core int.erval with shad i ng . GRAPHIC LOGStantiE-fr-Eck symbol forinterval. ALTERATIONl-Tffiion + Dissolut, ionf 3 ox idar ion GAMMA ANOMALY (probe) T 3xBG .009 TraceI .010 .049 Loh, Mineral2 .050 .I99 High Mineral3 .200 ) Ore BRECCIA PIPE--T-DAEGate I unsure LITHOLOGYStana;fr-abbreviation for rocktype. COLORffi-TocX-Color Chart. of wet. samples. GRAIN SIZE SanA-s tone Carbona tes IRON OXIDE H -- Hernat.Ite AL LimoniLe M c Geothite T PYRITE-I'iARCAS I TE Amount - In percent. 'Habi E E---Tggregate C Interangular cementG GlobulesI Ind iv idualM MassiveMT Marcas i t ic t.ex t.ureO Organic replacement Al t,erat ion F--FresE_ T Tarnished P Pseudomorphs after pyrite METALLIC MINERALS ffiand clarify inremarks and metallic minerals observed. ( MoS,NiS rPbS 1UO2tCU2O, etc. ) NON-METALLIC MINERALS clarify inremarks any non-metallicminerals observed. ( Bari te,Anhydrite, Gypsum, CaIcite,etc. ) REACTION -IOT HCL@S StrongM ModerateW Weak VW Very WeakN None CARBON MATERIAL @ogfrt In percent TvpeC CoaIF Distinct woody fragmentsH HumicHY HydrocarbonI Int,erbedded ErashL Lignit ic BRECCIA NOMENCLATURE - See@use grainsize, sorting and angularitycolumns for classif ication inddescr ipt ion. REMARKS Use to clari-fy and expand onthe ccl-,.,;:nar i,aia. Ixpla inanything not evident or an:,special characteristics such as : heavy rnineral s, tuf f aceou-ness, evcl ic sedimentat ion ,fossils, sedimentarv struc-tures, formation picks. etc. Abundan t Mode ra te Trace Peb vc c m t vf PebbIe Very Coarse Coarse Med i um Fine Very Fine SORTING W WelI-sortedM Moderately-sortedP PoorIy-sortedU Un-sorted ANGULARIT{VA Very Arrgul;lrA Angulara subangularr SubroundedR Rouncled IVR WelI Rounded CEMENT-MATRI XA ArgillaceousC CarbonateD Dolom i teS SilicaF Ferrug inous vc c m tvf DEC 23 '99 A=:34l,H :SNtrrONrL LRFNIUr1 (u=F) P.CC - O" - to. raoc€ 7o- ortLL l?n'u Ft ute L6v/fL R€^IARK5 o 2ri ID ?,,t' tt.o /2;J /E '7,1 OAQ DEC a= '99 g3:35Pr4 T5iNFTIONFL URFNJUm (USt) gola /21 5- 14 Gaologist t , CA5€6oLr Progerly k)H//F flda ^tUA Project mH/'4 P4ese 2 CoUntY <aJ 7t1A\)Slol2 lfA t+ o 2,1 l,a 7.i ./a t2,i ,2u 2 22 250 "7t. 32 a?,6 ,0. 5 15. DriUing Co ,nu,t tt Frpl)&fioi, /A)C ?.3/3 Hole No. 4r'd?'oa?fi'os Locolion- Unil No.- Sec.- Tr9. - Rqc. - Elev- -^.$odl ,aeA _ o, _ ED. P'E'C 7 A 9ratll FLUIO LSYJL AEHARK S co>Lor,, 70 74. 7it) 7'r,t. tl I '^c[ colTottTror Di^erAAQG)E: @@@@@@ I ABORATORY ^ NAI YSIS REPORTJtrPA METHOD 8260 Client: Project: Sample ID: Laboratory ID: Matrix: Dilution Factor: C.A.S. # International Uranium (USA) Corp. None MW#4-2 99-34330-r Water 500 TARGET COMPOI.]NDS Date Sampled: Time Sampled: Date Received: Date Analyzed: Date Reported: CONCENTRATION fus/L) 1 l-08-99 l4:23 l l-10-99 1 l-10-99 November ll, 1999 REPORT LIMIT (Fs/L) 67-G3 Chloroform (Trichloromethane)2,510 250 ND - Analyte not detected at staled limit of detection RUNTIME QAALITY ASSUrdNCE REPORT INTERNAL STANDARDS Pentafluoroberzene Fluorobenzene 1,4 - Difluorobenzene Chlorobenzene - d5 1,4 - Dichlorobenzene - d4 ICAL / CCAL AR.EA 1385091 2t38t37 2061084 1444182 556p.22 CONCENTRATION 10.0 10.4 9.74 9.93 PERCENT RRCOVERY 96.6% 98.6Vo 97.2% tot% 95.8% PERCENT RECOVERY 100% 104% 97.4% 99.3% ACCEPTANCE RANGE s0-200% 50-200% 50 -2C0 % 50 - 2A0 Vo 50-200% ACCEPTAIICE RANGE 86-tt\% 88-ll0% 86-Lr5% 80-t20% ARNA 1338477 2108480 2002938 t462ttt 532827 SYSTEM MONITORING COMPOT]NDS Dibromofluoromethane Toluene - d8 4 - Bromofluorobenzene 1,2 - Dichlorobenzene - d4 MFTHOITS USF'D IN THTS ANAI YSIS: EPA 50308, EPA 82608 sec: r:\reports\clienB99\inrernarional_uranium_corp\casper_org\3433G1-3_8260_c_w.xls Extractor / Analyst: I ABORATORY ANAI YSIS REPORT, RPA MF'THOD 8260 Client: Project: Sample ID: Laboratory ID: Matrix: Dilution Factor: C.A,S. # International Uranium (USA) Corp. None MW 4-1 99-34330-2 Water l0 TARGET COMPOT]NDS Date Sampled: Time Sampled: Date Received: Date Analyzed: Date Reported: CONCENTRATION fus/L) I l-09-99 09: 15 I l-10-99 I t-10-99 November ll, 1999 REPORT LIMIT (ps/L) Chloroform (Trichloromethane)5.79 5.0 ND - Analyte not detected at stated limit of detection RUNTIME QUALITY ASSURANCE REPA RT rN T'.RNAT STANDARDS Pentafluorobenz ene Fluorobenzene 1,4 - Difluorobenzene Chlorobenzene - d5 I,4 - Dichlorobenzene - d4 AREA 1309069 2037695 1946186 t400445 517517 ICAL / CCAL AREA 1385091 2t38t37 2061084 r444t82 CONCENTRATION 10.1 l0.l 9.89 9.9t PERCENT RECOVF"RY 94.5% 9s.3% 94.4% 97.0% PERCENT RECOVT'RY tjt% tot% 98.9% 99.1% ACCEPTANCE RANGF 50 - 200 70 50 - 240 7o 50-200% 50-200% 50-200% ACCEPTANCE RANGE 86-tt8% 88 - ttO 70 86-115% 80-120v ssfi2z 93.1% SYSTPM MOMTORTNG COMPOLII{DS Dibromofluoromethane Toluene - d8 4 - Bromofluorobenzene 1,2 - Dichlorobenzene - d4 MFTHONS USRD IN TTilS ANAI YSTS: EPA 5O3OB. EPA 82608 sec: r:\reports\clients99\inrernarional_uranium_corp\casper_org\3433G I -3 8260 c w. xls Extractor / Amlyst: r ARORATORY ANALYSIS REPORT, EpA METHOD 8260 Client: Project: Sample ID: Laboratory ID: Matrix: Dilution Factor: c.A.s. # International Uranium (USA) Corp. None TRIP BLANK 99-34330-3 Water I TARGET COMPOIINDS Date Sampled: Time Sampled: Date Received: Date Analyzed: Date Reported: CONCENTRATION firg/L) 09-2t-99 09:00 I l-10-99 I l-10-99 November 11, 1999 RBPORT LIMIT (ps/L) 67-66-3 Chloroform (Trichloromethane)ND 0.50 ND - Analyte not detected at stated limit of detection RUNTIME QAALITY ASSURANCE REPORT TNTERNAI STANDARDS Pentafluorobenzene Fluorobenzene 1,4 - Difluorobenzene Chlorobenzene - d5 1,4 - Dichlorobenzene - d4 ARF',A r426953 2190.239 2119062 1408839 5t5754 ICAL ICCAL AREA 1385091 2t38137 2061084 r4Mr82 s56f.22 CONCF'NTRATTON 9.94 9.39 9.84 9.85 PERCENT RECOVFRY 103Vo ro2% to3% 97.6% 92.8% PERCENT RECO!'F'RY 99.47o 93.9% 98.4% 98.5% ACCEPTANCE RANGT' 50 -200 70 50-200% 50-200% 50 - 200 70 s0-200% ACCEPTANCE RANGF 86-tt8% 88-ilo% 86-tt5% 80-r20% SYS'I-F',M MOIYITORING COMPOTJNDS Dibromofluoromethane Toluene - d8 4 - Bromofluorobenzene 1,2 - Dichlorobenzene - d4 MF',THODS USF'TI IN TIIIS ANAI,YSIS: EPA 50308, EPA 62608 sec: r:\reports\clients99\international_uranium_corp\casper_org\3433G1-3_E260_c_w.xls Extractor / Analyst: I ARORATORY ANAI YSIS REPORT, T'PA MF'THOD 8260 Client: International Uranium (USA) Corp. Project: None Sample ID: Method Blank Laboratory ID: MBl l l0 Matrix: Water Dilution Factor: I Date Sampled: Time Sampled: Date Received: Date Analyzed: Date Reported: CONCENTRATION N/A N/A N/A 1 l-10-99 November 11, 1999 REPART LIMIT (ps/L)C.A.S. # TARGET COMPOLINIIS (ps/L) 67-66-3 Chloroform (Trichloromethane)ND 0.s0 ND - Analyte not detected at stated limit of detectian RANTIME QAALITY ASSURANCE REPORT TNTERNAI STANDARDS Pentafluorobenzene Fluorobenzene I,4 - Difluorobenzene Chlorobenzene - d5 1,4 - Dichlorobenzene - d4 AREA 1314661 2066298 1968827 1399798 5 19845 ICAL / CCAL AREA 1385091 2t38137 206r084 1444t82 55ffi22 CONCENTRATION 9.86 r0.l 9.87 9.87 PERCENT RFCOVERY 94.9% 96.6% 9s5% 96.9% 93.5% PERCENT REICOVT'RY 98.6% tjr% 98.7Vo 98.7% ACCEPTANCE RANGF" 50-200% 50-240% 50-200% s0-200% 50-200% ACCEPTANCE RANGE 86-tr8% 88-110% 86-rt5% 80 - 120 o/o SYSTEM MOIYTTORING COMPOTINTIS Dibromofluoromethane Toluene - d8 4 - Bromofluorobenzene 1,2 - Dichlorobenzene - d4 MF'THODS USED TN T}{IS ANAI.YSIS: EPA 50308, EPA 82608 sec: r:\reports\clients99\international_uranium_corp\casper_org\3433Gt-3_8260_c_w.xls Extractor / Analyst: Page 1 of 1 r ARORATORY ANALYSIS REPORT, EpA MFTHOD 8260 Volatile Organic Compounds Client: Project: Sample ID: Laboratory ID: Matrix: Dilution Factor: International Uranium (USA) Corp. None WMMW 4-3 99-34718-L Water 100 Date Sampled: Time Sampled: Date Received: Date Analyzed: Date Reported: Lt-29-99 I l:15 t2-0t-99 12-06-99 December 7, 1999 C.A.S, # TARGET COMPOTJNDS CONCENTRATION tus/L) REPORT LIMIT (ps/L) 67{63 Chloroform (Trichloromethane)702 50.0 ND - Analyte not detected al stated limit of detectian RANTIME QUALITY ASSUR4.|VCE REaORT rNTF'.RNAT STANT}ARDS Pentafluorobenz ene Fluorobenzene 1,4 - Difluorobenzene Chlorobenzene - d5 1,4 - Dichlorobenzene - d4 ARF',4 r253884 2root79 1806787 rt9t577 42ffi92 ICAL / CCAL AREA r236227 2143817 184801 I 1243554 433162 PERCENT RF'.COVT'RY ror% 98.0% 97.8% 95.8% 98.4% PERCENT Rr'.covERv 893% r00% 98.OVo 99.5% ACCEPTANCE RANGE 50-200% 50-200% 50 -2m % 50-200% 50-200% ACCEPTAIYCE RANGF' 86-tt8% 88-110% 86-tts% 80-r20% SYSTEM MOMTORING COMPOUNNS Dibromofluoromethane Toluene - d8 4 - Bromofluorobenzene 1,2 - Dichlorobenzene - d4 CONCENTRATION 8.93 10.0 9.80 9.95 METHODS USFD IN THTS ANAT YSTS: EPA 5O3OB, EPA 82608 sec: r:\reports\clients99\internatiorul_uranium_corp\casper_org\34718-l-3 E260 chloroform w.xls Analyst: Volatile Organic Compounds Client: Project: Sample ID: Laboratory ID: Matrix: Dilution Factor: lnternational Uranium (USA) Corp. None WMMW 4-7 99-34718-2 Water 100 Date Sampled: Time Sampled: Date Received: Date Analyzed: Date Reported: tt-29-99 13:40 tz-ot-99 t2-06-99 December 7, 1999 C.A.S. # TARGET COMPOTJIYDS CONCENTRATION 0rS/L) REPORT LIMIT (ps/L) 67{63 Chloroform (Trichloromethane)256 ND - Analyte not detected at stoted limit of detectian RANTIME QAALITY ASSARANCE REPORT 50.0 1236227 2143817 184801 I t243554 433162 CONClrNTRATION 8.83 l0.l 9.75 9.90 103% 98.6Vo 98.s% 96.4% 98.170 PERCENT RNCOVERY 88.3% tlt% 97.5% 99.0% ACCEPTANCE RANGF" 50 -200 70 50-200% 50 -200 70 50 - 200 70 50-200% ACCEPTANCE RANGE 86-tr8% 88-tto% 86 - tt5 V. 80-r20% ICAL / CCAL PERCENT ART'A RECOVERYINTNRNAI STANDARDS Pentafluoroberzene Fluorobenzene 1,4 - Difluorobenzene Chlorobenzene - d5 1,4 - Dichlorobenzene - d4 ARF'A t272417 2114092 18r9369 1t98472 424791 SYSTF'M MOIYTTORING C OMPOT]NDS Dibromofluoromethane Toluene - d8 4 - Bromofluorobenzene 1,2 - Dichlorobenzene - d4 MF'.TTIOI}S USED IN THIS ANAI,YSIS: EPA 5O3OB, EPA 82608 sec: r:\repors\clien699\inrernarional_uranium_corp\casper_org\34718-l-3_E260 chloroform w.xls Analyst: r ABORATORY ANAr YSIS REPORT, EpA METHOD 8260 Volatile Organic Compounds Client; Project: Sample ID: Laboratory ID: Matrix: Dilution Factor: lnternational Uranium (USA) Corp. None WMMW 4-8 99-347t8-3 Water 2 Date Sampled: Time Sampled: Date Received: Date Analyzed: Date Reported: tr-29-99 l4:15 t2-0t-99 12-06-99 December 7, 1999 C.A.S. # TARGET COMPOT]hIDS CANCENTRATION ftrg/L) REPORT LIMIT (ps/L) 6',7-6-3 Chloroform (Trichloromethane)1.0ND ND - Analyte not detected at stated limit of detectian RUNTIME ,ALITY ASSU RANCE REPORT TNTTFRNAL STANDARDS Pentafluorobenzene Fluorobenzene 1,4 - Difluorobenzene Chlorobenzene - d5 1,4 - Dichlorobenzene - d4 ARRA 1262865 207t869 t79t926 r187297 419853 TCAL / CCAL AREA r236227 2143817 184801 I 12435s4 433162 CONCF'-NTRATION 8.85 10.l 9.61 9.97 PERCE}IT RT"COVERY to2% 96.6% 97.0% 95.5% 96.9% PERCENT RFCOVERY 88.5% tot% 96.t% 99.7% ACCEPTANCE RANGF', 50-200% 50-200% 50-200% 50-200% s0-200% ACCEPTANCE RANGE 86-rt8% 88-110% 86-rt5% 80-r20% SYSTNM MOMTORING COMPOLINNS Dibromofluoromethane Toluene - d8 4 - Bromofluorobenzene 1,2 - Dichlorobenzene - d4 METTIOI}S USED TN TTIIS ANAI-YSIS: EPA 5O3OB, EPA 82608 sec: r:\reports\clients99\international_uranium_corp\casper_org\34718-l-3_8260_chloroform_w.xls Analyst: r AROR^TORY ANALYSIS REPORT, EPA MF'THOD 8260 QC RESUr TS - MATRTX SPIKE (MS)*MATruX SPTKF DUPT rCATT',. (MSn) Client: Sample Set: l.aboratory ID: Matrix: l{l!r, #lFfi r,4 {,i,iSIH,lltP,,i{:Bff ,::t:,,,,: ;,,::::t:,:::::,:;: International Uranium (USA) Corp. 99-347 1 8- I through 99-347 1 8-3 99-34703 S Water Date Sampled: Date Received: Date Analyzed: Date Reponed: % 96.8Vo 91.5% 92.9Vo X).9Vo 93.9% 1t-29-99 I 2-0 1 -99 t2-06-99 December 7, 1999 Pentaf'luorobenzene Fluorobenzene ICAL / CCAL ARFA t236227 2t43817 ililiilili:iii:iii:::l::l::iii:::i:::::ii:::i:iiiiiii:iilij:]iiii:iitli:]ii SPIKED SAMPLE ARFA 1202800 t970720 1731857 I 137815 40/359 ,],:,:,:,:,:,:,:,:,:,:,:,:,:,:,:,t,:'t,:::,:,:,],:':,::,,:,j,,,,:)1:,,:,t,ll:,:,,,,11 : : : : : : : : : : : : : : : : : : : : : : :: :: : :: | :::: :::::::::: :::::: j::: :: : ]:: : : : : : : : : : : : : : : : : : : : : : |: i : SPIKE DUPLICATE ARF'-A I 196336 1962279 l7 16938 I l 30268 406598 ACCEPTANCE RANGF. 50 -2W % 50 -200 % 50-200% 50-200% 50-2NVo ACCEIrTANCE R.ANGF' 86 - t|r Vo 88-lr0% 86-trs% 80-120% % 97.3Vo 91.97o 93.7 7o 9l.5Vo 93.47o 1,4 - Dit'luorobenzene 1848011 Chlorobenzene - d5 1243554 1,4 - Dichlorobenzene-d4 433162 SYSTE M MON ITORIN G CO M POA N DS Dibromofluoromethane Toluene - d8 4 - Bromofluorobenzene 1.2 - Dichlorobenzene-d4 SPIKF,II SAMPI F NNSUI TS Chloroform (Trichloromethane) sprr# {ru+r rc .: rn .tl*aPrim,,rlrsur,.ts SPIKE DUP CONCFNITRATION Chloroform(Trichloromet 8.67 , .,'jii,::,,:: -:..:::..'::::'..' ., ... ....,.,....,, 1 ." , MATRIX SPIKF: O MATRIY SPIKF IIUPLICATE: O Report Approved By: SPIKEDSAMPLE PERCENT SPIKEDUPLICATE PERCENT CONCF'NTRATION RECOVFRY CONCENTRATION RF'-COVF'RY 8.81 88.170 8.'t1 87.7% l0.l l0l7o l0.l l0l7o e.6e 96.9% 9.71 97.1% 9.88 98.8Vo 9.19 97.9Vo SPIKED SAMPLE ORJG. CONC. SPIKE AMOI.INT CONCENTRATION (tgtt.\ * QIEIL\ 9.04 0.70 10.0 ORIG. CONC. SPIKE Qtgtr t UglL) 0.70 10.0 PERCENT ACCEFTANCE RECOYERY RANGE 83.4% 80 - t20 % :i*:::fiofi ,:ffi:,inauadditrtiffi eomectiou PERCENT RPD RECOVT'RY RPTI I II\,IITS 79.7% 4.4% tO Eo Analyst: Reviewed: of 2 Matrix Spike resuls are outside of established QC Limis of I Matrix Spike Duplicate results are outside of established QC Limia sec: r:\reports\clients99\internatiornl_uranium_corp\casper_org\3471E-l-3_8260_chloroform_w.xls LABORATORY ANAI YSIS REPORT. EPA METHOD 8250 Volatile Organic Compounds Client: Project: Sample ID: Laboratory ID: Matrix: Dilution Factor: International Uranium (USA) Corp. None Method Blank MBl206 Water I Date Sampled: Time Sampled: Date Received: Date Analyzed: Date Reported: N/A N/A N/A t2-06-99 December 7, 1999 C.A.S. # TARGET COMPOTINDS CONCENTMTION tus/L) REPORT LIMIT (pe/L) 67-66-3 Chloroform (Trichloromethane)1.0ND ND - Analyte not detected at stated limit of detection RUNTIME SUALITY ASSURAIYCE REPORT TNTF"RNAI STANDARDS Pentafluorobenzene Fluorobenzene 1,4 - Difluorobenzene Chlorobenzene - d5 1,4 - Dichlorobenzene - d4 ARF',A t13t249 L9t425t 1640887 1087l4l 382573 TCAL / CCAL ARF'A r236227 2t43817 184801 I 1243554 433162 CONCENTRATION 9.1I r0.2 9.67 9.92 PERCENT RECOVT'.RY 91.5% 89.3% 88.8% 87.4% 88.3% PERCENT RECOVT'.RY 9t.t% t02% 96.7% 99.2% ACCEPTANCE RANGT'- 50-200% 50 - 200 70 50-200% s0-200% 50-240% ACCEPTANCE RANGF' 86-tr8% 88-lr0% 86-tts% 80 - l2O 7o SYSTF',M MOMTORING COMPOT]NTIS Dibromofluoromethane Toluene - d8 4 - Bromofluorobenzene 1.2 - Dichlorobenzene - d4 METHOT}S USED IN THIS ANAI YSIS: EPA 50308, EPA 82608 sec: r:\reports\clients99\international_uranium_corp\casper_org\3471E-l-3_826,0_chloroform_w.xls Analyst:yw I AROR^TORY ANAI YSIS RF'PORT, F'PA MF'THON 8T60 Volatile Organic Compounds Client: Project: Sample ID: Laboratory ID: Matrix: Dilution Factor: International Uranium (USA) Corp. None MW 4-5 99-35177-2 Water 2 Date Sampled: Time Sampled: Date Received: Date Analyzed: Date Reported: t2-20-99 08:00 L2-22-99 t2-22-99 December 28. 1999 CONCENTMTION REPORT LIMIT (ps/L) Chloroform (Trichloromethane)1.0 ND - Analyte not detected at stated limit of detection RANTIME QUALITY ASSURAIICE REPORT TNTF'RNAI STANDARNS Pentafluorobenz ene Fluorobenzene 1,4 - Difluorobenzene Chlorobenzene - d5 1,4 - Dichlorobenzene - d4 ARF'.A t323t0t t530240 t493049 978970 4156/,6 TCAL / CCAL AREA r293422 1491700 t438496 913905 403629 PERCENT RNCOVER\. 102% 103% tM% to1% to3% PERCEI{T RF'COVHRY l0l7o 99.4% 96.5% 99.8% ACCEPTANCE RANGE 50-200% s0 -2w % 50-200% so-200% 50-200% ACCEPTAI\CE RANGF 86-rt&% 88-110% 86-tts% 80-120% SVSTFM MONITORING COMPOT]NDS Dibromofluoromethane Toluene - d8 4 - Bromofluorobenzene 1,2 - Dichlorobenzene - d4 CONCENTRATION l0.l 9.94 9.6s 9.98 MF'THODS USI:D TN THIS ANALYSIS: EPA 50308, EPA 82608 sec: r:\reports\clien699\international_uranium_corp\casper_org\35177-l-2 8260 c w.xls Analyst:yw t 4 r ARORATORY ANAI \rSrS REPORTT FpA MFTHOn 9260 Volatile Organic Compounds Client: Project: Sample ID: Laboratory ID: Matrix: Dilution Factor: International Uranium (USA) Corp. None MW 4-9 99-35177-l Water 2 Date Sampled: Time Sampled: Date Received: Date Analyzed: Date Reported: L2-20-99 07:40 t2-22-99 t2-22-99 December 28, 1999 C.A.S. # TARGET COMPOT]NDS CONCENTRANON fue/L) REPART LILIIT (ps/L) 67{63 Chloroform (Trichloromethane)4.24 ND - Analyte not detected at staled limit of detectian RUNTIME SAALITY ASSURANCE REPORT 1.0 TNTF.RNAT . STANT}ARI}S Pentafluorobenzene Fluorobenzene 1,4 - Difluorobenzene Chlorobenzene - d5 1,4 - Dichlorobenzene - d4 AREA 1346809 t542480 1 521726 r003824 4274ffi ICAL / CCAL AREA 1293422 149t700 t438496 913905 403629 CONCENTRATTON 9.92 9.84 9.83 10.3 PERCENT RF'COVNRY lO47o 1037o 106% rt0% t06% PERCENT RNCOVRRY 99.2% 98.47o 98.3% 1037o ACCEPIANCE RANGE 50-200% 50-200% s0 -2C0 % 50-200% s0 -2C0 % ACCEPTANCE RANGF 86-tt8% 88-ll0% 86-tts% 80-120% SYSTEM MONITORING COMPOTJI\DS Dibromofluoromethane Toluene - d8 4 - Bromofluorobenzene 1,2 - Dichlorobenzene - d4 MF'THODS USED IN THIS ANAI,YSIS: EPA 50308, EPA 82608 sec: r:\reports\clients99\intermtional_uranium_corp\casper_org\35177-l-2_E26O-c-w.xls Analyst: t I r ARORATORY ANAr YSrS RFPORT, FpA MFTHOp 9.60 Volatile Organic Compounds Client: Project: Sample ID: Laboratory ID: Matrix: Dilution Factor: International Uranium (USA) Corp. None Method Blank MBt222 Water 1 Date Sampled: Time Sampled: Date Received: Date Analyzed: Date Reported: N/A N/A N/A 12-22-99 December 28, 1999 C.A.S. # TARGET COMPOT]NDS CONCENTRATION fus/L) REPORT LIMIT (Fs/L) 6'7-6-3 Chloroform (Trichloromethane)ND ND - Analyte not detected at stued limit of detection RUNTTME 0AALITY ASSARANCE REPORT 1.0 NTFRNAT. STANTIARNS Pentafluoroberzene Fluorobenzene 1,4 - Difluorobenzene Chlorobenzene - d5 1,4 - Dichlorobenzene - d4 AREA r30t219 1459572 t414540 893839 377458 ICAL / CCAL ARF'A 1293422 1491700 1438496 913905 403629 CONCENTRATTON 9.16 9.86 9.83 9.87 PERCENT RECOIT'RY l0l7o 97.8Vo 98.3% 97.87o 93.570 PERCENT RECOVFRY 9t.6% 98.6% 98.3% 98.',7% ACCEPTANCE RANGF 50-200% 50-200% 50-200% 50-200% 50-200% ACCEPTANCE RANGT'- 86 - 118 70 88-110% 86-tr5% 80 - 120 vo SYSTEM MONITORTNG COMPOTJNDS Dibromofluoromethane Toluene - d8 4 - Bromofluorobenzene 1,2 - Dichlorobenzene - d4 METHOTIS US[:D TN THIS ANAT.YSIS: EPA 5O3OB, EPA 82608 Analyst:yw l I I ABORATORY ANALYSIS REPORT, EPA METHOD 8260 QC RESIII.TS - MATRIX SPIKF (MS). MATRIX SPIKE DUPT.ICATR O,ISD) Client: Sample Set: Laboratory ID: Matrix: hil Ar,-{rl, ilV.rrni t,t.,,:rr International Uranium (USA) Corp. 99-35 177 - | through 99-3 5 17 7 -2 99-35131 S Water SPTKED SAMPLE AREA t4t3073 1591354 r564601 r051674 473552 ,,:,,:.:::,':,.',:,,,,,,:,:.:t:t:,1,,',,',:,1,,,1:i:i:i:i:i:ii:iliilllliljliijlllj SPIKE DUPLICATE AREA r39s227 1586093 1563690 t053275 463663 PERCENT RE.COVERY 99.$Vo Date Sampled: Date Received: Date Analyzed: Date Reported: t2-20-99 12-22-99 12-22-99 December 28. 1999 Pentafluorobenzene ICAL / CCAL ARF'.A 1293422 Fluorobenzene 1491700 1,4 - Difluorobenzene 1438496 Chlorobenzene - d5 913905 1,4 - Dichlorobenzene-d4 401629 SYSTF M MO N ITORI NG CO M POU N NS D ibromot'luoromethane Toluene - d8 4 - Bromofluorobenzene 1,2 - Dichlorobenzene-d4 SPIKF,D SAMPT T. NESULTS Chloroform (Trichloromethane) SPIKE DUP CONC['NTRATTON Chloroform (Trichloromet 9.90 SPIKED SAMPLE PERCENT SPIKE DT]PLICATE PERCENT CONCF'NTRATTON RF'COYERY CONCFNTRATION RF'-COVFRY e.'76 97.6% e.77 911% 10.I t0t% e.e5 99.5% l0.l lUt% 9.91 99j% 9.9s 99.5% 10.3 103Vo SPIKED SAMPLE ORIG. CONC. SPIKE AMOUNT CoNCFNTRATTON QrgL\ * (!gL\ 9.48 0.00 10.0 i:till,l]:il::::iili:::::: % 109% 107% l09Vo tL5% ttldLLI /O ::j:l:i:li:::::i:::i::]::::;:]:tli:li::l: % 1087o 1067o t09% tt5% tt5% ACCETTANCE RANGF' 50-200% 50 -200 % 50-200% 50-200% 50-2007 ACCEPTANCE RANGtr' 86-18% 88-lr0% 86-15% 80-t20% *: PERCENT ACCEPTANCE RF'COVERY RANGE 94.8Vo 80 - t20 % l:,inffi del,dilution correction RPD r IMITS t0% MATIUX SPIKF: MATRIX SPIKE DUPI ICATF: Report Approved By: 0 0 of 2 Matrix Spike resuls "." "r"ro" li"."iiiri"J qc'il;r;' of I Matrix Spike Duplicate results are outside of established QC Limis RPD 4.4% Analyst: Reviewed: sec: r:\reports\clients99\imernational_uranium_corp\casper_org\35177-l-2_8260_c_w.xls INrrnNauoNAL UneNtuu (use) ConponATIoN Independence Plaza, Suite 950 ' 1050 Seventeenth Street 'Denver, CO 80265 . 303 628 7798 (main) . 303 389 4125 (fax) August 4,2000 BY FACSIMILE AND OVERNIGHT EXPRESS Mr. Don A. Ostler Executive Secretary Utah Water Quality Board State of Utah Department of Environmental Quality Division of Water Quality 288 North 1460 West P.O. Box 144870 Salt Lake City, Utah 84114-4870 Re: White Mesa Uranium Mill; August 23,1999 Notice of Violation and Groundwater Corrective Action Order; Docket No. UGW20-01: Request for Additional Information Dear Mr. Ostler: Thank you for your letter of July 3, 2000, which we received on July 12, 2000 under cover of a July 10, 2000 letter from Bill Sinclair, in which you requested certain additional information relating to the above-captioned matter. In your letter you ask that we provide to you a schedule for collection and submittal of the information requested in the letter within 30 days of receipt of the letter. We are currently working with our independent experts in preparing a response to your information requests, and have scheduled a meeting with Bill Sinclair and his staff,, as well as staff from your Department, on August 15, 2000 to discuss our preliminary responses in order to ensure that all requests will be answered to your satisfaction. We intend to develop a schedule for the finalization of our responses based on the outcome of that meeting. .... "i ".'; , ,/. ",/' .i / "k-i6 ; i AU0 j,u; ' q+.'n.' .r, ;,. Mr. Don A. Ostler August 4, 2000 Page2 of2 I hope this meets with your satisfaction. If you have any questions or concerns with the foregoing, please contact me at (303) 389-4130. ice President and General Counsel Loren Morton, DRC Bill Sinclair, DRC Dianne Nielson, DEQ Fred Nelson, Utah Attorney General David Bird, Parsons, Behle & Latimer Bill von Till, NRC - Washingon D.C. Ron Hochstein Michelle Rehmann JUL-03-00 A?i4 Fromr IttlTERt,lATiOiIAL |JRANIUlti 30338941 FAXNO: PFIONENO: ZE o T-lEg P 0l/10 Job-788 tffi,ffi,?fll! ConrouTroN Iu&padcncePlaza, Suite 950 , 1050 Severt6eflth Strwt , Denver, CO 80265 , 303 dZB 77gg (main) , 301 3gg 4l2S (f$0 FACSIMILE TBANSMITTAL William Sinslair, Director (E0l) s334oe7 UDEQ Division ofRsdiation Control (8ol) s36-425s David C. Frydenlund DATEr lune 30, 2000 International Uranium Corporation FAGE I oF: l0 IF AI,L PACES ARE NoT RECEIVED, PLEASE CALL; ShaTon C*TToII PHoNENo: (303) 389413s ,10 \ ue \t 't iMP0RTAI.IT/CONFIDENTIAL: FAX messagcs sre serclimEc rec€ivd of equipment faiturE or humarr crror' This Communicstion is intended soteiy for tlre addressee shou,n'abova. ffcssfi iltlfty-our offrce irnnrodistsly a1.any.of the lsleptrcne or Fax numbos ehowr sbove if you w no{ he ddressee or sqreone responrible for delivaing it to rhc 64dreEsee, We r€tai 4U rlBhtr antlprivilegas€s to this colttmunioation end prohibit uty disecnrination, distribution or copyirrg by or to urlyo* other than thc address€lour ofiice will ansnge for its return by the united ststes postsl servicc or by commercial cerier to us 07;44 From; INTERI{ATIOtlAL URAIIIU}rl TurRRruerrr)NO Unrrmruru (usn) ConrroR,trloru 0 o T-008 P.02/1 0 Job-7BB ln.h,tn,r'r(lr,!rr.(' Plrrz;r, Srrite 950 . 1050 Scvetttrcnth litt'ect r Denver. CO ft()96.5 r 303 S28 7708 (maiu) I 303 389 4195 (fu) June 30, 2000 VIA FACSIMILE Don A Osthr, P.E. Executlvo Secretary Utah Wateredrry Bosrd P.O, Box 16690 288 North 1460 West Salt Lrkc City,IJT 8,+ll4-0690 Re: Interim Report and Revised Work Plan for Chloroform Invostigation Utah DEQ Notioe of Violatiou and Grourdwator Correctivc Actiou Order, [IDEQ Dockct No. UGQ,?0"01, Iszued on August 23, 1999 DeqrMr. Ostler: Tha purpost of this letter is to provide Internationel Uranium (USA) Corporution's ('[USA's"] interim rsport and Revised Work Plan for the complotion of the investigation into chloroform cotrturfitrtion baing conductcd by IUSA undcr thc rcfcrcneed Ordcr. Aocording to thc Rovisod $chedule for Contamination Investigation Submittals, submitted to you on Ostob€r 22, 1999, a, final rcport (the 'B.eport"), was due May 26, 2000, However, drilling rosulis during May suggo$ted a possible need t0 reevaluate the nerf phases of the Investigatiou therefora on May 23, 2000IUSA requosted an extension to that filing date, with the intent thst this interim report, whioh inolud* I rcvircd $oopc of work, would bc provided to UDEQ by today's date, BACKGROIIND A eurnmary of work relqted to the chloroform investigation $ the tffhite Mesa Mill site tkough Iatu*ry 2O0O, i* provided in tlre docunrent entitlsd t'Progr*rn for D*lirrc*ion of Elcvrtod Ctrloroform in Perched Groundwater at lyfW4" (the "Delineation Rcpofi") submitted lanuary 28, 2000. At that time, an initial round of perched groundwrter rmples had been collected ttom esch temporaty well within a few weeks of installation. A second round of perched groundwster samples was subsquently collected from thetemporary wells during the week of March 13, 2000, uring tho flffio $rothods end anolytioal procedureo employod in the initial aernpling. JUL-0t-00 07,44 From;lltlTERl.lATl0NAL URANIUlll 30338911 2 T-3tS P.03/l 0 Job-700 Mr. Don A. 0stler Iune 30, 200O Prge 2 of4 Eased on the initial round of sampling of the temporary wells, the downgradient extent of the elevgted chlnrnform concantrations in perchecl groundwater wf,s oonridered, at the time, to he cubeteffiially delineated. At IW4-1, the rcmporary well instdled spproximatdy 130 feet downgredient ofltIlil-d bascd on historicat perched groundwater elevations measured at the site, the concentrations of chloroform exceeding 5,000 IgiL f,t IvI\t-4 dropped to less thar 6 ttg/L at TW4-1. However, during the second round of wnpling in Morch of 2000, ptrloroform was rletected at i conccntration of l,l00 yglt. * TW4-1. Concentratinnr at other temporlry perched monitoring welle hsd either remeined rbout the senre or hed increesed by no more thgn e fsdor of 2.5, md thc concontr*tion dctcctod at TW4-8, locatod oross gradiont to l'fW.4, had incrcascd from <[ to 21.8 pg& (Tsble t). The inueeses dctected rt moet of the temporary wellg are not zurprising, because the first round of slnplos was collccttd within a frw wrcks of wcll instaliation, and romc dilution of the groutrdwatw in tlro vicinity of the wells is expected as a result of wpll installation, Tlris dilution may result in lower concentrations unlilthe wells have had sufficient time to reoover, Becsuee the wolls hrd 3 to 4 months to recover by the time the second round of samples was collected, the rciltlf.n ofthe secnnd round ere considered reJrresentative. The increase in ooncentration at TW+ I by more than an order of magnitude betrween the initial and eecond round of sarupling wu much groatcr than would bt oxpcclcd to rcsult ftom insufficient reoovcry timo. A corrfrmatory s+mple wae therefore collectod on April 10, 2000, to ensure that the second round sample result was not eompromised by laborttory rnrlytical error or by possible cross-contaminetion cturing sompling. Chloroform wss detected at 1,490 pgll in the confirmfltory sample - a rralue similar to, but highar than, thc conccntration of 1,100 pgil dotoctod in thc socond round sample. Because TW4-l is located downgradient of wells affected by elevated chloroform concentrfltion$ it is likely th* thc dctcc'tcd inoreasor in pcrohed groundwator chlorqform soncpntrations at TW4-1 q,ro rpol. The increasing concentrations suggest that the groundweter zone affhsted by elevated chloroform conoentntions may heve migrated downgradient into the vicinity of T\[4-1. ADDITIONAL DATA AND PNELIMINARY CONCLUSTONS As a result of the data collected during the delineation progrem, IUSA determined thst the aree to the south of TW4-l required firrther deiineation. In order to accornplish this, as well as provide r mefll* to epntinue monitoring thc downgradicnt cdgc of thc zonc, trro additionsl temporary puched monitoring walls were installed to the south (downgradient) of TW4-l during the week of May 8. These wells were located approximately 250 and 500 feet south of TW4-1. Drilling and well instellation procedures were the same &s used previously at the site. Sampling of these wells was delayed until Jurp 6, 2000 due to lack of water in the wells. Based on tho June 6 urnplc rcrultq ec shorvn on Tablo t, no chlorofomr was dstoetcd et e 0.05 pglL roporting limit in eithm of these two new wells, designated TW4-6 and TW4-4, while the drloroform lsvol in T,W4- l, ttom a sample collected on the same date, was l,)30 pg/L. 0o JUL*03-00 07;48 Frqm; INTERilA Mr. Don A Ostlu June 30, 2000 Prge 3 of4 T I ONAL o URAN I UM 30338941 zio T-t0E P.04/l 0 Job-788 Besed on thesc additional datq as well a$ the previous data collected to date in this Investigatiorl thc following preliminEry conclueione *re made: t) The perched zono chtoroform plume is adequately delineated based on tho nondetectable chloroform levels at th6 two new temporary wells downgradient ofTW4-I 3) The cufient number and placernent of temporary perched zone wells is edequete for enntinuerl monitoring of ohlorofonn in tho pcrchod youndwater, Furthermore, becnuse the plume has juu reached T1il4.1, cuntinued monituring of Elrlurulirrrn r]ousfntr'stiotl$ at the new downgradient wells will allow a$ flccurate estimate of the rste of plume movement when it rercher the nerrert of these urells. 3) The average permerbiliry of thc perched zone is relatively low downgradlent of T1V4-I as ludlcarcd by: a) The smalt thickness ofthe conglomeratic zone near the baso of the perched zone logged in tho two new horingf,, f,,nd b) The low rate of watrr level recovsry in the now wclls, a) Thc lowcr av$ragc permoability of the perched zone downgrdient of TW4't will oontrol the evdrqge rate of perched groundwater flow tltough the systenr, implying thnt the rate is relatively low, and the rate of plurne movement will be diminished. This rcduction in permeabtllty downgradient of TW4-t (and MW*l), which suggests permoability valuEr morp consistont with those dofllmented throughout the Mll site, is also consistent with the rclmivcly rrpid riso in wser tevcls measured in IW\il-{ ovcr thc la$t scvcrfl ycafr, It is pnscihle that this rise in water levels at IvfW-4 may be attributable to increased upgradient $ourc€s ofweter $uoh as inigatiort andlor seepage r'rom the wildlife ponds. A low rate of groundwater llow implies that continurd monitoring of the plume is appropriate in the ner term and that other aotivities may not be necessary u this time, JUL*03-00 [f;40 From:lNTERllATl0llAL URANIU}r| Mr. Don A. Ostler Iune 30, 2000 Page 4 of4 In light of theso r€cont r$ults, and consistent with there prelinrinery corrcluEions, IUSA is rubmitting thig revised inteilm r6p6rt to tlDEQ, together with the #tnched revised $cope ofwork rnd timetable to report on the rcsults ofthis Investigation, At this time, we expect that we should bo able to deliver uhe Report within 30 ro 45 days, Vico President rnd General Counsel DCF:stdc Attachments cc: DianneNielson, DEQ Williem tr. Sinctalr, DEQ Lsren Morton, DRC David Cunningham, DEQ, $E District Heslth Department Deve Arrioti, DEQ, SE Dirtrict Health Dep*rtunent Frcd Nclson, Utah Asst. Attorney General Terry Brown, U.S. EPA Region VIII Milt t{milroring, U,S. EPA Reeion VUI Phillip Ting, U,S. NRC, Wrshinglon, D.C. Billvon Till, U.S. NRC, Washington, D.C. CharlesHackney, tJ.S. NRC, Reginn IV MichelleR. Rehmann Ron F. Hoclutoin Wiltiam N. Derl Ronald E. Berg e0a36941 e0 T-3!9 P.05/l 0 Joh-I80 o JUL-03-00 07:16 From:l||TERllATl0tlAL URAltlIU}i4 3033891t 26o T-38$ P.0E/l0 Joh-788 TABLE 1 lllcd 01r00 Dillled 05100 n,a-r TWa.e TW4-t TWa{TW+7 TW4{TWI-0 T1A''J TWa{ Apptorlmrta rcrcrncd lntcrvd (frrt b/r) 70-l 10 80-120 67-971 80.120 80-120 as-12s 80.120 72-112 57-97 D.Fft to Wrtcr' (!.d b.low m.rruring Polntl 81,1 7A,4 65,3 61.4 67,5 75,2 60.5 94.53 a7.?3 Chloroform tusfl-l (lrt rnmpllnsl 5.8 2,510 702 29,5 258 <1 4,2 N8 NS Chlorotorm (ttorl] l2nd mmollnul 1,100 s,5?0 834 {9 616 21.8 1"88 N8 NS Ghlorpiorm {uolLl (Srd remullnol 1,490 Ng NS NS NS NS NS N8 NS Chlors,form lllsrLl (lth mmpllml 1,640 N6 NE NB NB NB Ng q0.50 <0.50 Not :'t;o,,pt la wilu rme'di,tad on January 9, rddd z:ON 3orc.l olundampCrctton rvrf,rih ailina olinstalafrln A/S=aorffiopl.d 3-O.pn to l/,aIU nel6will on Juna 6, 2000 JUL-03-00 07r47 From: INTERNATI0NAL URAI'{IUt,|o 30338911e8 T-369 F.0l/10 Job-788a REVISED SCHEDULE FOR CONTAI{INATION II.IlfE S TIOATION S TIEMITTALS Revision 2 UDEQ Docket No. UCQ-20-01/August 23, 1999 Subrnitted by Internationnl Uranium (U $A) Corporarion Submined Septomber 20, 1909 Revised October 22, 1999 Revissd June 30, 20M l. CHARACTERIUATION OF CHLOROFORM POLLUTION IDENTIFIED in lr4\tr-4 The charasterizttion of chlorofonn pollution identified in lvfW-4 will include descriptionu of: (l) The amount, fornL concentration, toxieity, environmental fate and transport, and other signifi cant charflcteristics of chloroform; (2) The areal and vertical extent of the chloroform coflcentration and distribution; and (3) The extent to which chloroform has migrated and is expected to migrate. Characterizetion of chloroform pollution that hes been deteeted at I4W-4 will bo accompliehed in the following ph&ses, with each being modified and/or guided by data guhered in the preceding phase: Phffig, [: Chloroform Souree Assessment ReportlCopies to hIRC, UDEQ, and U.S EPA, Interview, hiotorioat roscarch, and ficld work is largoly complctc. Thcrc dua will be compited into 4 report, with the assistance of a technical expert. Milegtonc: Scptembcr 30 Strtur: Rcport submitted Scptcrnbor 29* 1999 Phege,fl: Work Plan for Evaluetion of Representativeness of N,fltr-4 for Chloroform Detection/Copies to I.IRC, UDEQ, and U.S. EPA. Preliminary plans have been developed, and willbe incorporated into a field Work Plan. Milertone: September t4 Strtus: Submitted Septembcr rS, 1999 iUL-03-00 07t47 From:iNTERNATI0tlAL URAltllU[,l 303 38911 T-36$ P.08/10 Jsb-788 Ehe$.3s: trmplomontntion of Work Plen for Evaluation of Repreeontetivonsss of 1!tW-4 for Chloroform Detection. The Work Plan will be implemented as soon ns possible upon its completion to Ensure that necessary data tbr subsequent phases are collected promptly and, hopefully, before mflior weather ohanges which might afrect the schedule. Milertones Seplembcr 28 Strtur: Implemontcd $eptcmber 28 P,hase 2h: Report on Representativ€nes$ of lvf\[-4 for Chloroform Detection copied to NAC, LIDEQ, end U,S. EFA. Data will be evaluated by indeperrdent geochemicel, hydrolory, *nd fate and transport experts, and they will assist IUSA in preparatlon of a rcPon, Milertoncr Novcmbs { Bcvircd Milutonel Subrnit interim results and Reviced Phnce 2 Worh PIrn on Octobcr 22 Phase 3: Resampling ofMlV4 IWilcrtonc: Octobcr 29 Bcvired fftivity to conduct sampling ss por Bevised Pharo l rvork prrn Revised Milprtonc: Implement Reviced Phffie 2 work Plnn Novcmber l Ehag$.4: (Dependent upon results of Phase 3) (a) Devclopment of monitonng progriln for chloroform il IdW-4 or (b) Development of progr*m for the delineation of a potontial chloroform plume in the area of ldw-4, and copies of plan for such progrem to NRC, IJDEQ, ond U.S. EPA. Indepondent technioal sxperts wilt aseist IUSA in either the devotopmont of a monitoring progmm for ehloroform at Nd\il-4 or development of a progrEm for delineation of a potential chloroform plume. Milectonc: Novcmbcr 26 Bcvirod Milestoncl Jruuary 2E Phflqe 5i @ependent upil results of Phase 4) (a) Implementation of program for monitoring chloroform Bt }d\il-4 or (b) Implementetion of program for the deiineation of a potential chloroform plume in the area of U[\Y*4. If a program for monitoring chloroform at lv{lil-4 is indicatod, based on results of Phase 4, then it will be implernented within the flrst quartor of the year 2000, I(, however, s progrem for delineetion of a potential chloroform plume ir indicated by Phase 4 results, then weather may affect IUSAts abitity to implement the field program at the same proposed date ae for (a), and therefore r later date ir indiceted for the cornpletion of (b). Itlilatonc for (a): Jrnurry 10, 2000 Milstonc for (h): March 6,2000 Bwired Milostone for (r): February 14,2000 Duc to ddection of chloroform in TW4-1, two rdditionrl wellr wero drillcd during thc wcok of Mey I, 1000 to complrtr ddincltion. Aftrr rEcor'pnr, thcrc wrlk provided wnter for srmpling rnd rnrlyeis. Resultr end preliminrry conclurions wert trrnsmitted to UIIEQ on June 30,2000, EEo JUL-03-80 07:48 Fromr INTERi{ATI0iIAL URAI|IU[,l O 30338911e8 T-3Eg P.0$/10 Joh-I88o L ACITITY CI{AMCTERIZATION The Faeility Characterization will includo descriptione ot (l) Location of Chloroform present and media of occurrenoe; (Z) tlydrogeologlc condltlons underlying and upgradlenr and downgradlenr of rhp frcility; (3) Surfaco wstsre in the aree; (4) Climatologic and meteorologic conditions in the erea of the facility; (5) Type, location and description of possible sources of chloroform at the facility; and (6) Oroundwster withdrewals, pumpage rotes, end usage within a 2-mile radius. 3, DATAREPORT The Data Report will include: (l) Datl packages including quality B*eursnce and quality control reports; (2) A description of the data used in the report; and (3) A description ofany dnta gaps encountered, how those gaps affect the analysis and eny plene (ifwerrnnted) to nU thoee gaps. 4, FINAL REPORT A rerport including sharaoterieation of chloroform pollution identified in IvfW-4, facility charasterizstioU and a data report will be s€nt to NRC, UDEQ, and U.S. EPA on or beforp Mrrch 20, 2000 if program (a), described in Phase 5 is followed, or Mry 26, 2000 if program (b) described in Phase 5 is followed. This date will allow for inolusion of data *om Phase 5 of the characterization of chloroform pollution, ifrequired, Bcvired report date for progrflm (a): April 24,2000, Thir rsriloctone wm rwired m pcr IUC letter to UDEQ on May 23, 2000. The finel report will bc rubmitted no Irtcr tbrn Augurt 14,2000, JUL-03-00 07:48 Fromr lllTERl,lAT URAII I |J[4 3033894r T-369 P.10/10 Job-IBB s, EVALUATToN OF EIOIIT OTI-IER PARAMETERS DISCUSSED IN trDEQ TRA}ISMITTAL LETTER OF AUGUST 23, 1999 In the Uansmittal letter accompanying the Notice of Violation Erd Groundwater Conoctive Aption Order dated August 23, 1999, the Director of tho Division of Radi$ion Control reque$ed thd ruSA include certain porEmeters, which are generally refened to in an accomplnyrng Issue Paper as "somo or rll (sic) which may be due to background Eoundunter conditions at the site", in the Oroundwater Contaminant Investigation mandated by the attached order. The August 23 letter deecribes the parameters of interest, which are not part of the Notice of Violation and Groundwater Corrective Action Ordcr, as followr: -'In addition to the chloroform discovered in IUC monitoring well lvf!#'4, four (+) Gic) other pollutants have been identified in wells sampled which Eppenr to be in exceEs of State herlth baged groundwater standards, including: Gross alph* []vfW-2, I\,IW-3, ]d\il-4, IvfW-I2, MW-14, Iv[\il-I5, ]vf!V-17, lv[1il-18, and ]v{W-191, nitrato-l-nitritc (l'0 [Ii4W4j, msnginese ltvf\il-I, Mw"], I\4w4, Iv{\[-ll, ]r{\il-14, }d\il-15, }r,I\il-I7, and }vf!v-l8J, sElenium [N{\il-IsJ, and total uranium [MW-r, h4W-4, }vilil-I4, [,f\il-15, I\d\il-l7, N,t\il- 18, rnd IWItr-191, Threo (3) other potential indicators of groundwater pollution wEre also found in concentrations below State health based groundwater standards, ammonia, iron" and tetrahydrofuran," Although the lotter describes B[oups of 'nfour" and "three" parametors, IUSA understands thqt UDEQ r6qu6sts review of e rotel ofebb! (not eeven) psrnmeters, thoss being: 0ross alpha Nitraternitrite (N) Manganese Sctcnium Total uraniurn Ammonia Iron Totrahydrofuran A repgrt on the evaltution ofthe above eight parameters will be sent to NRC, UDEQ, and U,S, EPA on or before Novcmber 30, [999. This wnc completed on Novernbor t9, 1999. I Ol'lALI ?6o 4 INrenNnrro*o{ UnnNruu (use) ConponeuoN lndependence Plaza, Suite 950 . 1050 Seventeenth Street . Denver, CO 80265 . 303 628 7798 (main) r 303 389 al25 (fax) November 9,2001 VIA OVERNIGHT MAIL Mr. William J. Sinclair Director, Division of Radiation Control Utah Department of Environmental Quality P.O. Box 144850 168 North 1950 West Salt Lake City, UT 84114-4850 Re: Update report regarding IUSA's October 4, 200 report on investigation of elevated Chloroform Concentrations in Perched Groundwater at the White Mesa Uranium Mill. Utah Division of Water Quality Notice of Violation and Groundwater Corrective Action Order; Docket No. UGW20-01. Dear Mr. Sinclair: This transmits International Uranium (USA) Corporation's ("IUSA's") Contaminant Investigation report entitled Update to Report -"Investigation of Elevated Chloroform Concentrations in Perched Groundwater at the White Mesa Uranium Mill near Blandine" Utah". This report is an update to the Contaminant Investigation Report (the "CIR") that IUSA submitted to the Utah Department of Environmental Quality ("UDEQ") on October 4,2000 (IUSA and HGC, 2000), and addresses questions raised by UDEQ's letter to IUSA in response to the CIR dated June 7, 2001. Items addressed in this report are also pursuant to a meeting between IUSA and UDEQ on October 5,2001. Please note that this report includes a recommendation for installing two additional temporary wells, for the purpose of additional delineation of the areas of the perched zone containing chloroform, and in the locations discussed during the meeting with UDEQ. IUSA would like to install these two additional wells during the week of - Mr. William J. Sinclair November 9, 2001 Page2 of2 December 3, 2001, so that the wells can be sarnpled during the first qrafiet 2002 sampling event. Should you have any guestions or comments concerning this or any other part of this report, please contact mg at 303.389.4131. Sincerely, Michelle R. Rehmann Environmental Manager cclatt: Larry Mize, UDEQ Division of Water Qualrty Loren Morton, UDEQ Division of Radiation Control RonF. Hochstein,IUSA David C. Frydenlund, IUSA Harold R. Roberts,IUSA Richard E. Bartlett, IUSA Ron E. Berg,IUSA Stewart J. Smith, Hydro Geo Chem S:\STAFFlMRR\Chloroformlnvestigation\commentsonGClRreport\tansmittalLtupddechloroformlnvestigationReport UPDATE TO REPORT(IhIVESTIGATION OF' ELEVATED CHLOROFORM CONCENTRATIONS IN PERCHED GROT]NDWATER AT THE WHITE MESA URANIUM MILL NEAR BLANDING, UTAH'' Prepared By: INTERNATIONAL URANIUM (USA) CORPORATION Independen ce Plaza, Suite 950 I 050 Seventeenth Street Denver, CO 80265 and IIYDRO GEO CHEM, INCORPORATED 51 West Wetmore Street, Suite l0l Tucson, A285705 November 9,2001 TABLE OF CONTENTS 1. INTRODUCTTON AND SUMMARY.............. ..............3 2, DNAPL ISSUES ........5 2.1 Vertical Profiling of Existing Perched We11s........ ....................5 2.2 Potential for DNAPL to Exist in the Vadose 2one......... ..........6 2.3 Evaluation of the Potential for DNAPL to Exist in the Saturated 2one.......................7 2.3.1 Detected Concentrations with Respect to Chloroform So1ubi1ity...........................7 2.3.2 Comparison of MW4 to Nearby Temporary Wells ......... 10 2.3.3 Vertical Profiling of MW-4 .......... 11 2.4 Brushy Basin Contact .......12 3. ADDITIONAL PLUME DELINEATION .................... 15 3.1 Analytical Results from Temporary Wells............... .............. 15 3.2 Hydraulic Gradient in the Vicinity of MW-4 ....... 16 3.3 Need for Additional Wells to Delineate Chloroform in the Perched Zone.................17 3.4 Temporal Trends in Chloroform Concentrations and Relationship to Nitrate ........... 18 4. COORDTNATES REQUESTED BY UDEQ ................20 5. PERCHED ZONE PERMEABILITY .........27 5.1 Permeability Distribution of the Perched Zone ......... .............21 5.2 Conglomeratic Zone Near MW-4 ............... ..........21 ONGOING GROLINDWATER MONITORING AND REPORTING............... ...........,.... 23 ADDITIONAL GROTINDWATER MONITORING PARAMETERS ......,.....25 7.1 Dichloromethane Analytical Results From Split Sampling........... ...........25 7.2 Direct Measurement of Redox Conditions in the FieId......... ...................26 7.3 Feasibility of Enhancing Reductive Dechlorination In-Situ...... ...............26 8. REFERENCES ......... .....................28 6.. 7. 1 2 J 4 5 6 7 8 9 F'IGURES Chloroform Analytical Results (trg\L) for Temporary Perched Wells Contour Map of Top of Brushy Basin, White Mesa Uranium Mill Site Water Level Contour Map December, 2000, White Mesa Uranium Mill Site Water Level Contour Map September - October, 2001 White Mesa Uranium Mill Site Proposed Locations of New Temporary Perched Wells Nitrate Analytical Results (mg\L) for Temporary Perched Wells Scatterplot of Chloroforrn vs. Nitrate, Temporary Perched Wells and MW-4 Perched Zone Permeability Based on Pump and Slug Tests, and Constant Head Packer Tests, White Mesa Uraniurn Mill Approximate Intervals of Conglomeratic Sandstone Logged in Temporary Well Borings A B C D E APPENDICES Vertical Profile Sampling Bailer Use of Soil Gas to Detect DNAPL Coordinates Requested by UDEQ Analytical Results U.S.G.S Manual Chapter 6.5 and Hydrolab Parameter Specifications 1. INTRODUCTION AND SUMMARY International Uranium (USA) Corporation ("IUSA") submiued a Contaminant Investigation Report entitled "Investigation of Elevated Chloroform Concentrations in Perched Groundwater at the White Mesa Uranium Mill near Blanding, Utah" (the "CIR") to the Utah Department of Environmental Quality ("UDEQ') on October 4, 2000 (IUSA and HGC, 2000). This report has been prepared as an update to the CIR, and to address questions raised by UDEQ's letter to IUSA dated June 7, 2001 in response to the CIR. Items addressed in this report are also pursuant to a meeting between IUSA and UDEQ on October 5, 2001. This report discusses analytical results to date, trends in chloroform concentrations in the vadose or perched water zones at the site, and additional delineation of the areas of the perched zone containing chloroform. This report also discusses the potential for degradation of chloroform in the perched water and the feasibility of enhancing in-situ reductive dechlorination of chloroform. Important results of the investigation to date are that: 1. The data do not indicate that chloroform DNAPL exists at the site either in the vadose zone or the perched water zone. The data do not indicate that a continuing chloroform source exists. Data are consistent with the abandoned scale house leach field as the sotuce for the MW4 chloroform, and for the chloroform to have entered the perched water as a "slug" over a relatively short period of time (1-2 years). Additional wells are needed to delineate the chloroform plume to the west and northwest of MW-4. 2) 3) 4) S:\STAFAMRR\Chloroformlnvestigation\UpdateChloroformlnvestigationReport I l-9-01 5) Rapid degradation of chloroform in the perched water is unlikely without enhancement. Additional delineation of the chloroform in the perched water is proposed to be accomplished by adding two new temporary wells to the west and northwest of MW-4, and by vertical profile sampling in selected wells, to define the chloroform concentrations in three dimensions. Additional characterization of groundwater gradients in the northeast portion of the site, which have been changing and may affect chloroform migration in the perched water, will be accomplished by phased installation of piezometers. In addition, IUSA will continue to perform quarterly monitoring of chloroform and will transmit such data to the UDEQ in accordance with a schedule provided herein. SlsTAFI\MRR\Chloroformlnvestigation\UpdateChloroformlnvestigationReport I l_9_01 2.DNAPL ISSUES UDEQ has expressed concern that dense, non-aqueous phase liquid (DNAPL) chloroform may exist in the vadose and perched water zones in the vicinity of MW-4 and the abandoned scale house leach field. This section uses existing soil gas and groundwater data from the site to demonstrate that DNAPL does not exist in either the vadose or perched water zones at the site, and that no evidence for continuing chlorofofln source exists. 2.1 Vertical Profiting of Existing Perched Wells Initial sampling to evaluate the potential for stratification of chloroform concentrations was conducted in the fall of 1999, and reported in the CIR. As indicated in the CIR, multi-depth sampling of MW4 was conducted dwing the week of September 27, 1999. Two samples were collected, one from the top of the water column (approximately 70-73 feet bls) and one from the base of the water column (approximately ll7-120 feet bls). The shallow sample was collected first. Both samples were collected using disposable teflon bailers. Samples were collected without purging the well, to prevent disturbance of the water column- Samples were collected in 40 ml VOA vials, with no headspace, capped, labeled, and stored in a cooler with blue ice at 4oC for shipment to the offsite analytical laboratory (Energy Laboratories, Casper, Wyoming). Chloroforn was detected in the shallow sample at a concentration of 6,200 pglL, and in the deep sample at a concentration of 5,820 ltglL. Because concentrations did not increase with depth, the presence of DNAPL (i.e., free chloroform product) was not indicated in MW-4. S:\STAFflMRR\Chloroformlnvestigation\UpdateChloroformlnvestigationReport I l_9-01 As UDEQ has requested further evaluation of the vertical distribution of chloroform concentrations, a Sampling Plan, with the Data Quality Objective of evaluating the potential for stratification of chloroform concentrations in the Chloroform Investigation wells, will be developed. This Sampling Plan will include the following key features: . Procedure to collect samples from discrete depths using disposable bailers with double check values Requirements for field records Methodology for evaluation of results Evaluation of the feasibility of testing experimental USGS procedure using passive diffusion bags in at least one well, to provide comparison to conventional method results . This sampling will take place in the first quarter of 2002 Appendix A contains manufacturer specifications for disposable bailer designed to collect samples from discrete intervals in groundwater. 2.2 Potential for DNAPL to Exist in the Vadose Zone Soil gas sampling is a useful means to detect the presence of pure phase volatile organic compounds (VOC) that reside in the vadose zone. This applies to chloroform, which has a vapor pressure of 160 mm Hg. As discussed in Appendix B, soil gas ooncentrations in excess of llYo of a VOC pure phase saturated vapor pressure are indicative of the presence of the pure phase. For chloroform, soil gas concentrations in excess of 100,000 pgll would be indicative of pure phase. The possibility that residual pure phase chloroform exists as a DNAPL within the vadose 6SlsTAFRMRR\Chloroformlnvestigation\UpdateChloroformlnvestigationReport I l-9-01 2.3 zone beneath the abandoned scale house leach field is not supported by the trace level soil gas chloroform concentrations measured in the vicinity in 1999 (<1 pg/L). The measured concentrations are indicative of low concentrations of chloroform dissolved in vadose pore waters. Furthermore, the possibility that DNAPL exists within the perched zone is not supported by the relatively low chloroform concentrations detected at wells TW4-5 and TW4-9, which are the temporary wells located closest to the leach field (Figure l). Evaluation of the Potential for DNAPL to Exist in the Saturated Zone The possibility that chloroform DNAPL may exist in the perched zone beneath the abandoned scale house leach field and/or may traveled downgradient along the Brushy Basin contact toward MW{ is remote. This possibility is not supported by data collected from the temporary perched wells at the site or from MW-4. Perched water chloroform concentrations exceeding lYo of the solubility of chloroform (8,000-10,000 mg/l) would have to exist to indicate the presence of DNAPL (Cohen and Mercer, 1993). The highest groundwater concentrations detected at the site (<7 mglL) are more than 3 orders of magnitude lower than the solubility of chloroform. While the solubility of chloroform in the perched water may be slightly depressed by the presence of trace concentrations of carbon tetrachloride (500 mglL dissolved in the pure chloroform used in the ore assay lab as suggested in UDEQ's June 7, 2001 letter to IUSA) and by the presence of inorganic solutes in the perched water, as detailed below, it can be demonstrated that this depression is not significant. S1sTAFF\MRR\Chloroformlnvestigation\UpdateChloroformlnvestigationReport I l-9-01 The effect of 500 mg/l carbon tetrachloride contaminant on the solubility of chloroform used at the site would be negligible, potentially lowering the solubility by less than 0.05yo, because the mole fraction of carbon tetrachloride in the mixture would be less than 0.05%. The presence of significant concentrations of other solvents in perched groundwater near MW-4, which could potentially lower the solubility of chloroform, is not supported by past analytical results. Furthermore, as detailed below, the impact of salinity on chloroform solubility, which will depend on the concentrations of salts in the water, is also not significant. The solubility of a neutral organic compound such as chloroform in water containing dissolved inorganic salts is generally lowered as the concentration of the inorganic salts increases (Schwarzenbach,lgg3; Garrels and Christ, 1965; and Harned and Owen, 1950). The depression of solubility is generally not significant, unless the concentration of the salts is greater than about 0.1 molar (M). At MW-4, the dominant anion is sulfate, which averages approximately 2,000 mg/I, or 0.021M, based on data presented in TITAN, 1994. The average concentrations of chloride, sodium, calcium, and potassium ions averags approximately 0.0013M, 0.014M, 0.010M, and 0.0003M, respectively, at MW-4. These concentrations are too low to have a significant effect on the solubility of chloroform in the perched water, at most reducing solubility by a few percent. Even in seawater, where salt concentrations are orders of magnitude higher than in the perched water, the depression of solubility of neutral organic compounds is typically less than a factor of 2 (Schwarzenbach, 1993). Schwarzenbach, 1993, provides a methodology for estimating the impact of salinity on the solubility of neutral organic compounds. Salting constants (K') for various types of salts are provided, with the highest that of sodium sulfate (K, : 0.55). Using the formula provided in Schwarzenbach, S:\STAFRMRR\Chloroformlnvestigation\UpdateChloroformlnvestigationReport I l-9-01 Cfl*n - 19-K;lsattl, gsat where Ciil,,,, : solubility of neutral organic compound in salty water, K, : salting constant, C:' : solubility of neutral organic compound in pure water, and assuming that Kr:0.55, and [salt]: [SonJ = 0.021M, the solubility of chloroform in perched water is calculated as 0.975 Cf' or 97.5%o of the solubility in pure water, a reduction in solubility of less than3Yo. The actual reduction in solubility is likely to be lower for chloroform, however, because the salting-out effect is lower for polar organic compounds (Schwarzenbach, 1993). Because chloroform is somewhat polar, owing to it's asymmetry, which accounts for it's high solubility (10 times that of carbon tetrachloride, which is non-polar), the actual depression of chloroform solubility in perched water is likely to be less than 2.5%o. Because the estimated reduction in chloroform solubility is so small, and is nearly an order of magnitude lower than typical laboratory analytical error of + 20o , the effect of perched water salinity on the solubility of chloroform can be ignored. Furthermore, the assumption that DNAPL is not indicated unless dissolved groundwater concentrations greater than l%o of the solubility of the pure product are detected (Cohen and Mercer, 1993) is considered reliable because the lowering of solubility by other factors such as the presence of other solvents, is taken into account in this assumption. S:\STAFAMRR\Chloroformlnvestigation\UpdateChloroformlnvestigationReport I l-9-01 2.3.2 Comparison of MW-4 to Nearby Temporary Wells Chloroform concentrations in the past have been higher at MW-4 in comparison with nearby temporary wells, although these differences have been slight in recent sampling events. The differences do not indicate DNAPL that may be present at MW-4 or that these differences result from well construction factors, possibilities suggested in UDEQ's June 7, 2001 letter. Recently measured chloroform concentrations at MW-4 are not significantly higher than at nearby temporary wells. Concentrations at TW4-l and TW4-2, located immediately downgradient and upgradient, respectively, of MW-4, are within approximately 5oh and l2o/o, respectively, of concentrations at MW-4 as of the June 2001 sampling (Figwe 1). Concentralions at MW-4 are within 8Yo of concentrations at TW4-2 in the September, 2001 sampling. (Concentrations between MW4 and TW4-l cannot be compared for the September, 2001 sampling because the TW4-1 sample vial broke in transit to the laboratory and no analysis was performed). These results suggest that differences in concentrations ire more likely the result of recovery than well construction factors or the potential presence of DNAPL at MW-4 as suggested by UDEQ. Differences in concentration between MW-4 and nearby temporary wells would be expected to be much larger if DNAPL were present neat MW-4. The slightly lower concentrations at the nearby temporary wells, and the reduction in the differences in nearby temporary wells relative to MW-4 over time are consistent with recovery of temporary wells from the air rotary drilling process (as discussed in Section 3). In other words, the reason that MW-4 has had the highest concentrations is more likely due to its age rather than construction. Furthermore, it is highly unlikely that chloroform DNAPL could have migrated more than 1,200 feet from the source area (the abandoned scale house leach freld) to the vicinity of MW-4. The Burro Canyon/Brushy Basin contact is an erosional surface with numerous small- S:\STAFAMRR\Chloroformlnvestigation\UpdateChlorofqrmlnvestigationReport I l-9-01 10 scale irregularities that would prevent movement of any DNAPL very far from the source area. Even if small scale inegularities did not prevent the movement, the farther the DNAPL moved from the source area, the more spread out it would become, exposing more surface area to the groundwater and making it easier to dissolve. Also, it can be demonstrated that more than sufficient volume of water has passed beneath the abandoned leach field source area to have dissolved all of the chloroform potentially disposed there. Assuming the following conditions, Width of abandoned leach field: Average saturated thickness : Average hydraulic gradient : Average hydraulic conductivity : 20 feet 30 feet (conservative) 0.016 ff/ft I ff/day Approximately 520,000 gallons of perched water have passed beneath the leach field over the past 20 years. (The average hydraulic conductivity was based on the results of a pump test at MW-4 in 1999, which yielded a transmissivity of 38.4 ft2 lday. Dividing this by the saturated thickness of the perched zone at that time, approximately 40 feet based on a depth to the Brushy Basin of 108 feel bls depicted in the geophysical log of MW-4, yields an average hydraulic conductivity of I foot/day.) Assuming a solubility of chloroform of 8,000 mgll, or 5 x l0-3 gallon chloroform/gallon water, sufficient perched water has flowed beneath the source area to have dissolved more than l0 times the amount potentially used in the ore assay laboratory. 2.3.3 Vertical Profiline of MW-4 As stated above under 2.1, previous vertical profile sampling of MW-4 in 1999 did not indicate that concentrations increased with depth, as would be expected if DNAPL existed near MW-4. STsTAFRMRR\Chloroformlnvestigation\UpdateChloroformlnvestigationReport I l_9_01 l1 2.4 Samples were collected from depths of approximately 7l feet bls (approximately 2 feet below the top of the water column) and from near the base of the well (approximately I 18 feet bls) using a disposable bailer. The shallow sample was collected first, then the deep sample. If chloroform DNAPL were present at the base of the well, concentrations would be expected to be significantly higher there than at the top of the water column. Instead, sampling results showed no significant difference in concentration between the deep and shallow samples. Chloroform was detected at a concentration of 6,200 pg/L in the shallow sample and a concentration of 5820 5,280 pgll in the deep sample. More rigorous vertical profile sampling of MW-4 is proposed to characteize the vertical distribution of chloroform concentrations at the site as discussed above in Section 2.1. Brushy Basin Contact UDEQ has expressed concern that the Brushy Basin contact at MW-4 may be depressed and may harbor a pool of chloroform DNAPL. This concern is based on a reported contact depth of 125 ft below land surface (bls) at MW-4. However, the Brushy Basin contact at MW4 is considered to be at a depth of 108 ft bls based on lithologic logs of nearby temporary wells TW4- |,TW4-2,TW4-7 and TW4-8, and on the geophysical log for MW-4 provided in TITAN, 1994. The geophysical log for MW-4 provided in TITAN, 1994, depicts the Burro Canyon/Brushy Basin contact at 108 ft bls. This depth is consistent with the lithologic logs of nearby temporary perched monitoring wells TW4-l,TW4-2,TW4-7, and TW-4-8, which depict the contact at approximately 103 ft, 105 ft, 98 ft, and 105 ft bls, respectively. This would place the base of the screened interval of MW-4, which extends to ll2 ft bls, approximately 4 feet below the contact. S:\STAFRMRR\Chloroformlnvestigation\UpdateChloroformlnvestigationReport I l-9-01 t2 The 125 foot depth that has been previously reported for the Brushy Basin at MW4 is apparently based on the well completion diagram provided in TITAN, 1994, which depicts a contact between "sandstone" and "claystone" at 125 ft bls. However, no additional lithologic information is provided to indicate whether the "sandstone" is continuous from the surface to 125 ft bls, or whether the "sandstone" is a lens or layer encountered within the Brushy Basin. The formation names are also not designated on the diagram' During drilling of temporary wells TW4-3 and TW4-7, the borings were extended into the Brushy Basin to characterize the lithology of the uppermost portion of the formation. Thin layers or lenses of sandstone and/or conglomeratic sandstone were found at a depth of approximately 108-l 12 ft bls in TW4-7, l0 feet below the Brushy Basin contact, and depths of approximately 125-132 ft bls in TW4-3, 25 feet below the contact. These lenses or layers in the Brushy Basin were separated from the base of the Burro Canyon by shales, siltstones and claystones. These low permeability materials would hydraulically isolate the lenses or layers of sandy/conglomeratic material within the Brushy Basin from the Burro Canyon. With regard to the geophysical log of MW-4, there is a clear response in the natural gamma at 108 ft bls. This response is also consistent with the natural gatnma response at the Brushy Basin contact as depicted in other geophysical logs at the site and is consistent with the lithology logged at nearby temporary wells. Because the geophysical log depicts the Brushy Basin contact at 108 ft bls in MW-4 and because this is consistent with lithologic logs of nearby temporary wells, the 108 foot depth is considered reliable. Therefore, any DNAPL potentially present near MW4 would be expected to enter the well screen, and to raise the measured chloroform concentrations at MW-4 nearer the solubility S:\STAFflMRR\Chloroformlnvestigation\UpdateChloroformlnvestigationReport I l-9-01 l3 of chloroform (8,000-10,000 mg/l). Because the measured concentrations of chloroform at MW- 4 are more than 3 orders of magnitude lower than the solubility, no DNAPL is indicated. Furthermore, if DNAPL were present near MW-4, concentrations should be at least one to two orders of magnitude higher that at TW4-1, TW4-2 and TW4-4, rather that only 5%o, l2%o, and 48% higher as of the June, 2001 sampling. Installation of an exploratory boring near MW-4 as suggested by UDEQ to characterize the contact is not considered necessary based on the geophysical log of MW4 provided in TITAN, 1994, the lithologic logs of nearby temporary wells, and the lack of evidence for DNAPL in the analytical data. The depth to Brushy Basin of 108 feet bls depicted on the geophysical log of MW-4 is consistent with the depths provided in the nearby lithologic logs and is considered reliable. A contour map of the top of the Brushy Basin, using the 108 ft depth at MW-4, is provided in Figure 2. S:\STAFRMRR\Chloroformlnvestigation\UpdateChloroformlnvestigationReport I l-9-01 t4 3.1 3. ADDITIONAL PLUME DELINEATION UDEQ has expressed concern that more temporary perched wells are needed to define the extent of chloroform in the perched water, and that piezometers are needed in the northeast portion of the site to better define changing water level gradients and to identifu sources of recharge. This section discussed the distribution of chloroform in the perched water both spatially and temporally, the need for new temporary wells to the west and northwest of MW-4 based on observed trends in the chloroform data, and the relationship of chloroform to nitrate which is consistent with a leach field origin. Analytical Results from Temporary Wells Chloroform analyical results for MW-4 and temporary wells are shown in Figure 1. The chloroform plume is bounded to the south (downgradient) by non-detect results at TW4-6, although the recent detection of 3.6 pgll chloroform at TW4-6 may indicate arrival of chloroform at that well. The upgradient well (TW4-5) and lateral wells (TW4-7 and TW4-8) show chloroform concentrations in excess of 100 ltglL, although concentrations at these wells are much lower than at MW-4, TW4-l and TW4-2. The increases in concentration detected in most of the temporary wells after installation are most likely related to recovery of concentrations that were lowered as a result of the air rotary drilling method, and the generally long recovery times expected when wells are installed in low permeability formations. Temporary wells located downgradient (south) of MW-4 are affected by both the recovery process and by continued southerly migration of the chloroform STsTAFnMRR\Chloroformlnvestigation\UpdateChloroformlnvestigationReport I l-9-01 15 plume. These and other temporal trends will be discussed further in Section 3.5. IUSA will continue to monitor and report results to the UDEQ. 3.2 Hydraulic Gradient in the Vicinity of MW-4 The hydraulic gradient in the vicinity of MW4 has historically been to the south (IUSA and HGC, 2000). Recent water level contour maps are provided in Figures 3 and 4. The change in water levels and change in hydraulic gradient to a more westerly direction in the vicinity of the abandoned leach field are recent, and the direction of the hydraulic gradient dwing most of the period of migration of the plume was southerly. A southerly gradient still exists near MW-4 and at the downgradient edge of the plume. The recently detected more westerly hydraulic gradient near the scale house leach field is of no concern unless a residual chloroform source is present, but the assumption of a residual source is not supported by any of the soil gas or groundwater data collected to date. IUSA plans to install piezometers, in a phased fashion, in the northeast portion of the site to fuither investigate the increase in water levels and change in hydraulic gradient. This work will be described in a report to UDEQ due on November 16,2001. The water level map provided by UDEQ in their June 7, 2001 letter to IUSA indicates a concern as to whether or not there may be a possible groundwater mound near MW-4. This feature is likely not a mound but the result of locally related to the stratigraphy of the perched zone. This type of feature aquifers even where the hosting lithology consists of unconsolidated S:\STAFAMRR\Chloroformlnvestigation\UpdateChloroformlnvestigationReport I l-9-01 semi-confined conditions is common in water table layered sands and gravels t6 with local interbeds of silt and clay. These small-scale fluctuations in the regional flow field can be ignored when considering the large scale flow of groundwater and transport of solutes. 3.3 Need for Additional Wells to Delineate Chloroform in the Perched Zone The vertical dimension of the chloroform in perched water will be addressed by vertical profile sampling as discussed in Section2.l. The lateral dimension of the plume is defined in large part by the existing temporary well network but further delineation is likely needed to the west and northwest of MW-4. Additional downgradient delineation may be needed in the future as the plume continues to move to the south. UDEQ provided a chloroform isoconcentration map in its June 7,2001 letter to IUSA. While this map indicates that further lateral delineation of the plume is needed, to the west and northwest of MW-4, the chloroform isoconcentration map prepared by UDEQ displays a number of features that are not hydrogeologically reasonable. These features are related to: Non-uniform distribution of input data leading to unavoidable errors in computer gridding and contouring unless specific measures are taken to counteract them, The impossibility of providing hydrogeologic input to the computer gridding and contouring algorithm such BS, for example, historical groundwater gradient information, and The assignment of detectable chloroform concentrations to downgradient wells that have always been non-detect for chloroform Some of the resulting erroneous features displayed in the map include the following: 1) The depicted plume extends farther cross-gradient and up-gradient than down- gradient which is not hydrogeologically reasonable. 1) 2) 3) SjsTAFRMRR\Chloroformlnvestigation\UpdateChloroformlnvestigationReport I l-9-01 t7 The detectable chloroform isoconcentration contours extend up to and beyond wells that have always been non-detect for chloroform, which is not hydrogeologically reasonable. "Bulls eye" features occur that are related to the non-uniform distribution of data, choice of gridding parameters, and unavoidable limitations of the gridding and contouring package. There is no hydrogeologic mechanism that can result in such features. Unless chloroform is actually detected at the downgradient wells, the downgradient edge of the plume will always be at or just beyond these same wells that are non- deiect for chloroform, resulting in a plume whose extent is time independent. This is not hydrogeologically reasonable unless a steady-state condition has been reached. The apparent northwest trend in the isoconcentration contours in the map produced by UDEQ is an artifact resulting partly from the well density west and northwest of MW-4, and partly from the non-uniform distribution of data, the lack of hydrogeologic input in producing the map, and the assignment of detectable chloroform concentrations to wells that have been non-detect for chloroform. IUSA proposes to install two nsw temporary wells to the west and northwest of MW-4, as shown in Figure 5, to help delineate the extent of the plume to the west and northwest where control is poor. Additional wells to the east and south may be considered at a later time based on the results of continued monitoring at the site. Temporal Trends in Chloroform Concentrations and Relationship to Nitrate Figure I shows the chloroform concentrations over time measured in MW-4 and temporary wells near MW-4. As discussed in section 3.1, initial increases in most of the temporary wells are likely related to recovery from the drilling process which used primarily air as a drilling fluid, and small amounts of water as needed to maintain circulation. Increases at wells upgradient (north) of MW4 are most likely due to recovery alone, while downgradient 2) 3) 4) 3.4 S:\STAFRMRR\Chloroformlnvestigation\UpdateChloroformlnvestigationReport I l-9-01 l8 wells (south of MW-4) are expected to respond to both recovery and continued downgradient (southerly) plume movement. For example, the rapid increase in concentration at TW4-l after installation could not likely have resulted from recovery alone, but must also have resulted from movement of the leading edge of the plume past that well. Increases in concentration from non- detect to 3,200 pglL at TW4-4 are also likely to have resulted primarily from continued plume movement to the south. Concentrations at upgradient wells TW4-5, TW4-9, and TW4-3 have stabilized or decreased after the initial increase related to recovery. Concentrations at lateral wells TW4-7 and TW4-9 are stabilizing. These trends are consistent with the initial interpretation of a "slug" of chloroform entering the perched water over a relatively short period of time (1-2 years) and migrating downgradient toward MW-4, TW4-1, and TW4-4. The width of the plume near MW- 4 will be addressed by the installation of two new temporary wells to the west and northwest of MW-4. Figure 6 is a plot of nitrate concentrations over time at MW4 and the temporary wells. There is a clear correlation between chloroform and nitrate concentrations which is consistent with a leach field origin. Figure 7 is a scatterplot of chloroforn vs. nitrate through the June,200l sampling, which illustrates this correlation. S:\STAFflMRR\Chloroformlnvestigation\UpdateChloroformlnvestigationReport I l_9_01 t9 4. COORDINATES REQUESTED BYUDEQ A copy of estimated coordinates for the following locations was previously transmitted to UDEQ on September 7,2001, and was provided during the meeting on October 5. They are also provided in this report in Appendix C. . Former mill offrce building sanitary leach field, . Former mill office building laboratory wastewater holding tarrk and pipeline to Evaporation Cell l. . Former office trash disposal area 20SlsTAFRMRR\Chloroformlnvestigation\UpdateChloroformlnvestigationReport I l-9-01 5. PERCHED ZONE PERMEABILITY UDEQ has expressed concem about the permeabilities derived from the hydraulic tests at MW-4, and whether chloroform could have migrated from the abandoned scale house leach field to MW-4, and whether chloroform could have migrated from the abandoned scale house leach field to MW-4 via conglomeratic materials logged in temporary wells at the site, as suggested in the CIR. This section discussed the results of hydraulic testing at MW-4, the probable coincidence of a high permeability zone evident in the MW-4 test data with conglomeratic materials logged in nearby temporary wells, and the likelihood that these conglomeratic materials influence the flow of perched water and transport of chloroform near MW-4. 5.1 Permeability Distribution of the Perched Zone An updated perched zone perneability map is provided in Figure 8. The permeabilities plotted on the map are based on the results of pump and slug tests where available, or on constant head packer tests within the perched zone. Test results by Peel were used where available, except the value plotted for MW-4 (3.5 x lOa cm/s), which was based on a transmissivity of 38 ft2lday measured during a1999 pump test by HGC. The saturated thickness at that time was calculated as 39 feet assuming a Brushy Basin contact at 108 ft bls. A detailed discussion of tests at MW-4 will be provided in a report to UDEQ due on November 16. 5.2 ConglomeraticZone Near MW-4 Varying thicknesses of conglomeratic material are present below the water table in all temporary wells north of TW4-1 (Figure 9). The base of this zone is approximately 95 feet bls in TW4-1, and TW4-2, and approximately 88 ft bls in TW4-7. A higher permeability zone with a base at a depth of approximately 95 feet below top of casing (btoc) is evident in the drawdown data collected during a pump test by Peel at MW-4 in 1992 (UMETCO,1994). During the first S:\STAFF\MRR\Chloroformlnvestigation\UpdateChloroformlnvestigationReport I l-9-01 21 3 hours of pumping at a constant rate of 0.46 gpm, only about 2 % feet of drawdown was measured. Then, as water levels dropped below approximately 95 feet btoc, the rate of drawdown increased by about a factor of 30. Similar behavior occurred in a test conducted at 0.92 gpm, except that the break in slope occurred in about half the time. This behavior is consistent with dewatering of a higher permeability zone having a base at 95 feet btoc near MW- 4 at about 3 hours into the test. This zone most likely coincides with the conglomeratic zone logged at nearby temporary wells. Because this conglomeratic zone is present below the water table at all wells north (upgradient) of TW4-1, and has a relatively high permeability based on the pump tests at MW-4, it likely influences the flow of the perched water, and therefore the transport of chloroform, in the vicinity. Furthermore, the least productive temporary wells at the site, TW4-4 and TW4-6, have very thin conglomeratic zones that are located above the water table where they cannot at present affect the movement of perched water at the site. A detailed discussion of tests at MW4 and interpretation of results will be provided in a report to UDEQ due November 16. S:\STAFAMRR\Chloroformlnvestigation\UpdateChloroformlnvestigationReport I l-9-01 22 6. ONGOING GROT]NDWATER MONITORING AND REPORTING As stated in Section 5.1 of the CIR, the sampling results to date indicate that elevated chloroform concentrations are confined to a relatively narrow zone. Elevated chloroform concentrations have not moved significantly downgradient of TW4-4. To ensure that samples collected from the temporary wells are representative of the perched groundwater, continued monitoring has been performed on a quarterly basis in the temporary wells (TWs) and in MW-4. Measurements have included depth to water, electrical conductivity, temperature, pH, and chloroform concentration. Nitrate has also been measured in temporary wells TW4-1, TW4-3, and TW4-4. Continued potential movement of the elevated chloroform concentrations is being monitored using the new temporary wells, TW 4-4 and TW 4-6 located downgradient of TW 4-l. Also, based on hydraulic conductivity estimates at MW-4, and the magnitude of the groundwater gradient, the travel times can be used to estimate the effective porosity of the perched zone in this vicinity. IUSA will continue to collect chloroform data for all of the wells involved in the chloroform investigation, including well MW-4, all the existing TW-4 series wells, and all future monitoring wells that are installed to delineate the area of chloroform contamination. Table 1 is a swnmary of data collected to date from the TW-4 series wells. Quarterly analytical results which were not preciously transmitted to UDEQ in split sampling data S:\STAFnMRR\Chloroformlnvestigation\UpdateChloroformlnvestigationReport I l-9-01 23 packages for data collected since the tansmittal of the CIR to the present are included in Appendix D. To ensure adequate time for sample analysis, laboratory data validation, IUSA data validation, and reporting,IUSA proposes to submit the data, together with the quarterly sunmary report, to UDEQ in accordance withthe following schedule: Ouarter Submittal Due Date January - March May 30 April - June August 30 July - September November 30 October - December February 30 I L 1 o1 SfSTAfF\MRR\Chloroformlnvestigation\UpdatcChloroformlnvestigationReport I l-9-01 24 7. ADDITIONALGROUNDWATERMONITORINGPARAMETERS The primary purpose for measuring additional groundwater parameters within ard near the chloroform plume should be to establish the likelihood that chloroform is degrading nrlturally (either chemically or biologically) within the perched water. The natural degradation pathway for chloroform is for chlorine atoms to be succt:ssively replaced by hydrogen under anaerobic, reducing conditions, via reductive dechlorination. Chloroform will degrade to its daughter product, dichloromethane (DCM) undo: these conditions, and may ultimately degrade to methane. The presence or absence of DCM would help establish whether or not this process is occurring at a significant rate. The presence of nitrate concentrations in the perched water near MW-4 that are gt:nerally higher than the chloroform concentrations, however, indicates that groundwater conditions are not presently favorable for this process. Under conditions favorable for reductive dechlorination, nitrate will also be expected to degrade, and at a higher rate than chloroform. For this reason, existing analytical data provides an indirect estimate of redox conditions, which do not appear favorable for reductive chlorination. 7.1 Dichloromethane Analytical Results From Split Sampling Previous split sampling analytical results indicate that DCM is not present in lrerched water near MW4 at detectable concentrations (l pglL). This is consistent with conditions that are not favorable for reductive dechlorination of chloroform. SlsTAFflMRR\Chloroformlnvestigation\UpdateChloroformlnvestigationReport I l_9_01 25 7.2 Direct Measurement of Redox Conditions in the Field At UDEQ's request, IUSA had evaluated the feasibility of obtaining relatively reliable measurements of reduction-oxidation potential (redox, or ORP) for groundwater, usirrg field instruments. As described in the U.S.G.S. Field Manual, Chapter 6.5, in contrast to other field mesaurements, the determination of redox "should not be considered a routine measurement" and is "not recommended in general because of the difficulties inherent in its theoretical concept and its practical measurement" (see Appendix D). The U.S.G.S. notes that "Eh measnrement may show qualitative trends, but generally cannot be interpreted as equilibrium values". Hydrolab Corporation, the supplier of the Hydrolab Surveyor 4a Instrument currently being used at the Mill for field measurement of pH, temperature, and electrical conductivity in groundwater, has indicated that the instrument's available redox electrode, which can be retrofitterl to the Mill's instrument, has somewhat improved capability of measuring redox, as compared with earlier models. Hydrolab's Tech Note 204 listing parameter specifications is included in Appendix D. Response time is not specified on Tech Note 204, and IUSA will need to erstablish a procedure to determine at what point the redox value would be selected. Also, to avoid potential exposure to quinhydrone, the Mill would use Zobell solution to calibrate the new redox electrode, after it has been added to the instrument. 7.3 Feasibility of Enhancing Reductive Dechlorination In-Situ Reductive dechlorination can be enhanced in-situ by adding substances such as hydrogen release compound, or substances that accomplish the same purpose such as molasses or ethyl alcohol, which release hydrogen during fermentation (Odom, Martin J et al, 1995), and mixing S1sTAFflMRR\Chloroformlnvestigation\UpdateChloroformlnvestigationReport I l_9_01 26 them with the perched water. The mixing process will be facilitated at the site because temporary wells currently exist along almost the entire extent of the chloroform plume,, with a number of wells completed in that portion of the plume with the highest chloroform concentrations. Existing data indicate that this process will be feasible, however additional data yvill be collected prior to making a final deterrrination of the feasibility and developing a work plan for implementation. 27S:\STAFF\MRR\Chloroformlnvestigation\UpdateChloroformlnvestigationReport I l-9-01 Y = N INo) oz @z oz U)z az or*$- (o o(o(a $ oo (f) (o oo(9- l.C) t-(a oi F-t\d No ot ,)I\l = oN Io@ N\r @ oq (/)z oz c! $ao)(o q (a$ o,lo o,ro o ro o DI\t E () N Ilo @ oq N U)z U)z C\lo F-o (o o@r o@r o o Ci Isl oN Io@ (oloN (o @ oz az @o)(o $@(o t-$t- ooa oo6t o)q (o$ N lf,(o c\i It E lo Fo)Itr, t-lr) az oz U)z lr) CJ q (f)o (a o o r,I<f oN Io@ r() oiN o)$U)z oz srN F l.c)lo(\t (o(o N o$N ott N (or ci @ @ (f) r-.q (o Y = C\l I6lt- U)z ct)z az roo ro@ c"j o@ot N oo (", ooc.l (r) Nq lo+os E t-o)Ir-(o NoIr \l(r) @ az az (o (f)o (o (Y'o t-$(a oo) (f) oo(Y) F-o)lo oq q N $ E o6l Io@ orro N o(\I |.r)- l() U)z @z oNc\l ro o c\to{ $ oo,@ (o oolf) to ooo) $ r*o Nor t-(o o) * o Iot- oq lr) oO- oo) a.U)z o(o ryN orir st_ (f, os (f)- N ooo (o z CD\N ror F- @ @ 6 e o) ,= Eo L^ot(,EE36o,E o E'=oL CLo- J(,) o, =-cv: -o-EEoo\aPso U, LVo 3^b, s, Y6-Etr EE9oOE =No 3taCY -o.Etr*sYaoii !vo g, Eatr BAgT cF =A cJoAYf.+;=tF Eboc) 6E o- EEtS-c o)>{.8- - cL- -tr !26H h3o Y E EE Io ,c,o -^{otrtc vgcEt(uBo9RO;<:F!- ()v -^{otctc -= o-cEtoo.h9=9;6e {otrrc3o-cEtoou,F9E96 ^Lo {-oEiEeocEtooo9=955e ^o)JC:\:g, o.EEvoo(,,(UoEEz- ^o,JC o, o_EE ao(tr tsQ2 <4,-o ^oJC cDoEE oo(Er =<z<O o o o E(! (! o. IE(, lEc !,tr .E tro g -ELUJEJOoo{=l-O'= EoGo oo a(! o CL EoF !,tr .E T == o x -c.o(E Eo g -9Eooo€o N i EEEHg5tso(Eq0)o ootrs ililo<22 8. REFERENCES Cohen, Robert M and James Mercer. 1993. DNAPL Site Evaluation. Library of Congress Hamed, Herbert S and Benton B Owen. 1950. The Physical Chemistr.v of Ele,ctrolytic Solutions. American Chemical Society Monograph Series. Reinhold Publishing t3o{P. Intemational Uranium (USA) Corporation, and Hydro Geo Chem (HGC), 2000. Investiplation of Elevated Chloroform Concentrations in Perched Groundwater at the White Mesa Uranium Mill Near Blanding. Utah. Submitted to UDEQ. Odom, J Martin, Jo Ann Tabinowski, Michael D. Lee, and Babu Z. Fathepure, 1995. A:raerobic Biodeeradation of Chlorinated Solvents: Comparative Laboratory Study of Aquifer Microcosms. In Bioremediation of Chlorinated Solvents. Bafielle Press. Schwarzenbach, Renee P; Phillip M Gschwend, and Dieter M Imboden. 1993. Environmental Organic Chemistrv. John Wiley and Sons. Titan, 1994. Hydroeeologic Evaluation of White Mesa Uranium Mill. Submitted to Energy Fuels Nuclear. Umetco, 1994. Groundwater Study. 1994 Update. White Mesa Facility, Blanding, Utah Submitted to United States Nuclear Regulatory Commission. U.S. Geological Survey, 1998. Reduction-Oxication Potential (Electrode Method). Chapter 6.5, Field Manual. Available online at huo ://water.us gs. eoviowq/IieldManual/Chapter6/6. 5-contents.html SisTAFflMRR\Chloroformlnvestigation\UpdateChloroformlnvestigationReport I l-9-01 28 o EXPLANATION temporary perched well showing chloroform (uG/L) in ^ 702 initial samplingt 9-g-+ second .urptingNS third sampling 9!9 fourth sampting836 11/00 sampling347 03/01 sampting390 06/01 sampling300 09/Ol sampting 6300j 53oo f,",ff-i1ffi llL"H,:,:iii. (uG/L) in 6/01 and g/01 samplings NOTE: sample vialfor tw4-1 broke in transit to the laboratory so no analysis was performed on 9/01 sample CHLOROFORM ANALYTICAL RESULTS (uG/L) FOR TEMPORARY PERCHED WELLS (through september, 2001 ) Approved Date Relerence Figure 1 \\ \ \\) r' I )=of*.?a ' =t, .t \ I 5170 \\ 1i 5430 \\ \\ 5420 541 0 ( N I a r*-20 5449 .f,r \ xlt:x \r'---7ei ^// '/- - 0 J000 SCALE IN FEET FYPI ANATION o Mw-11 551 3 " 5522 PERCHED MONITORINC WELL SHOWNG TOP OF BRUSHY BASIN IN FEET (AMSL) TEMPORARY PERCHED MONITORING TIELL SHOWNG TOP OF BRUSHY BASIN IN FEET (AMSL) -- CONTOUR LINE IN FEET (AMSL), OASHED WIERE UNCERTAIN * ASSUMED TO BE AT ELEVATION OF BASE OF SCREENED INTERVAL l,' | ${ag 'Lno\\o f,u-l 555 \ \ -o\ ZO \ \ \\- ll z o ,tY-t5tt JZ -45+73 rw-3. 5466' CONTOUR MAP OF TOP OF BRUSHY BASIN WHITE MESA URANIUM MILL SITE Date 10/30/01 \\ \\j\\\ \\( Nl', V:\-r\./ .z- {, /,.<le\\-../ \\. ---- 5sgo a rx-!9 55EE - 0 SCALE IN FEET FXPLANATION 3000 \:\r )\\ ^\ \-r ) r ----\.\ .r \l L -rlx\r"--rn.J1-.2 u.r- -r' a Mw-ll 551 3 5522 PERCHED MONITORING VTELL SHOTTING WA]ER LEVEL IN FEET (AMSL) TEMPORARY PERCHED MONITORING WEU SHoWNG WATER LEVEL IN FEET (AMSL) ----5585 WATER LE\EL CONToUR, oASHED IIHERE UNCERTAIN ti \l I\ N\ A \'\r',\ I tt.. + WATEH LEVEL CONTOUR MAP DECEMBER, 2OOO WHITE MESA URANIUM MILL SITE Date o/30/01 I N t - 0 3000 SCALE IN FEET EXPI ANATION \\l )---a\ ,)- Ix\r'-a€t J--.--,2 t,r- /' \\ \\)\\ r' ) t E(z )4r,. \.,&(r--l.Ci -.r \F \ ,/ )S ,z'L/=*>: l^\le tl/ \/J/ \/l ,,1 4' /o: j\ 5580 5570 5560 5540 5530 5520 ;:s:sj0..__ 5500 5490 5480 tl tl il tl ll I tl 1l i tl I ll \Irl-2r \l \1 \\ a \\ \\\\ --- 5585 WATER LEIEL CONTOUR, oASHED rifttERE UNCERTATN a Mw-1l 551 J 'ss22 PERCHEO MONITORING \IELL SHOI$NG WATER LEVEL IN FEET (AMSL) .IEMPORARY PERCHED MONITORING WELL SHOWNG WATER LEVEL IN FEET (AMSL) T37S .!hi' ,,t WATER LEVEL CONTOUR MAP SEPTEMBER . OCTOBER, 2OO1 WHITE MESA URANIUM MILL SITE Date o/30/0r EXPLANATION MW.4O perched groundwater monitoring well tw4-16' ' temporary perched groundwater monitoring well PROPOSED TEMPORARY WELL PROPOSED LOCATIONS OF NEW TEMPORARY PERCHED WELLS Approved Date Flelerence 5 Figure o EXPLANATION temporary perched well showing niirate (mg/L) in 1 .02 1 1/00 sampilng 14.5 03/01 sampling 14.0 06/01 sampling 9.02 perched monitoring well MW-4 showing nitrate (mg/L) in 6/01 sampling ND = not detected at 0.1mg/L NITRATE ANALYTICAL RESULTS (mg/L) FOR TEMPORARY PERCHED WELLS Approved Date Re,e rence Figure 6 uJF#srE =>@a>z><tAo-i LL trt P=ooJLUI-OOsErr LIIlo-b>rLLd<rtiloFO- 3Ea' ooo(o ooo lf,) =CD J EI-oob S-6o -CC) oooc! i roi i I ilrrtttt-i--- : Of 1 I lI llttt ttll ltlllt ltlttliiorl lI rtlttti lttttl lttttl lrtttt lttltt -l- --r- r-----T- -T------] -llttlt lrttttt lrttt rlltttt ltlt lill lttr I I dL I Irilurli 6i ; i rll lll| -,--- - | --l--itqirtl ltltlt ltttttl lrttti lttLttiliplil ltltrtt lrlttt &liiitl -l-__ _L,,___L __L_____i __-]__ itil lttt! lti t; lrllt tttli liltti lttttlt I r r r - r i l rrtttlti I i lo i i Ilrtltt ltltllt rtltltt -l--- -r------J- --r------r-- ---t-lttli lltlil llttrl lrtrl ltti lilltl lilt1 lrltll litltl ltltt ltlt ltlioffirrrrqP ---l lltliiiiii4 lltltiiirTf*ilii6l tl lrtttr ooO (ygu) elerlru PROPERW BOUNDARY \\\ )\ ( r' I I iiiliiliijjii, ffiil[' N (<)=r*) u') ' =t, .t \ ;lllllllllll:ilil1!ililtlililt!ililtlililtlililt!ililt:ililt!ililt!ililt!ililt!ililrlililtnuxrrrrTl PERCHED MONITORING WELL SHOWNG PERCHED PERMEABILITY lN cm,/s PERCHED ZONE PERMEABILITY 2 1O-1cm/s PERCHED ZONE PERMEABILITY BETWEEN 1o-a cm/s AND lo-scm,/s ll lt I ZONE /(Ill'lltl\ PERCHED zoNE PERMEABILITY < 1d5 cmlsqlw NOTE: PUMP TEST (DRAWDOW\ OR RECO\ERY) RESULTS ARE PLOTTEO WHERE AVAILABLE. IVI-IERE NOT AVAILABLE, SLUG TEST OR CONSTANT HEAD PACKER TEST RESULTS ARE PLOTTED SCALE IN FEET a Mw-11 1xl0-t @s ..I:SS i\i\$ ,;-(.1.5)1s';{}-\r'-:-:-r{:l:}} ss\\i:)NN illlfflllmm wiliiiii, Tlll,ffit!iltliiN&* ruaKS $-.S-^i.\^.- =ffi fiili I l[l ilIil | | li I ll i il ll li i :\-:"ql:i:\:L NO. 2.-\:,:-)l---:>: NTS.N iiiiiiiiiiiiiiii iiiiiiiiiiiiiiti q' PERCHED ZONE PERMEABILITY BASED ON PUMP AND SLUG TESTS, AND CONSTANT HEAD PACKER TESTS aoz ,, lxIF,z o;Pi<3; fr3= ZsI H=F =s=5e=taa O- 7 ,-, KEE ooJ OO(o OO$r ox() O P =oa C)() CXcuCDao o (U E'=5e(oo- o_ (U ,t ., ...1,-" - .. ; t.:t v-vMt L.'M} L.VMI z-v 6-rlvu OO$q) CI rr. u) ="1 fr Itrl es<l E kzl h-x<I E E tl.l obxl =blJJl 6 r=L I I I ---l IOo Lolr) O(o LO (ieel) uorle^olo 9-V APPENDIX A Vertical Profile Sampling Methods 'a oo edech Environmental Equipment, lnc. s$ lrrrrtd .lrP Leaders in manufacturing and distributing ground and surface water sampling, analytical, filtration, and remediation equipment. Bailers Geotech Disposable and Reusable Bailers Geotech disposable and reusable bailers are available in many configurations and materials to meetyour specific sampling needs. lmproved bailer design - Geotech's 'Orbit Flux' design fills 33% faster than other bailers - V-notch design for trouble free cord attachment, and accurate pouring Weighted disposable bailer as heavy as most double-weighted without the extra cost Manufactured under strict clean-room conditions - Made of virgin, FDA approved high{ensity poly resin - The polyethylene contains no plasticizers or additives, and no regrinds are special clean Product sampler for floating hydrocarbons VOC sampler uses a unique desagn that allows sample transfer to VOA vials with minimal loss of VOGs PVC white and clear - Diameters from .675" to 3.5' in lengths 12'to 60" - Recessed check and double check available Slainless Stee! Geobailers - 1" and '1.75' diameters are 36' long - Rugged and durable for well development Teflon@ Geoballers - 1.25" and 1.625' diameters are 36' long - Most inert material available Geotech Disposable Bailers are avallable in the following configurations: Material Diameter Lenoth Confiourations Units/case Accessories Poly VOC tips for 1.5" diameter bailers ......'...............24 per case Poly VOC tips for 3" diameter bai|ers...............'..........9 per case Teflon@ VOC tips for 1.5' diameter bailers.....'..'.........12 per case Poly free product samplers......... .........24 per case Optional double check valve bailers isolate the sample, sealing as the bailer is removed from the well at specific depths Disposable Accessories Geotech Pressurized Disposable Bailers This special disposable bailer provides the convenience of using inJine dispos-a-filtersil in the field even when pumps are not available. By using a pneumatic hand pump you can filter your samples directly from the bailer, saving time while maintaining sample integrity. Each bailer comes complete with a barbed hose adapter for attaching the hand pump to the top of the bailer, and a special adapter with a notched thread to be used with a dispos-a-filteril at the bottom. ln order to dis- place the check ball and establish a smooth flow, an additional large barbed removal device is included for bot- tom emptying without filtering. oRDER TODAY (800) 833-7958 APPENDIX B Use of Soil Gas to Detect DNAPL a Innovative Soil Gas .:, , Thursday September 25, 1997 ,' r/*vldharqGaiden Hotef Cos( Mesb, Catifornia THE USE OF SOIL GAS DATA TO OBTATN SOIL VOC CONCENTRATIONS AND TO IDENTTFY THE PRESENCE OF NAPL by Harold W. Bentley Hydro Geo Chem, lnc. 6905 E. Ocean Blvd Long Beach, California 90803 Gary R Walter Hydro Geo Chem, lnc. 1430 N. 6th Avenue Tucson Arizona, 85705 THE USE OF SOIL GAS DATA TO OBTATN SOIL VOC CONCENTRATIONS AND TO IDENTIFY THE PRESENCE OF NAPL 1. Conversion of soil Gas Concentrations to soil concentrations The concentration of a Voc in soir gas can be converted to its total concentration in the soil by considering the equiribrium raws goveming the partitioning of the Voc between the gas, liquid, ano sotid phases. The reasoning and methodology are as follows: Unless a separate liquid phase of Voc, i.e., a NAPL, is present, the SOil gas concentration is controlled by the distribution of the Voc between the soil, water and soil organic matter' lf the moisture content in the soit is greater than 5%, normally the case, the vapor phase contarninant concentration will be controlled by its gas-water distribution coefficient, the Henry's Law coefficient (H). The Henry's Law coefficient can be written in its dimensionless form' Hr. The dimensionless Henry,s Law coefficient relates lhe concentration of a compound in the vapor phase to its concentration in the aqueous phase He = Co/C' = l1/RT '- PtS where H is the Henry's Law coefficient R is the ideal gas constant T is degrees Kelvin P" is the VOC's vapor density (the vapor as mass/unit volume)' and S is the water solubilitY pressure of the pure liquid expressed Theaqueous.phaseconcentrationwillinturnbecontrolledbythedistributionof contaminants between water and the solid soil matrix. This distribution is govemed by lG' the water-solid distribution coefficient. Rarely is the direct distribution of contaminants between the gas and solids imPortant. lf the water-solid distribution is controlled by adsorption onto organic carbon, which occurs above organic carbon concentrations of approximately 0.001 (fraction)' (chiou and shoup' 1985) the water-solid distribution coefficient is (1) c. K^.jU^vw Koc ' o/oOC (2) 100 where Cg c* Koc foc is the concentration in the solid [mass VOC/mass solidS] is the concentration in the water[mass VOC/volume water] is the water'organic carbon distribution coefficient is the fraction, Ly weight, of organic carbon in the soil c:\info.doc\sgs-soil.cnv The total soil VoC concentration (M/L3; is the sum of the mass/unit volume in each of the three,:. phases: _Y C, = CrPa + C*0* + CoFr'lJ is the concentration in the gas [M/V air] is the total concentration in the soil [M/V (bulk volume soil)] is the bulk dry soil density [M/V solid] is the total PorositY is the water filled PorositY The ratio of a VOC's total concentration in the soil gas to its concentration in the soil is given by subsiituting (1) and (2) in (3) and dividing by bulk density (po) to convert soil concentration units from mass/volume to mass/mass: cr KD. u* c, Ho Hogo (0r - e,) where C, is the total concentration in the soil (M/M) Table 1 presents an example of the results of using (4) to relate soil gas and soil concentrations. For each of the compounds listed, a soit gas concentration of 100 pg/L was converted to the equivalent soil VoC concentration in pg/kg. The soil parameters utilized in the calculation were fo" (fraction) = 0.005; total porosity (fraction) = 0.40; volumetric moisture content (fraction) = 0.2i and dry soit bulk density (gm/cm3) = 2.00. (3) cs ct Po er and e, (4) 9b c:Unfo.doc\sgs-soil.cnv TABLE 1, CONVERI }ION OF SOIL ;AS TO T()TAL SOIL CONCENTRATION Soil Conc. (vg/Kg) Hr' (H/Rr) Ko. (mus) SGas-Soil Conversion Factor Soil Gas Conc. (Fg/L) COMPOUND l(o" (mils)Henry's Coeff. (H) 1.0 0.55 0.75 100 75 ccl4 110 2.41E'2 0.1 19 0.1 55 2.24 100 224 Chloroform 31 2.87E'3 0.179 0.15 1.50 100 150 1,1 DCA 30 4.31E-3 0.07 10.2 100 1020 1,2 DCA 14 9.78E4 0.0407 1.41 0.325 0.401 100 40.1 1,1 DCE 65 3.40E'2 7.58E'3 0.315 o.245 1.2 100 120 cis 1,2 DCE 49 o.273 0.295 1.55 100 155 trans 1 ,2 DCE 59 6.56E'3 0.707 0.775 1.33 100 134 1,1,1 TCA 155 1.70E'2 0.379 0.63 2.03 100 203 TCE 126 9.10E'3 2.598-2 1.08 1.82 1.88 100 18 PCE 364 8.19E-2 3.41 0.285 0.212 100 21.2 Vinyl Chloride 57 0.415 2.31 100 232 Benzene 83 5.59E'3 0.233 0.267 5.5 19.4 100 1940 Ethyl Benzene 1 100 6.43E'3 1.5 5.86 100 586 Toluene 300 6.37E-3 0.265 0.293 1.2 4.53 100 453 Xylene 240 7.04E'3 * RoYS Griffin, 1989' - 1'1'1 TCA * Montgomery & Welkom' 1990 - all others' It can be shown by sensitivity analysis of (4) that for all but the most water-soluble compounds, the ratio of soil gas to tot"i toir concentration is most sensitive to G' next to H'' and that the other parameters nave retaiiv"i,littf" effect' Thus, for all but the most quantitative apprications, rhe soii jarameter important in carcurating the conversion of soil gas concentration to total soil concentration is total oiganic carbon' Reaionable estimates of moisture content' porosity, and bulk Oensity, the additional soil parameters, will be sufficient for most purposes' c:\inf o.doc\sgs-soil.cnv o .9lr o \o ot-o o- Eo LL t()o E (U t- c'6 (9 Ec (U U) N G) =.9 LL CO Ho *f .-.: u) 'LL {.'r t,. ' t-iif' @ o =.9 LL tr) oL- =.9, LL (o G)t-f, .9, LL l'- o .9 LL ot-:l .9) LL o) 0)t- =.9, LL ot- =.9 LL r 0)l- =.9 LL 2.PredictingthePresenceorruapufromSoilGasConcentrations Equation4isvalidinmostsoilgasapplications.butcanunderpredictatotal soir concentration in cases where a separate non-aqueous riquid phase is present. The total VOC soir concentration i, tnen a function of the Voc concentration in the NAPL and the amount of NApL in the soit. "in such , "..., arthough Equation 4 continues to account for the VOC's partitioned into soil, water, and soil gas' it does not account for the VOCs dissolved in the NAPL. Where NAPL is present, thaprediction of voc soil concentrations from soil gas concentrations is not possible because the vapor pressure of a VOC in the NAPL is a function ;f ;i;;;.;;ntration in'tn" runpr- and the amount of NAPL is generallv unknown' when a VOC concentration in the NAPL is high, its distribution between the NAPL and the gas phase can be estimated by Raoult's Law c (j) - p.x, c (s) where an"d liquid) is equal to 1: p" is the vapor density (pure-compo-und vapor pressure) of the ith VOC X, is tne mole fraction of the ith VOC The sum of the mole fractions of compounds making up a NAPL (or any Dx,' 1.0 il (6) (7) Where n is the number of compounds in the NAPL' Assuming the NAPL is composed of VOCs, that is, each of the dissolved compounds has a reasonable vapor pressure, the substitution of (5) into (6) yields g c'(,) - 1? ps(D t h e s u m of r h e 0,.,,::l; ;i;, ili |f;3ii): #::': l?.'"Iii'; i ::ryiil li ix giixffi vapor pressure ,nortJ "ppro""h 1. However, a lower than the theoretical value of 1'0 for the summation in (7) shoulO.Ue useO to indicate the presence of a NAPL in unsaturated soils' ln watersaturated soils, because of attenuation by advective and diffusive Processes, only 1% of the saturated solubility of a groundwater contaminant is the criterion used to determine the presence of NAPL in lrounjwater (Feenslra and others, 1991), Soil gas is less likely to be attenuated by advective processes, and the diffusive transport of a gas borne compound is much more effective than that of a "orpo,nO dissolved in water' both processes leading to a larger zone of o.t.ciion for soil gas sources. Thus a larger criterion than the 't% of the c:tnfo.doc\sgs-soil.cnv theoretical value is appropriate. We suggest, based on observations at a number of soil gas sites, that lOoh of the theoretical value be used to determine that a NAPL as present at a soil gas sampling location. The appropriate criterion, therefore, is i,: i\ cs(i) > o1Z-/i.1 Ps (r) (8) ; As an example of the use of this criterion, suppose that lhe soil gas data obtained at a point location are PCE TCE = 2,500 pg/L = 4,200 ltglL Cis 1,2-DCE = 10,000 Fg/L The calculations utilizing Equation I are summarized in Table 2. TABLE 2. EXAMPLE OF USING SOIL GAS TO DETERMINE NAPL PRESENCE Soil Gas ,ralyte Vapor Pressure (mm) (@20 "c) Molecular Weight (g) Conversion Factor lpg/(mm.L'g)l Vapor Density p. (pg/L ) Observed Concentration Co (ug/L ) co/Ps PCE 14 165.8 54.7 127,000 2,500 o.02 TCE 19 131.4 54.7 137,000 4,200 0.03 1,2 cis DCE 180 97 54.7 955,000 10,000 0.01 SUM of Co/!"0.06 According to this calculation, the soil gas concentralions divided by their respective pure-solvent vapor pressures sum to less than 0,1 . Thus NAPL is not present where this soil gas probe was located, and the con-centrations of PCE, TCE, and 1,2 cis DCE at this location can be calculated by the methods summarized in Table 1. References Chiou, C.T. and T.D. Shoup, Environ. Sci. Technol. 1985, 19, 1196' Feenstra, S., D.M. McKay, and J.A.Cherry, 1991. A method for assissing residual NAPL based on organic concentrations in soil samples c :\info.doc\sgs_soil.cnv c{ o f .9)IL :e*t- o-co+.F 5ra- +-,Oq- ->9.- I-q.o bEO(U-t-L$- &o(u0 It - -yl_ JJ.o -a ,.T_o.X EC c, ol-o-c = jO-t- a()) (u;a.-a J(Uo- cr) 7-C -.HqE:Er -cO- 6z=.boq? - J .tA=-a x L, L :.Isr\-%t- ({.l -- C-OO-^, 38fl o.gq u*+, attq vI-JAo-oEb-I- l- ,.r =yY,l_, Ei 9-.e, agE '= u),-L1-t- .= E#s1 ll2rF(E0(9o Efi EE oO'Ool .rJ S..fi' F cf) o ) .9) LLttoutg E = rt o =.o) LL a q !r{ ,l ala\/t\/ -*l %L)lo- o.9EP 6P -*. -C OC *,-EE,- € 8oP !i rr=(U0!+ o-c EE o a.98 BEEb ee *r- I O-(u# EEgtr o o:') .--R OE dgEE *E; OL - tD'fO = AE EE fr,:o c#' E o)-c '= = o- E =# =; bE = o (Jo-trq, a.(I,(I,O o I X oE;=oo+,q6t=8r b.aa*vI.-.0=u \ra():= t-Fr*- t-oG EOEed bz )-l-Fal-l.-AEoo FO U) ,9E .["f,r "[^] r LO c) .9)lt g ? 9=E EEET6 a:H 3Efi#BE.e=;=f; flE 3ri.=(uC_ et rsE= EEEEEE' E sE $gEs EfiHgEfi (o o) ) .9) TL "h]= a !o ooEs th J o- z o oo oq ao- o F a$e c E -srl o 'E EBE s: E(J'tu tr E o 6 aG {88f; =E s >H8 g:'H5 8E;9P38bT EE *E;gUEguHEsTEgs ;EEEg= ElE sEAgEte=E E1EgEiEEE9.E@ o 28 q = o rEifr€ EEEg5 = g, a = E i -e EEITE gg;t'05 e E ;EEEEliEetrtEgaeetfi APPENDIX C Coordinates Requested bY UDEQ Approximate Coordinates Misc. Features ' White Mesa MillSite Revised using 2001 Topographic Map ( all coordinates aIe approximate ) Jones Well Jet Pump Feature EastingNorthing Elevation water well #1 2580084 323314 Tesl Well 2580945 322d7 Tailinos Cells - Aopproximate Boundaries CellNo. Ea{89_l,l9Ithin.q 1-l--.- zsrt4en s23190 NE 2579365 32314s sE 257935s 522078 sw 2576795 322150 A 2576880 322415 2..-- 2st67gs s221fi NE 2580210 3220/,0 sE 2580210 320745 sw 2576845 321680 3rc2576845 321680 NE 2s80210 320745 sE 2s79593 320100 sw 2s7601s 320825 4A-.-- zsrter,g 320411 NE 2579593 320100 sE 2578860 319021 sw 2577469 319266 2581252 318910 2581250 329460 MW-13 2577590 319547 MW-6-1 2578895 320530 MW-6-2 2578895 320530 MW-7-1 2578125 320886 MW-7-2 2578125 320886 MW-8-1 2577265 32@25 MW-8-2 2577265 320925 D&M 3 2580092322720 D&M I 2581380 327365 GH-94-l 2576459 320549 GH-94-21 2577257 320385 GH-94-3 2577245 320046 GH-94-4 2577365 319598 D & M 12 2578314 326932 D&M282577380 317340 Dimensions (lt. x tt.) 95 100 Area (6q.tl.) 9500 Dimensions (fl. x fl.) 21 56 Aree (sq.tr.) 1176 Dimensions (It. x tt') 100 160 Area (sq.ft.) 16000 Dimensions (lt. x tt.) 75 130 Area (6q.ft.) 9750 Ruin Spring 2574294 310375 5391 Cottonwood Spring 2570024 317880 5238 Westwater Spring 2574166 321692 5493 Former Leach Field (near oflice) NW 2580274 322228 NE 2W569 322228 sE 2580369 322128 sw 25W274 322128 Olct Leach Field (scale house) NW 2580765 322279 NE 25ffi786 322279 sE 2580786 322223 sw 2580765 322223 Current Loach Field (east ol Mill yard) NW 2581224 3225{ NE 2581324 322530 sE 2*1324 322370 sw 2581224 322370 Land Fill NW 2581040 322915 NE 25811'15 322915 sE 2581115 322785 sw 25810/,0 322785 Sedimentation Pond NW 2579420 322Us NE 2579465 322il5 A 2579465 322400 B 2579555 322355 sE 2579555 322175 sw 2579420 322175 Lab Waste Holding Tank 2580085 322408 Abandoned Monitor Wells, Bore Holes, and Angle Holes Feature Easling Northing Elevation ( all coordinates are approximate ) 5570 5588 5588 5588 5588 5590 5590 5634.3 5679.3 5s97 5585 5579 5572 56,48.1 5547.6 11/0912001 9:25 AM o APPENDIX D Analytical Results b* \ttkal Ttb; (eqi ' ,.Il! Bllllngt. C..P.r' Glll.tt Hclcnr. Rrpld CltY LABORATORY ANALYSIS REPORT Client: INTERNATIONAL I'IRAML'M (USA) CORPORATION Project: White Mesa Mill Contact: WallY Brice Sample Matrix: Liquid, Water Date Received: 04-02-01 Report Date: APriI 9,2001 a ENEFGY LABORATORIES, INC. SHIPPING:2393 SALT CREEK HIGHWAY ' CASPER' WY 82601 MAILING: P.O. EOX 3258 ' CASPER' WY 82602 E-mail: casper@energylab.com ' FAX: (307) m4'rffig Fuoue' (3d7) 2ss-051s ' ToLL FREE: (888) 235'051s Laboratory ID Sample Date / Time Sample ID Nitrate * Nitrite as N' ms,lL WMMTW4-11 < 0.100l-31914-l 03-26-2001 14:02 0t-319r4-2 03-26-2001 15:49 WMMTW4-15 < 0.10 r0.00r-31914-3 03-29-2001 11:08 WMMTW4-12 01-319144 03-29-2001 12:38 WMMMW4 8.77 tt4-ll iS 4 ( or gt*I bL,4 ( or g, $ r.ra' rys+"V;.*.' eoile'iio< [rrrnrvitt{- t4 NOTES: (l)Thesevaluesareanassessmentofanalyticalprecision.Theacceptancerangeis0-20%lbrsampleresultsabovel0times the reporting limit. This range is not applicable to samples rvith results belorv l0 tirrres the reporting linrit' (2)Thesevaluesareanassessmentofanall,ticalaccuracy.They-areapercentrecoven.ot'thespikeaddition.ELlperlbnns a matrix spike on l0 percent of all samples fbr each analytical method' msh: r:\reporrs\clients200l\international-uranium-corp\liquitt\3 l9l4-l-4'xls :-i...:"! Reporting Limit Spike2 04-04-2OOl 17:13 Date/Time AnalYzed GOmPLETE ANALYTIGAL SERVICES .i : '- 'J .J t) A6 ;L =q ti ;l + lf) ra SE;eY=\ ::^- r,a -l 1r oi ni!rtEF \ uskp u.c =\c N a<P-. Ll ^i(?- ^t>>rS> d$ *F-!q* x)rr\ F.ui.e> \$-F *s''€i?Eu.tZTr-iUvt3:Hu* 5sH<9<\ = ...i\>oiEsfrt - Ia ES{z_ikl\q i:*i;; =3,=n 6) o anrt q) q) c)F 6 q) 6z (J (u c,ta6iJ U) {Jq) e0 F O U) I t) c) C)& C) a! o F (",zro) oqY,6) nrltj auufi uououtafi s41osls1toi nnfi tt-y O n A S ilt y:adilaldwog stauptuoc {o JaqunN + r) 5 t,t' $* ledTEo\oxB{. € ral d!A :) a) 2 II -j '\ :\\ .v =\Li .f\\J;-r N!:i \) U' -i\ = j\ in :'a --.'\ /=:c-,t\, d-i +-J =di\a- - \= o I 1) ; o o o --O 9 0 , 30 >r O ,J =h).a o F eO ir o 3q =J= .a.T ..lT-2 \H/ 5,7G{ =a =d = l=j I :' IJ KEl- I .- IJlpt: O ,n"tgy Laboratories, r"9O SAi{PLg COIIDITION REPORT Chi" t"porg provides informagion about Ehe condition of Ehe sample(s)' and assocaEed sampte Lr"toby information on receipt aE the laboraEory' Client: InEernationaf Urani,,q (USA) Corporatsion Description: WATER Lab ID(s): 01-31914-1 Thru 01-31914-4 Matrix: Liquid Delivered by: upe DaEe&Time Rec'd: 02-APR-01 1OOO DateATime col'd: 25-II!AR-01 1402 Received by: Sara Eawken Logged In by: Sara Hawken Chain of custody form completed & signed: Chain of custodY seal: Chain of custodY seal inEact: iignature matchl chain of custody vs' seal: Sample received TemPerature: . samiles received within holding time: samites received in proper conEainers: Samptes ProPerlY Preserved: Yee CommenEs: No CommenEs: N/A Comment,s: N/A CommenEs: 5C CommenEs: Yes CommenE,s: Yes Comments: Yee Commenus: Bottle TlPee Recal'ved: C@elta: .-ti-l .1. i? :!n.'iUb llU. lr: | ,rr"rgry Laboratories, rnc |) REPORT PACKAGE SUMMARY FINAL PAGE ELI-B EnergY Laboratories, ELI-G EnergY Laboratories, ELI-H EnergY LaboraEories, ELI-R EnergY LaboraEories, Acronyns and Definitions Inc. - Bil1ings, Mont.ana Inc. - Gil1eEte, WYoming Inc. - Helena, Montana Inc. - Rapid CiEY,SouEh Dakota sample staEed Limit. of DetecEion co - CarrY over from Previous ip - InsufficienE Parameters N/A - Not Applicable NA - NoE Ana1Yzed ND - AnalYEe NoE DeEected aE NR - Analyt,e Not Requested NST - No SamPle Time Given NSD - No SamPle Dat,e Given client ID: WMMMW4 is associated Eo Lab rD: 01-31914-4 client. ID: WMMrW-11 is associaEed to Lab ID: 01-31914-1 Client ID: WMMM. 12 is associaEed Eo I,ab ID: 01.31914.3 client ID: WMMr$I-15 is associaE,ed Eo Lab ID: 01-31914-2 This is the lasE page of the Laboratory Additional QC is available upon request ' The report conEains the -number of pages Reviewed BY: Analysis Report. :i.r,l.{ii.ri ili,. indicated by the last 4 dtgpes.' :'-\ .n,.')':.-' ,.;l-i ' '-_,'- j'::-.' i 1 n? i.in. ,', gL I arJ. : I i ,.: T*Vor fs^tr.'\ *t1t AAJ , Bllllngt. C..P.t' Gll1.n. H.l.nr. Rtpld CltY ENERGY LABORATORIES, INC. SHIPPING:2393 SALT CREEK HIGHWAY ' CASPER, WY 82601 MAILING: P.O. EOX 3258 ' CASPER' WY 82602 E-rnail: casper@energylab'com ' FAX: (307) 234'1539 PHONE: (307) 235-0515 ' TOLL FREE: (888) 235'051s LABORATORY ANALYSIS REPORT Client: INTERNATIONAL URANIIIM (USA) CORPORATION Project: White Mesa lVlill Contact: WallY Brice Sample Matrix: Liquid, Water Date Received: 04-02-01 Report Date: APril9, 2001 Laboratory ID Sample Date / Time Sample ID Nitrate * Nitrite as N, melL 01-3 1913-l 03-29-200109:32 WMMTW4-1 7.15 0L-3t913-2 03-29-200111:08 wMMTW4-2 r0.2 0t-31913-3 03-28-2001 17'35 wMMTW4-3 r.85 0t-319134 03-27-200109:02 WMMTW44 t4.5 01-31913-5 03-28-2001 l1:04 wMMTW4-5 3.88 0r-31913-6 03-26-2N1 16:20 wMMTW4-6 0.13 0t-31913-7 03-27-2@1 14:56 wMMTW4-7 2.46 01-3r913-8 03-27-2001 16:54 wMMTW4-8 < 0.10 01-31913-9 03-27-2001 11:20 wMMTW4-9 < 0.10 01-31913-10 03-26-2001 14:01 WMMTW4-10 < 0.10 furunTut1-t0 i-s P Bto---k-futSrr.wr NOTES: (l) Thesevaluesareanassessmentofanalylical precision. Theacceptanceran*seis0-20%tbrsarnpleresultsabovel0times the reporting limit. This range is not applicable to samples with results below l0 times the reporting limit' (2) These values are an assessment ofanalytical accuracy. They are a percent recovery ofthe spike addition' ELI pertbrms amatrixspikeont0percentofallsamplesfbreachana|yticalmethod. mslr: r:\reports\clients200l\international-uranium-corp\liquid\31913-l-10'xls . i- " Quality Assurance Data RPDI 0444-2001 15:30 Date/Time Analyzed GOMPLETE ANALYTTGAL SERVICE$ : , o.J- \ U) -- \ "z^. '{J S:A'a' r-. 'c:=\r. ,;. +rlIlR = r.. F. p u-g*.-= \ \o Noo(R-. lA c,iE?- (\t\ =e=Ood fi\Pt) *B.€ir.\Ja o2B \$1F *s'vr\€-.$!aE t-j.tZP\U uiSEHsa E^TH <.oQr. = ...8 i siri*L) EStz,il.t \q xi;- E ".='1 t) () (u q q) o (,) F nqtj aut$f uouotatafi rp11os1s1toJ ntfi trp-On A g 16 Y:ad,galdtttog steuqo1uoc lo fiqunN ''r$/s-t + stfi avsrs 3 o itn T{Tiai \:. rt ,- t\ =J!,,1 raiz a 2 ! ! ' :-l U u '1-)='a-\ - .r) o ! (\l ,- -t!)\ I 1) + J 30 9 1'It) :J :0 I IU eo-8 7) go,I-- o t- a) "O o a/) ? "e3 4 tpt:l= l-lal'z t-..t> t- l! 1.14t=| .- Ial-, It. a Energy r,.boratories, rng O SAMPLS COIIDITION REPORT This reporU provides informat.ion about t'he condition of Ehe sample (s) ' and assocaEed "".pf".r=coayinformationonreceiptaEEhelaboraEory' Clienu: Inter:latioaal Uranir:m (USA) Corporation DescripEion: WATER tab ID(s): 01-31913-1 Thru 01-31913-10 Mat'rix: Liquid Delivered by: uPs Date&Time Rec'd: 02-APR-01 1OOO DaEe&Time coI'd: 29-,iAR-0L 0932 Received by: Saia ttawten Logged In by: Sara Hawken Chain of custody form compleEed & signed: Yes Comments: irrii" of custodY sear ' No comments: it"i" ot cust,odj, sear inEact: N/A comments: iig"ic"r. match; chain of cusEody vs' seal: N/A commenLs: ffi;i; received TemperaEure: . 5c commentrs : i"rnir"" received wiitrin holding Eime: Yes comments: i"*if." received in proper conLainers: Yes commenEs: ;;;i;= Properly preierved: Yes comments: BottLe tYPea Received: Cmeata: ,_. f i I tl O ,rr"tgY Laboratories, rnc O REPORT PACKAGE SUMIT{ARY FINAL PAGE Acronyns and Definitions ELI-B Energy Laboratories, Inc' - Billings' Montana sir-c enerly LaboraLories, Inc' - GilleEte' Wyoming gl,f-H energy Laboratories, Inc' - He1ena' Montana SLf-n energy Laboratories, Inc' - Rapid CiEy'South DakoEa co - Carry over from previous sample ip - Insufficient Parameuers N/A - Not. APPlicable NA - NoE AnalYzed ND-ArralyteNotDeuecEedat,StaLedLimiEofDet,ecLion NR - l\nalyte Notr RequesEed NST - No SamPIe Time Given NSD - No SamPle Date Given Client ID: WMMTW4-1 Client ID: glMMfW4-10 Client, ID: WMlt[IW4-2 ClienU ID: WMMM4-3 Client ID: !{MMfi{4-4 Client ID: WMM!W4-5 Client ID: WMMIW4-5 Client. ID: VlMldTW4-7 C1ient ID: WMlr!TW4-8 Client ID: WMIITW4-9 is associated to Lab ID: 01-319L3-1 is associaEed to Lab ID: 01-31913-10 is associat,ed E,o Lab rD: 01-31913-2 is associated Eo Lab ID: 01-31913-3 is associated Eo Lab rD: o1-31913-4 is associaEed Eo Lab rD: o1-31913-5 is associated to Lab rD: 01-31913-5 is associaEed Eo Lab ID: 01-31913-7 is associaEed Eo l,ab ID: 01-31913-8 is associaEed Eo Lab ID: 01-31913-9 Reviewed BY:Approved By: This is the 1ast, page of t,he Laboratory AddiEional QC is available upon requesE ' The reporE conLains the.number of pages T-'^ Atlf r: r "^ ?inF ljnitt.ivil'.'' .'"' lasE 4.t'ng5rs.,l ! .ir i-. i: ll f,) '. . , w'.. U - .' ;'- -<--.--.- ]: Analysis RePort.. indicated bY the 0l-31913-1 03-29-2001 09:32 wMMTW4-l 7.15 ot-31913-2 03-29-2Wl 11:08 wMMTW4-2 to.2 01-31913-3 03-28-2001 17:35 WMMTTV4-3 1.85 01-319134 03-27-200109:02 WMMTW44 14.5 01-31913-5 03-28-2001 ll:M wMMTW4-5 3.88 01-31913-6 03-26-2001 16:20 wMMTW4-6 0.13 0t-31913-7 03-27-200l 14:56 wMMTW4-7 2.46 01-31913-8 03-27-2001 16:54 wMMTV/4-8 < 0.10 01-319r3-9 03-27-2001 ll:20 wMMTW4-9 < 0.10 01-31913-10 03-26-2001 14:01 WMMTW4-10 < 0.10 Quality Assurance Data Method EPA 353.2 Reporting Limit 0. r0 RPD'0.8 Snike2 94 Analyst rwk Date/Time AnalYzed 04{4-2001 15:30 NOTES: (l) These values are an assessment ofanalytical precision. The acceptance range is0-20o/o for sample results above l0 times the reporting limit. This range is not applicable to samples with results below l0 times the reporting limit. (2) These values are an assessment ofanalytical accuracy. They are a percent recovery ofthe spike addition. ELI performs a matrix spike on l0 percent of all samples for each analytical method. rnsh: r:\reports\clients200l\international_uranium-corp\liquid\31913-l-l0.xls 01-31914-L 03-26-2001 l4:O2 WMMTW4-11 < 0.10 0t-31914-2 03-26-2001 1.5:49 WMMT$/4-15 < 0.10 0t-31914-3 03-29-2001 11:08 WMMTW4-12 10.0 o1-319144 03-29-2Nl 12:38 WMMMW4 8.77 Quality Assurance Data Reporting Limit RPD' Spike2 0/.44-200l 17:13Date/Time AnalYzed NOTES: ( I ) These values are an assessment of analytical precision. The acceptance range is 0-20% for sample results above I 0 times the reporting limit. This range is nor applicable to samples with resutts below l0 times the reporting limit' (2) These values are an assessment of analytical accuracy. They are a percent recovery of the spike addition. ELI performs a matrix spike on l0 percent of all samples for each analytical method. msh: r:\reports\clients200l \international_uranium-corp\liquid\3 I 914-1-4.xls Volatile Organic ComPounds Client: Project: Sample ID: Laboratory ID: Matrix: Dilution Factor: International Uranium (USA) Corporation WHITE MESA MILL WMMTW4-l 01-31916-l Liquid - WATER 2N Date Sampled: Time Sampled: Date/Time Received: Date Analyzed: Date Reported: 03-29{1 09:50 04{241 10:00 04-0441 April 12, 2001 ND - Analytc not detcctcd ot stotcd linil oI detcction :,: .:,::::::.:::::,:,...:l :r:::]::,:: ::::'j::::::::,:I NI T'RNAT STANDARNS Pentafluorobenzcne Fluorobenzene 1,4 - Difluorobenzene Chlorobenzene - d5 1,4 - Dichlorobenzene - d4 ICAL / CCAL ARITA I 150521 2388861 t?75533 1163446 458781 ACCEPTANCE RANGE 50 -zffi % 50 -zffi % 50 -2W % 50 -20o % 50 -20o % ACCEPTAI\CE RANGN 86- ll8 7o 88-110% 86 - ll5 Vo 80 - l2Q Vo AREA t16ffi70 2433ils t769122 l 189063 4737M CONCT'NTRATION 9.45 10.3 9.91 9.90 PERCENT RECOVF'R\I lOlVo l02Vo 99.67o lO2Vo lO3Vo PERCE}TT Rncovtr'Rv 94.SVo lO37o 99.lVo 99.0% Dibromofluoromethane Toluene - d8 4 - Bromofluorobenzene 1,2 - Dichlorobenzene - d4 MF'THONS USFN IN TIIIS ANAI YSTS: EPA 5o3oB, EPA E2608 scc: r:\reporu\clicrrts2fl)l\in.gm.domluranium-corp\caspcr-org\319161.19-E26(h-chloroform-l.w.rls Analyst:rlo Volatile Organic ComPounds Client: Project: Sample ID: laboratory ID: Matrix: Dilution Factor: International Uranium (USA) Corporation WHITE MESA MILL wMMTW4-2 0l-31916-2 Liquid - WATER 2N Date Sampled: Time Sampled: Date/Time Received: Date Analyzed: Date Reported: 03-2941 I l:12 0442{l 10:00 044441 April 14,2001 ND - Analyte not iletccteil at stated limit of detcction ::ijri:;:::r:: rNTT'RNIT STANTTARIiS Pentafluorobenzene Fluorobenzene 1,4 - Difluorobenzene Chlorobenzene - d5 1,4 - Dichlorobenzene - d4 ICAL / CCAL ART'A I 150521 2388861 r775533 lt63M6 458787 PERCENT BF.COVTRY tN% lolVo 98.7% lolTo t03% PERCEI.IT RNCO\rER\l 93.6% t03% 99.3Vo 98.8% ACCEPTAI{CE R.^NGE fi-2W% so -20o % 50 -200 7o 50 -?N % s0 -zffi % ACCEPTANCE RANGE 86-ll8% 88-110% 86-tts% 80-r20% ARRA 1t54034 2407856 17529ffi I 171985 471262 Dibromofluoromethane Toluene - d8 4 - Bromofluorobenzene 1,2 - Dichlorobewere'd4 CONCF'NTRATION 9.36 10.3 9.93 9.88 MT'T'HODS USFN IN THIS ANAI YSTS: EPA 5BOB, EPA E26OB scc: r:\rc?ortsklicrrrofi)t\intcr,ladonel uBnium-corpbaspcr-org\3l9lGl.l9-E26(b-chloroform-l-w.xls Amlyst:rlo Volatile Organic ComPounds Client: Project: Sample ID: I-aboratory ID: Matrix: Dilution Factor: Internationat Uranium (USA) Corporation WHITE MESA MILL wMMTW4-3 0l-31916-3 Liquid - WATER 100 Date SamPled: 03-2841 Time SamPled: L7:56 DateiTime Received: Oa424l 10:00 Date AnalYzed: 04{441 Date Reported: APril 14,2001 Ef,-lorof orm(f richloromethane) ND - Analytc not detected at sntcd limil of detcctbn ACCEPTAN-CE ABEA l 158619 240/i030 t745382 117590/. 4'12736 101% rot% 101% to3% PBRCEI{T RNCOVT'RY 94.8Vo ro3% lOlVo 98.5% RANGT'. 50'2OO Vo so -2@ % 50 -2@ % 50 -20o % 50 -ZCo Vo ACCEPTANCE RANGN E6-ll8% 88-ll0% 86-115% 80-120% II\TF'RNAI STANTTARDS Pentafluorobenzene Fluorobenzene 1,4 - Difluoroberzene Chlorobenzene - d5 1,4 - Dichlorobevr'ne' M ARtr'A Rr..CO\rF'RY SYSTF'M MOMTORING COMPOINTIS Dibromofluoromethane Toluene - d8 4 - Bromofluorobenzene 1,2 - Dichlorobenznte - d4 l 150521 2388861 n63446 4s8787 CONCTT.ITRAflON 9.48 10.3 l0.l 9.85 1775533 98.37o EPA 50308, EPA E260B scc:r:\rcponsklicils2oot\i'Icrnatioml-uranium-corp\casper-org\31916t.19-E260b-chloroform-l-w.rls Analyst: Votatile Organic ComPounds Client: Project: Sample ID: LaboratorY ID: Matrix: Dilution Factor: International Uranium ruSA) Corporation WHITE MESA MILL WMMTW44 0l-3191fl Liquid - WATER 2W Date Sampled: Time Sampled: Date/Time Received: Date Analyzed: Date Reported: 03-27-Ol ' 09:00 04{2{1 10:00 ,044ffi1 April 14,2001 ND - Analytc not detecteil al stated limit of ilctcctbn rT{Ttr'RNAI STANTIARDS Penufluorobenzene Fluorobenzene 1,4 - Difluorobenzeue Chlorobenzene - d5 1,4 - Dichlorobenzene - d4 ABEA 980162 2227683 t5722tO t044'.188 410680 lcAL lccAL AREA r 150521 2388861 1775533 tt634r',6 458787 PERCEI{T RECO\rF'RY 8s2% 93.3Vo 88.5% 89.87o 89.SVo PERCET$T RrcovnRv 98.3% t06% 106Vo 99.ZVo ACCEPT BANGE s0 -20o % 50 -20o % 50 -?fr % fi -2A0 Vo 50 -2W % ACCEPTAI{CE RANGE' 86-ttB% 88-ilo% 86-rts% 8o-l20Vo Dibromofluoromethane Toluene - d8 4 - Bromofluorobenzene 1,2 - Dichlorobenzene - d4 CONCENTRATfON 9.83 10.6 10.6 9.n EPA 5O3OB, EP'A 8260B scc: r:\rcports\clians2(Dt\incrmdonr|-unnium-corp\caspcr-org\319t61.t9-D6ft-ch]oroform-]-w.rls Analyst:rlo Volatile Organic Compounds Client: Project: Sample ID: Laboratory ID: Matrix: Dilution Factor: International Uranium (USA) Corporation WHITE MESA MILL wMMTW4-5 0t-31916-5 Liguid - WATER l0 Date Sampled: Time Sampled: Date/Time Received: Date Analyzed: Date Reported: 03-28{l ll:22 0442{1 10:00 ot-04{r April 14,2001 ND - Analyte not detectcd at sroted limit of dctcctbn TT{TF'RNAI STANTTAITD.S Pentafluoroberzene FluorobenzPne 1,4 - Difluorobenzene Chlorobenzene - d5 1,4 - Dichlorobenzene - d4 ARFA RECOVERY RANGE 5O - 2O0 Vo 50 -20o % s0-2@% so -200 % 50 -20o % ACCEPTANCE RANGIT 86-118% 88-ll0% 86-tts% EO - l2O Vo sYsTF.M MOMTORTNG COMPOUNTIS Dibromofluoromethane Toluene - d8 4 - Bromofluorobenzene 1,2 - Dichlorobenzene - d4 l r50521 2388861 t775533 1t63446 458787 CONCT'NTRATION 9.46 10.4 r0.1 9.76 AREA 1t07374 2345208 1698810 I 159686 466834 96.2% 98.2% 95.7% 99.77o 102% PERCENT RECO\rF'RY 94.6% 1447o lOlVo 9'.t.6Vo MF'THOTIS IISF'II IN TIIIS ANAI YSIS: EPA 5O3OB, EPA E26OB scc: r:\rcporsklicrngo0l\inarnrdoml-unnium-corp\caspcr-org\3I9161.19-8ll60b-chloroform-l-w.rls Amlyst:rlo Volatile Organic ComPounds Client: Project: Sample ID: Laboratory ID: Matrix:. Dilution Factor: International Uranium ruSA) Corporation WHITE MESA MILL wMMTW4-6 01-319166 Liquid - WATER 2 Date Sampled: Time Sampled: Date/Time Received: Date Analyzed: Date Reported: 03-26{1 l6:30 O44241 10:00 04{4{l April 14,2001 ffi r-oform(Trichloromethane) ND - Anolytc not detccted al statcd limit ol detcctbn nITFRNAI STANDARDS Pentafluorobenzene Fluorobenzene 1,4 - Difluorobenzene Chlorobenzene - d5 1,4 - Dichlorobenzene - d4 Dibromofluoromethane Toluene - d8 4 - Bromofluorobenzene 1,2 - Dichlorobenzene - d4 ICAL / CCAL AREA I 150521 2388861 1775533 1163M6 458787 CONCtr'NTRAflON 9.58 10.4 r0.0 9.U nE, :Iii:ii:ii:iii.ii PERCENT RNCOVF'RY 98.7% 9 jlVo 96.ZVo 99.6% l02Vo PERCENT RFCO\IERY 95.8% lO47o lAOTo 98.470 IIJiEEIT ACCEPTANCE RANGE 50 -200 Vo s0 -zffi % 50 -N Vo 50 -2OO 7o 50 -?-00 70 ACCEPTANCE RANGF 86-ttB% 88 - ll0 7o 86 - ll5 Vo w-t20% ABEA 1t35759 23821n 1708345 I 159355 467805 EPA 50308, EPA 12608 scc:r:\rcpors\clicnts200l\iilct'r'lio|raluranium-corp\caspcr-org\3l9tGt't9-E26r6-cfrloroform-l'w'xls Analyst:rlo Volatile Organic Compounds Client: Project: Sample ID: Laboratory ID: Matrix: Dilution Factor: International Uranium (USA) Corporation WHITE MESA MILL wMMTW4-7 0l-3t9tG'.t Liquid - WATER r00 Date Sampled: Time Sampled: Date/Time Received: Date Analyzed: Date Reported: 96.lVo 97.3% 945% 97.7% 03-2841 l5:09 O4{2{1 10:00 04-0441 April 14,2001 ND - Analyte nol dctcctcd at statcd limit oJ dclection PERCENT@ T{TF'RNAI STAT{NAITDS Pentafluoroberuzr;trc Fluorobenzene 1,4 ' Difluorobenzene Chlorobenzene - d5 1,4 - Dichlorobenzene - d4 ARRA l r05485 2323615 t678345 r 136308 448761 RANGN 5O -20o Vo 50-2@% 50 -200 7o so -2fr % 50 -2ffi % ACCEPTANCE RANGR 86-ll8% 88-u0% 86 - ll5 Vo 80 - 120 Vo ARRA RF'COVF'RY SVSTT'M MOT{ITORING COMPOUNNS Dibromofluoromethane Toluene - d8 4 - Bromofluorobeozcne 1,2 - Dichlorobenzene - d4 l 150521 2388861 t775533 tt634/,6 CONCENTRAT'ION 9.38 10.5 10.0 9.83 458787 ' 97.870 PERCENT RF'COVERY 93.8% 105% tN% 98.37o MF'TTIOTIS IISF'N IN TTIIS ANAI.VSIS: EPA 50308, EPA E2608 scc: r:\rcporsklienrs2fl)l\iucrnadonrluranium-corp\caspcr-org\3l9l6l'19-&26(b-chloroform-l'w'xls Analyst:rlo Votatile Organic ComPounds Client: Project: Sample ID: Laboratory [D: Matrix: Dilurion Factor: International Uranium (USA) Corporation WHITE MESA MILL wMMTW4-8 0l-31916-8 Liquid - WATER r0 Date Sampled: Time Sampled: Date/Time Received: Date Analyzed: Date Reported: 03-2601 17:00 044241 10:00 04-04{l April 14,2001 ffi 67s-3 ::. 1.: ::,: ::::]:::::::: Chloroform (Trichloromethane) ND - Analyte not detcctcd at statcd limil of debctbn rNTF'RNAI STANTIARTIS Pentafluorobenzene Fluorobenzene 1,4 - Difluorobenzene Chlorobenzene - d5 1,4 - Dichlorobenzene - d4 ,:,1:;;.:;,.,::::,,71trgilV7fi1-fj. ARf,'.A 1090084 23097fi 1ffi765 r l 19681 44236'l ICAL ICCAL ABEA I 150521 2388861 1775533 11634/,6 458'187 PERCENT RNCOVERY 94.77o 96;t Vo 93.87o 96.27o 96.4% PERCEtr{T RNCO\rF'RY 95:1Vo tu% lOlVo 99.47o ACCEPTANCE RANGE 50-20o% so -200 % 50 -20o Vo s0 -2@ % 50'200 Vo ACCEPTANCE RANGF 86-il8% 88-110% 86-tts% 80-r20% Dibromofluoromethane Toluene - d8 4 - Bromofluorobenzcne 1,2 - Dichlorobenzene - d4 CONCENTRATION 9.5't 10.4 l0.l 9.94 MFTHODS usr'n IN TIIIS ANAI VSIS: EPA 50008, EPA 82608 scc:':\rcporBklicnts2(Dl\inrermtiorl-uranium-corpbasper-org\3l9l6l-t9-&16(b-chloroform-l.w.xls An lyst:rlo Volatile Organic ComPounds International Uranium (USA) Corporation WHITE MESA MILL wMMTW4-9 01-31916-9 Liquid - WATER 2 Client: Project: Sample ID: Laboratory ID: Mauix: Dilution Factor: Date Sampled: Time SamPled: Date/Time Received: Date Analyzed: Date Reported: ' 03-n4r I l:35 M42{l 10:00 0445{1 April 14,2001 ::a:L.- :.Yr-i= :: i..:i:T::-= .,i:rr:.'.. 1i:." ":' :: i 11i:1}': : dlorofo"m (Itichloromethane) ND - Analytc not derccteil at stucd limit ol detcction l;jiii,l:1,.,.ii,ii:ii :;:i:ii; ;,i:,;:':::l:,i rNT'F'RNAI STANDARNS Pentafluorobenzene Fluorobenzene 1,4 - Difluorobenzene Chlorobenzene - d5 1,4 - Dichlorobeirzene - d4 Dibromofluoromethane Toluene - d8 4 - Bromofluorobenzene 1,2 - Dichlorobenzete - d4 ICAL / CCAL AREA I 150521 2388861 t7'15533 116346 45878',7 CONCT'NTRATION 9.50 10.5 10.1 9.80 PERCEi.IT RPCOVF'RY 92.8% 96.5Vo 93.47o 95.9Vo VI'.5Vo PERCENT RECOVF'RI. 95.O% 105% tol% 98.07o ACCEPTANCE RANGtr'. fi -2OO Vo so -20n % fi -Zffi Vo 50 -2W % so -20o % ACCEPTANCE RANGN 86- ll8 % 88-110% t6-rr5% w-t20% ARF'A 1067998 2306313 t658294 l r 15898 44',tO9l EPA 5o3oB, EPA E260B scc:r:\rcporrsblianrs2ol\inrcrnadonal_unnium_corp\caspcr_org\3r9r6r-r9_&160b-chroroform-l-w-rls Amlyst:rlo Volatile Organic ComPounds Client: Project: Sample ID: L,aboratory ID: Matrix: Dilution Factor: International Uranium (USA) Corporation WHITE MESA MILL wMMrw4-lo q A 0l-31916-10 Liquid - WATER 2 Date Sampled: Time Sampled: Date/Time Received: Date Analyzed: Date Reported: 03-23-01 12:45 04{2O1 10:00 0445-01 April 14,2001 ND - Anatyte nol detected at slatcd limit of dctcction Chloroform (Trichloromethane) T{TT'RNAI STANT}ARNS AREA Pentafluorobenzeirc 1081645 Fluorobenzene 228U51 1,4 - Difluorobenzene 1630418 Chlorobenzene - d5 1103332 1,4 - Dichlorobenzene - d4 437'154 SYSTEM MONrTORn\IG COMPOIINNS Dibromofluoromethane Toluene - d8 4 - Bromofluorobenzene 1,2 - Dichlorobenzene - d4 ARIIA RNCOVERY I 150521 2388861 t775533 1t63446 458787 CONCF'NTRATION 9.5s 10.6 lo.2 9.91 94.0% 95.s% 91.87o 94.8% 95.4% PERCENT Rtr'COVF'RV 9s.5% lMTo l027o 99.1% RANGE s0 -20o % 50 -20o % 50-?fo% 50 -2OO 7o 50 -2fi 7o ACCEPTANCE RANGN 86-ttB% 88-u0% 86-tt'% 80-120% MF'THODS UST'II IN TIIIS ANAI YSIS: EPA 5O3OB, EPA 82608 scc: r:\rc?ora\clicnts2OOl\iucrnedonal unnium-corp\caspcr-org\3l9l6l-19-til6(h-chloroform-l.w.rls Amlyst:rlo r ABORATORV ANALYSIS REPORT, T'PA T\MTHON 8260 Volatile Organic ComPounds Client: Project: Sample ID: I-aboratory ID: Matrix: Dilution Factor: International Uranium (USA) Corporation WHITE MESA MILL wMMrw4-ll a4 01-3191611 Liquid - WATER 2 Date Sampled: Time Sampled: Date/Time Received: Date Analyzed: Date Reported: 03-2341 12:47 0442{1 10:00 04{541 April 14,2001 ND - Analyte not detected dt storcd limil of delection . : .::: i::: r:::1:: INTT'RNAI S-TANDARDS Pentafluorobenzene Fluorobenzcne 1,4 - Difluorobenzene Chlorobenzene - d5 1,4 - Dichlorobenzene - d4 ICAL ICCAL ARNA 1150521 238886r t'175533 tt63u6 458787 PERCENT RRCOVERY 94.5% 96.87o 93.6Vo 93.9Vo 93.lVo PERCEI.IT RNCO\rERY 95.3% tM% r02% 99.17o ACCEPTAIYCE RANGN fi-2@% 50 -20o Vo 50-2W% fi -200 Vo 50 -2@ % ACCEPTAI{CE RANGIT 86-ttB% 88-ll0% 86-trs% w-t20% ARRA 1087398 23tzt6l 1661249 1093054 427271 SYSTT,'M MONITORING COMPOIINDS Dibromofluoromethane Toluene - d8 4 - Bromofluorobenzene 1,2 - Dichlorobenzene - d4 CONCT'N"I'RATION 9.53 10.4 to.2 9.91 Mtr'TTIOTIS USf,'II T{ TTIIS ANAI YSIS: EPA 5o3oB, EPA EZ608 scc: r:\rcporsklicnts2d)t\intcrmrionrliranium-corp\cesper-org\3l9l6l-19-6260b-chloroform-l'w'xls Analyst: Volatile Organic ComPounds Client: Project: Sample ID: Laboratory ID: Matrix: Dilution Factor: Internationat Uranium (USA) Corporation WHITE MESA MILL wMMTw4-12 Dqp. oF Tlal 4- 2- 0t-319t6-12 Liquid - WATER 2W Date Sampled: Time Sampled: Date/Time Received: Date Analyzed: Date Reported: 03-2941 ll:24 044241 10:00 04{641 April 14,2001 '''.:j : i:r: ND - Anatyte not dctectcd at stated limil of dctectbn ::.1.:: :::.:1.r:::.::::: ....:',. ":. ... . ICAL/CCAL PERCEI.IT @ ii:iii::ii::::::iti;i:i,i[ Ctrlorofornr (Trichlorom ethane) TNTERNAI.STANTIARNS ARNA Pentafluoroberzene 954374 Fluorobenzene 2199976 1,4 - Difluoroberzene 1545815 Chlorobenzene - d5 1054565 1,4 - Dichlorobenzene - d4 411'116 Dibromofluoromelhane Toluene - d8 4 - Bromofluorobenzene 1,2 - Dichlorobenzene - d4 4,410 ARNA RECOVT'RY I 150521 83.0% 2388861 92.lVo t'175533 t163446 458787 CONCFNTRATION 10.0 10.8 10.4 9.83 87.17o 90.6% 89.7% PERCENT RECOVFRV TNVo lO87o lMTo 98.3% RANGF'- fi -2Co Vo 50 -2OO Vo 50 -ZCo Vo 50 -zfi % 50 -20o % ACCEPTANCE RANGF 86 - ll8 7o 88-u0% 86 - ll5 Vo 80 - 120 Vo EPA 50308, EPA E2608 scc: r:\rcports\clicntg0ot\inernetional uranium-corp\caspcl-org\319161.t9-E26&-chloroform-l-w.rls Analyst:rlo -\ Client: Project: Sample ID: LaboratorY ID: Matrix: Dilution Factor: International Uranium (USA) Corporation WHITE MESA MILL wMMTw4-13 (Lnial|, 9n or 1o 01-31916-13 7wr1'nfi a-n<) Liouid - wArER SaHP 'HX P oC v'ze.lG' z ('f-ott r*a^%? 1* Date Sampled: Time Sampled: Date/Time Received: Date Analyzed: Date Reported: 03-23{1 14224 0442{1 10:00 04-0541 April 14,2001 Volatile Organic ComPounds ND - Anatyte not ilctccted at stated limit of iletection INTT'RNAI.STANDARNS ARF'.A Pentafluorobenzene 1056010 Fluorobenzene 2291350 1,4 - Difluorobenzene 1639990 Chlorobenzene - d5 1102979 1,4 - Dichlorobenzene - d4 429163 Dibromofluoromethane Toluene - d8 4 - Bromofluorobenzene 1,2 - Dichlorobenzene - d4 CONCNI{TRATION 9.s6 10.5 r0.1 9.85 PERCEhIT RECOVERY 91.8Vo 95.9Vo {2.470 94.8% 935% PERCEI{T RF'.COVERY 95.6Vo l05Vo lOlVo 98.5Vo ANCE RANGN 5O -2.0O Vo fi-20o% 50 -20o % 50 -20o % 50-zfo% ACCEPTANCE RANGT' 86-118% E8-110% 86-trs% w-r20% ICAL / CCAL ARIIA l 150521 2388861 1775533 1163446 458787 EPA 50308, EPA E260B scc: r:\rcporsklicrils2oot\inrcnutiorBl unnium-corp\caspcr-org\3t9l6l-t9-E260b-chloroform-l'w'xls Analyst:rlo Volatile Organic Compounds Client: Project: Sample ID: I-aboratorY ID: Mauix: Dilution Factor: International Uranium (USA) Corporation WHITE MESA MILL WMMTW4-14 A n*I*, P+12 (^ 1o ol-3tet6-14 D- l+ Liquid - WATER 2 Date Sampled: Time Sampled: Date/Time Received: . Date Analyzed: Date Reported: 03-25{l 12:33 04{2{1 10:00 0445-01 April 14,2001 Chloroform (Trichloromethane) ND - Analytc not detcctad at stated limil of dctcction TNTTRNAI STANTIARNS ART'.A pentafluorobenzene 1053851 Fluorobenzene 2258371 1,4 - Difluorobenzene 1603542 Chlorobenzene - d5 1090824 1,4 - Dichlorobenzene - d4 4264;03 Dibromofluoromethane Toluene - d8 4 - Bromofluorobenzene 1,2 - Dichlorobenzene - d4 CONCH\TTRAflON 9.62 10.6 10.1 9.78 ICAL / CCAL . ARBA 1 150521 2388861 1775533 1t63446 45878t PERCEI{T Rr.COVFRY 9t.6% 94.5% il).3Vo 93.8% 92.9% PERCEi.IT RncovFRv 96.2% t06% tor% 97.8% ACCEPTANCE ITANGIT 50-m% 50-20o% 50-2W% 50 -2W % 50 -2@ % ACCEPTAIYCE RANGT' 86-ttB% 88-110% 86-tts% 80 - t?0 vo ME'THODS USFD IN TIIIS ANAI YSIS: EPA 50308, EPA t2608 scc: r:\rcpora\clicnrofl)l\idernadorElutanium-corpbaspcr-org\3t916l-t9-&16$-cfiloroform-l-w'xls Amlyst:rlo Volatile Organic ComPounds Client: Projecr: Sample ID: Laboratory ID: Mauix: Dilution Factor: Internationat Uranium (USA) CorPoration WHITE MESA MILL wMMTW4-ls (L<nsaL pnGr to 01-3191615 ClllaroQ*rr.ur,z(lS' Liquid - WATER 2 Date Sampled: Time SrmFled: Date/Time Received: Date Analyzed: Date Reporrcd: 03-25-01 13:35 04{241 10:00 0445{1 April 14,2001 ND - Analyte not detcclcd al statcd limil of dctcctba TNTXIRNAI. STANDARITS Pentafluorobenzene Fluorobenzene 1,4 - Difluorobenzene Chlorobenzene - d5 1,4 - Dichlorobenzene - d4 ICAL / CCAL ARITA l 150521 2388861 1775533 1163446 4s8787 PERCEI{T RT'.cOVERY 92.6% 94.6% 97.57o 93.SVo 97.SVo PERCEI.IT RECOVF'RY 94.7Vo 1057o tot% 99.$Vo jIE ACCEPTANCE RANGr. 50 -2W % 50 -20o % 50 -ZCo Vo' 50 -20o % s0 -20o % ACCEPTANCE RANGE 86 - ll8 7o 88-ll0% 86-tr'% 80-t20% AREA 1064856 2258935 t6249ffi 1088081 419852 Dibromofluoromethane Toluene - d8 4 - Bromofluorobenzene 1,2 - Dichlorobenzene - d4 CONCT'JYTRATION 9.47 10.5 10.1 9.98 EPA 5O3OB, EPA E26OB scc: r:Vcporsblicnts200l\incrnational uranium-corp\caspcr-orgBl9lGl.l9-8260b-chlorofo'm-l-w.ils Analyst:rlo Volatile Organic ComPounds Client: Project: Sample ID: Laboratory ID: Matrix: Dilution Factor: International Uranium (USl'1 Corporation WHITE MESA MILL WMMMW4 01-31916-16 Liquid - WATER 400 Date Sampled: Time Sampled: Date/Time Received: Date AnalYzed: Date Reported: 03-29-01 12:5O O4{2{l 10:00 0445{l April 14,2001 ND - Anatytc not dctcckd at statcd limil of itctectba fl\TTF'RNAI STAI{NARNS ABEA Pentafluorobenzene Io4'2OW Fluorobenzene 223W95 1,4 - Difluorobenzene 1612893 Ctrlorobenzene - d5 1075862 1,4 - Dichlorobenzene - d4 42U45 Dibromofluoromethane Toluene - d8 4 - Bromofluorobenzene 1,2 - Dichlorobenzene - d4 ICAL / CCAL ABEA I 150521 2388861 t'175533 t163446 458787 CONCF'NTRATION 9.46 10.4 10.2 9.98 PERCE}.IT RECO\IERY 9O.6Vo 93.77o fi.8% 92.5Vo 91.67o PERCENT Rncovr.RY 94.6Vo lO4Vo lO2Vo . 9.8% l::.:::.::::::::i l:::::::::::::::::::;::::::::::;: ii 1 r.. l. : '. ' ACCEPTANCE RANGE s0 -2fi % 5O -Zffi Vo 50 -20o 7o s0 -20o % 50 -200 Vo ACCEPTAT{CE RANGN 86-ttB% E8-u0% 86 - ll5 Vo 80-r20% EPA 50308, EPA 82608 scc:r:\rcPors\clicnrs2OOt\irrrcrrutioorl-ursnium-corp\casper-org\3t9161.19-&160b-chloroform-l.w.rls Analyst:rlo Volatile Organic Compounds Client: Project: Sample ID: Laboratory ID: Matrix: Dilution Factor: International Uranium (USA) Corporation WHITE MESA MILL WMMMWlT 0t-31916-17 Liquid - WATER 2 .Date Sampled: Time Sampled: Date/Time Received: Date Analyzed: Date Reported: 03-2541 l4:48 04-0241 10:00 0445-01 April 14,2001 Chloroform (Trichloromethane) ND - Analyte not dctccrcd a, statcd limil of dctcctbn rNTTF'ITNAI . STANNARNS Pentafluorobenzene Fluorobenzene 1,4 - Difluorobenzene Chlorobenzene - d5 1,4 - Dichlorobenzene - d4 tcAL lccAL ART"A l 150521 2388861 t775533 tt63M6 458787 ACCEPTANCE RANGE 50-20o% s0-2@% s0 -20o % s0-20o% fi -20o Vo ACCEPTANCE RANGN 86- 118 % 88-ll0% 86-ll5% 80-120% AREA t055347 227m,30 1618320 1091563 432256 CONCENTRAT"ION 9.61 10.6 t0.2 9.88 PERCENT RECOVF'RY 91.7% 9s.0% 9l.lVo 93.8% 94.2Vo PERCBNT RECOVERY 96.t% 1067o 102% 98.8Vo Dibromofluoromethane Toluene - dE 4 - Bromofluorobenzene 1,2 - Dichlorobenzene - d4 I,TFTHOnS USFD IN TIIIS ANAI YSIS: EPA 5o3oB, F,PA E2608 scc: r:vcporsblicns2ool\inlernationrl uranium-corpbespcr-org\3t9t6l-19-&160b-chloroform-l'w'rls Amlys:r},o r RORATORY ^N I YSIS REPORT, EP VfFTHOD 8^60 Volatile Organic ComPounds Client: Project: Sample ID: LaboratorY ID: Matrix: Dilution Factor: Internationat Uranium (USA) Corporation WHITE MESA MILL WMMTW4 COMP 0r-3191G18 Liquid - WATER 100 Date Sampled: Time SamPled: Date/Time Received: Date AnalYzed: Date Reported: 03-30-0r M:36 0442{1 10:00 04{5-01 April 14, 2001 ND'Analytc not detcctcd ol statcd limit of dctectbn hITF'RNAI. STANNARNS Pentafluorobenzene Fluorobenzene 1,4 - Difluorobenzene Chlorobenzene - d5 1,4 - Dichlorobenzene - d4 Dibromofluoromethane Toluene - d8 4 - Bromofluorobenzene 1,2 - Dichlorobenzene - d4 AREA 1036677 2249534 r598837 1072il9 416945 n.0% {2.2Vo 90.9% PERCE}.TT RrrcovFRY 94.4Vo lMTo 102% 99.27o RANGE 50 -2Co Vo 5O -Z0o Vo 50 -20o % 50 -20o % 50 -20o % ACCEPTANCE RANGf,'. 86-u8% 88-u0% 86-tt'% 8o-l20Vo ART'.A RNCOVF'RY 1 150521 90.1% 2388861 94.2Vo t775533 1t63446 458787 CONCENTRATION 9.4 10.6 t0.2 9.92 EPA 5O3OB, EPA 82608 scc:r:Vcpors\clicntg(Dt\inrcrnarionrluranium-corp\clspcr-org\3l9tGl-t9-E260b-chloroform-l-w'xls Amlyst:rlo Client: Project: Sample ID: Laboratory ID: Matrix: Volatile Organic ComPounds International Uranium (USA) Corporation WHITE MESA MILL TRIP BLANK 01-31916-19 Liquid - WATER I Date Sampled: Time Sampled: Date/Time Received: Date Analyzed: Date Reported: 03-1641 l6:10 04{241 10:00 04{441 April 14,2001 ND - Anatyte not dctcctcd a, sauil Emit of detection II\ITT'RNAI STANNARDS Pentafluorobenzene Fluorobenzene 1,4 - Difluorobenzene Chlorobenzene - d5 1,4 - Dichlorobenzene - d4 ARPA l 191328 24s2721 1788376 1218017 49194.1 ICAL / CCAL ARDA l 150521 2388861 1775533 1163446 458787 CONCF'N"TRATTON 9.59 10.2 9.89 9.79 PERCENT RECO\IF'RY tu% to3% tot% 105% r0'l% PERCET{T RNCOVF'RY 95.970 102Vo 98.9Vo 97.9Vo ACCEPTA}ICE RANGE 50 -20o Vo 5O -20o 7o 50-zffi% 50 -240 7o 5O -2AO Vo ACCEPTANCE RANGE 86-trB% 88-110% 86-rts% 80 - r?i vo Dibromofluoromethane Toluene - d8 4 - Bromofluorobenzene 1,2 - Dichlorobenzene - d4 I\{F'THOTIS USF'TT IN TIIIS ANAI YSIS: EPA 5O3OB, EPA 82608 scc: r:v@ors\clicns200l\incmarional uranium-corp\i:aspcr-oig\3t9l6l-19-&260b-chloroform-l-w'xls Analyst:rlo Client: Project: Sample ID: Laboratory ID: Matrix: Dilution Factor: Volatile Organic ComPounds International Uranium (USA) Corporation WHITE MESA MILL Method Blank M80404 Water I Date Sampled: Time Sampled: Date/Time Received: Date Analyzed: Date Reported: N/A N/A N/A 04-0441 April 12,2001 ::.r.:ili:ili:r: i:,::lllii::iii,iiiili:i:iiiii E:;{tSii :f ,. .r,,:.,,,,ii. 6t6-3 Chloroform (Trichloromethane) ND - Anatytc not detectcd at statcd limi, oI detection rNITT'RNAI STANNARNS ARFA Pentafluorobenzene 1184558 Fluorobenzene 2435440 1,4 - Difluorobenzene 17823'19 Ctrlorobenzene - d5 1183537 1,4 - Dichlorobenzene - d4 464888 ICAL ICCAL ARFA r 150521 2388861 1775533 ll63u6 458787 PERCENT Rr.CO\rF'RY lOSVo lO2Vo tN% ' l02Vo lOlVo PERCENT RT'COVF'RY 95.37o 102% 98.8Vo 98.5Vo ACCEPTANCE RANGN 50 -200 % 50 -?-oo vo 50 -200 7o 50 -20o % 50 -2ffi Vo ACCEPTANCE RANGN 86-trB% 88-ll0% 86-rr5% ffi-lNVo Dibromofluoromethane Toluene - d8 4 - Bromofluorobenzene 1,2 - Dichlorobetaene' M CONCF'NTRATION 9.53 10.2 9.88 9.85 BPA 5o3oB, EPA 82608 scc:r:\rc?or6klicils200t\incrnationduranium-corp\caspcr-orgBl9l6l.l9-E260b-drloroform-l.w.rls Analyst:rlo Client: Sample Set: kboratory ID: Matrix: International Uranium (USl1 Corporation 0l-3l916l through 0l-3l9lGl9 0l-3l9lGl7 S Liquid - WATER Date Sampled: 03'29{l Date/Time Received: 0442{l 10:00 Date Analyzed: M{5{l Date Reported: APril 12, 2001 Pentafluoroberzene Fluoroberzene 1,4 - Difluorobenzene Chlorobenzerc - d5 1,4 - Dichlorobenzened4 % 89.2Vo n^7% 89.9% 91.6% y2.6% iii:i::ii:X;:X::ii:iiiiiiri:i::i:i::ii::liiil SPIKE DT'PLICATE AITF'A 10349s8 ?2372y2 1600@8 10601El 4,4/E,B rii:i:ii;:iiii:i:::::iii:i;iiiii:iiiil:iil::rli:i:::,::ti:,illt SPII(E DIJPLICATE CONCT'N'I"RATTON 9.51 10.6 10.4 9.n % 90.0% 93.7% 90.r% 9t.t% n.5% iiri iiii:ii:irri::ii;:iiii::iii:;ii:;;i:iii:i;iii:ii PERCEIYT RT'COVT'II\I 95.7% to6% tu% 99.77o ACCEPTAI{CE BANCE 50 -?40 vo s0 -2w % s0 -20o % 50-2W % 50 -20o % ACCEPTANCE RANGF' 86- ll8 % E8-lr0% 86 - ll5 Vo 80-r20% ARE,A I 150521 2388861 t775533 tt6346 ART'-A tv25937 ?2t343t 1595730 to65324 Dibromofluoromethane Toluene - d8 4 - Bromofluorobenzene 1,2 - Dichlorobenzened4 Chloroform (Trichloromethane) SPIXE DI,JP chloroform (Trichloromettr-flTff* 458781 Affi :::i:: ::::;:i::i,::liiii:i:liitltiiti::::iii;illiiix:li:::iji SPIKED SAMPLE PERCENT CONCF'NTRAfl ON RRCOVERY e.62 96.2% 10.6 106% ro.3 103% e.es 99.5% SPIKED SAMPLE ORJG. CONC. SPIKE AMOI.'NT +:liii:;:iltil:;:i:l:il:;:::;:iii:iiri;:ir I :ri:i:::,.::'i i::i:::'i.'r;i':::: :.:: ::':::'i:i:r:.il:::;i::i':r: PERCENT . .ACCEPTANCE RECOVER.Y R,AilGT' 9E.5% 70 - t30 % CONCFNTR.ATION (r8ll)* 9.85 ND Gglr) 10.0 . "".,a..:':.:i::.: : : ".':.:'::"'.:' omc. coxc. t$ctt,i- ND . . ,l ]:1::::::::::l:.:, SPII(E tuen) 10.0 PERCENT Rtr'COVERY tot% RPII 2.t% RPD IJMIIS 20% MAII,iXj,BIXL 0 of 2 Matrix Spike resuls arc ousidc of esublished QC Limis l,t frP Sr.rKF nUpI I.:aTF: 0 of I Matrix Spikc Duplicare resulE are outsidc of csablished QC Limits scc: r:\r@orts\clicnts2ool\incrmtioml uranirmr-corp\caspcr-org\3t9lGl.l9-8260b-chloroform-l-w.rls Analys:rlo a rgNflfi 'c)r/ glll169r. Cl.Prr Glllotir Hrlonr BrPld CltY O fu/o:nzL OrderNo: C01060297 qAaC - Data Validation: ENERGY LABORATORIES, INC. SHIPPING:2393 SALT CREEK HIGFTWAY ' CASPEF' WY 82601 iiailir.ro' i.o. Bo( s258 ' cASPER, wY 82602 - ;;;ili;;;P;r@ enersrvlab'com' FN(: (304 ?n'1fs Fior'iliirizl zss'osi-s ' roLL FREE: (8s8) 23s5ts July 10, 2001 Wally Brice International Uranium Corp' (ruC) PO Box 809 Blanding, Utah 84511 RE: White Mesa Mill Mr. Brice: The following cover letter is a sunmary of the attached analytical results for the above referenced Project. This packet contains one invoice, thirteen pages- of analytical results' one page of quality assurance data, the project chain of cur,"av, ira the sampre receipt condition report. This packet contains 20 pages including this cover letter' There were no problems with the analyses and all data for the batch QC met UsEPA or laboratory sPecifi cations;: . If you have any questions regarding these test results, please feel free to call' Energy Laboratories, Inc. appreciates the opportu*ty to provide you with analytical services for your #tu- s:ra E Cuo=' Approved BY: GO]f,PLETE ANALYTIGAL SEBVICES @fl CLIENT: Lab Order: Project: Lab ID: Intemational Uranium (USA) Corp-Blandin c0r060297 White Mesa Mill COlO6O2g7'OOl Matrix: AQUEOUS Report Date: 07/05/01 collection D^tet 0612110l l0:34 Client SamPle ID: WMMTW4-I VOLATILE ORGANIC COMPOUNDS Chloroform Sun: 1,2-Dichlorobenzened4 Sun: Dibromofluoromehane Sun: p-Bromofl uorobenzene Sun: Toluene-d8 6000 uS/L 99.8 %REC 111 %REC 102 %REC 102 %REC 2OO sw8260B 8o-120 sw8260B 8o-120 sw8260B 8o-120 sw8260B 8o-120 sw8260B 0d28/01 17:03 / rlo OOlzUOl 17:03 / rlo 06128/01 17:03 / rlo 06128101 17:03 / rlo 06/2€Y01 17:03 / rlo Reporl Definitions: ND - Not detected at the rcporting limil J - Analy{e detected below quantitation limits B - Analye detecled in thc associatcd method blank MCL - Maximum contaminant levcl QCL - Qualitycontrol limil S - Spike rccovery oulsidc acccpted recovcry limis R - RPD outside accepted recovcry limits * - Value exceeds maximum conlaminant level RL - Analyte rcPorting lcvel Page I of13 @T CLIENT: Lab Order: Project: Lab ID: International Uranium (USA) Corp-Blandin c01060297 White Mesa Mill CO|O6O217'OO2 Matrix: AQUEOUS Report Date: 07105/01 Collection Datez 06122101 10:42 Client SamPle ID: WMMTW4-2 VOLATILE ORGANIG COMPOUNDS Chloroform Sun: 1,2-Dichlorobenzene{4 Sun: Dibromofl uoromethane Sun: p-Bromoff uorobenzene Sun: Toluene'd8 5500 ug/L 101 %REC 114 %REC 102 %REC 100 %REC SW82608 80-120 sw8260B 8o-120 sw8260B 80-120 sw8260B 80-120 SW8260B 0612U01 17|46lrlo 0d28/01 '17:46 ltlo 06/28/01 17:46 lrlo 06/28/01 17:46ltlo 06/28101 17.46 lrlo Rcport Definitions: ND - Not detcctcd at the rcporting limit J - Analyc dctectcd below quantiution limits B - Analyre dctccred in the associated method blank MCL - Maximum contaminant level QCL - Qualitycontrol limit S - Spike recovery outside accepied recovcry limits R - RPD outside acceptcd recovery limits r - Value excceds maximum contaminant level RL - AnalYe rtPorting level Page 2 of l3 @D CLIENT: Lab Order: Project: Lab ID: Intemational Uranium (USA) Corp-Blandin c01060297 White Mesa Mill C01060297-003 Matrix: AQT EOUS Report Date: 07/05/01 Collection Datet 0612110l 09:M Client SamPle ID: WMMTW4-3 VOLATILE ORGANIC COMPOUNDS Chloroform Sun:'t,2'Dichlorobenzened4 Sun: Dibromofl uoromelhane Sun: P-Bromoff uorobenzene Sun: Toluene'd8 390 98.8 113 102 101 udL ToREC %REC %REC 06REC so sw8260B 80-120 sw82608 80-120 sw8260B 80-120 sw8260B 80-120 sw8260B 06128/01 '18:28 / rlo oal2Uol 18:28 lrlo 06l2UO1 18:28lr1o 06/28/0'f 18:28lrlo 06/2U01 18:28 lrlo Report Definitions: ND - Not dctectcd at the reporting limit J . Analyc derected belowquantitation limits B - Analyc detected in thc associated method blank MCL - Maximumcontaminant level QCL - Quality connol limit S - Spike rccovery outsidc acccptcd rccovery limits R - RPD outside acceptcd recovcry limits + - Value exceeds maximum contaminont level RL - AnalYe rcPorting lcvel Page 3 of 13 CLIENT: Lab Order: Project: "'1',o @r Anatvses Result Units a!4 RL QCL Method Analysis Date / By VOLATILE ORGANIC COMPOUNDS Chloroform Sun: 1,2-Dichlorobenzened4 Sun: Dibromofl uoromethane Sun: P-Bromofl uorobenzene Sun: ToluenedS Intemational Uranium (USA) Corp-Blandin c0r060297 White Mesa Mill COLO6O2I7-OO4 Matrix: AQT EOUS Report Date: 07/05/01 Collection Datez 06120101 09:36 Client SamPle ID: WMMTW44 MCL/ 2OO sw8260B 8o-120 sw8260B 80-120 sw8260B 80-120 sw8260B 8o-120 sw8260B 3100 100 1't3 103 101 uS/L ToREC ToREC %REC o/oREC OOaU01'19:11/tlo 06X28/01 19:11 / rlo OOl28lO1 19:1't / rlo 06/2€1101 '19:11 / rlo OAnilO1 19:11 / rlo Reporl Dcfinitions: ND - Not detected at thc reporting limit J - Analye detected below quantitation limits B - Analyc dclecrcd in the associated mcthod blank MCL - Maximum contaminant level QCL - Qualitycontrol limit S - Spike rccovcry outside acccptcd rccovery limits R - RPD outsidc accepted recovery limits r - Value exceeds maximum contaminant levcl RL - Analyte rePorting level Page 4 of 13 @U CLIENT: Lab Order: Project: Lab ID: Intemational Uranium (USA) Corp-Blandin c01060297 White Mesa Mill col060297-005 Matrix: AQUEOUS Report Date: 07/05/01 Collection Date: 06120101 14:14 Client SamPle ID: WMMTW4-5 Analysis Date / VOLATTLE ORGANTC COMPOUNDS Chloroform Sun: 1,2'Dichlorobenzene-d4 Sun: Dibromofl uoromethane Surr: P-Bromofl uorobenzene Sun: Toluene-d8 240 99.3 117 102 102 ug/L %REC o/oREC %REC %REC 10 SW826OB 8o-120 sw8260B 8o-120 sw8260B 8o-120 sw8260B 80.120 sw8260B 06128101 '19:53 / rlo 06t28/01 19:53 / rlo 06/28101 19:53 / do 06128101 19:53 / rlo 06t2U01 19:53 / rlo Report Definitions: ND - Not detectcd at the reporring limit J - Anolyle detected bclow quantitalion limits B - Analye detected in the associated method blank MCL - Maximum conlaminanl levcl QCL - Quality connol limit S - Spike recovery outside acccpted recovery limits R - RPD outside accepted rccovery limis * - Value excceds rnaximum contaminant level RL - AnalYc rcPoning level Page 5 of 13 @s CLIENT: Lab Order: Project: Lab ID: International Uranium (USA) Corp-Blandin c01060297 White Mesa Mill C01060297-006 Matrix: AQUEOUS Report Date: 07/05/01 Collection Date2 06120101 09:58 Client SamPle ID: WMMTW4'6 VOLATTLE ORGANIC COMPOUNDS chlorolorm Surr: 1,2-Dichlorobenzene{4 Sun: Dibromofl uoromethane Sun: P-Bromofl uorobenzene Surr: Toluene-d8 ND 100 114 102 102 ug/L %REC ToREC %REC 06REC 2.0 SW8260B 8o-120 sw8260B 8o-120 sw8260B 8o-120 sw8260B 8o-120 sw8260B 06t28/01 20:36 / rlo 06/281/01 20:36 / do 06/28U01 20:36 / rlo 06t28/0'l 20:36 / rlo 06/2€1101 20:36 / rlo Report Definitions: ND - Not detectcd at thc reporting limit J - Analy{e detected bclow quantiution limits B - Analyle dclected in thc associated npthod blank MCL - Maximum contaminant level QCL - Qualitycontrol limit S - Spike recovery outsidc accepted recovery limits R - RPD outside acccpted rccovcry limits r - Value cxceeds rnaximum contaminant lcvcl RL - AnalYtc rcPortinB level Page 6 of 13 @s CLIENT: Lab Order: Project: Lab ID: International Uranium (USA) Corp-Blandin c0r06029',7 White Mesa Mill CO1,O6O297-007 Matrix: AQUEOUS RePort Date: 07/05/01 Collection Date: 06/20/01 l2:55 Ctient SamPle ID: WMMTW4-8 Result Units Qual MCL/ RL QCL Method Analysis Date / By Analyses VOLATILE ORGANIC COMPOUNDS Ghlorolorm Sun: 1,2-Dichlorobenzene{4 Sun: Dibromofl uoromethane Sun: p-Bromoff uorobenzene Sun: ToluenedS 180 101 112 103 102 ug/L ToREC o/oREC %REC %REC 10 sw8260B 80-120 sw8260B 80-120 sw8260B 80-120 sw8260B 80-120 sw8260B 06128/01 2'l:19 lrlo 0628Y01 21:19 / rlo OOl2UOl 21:'19 / rlo 0628/01 21:19 / rlo 06t28Y01 21:19/rlo Report Definitions: ND - Not dctected at the rcporting limil J - Analye dctccted bclow quantitation limits B - Analye detccted in the associated method blank MCL - Maximum contaminant level QCL - Quality control limit S - Spike recovery outsidc acceptcd rccovery limits R - RPD outside accepted rccovery limits r - Value exceeds maximum contaminant levcl RL - AnalYe rePoning level Page 7 of 13 CLIENT: Lab Order: Project: Lab ID: Intemational Uranium (USA) Corp-Blandin c01060297 White Mesa Mill C01060297-008 Matrix: AQUEOUS RePort Date: 07/05/01 Cotlection Datez 06120/01 ll:09 Client SamPle ID: WMMTW4-9 MCL/ ORGANIC COMPOUNDS Chloroform Sun: 1,2-Dichlorobenzened4 Surn Dibromofl uoromethane Surr: P-Bromofl uorobenzene Sun: Toluen+d8 59 ug/L 98.3 %REC 112 %REC 103 o/oREC 102 %REC 2.0 sw8260B 8o-120 sw8260B 8o-120 sw8260B 8o-120 sw8260B 80-120 sw8260B 0628/01 22:0'l lrlo 06/28/01 22:01 lrto 06128/01 2;01 ltlo 06t28U01 22:01 lrlo Rcport Definltions: ND - Not detccted at thc rcporting limit J - Analye detected below quantitation limits B - Analyte delected in the associated mcthod blank MCL - Maximum contaminant level QCL - Quality control limit S - Spike rtcovery outsidc acceptcd recovery limits R - RPD outside accepted recovery limits * - Value excceds maximum contaminant lcvel RL - Analyte rcPorting level Page 8 of 13 @{r CLIENT: Lab Order: Project: Lab ID: International Uranium (USA) Corp-Blandin c01060297 White Mesa Mill C01060297-009 Matrix: AQT EOUS Report Date: 07/05/01 Collection Date: 06121101 09:50 Client SamPle ID: WMMTW4-7 Result Units Qual MCL/ RL QCL Method Analysis Date / By Analyses ORGANIC GOMPOUNDS Chloroform Sun:'1,2-Dichlorobenzene-d4 Sun: Dibromofl uoromethane Sun: p-Bromofl uorobenzene Sun: Toluene-d8 1100 ug/l- 98.5 o/oREC 113 %REC 103 o/oREC 101 %REC so sw8260B 80-120 sw8260B 8o-120 sw8260B 8o-120 sw8260B 8o-120 sw8260B 0612€/01 2:44lr1o 06128/01 22:44 lrlo 062&01 2:44 ltlo 06/28/01 22;44ltlo 06r2U01 2;44 lr1o Report Definitions: ND - Not dctected at the rcporting limit J - Anolye detccted below quantitation limits B - Analy{e detcctcd in lhc associated method blank MCL - Maximum contaminanl level QCL - Qualityconnol limit S - Spike recovery outside acccpted recovcry limis R - RPD outside accepted rtcovery limis r - Value cxcceds maximum contaminanl lcvel RL - AnalYe rcPorting level Page 9 of l3 @t CLIENT: Lab Order: Project: Lab ID: International Uranium (USA) Corp-Blandin c0t060297 White Mesa Mill C01060297-010 Matrix: AQUEOUS RePort Date: 07/05/01 Collection Datet 06122/01 I l:25 Client SamPle ID: WMMMW4 VOLATTLE ORGANIC COMPOUNDS Chloroform Surr: 1,2-Dichlorobenzened4 Sun: Dibromofluoromethane Sun: P-Bromofl uorobenzene Sun: Toluene'd8 6300 udL 99.0 %REC 117 %REC 10s %REC 101 %REC 400 sw8260B 8o-120 sw8260B 8o-120 sw8260B 8o-120 sw8260B 8o-120 sw8260B 06r28U01 23:261 rlo 06/28/01 23:26 lrlo 06/28/01 23:26ltlo 06/2U01 23:261 rlo 06/2&01 23:26 lrlo Report Definitions: ND - Not dctectcd at the reponing limit J - Analye dctected bclow quantitation limits B - Analye detected in the associated method blank MCL - Maximum contaminanl lcvel QCL - Qualityconnol limit S - Spikc recovery outside acceptcd rccovery limits R - RPD outside acccpted rtcovcry limits t - Valuc exceeds rnaximum contaminant lcvcl RL - AnalYc rc'Poning levcl Pagc l0 ofl3 EETT CLIENT: Lab Order: Project: Lab ID: Intemational Uranium (USA) Corp-Blandin c01060297 White Mesa Mill C01060297'011 Matrix: AQUEOUS Report Date: 07/05/01 Collection Dzte: 06121101 09:04 Client SamPle ID: WMMTW4-10 VOLATILE ORGANIC COMPOUNDS Chloroform Sun: 1,2-Dichlorobenzene{4 Surr: Dibromofl uoromethane Sun: P-Bromofl uorobenzene Sun: Toluene-d8 320 97.9 116 102 102 ug/L o/oREC %REC 0/6REC o/oREC 2.0 sw82608 80-120 sw8260B 8G120 sw8260B 8o-120 sw8260B 8G,120 sw8260B 06/29/01 fl):09 / rlo 06129/01 00:09 / rlo 06129/01 00:09 / rlo 06/29/01 fi):09 / rlo 06/29/01 00:09 / rlo Report Definitions: ND - Not delccted at thc rcporling limit J - Analyle detcctcd below quantiurion limits B - Analye detectcd in the associated mcthod blank MCL - Maximum contaminant lewl QCL - Qualitycontrol limit S - Spike recovcry outside accepted rccwery limits R - RPD outside accepted rccovery limis r - Value excecds maximum contaminanl level RL - AnalYe rePorting level Page ll of13 CLIENT: Lab Order: Project: Lab ID: VOLATILE ORGANIC COMPOUNDS Chloroform Surr: 1,2'Dicilorobenzened4 Sun: Dibromofl uoromethane Sun: P'Bromofl uorobenzene Sun: Toluens'd8 International Uranium (USA) Corp-Blandin c01060297 White Mesa Mill COlO6O2g7'Ol2 Matrix: AQUEOUS RePort Date: 07/05/01 Collection Datez 0612110l l2:ll Client SamPle ID: WMMTW4-I I 3.0 102 118 103 102 udL %REC %REC 0/6REC %REC 1.0 SW826OB 8o-120 sw8260B 8o-120 sw8260B 8o-120 sw8260B 80-120 sw8260B 06/2901 00:51 / rlo 06/29/01 00:51 / rlo 06/29/01 00:5'l / rlo 06/29/01 $:51 / rlo 06/29/01 @:51 / rlo Report Dcfinitions: ND - Not dctccted at thc reporting limit J - Analfe detected bclow quantitation limits B - Analyte detected in thc associated method blank MCL - Moximum contaminlnt level QCL - Qualitycontrol limit S - Spike recovcry outside acccpted rccovcry limits R - RPD outsidc acceptcd recovcry limits * - Value excecds maximum contaminant lcvcl RL - Analytc rcponing level Page 12 of13 trEg CLIENT: Lab Order: Project: Lab ID: Intemational Uranium (USA) Corp-Blandin c01060297 White Mesa Mill CO|O6O297-013 Matrix: AQUEOUS Report Date: Collection Date: Client Sample ID: 07t0510r 06122101 13:50 WMMTW4-Comp MCLI RL QCLResult Units 1oo sw8260B 8o-120 sw8260B 80-120 sw8260B 80-120 sw8260B 80-120 sw8260B Method Analysis Date / By 06x29/01 01:34 / rlo 06129/01 01:34 / rlo 06t29/01 01:34 / rlo 06129/01 01:34 / rlo 0d29/01 01:34 / rlo VOLATILE ORGANIC COMPOUNDS Chloroform Surr: 1,2-Dichlorobenzene-d4 Sun: Dibromofl uoromethane Sun: p-Bromofl uorobenzene Sun: Toluene-d8 960 101 118 103 103 ug/L o/oREC %REC %REC %REC Report Delinitions: ND - Not detectcd at the reporting limit J - Analyle detected below quantiution limits B - Anolyte detccted in the associated method blank MCL - Maximum contaminant lercl QCL - QualitYcontrol limit S - Spike recovery outside accepted recovcry limits R - RPD outsidc acceptcd recovcry limits + - Valuc excccds maximum contaminant level RL - AnalYe rcPorring level Page 13 of l3 ogE Nrp(, '=otsg' ;?0-(r, t =8UB RdE$ E(,:l q)EU) o ot o(r Ex.c)s46rE6l- @E -9uidr 6(Eoo=o-oEo6JEA eCJ o UJEs { ED ..8 5!o)E .Ytr&iu,*g EEE ECPSYti a hi6Eg doo6q) F a H =B =Gr c)EEE BEt= E= ciE: s.Eb -q3 5 & ?-o's\ q)!!o 6\ e 6'5 o 6 o .E,.o o 9I o o ,d.tr< .c! ti SE*q5B uE;?AU o q) U v,6'F I.E a,e OE€=o;abo>Hg oL!€'d9 =o 9-I o=&6 -go'EA vtd J .9,ooE EZooa=9q -89 -D6 E39;oooo= AicgoaEzd c1z €o otroNco.o e9eG9o ,1.tcooq6 clF ii ii =foo q,g .EE q) Eo o o EI€o ) U) t!, ocoNco.oo .9Eo6 €N, Ji :.OEya o IttSEE6 E€ E:EeEEPEqpEs Ei6'ePE=suuE=r==E@@.nu)o U) oooooilF-?- ooooo ooooo ooooo(')(t (v) oooooc)N(\lN6l F---F oooooF@6@G(' 6F-d:r(\ldro(\roo FFFF? @oooo 1r)o, oooo oooo oooosrNN(\l Ff?F oooQ00co@@ cDtc)rl-oOtiF-- ooooo6NN(\'(7 -r--F oooootaGo@.oao r(oorco)$Esed F& Fi rc& & lliat-a)a Uo 11 UtlF Fl z ooooo8888tooooo -F-FFEEEEE (ooooo ro O) ooooooo 88888o (') cr, (t q) rrOD-CrCD oooo oooo FFF- qoooo oooooN-N(\aE)if)Fo(9-F)0(\lOO FFFFT acDaqo)c" =CD!TNF-d;-'od E l(! :E0 o.L,o,O :. lr):,p !w- '6NO Ei^B.Y 6l <',oaEteq2=€EU=@E otroJoF U) (l,coNco -oo o o Eo oo o $eO6CE 8E8Eoo €Eop.orE€i?yoo Eo c) zv -o!rl+cr- E'A6,& osaN .Do?OEl'a9dF0-Att =t8H IE2$trcr =0)tru) E IoE o(LEtos=orEN- @s .9 oo 6(!oo icL(,):9'0 do-€ aCJ olux.s { E'I .. i6::L 0,)tr .YFi6u) =8 EE$ E?3 xPrD*aY2Ui;BP "oO(L -ooF .,, R B =Ergo E!taohc0u) (., EE6E:clCtbE=6= ciEo s EoOl!=c osaN aoo FoEl'i96?Got =o-aoUB Rd2$ct7 =otu) o 5o tr. o(L EteN= 6E(\l '-i IDE o, iri A; =EF =Eao:dt '-^ Ji}: ?J { ED ..8 =b)t .Ytr(L6u) =B eAro=FS s?B Y8? h ot7BP -ooo6q, F Y=dRi fr =GridAo.= FIo,;c(oEo @ :lt Jtrg @ Eo3 o =ctsg .9 Ed(!86 E Gtsooa--(rla oo:':BC E6 o rli<--ri;.\ E':-.: == =EE..: : >.\te.a =sgza= It NS = ay>*i.f;E 4.-.;sio= E-ii =di' RS €=.i .l ES. =e d ii > ? iE! a I.;nd,i; =d(t :.8 E ie? J-t=i: x?r6-.2c5'iidi.i 5-.q I :'!i c,a{ .; ^Jiittli !'i.: ?,8 L€= zl= TV) Et40d" H H e ..= Id iD3^a_5 3 AIFB ffil"t a"isplos/st!6 ).elefr ttV o n A s 1v1 y:edt1 eldwes **ffi I!r?F .iS 4 t5 5 I{ .E o I o I{ O-ooxd$ RR iiooI .oco€o- o0 o EGz o(! troo Ir c €IJ $rs {l oGq : ----l E oul E, kzgo =Eolrz 'J ulo. F Eo Fz E o. ulo u,Jr atrcUHE"\t-liAhlo ':- [rrv)>\trJU F\o e\ li(\U ag'69 oc) U)q ;o be FT CO U E;E:?:tHx =F:.*+BE :.,siE E =\oNAoo ER-. Eq- 6r>>{SS-rA\O> E$ st4 ttB.€ T\QF.2= {t: H $S\rr\s- .!p?Et-i.t =Et,ifr ElEtsd EEN<o€A. FO .S< ib iEEtrt s Ll ESSz_5tri \q s *.3i F v)z Q F U)z z v) -J x trJ Eaa- Eol- la,o U !a tr] rav) o ao oil a C)0 G'tr o oo. F ro ./2H z2 g O?C8 nqtj aqtfi uowntefi sp11oyt11ol ntfi ttp-On A S A Y:ad(1 aldutog stauToluoc to raqunN itj d [3 JgIFJ(a J JI dfpti uF. co "l -t *{:jdSdo E c) .9o ;c G)(h t f{ ,a rE ,i.xF-!s -S ll\J "\o\lE\a .5\l-n 6J\Edzr 6Jt3 o\cthJzt{rIEq ; h s A J a.) t) a0 o t) o a)i 6 olt .o E{) q crtr q)il \t q) G El) E o q rud N q) 6Eq0 I ru 6)() it) {) 6 ao ; o q)(, il, d, 9) 6 a0 a) i,& O ,o"tgy r,aboratories, rnc-f SAMPLE COIIDITION REPORT Thisreport,providesinformat,ionaboutEhecondit'ionofthesample(s)'andassocated ="*pf. Lr=toiy information on receipt aL the laboraEory' oescriPtion: WATER Liquid,Miac Date&Time Col'd: 21-WN-01 1034 FasBeUt Client.: InEernational Uraniun (USA) Corporatioa Lab ID(s): 01-33939-1 Thru 0L-33939-14 MaErix: Delivered by: UPS Date&Time Rec'd: 25-{ILN-01 1000 Received by: Sara Hawken Logged In by: TablEha Chain of cusEody Chain of custodY Chain of custodY Signature match, Sample received Samples received Samples received SamPles ProPerlY Botstle Ttrl)ea Received: 39-{0ML VOA NF ECL(ABC) C@aeDEE: form compleEed c signed: Yeg commenEs: seal: No Comments: seal inEact: N/A Comments: chain of cusEody vs. seal: N/A Comments: Temperature: 5C CommenEs: w:.ifrin holding time: Yes commenLs: in proPer containers: Yes Comment's: Preserved: Iee Comments: tflrrilit 'Cr,/ Bllllngr . CerPcr Gllbnr Hetonr. R.pld Clty LABORATORY ANALYSIS REPORT Client: INTERNATIoNAL I.,RANII.IM (UsA) coRPoRATIoN Contact: WaIIY Brice SamPle Matrix: Liquid, Water Date/Time Received: 0612612001 10:00 RePort Date: JulY 11' 2001 LaboratorY ID Sample Date / Time Sample ID Nitrate + Nitrite as N, mg/L 0r-33936-r 0612112001 10:31 wMMTW4-1 8.8r 0r-33936-2 0612212001 10:38 wMMTW4-2 9.67 0t-33936-3 0612ll200l08:58 wMMTW4-3 2.61 01-33936-4 061221200109:34 WMMTW44 14.00 0t-33936-5 0612012001 14:09 wMMTW4-5 6.47 0t-33936-6 o6n1n(n109:45 wMMTW4-6 < 0.10 wMMTW4-7 2.6501-33936-7 0612l/200109:50 01-33936-8 0612012001 12:51 wMMTW4-8 < 0.10 0t-33936-9 06120/2001 11:00 wMMTW4-9 0.r5 01-33936-10 0612212001 1l:20 WMMMW4 9.02 0l-33936-1 I o6t21l200l 08:58 WMMTW4-10 2.96 WMMTW4-11 3.190t-33936-12 061211200l l2:t5 0t-33936-13 0612112001 12:17 WMMTW4-12 0.66 NOTES: ( I ) These values are an assessment of analytical precision. The acceptance range is 0-20olo for sample results above I 0 times the rcporting limit. This range is not applicable to sarnples with results below l0 times the reporting limit' (2) These values arc an assessment ofanalyical accuracy. They are a percent recovery ofthe spike addition' ELI performs a matrix spike on l0 percent of all samples for each analytical method' msh: r:\reports\clients2fi)l\intcmational-uranium-corp\liquid\33936-l-13'xls PAGE i:0. o ENERGY LABORATORIES, INC. SHIPPING:2393 SALT CBEEK HIGHWAY . CASPER. WY 82601 MAILING: P.O. BOX 3258 ' CASPER' WY 82502 E-rnail: casper@€n€rgy'lab'cont ' FAX: (307) 234'1639 PHONE: (307) 235'0515 ' TOLL FREE: (888) z3s'osls ,;r ';; 1. '1" i r-,1 r: -,: ..' 'J i\ :'- i\ arit,,ll,' BPA353.2 RPDI 061271200114:18 GO]UIPLETE ANALYTIGAL SERVIGES r,0 aE!t".(,)o sto bc EE:c6- iqc i;.? =':.: a: eEFt-:!: aea, -;t ir.a za= N+ N= .^! c zJa9F:< -q i,j;i .E aEe =a4 =xF is€ "i,sG NiES .-: _: 'q- F e g 72. t-L?.r{5 \igqeE3=+q..i fli!dr,E :. S. :.: s ) ! !r =€ ? E3g- ,4t * 2A '1 42.UC.a A^iE +cqat!t: ii* =t- E'i.i -= ", ?. o: i4= :i: Ec- l^oo J i55 \l -rN; * s9+ Edz.LX.::o E E.U 5Eri O c a: rJ..r r( :tF ii Q- fi+pf I -?ru#54 ffi e u u -e u u n u o I e p 6 efi s p t I o g rs t lo$ n 1efi t 1f O n A S 14 7:adt1 e@wes 3l= N rf) *$i; oco o- a6 o E(Ez ENcoo >. d9zg Qo$q-riolt_ o lrJG kzga FG UJox UJ atrcUEr)Jtrd>..HatREv)2r\L.J E Fr O-\J urF\2A. Ltl\)J.o.z\ lfa|*i U *s"s g (!c.9 {g at.9t".(,r|a oro ic 5r o-9-97Z-Z-< \\-rg9 6.: E.,T :83 sJH-E =u-6q-g aEOEi6:= .r ..e ..: + 5 E {?$" "u 3##,8 :i :i-:. ii i'+ {j-rz,..Yzai :.;.: :: ai-;;a; -.\ iv.a =42==j-<c ? !tr 'r 'T N= s =-c ail-=--z4 tt .. t, .= E'E: !ii isf?€{ri.is.E l-\ I = az l-l-tlr,, == !=: +_ss!5+.:;i :i =!E a € a a*'r 7.r= 2iiUC.i *:;il3! iririi*Fi;t a:-- =i: -= . at-€= 'r-= - z7a .jiF. Ed- ^*-a"*.r"r%\ .teq1Q euyl uo11ep6en spllos/sllos ra@m )N O n A S 14 y:adt1 eldweg f.l I rl5 e d {t(n i.i oa-otr o qt CIt l-:5l!-. €tFOiln/<'- it$i oco o- ou o E Gz o G coo >.cir J{loGq I o ]UE <kwzo.o ?-o ofiFOzx EuJLZru9@j- ut= dE IL = atrcU Eatrxa\[P\{hQ-J,5Gq cz\ |T.l\U O Energry Laboratories, ,rr"O SAT.IFLE COIIDITION REPORT This reporu provides informaEion about the condition of Ehe .Ir"pf"--."tt"liy information on receipt at Ehe laboratory' Client: Interaational Uranir:m (USA) Corporatioa i"u-ipf=l r 01-33935-L Thru 01-33935-13 Matri i"iir.t"a by: IIPS Date&Time Recrd: 25-''uN-01 1000 Received by: Sara ttawken Logged In by: Kerr:l Chain of custody form completed a sigrned: l-ea CommenEs: A;i; oi .""t"av seal: conunents: A;i; or ",r"toay sear intact': N/A comments: il1r"."=.-*"t.i,l chain of cusEody vs' sealt I{o commenEs: Sample recelveo Temperature:. 5C Comments: ;;;r;"-;eceived witrrin holding time: Yes comments: ;ffii;; t."":.".a in proper containers: Yee colffnent's: Samples eroperry pre-seied: Yea Commengs: sample (s), and assocated DescriPtion: WATER x: IrJ.quid OaCecTime Col'd: 21-iILN-01 1031 Scbroeder Bottle TlPca ReceJ'ved: c@BGrltsa! O ,o"tgy r,aboratories, -ot 'O REPORT PACKAGE SUMMARY FINAL PAGE Acronlmts and Definitioas El,I-B Energry Laboratories, Inc' - Billings' MonEana il;-c i".t!y Laboratories, rnc' - GilleEue' wyoming sii-E anergy Laboratories, Inc' - Helena' Montana il;-* i".til Laboratories, rnc' - Rapid city'south Dakota co - Carry over from Previous samPle ip - Insufficient Parameters N7A - Not' APPlicab1e NA - Not, AnalYzed ND - Irnalyte NoE Detected at NR - Analyue NoE Reguested NST - No SamPle Time Given NSD - No SamPle Date Given stated Limit of DetecLion fEis FSaEege eonEain; Efia Eo11ol,Yi;g elienE ID(s) ana ra5 ID(;) client ID: !{MMMI{4 is associated to Lab ID: 01-33936-10 Efi""t ID: wMMrW{-l is associated to Lab ID: 01-33936-1 Ef i""t ID: l{t6[rw{-10 is associated to Lab fD: 01-33936-11 cii."t rD: wMrr!T[4-U is associated to Lab rD: 01-33936-12 if i""t ID: ?wr'rTw{-l2 is associated to Lab ID: 01-33935-13 Cfi."t ID: t{Ml'tTW{-2 'is associated to Lab ID: 01-33935-2 ifi""t rD: wlll{tw4-3 is associaEed to Lab rD: 01-33935-3 Efi.tt ID: WMI'!TW4-4 is associ'ated Eo Lab ID: 01-33935-4 cfi"r,t rD: w!Mrw{-S is associaEed to Lab rD: 01-33935-5 client ID: t{M}f;fi{4-5 is associated to Lab ID: 01-33935-6 Cfi""u fD: ffirofTW4-7 is associated Eo Lab ID: 01-33935-7 Cf i""t ID: WMlr[TW{-8 is associated to Lab ID: 01-33935-8 CLient ID: l{M}lEW{-9 is associaEed to Lab ID: 01-33936-9 Approved BY:&Reviewed BY: Analysis Report. indicated bY the last 4 Ti?ACiiii':! i:t. P,I,CE 1,i0.This is the last page of the Laboratory Aaaitiot"l QC is available upon requesE' ih. t po=E contains t'he number of pages disir" 3 :j i"..i :ibR0?i0,:'. ttov-09-0 I r0:40am From-luc ELAttDllIL 801 678 2224 _-,_ :::::- ,|,Y' r't?5 *;;;;;;'#*r;,;ff .1"eiiitw'!":'Jrft'3#8''*?-#:Hbl:i::#' LABORAT ORY AI'IAIYTIC AL REPORT Lsb Order: RePort Date: c0I090685 10/lo0IInternational Uraniurn (USA) Corp il[" CIW SanPling - White Mcsa MillClient: Project: Collection Date: DateReceived: 09/20/01 10:52 ostzitoiLrb ID: C01090685'00I ClientSamPleID: WMMTW4'2 Matrix: AQUEOUS Result Uuits MCL/ Qual -Ir--9gI--ll!.".trh"L - e"'lvltDllelBv AnalYses voGs chloroform 4900 '101 93.5 83-o e5.6 ug/L %REC ToREC %REC %REC 80-120 80-120 80-120 B0-120 sw8260B sws260B sw82608 SW82608 sws260B 1O/O4,O1 00:56 / rh 1OrO4r01 0O:58 / rh 1O04/01 00;56 / rh 10/04/01 00:56 / rh 10104,01 00:56 ' rh Surr: 1,Z-Dlchtgrobenzene-d4 S urr- Dibromo0uoromethane Sun: P-Bromotluorobenzene Sun: Toluene'd8 Lab ID:c01090685-002 Collectiou Date: DaftReceived: 09/20/0I 10:25 09l25tOL Ctier.tSamPleID: WIIMTW4:3 Analyses vocs Chlomform Mstrir: AQIJEOUS MCIJ RL QCL Method sw8250B swE260B sw8it60B sw8re0B sw82608 Datc / BY 1Om2/Ol 2:3Olrh to/Oztol 23O lrh 10/0?J01 *:3Olrft. 1O/0zO'l ?;3O 1fi1 lOrO?JOl 22'-10 I th Result Units Qual Surc 1,2-Dichlorobonzen+d4 Sun: Dibromofl uoromehane Sun: p-Bromofl uotobenzene 300 102 109 88.6 96.9 ugrL o/oREC %REC %REC %REC 80-120 80-120 60-120 B0-120 Surn Toluene'd8 iau IP: C01090685-003 "rr"o.SamPlelD: WMMfW44 Collection Date: DsteReceived: Matrix: Method 09/20/01 10:50 09nsl0r AQUEOUS MCIJ RL QCL Arralysis Date / BY Result Units Qual Analyses vocs Chloroform Sun:'1,z'Dichlorobenzened4 Surr Dibromofluoromethane Sun: P'Bromofl uorobenzene Sun: Toluene'd8 3200 ugn- '101 %REC 107 %REC 88.9 %REC s6.5 %REC 200 sw8260B sw8260B sw82608 sw82508 SW8260B loro2,ol 23;11 / rh 10r0z01 23:'t1 , rh '10/0201 23111 l6 $n2l}1 23;11 t rh 1UO2JO1 23:11 lrh 8G'.t20 B&120 6G120 8c120 nL. errutyt" t"Pqning lcvcl ND - Not dcttctsd x rhc rcPoninE lirnir RcPort Detinilions;MCL . Marimum contamincnt lcvcl QCL - QualirY conrrol litrit llov-09-0 I l0:40am From-lUC ELAI{DltlG B0l 678 2224 T-555 P.003101? t-725 -8 . CaW4 WY8ffi02 wwwenergytab.com+ 'ilc. '23s3 sar creek Hr.slwav (8fr02:!9:Q4!EnG!^H9.o#!?L"2. nqtq . Far.?o7.234.txas' caspr@energyab'Z'f,f FEf ;rffi ,tiffi;Y?07.'o7s-:'ii-ib7'i:iireii"cispteenersvtab'c' LABORAT ORY AFIALYTICAL REPORT Clicnt: Proiect: International Uraniunr (USA) Corp 3rd Qu CIW Sampling ' White Mesa Mill Lab Order: C01090685 Report Datc: t0/16/01 Lab ID: c01090585-0M Clicnt SemPlcID: WMI\'iTW 'S MCU RL QCL Collestion Date: DateReceived: Metrir: Method 0980/01 10:05 09/25/01 AQIJEous AnalYsis Date / EY Result Units QorlATlYtut_ vocs Chlorotprm 20 sw82608 sw8260B sw8260B SW82608 sw8260B 10/04/01 01:37 / rh 10/04/01 01:37/rh 10/04m'l 01:37 / rh 10104/01 01:37, rh 1 o/04r01 01:37 / rh Sun: 1,2-Dichloroberaene'd4 Surr. Dibromolluoromefiane Surr P-Bromofl uorobenzene Sun. Toluene'd8 240 100 92,5 82.8 94.3 iJgrL %REC %REC %REC %REC 8G120 80-120 80-120 8G120 Lab ID: C01090585-005 Client SemPle ID: WMMTW4-6 Collectiou Date: DgteReccived: Matrir: 0920/0109:16 09tzslor AQI.JEOUS Arelysit Date / BYMCL/ Quel RL QCL MethodResult Units AnalYses vocs Chloroform Surr: 1.2-Dictrlorobenzened4 Sun: Oibromofluoromelhane Srlm PBromofl uorobenzene Sun: Toluene'dE 3.6 99.0 100 85.9 98,1 ug/L %REC %REC %REC %REC 2-a sw8260B sw8260B sw82608 sw8260B swE260B 1010301 13;21 t h 'lUO3r01 '13:21 / rh 10/03101 13:21 / rh 1UOU01 13121 , rh '10/0U01 '13:21 / rh B0-120 8G120 6G120 80-120 Lab ID: C01090685-006 Clicnt SemPle ID: WIVII\4TW4-7 Collection I)ate: DatcReceived: Metrir: 09/20/01 t0:43 09n5l0r AQUEOUS Arrlysis Date /BYMCI./ RL QCL MethodRcsult Uuits Qu.l AualYses vocs Chloroform Sun: 1,2-Dk:hlorobenzen+d4 Surr: Dibomofl uoic methane Surr: p-BrEmofl uorcbenzone Surr: Tgluene-dE fiao udl e8.g %REC 98-6 %REC 88.7 %REC 96.2 %REC 100 sw8260B B0-120 sw8260B 8G'120 sw8260B 8G120 sw82608 BO-120 sw8260B 10/03,01 14;02lth 1O/03/Ol 14':OZ I th 10/03/01 14:0?/rh 1O/OUOI 14tOZ t rh 1o/03/ol 14i0zlln Raport Dcfirlition!: ND - Nor dcrcocd ar rhc rcPomng limir MCL - Mlximum contaminant lcvcl RL - Analle rcPoning lcvel QCL' QualitY control limit r.. a= I'il.;..i- IlrJ' -:'- n !i ll l0:40arn From-lUC BLAtlOlt{L - ENEBGYLAEuuA* 80r 678 2224 T-555 P.001/012 t-125t{ov-09-0 I ra Fiii eea-zss.oltl' 307': ''f;,,ry'f,f %95#r#!Y'##,3;:,8/*.',.ffi i&{dr'ffi ' I-AB OR"A,T ORY ANALYTICAI RE PO RT Client: Projcct: Iirteroatiooal Uranium (USA) Corp 3rd Qr CTW Sampling - White Mesa Mill Lab Order: C01090685 Report Date: 10i 1tr01 Lab ID: C0I090685-0o7 Client SampleID: WMNfl'W4'8 Collection Date: 09/20/01 09:a6 DateReceived: 09/25101 Mstrlr: AQUEOUS MCL/ RL QCL Method Aaslysis Dite / BY Result Units Qual AnalYscs vocs Chloroiorm Surc 1,2'Dichlorobenzened4 Surr Olbromolluorgmethane Sun: f Bromolluorobenzene Surn Totuened8 180 99.4 102 87.8 95.9 ug/1 %REC %REC %REC YoREC BG120 8G120 80-120 8G120 SW826OB sw8250B sw8260B sw82608 sw8260B 10/0U01 14:43 / rh 1u03/01 14:43 / rh 10103^,1 14:43 / rh 1U03r01 14:43 / rh 1003/01 14:a3 / th Lab ID: C01090685-008 Client SamPle II): WMIVIT!Y4-9 Collection Date: 09/20/01 09:3I DateReceivcdz 09125101 Matrir: AQUEOUS Result Units Qud MCIJ RI QCL Method sw8260B sw82508 sw8250B sw8260B sw82608 Drte / By 10/04/01 O227 lrh lOrM/Ol 0227 lth 10/04/01 o2i27 I th 1O04r01 O2t27 lth 1OlO4/01 O2i27 t rh AnalYscs vocs Chlorofonn Sun: 1,Z'Didrlorobenzened4 Surr: Dibromofl uoromethane Surr: PB romofi uorobGnzene Surn Toluene-d8 19 89.2 t2.'r 84.8 97-3 ug/L %REC %REC %REC '/oREC 2.O 80-120 8tr120 8G.120 80-120 LabID: C01090685-009 Client SamPle ID: WMI\'II\{W4 Collecfiou Date: 09/20/01 II:20 DateReceived = 09 l25l0l Matrix: AQUEOUS MCIJ RL QCL Method ArrlYsis Date / BY Result Units Qual Aflalyses VOCS Chloroform Sure'l .2'DichloroberEened4 Sun'. Dibromofl u oromethane Surc P.Bromoll uorobenzene Sun. ToluenedS 5300 ug/L 102 %REC 1OZ o/6REC 87.2 %REC 96.7 %REC 400 sw8260B 8o-120 sw8260B 8O-120 sw826oB 80-120 sw8260B 80.120 swE260B 1U03/01 16:04 / rh 1U0U01 16:04/rh lOrGYol 1604 / rh 1U03r01 16:04 / rh ,0/0u01 16:M/rh Rcport Dcfinitionr: ND - Nor derccted lr drc rcportinS limit MCL - Milcimum con nninant levcl RL - Antlytc rcPoning lcvcl QCL - QuolitYcontrol limit -rl , a,,.. :1 a|; r.n l.:.!..r.., . ., ..1!:b.rv. i -,'ll.:t'.'C" llov-09-0 I l0:40am From-llJC BLAI{Dlllc 801 678 22e4 faiFiiiias,zsslsts ' 307.- ,lts ' Fil( 307'2el "casper@eneryYlab.a,or,"neiifr:,*;:v!:*,9tr:f;*":rffiiE;#rt- T-555 P.005/01? F-125 ' hwc WYEruz www:metgylab.am LAB ORATORY AITiALYTICAL Rf, PORT Intcrnational f|1anissl pSA) Corp 3rd Qr CIW Sampliug - White Mcsa MilI Lrb Order: C01090685 Report Date3 10/16/01 Lab ID: C01090685-010 Client SamPle fD: TriP Blauk Collection Date: DateReceived: Mauix: 08i22/01 10:20 09/25101 AQUEOUS Result Units Qod MCU RL QCL lvlcthod lfsvsP"rllf Arrlyses vocs Chloroform Surc 1,2-Piclrlorobemened4 Sun: Dibromofl uoromelhtsne Surr- p-Bromofl uorobenzene Sufi: Toluene'd0 ND u0/L 101 %REC 102 %REC 86.7 %REC 9€-7 %REc 1.0 sw8260B 80-120 51^/82608 8()-120 sw8260B 8o-120 sw6260B Eo-120 SW8260B lOlOZlOl 16:59 / rh $rcAcl 16:59/ rh 10/02,01 16:59 ' rh 10/02tol 16159/rh 1010201 16:59 / rh Report D.ftEitio4t: ND - Not dercrtcd at the reportirtg limit MCL - Maximurn contaminant levcl RL - tualfc rePorting lwcl QCL - QulirYcontrtl limit :,ilE ilO v F Eo o ! d't- aG oE D a,E o 6 c0 a llt !()E- BEz-rllEE.T, =E-J;qF <?,3tldD EEF 6UJ-cB{E€ i Ed.go ut'*p F lu6H,r Eo c, 2.E E_r.EFE'E 'z AJ9E -3 .a =-tG,EEU€E tr-g o=zE olz ::*5 1:C.q (qH86 17 f F=OEl'-q6rO-olrNtr =eEE IE2 sEA =4,da .0 (DEao- Fff-ce.{= @E 6Jf -e.I .dE I 88 EGo-_EE.dFEc,eJ {o=-.,lD5E .Yl"' f, ;U)+B E:E=Fs sO7B YP.t2 AY2UAEP -o(JL -o!,F v=;S E =ErEE>-Fo-E C(!E6t) :tt Jc C, E E0E o 6;e o, EE EG=h tsao E 6EQ, Efo_rD E. =q,BE o,42s58n- .a E oE(]oFtr-eosl=NE oJ ta I-9 Sl-E.! 6c! =aol 5cJ.6JEB B -JE =$ E =dEoA f-c'allEOHoa {* -v Ea -toEo :E ci .,=o'O- :l \E6 EE6 E da..8 =5pEHvtEB e3E 6NCCP?B Ct? b o6EP dgtr. .1,q,F tlov-09-01 I 0:41 ant From-lUC BLAllDlllco 801 678 2224 ocoo o@Qo T-555 P.005/012 F-125 cr600 GOOO oOOe(\r q{ c{ c{ EBBB COF(DO-gEg oooc, oogc CTAOCtCt o oooo oooo S Qo qo -Umi{ i= H\O (\l @ Ba oo N€ 3 tr ld 0- m u I I vd IJtr U J la 6O6l't6lD N; .H NN g EE ni ilE $.O q,^ !- o:( (o E sgI ;fi{ o-J sll.('to> -o HHTuJ .xz o.7 ItJ o- r cooor-Froooo --F? ct-r 4'e, F'^- tsr(J F frld -l ETE,i=aDa UaJ Ul-{t'( I zI ooeoGl(\t(\N oooo.Oq,EG' o-6lOorOEaiFbtD cr6OO ooOoo 6ooocrC\t$r({ FFT- 600QEbc)@@ -oCDtllc]Ouiot --€o o(:oo qso()o 23:EE =z ((l4BEUg aJr PlYEoFE 5:.=getsl-Gpa Grn'+Ee5'E c)E85 EE5 Hoo5EEe!l.ftEStr F-oPFP-gEEs ETEEa69E -dEo=E:.6_ +i. =LLLLE =.:b rJr r>t. , ^ ..,-l ! U) ,tli -U)t A: ' : . . -r..Eo Yes EEEo n-a!;-!IEEE =bo6'UEFCEEEgcota4EH,jo o.F EE=g= ;i@@cDIt)o ;0dYceo.oo,qEN EEE0,-oEEEeUEEU =-aod)(,FFE4EE9c$J€qEE--OEFEELs=i35==yaDu)u)u, Eo ;:g .-' E HE.B UFF. A6(\l(oE)z.dEi3no(f)c,r(I, =-:au?di-oo@ Ei3Aoo f OE| ''ie5FO-oiec/ =_Bus edz $58E, U) 6 o (E, o o_?E-oes!=E C}J Ea EotuEE -= al,L E_S E <f s4eEd* p Ed 6AEL= l- +rqj,EtD tE5 at) I|tTE .U E Ec 0'E rioe o, EotUo=tr {@5--E =!e,JE. :zl-naq)tsg sEE E?E X8? ts 6;EP d9o- @ @t- c r0 EoE 2 E .; s Eu = Eu o EE D o .E 2 E = E.7o9o.;UEL.: oxADHiiots ?E'ay EBxu l, .'5E &E -Co q'd qC 2t3-ts.a= =_EH.E 6dr=Di-E,go Et 96 -c5d:6 :-S o;z E. ^- ^rnie-.r_:i r:u, o :-'. :r, 11 -, EHdoo 6EQ'E?lL9 s tr ii r\Eg 6o- dE$ cg =q,d. u) s o G,or?G.octst=.{Ea3?-c o=dj, J- 88 Ea.,, +lpo{E* 6 GJ J EJ_ ..lE =!q)JN .Ytr(Lfr'htsg q, .i6=E.!g!dtEz?= YH?,6ue @aEe -o9o-{,oF E=aa a,3 H p 8s hEE.Dbd, ch c,IFI € Oac, (D(, ci6o o-o.=5.EtsEE6 E slt Ell ?2?4 oo(eo oooO oooON(\Ns.rrrf 8BB8 oOeo T-555 P.007/012 t-7?5 oocrocl o(locr0 gLAiIOI NGaI 0 :11 an F rom- I IJC o c,(rec (ro(Do oooONC\C\C{ 8ts8 Alr.qrO O i.riFF(6o oooo oooo c2oooo s{(Jo oo grta!= H\E|(\t€ * cn coo(ro(, (\a Sa (\ a! FTFTF rlooQQEG'864 <rtO@tJ)ooodriq r-- s? o! OEF-(Dd)ar@o) c.zUF:^F A 14il Ft4Fri14 tEfaHa Ja UoI U F F1 z 3 d4B€OAUg ui+3rYeptr.H =i.1 trLl-CGHhd =u)EsE'Y:PuE8e3Es ;:@ =,z"-iqEBuli cro(rOO 60000u!lr)ro|{rlr, oooocld oocoBgtB6ooo FTFP Q(foo gr$Iotolo --:dF':aF:rf) rO N at th--- lrl\tt n(E)FraFE-6Ytf)-c'ddoi c,cd) rrlGol&I9aEus6ECo(DqE Cr- l- ii- l:5:E' n':t':L "aa ut -',, n -r'l-ld-:t'';l.J ,t)t't oc(, .E q, EC' 0 =o Ee3o at Pa, Lo E @-oo E =d6-ct _o :_ELoa; L(J +dl 0iccE,ES@=cN90 E E€ P9HoOEEESEPgEFEE({Eq€ FO eF LLLELbLL)=r=agto)an See FEEg EE EEEE =Oodt()Fbe6'FEEEiSTE -o .. ., '. .'6!EEEEaaaa(J Esdec F otl-qda o pFSue REE$5flE ct) G 0ld. oLEtro(ra=t.Ec,J E6?00 rn.go6 E EL@=PE {A-f BiJ dtr5..8 EE)e v :rE;oEB eSE f;,9B Y8? b z;rt i6Ee d(JrL ooF 2,=o, * frENE ai iio=,\*-E E'EF6th @c,Ib?EBe4(f1 EB 6'o=oE= 5.Ets6N:E.,(){. .iasdoo FbEe'e GU, ('r E-!5:6 -FES R02$eg50,trut Etr o E,oo-?tr(for{=rtEEJ E -gIotD d6oo .E 6-c,LsE #ct'ft'6 EJ J(D5 -_d JE !trtLfrotsg e;G1F$ s -=!(H?, h5e OoEg d(Jo- -oq, F !G=J=.DdoitsEolr q= L !'c, .9EtoE.Do, :lt.* o d EIo-c @E d O=oq=>rEbE6=E l{ov-09-0 I 6EEE o E c.B .J r) c Eo I o UE c0 3 E b 69o-:UE E=ax e Oo>3S oEiJE'o 9AR ho tlo69EE xLl'ag b .A u, 3_'E J.oboE LE(,Caaod cb c; €q oog6d:E3 ,EA; 0 tE.c: r:0. o,-, i (.r'1: og6 'Do C'El-96 ?[ootr = r',8E Es9scqfto(j||a -o og, Eo-Eta.i|!= =E(5J .E SD ooEodoe0oE9i Jd+ 6rJ EDl.,8 _b dr)tr.:ctro-fr .ti) EB eEE Eq B Yg2 ts ooEP d9L6o E$ E t?Fo.3 EGEe ln6IU) tt6E6>E=ct-5= 6;a o, e=hEg E ctoocro ooooo oooooo(\a$a(\s{ aoooo F-€€€@ 801 678 2?21 o€ooc, crooclc, GOOOOaJ,Gl(\l(\lt\ FFF-' oooeQN6rr@sl ooeoo oooco|r, T's55 P.008/012 t-t25 €reO9o NFF?F ocroocloNN(\I(\l ooOOOFAcDqre From-luc BLNDINbl0:4lam o sI Uo E go tr \a FTo * cn o(]ooo ao t9 8B;*b!-dDo)q,gHts;H oooeO88888eeee9 oocQO@6FoN; d, t\ i.- aOaoo)ot60l c.z d_EoF Fi tElil iiil1 ETtaHe JU) Qo Fl U Ei -] z =z, d,ao-!',HEuJsAFv1 i =rYooEE5i'FqEE 7u) Ehf.EEbEXIJE6s =85 i:t) ZY BHE.} U>E- EEEEEir)ooaDo t-'.,: t.-- lriti 0 !lOOreEoGIo FEHE EIIPiSP EcEr6EEPAbFE E*6EP€uuul:Uub-uA = u, ur.u).q,Eo r.) 'l ,. ' 'l tes E€HEI-- E5:* EEEE E*AtaP{cr.:ui:UL9LL PU)U)OU' 5 SpeQGO,EEr{ EEE.8p9PPHoeEEE(,EI-ts6EEq E}EEEEEEEEt==3fva4rooto EH6oc OEl-q6 Ee &Etrt+ Re2 scufotu) 6 d!troLEE E.\a=BE OJ Eg odt6HAA= a@!PEJdB 6EJ(t EN ..G -E d))t EXf,o *P !t 6@=RE gq B vts? ki2 6;Ee d9L hdl o F =B =s.Ee4E!t(!H@ at) (rt c!og, @ql @o oo Ei;o oO-=\EE 6OEtr og8 oc r=ctEla(t6 ILtr E t =,eB+ Roo= CC,EE a6 0,toILsE C5eN=EEE'JFE -qididr d66Cl4fiE:il-H 6-)a C) UJe* JE! ..8 --L .'lJE. .!zD,Lhq,+8 EES E"PB XH? b =o zA;EEP d9(Ladl =@ia E EEd.r idxo-=F-g E(Eh6U' (DoIEAEB62 et- E= tri;oG' de_x E.E P;; o i Nov-08-0 I Tc Eo 6 EI d.I o o Eo Ito q Gtr.( rn .Z E -6 6.=e.E rU !lbH8 E ?';4EFoubfr{u1€ Q=o-Ca .,,aE ca d, .: -c ,l .gbT; 'u -co€a-9q e6 fl!:B!E s1 6AE o.a-ro A+Zh E a3 n; ^tnr'f-..J; t 'v ' .'?-. n -. r , t -- From-lUC BLNDlllcl 801 678 2224 ooooo6l<e-+ ooocQo$tcv(\l(\l ESBEE T-555 P.009/012 F'725 oa5000(\I?-FF ooO(roFll $l (\a na s{ act(f,oc5Fo666 l0 r4lam ooo(roNFTFT olocoo lr) ooooe a6600rO tO tO rO rf, qoooe rO 6 tra Ico €J t3n ooooo6' (o CI Q\oels a cz 00, F.GOOOO6AINAI(\ rffF- ctctoo(2l\ q, C, q, q, lr)t}€arrl!oood9r h&c Fr rc F( Efeiltts Fta Uoj UFTF -] Z croocrcl ooO(Jo|{, aaaaa6Cloooooooo -+FFr ta-loO-E6.{lsto600slt, EEEEE EEEEEi66o).ool F.@coll]lQ6i;c.ifcilr) l(, lt! tl stt r-r< €qB€ OtGu-9?E llEsDh!EBt-(llp </2 (nF.EsoEHt:860 EEE U..P zv 6r-lgo =EE'UFF, .+ E .utroNqoIC' o =u6 g cr- o-Ets.e6Eo otrq, tro6o !co 9drFCE946o. l- UEt3u) ct) oCfi,_e o Eo E =Eq E B{,6 3 U) sYocq, Co&l eo El2o E sr- brotrodiE(J oeoNeoIlo ot oc E Pq E =ctt oE .E oE E ol 6 Eo E6 2 cn E (D ENeo -oo o- 'Jb ECY -e :.otsoi;Eo 6gE (Dc!:AEl-r96 IL9 E d -i-6e BaE SCg =(l,dq) E o G, 6 o_EtoN= EtrOJ .E -9Ei s 88 +epEEE E {G =G5E -tlFA#u,+g E@-Es g;iB YH?, b52fiE dodzal =o9'uo & PEd dA E.EF(!Ete U) d6{ I rf:!@rllo ar,6 c, C) 6 ;6 o e=hEE E 6sa(! 13F oE .lt ; EE E TJtrov Ro€ E Eg =og, u) G 0,Eo 0-EtC'N= a,E 9J g ot=EE ! 88 E6,6ts.gE ErEb CJ J q J..6 JT .!c =o-hu)*g E6=E(\lON@t9B s8? B># 60EP -o9o_oa, Eog d3 E s 8.8I.co-9tr(dEE an {ao?Uf !tB38Zce EE ci ;E Oor-rEE E ,oga c,ct-ot I?(lFtL,r, .rt E =!o3$ Pe2 S Eq =oE@ Itr {jil,o(LFEoeN=R"E6Jreo id id r- iD(EAA# ao!@iaJdE g { EE E E1ts-! EOhdo e?C' ct6'o o(J 5.eog EE 6E6 E 6,, ..o !!tl,--Jd -!(tr(Lfru)BE oA6=FS E€z!zB7 s I o@[t O, !dOF(J(J(L o @F llov-09-0 I llov-09-0 I I 0 :42am iii-iitr"#ri;'1'r*!,ef;t LAB ORATORY ANALYTICAL REP ORT Client: Project: Istcnurtional tJrani"* (JSA) Corp 3rd Quarter 200i Sarrpling Event Wbite Mcsa Mill Lrb Order: C01090647 Report Date: l0/04/01 Lsb ID: C01090647-001 Client Semple ID: WI\'IIVITW4'1 MCL/ RL QCL Collectioa Date: DateReceived: Msrix: Mcthod 09/20101 1i:02 09taslol AQUEOUS Analysis Dete / BY QualAnaIYses NON.METALS Result Units 0.50 E353.2 09126101 19:27 / rwk 12-8 mg/L Nifogen, Nitsate.}Nirrlte as N Lab ID: C01090647-002 ClientS*mPlelD: WMIVITW4-Z Collection Dste: DateReceived: Matrix: 0920/01 t0:55 0925/01 AQI,EOUS Analysis Dste / BYMCIJ RL QCL MethodRcsult Untts QuaIAnalyses NON.METALS Nitrooen. NiEte+Nitrlte as N 0.50 E353.2 Ogr26r0t 19:29 / rwk 1r.4 mg/L Lab ID: C01090647-003 ClientSamPlelD: WMMTW+3 Collection Date: DrteReceived: Matrix: Method 09120/01 10:30 agnsl0r AQUEOUS MCIJ RL QCL Analysis Date / BYResult Units Qusl AnalYses 0.10 E353.2 09126/01 19:33 I rwltNON{UIETALS Nitrogen, NitBte+Nitite Es N mg/L Lab ID; C01090647404 Client SarnPte ID: WMIvITW44 Collcction Date: DateReceived: Meh:ix: Method 09/20101 10:50 09tzsl0l AQUEOUS MCIJ RL QCL Analysis Date I BY Result Units QuslAnslyses NON.T'ETALS Nirogen, Nit6t€+Nittlte aB N E3s3.2 09126/01 19:39 / rwx 14.8 ME,L 'r_00 ReDort DellDition3: ND - Not dexsctcd st thE rcporting limit MCL - Maximum connminant lcvcl RL - AnalYc rePoring lcvel QCL - QualirY conuot limir ':;'r r i':'l"i ''iIrr-,t_.i:1.._,.... :'l :. '. I- ';: ;'i ti -..' L-: !.. .' , t '..,' i,'lif i- rl il4. .:t tlov-09-01 I 0 :42am LABORATO RY AT{ALYTICAL REPORT Client: Project: lnternational IJrani'* (USe) Corp 3rd Quarrer 2001 Samplirg EveEtWhite Mesa Mill Lab Order: C01090647 Report Date: 10/0al0l Lab ID: C01090647'005 Client SamPle ID: WMIVITW4-5 Collection Date: DateReceived: MaEir: 09120/01 l0:10 wlzst01 AQUEOUS MCIJ Qual RL QCL Method Analysis Date / BY Result UnitsAnslyses NON{NETALS Nitrogen, NikatE+Niuite as N o9r28r01 19:41 rru,k0.50z.1O mg/L Leb ID: C01090647-006 Client SemPleID: WIdMTWffi Collection Date: DateReceived: Matrir: 09/20/01 09:17 09D5l0l AQUEOUS MCIJ Analvses Result Units Qu"l ru a NON.T/IETALS Nifogen. NitrBte+Nitril€ as N E353.2 0S/2U01 1933 / rwk0.10m9a Lab ID: C01090647-007 Client SarnPle ID: WIvfrITW+7 MCIJ RL QCL Collection I)ate: DtteRcceived: Matrix: Metbod 09l2UO1lO:43 o9l25lDl AQUEOUS Atrslysis Date / BY Result Units QualAnalyses mr26/Ol 19:45 I ruk 0.20NON.I/IETALS Nit ogen. Nitr8teli{ibite as N 3.38 mg/L Lab ID: C01090647-008 Client SamPle ID: WIvIMTWTLE Collection Dstc: DateReceivcd: Matrir: 09/20/01 09:48 09tzslor AQUEOUS Analysis Date / BYMCL/ RL QCL McthodResillt Urits Qual.Anelyses NON.MEIALS Nitrogen, Nikete+Nittite as N 0.10 E3532 09/26/01 18:47 , nrvk mg/L RePort Dcfinitionr: ND - Not dctcctcd at the r€ponin8 limit MCL - Maximum conernin3ntlcvcl RL - AnalYc rcPoning lcvcl QCL - QuulitY eontrol limit : I i'[;'.1..1 :'i]. :iil jl; lll ij t.i.GE i,!il_ : i-, ,3 ',a llov-09-01 I 0:12am 80t 678 2224 T-555 P 012l0t? t'725 i:i"i,ir[ih,*,{8,;?f,.ry,ff il**ti#*'-in',irm",w' Client: Project: LABORATORY AI{ALYTICAL REPORT International Uranium (USA) CorP lrd Quaner 2001 SarryIing Eveat Whirc Mesa MiIl Lab Order: C01090647 ReportDate: l0lM/01 Lab ID: C01090647'009 Client SamPlc ID: WMMTV/+9 MCL/ RL QCL Collection Date: DateReceived: Mstrir: Method 09B0t0l09:33 09t25101 AQUEOUS Analysis Date / BYResult Units QualAnalyses NON.I'IETALS Nibogen. Nltrete+Nibite as N mE/L 0.10 E353.2 09126/01 19:53, twk Lab ID: C01090647'010 ClientSamPlelD: wMMNrfW4 Collection Date: DateRcceived: Matrix: O9l2:al$ rl:22 ognsl0l AQUEOUS Analysis Date / BYQuet MCI./ RI QCL MethodResult UnitsAnalyses NON,METALS Nluogen. Nit6ta+Nidte as N rnE/L 0.50 E353.2 09126101 19:55 / rwk Lab ID; C01090647-011 Client SamPle ID: WMMTW4-10 Collection Date: DsteReceived: 09/20/01 10:10 09l25tot AQUEOUS Analysis Date / BY Matrir: Qurl MCIJ RL QCL MethodResult UnitsAnalyses NON.METALS Nimgon. NiuEte+Nitrits as N E353.2 0S/26101 20:01 / twltmilL020 Report Dtfinirioas: ND -Nor deecrcd at thc rcponing limit MCL - Maxinurn contsminant lwel RL - AralY. r?orung lcvcl QcL - Qualiry consol limit ...i -.. 1_-f ?t0r.'ibL rrs. -1;1 .' :'\ n LIr i-i ,. ' :J': APPENDIX E U.S.G.S Manual Chapter 6.5 and Hydrolab Parameter Specifications Section 6.5 ffiLtsEsr#rytorddtr# Water Resources--Office of Water Quality This document is also ovailable in pdfformat: @Chaoter 6.5.odf 6.5 REDUCTION-OXIDATION POTENTIAL (ELECTRODE METHOD) eAilcEm:oiidation potential (as Eh): a Ineilsure of thc equilitryigrll pote ntial. rclative to the standard lrvdrogen - electrodc, clevcloped at the interfac:e bet$'een a noble metal electrotle ?ltld xn aqLlcotls solution containing electroactivc redox spccies. *Section 6.5.1 tReturn to Contents Ibr 6.5--Reduction Oxidation Potenlial (Electrode Method) tReturn to Chapter .{6 Contents Paee f Return to Field Manual Complete Contents f Retum to Water Ouality Information Pages Maintainer: Offrce of Water QualitY Webversion by: Genevieve Comfort Last Modified: I6JUNE98 ghc In contrast to other field measurements, the determination of the reduction-oxidation polentjal of water irefened to as redox) should not be considered a routine determination. Measurement_of redox potential, l"-r-.fU.a t.r. * Eh measurement, is not recommended in general because of the difficulties inherent in itr Goi.tiral concept and its practical measurement (see "Interferences and Limitations," gi!]I!l)n 6.5.3.A). equilibrium values. - (Eh) are valid only when redox species- are (a) electroactive, qld (b) present in the solution at concentrations of about l0{ molal and higher. Redox species in natural waters generally do not reach equilibrium with metal electrodes. procedures for equipment calibration (test procedures) an{ Eh measurement are described in this section i"iit. ptutinum ileitrode only. Althoirgh the general guidance given here applies to other types of redox .i..t d.r (such as gold and giassy carb_-on electrodes), it isnecessary toconsult the manufacturer's instructioni for .o.rict use olthe ipecific electrode selected. Concentrations of redox -species qrn be a"i.r-i".a by direct chemical analysis instead of using the electrode method (Baedecker and Cozzarelli, ree2). I of I I l/08/2001 4:24PM Section 6.5.1 httR://water;.gov/owq/FieldManuaVChapter6/6.5. I .html erffi$rcbfor*rP# Water Resources--Office of Water Quality This document is also ovailable in pdfformat: @Chaeter 6.5.1.edf 6.5.1 EQUIPMENT AND SUPPLIES The equipment and supplies needed for making Eh measurements ysilg the platinum electrode method *" firi"a'i" table 6.5-i. Eh equipment must belested before each field t ip *4 cleaned soon after use. Everv instrument system u.e,i for Eh measurement must have a log book in which all the equipment ;;;iir;a "uiiUi"tlo"r or equipment tests are recorded, along witf, the manufacturer make and model numbers and serial or property number. Electrodes. Select either a redox-sensing combination electrode or an electrode pair (a platinum and reference electrode). Use of the correct electrolyte filling solution is essential to proper *"ur.rr.-ent and is specified by the electrode manufalturer. Orion Com^pany, for examplg, .ecommends selection 6f a fillingsolution to best match the ionic strength of the sample solution, in order to minimize junction potentials. 6.5-r.and supplies used for Eh rneasurernentsr [rnV, mllllrml[ 4 plus or minuq; plilcm, mlcmrlerrenr per centintrr at 25 degmes felrlur] / Mlllirrplt metu r or pH met€r wtth mllllvolt readlng capabllity, prefe rably wlth automatlc tempsratura csmpensEtor;0.1-mV sensltlvlty; ecale to at laast*1,400 rnvj BNC connector (see lnst.rumentspsclftcadons forpH mstem,6.4.1 in NFM 6.4) / Bedox electrodos, elthsr lal platlnum and rgfarence electode (calamel or silvsr:sllvsr- ch lorids) or (bl combtnation slectrods I Elsctrode f illlng solutlons ( Ipfer to manufacturer's sFaclfieatlonsl / Thprmometsr lliquid-in-glass or thermlstor typel, csllbratad lees NFM 6.1 for selsctlon and callbratlon crlter'laF-lor use wlth mllllvolt meters wiihoui temperature compsn.gator / Flowthrough cgllwith valws, tublng, and aeeesories Impermeable to air (for use urith pump systemf / gampltng EYstsm: (11 ln sltu (donrnholsl msasurtment lnstrumsnq or (?) submersibls pump lused dlth closed-syEbm flourrthrough call). Pump tubing must be "lmpormeable" to o<Ygen. l ZoBgll'e soluflon / Aqua rogla or manufacturor's recommcndsd slgctrode-cle aning solufton / Llqutd nnnph os p hah laboratory-grada detergent I Mnd abraelvo: crmus cloth or 40& to 600-grlt wetldry Carborundumn pope r / Deionlzsd ruEtsr (maxlmum conducfvltt' of 1'0 p$rlcml / Botls, squsszs dlspenser for dslonizsd uratsr I Safqw equlpment gloves, glasses, apron, chemlcEl splll kit rr Faper tlssues, dlsposable, llnt ftes / Waste-disposal contalner tModily thia list b mEEf, Bpsific needs of the field afio.t. I of3 I l/08/2001 4:25 PM Section 6.5.1 common use. reference electrodes in one body (the OrionrM brand is used for purposes of illustration only). ZoBell's solution. ZoBell's is the standard solution for testing redox instruments. ZoBell's solution can bi obtained from the QWSU in Ocala, Fla., or it can be prepared fresh_(see !elow). Quinhydrong^^_ iolution is sometimes irsed but is not recommended because it is significantly less stable above 30"C and its temperature dependence is not as well defined as that of ZoBell's. ZoBell's solution consists of a 0.1 molal KCI solution containing equimolal amounts of KoFe(CN)u *d KrFe(CN)u. ZoBell's is reported stable for at least 90 days if kept chilled at 4"C. To prepare ZoBell's solution: 1. Weigh the chemicals (dry chemicals should be stored overnight in a desiccator before use). 1.4080 g K.Fe(CN)6'3H20 (Potassium fenocyanide) f.0975 g K,fe(CN)u (Potassium ferricyanide) 7.4557 g KCt (Potassium chloride) 2. Dissolve these chemicals in deionized water and dilute solution to 1,000 mL. 3. Store the solution in a dark bottle, clearly labeled with its chemical contents, preparation date, and expiration date. Keep the solution chilled. httR://wateSs.gov/owq/FieldManuaVChapter6/6.5. Lhtml Aqua regia. Aqua regia can be used forcleaning the Eh electrode (check the_electrode manufacturer's r.do.*"lrrdatioirs). Piepare the aqua regia at the-time of-use--do not store it. To Plepare.the aqua regia, mix I volume concentrited nitric acid witfr : volumes of concentrated hydrochloric acid. 6.5.1.A MAINTENANCE, CLEANING, AND STORAGE Refer to 6.4.t of NFM 6.4 on pH for general guidelines on meter and electrode maintenance, cleaning, and storaE-Jolow the rnanufactureris guidellnes on-the operation and maintenance of the meters and electrodei, and keep a copy of the instruction manual with each instrument system. Keep the meters and electrodes clean of dust and chemical spills, and handle them with care. Maintenonce Keep the surface of noble electrodes clean of coatingror 1qit.r"tul deposits. A btightly polishedmetal surface prevents deterioration of electrode response. The billet-tip is more easily cleaned than the wire tip on the platinum electrode. Condition and maintain the Eh electrodes as recommended by the manufacturer. 2 of3 11/08/2001 4:25PM Section 6.5.1 httn//wateas. gov/owqff ieldManuaUChapter6/6.5. I .html Cleaning Keep the O-ring on electrodes moist during cleaning procedures. combination electrode, rinse the outside of the electrode with deionized water. > If particulates or precipitates lodge in thg space between the electrode sleeve and the inner cone of sleeve-type electrode junctions, clean the chamber by flushing out the filling solution (the precise procedure to be followed must come from the electrode manufacturer). > To remove oily residues, use a liquid nonphosphate detergent solution and polish the surface with mild abrasive such as coarse cloth, a hard eraser, or 400- to 600-grit wet/dry CarborundumrM paper (Bricker, 1982). about I minute. Do not immerse the electrode for longer than 1 minute because aqua regia dissolves the noble metal as well as foreign matter and leads to an erratic electrode reiponse (Bricker, 1982). Soak the electrode several hours in tap water before use. TECHNICAL NOTE: Disassembly of the electrode is not recommended for routine cleaning and should only be used when absolutely needed.Additional cleaning and reco_nditioning procedures are discussed in NFM 6.4 and in American Pirblic Health Association and others (1992), American Society for Testing and MAaffi (1990), Edmunds (1973),Adams (1969), and Callame (1968). Storage For short-term storage, immerse the electrode in deionized water to above the electrode junction and keep the fill hole plugged to reduce evaporation of the filling solution. The recommended procl{ures for long-term storage of electrodes vary with the type of electrode ald by man-ufacturer. The OrionrM combination electrodes are stored dry after rinsing precipitates from outside of the electrode, draining the filling solution from the chamber, and flushing it with water (consult the manufacturer's cleaning instructions). The electrode connector ends must be kept clean. Clean them with alcohol, if necessary. Store the connector ends in a plastic bag when not in use. *Section 6.5.2 ORetuln to Section 6.5 tRetum to Contents for 6.5--Reduction Oxidation Potential (Electrode Method) tRetum to Chapter ,4'6 Contents Paee f Return to Field Manual Complete Contents *Return to Water Ouality Information Pages Maintainer: Offrce of Water Quality Webversion by: Genevieve Comfort Last Modified: I6JUNE98 ghc 3 of 3 I l/08/2001 4:25 PM Section 6.5.2 httR ://wate;s. gov/owqff ieldManuaUChapter6/6. 5.2.hffn1 &rsGsr#krffilrfl Water Resources--Office of Water Quality This document is qlso ovailable in pdfformat: @Chaeter 6.5.2.edf 6.5.2 EQUIPMENT TEST PROCEDURE Eh measuring systems can be tested for accuracy but they cannot be adjusted. Eh equipmen! ryuslbg tested, eitherln the laboratory or in the field, against a ZoBell's standard solution before making field measurements. In general, field testing with ZoBell's is not required, but the protocol used will depend on study needs. > Before using, check that the ZoBell's solution has not exceeded its shelf life. ZoBell's is toxic and needs to be handled with care. ZoBell's reacts readily with minute particles of iron, dust, and other substances, making field use potentially diffrcult and messy. The Eh measurements are made by inserting a platinum electrode coupled with a reference electrode into the solution to be measured. The resulting potential, read directly in millivolts from a potentiometer (such as a pH meter), is corrected for the difference between the standard potential of the reference electrode lieing used at the solution temperature and the potential of the standard hydrogen electrode table 6.5-2). TECHNICAL NOTE: Er.1is the whole-cell potential of the reference electrode in ZoBell's solution. 8."1= 238 mV (saturated KCl, immersed with the platinum electrode in ZoBell's at25"C) is the measured potential of the silver:silver-chloride (Ag:AgCl) electrode; Er.g= 185.5 mV (saturated KCl, immersed with the platinum electrode in ZoBell's at25'C) is the measured potential of the calomel (Hg:HgCl) electrode; Eo :430 mV is the standard electrode potential of ZoBell's solution measured against the hydrogen electrode at25"C. Half-cell potentials for the calomel, silver:silver chloride, and combination electrodes are shown in tablc 6.5-2. Table 6.5-3 provides the theoretical Eh of ZoBell's solution as a function of temperature. For those temperatures not shown on tables 6.5-2 and 6.5-3, interpolate the values. Add the value corresponding to the solution temperature to the measured potential electromotive force (emf measurement). I of5 I l/08/2001 4:26PM Section 6.5.2 To test Eh equipment, complete thefollowing 7 steps and record results on the Eh data recordform for the equipment test procedure (fis. 6.5-l): 1. Follow the manufacfurers' recommendations for instrument warm up and operation. . Set the scale to the desired millivolt range. . Record the type of reference electrode being used. 2. Unplug the fill hole. Shake the electrode gently to remove air bubbles from the qenli-1g tip of the eleitrole. Check the level of the filling solution and replenish to the bottom of the fill hole. . The filling solution level must be at least 1 in. above the level of solution being measured. . Use only the filling solution specified by the manufacturer. 3. Rinse the electrode, thermometer, and measurement beaker with deionized water. Blot (do not http ://waterff s. gov/owq/FieldManual/Ch apter 6 / 6.5.2.htni T*IG 65-4. ltandard half-tell potentirls sf selected reference electrodes as r function of ternpertture rnd potarrlum chloride rtfereact-solution con- centration, in votts [Liquid-junction potcntial included*multiplylnlts by 1 ,000 te corrrrrt ts millivolts; KCl, Potasium chloride; Ternp !C ternperature in rM 6dili.d trbllr trfi{muli t 1B7ll.t}lodilid Irm Ei{l!* (Ig7q. 9Nodilrm t IgrI, ild D.l( N6rd,rtotr! U.3. GEbl6gh.l surrrcy, rraller cdmmlri.. tggi; !lr! httr'Bll Fdtrilunlr inlErlitrd trorrl N6tdilrofttlgirft nlt ri6mh*r$rd n}llrr rhrnrls wlril tidftr glhLiu (lE6* ;lcd in rll lllil t r6tx. lrrrruil ptoyBEd bt $r O]ion Cbflprhy bGt*Lrc Nordlro mt Ytlult v,!fr drrEloPCd 3lrdllailly br rt! ori6Ftx 9&;B Gdu.ladrtale rld p,6vu* glEflil Ednof rd Fltctlth.{Otlontq ft}ilrtr.iuttr rrdrinffardi tu. b r i'fi+ll *nluiohi {yllh l!l*l lanie rlIihoth 6edlfip 0.? tu6li?Fur6Empl*,r6d.rriiri.brri{t l(f,.t-rrrufi{EdrilllhoialtttdnIl}l.llyiuFpll!d*lhlltOr16Bulrr6d(l gt m rk6tludnl rndtlr hll.cillpd6illilirho/yiltboE brrl; tilvcr:iilrcrchlorldnr'|.uIii.d l0l b&rohcrt *laitrbd*. 0.26D 0.268 0.154 8.26I 0.t67 0.161 0.3{8 D.?!E 0.250 0.llG 0.2/it 0.28t B.rr8 o.lll D.z{t 0.?38 D.SCC 0.1*t 0.?s o.lsl o.?fi) 0.215 D.?t4 B.?16 0.!tl 0.?m t}.tts o.t{B 0.lll( D_l$t D.?6 tl.19g 0.105 rI.281 8.tgt 0.?0e D.rs, 0.lm o.rEB 0.IB 0.lgr Table 6.5-3, En of ZoBell's solution as a funf,tion of temoerature lFrom Nlordrtrom (1977) "C reer Celslur; mV, millivol l0 {6? t: {63 l4 +51 16 {53 It 448 tn 441 :: {38 $t +11 zr +3m ?6 ,+2ff 3t 423 ]0 4lt i! 416 3{ .{O? :6 "l0t lff :ff' 4A 383 2of5 I l/08/2001 4:26PM Section 6.5.2 http ://watees. gov/owq/FieldManuaUCh apter6 I 6.5 .2.html wipe) excess moisture from the electrode. 4. Pour ZoBell's solution into a measurement beaker containing the electrode and temperature sensor. . The Eh electrode must not touch the bottom or side of the container. . Add enough solution to cover the reference junction. . Allow 15 to 30 minutes for the solution and sensors to equilibrate to ambient temperature. 5. Stir slowly with a magnetic stirrer (or swirl manually) to establish equilibrium between the electrode(i) and solutlon. Switch the meter to the millivolt function, allow the reading to stabilize (+5 mV), and record the temperature and millivolt value. 6. Look up the half-cell reference potential for the electrode being used (lablg-6i2). Add this value to the measured potential to obtain the Eh of ZoBell's at ambient temperature. . If the value is within 5 mV of the ZoBell Eh given on table 6.5-3, the equipment is ready for field use. (See the examPle below.) . Refer to section 6.5.4 if the value is not within 5 mV of the ZoBell Eh. 7. Rinse off the electrodes and the thermometer thoroughly with deionized water. Store the test solution temporarily for possible verification. EXAMPLE: Example of the equipment test procedure using a silver:silver chloride-saturated KCI (Ag:AgCl) electrode. Eh: emf + E,", where: Eh isthe potential (in millivolts) of the sample solution relative to the standard hydrogen electrode, emf or E.",r,,rdis the electromotive force or potential (in millivolts) of the water measured at the sample temPerature, E*is the reference electrode potential of the ZoBell's solution corrected for the sample temperature (1ablc 6.5-2). a. Follow steps l-5 (above). For this example, . Measured temperature :22"C o entf= 238 mV. b. Check table 6.5-2. The interpolated reference potential :202 mV for Ag:AgCl-saturated KCI at 22"C. c. From Eh: emf + E,r, Eh (ZoBell's) = 238 mV + 202 mV: 440 mV. 3 of 5 ttl08l200t 4:26PM Section 6.5.2 httn //watef. gov/owq/FieldManuaVChapter6/6. 5.2.hfrnl is within +5 mV of 438 mV from table 6.5-3. ready for field use. d. Check table 6.5-3. The test value of 440 mV Thus, the equipment is functioning well and Eh Data Resord Equipm ent deeeription Equipnxnt Test Proredurc end idantifrcstion (model gnd gerial andor W num bsrl: ItrEtEr Eh Elsctrsde Rafsrsnce electrsda ZoBell'a solution: Lot $ --- DEtal prgFarad --- upirad Eelore aam ple Eh: Aftar sam ple Eh: '1. Tempsreturg ofZoEEll'ssolution; T = (rfter equilibration to cm bient:tam perature) 2. Obgsn ed potantial (in millivoltgl of ZoEell's relative to m aesuring alectroda, at sm bient tom parBiur€ (E*."*rr*d or gn0l cml = 3. Referance elactrode potantial (in millivoltal at am bient tsm psrsture from tablp 8.5-3 (Er6h Ersf= *. Celculeta Eh of ZoBsll's1 l[ = srrnf+Er"t Eh= 5. ThsorEticsl potential {in millivolts} sf ZoBall's at am bient tam F€rEfurE frsm tabls t.5-3r Eh (thaorstical)= G. Subtrsct calculgtpd Eh from Eh thaoreticgl (Zoball'sl(rtep 4 m inus atap 5l aEh= 7. Chesk: ig *Eh rryithin * 5 mV? Obesrvstians: Fburc 6.!I-1. Eh drtr record: equlpment test procedure. *Section 6.5.3 *Return to Section 6.5.1 f Return to Contents for 6.5--Reduction Oxidation Potential (Electrode Method) f Return to Chapter A6 Contents Page SReturn to Field Manual Complete Contents SReturn to Water Ouality Information Pages Maintainer: Offrce of Water QualitY 4 of5 11108/2001 4:26PM Section 6.5.3 eusGsrchorfu:dr*r# httn ://wateJs. gov/owq/FieldManuaUChapter6/6. 5. 3.html Water Resources--Office of Water Quality This document is also available in pdfformat: @Chaoter 6.5.3.odf 6.5.3 MBASUREMENT To obtain accurate results, it is necessary to prevent losses and gains of dissolved gases in s_olution. Co"*tt NFM 6.0 for information on pr6cauiionqand ge.ne11l procedures used in sample collection and NfM O.2Ei alescription of the flowthrough cell used in dissolved-oxygen determination (the spectrophotometric method). - significantty wittrln minutes oi even seconds after the collection of a sample. goal. Iiusing a flowthrough chamber or cell: Use tubing that is impermeable (relatively) to oxygen. Channel the sample flow through an airtight cell (closed system) constructed specifically to accommodate redox or ion-specific electrodes, temperature, and other sensors. Connections and fiuings must be airtight. Purge atmospheric oxygen from the sample tubing and associated flow channels before measuring Eh. Measure Eh in situ with a submersible instrument or use an airtight flowthrough system. First: l. Record the type of reference-electrode system being used (fis. 6.5-1). 2. Check for the correct electrode filling solution. If working in very hot or boiling waters, change the reference electrode filling solution daily. 3. Keep the electrode surface brightly polished. TECHNICAL NOTE: Temperature determines the Eh reference potential for a partic^ular solution and electrode pair, and may affeit the reversibility of the redox reactions, the magnitude of the exchange current, I of 5 I l/08/2001 4:28 PM Section 6.5.3 httR://wateS.gov/owq/FieldManuaVChapter6/6. 5.3.html and the stability of the apparent redox potential reading. The observed potential of the system will drift until thermal equilibrium is established. Thermal equilibrium can take longer than 30 minutes but it is essential before beginning the measurements. Next, measure the Eh and complete thelieldform (ftg.6JQ): l. Select an in situ or closed-system sampling method. Immerse the electrodes and temperature sensors in the samPle water. . In situ (or downhole)-Lower the sensors to the depth desired and follow the manufacturer's recommendations. . Closed-system flow cell--Check that the connections and sensor grommets do not leak, and that the water being pumped fills the flowthrough cell. 2. Allow the sensors to reach thermal equilibrium with the aqueous system being measured and record the time lapsed. . It is essential that platinum electrodes be flushed with large volumes of sample water to obtain reproducible values. . Record the pH and temperature of the sample water. 3. Switch the meter to the millivolt function. . Allow the reading to stabilize (+5 mV). . Record the value and temperature (see the technical note that follows step 7. below). . Stabilization should occur within 30 minutes. 4. Take readings of the sample temperature and potential (in millivolts) every few minutes for the first l5 to 20 minutes. . It is best to stop the flow of the sample while the reading is being taken to prevent streaming-potential effects. . After 15 to 20 minutes, begin to record the time, temperature, and potential in plus or minus millivolts about every l0 minutes. Continue until30 minutes have passed from the initial measurement and until the measurements indicate a constant potential. 5. After the measurements have been completed for the day, rinse the electrode(s) thoroughly with deionized water. If field calibration is required for a study, a. Place the electrode(s) and other sensors in ZoBell's solution that has been equilibrated to the temperature of the aqueous system to be measured. The electrode(s) must not touch the container, and the solution must cover the reference junction. b. Allow the electrode to reach thermal equilibrium (15 to 30 minutes). c. Record the potential reading. d. Follow steps 5-7 of the equipment test procedure in section 6.5.2. 6. Record all data and calculate Eh (see EXAMPLE, (section 6.5.2). 2of5 I l/08/2001 4:28 PM Section 6.5.3 httn//wateas.gov/owq/FieldManuaUChapter6/6.5.3.htm1 Fill out the Eh data record form for field measurements frg.6-5-2). Eh Data Record Field Mearuremgnts Field Eh Field Eh1 !. Tamperatu ne and pH of syrtem messuredl T = - PH= 2. Time to thermal equilibration; Mpasurement began at Measurement ended at 3, Msasursd potantal of wetsr sYstsm (m\llr ernf = lf, RefErEnco elsctrodE pohntial mV of ZoBsll's at srmple temperaturel E61 = -5. Celculate samPle Ehl errf + E oy (add step 3 + steP tll:Eh =_ 5" Figld mggsurementr should agrce within about 10 rrM' 0bseruations: tThs cscon nEaaurEnEnt i3 rEGaEEry fut qrelity contml. Flgurr 6.5-4. En data record: field rneasurements. 7. Quality control--Repeat the measurement. TECHNICAL NOTE: The response of the Eh measurement system may be considgryply slower than that of thi pH system and that response also may be asymmetrical: the time required for stabilization may be longgl *frJ"m6uing from an oxidizing to reduiing environment or vice versa. If the readings do not stabilize within about 30 miriutes, record the po-tential and iis drift; assume a single quantitative value is not possible- If an- estimate of an asymptotic finil (hypothetical) potential in such adrifting measurement is desired, refer to the method used by Whitfield (1974) and Thorstenson and others (1979). 6.s.3.A INTERFERENCES AND LIMITATIONS Measurements should not be carried out without an awareness of the interferences and limitations inherent in the method. 3 of 5 I l/08/2001 4:28 PM Section 6.5.3 httR://wate3s. gov/owq/FieldManuaVChapter6/6. 5. 3.html - briige, or internal electrolyte, which can cause drift or erratic.performyc? when refeience electrodes are used (American Public Health Association and others, 1992). - th; meisurement if the electrode is left in sulfide-rich water for several hours (Whitfield, 1974; Sato, 1960). - solufions containi-ng chromium, uranium, vanadium, or titanium ions and other ions that are stronger reduciig agents than hydrogen or platinum (Orion Research Instruction Manual, written commun., 1991). - with ZoBell's. An insoluble blue precipitate coats the electrode surface because of an immediate reaction between ferro- and ferricyanide ions in ZoBell's with ferrous and ferric ions in the sample water, causing erratic readings. Many elements with more than one oxidation state do not exhibit reversible behavior at the P]atinum electiode surface and some systems will give mixed potentials, depending on the pres_ence of_several different couples (Barcelona and others, tggg; Bricker, L982,p.59-65;Stumm.and Morgan, 1981, p' 490-495; Bricker,'1965,p.65). Methane, bicarbonate, nitrogen gas, gulfate, and dissolved oxygen generally are not in equifibrium with platinum electrodes (Berner, l98l). TECHNICAL NOTE: Misconceptions regarding the analogy betweenEh (pe) agd pH-as master variables and limitations on the interpretati6n of Eh ireasuiements are i:xplained in Hostettler (1984), Lindberg and Runnells (1984), Thorstenson (1984), and Berner (1981). To summarize: (l) Hydrated electrons do not exist in meaningful concentrations in most aqueous systems--in contrast, pH i"i."i.ntr real activities of hydrated protons. Eh may be expressed a.s. pe, tlrg negative logarithm.of the elictron activity, but conversjon to pi offers no advantage when dealing with measured potentials. (2) Do not assume that redox species coexist in_ equilibrium. Many situations have been documented in which diisolved oxygen coexists with hydrogen sulfide, methane, and ferrous iron. . The practicality of Eh measurements is limited to iron in acidic mine waters and sulfide in waters under- going sulfate reduction. . Other redox species are not suffrciently electroactive to establish an equilibrium potential at the surface of the conducting electrode. (3) A single redox potential cannot be assigned to adisequilibrium system,lgr can it be assigned to.a water iainple w'ithout specirying the particular redox species towhich it refers. Different redox elements (iron, *ungunes", sulfu1r, se6niIm, aisenic) tend not to reach overall eq-uilibrium in most natural water systems; therJfore, a single Eh measurement generally does not represent the system. 6.5.3.B INTERPRETATION A rigorous quantitative interpretation of a measurement of Eh legyireq interactive access to an aqueous speciation code. Exercise caution when interpreting-a measured Eh using the Nernst equation. The Nemst equation for the simple half-cell reaction (Marl: M'(,n) + e-) is 4 of5 11108120014:28 PM Section 6.5.3 where: 4Section 6.5.4 f Return to Section 6.5.2 SReturn to Contents for 6.5--Reduction Oxidation Potential (Electrode Method) SRetum to Chapter ,4'6 Contents Page SReturn to Field Manual Complete Contents SRetum to Water Ouality Information Paees Maintainer: Office of Water Quality Webversion by: Genevieve Comfort Last Modified: 15AUG00 imc httn //waterf s. gov/owq/FieldManuaUChapter6/5. 5. 3.html Eh = Eo + 2.303fiI/nF log (attu*,/ a'"*J n : gal constant; T = ternperature, in degrees kelvin; fl = nurnber of electrons in the half-cell rerction; F = Saradty constrnt; rnd at*orread. o,,**,= thermodynamic rctivities of the free ions Mr,r, rnd Ml*,,and not simplythe anrlyticrl concen- :::lt:;i":ltotarMinoxidationstrteslandtrl' Measurements of Eh are used to test and evaluate geochemical speciation models, particularly for suboxic and anoxic ground-water systems. Eh data can be useful fol gaining insights oq qe evolution of water chemisty and-for estimatingihe equilibrium behavior of multivalent elements- relative !o pI! for an aqueous syjtem. Eh can delineate qualitatively strong r9q9x gradients; for example, those found in stratified hk6s and rivers with an anaerobic zone, in an oxidized surface flow that becomes anaerobic after passing through stagnant organic-rich systems, and in mine-drainage discharges. 5 of5 11108120014:28 PM Section 6.5.4 http ://waterts. gov/owq/IieldManuaUChapter6/6. 5.4.html *r&E! Water Resources--Office of Water Quality This document is also available in pdfformat: @Chaoter 6.5.4.edf 6.5.4 TROUBLESHOOTING Contact the instrument manufacturer if the suggestions in table 6.5-4 fail to resolve the problem. Check the voltage of the batteries. Always start with good batteries in the instruments and carry spares. Tablc 65-4. Tmubleshooting guide for Eh meuurtment [:t, plus or minury mY, millirmltry etal, electromotive force] Check m gtar oPsrationl ' Use ehorting leed to estEblish mEter reeding at zero mV. . ChecklteplEce bBtteri6a. ' Cheek egeinst beckup m eter. Check alsctrodE opemtion: ' Checkthgt elstrode ref€rance solulion lgvel ie to the fill hole. , Plug questiongbla refersncE elsstradg into rsferEnce almtroda jack and anuther rahrance glac'troda in good working srdsr of the eam € typs into the indicator alxtrode jack of the metrr;immgree elestrodesin a poteesium chloridegolution. racord mV, rinae off snd imm arae Bl*trodag in ZoBall'a eolution. Tha two mV readinga ghould be 0 *,5 mV. lt ueing diffarant el* trodea (Agr4gCl and Hg:HgCl2l, resding ehould bg 44 * 5 mV fur a good refurencs elEtroda, ' Polish platinum tip wth mild ebraaiva lcrocus cloth, herd aregar, or a 400-60fgrit welUry Carborundumlil paparf, rinre th oroughly with deioni:ad weter' Uae a l(im,rriperll if lheee abreeivsa erc not evailgble, . DrEan snd rEf ll refsr€nc€ al*trolytE chamb6r. . Oi*onngct rpfurancs Elactrsde, Drain end rafill glEtre- lyte chEm bBr wth corrst filling solution, Wipe ofi connsstore on Elrtrode Bnd m Etsr. Uae baekup eltrtrodg to chackths st rrl , Read drnfwith fiesh aliquot of ZoEEll'E Bolution; prepere fresh ZoBall's aolution if poeeibla- 'RBcondition Blffitr6de byclaening with EguE r€giE End ranawing filling Eolution---ltie ls e leC rmi. Eh of ZoBsll's golution erceade theoratieal by t5 mV B<easeive drift ErrEtic psrfsrmBnce Poor responee whan using pairad alEstod€s I of2 4:28 PM Section 6.5.4 *Section 6.5.5 SRetum to Section 6.5.3 OReturn to Contents for 6.5--Reduction Oxidation Potential (Electrode Method) OReturn to Chapter ,46 Contents Paee tReturn to Field Manual Comolete Contents SReturn to Water Ouality Information Pages Maintainer: Of,fice of Water Quality Webversion by: Genevieve Comfort Last Modified: 16JLINE98 ghc httn //wate3s. gov/owq/FieldManuaVChapter6/6. 5.4.html 2 of2 I l/08/2001 4:28 PM Section 6.5.5 &tffisrffitrrclrlkrrlil httn//watejs. gov/owq/FieldManuaVChapter6/6.5.5.htm1 Water Resources--Office of Water Quality This document is also wailable in pdfformat: @Chaeter 6.5.5.odf o.5.5 RBPORTING Report the calculated Eh in mV to two significant figures. Potentials are reported to the nearest 10 mV, along with the temperature at which the measurement was made, the electrode system employed, and the pH at time of measurement. clChapter 6.6 Contents tRetum to Section 6.5.4 ORetum to Contents for 6.5--Reduction Oxidation Potential (Electrode Method OReturn to Chapter ,4.6 Contents Page *Return to Field Manual Complete Contents tReturn to Water Ouality Information Pages Maintainer: Offrce of Water Quality Webversion by: Genevieve Comfort Last Modified: I6JUNE98 ghc I of I I l/08/2001 4:28 PM Section 6.5.2 httn //waterJ.gov/owqff ieldManuaVChapter6/6' 5.2.html Webversion by: Genevieve Comfort Last Modified: I6JUNE98 ghc ll/08/2001 4:26PM LI/OL/?OOL Tf,ti 11:07 FAI 'eEOe Dc IE EiE Ig r Ei iEe El n Fg EiE ii s E iiE $i 3. EE*aE5 BA Ie-= 3E a EEEE$AE5 tsr8 Ge 5 EIEEEg}p lrh" q* A*i;ieqE=stEE E * A dr- A =;g9l1ilEEB,iA E t.a EIir = v rF EFE 5_ gieE E EAAg E EE3i i .3 ts-=H *;Eiq FA;Es is e:ts s-tr EEn EgEEE i HIEE E{ 8-€ e.J r?d E3 6-o *g E-: a-3 EX tEB gB 3 a "94aoq Ei.f i IEE E$; sE -eE-: aP q 9L a?i EEfl E; i B E{ s r, i EAE c aE 1 E E EiE Ege = g d 5=E 6F- a- d Q e*6qAEgE?:E+Es*=iE*Btr.8 B;EBlEggE;a * A tr E:E.1 [$=tEF;[iES, i 5 E Fs,E g BE 3 ,= i eig r eTaE-i.=#? E1EgE E?gfsEE*E ire ;-A E E ; iE E- Ei ?g egE E HEg$E E€E EEE*EeAE*-EEEE i$EEg{E BBr5E i = =-: ?er ; r r[ E,eSEd s is ? EE e"=9- N P=r jdE6 E-Be[ e*e3 E -18 q"E ? [tAE H+tss ss-se 'rfl o-E6 qFcE +-:fr E.EzaE73 a,'o, ;Efr== tE.t< o 2at o6 =Y 9E E B P?EE HsqEfE iEaF HE E = -e iJ H + L EEEEg '"H 5 B- €E i s,o :-E3 r 5- =o d 9Z'=FEtEiElEt aee 3 sf,=38l9 + Fn_6 3 BsB 7 AP,E5Aeie g5;E flB6Bf,=E E = 6g8EE3{t8El =2qs{qorgE: =aq'atsflE$aEqcqF$€ 3 df{dog, =+=#o+E=6rd 3 ieoi:JE5"€13 EJO-9f xB8{q:9. D!c doo>-q:84FgE Ooo5a?qtzo_1;94 --tJoris8 10rggat36O 665Qo_888ea-oo5de3 BEo? =E5P 3a )ldlvlo!slnlclBI 7tilIalel:lEli5 I,Tl'at rBIEIEIEI.aI'o.e iB--p rG :E looP t3t€-1 Fc_toiP EE.?o 1? ar,a -o 6JE*illio Jr{aQe 8U SEgB d-a= @J E$ 6=oo6'3oob=6eYd) 5 B =oot Eo3? 5g &DiE-etog Eilo 3.6 =oo ItI a-i 643 To6o el BI ll*r E; =Q.}L iZ TJii EalE 5o is [Elr ac.E Ailr* 5g ir E Aic :t lE ?i,.9 iB Qo_ "9 :RJ = -.;s E3 EE -, ir a r 6 ()b aB E'Eio- EE!fl 3EqE :Iq: EE*E gE H3 i; AE =-i, EE 5:q4 e: _ f a; Et:r alect r I.Fg!D Qi a ,_!Fci46.sH: F dr "F {l =f6'8ir !.€Bf d'rFZB-o )660oioo86 Bt9aaaoF D g La;IDa E =dIj p Es- 3 3 E c. d s E 3 E}dr9d{,!eEia:+itl9.otf-qlc:qi-c =l ol €! E!_5! =t =:or =iE'- Dc o g F6da(}a 9 2 D :-{ E =EOE.si - io tl Oi 19 :!q;io dta ; rd aiOrx ! Lo I,o ::E :t= .la il3 i7c !!E; =O]o' iaL i!Orf,r iEr9r: 5$;-'{1oG- a'<!l<boEilo9=.Lo rL HTia =6oo -f@_D'E:$3 agiguo TTE6 BE.qao'8 entsxoiB EEoil as EE -.@eeoI Hs ets5eqaie e.3te Hitg E* Coaeis/:E l-_ eg'8 e-{=-do_G,l =oDOo{l igBa sD )aq-oJd+roge ilq Bq Or -efl eO 9oto2.O IEsdF9o: r.dB*oX;-'{1oG- a'<!l<boEilo9=.Lo rL HTia =6oo -f8=E:$: a9iEuo TEE6 BEcao'fl3!3sxqir6E9; 6E ar!!- tiaI =iolol6f! o'o( *tT: oir e.iit tA:BiI 1f;6IEl!td:f,t1+fLtrlPF trEil'E 33985r:r"5 :;ie daqi3;EEOr !o-ll rdq ioa IeBi9rl;€- -O a aqr !pu ;oa rDal I7ll P- =ts )gE iFO =E r B6e6gE 3E ot $=' '-Gt Ic,c4 & o i-s; Bf IP a* lE iz =o=E e 6 EI g =o .g E $ tEooreoa o a u_ 6'a!3Eaq obqn El =..,iFE s85?sa *E E-9gTrr;ie BS3ncO 2o '2,6++ a5-E' GiG -a^t -@3E ?P B sa9E-4zda GE6g tP E *E g[E g €E BBE =at 3E* ur< ---< *8e B?-r o s[ e+i eql g=S (n Ag EEE il:; g+E A EE i-.i a ?,,iEE EBt ei'; 5' EE EEE H alz P.!c A *= =EE g iEE+= Eqs*sF IqEa e6fiL€ ts c.-o )** d eF$ = EzqE eis* =39N t+$ E ial'* aEsa t-=;o @--a6 a9z E*eg (P 3Qfiq{t 6>s 33s gt - Er[ *i Sa -l* cr O: Eg s EB[ Ts Ei ;F ea a* qE6 *eEH P-886f Eq-E P;}ro plI EE5eESfE3rr-- - -F alEEqi oo AO irE +d' fLoti o! rCr93--oo =cEo =Eaqr- ae !rEL r8d3 3P3sG-p QN,=:d-?f- 1=F9E'Et5 5Eoeo-t6root 5E:'o? bl1=e=o= TAet: Eg +tsE- .t=!:q aog aD o l+ I - s E E 6 Ba- Eo =EIc E Eoo =I s o e I o 3E E!raq g g a o, 3, z g vvv, vv, {?N IL/OL/ZOOL'I'HU II: IJ }'Alt ES @(r-()-.1 s;l 1oe B q!p:-i {eaoxX,tx 60eo rS& 6'6 fq!l 355Q PPP -T' C5:LtE it' il =@ () =8.G'o 6Ie=o3 o III ! E 6 3D@a hoo =P 44' =G d odt 9r- EEgooo -3FE EEE n do ao roCjib 6qar=5 iFq.r vo aE 6 = o4 Gf= t-r d =l ? a iD o asiEBiq gEerEgE EEgE Eg3i E3 * 3 Eg iE i s EggE iEFi ga 1 3E& I' i B +Eie;E EE Ei 1 i EE Ea i F giEE Ei d; cd b -;6 qg e F,aH 1e * EE EE Ed 5= _os$ : =77 ao o-G) 6E gE ='.qr; g EEE 3Ee:5 Eg=3 E; d!. q FE* isE3 Eq5E I3 Es gsif I BHEEo Fo :gFfrEges=sv:etat3a-Ed cDeD E 6 B .D ooo& llU vu!, vvr 'N N rr/OL/?OOL TEIT 11:15 FAX o E, A' o E' -o- =o, 0 (o (D (Das0l @tt .D Ct o BIa; 0 o, c,o ==iaEo CL + CL o DId{o() ?.o EL 2 o o Nos EEH-EHff aQ EtJ ? EEEIBEE EE gE$ E EE8;*E iE TgF B E E'U- Ai iB Efi gE FEEE fi"E qIE';i EE q-:e =tgEE lEE?c o:F a-ri Eg e'g aE; a lEg# iEiB =-? 1E ts8q i'g E= a iEiB Ee.. E B ElEc^ 11 ?f, *=reajsZ =e Hffila s56a' Eil at sE gs 5ifr +E?s, yE F EP5. igEiEo PP.49a t.;r Ea CA6 ,oegilO EJa"t EIEEsB5i;g- [E. t- 9f8sl o !,i .;;ga= o =ET!.FBEsb;E =E€trAB3B6 o a. c!eo fo =o -8E E-a a d 6pD BCaO go aGa6 91 C E 4ooa =t oo6 E.! e?o D = s P-ctaD I€o o.9' tooo a, c E E !p H {41 uu4,/ uur -lo C, J z.oF}o N(,A ano IDa & arg DI o 1r,o!agl &-aFrgeo -l=-o=..-i Oo9-Aul 'oE'S(Deo9.9-lr = E-€i{r -L -.Ei9sJ-adto o a, 7-zI ()(a 9HE9E1la6-7(, m llrE!mIb-tgvm ! x -m-tl|ln D>s3E-oozz,SE,E HEIox o- {62 aE 5=9 =E gj, aeg* =@<m5'+ElOEsc sctE =s EHo{I@ <li.bcl 1'-os. 1E EPz<, ts o o c36 e aI2dF o 6 oT fr EasEE Iae*B :=9s 3 6' o qc()fr a6m o b oo 3E t-z @t o aooo 3 BE6O ?J! -u "sE= -zL{c ^ooEaa EEd6ez gE; r+ l+9!)ON33OG ?ti tsts t+pora*ie. EAo e a+ f+ a, b81 7=a E E *6 o C) oo =lbc, P AEIpD rt -4DAEEfea G Elo 6 l+ ts 3 * O*o a;c l+N iD :E st a fr * -oN 5 a ob c2 I0 6r Pa a 5goil Io c) 7tIII?to E =oz Eb l6 Pz l -o lz e ic d1 i.q }E EEEiod.lF9Bi E q'AB B=€EI e 8€8f!ooecE=Eg,B rA 3 az 1)t $-ts clCrx frE: O-st4nOod 3o I e_@o o,ln2 GOot odof9* B* ! Dds * E8 ilH3{it&gtsI sSgE $ E i[[5t t aarol25 qt-ls EHto 8 [E 5E Y€$E ,d oq =o -Iir -tEea 0L ir 6- o q c) 3 B E_I f)oE!m2o{5-,u, EE++EEEF: Er;; F.. a $ 3l.D Ec- e _+o.to@=f E a; O-E5r6E3€ =og eedtlo'e EE ai o D eo) dJ gE sJE=o 6i FE q {JElrseJB;I 5oA ETB + EgEEE E6 Fca9.-=! l so 6! Eoo c, -Ev :!oEEEEi E4+q= * NI'6EEJrl9.9aqIE IE9 E.n s +Te sSE€d I3 BJP5ooR-3>h- rrt, 'El - rq'E=r.st q , !1 E3ic8,,A'l1aaT+ z5'Eo 3.) E a l^lro lsE IEElol c oooa vm1g -6n!.= aII 2_-c do nats 6', € Efe-= o,t eI J t 3 E or aIr E E Ele g, E { o B 3 3J o fo e + o-o 7 == ofo e I o =o ee= € c,} El r-E EA!'FEF E +g;- E=qI -D aa, EeA liF'I qe 6iz,aa r+B2?gJgs -o :t z-{E z C d, o 5 lO/24/?OOL WED 18:02 FAX cEodB !P U6 -.o DDo IgI UUJ/UUJ To !lT o o o-to C' oo 6" ao I @o o U, 5o C'Bsato5e e BF =z(toao.G @ 50t F CI'tr ?or<od $E E' IDp. Dr< oo ==5caq a !E(oo FAX ad8z m0 G'bU' o Fo a. E,m z n m ,E B =m mv c,III! Eea6 1=a (t- 6vo!Ir a> *a z{ tr C'- '!E,d>mua95!imIi 6 E'lll.E -6 "SQato,= f, Im.o{Eo-3QEt@4-*d (,ilt:o{ o -iltan 7 eeEIx*9=: 1Ed-efCs1 ODE1I oit d Ebo CI 3Gr I o oa ?q z. a 2ollr o c Nor :t o r5 O 3 Ie c Oto EoF e6 o-o B E3o 3: Ea g a + t, oI(, 7 o 6 I :I 5si3 3oE i, t+ P :F a R: t}eg N-d =92{Bqlo P.z-- rr?q ]3c !tEaE{i-[ :Fo c) C)cT 1'l r+ o J3s 1)ob 3 B ]fo-(, 3 rtai>e 3 I et} 3o tlEEdi3e EO?.3-rEg 7 +o€ e9 3rE(z 7'rdvt Pc -t62 6bo ) P E6F iI i E Rg g 6T5I P BE@ I 33 E P 3 p 3 e'o 3 qE3 5.8+.Eedqd s o B Eg oatIt BE umz .DoD dt B=.', ES<o 5Bago? EE gE oi EE qg.3rZtCEOEOG -o g-i Ba Eo3o = sgEgEE ER8i5 s!l.od3=uteo = ooOqslg BE€Eg8ile&lo. €= Bil C)o =!mz. aDF _{oz.g, oc_o3E o o EJa I g o ooc @e Esg ?IO =tr 2 iEr*=JFOrE +6'-B+7 B 3 ooq oa =o B Ec_l tco I6 I &- II Dso:1Ir { D an Eso 6 o q 9E f fi .E E- oo o l 9l iaEgigEr+; E+E 1E=-& lrgE- 8= EE} s c, E 9 o = t IL) D Ee 9rz io a5){ 6p o a3oF oo tco 5 o_ i:i$EtE rEE g.$'al esu a Ie 5 6DL E a 3- (., ?_,c6oI I-t IT l 4ID -{ 20 EEc,z0m a OoIe o BI la o taab o I e o 0t c'o 8o e fl a i = EfiT =qoetd_rI o,o 3of, 10,t 6FIt e55o ofo 3o77 o =o zf = I6 3I:t a B e;r = E 3 a I-G 4 e.U to 3@roI E,o u oo.uc e1 G1 sElT).=-se;s Fs_;r- >!Pg 3 o !tt, _3 PI ! @ P?o Ta, I Po roI Ed t-o D E ]-O/24/LOOL WED 18:03 eE & E E 5Fltrrl =Elq.o I3sl1al aEt E? I E-s I EEIq9 Itd Ir;l50Idgl ao Iae I 3g- |e6l-3 t EEI Eo I EEI Es.ls&l66 I FHI aElB4ltEtd=l06,:; 43.Eeqd3tr9d e.€ rs-'"*{ 6q t€ L EqI irbI -OI 3"qI a& lgEI -0I oOI Fis t<t*l+l8 INrpnNerro*ol UneNrul,r (use) Conponauou lndependence Plaza, Suite 950 . 1050 Seventeenth Street o Denver, CO 80265 . 303 628 7798 (main) . 303 389 al25 (fax) October 15,2002 Via Express Courier Mr. William J. Sinclair, Director State of Utah Department of Environme Division of Radiation Control 168 North 1950 West P.O. Box 144850 Salt Lake city, uT 84114-4850 tal Quality Reference:Water Level Map and of Increasing Water Levels Observed in MW-4 Utah DEQ Notice of Vio ion and Groundwater Corrective Action Order UDEQ DocketNo. U 20-01of August 23,1999 Dear Mr. Sinclair: In accordance with discussions between nternational Uranium (USA) Corporation (IUSA) and the Utah Department of Environmental 2002,IUSA is submitting the enclosed uality (UDEQ) that took place on April l7 and24, ater level data and a current water level contour map to resolve UDEQ's question concerning i Monitoring Well No. 4 (MW-4) at the ing water levels which have been observed in ite Mesa Uranium Mill (the Mill). This transmittal includes water level data from pi and temporary wells drilled in support of the investigation of the occumence of chloro brm in perched groundwater near the Mill (see IUSA Temoorarv Well and Piezometer Instal of April 9,2002) as well as water levels measured during the Septe 2002 split sampling event. These data continue to support the hypothesis presented to UD at the April meeting, in which UDEQ and IUSA agreed that the wildlife ponds were co buting to the increasing water levels in MW-4. [n summary, as noted above, and as ev on the enclosed current water level contour map, IUSA concludes that the wildlife ponds We appreciate UDEQ's concurrence on contributing to the increasing water levels in MW-4. resolution of this matter. Sil IN RNATIONAL URANIUM (USA) CORPORATION L-.L*. KtZ helle R. Rehmann, ironmental Manager / Mr. William J. Sinclair October 15,2002 Re: Water LevelMap and Page2 of2 MRR/ cc (with data tables): Loren Morton, DRC R. William von Till, U.S. NRC, Harold R. Roberts, IUSA cc (without data tables): Dianne Nielson, DEQ Don Ostler, DEQ Resolution of I g Water Levels Observed in MW-4 ashington D.C. David Cunningham, DEQ, SE t Health Department Dave Arrioti, DEQ, SE District th Department Fred Nelson, Utah Asst. Terry Brown, U.S. EPA Region Richard Graham, U.S. EPA Regi Dan Gillen, U.S. NRC, Washi D.C. Charles Cain, U.S. NRC, Region Ron F. Hochstein, IUSA David C. Frydenlund, IUSA Michelle Rehmann,IUSA T. Kenneth Miyoshi, IUSA Ronald E. Berg, IUSA Generalu n VIII SIMRR\Chloroforrnlnvestigation\2002\5inclair Water Level (09.26.02\.doc PROPERTY BOUNDARY I { I o) zo/zh \\ \\ }\ S,"h\ ,l '1$-?1 I\ tl \\ \\ t\ t\ \\\\ 5480 5470 t-\- ),) lxr - --"----=rA/ J,L:'/ -/' \\t\\\t\ EXPLAN ATI ON /2 7.<r \, f\,vo MW-11 551 4 PERCHED MONITORING WELL SHOWNG WATER LEVEL IN FEET AMSL O TEMPORARY PERCHED MONITORING WELL5524 SHOWING WATER LEVEL IN FEET AMSL E PIEZOMETER5533 sHowrNG wATER LEVEL tN FEET AMSL 5580- wATER LEVEL coNTouR LINE, DASHED WHERE UNCERTAIN NOTE: WATER LEVELS FOR PIEZOMETERS ARE FROM AUGUST, 2OO2 N A I I+ 0 3000 SCALE IN FEET u il // \.gynt \-''\---5580 a MW-18 P-15s7s e 5578 )..]'.ttn\\ \ crlNo.\. '1 \"\irril 5584 b5\o o 5519 MW-2 5503 PERGHED WATER LEVELS SEPTEMBER, 2OO2 Reference: 71800069 't Water Level Data Fall 2002 Monitor Wells MW1 MW2 MW3 MW4 MWs MW 1l MW 12 MW 14 MW 15 MW 16 MW 17 MW 18 MW 19 MW 20 MW 21 MW 22 t Water Levels and Data, Over Time White Mesa Mill Monitor Well Number I Water Elevetion Easting Northing (WL) 2,5'19,330.42 32s,6'71.85 5,571.03 2,579,330.42 325.671.85 5,565.93 2,579,330.42 325,611.85 5,571.63 2,579,330.42 325,671.85 5,5'73.63 2,5't9,330.42 32s,671.85 5,512.23 2,5-19,330.42 325,6'11.85 5,573.33 2,579,330.42 325,671.85 5,5'71.43 2.579.330.42 325.67t.8s 5,568.03 2.579330.42 325.671.85 5.564.33 2,519,330.42 325,671.85 s,s71.63 2.5',19.330.42 325.67t.85 5.571.63 2,s79,330.42 32s,671.85 5,571.43 2,5'19,330.42 325,671.85 5,571.73 2.579.330.4? 325.671.85 5,572.13 2,s79330.42 325,6'il.85 5,571.83 2,579,330.42 125,671.85 5,572.03 2,5',19,330.42 325,671.85 5.571.96 2,5'79,330.42 325,6'il.85 5,571.7t 2,5'79,330.42 325,671.85 5,569.21 2,579,330.42 325,671.85 5,570.88 2,5'79,330.42 325,671.85 5,571.96 2,5'79,330.42 325,671.85 5,571.30 2,579,330.42 325,6',71.85 5,5',7t.63 2,579,330.42 325,671.85 5,511.71 2.579.330.42 325.6',71.85 5.571.88 2.579,330.42 325,671.85 5,572.46 2,579,330.42 325.671.85 5,572.30 2 .579 .330 .42 325 .67 L85 5 ,57 4 .63 2.579330.42 325.67t.85 5,571.53 2.579.330.42 325.67t.85 5,572.08 2.519,330.42 325.6',7t.85 5,5'11.84 2.5',19,330.42 325,6',7t.85 5,5'11.82 2,519,330.42 325,67t.85 5,572.12 2.579.330.42 325.6'.7t.85 5,5',72.60 2,579,330.42 325.671.85 5,571.83 2,579,330.42 325,671.85 5,572.05 2,579,330.42 325,671.85 5,57?.18 2.5'.79.330.42 325,671.85 5,572.18 2,s79,330.42 325,67t.85 5,57r.93 2,5'19,330.42 325,6'.71 .85 5.571 .93 2,5'79,330.42 325,61t.85 5,571.92 2,579,330.42 325,6',7t.85 5,572.40 2,579,330.42 325,671.8s 5,571.98 2,5't9,330.42 325.6'n.85 5,5',72.t7 2,5'79,330.42 325,671.85 5,5',72.22 2,5'79,330.42 325,671.85 5,5',72.03 2,579,330.42 325,67t.85 5,5',7t.94 2,5'.79,330.42 325,671.85 5,5',7t.59 2,5',79,330.42 325,671.85 5,571.77 2,5't9,330.42 325,671.85 5,571.85 2,5't9,330.42 325,671.85 5,s11.81 2,5'79,330.42 325,67t.85 5,571.95 2,579,330.42 325,671.85 5,571.87 2.579.330.42 325.6',7t.85 5.5'72.03 2.579,330.42 325,671.85 5,572.07 2,s19,330.42 325,671.85 5.572.08 2.579.330.42 325.6',7t.85 5.572.21 2,5'19,330.42 325,671.85 5,572.31 2,579,330.42 325,671.85 5,572.0',7 2,579,330.42 325,671.85 5,5',72.63 2,s'79,330.42 325,67t.85 5,572.38 2,579,330.42 325,67t.85 5,572.63 2,579,330.42 325,671.85 5,5',13.21 2.5',79.330.42 325.6'.71.85 5,572.63 2,579,130.42 325.671.85 5,573.33 2,5't9,330.42 325,67t.85 5,573.53 2.579.330.42 325,67t.85 5,573.81 2,5',79,330.42 325,671.85 5,573.85 2,579,330.42 325,6'7t.85 5,574.05 2,s79,330.42 325,671.85 5.585.87 2.5',19.330.42 325.671.85 5.574.13 Measuring Lasd Point Surface Elevation (LSD) (MP) 5.645.76 5,64'7.63 5.645.76 5,647.63 5,645.76 5,647 .63 5,645.'16 5,647 .63 5.645.',16 5,647.63 5 .645.'16 5,647 .63 5,645.76 5,647 .63 5,645.16 s,64',1.63 5,645.',76 5,641.63 5,645.',16 5,64',7.63 5,645.16 5,64'1.63 5,645.76 5,64'1.61 5.645.76 5,64'7 .63 5,645.',16 s,647 .63 5,645.76 5,64't .63 5,645.76 5,647 .63 5,645.',16 5,647.63 5,645.76 5,647.63 5.645,76 5,647.63 5.645.'16 5,647.63 5,645.'16 5,64't .63 5 ,645.'t6 5,64't .63 5,645.'16 5,647 .63 5,645.'t6 5,647 .63 5,645.'16 5,647 .63 5,645.76 5,647 .63 5,645.76 5,64't .63 5 ,645 .7 6 s ,64't .63 5,645.76 5.647 .63 5 ,645 .7 6 5 ,64',7 .63 5,645.76 5.U1.63 5 ,645 .7 6 5 ,64',7 .63 5,645.76 5,647.63 5,645.'t6 5,64',7.63 5,@5.'16 5,64'l.63 5,645.76 5,64',7.63 5,645.76 5,64',7.63 5,645.76 5,64',1.63 5,645.76 5,647.63 5,645.76 5,64't .63 5,645.76 5,64'l .63 5 ,645 .7 6 s ,64'l .63 5 ,645 .'t 6 5 ,647 .63 5,645.76 5,647.63 5.645.76 5,647.63 5,645.76 5,647.63 5,645;t6 5,64'7 .63 5,645.76 5,64',7.63 5.645.76 5,641 .67 5,645.76 5,647 .63 5,645.76 5,@7.63 5 ,645 .7 6 5 ,641 .63 5 ,645 .',l 6 5 ,647 .63 5,645.'16 5,647.63 5 ,645.76 5,647 .63 5,645;t6 5,647 .63 5,645.76 5,647 .63 5,645.',16 5.647 .63 5 ,645 .'t 6 5 ,641 .63 5 .645 .7 6 5 ,647 .63 5 .645 .7 6 5 ,64',7 .63 5.645.'16 5,647.63 5,645.76 5,641 .63 5 ,645 .7 6 5 ,647 .63 5 ,645 .7 6 5 ,647 .63 5 .645 .7 6 5 ,647 .63 5,645.76 5,647.63 5,645.',76 5,64',7.63 5 .645 .7 6 5 ,64't .63 5,645;t6 5,647 .63 5 ,645 .',l 6 5 ,647 .63 Length of Riser (L) 1.87 t.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 t.87 1.87 t.87 r.87 t.87 L87 1.87 t.87 t.87 1.87 1.87 1.87 1.87 1.87 1.87 L87 1.87 L87 L87 1.87 1.87 1.87 1.87 1.87 1.87 t.87 1.87 1.87 1.87 Monitor Well Number I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I Bottom Date Toaal Depth Top of of Total Of Depth to to Screened Screened Depth of Mtrg. Water Water Interyal lntenal Well (DOM) (blw. Mp) (blw. LSD) (blw.LSD) (blw.LSD) (TD) 9/25t',19 76.60 14.73 92.00 I12.00 ll'l t0/10,r9'19 81.70 79.83 92.00 I12.00 lt7 0l/10/1980 76.00 74.13 92.00 I 12.00 ll'7 03120,1980 74.00 72.13 92.00 r 12.00 lt7 06fi7il980 75.40 '73.53 92.00 112.00 ll'l 09/15/1980 74.30 7?.43 92.00 I12.00 ll7 l0/08i 1980 76.20 74.33 92.00 I 12.00 ll7 02n2^98t 79.60 ',7',7.73 92.00 112.00 17 09t0U1984 83.30 81.43 92.00 I 12.00 ll7 t2t01^984 76.00 74.t3 92.00 I12.00 ll7 02101/t985 76.00 74.13 92.00 I12.00 \7 06/0t/1985 '16.20 74.33 92.00 I t2.00 I 17 l r/0t/1985 75.90 74.03 92.00 l 12.00 ll7 t2t0vt985 75.50 73.63 92.00 112.00 ll'1 03/0r/1986 75.80 '.73.93 92.00 l 12.00 I 17 04t0U1986 75.60 73.73 92.00 I12.00 il1 06^9/t986 75.6't 73.80 92.00 I 12.00 ll7 09/01/1986 '15.92 74.05 92.00 112.00 ll7 t2t0vt986 78.42 76.55 92.00 112.00 ll7 02120/L987 76.',75 74.88 92.00 112.00 ll7 04128/1987 ',15.6',1 73.80 92.00 112.00 I 17 08,L4A987 76.33 74.46 92.00 112.00 ll7 tl20^987 76.00 74.13 92.00 I 12.00 ll7 0t/26,L988 75.92 74.05 92.00 112.00 ll7 06/0r/1988 1s.7s 73.88 92.00 112.00 l7 08/2311988 75.1'1 13.30 92.00 I12.00 ll7 l/02il988 75.33 73.46 92.00 112.00 ll7 03t09/1989 73.00 71.13 92.00 I 12.00 tt7 06/21/t989 76.10 74.23 92.00 112.00 n7 09/01/1989 "t5.55 73.68 92.00 r 12.00 I 17 I l/t5/1989 75.',19 73.92 92.00 112.00 ll7 02,L6/t990 75.81 73.94 92.00 I12.00 l1'7 05/08/1990 75.51 '73.64 92.00 I 12.00 11',7 08t07/l990 75.03 '13.t6 92.00 r 12.00 ll7 r l/t]llggo 75.80 73.93 92.00 I 12.00 1l'7 0212't/199t 75.58 _ 73.7t 92.00 I12.00 117 05/2vt99t 75.45 73.58 92.00 112.00 ll7 08/27il99t 75.45 73.58 92.00 112.00 |7 t2/03t99t ',75.'70 73.83 92.00 I12.00 ll',l 03t11/1992 ',7s.70 73.83 92.00 I 12.00 r 17 06t11/t992 75.71 ',73.84 92.00 112.00 tl1 09/t3/t992 75.23 '73.36 92.00 112.00 ll1 t2t09n992 ',75.65 ',73.78 92.00 112.00 ll7 03t24^993 75.50 73.63 92.00 112.00 ll7 06t08^993 '75.41 73.54 92.00 112.00 ll7 09t22^993 '15.60 73.-13 92.00 112.00 ll7 t2/14^993 75.69 73.82 92.00 I 12.00 ll7 03124^994 ',16.04 74.1',7 92.00 112.00 I 17 06^5^994 75.86 73.99 92.00 I 12.00 I 17 08/t8^994 75.78 73.9t 92.00 I 12.00 I 17 t2/t3n994 15.76 73.89 92.00 112.00 ll'l 03,L6/t995 75.68 73.81 92.00 I 12.00 ll7 06t2'7/t995 75.76 73.89 92.00 I12.00 lt7 09120,L995 '75.60 73.73 92.00 112.00 I 17 t2^U1995 75.56 73.69 92.00 112.00 ll7 03/28^996 75.55 ',73.68 92.00 112.00 17 06/0'7fi996 75.42 73.55 92.00 112.00 I l7 09t16/1996 75.32 '.73.45 92.00 I 12.00 I 17 03t20^99-1 ',75.56 73.69 92.00 I12.00 ll1 04t07/L999 75.00 73.t3 92.00 I 12.00 l1'7 05il1n999 75.25 73.38 92.00 I12.00 tt7 07/06/1999 75.00 73.13 92.00 l 12.00 r 17 09105t2000 74.42 72.55 92.00 I 12.00 ll1 l l/30/2000 75.00 '73.13 92.00 I 12.00 lt't 03i30/2001 7430 '72.43 92.00 112.00 n7 06t22/200t 14.t0 '72.23 92.00 112.00 ll'l 09/18/2001 '73.82 7t.9s 92.00 112.00 11',7 I l/05/2001 13.18 71.91 92.00 I12.00 117 03il412002 '13.58 7l;11 92.00 I12.00 ll',? 08t29/2002 61.',76 59.89 92.00 112.00 |7 09fi0/2002 73.50 71.63 92.00 112.00 ll7 8'7 87 8',7 8',7 87 87 87 87 8'l 87 87 87 1.87 1.87 1.87 1.87 1.87 L87 L87 1.87 1.87 t.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 187 L87 1.87 1.87 Easting 2,s7 6,209.93 2,576,209.93 2,57 6,209.93 2,s7 6,209.93 2,576,209.93 2,576,209.93 2,576,209.93 2,576,209.93 2,576,209.93 2,576,209.93 2,576,209.93 2,576,209.93 2,576,209.93 2,576,209.93 2,576,209.93 2,5',16,209.93 2,576,209.93 2,576,209.93 2,576,209.93 2,576,209.93 2,576,209.93 2,576,209.93 2,57 6,209.93 2,576,209.93 2,57 6,209.93 2,s7 6,209.93 2,576,209.93 2,576,209.93 2,576,209.93 2,576,209.93 2,576,209.93 2,576,209.93 2,s76,209.93 2,576,209.93 2,57 6,209.93 2,576,209.93 2,576,209.93 2,576,209.93 2,576,209.93 2,576,209.93 2,s76,209.93 2,576,209.93 2,576,209.93 2,576,209.93 2,576,209.93 2,5'76,209.93 2,5'16,209.93 2,5'16,209.93 2,576,209.93 2,57 6,209.93 2,576,209.93 2,576,209.93 2,57 6,209.93 2,s7 6,209.93 2,576,209.93 2,576,209.93 2.57 6,209.93 2,s76,209.93 2,57 6,209.93 2,576,209.93 2,576,209.93 Northing 321,969.45 321,969.45 32r,969.45 321,969.45 321,969.4s 321,969.45 321,969.4s 321,969.45 321,969.45 321,969.4s 321,969.45 321,969.45 32t,969.45 321,969.45 32t,969.45 321,969.45 32t,969.45 321,969.45 32t,969.45 32t,969.45 321,969.4s 321,969.45 321,969.45 321,969.45 321,969.45 321,969.45 321,969.4s 321,969.4s 321,969.45 321,969.45 321,969.45 32t,969.45 321,969.45 321,969.45 32r,969.45 321,969.45 321,969.45 321,969.4s 32t,969.45 321,969.45 321,969.45 321,969.45 321969.45 321,969.45 321,969.45 321,969.4s 321,969.45 321,969.45 321,969.4s 32t,969.4s 321,969.45 321,969.4s 32t,969.45 32t,969.4s 321,969.45 321,969.4s 321,969.4s 321,969.45 321,969.45 32t,969.4s 321,969.4s Water Elevation (wL) 5,503.04 5,502.94 s,s03.64 5,505.24 5,503. l4 5,502.64 5,s02.04 5,503.04 5,500.84 5,502.64 5,502.84 5,502.64 5,503.14 s,502.34 5,500.94 s,s02.84 5,502.84 5,503.24 5,s03.3 r 5,503.06 5,503.14 5,501 .89 5,502.97 5,502.06 5,502.72 5,502.72 5,502.81 5,503.06 5,503.14 5,503.04 5,502.84 5,502.74 5,s03.02 5,503.16 5,503.34 5,503.13 5,503.34 5,503.07 5,503.10 s,502.95 5,502.76 s,503.12 s502.92 s,503.05 5,503.14 s,503. l4 5,502.95 5,502.79 5,503.3 I 5,503.10 5,503.16 5,503.22 5,s03.24 5,503.00 5,503.19 5,503.16 5,503.41 5,503.30 5$03.23 5,503.21 5,502.86 o *#[:ffi[ il:.T?',,;Jiil'tr", ) Measuring Land Point Surface Elevation (LSD) (MP) 5,611.23 5,613.14 5,611.23 5,6t3.14 s,611.23 5,613.14 s,611.23 s,6t3.14 s,611.23 5,613.14 s.611.23 5,613.14 5,611.23 5,613.14 5,611.23 5,613.14 5,611.23 5,613.t4 s,611.23 s,613.14 5,611.23 5,613.14 5,611.23 5,613.14 5,611.23 5,613.14 5,6t1.23 5,613.14 5,611.23 5,613.14 5,611.23 5,613.14 5,611.23 5,613.14 5,61t.23 5,613.14 5,61t.23 5,613.t4 5,6rt.23 5,611.14 5,6t1.21 s,613.14 5,6t1.23 5,613.14 5,611.23 5,613.14 5,611.23 5,613.14 5,611.23 5,613.14 5,611.23 5,613.14 5,611.23 5,613.14 5,611.23 5,613.14 s,611.23 5,613.r4 5,6tt.23 5,613.14 5,611.23 5,613.14 5,6t1.23 5,613.14 5,6tt.23 5,613.14 5,611.23 5,613.14 5,611.23 5,613.14 5,611.23 5,613.14 5,611.23 5,613.14 5,6tt.23 5,613.14 5,611.23 5,613.14 5,6tt.23 5,613.14 5,611.23 5,613.14 5,611.23 5,613.14 s,611.23 s,613.14 5,6rt.23 5,613. r4 5 ,611 .23 5,6 I 3. l4 5,611.23 5,613.14 5,611.23 s,613.14 5,6t1.23 5,613.14 5,6tr.23 5,613.14 5,6t1.23 5,613.14 5,611.23 5,613.14 5,611.23 5,613.14 5,611.23 5,613.t4 5,6t1.23 5,613.14 5,611.23 5,613.14 s,611.23 5,613.t4 5,61r.23 5,613.14 s,6tt.23 5,6t3.14 5,611.23 5,613.14 5,61t.23 5,613.14 5,6tt.23 5,613.14 Length of Monitor Riser Well (L) Number 1.91 2 1.91 2 1.91 2 1.91 2 1.91 2 l.9l 2 1.91 2 1.91 2 1.91 2 1.91 2 1.91 2 1.91 2 l.9l 2 1.91 2 1.91 2 1.91 2 1.91 2 1.91 2 1.91 2 1.91 2 1.91 2 1.91 2 l.9l 2 l.9l 2 l.9l 2 l.9r 2 l.9l 2 l.9r 2 1.91 2 1.91 2 l.9l 2 l.9l 2 l.9l 2 l.9l 2 l.9l 2 1.91 2 1.91 2 1.91 2 1.91 2 l.9t 2 1.91 2 1.91 2 1.91 2 1.91 2 1.91 2 l.9l 2 1.91 2 1.91 2 1.91 2 l.9l 2 1.91 2 1.91 2 1.91 2 l.9l 2 1.91 2 1.91 2 1.91 2 1.91 2 1.91 2 1.91 2 1.91 2 Bottom Date Total Depth Top of of Total Of Depth to to Screened Screened Depth of Mtrg. Water Water Interval Interval Well (DoM) (blw. Mp) (blw. LSD)(blw.LSD) (blw.LSD) (TD) 9125179 l 10.10 108.19 85 12s 128.8 r0lt0l79 110.20 108.29 85 l2s 128.8 1110180 109.s0 107.59 85 125 128.8 3120180 107.90 10s.99 8s t2s 128.8 6117180 110.00 108.09 8s 125 128.8 9115180 l 10.50 108.s9 8s 125 128.8 10/8/80 111.10 109.19 85 125 128.8 2/t2t81 1 10.10 108.19 85 125 128.8 9t1184 t12.30 110.39 85 125 128.8 t2ltl84 I 10.50 108.s9 85 125 128.8 2l1l8s 110.30 108.39 8s 125 128.8 611185 r 10.50 108.59 85 tls 128.8 9/u85 I 10.00 108.09 85 t25 128.8 t0nt85 110.80 108.89 85 125 128.8 tl7l/85 112.20 t10.29 85 125 128.8 t2ltl85 1 10.30 108.39 85 t2s 128.8 3^t86 110.30 108.39 85 125 128.8 4l!86 109.90 107.99 85 tzs 128.8 6119186 109.83 107.92 85 125 128.8 9/U86 110.08 108.17 85 125 128.8 12t1186 110.00 108.09 85 t2s 128.8 2120181 111.25 109.34 85 t2s 128.8 4/28t87 1 10. 17 108.26 85 125 128.8 8lt4l87 I 1 I .08 109.1 7 85 125 128.8 11t20187 110.42 108.51 85 125 128.8 1/26188 110.42 108.51 85 125 128.8 6At88 110.33 108.42 85 125 128.8 8t23t88 110.08 108.17 85 125 128.8 tt/2188 110.00 108.09 85 125 128.8 3t9/89 1 10.10 108.19 85 l2s 128.8 6t2U89 110.30 108.39 85 125 128.8 9/1/89 110.40 108.49 85 125 128.8 ttltslSg 110.12 108.21 85 tzs 128.8 2/16190 109.98 108.07 85 125 128.8 st8t90 109.80 107.89 85 12s 128.8 817190 110.01 108.10 85 r2s 128.8 tu13t90 109.80 107.89 85 125 128.8 2/2719t 110.07 108.16 85 lzs 128.8 5/2t/9t 110.04 108.13 85 125 128.8 8127t91 110.19 108.28 85 125 128.8 12l3l9t 110.38 108.47 85 125 - 128.8 3^7t92 110.02 108.11 85 125 128.8 6nt/92 110.22 108.31 8s 125 128.8 9n3/92 110.09 108.18 85 125 128.8 t2t9t92 110.00 108.09 85 125 128.8 3124193 110.00 108.09 85 12s 128.8 6t8t93 110.19 108.28 85 125 128.8 9122193 110.35 108.44 85 125 128.8 t2n4/93 109.83 107.92 85 125 128.8 3t24/94 110.04 108.13 85 125 128.8 6t1st94 109.98 108.07 85 12s 128.8 8t18194 109.92 108.01 85 lzs 128.8 t2n3l94 109.90 107.99 85 125 128.8 3116195 110.14 108.23 85 12s 128.8 6t27195 109.95 108.04 8s 12s 128.8 9/20t95 109.98 108.07 85 125 128.8 t2n1t95 109.73 107.82 85 125 128.8 3t28196 109.84 107.93 85 125 128.8 6t7t96 109.91 108.00 85 125 128.8 9n6t96 109.93 108.02 85 l2s 128.8 3t20197 110.28 108.37 85 r2s 128.8 Easting 2,576,209.93 2,576,209.93 2,576,209.93 2,576,209.93 2,576,209.93 2,576,209.93 2,576,209.93 2,576,209.93 2,576,209.93 2,576,209.93 2,576,209.93 Northing 321,969.45 321,969.45 121,969.45 321,969.45 321,969.45 321,969.45 321,969.45 321,969.45 321,969.45 121,969.45 321,969.4s I *#l[:"J'Ii[ li:#?'#"",iil J;" a Water Land Elevation Surface (wL) (LSD) 5,502.64 5,611.23 5,s02.84 5,6t1.23 s,502.94 5,611.23 5,503.14 5,611.23 5,503.1l s,611.23 5,503.04 s,611.23 5,503.12 5,611.23 5,503. r9 5,611.23 5,503.13 5,611.23 4,903.21 5,611.23 5,503.16 5,611.23 Measuring Point Elevation (MP) 5,613.14 5,61 3.l4 5,613.14 5,611.14 5,613.14 5,613.14 5,613.14 5,613.14 5,613.14 5,613.14 5,6t3.14 Length of Monitor Riser Well (L) Number 1.91 2 1.91 2 l.9l 2 t.9l 2 1.91 2 1.91 2 l.9l 2 l.9l 2 l.9l 2 l.9l 2 1.91 2 Date of Mtrg. (DOM) 417199 5ltU99 7 t6t99 91U00 1u3012000 03/30/2001 0612210r 09/18/01 11/05/01 03114102 09110102 Bottom Total Depth Top of of Total Depth to to Screened Screened Depth of Water Water Interval Interval Well (blw. Mp) (blw. LSD)(blw.LSD) (blw.LSD) (TD) I 10.50 108.59 85 125 128.8 I 10.30 108.39 85 tzs 128.8 I 10.20 108.29 85 125 128.8 110.00 108.09 85 12s 128.8 I 10.03 108.12 85 l2s 129 I 10.10 108.19 85 t25 129 I 10.02 108.1 I 85 r25 129 109.95 108.04 85 t2s 129 I 10.01 108.10 85 125 129 709.93 708.02 85 t2s 129 109.98 108.07 85 125 129 Easting 2,576,417.89 2,576,417.89 2,576,417.89 2,576,417.89 2,576,417.89 2,576,4t7.89 2,57 6,417 .89 2,57 6,4r7 .89 2,576,4t7.89 2,576,417.89 2,576,417.89 2,576,417.89 2,576,417.89 2,576,4t7.89 2,576,4t7.89 2,576,4t7.89 2,576,417.89 2,57 6,417 .89 2,576,417.89 2,576,4r7.89 2,576,41',7.89 2,576,417.89 2,576,417.89 2,576,417.89 2,576,417.89 2,s76,4t7.89 2,576,417.89 2,576,417.89 2,57 6,417 .89 2,576,417.89 2.576,4t7.89 2,5'76,417.89 2,576,417.89 2,576,417.89 2,s76,417.89 2,576,417.89 2,576,4t7.89 2,576,41'7.89 2,576,417.89 2,576,417.89 2,576,417.89 2,s76,417.89 2,57 6,417 .89 2,576,417.89 2,576,417.89 2,57 6,417 .89 2,57 6,411 .89 2,576,417.89 2,576,417.89 2,576,417.89 2,s76,4t7.89 2,576,4t7.89 2,576,417.89 2,576,4t7.89 2,576,4t7.89 2,576,4t7.89 2,576,4t7.89 2,576,411.89 2,576,417.89 2,576,4t7.89 2,576,4t7.89 2,57 6,4t7 .89 2,516,411 .89 2,s76,417.89 2,576,417.89 2,576,417.89 2,576,417.89 Northing 3 l 7,340.58 3 I 7,340.58 3 l 7,340.58 3 17,340.58 3 l 7,340.58 3 17,340.s8 3 I 7,340.58 3 I 7,340.58 3 l 7,340.58 3 I 7,340.58 3 I 7,340.58 317,340.58 317,340.58 3 17,340.58 3 1 7,340.58 3 I 7,340.s8 3 I 7,340.58 317,340.s8 3 I 7,340.58 3 I 7,340.58 3 I 7,340.58 3 I 7,340.58 3 l 7,340.58 3 17,340.58 3 I 7,340.58 3 l 7,340.58 3 I 7,340.58 3 t 7,340.58 3 t 7,340.58 3 l 7,340.58 3 I 7,340.58 3 I 7,340.58 3 I 7,340.58 3 I 7,340.58 317,340.58 3 l 7,340.58 3 I 7,340.58 3 I 7,340.s8 3 I 7,340.58 3 I 7,340.58 3 l 7,340.58 3 l 7,340.58 3 l 7,340.58 3 l 7,340.58 3 l 7,340.58 3 r 7,340.58 3 r 7,340.58 I I 7,340.58 3 r 7,340.58 3 I 7,340.58 3 r 7,340.58 3 I 7,340.58 3 17,340.58 3 I 7,140.58 3 17,140.58 3 I 7,340.58 3 I 7,340.58 3 t 7,340.58 3 I 7,340.58 3 I 7,340.58 3 1 7,340.58 3 17,340.s8 3 I 7,340.s8 3 I 7,340.58 3 l 7,340.58 3 I 7,340.58 3 I 7,340.58 Water Levels and Data, Over Time White Mesa Mill Monitor Well 3 Total or Measuring Measured Top of Bottom of Water Point Length Monitor Depth to Total Depth Screened Screened Total Elevation Land Surface Elevation Of Riser Well Date Of Weter to Water Interval Interval Depth Of (WL) (LSD) (MP) (L) Number Monitoring (blw.MP) (blw.LSD) (blw.LSD) (blw.LSD) Well 5,47t.43 5,552.88 5,554.83 1.49 3 10/8/80 83.40 81.91 67 87 98 5,469.93 5,552.88 5,554.83 1.49 3 2n2t8t 84.90 83.41 67 87 98 5,47t.63 5,552.88 5,554.83 1.49 1 9fit84 83.20 81.71 67 87 98 5,474.03 5,552.88 5,554.83 1.49 3 12nt84 80.80 79.31 67 87 98 5,471.t3 s,ss2.88 s,ss4.83 1.49 3 2/v85 83.70 82.21 67 87 98 5,471.13 5,552.88 5,554.83 1.49 3 6/U85 83.70 82.21 67 8't 98 5,470.43 5,552.88 5,554.83 t.49 3 9nt85 84.40 82.9t 67 87 98 5,471.23 5,552.88 5,554.83 1.49 3 l0/l/85 83.60 82.1 r 67 87 98 5,467.23 5,552.88 5,554.83 t.49 3 I l/l/85 87.60 86. I I 67 87 98 5,470.83 5,552.88 5,554.83 t.49 3 t2/t/85 84.00 82.51 67 87 98 5,470.53 5,552.88 5,554.83 r.49 3 3/t/86 84.30 82.81 67 87 98 5,470.33 5,552.88 5,554.83 1,49 3 4^186 84.50 83.01 67 87 98 s,471.r3 5,552.88 5,5s4.83 1.49 3 6^9t86 83.70 82.21 67 87 98 5,471.83 5,552.88 5,554.83 1.49 3 9nt86 83.00 81.51 67 87 98 5,47t.13 5,552.88 5,554.83 1.49 3 2/20187 83.70 82.21 67 87 98 5,470.83 5,552.88 5,554.83 t.49 3 4t28t87 84.00 82.s1 67 87 98 5,460.08 5,552.88 5,554.83 1.49 3 8^4t87 94.7 5 93.26 67 87 98 5,47t.43 5,552.88 5,554.83 1.49 3 tU20/87 83.40 81.91 67 87 98 5,471.03 5,552.88 5,554.83 t.49 3 U26/88 83.80 82.31 67 87 98 s,47t.r3 5,552.88 5,554.83 1.49 3 6/r/88 83.70 82.2t 67 87 98 5,471.08 5,552.88 5,554.83 1.49 3 8t23t88 83.75 82.26 67 87 98 5,471.08 5,552.88 5,5s4.83 1.49 3 tv2t88 83.75 82.26 67 87 98 5,471.50 5,552.88 5,554.83 r.49 3 3t9189 83.33 81.84 67 87 98 5,470.91 5,552.88 5,554.83 1.49 3 6t2r/89 83.92 82.43 67 87 98 5,471.00 5,552.88 s,554.83 1.49 3 9nt89 83.83 82.34 67 87 98 5,471.00 s,5s2.88 5,s54.83 t.49 3 I 1/15/89 83.83 82.14 67 87 98 5,471.41 5,552.88 5,554.83 1.49 3 2tr6t90 83.42 81.93 67 87 98 s,47t.03 5,552.88 5,554.83 1.49 3 8/7/90 83.80 82.31 67 87 98 5,4'.n.13 5,5s2.88 5,554.83 1.49 3 1Ut3/90 83.70 82.21 67 87 98 5,47 l. I 8 5,552.88 5,554.83 t.49 3 3/5/9t 83.6s 82.t6 67 87 98 5,47t.09 5,552.88 5,554.83 t.49 3 5t21t9r 83.74 82.25 61 87 98 s,470.87 5,552.88 5,554.83 1.49 3 9t26t9t 83.96 82.47 67 87 98 s,470.93 s,ss2.88 s,554.83 t.49 1 t2t5t9t 83.90 82.4t 67 87 98 5,471.08 5,552.88 5,s54.83 t.49 3 3^9t92 83.75 82.26 67 87 98 5,47t.t5 5,552.88 5,554.83 t.49 3 6n6t92 83.68 82.19 67 87 98 5,471.13 5,552.88 s,554.83 t.49 3 9^6t92 83.70 82.21 67 87 98 5,470.97 5,552.88 5,554.83 t.49 3 tvt6t92 83.86 82.37 67 87 98 5,471.06 5,552.88 5,554.83 t.49 3 3t3U93 83.77 82.28 67 87 98 s,470.96 5,552.88 5,554.83 1.49 3 6tr4t93 83.87 82.38 67 87 98 5,410.92 5,5s2.88 5,s54.83 t.49 3 9t30t93 83.91 82.42 67 87 98 5,471.12 s,ss2.88 5,554.83 1.49 3 t2^6t93 83.71 82.22 67 8't 98 5,471.08 5,ss2.88 5,554.83 t.49 3 3130t94 83.75 82.26 67 87 98 5,47t.t0 5,552.88 5,554.83 1.49 3 6t2v94 83.73 82.24 67 87 98 5,471.08 5,552.88 5,554.83 1.49 3 8n8t94 83.75 82.26 67 87 98 5,471.08 5,552.88 5,554.83 r.49 3 t2n3t94 83.75 82.26 67 87 98 5,471.47 5,552.88 5,554.83 1.49 3 I2tI3t94 83.36 81.87 67 87 _ 98 5,471.18 s,5s2.88 5,554.83 r.49 3 3tl6t95 83.65 82.16 67 87 98 5,471.t't 5,552.88 5,554.83 t.49 3 6t27t95 83.66 82.17 67 87 98 5,47 1.1 8 5,s52.88 5,554.83 1.49 3 9t20t95 83.65 82. I 6 67 87 98 5,471.t3 s,ss2.88 5,ss4.83 1.49 3 t2^U9s 83.70 82.2t 67 8'7 98 5,47t.39 5,552.88 5,554.83 1.49 3 3t30t96 83.44 81.95 67 87 98 5,47 t.t1 5,552.88 5,554.83 1.49 3 6t7t96 83.66 82.t'7 67 87 98 5,471.28 5,552.88 5,554.83 1.49 3 9/t6t96 83.55 82.06 67 87 98 5,471.03 5,552.88 5,554.83 1.49 3 3t20/97 83.80 82.31 67 87 98 5,471.08 5,552.88 5,554.83 t.49 3 4t7t99 83.75 82.26 67 87 98 5,470.93 5,552.88 5,554.83 t.49 3 snU99 81.90 82.4t 67 87 98 5,471.43 5,552.88 5,554.83 t.49 3 1t6t99 83.40 81.91 67 87 98 5,4'71.78 5,552.88 5,554.83 1.49 3 2t3t00 83.55 82.06 67 87 ,98 5,471.21 5,552.88 5,554.83 1.49 3 9^t00 83.62 82.13 67 87 98 5,471.18 5,552.88 5,554.83 1.49 3 I t/30/00 83.65 82.t6 67 87 98 5,470.93 5,552.88 5,554.83 t.49 3 3/30/01 83.90 82.41 67 87 98 s,471.20 5,5s2.88 5,554.83 t.49 3 6t22t0t 83.63 82.14 67 87 98 s,471.22 5,552.88 5,554.83 1.49 3 9/18/01 83.61 82.t2 67 87 98 5,471.t4 5,552.88 5,554.83 1.49 3 l li5lor 83.69 82.20 67 87 98 5,47 1 . 1 8 5,552.88 5,554.83 t.49 3 3^4t02 83.65 82.16 67 87 98 5,471.22 5,552.88 5,554.83 1.49 3 8t29t02 83.61 82.12 67 87 98 s,471.22 5,552.88 5,ss4.83 1.49 3 9^0t02 83.61 82.12 67 87 98 Water Levels and Data, Over Time White Mesa Mill Monitor Well 4 Total or Easting Northing "I;H, LandSurrace :.fiI,i"t #li:L Y.'i," H:l',:l rotarDepth(x) (v) @) (LSD) "tilT|' (L) Number Date of water to water Total Depth Monitoring (blw.MP) (blw.LSD) Of Well 2,580,905.96 320,991.17 s,s27.63 5,620.77 5,622.33 1.56 MW4 09/25/1979 94.70 93.14 121.33 2,580,905.96 320,99t.t7 5,527.63 5,620.77 5,622.33 1.56 MW4 t0/10/t979 94.70 93.14 121.33 2,580,905.96 320,99t.t7 5,528.43 5,620.77 5,622.33 1.56 MW4 0l/10i1980 93.90 92.34 12r.33 2,s80,905.96 320,991.17 s,s29.93 5,620.77 s,622.33 1.56 MW4 03/20^980 92.40 90.84 12r.33 2,580,905.96 320,991.17 5,528.03 5,620.77 5,622.33 1.56 MW4 0611711980 94.30 92.74 121.33 2,580,905.96 320,991.17 5,528.03 5,620.77 5,622.33 1.56 MW4 0911511980 94.30 92.74 121.33 2,580,905.96 320,991.17 5,527.93 5,620.77 5,622.33 1.56 MW4 10/08/1980 94.40 92.84 121.33 2,580,905.96 320,991.17 5,527.93 5,620.77 5,622.33 1.56 MW4 02/L2^981 94.40 92.84 121.33 2,580,905.96 320,991.17 5,525.93 5,620;77 5,622.33 1.56 MW4 09/0U1984 96.40 94.84 t21.33 2,580,905.96 320,99t.17 5,528.33 5,620.77 5,622.33 1.56 MW4 12/01/1984 94.00 92.44 121.33 2,580,905.96 320,99t.17 5,528.13 5,620.77 5,622.33 1.56 MW4 02/01/1985 94.20 92.64 t2l.l3 2,580,905.96 320,99t.t7 5,528.33 5,620.77 s,622.33 1.56 MW4 06/01/1985 94.00 92.44 r2l.l3 2,580,905.96 320,991.t7 5,528.93 5,620.77 5,622.33 1.56 MW4 09/01i1985 93.40 91.84 121.33 2,s80,905.96 320,99t.r7 5,528.93 s,620.77 5,622.33 l.s6 MW4 r0/01i1985 93.40 91.84 121.33 2,580,905.96 320,991.17 5,528.93 5,620.7'7 5,622.3f 1.56 MW4 I lioli 1985 93.40 91.84 t21.33 2,580,90s.96 320,99t.17 5,528.83 5,620.'77 5,622.33 1.56 MW4 t2/01/t985 93.50 9r.94 t21.33 2,580,905.96 320,991.17 5,512.33 5,620.77 5,622.33 l.s6 MW4 03/01/1986 110.00 108.44 121.33 2,580,905.96 320,99t.17 s,s28.91 s,620.77 5,622.33 l.s6 MW4 06/19/t986 93.42 91.86 121.33 2,580,905.96 320,991.t7 5,s28.83 5,620.77 5,62?.33 1.56 MW4 09/01/1986 93.50 91.94 121.33 2,580,90s.96 320,991.17 5,529.16 5,620;77 5,622.33 1.56 MW4 t2/01/1986 93.17 91.61 121.33 2,580,905.96 320,991.17 5,526.66 5,620.77 5,622.33 1.56 MW4 02/20/t987 95.67 94.1l 12t.33 2,580,905.96 320,991.17 5,529.t6 5,620.77 5,622.33 1.56 MW4 04/28/1987 93.17 91.61 12r.33 2,580,905.96 320,99t.t7 5,529.08 5,620.77 5,622.33 l.s6 MW4 08/t4/t987 93.25 91.69 121.33 2,580,905.96 320,991.17 5,s29.00 5,620.77 5,622.33 1.56 MW4 t1/20/t987 93.33 91.77 121.33 2,580,905.96 320,991.17 5,528.75 5,620.77 5,622.33 1.56 MW4 0t/26/t988 93.58 92.02 121.33 2,580,905.96 320,991.17 5,528.91 5,620.77 5,622.33 1.56 MW4 06/01/1988 93.42 91.86 r2r.33 2,580,905.96 320,991.17 5,528.25 5,620.77 5,622.33 l.s6 MW4 08/2311988 94.08 92.s2 121.33 2,580,905.96 320,991.17 5,529.00 5,620.77 5,622.33 1.56 MW4 I l/0211988 93.33 9t.77 121.33 2,580,905.96 120,991.17 5,528.33 5,620.77 5,622.33 1.56 MW4 03/0911989 94.00 92.44 l2t.l3 2,580,905.96 320,99r.17 5,529.10 s,620.77 5,622.33 1.56 MW4 06/21/1989 93.23 91.67 121.33 2,580,905.96 320,991.1'.t 5,529.06 5,620.77 5,622.33 1.56 MW4 09t01/1989 93.27 9r.71 12t.33 2,580,905.96 320,991.17 5,529.2t 5,620.77 5,622.33 1.56 MW4 tUr5/1989 93.t2 91.s6 121.33 2,580,905.96 320,991.17 5,529.27 5,620.77 5,622.33 1.56 MW4 02/16/1990 93.11 91.55 121.33 2,580,905.96 320,99t.r7 5,529.43 5,620.77 5,622.33 1.56 MW4 05/08/1990 92.90 91.34 12t.33 2,580,905.96 320,99r.17 5,529.40 5,620.77 5,622.33 t.s6 MW4 08107n990 92.93 91.37 121.33 2,580,905.96 320,991.t7 5,529.53 5,620.77 5,622.33 1.56 MW4 ln3lt990 92.80 91.24 121.33 2,580,905.96 320,99t.17 5,529.86 5,620.77 5,622.33 1.56 MW4 02127/1991 92.47 90.91 121.33 2,580,905.96 320,99t.t7 5,529.9t 5,620.77 5,622.33 1.56 MW4 05l2ut99t 92.42 90.86 l2l.l3 2,580,905.96 320,99t.t7 5,529.77 5,620.77 5,622.33 1.56 MW4 08t2711991 92.56 91.00 12t.33 2,580,905.96 320,991.t7 5,529.79 5,620.77 5,622.33 1.56 MW4 t2/03/t991 92.54 90.98 121.33 2,580,905.96 320,991.t7 5,530.13 5,620.77 5,622.33 1.56 MW4 03/L7/t992 92.20 90.64 121.33 2,580,905.96 320,991.17 5,529.85 5,620.77 5,622.33 1.56 MW4 06/nll992 92.48 90.92 12r.33 2,580,905.96 320,991.17 5,529.90 5,620.77 5,622.33 1.56 MW4 091131t992 92.43 90.87 12t.33 2,580,905.96 320,991.17 5,529.92 5,620.77 5,622.33 1.56 MW4 t2to9lt992 92.4t 90.85 121.33 2,580,905.96 320,991.17 5,530.25 5,620.77 5,622.33 1.56 MW4 0312411993 92.08 90.52 121.33 2,580,905.96 320,991.17 5,530.20 s,620.77 5,622.33 1.56 MW4 06/08/1993 92.t3 90.57 121.33 2,s80,905.96 320,991.17 s,s30.19 s,620.77 s,622.33 l.s6 MW4 09t22n993 92.14 90.58 121.33 2,580,905.96 320,991.17 5,529.75 5,620.77 5,622.33 1.56 MW4 t2l|4lt993 92.58 91.02 121.33 2,580,905.96 320,99t.17 5,530.98 5,620.77 5,622.33 1.56 MW4 03/24/1994 91.35 89.79 121.33 2,580,905.96 320,991.17 5,531.35 5,620.77 5,622.33 1.56 MW4 06/15/t994 90.98 89.42 121.33 2,580,905.96 320,991.17 5,531.62 5,620.'77 5,622.33 1.56 MW4 08/18/1994 90.71 89.15 121.33 2,580,90s.96 320,991.17 5,s32.s8 5,620.77 5,622.33 l.s6 MW4 t2/t3fi994 89.75 88.19 121.33 2,580,90s.96 320,99t.t7 s,s31.42 s,620.77 5,622.33 1.56 MW4 03116il99s 88.91 87.35 121.33 2,s80,905.96 320,991.17 5,534.70 5,620.77 s,622.33 r.56 MW4 0612711995 87.63 86.07 121.33 2,580,905.96 320,991.t7 5,535.44 5,620.77 5,622.33 l.s6 MW4 09/2011995 86.89 85.33 121.33 2,580,905.96 320,99t.17 5,537.16 5,620.77 5,622.33 1.56 MW4 12/fi/1995 85.17 83.61 121.33 2,580,905.96 2,580,905.96 2,s80,90s.96 2,580,90s.96 2,580,905.96 2,s80,905.96 2,580,905.96 2,580,905.96 2,580,905.96 2,580,90s.96 2,580,905.96 , sRO gO5 q6 2,s80,905.96 2,580,905.96 2,580,90s.96 2,s80,905.96 2,580,905.96 2,580,905.96 2,580,905.96 2,s80,90s.96 2,580,905.96 2,580,905.96 2,580,905.96 2,5 80,905.96 2,580,90s.96 2,580,905.96 2.580,905.96 2,580,90s.96 2,580,905.96 2,580,905.96 2,s80,905.96 2,580,905.96 2,580,905.96 2,s80,905.96 2,580,905.96 2,580,905.96 2,580,905.96 2,580,905.96 2,580,905.96 2,580,905.96 2,580,905.96 2,580,905.96 2,580,905.96 2,580,905.96 2,5 80,905.96 2,580,905.96 2,580,905.96 2,580,905.96 2,580,905.96 2,580,905.96 2,580,905.96 2,580,905.96 2,580,905.96 2,580,905.96 2,5 80,905.96 2,5 80,905.96 2,580,905.96 2,580,905.96 2,580,905.96 2,580,905.96 2,580,905.96 2,580,90s.96 2,580,905.96 2.s80,905.96 5,538.37 s,620.77 5,539.10 s,620.77 5,539.13 5,620.77 5,542.29 5,620.77 5,542.29 5,620.77 5,551.58 5,620.77 5,552.08 s,620.77 5,552.83 5,620.77 5,553.47 5,620.77 5,622.33 5,620.77 5,622.33 5,620.77 5,622.33 5,620.77 5,622.33 5,620.7'7 5,554.63 5,620.77 5,554.83 s,620.77 5,554.63 s,620.77 5,554.83 5,620.7'7 5,554.71 5,620.77 5,554.73 5,620.77 5,555.13 5,620.77 5,555.13 5,620.77 5,555.23 5,620.77 5,sss.23 5,620.77 5,555.43 5,620.77 5,555.83 5,620.77 s,s5s.43 5,620.77 5,555.13 5,620.77 5,555.33 s,620.'77 5,55s.63 5,620.'77 5,555.73 5,620.'77 5,555.73 5,620.77 5,556.03 s,620.7'7 5,555.73 5,620.77 5,555.98 5,620.77 5,556.05 s,620.77 5,s56. 18 5,620.77 5,556.05 5,620.77 5,556.15 5,620.77 5,556.39 s,620.',77 5,556.68 5,620.77 s,556.98 5,620.77 5,557.08 5,620.77 5,557.55 5,620.77 5,557.66 5,620.77 s,557.78 5,620.77 5,s58.28 5,620.77 5,558.23 5,620.7'7 5,558.31 5,620.77 5,558.49 s,620.77 5,558.66 5,620.77 5,559.01 5,620.77 5,s59.24 5,620.'77 5,559.26 5,620.'7'7 5,559.2'7 5,620.77 5,559.77 5,620.7'7 5,559.78 s,620.77 5,559.96 5,620.77 5,560.16 5,620.77 s,s60.28 5,620.77 5,560.76 5,620.77 s,s60.s8 5,620.77 5,560.43 5,620.77 5,560.44 5,620.17 s,s60.71 5,620;77 MW4 03t281t996 MW4 06t0711996 MW4 0911611996 MW4 03120/L997 MW4 0312011997 MW4 04107n999 MW4 05ltvt999 MW4 07t0611999 MW4 09t28n999 MW4 lLl08/t999 MW4 11t0911999 MW4 n/29/1999 MW4 t2/20/1999 MW4 0U02/2000 MW4 0t/r0/2000 MW4 0vt7t2000 MW4 0t/2412000 MW4 02t0t/2000 MW4 02107/2000 MW4 02/14/2000 MW4 02/23t2000 MW4 03/01/2000 MW4 03/08/2000 MW4 03/15/2000 MW4 03/20/2000 MW4 03/29/2000 MW4 04104/2000 MW4 04113/2000 MW4 04/21/2000 MW4 0412812000 MW4 05/01/2000 MW4 05/l l/2000 MW4 05/15/2000 MW4 05t25t2000 MW4 06109t2000 MW4 06/t6t2000 MW4 06t2612000 MW4 07/06/2000 MW4 08/15i2000 MW4 09/08/2000 MW4 10n9t2000 MW4 r r/30/2000 MW4 12t0612000 MW4 0t/t41200r MW4 02t09/2001 MW4 03t29/2001 MW4 04t30/200t MW4 05/31i200 t MW4 0612212001 MW4 07/t0t2001 MW4 08/10/2001 MW4 09119/2001 MW4 10102/2001 MW4 tv07t200t MW4 12t03t200t MW4 0v03t2002 MW4 02106/2002 MW4 03t2612002 MW4 04t0912002 MW4 0512312002 MW4 06t05t2002 MW4 07t08t7002 MW4 08123t2002 MW4 091]].12002 82.40 121.33 81.67 12 I .33 8 l .64 12t.33 78.48 12 I .33 78.48 t2t.33 69.t9 121.33 68.69 t21.33 67 .94 121.33 67.30 t21.33 - 1.56 121.33 - 1.56 121.33 - I .56 121.33 -1.56 121.33 66.t4 121.33 65.94 121.33 66.14 121.33 65.94 121.11 66.04 t21.33 66.04 121.33 65.64 121.33 65.64 121.33 65.54 121.33 65.54 tzt .33 65.34 r 21.33 64.94 t21.33 65.34 t 2l .33 65.64 121.33 6s.44 r 2l .33 65. 14 121.33 65.04 121.33 65.04 121.33 64.74 121.33 6s.04 t21.33 64.79 121.33 64.72 121.33 64.59 121 .33 64.72 121.33 64.62 12t.31 64.38 12t.33 64.09 121.33 63.79 121.33 63.69 tzt.33 63.22 121.33 63.11 121.33 62.99 121.3\ 62.49 t 2l .31 62.54 l2l .33 62.46 r2r.33 62.28 12 r .33 62.tt 12 r.33 6t.16 121.33 61.53 121.33 61.51 r21.33 6r.50 121.33 61.00 121.33 60.99 l 2 1.33 60.8 l l2l .33 60.61 l2l .33 60.49 12 I .33 60.01 121.33 60.19 121.33 60.14 l2l .33 60.33 12 I .33 60.06 l2 I .33 320,991.17 320,991.17 320,991.17 320,991.17 320,991.17 320,99t.t7 320,991.17 320,99t.17 320,991.17 320,99 t.17 320,99r.r7 320,99t.r7 320,99t.t7 320,99t.t7 320,99t.17 320,99t.t7 320,99t.t7 320,99t.t7 320,991.t7 320,991.t7 320,991.t7 320,991.17 320,991.17 320,991.1'7 320,991.17 320,991.17 320,991.17 320,99t.17 320,99r.17 320,991.17 320,991.17 320,991.t7 320,99t.t7 320,991.17 320,991.r7 320,99r.17 320,99r.11 320,991.17 320,99 t.r7 320,991.17 320,99t.t7 320,991.t7 320,991.t7 320,991.17 320,991.17 320,991.17 320,99 t.t7 320,99 t.t7 320,99t.t7 320,99r.t7 320,991.17 320,991.1'.7 320,99r.r7 320,991.17 320,99t.t7 320,99t.t7 320,991.17 320,991.1'7 320,991.17 320,99t.t7 320,991.17 320,991.t7 320,99t.17 320,991.17 s 6r, 11 5,622.33 s,622.33 s,622.33 5,622.33 5,622.33 5,622.33 5,622.33 s,622.33 5,622.33 5,622.33 5,622.13 5,622.33 5,622.33 5,622.33 5,622.33 s,622.33 5,622.33 5,622.33 5,622.33 5 Kr' 11 s,622.33 5,622.33 5,622.33 5,622.33 5,622.33 5,622.33 5,622.33 s,622.33 ( 6?' t1 5 6r' 11 5,622.33 5,622.33 5,622.33 5,622.33 s,622.33 5,622.33 5,622.33 s,622.33 5,622.33 5,622.33 5,622.33 5,622.33 < 6)) 71 5,622.33 5,622.33 5,622.33 \ 6))'\7 5,627.33 s,622.33 5,622.33 5,622.33 s,622.33 s,622.33 5,622.33 5,622.33 < 6r) 11 5,622.33 5,622.33 5,622.33 < Kr) 11 5 6r' 11 5,622.33 s,622.33 1.56 1.56 1.56 1.56 1.56 r.56 1.56 1.56 1.56 t.56 1.56 1.56 1.56 1.56 1.56 1.56 1.56 L56 1.56 1.56 1.56 1.56 1.56 1.56 1.56 L56 r.56 1.56 1.56 1.56 1.56 1.56 l.s6 1.56 1.56 1.56 1.56 r.56 1.56 1.56 1.56 L56 1.56 r.56 1.56 1.56 1.56 1.56 1.56 L56 1.56 l.s6 I .56 I .56 1.56 1.56 1.56 1.56 1.56 1.56 1.56 1.56 1.56 r.56 83.96 83.23 83.20 80.04 80.04 70.75 70.25 69.s0 68.86 0.00 0.00 0.00 0.00 67.70 67.50 67.70 67.50 67.60 67.60 67.20 67.20 67.r0 67.10 66.90 66.50 66.90 67.20 67.00 66.70 66.60 66.60 66.30 66.60 66.35 66.28 66.1s 66.28 66.18 65.94 65.65 65.35 65.25 64.78 64.67 64.55 64.05 64.10 64.02 63.84 63.61 63.32 63.09 63.07 63.06 62.s6 62.55 62.37 62.17 62.05 6t.57 61.7 5 61.90 61.89 61.62 Water Levels and Data, Over Time White Mesa Mill Monitor Well 5 Water Elevation (wL) s,499.97 5,500.80 5,500.97 5,500.97 5,500.80 5,501.47 5,500.89 5,50 1.05 5,501.05 5,500.80 5,500.80 5,500.97 5,500.64 5,504.64 5,504.64 5,504.'.12 5,498.47 5,500.89 5,500.07 5,500.88 5,500.82 5,500.89 5,500.83 5,500.84 5 {OO 71 5,499.97 5,500.90 5,500.67 5,500.42 5,500.48 5,500.79 5,500.50 5,500.60 s,500.53 5,500.68 5,500.67 5,500.46 5,500.94 s 500 ss 5,s00.67 5,500.75 5,500.97 5,500.79 5,500.87 5,500.91 5,501 .0s 5,500,95 5,500.87 5,500.98 5,501 .07 5,500.67 5,501.07 5,500.94 5,500.97 5,501.37 5,501. l7 5,500.97 5,500.57 5,500.4't 5,500.97 5,501. t 7 5,501.17 5,50t.42 5,500.97 5,50 1. I 7 5,500.22 5,501 .42 5,501.45 5,501.39 5,501.38 5,50 I .54 5,501.32 5.501.43 Land Surface (LSD) 5,609. I 8 s,609. r 8 5,609. r 8 5,609 r8 5,609. I 8 5,609. r 8 5,609. r8 5,609. I 8 5,609. r8 s,609. l8 5,609. l8 5,609. l8 5,609. l8 5,609. I 8 5,609. I 8 s,609. r 8 5,609. l 8 5,609. I 8 5,609. r 8 5,609. I 8 5,609.l8 5,609. I 8 5,609. r 8 5,609. I 8 5,609. r 8 5,609. l 8 5,609. l8 5,609. r 8 5,609. l8 5,609. r 8 5,609 l8 5,609. r 8 5,609. I 8 5,609. I 8 5,609. r 8 5,609. r 8 5,609. I 8 5,609. l 8 s,609. I 8 5,609. I 8 5,609. l 8 5,609. I 8 5,609. l 8 5,609. I 8 5,609. r 8 5,609. I 8 5,609. l8 5,609. l8 5,609. l8 5,609. l 8 5,609. I 8 5,609. l 8 5,609. I 8 5,609. l8 s,609 r 8 5,609. l 8 5,609. I 8 5,609. I 8 5,609. I 8 5,609. t8 5,609. l8 5,609. l8 5,609. l 8 5,609. r 8 5,609. l8 5,609. I 8 s,609. l 8 5,609. l8 5,609. l8 5,609. r8 5,609. I 8 5,609. I 8 5,609. l 8 Measuring Point Elevation (MP) 5,608.97 5,608.97 5,608.97 5,608.97 5,608.97 s,608.97 5,608.97 5,608.97 5,608.97 5,608.97 5,608.97 5,608.97 s,608.97 5,608.97 s,608.97 5,608.97 s,608.97 5,608.97 5,608.97 5,608.97 5,608.97 5,608.97 5,608.97 5,608.97 5,608.97 5,608.97 5,608.97 5,608.97 5,608.97 5,608.97 5,608.97 5,608.97 5,608.97 5,608.97 5,608.97 5,608.97 5,608.97 s,608.97 5,608.97 5,608.97 5,608.97 s,608.97 5,608.97 5,608.97 5,608.97 5,608.97 5,608.97 5,608.97 5,608.97 5,608.97 5,608.97 5,608.97 5,608.97 5,608.97 5,608.97 5,608.97 5,608.97 5,608.97 5,608.97 5,608.97 5,608.97 5,608.97 5,608.97 5,608.97 5,608.97 5,608.97 5,608.97 5,608.97 s,608.97 s,608.97 5,608.97 5,608.97 s,608.97 Length Of Riser (L) -0.21 -0.21 -0.21 -0.2t -0.21 -0.21 -0.21 -0.2t -0,21 -0.2t -0.21 -0.21 -0.21 -0.2t -0.21 -0.21 -0.21 -0.2t -0.2 r -0.21 -0.21 -0.2t -0.21 -0.2t -0.2t -0.21 -0.2t -0.21 -0.2t -0.21 -0.21 -0.21 -0.21 -0.2t -0.2t -0.2 r -0.2 r -0.2t -0.21 -0.2t -0.2 r -0.21 -0.2 r -0.21 -0.21 -0.21 -0.21 -0.21 -0.21 -0.21 -0.21 -0.2r -0.21 -0.2t -0.2 r -0.21 -0.21 -0.21 -0.2 r -0.21 -0.2t -0.21 -0.21 -0.2t -0.2t -0.21 -0.21 -0.21 -0.2t -0.2t -0.21 -0.21 -0.21 Monitor Well Number Dare Of Monitoring 2tr2t8l 9lt/84 t2/y84 2/U85 6/Ugs 9/v8s t2^/85 6lt9l86 9/rt86 12/v86 2/20t87 4128187 8lt4/87 I t/20t81 U26t88 6/188 8t23t88 lLt2t88 3/9t89 6t2I/89 9/U89 tt/15t89 2lt6190 5/8t90 8/7 t90 tt/t3190 2t27t9t 5t2U9l 812719t t2/3t91 3lt7l92 6nU92 9^3192 t2t9t92 3124193 6t8t93 9t22t93 t2/14t93 3t24194 6^5194 8fi8t94 t2/13t94 3lt6195 6t27 t95 9t20t9s 12ilU9s 3t28t96 6t7196 9il6t96 1U22196 3t20t91 6il197 9t30t97 3^6198 5lt2l98 9t24t98 lrt3t98 2n8t99 5ltv99 7 t6199 9t28t99 t2t9t99 3^1100 616t00 9/4t00 I li30l00 3t23t0t 5/l 8/0 I 5t24l0l 5t3U0t 6t5l0l 6il3t0t 6122l0t 'otal or Measured Depth to Water (blw.MP) 109.00 108.17 l 08.00 108.00 108. l7 107.50 108.08 t07.92 t07,92 108.17 108.17 108.00 r 08.33 I 04.33 104.33 104.25 r 10.50 108 08 108.90 108.09 108.15 I 08.08 108. l4 108. l3 I 08.24 109.00 108.07 r 08.30 I 08.55 108.49 108.18 108.47 I 08.37 108.44 r08.29 r 08.30 108.5 I l 08.03 108.42 I 08.30 108.22 108.00 108.18 108. l0 108.06 t07.92 108.02 108.10 107.99 107.90 I 08.30 r 07.90 108.03 108.00 107.60 107.80 108.00 108.40 108.50 l 08.00 l 07.80 l 07.80 I 07.55 I 08.00 107.80 108.75 107.55 101.52 I 07.58 I 07.59 t07.43 I 07.65 I 07.54 Total Depth to Water (blw.LSD) 109.2 l 108.38 108.21 108.21 l 08.38 t07 .7 | I 08.29 108.13 r08. I 3 108.38 108.38 108.21 108.s4 104.54 t04.54 104.46 I10.71 108.29 109. I I 108.30 l 08.36 108.29 108.35 108,34 108.45 t09.21 108.28 108.5 I I 08.76 I 08.70 l 08.39 r 08.68 I 08.58 I 08.65 I 08.50 108.5 l 108.72 108.24 108.63 108.51 108.43 108.21 108.39 108.3 I 108.27 108.13 108.23 108.3 t 108.20 108. r r 108.5 I r08. I r 108.24 108.2 r r07.8 I 108.0 r 108.21 108.61 108.7 I 108.21 108.01 108.01 107.76 108.21 108.01 108.96 to't.'76 107.73 107.79 I 07.80 t0'7.64 I 07.86 107.'15 Top of Screened Interval (blw.LSD) 95.5 95.5 95 95 95 95 95 95 95 95 95 95 95 Bottom of Screened Intenal (blw.LSD) r 33.5 133.5 133.5 133.5 133.5 133.5 133.5 133.5 133.5 133.5 r 33.5 133.5 133.5 133.5 t 33.5 t33 r33 133 133 Total Depth Of Well 136.3 136.3 136.3 136.3 136.3 t 36.3 t36.3 136.3 136.3 136.3 136.3 136.3 136.3 r 36.3 r36.3 136.3 136.3 136.3 136.3 136.3 136.3 136.3 136.3 136.3 136.3 136.3 136.3 136.3 136.3 r 36.3 136.3 1 36.3 I 36.3 136.3 136.3 136.3 136.3 136.3 136.3 t 36.3 r 36.3 136.3 136.3 t 36.3 136,3 136.3 136.3 136.3 l36J 136.3 136.3 136.3 136.3 136.3 136.3 136.3 136.3 136.3 136.3 136.3 136.3 136.3 136.3 r 36.3 l36 3 136.3 136.3 136.3 136.3 1 36.3 136.3 136.3 136.3 Easting 2,577,478.42 2,577,478.42 2,57',1,478.42 2,577,478.42 2,577,478.42 2,577,478.42 2,5"17,478.42 2,577,478.42 2,577,478.42 2,s77,478.42 2,57',|,478.42 2,577,478.42 2,577,478.42 2,577,478.42 2,577,478.42 2,577,478.42 2,577,478.42 2,577,478.42 2,577,478.42 2,s77,478.42 2,517,478.42 2,577,478.42 2,577,478.42 2,577,478.42 2,577,478.42 2,577,478.42 2,577,478.42 2,577,478.42 2,577,478.42 2,s77,478.42 2,577,478.42 2,5',77,478.42 2,577,478.42 2,577,478.42 2,577,478.42 2,577,478.42 2,577,478.42 2,577,478.42 2,5',17,478.42 2,577,478.42 2,571,478.42 2,577,478.42 2,517,478.42 2,577,478.42 2,577,478.42 2,577,478.42 2,577,4',18.42 2,577,478.42 2,577,478.42 2,577,478.42 2,577,478.42 2,577,478.42 2,577,478.42 2,577,478.42 2,577,478.42 2,577,478.42 2,577,478.42 2,577,478.42 2,5't7,478.42 2,577,478.42 2,5't'7,478.42 2,577,478.42 2,577,478.42 2,577,478.42 2,577,4'.18.42 2,51't,478.42 2,5'77,478.42 2,577,478.42 2,5-7't,478.42 2,577,478.42 2,577,478.42 2,577,478.42 2,577,4't8.42 Northing 320,s19.t2 320,519.t2 320,5t9.12 320,5t9.12 320,5t9.12 320,5t9.12 320,519.12 320,519.12 320,519.12 320,s19.12 320,519.12 320,519.12 320,5t9.t2 320,519.t2 320,519.t2 320,519.t2 320,5t9.t2 320,519.t2 320,5t9 t2 320,519.t2 320,519.12 320,5t9.t2 320,5t9.t2 320,519.t2 320,5t9.t2 320,5t9.t2 320,519.t2 320,519.t2 320,519.12 320,519.t2 320,5t9.t2 320,519.t2 320,519.12 320,519.t2 320,5t9.t2 320,s19.t2 320,5t9.t7 320,519.12 320,519.12 320,5t9.12 320,5t9.t2 320,519.12 320,5t9.t2 320,519.12 320,5t9.t2 320,519.12 320,5t9.12 320,5t9.t2 320,5t9.t2 320,519.t2 320,519.12 320,519.t2 320,519.t2 320,519.t2 320,s19.t2 320,519.t2 320,519.12 320,5t9.12 320,5t9.12 320,5t9.12 320,5t9.t2 320,5t9.12 320,5t9.12 320,519.t2 320,519.t2 320,519.12 320,5t9.t2 320,519.12 320,5t9.t2 320,st9.12 320,st9.t2 320,519.t2 320.s19.12 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 95.5 95.5 95.5 95.5 95.5 95.5 95.5 95.5 95.5 95.5 95.5 95.5 95.5 95.5 95.5 95.5 95.5 95.5 95.5 95.5 95.5 95.5 95.5 95.5 95.5 95.5 95.5 95.5 95.5 95.5 95.5 95.5 95.5 95.5 95.5 95.5 133.5 133.5 133.5 133.5 133.5 133.5 133.5 133.5 133.5 133.5 r 33.5 133 5 133.5 133.5 133.5 r 33.5 r 33.5 133,5 133,5 133.5 133.5 133.5 133.5 133.5 133.5 r 33.5 133.5 133.5 133.5 133.5 133.5 l3 3.5 r 33.5 133.5 133.5 133.5 r 33.5 133.5 133.5 l3 3.5 133.5 133.5 133.5 133.5 133.5 133.5 l3 3.5 133.5 133.5 r 33.5 r 33.5 133.5 133.5 133.5 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95.5 95.5 95.5 95.5 95.5 9s.5 95.5 95.5 95.5 Water Levels and Data, Over Time White Mesa Mill Monitor Well 5 Easting 2,577,478.42 2,577,418.42 2,577,478.42 2,577,478.42 2,57',1,478.42 2,5'1',7,418.42 2,577,478.42 2,517,478.42 2,577,478.42 2,577,478.42 2,577,478.42 2,577,478.42 2,577,478.42 2,577,418.42 2,577,478.42 2,577,4'18.42 2,5',7'1,478.42 2,577,4'78.42 2,57',1,418.42 2,577,478.47 2,577,478.42 2,577,4',78.42 2,5'17,418.42 2,577,478.42 2,577,478.42 2,577,4']8.42 2,577,478.42 2,577,478.42 2,577,4'78.42 2,577,478.42 2,577,478.42 2,577,478.42 2,577,418.42 2,577,478.42 2,5"1',t,4',78.42 2,577,478.42 2,5',77,478.42 2,s77,418.42 2,577,478.42 2,577,4'78.42 2,577,4',78.42 2,577,478.42 2,577,4'18.42 2,577,478.42 2,577,418.42 2,577,478.42 2,577,478.42 2,s77,478.42 2,577,478.42 2,577,478.42 2,577,478.42 2,577,478.42 2,517,4',78.42 2,577,478.42 2,577,478.42 2,577,478.42 2,577,478.42 2,577,478.42 2,577,478.42 2,577,418.42 2,577,478.42 2,577,418.42 2,517,478.42 2,577,4',78.42 Northing 320,519.12 320,519.12 320,s19.12 320,5t9.t2 320,519.t2 320,5t9.12 320,519.12 320,5t9.12 320,st9.12 320,5t9.t2 320,5t9.t2 320,5t9.t2 320,5t9.t2 320,519.12 320,519.t2 320,5t9.t2 320,5 19.12 320,5t9.t2 320,5t9.t2 320,5t9.12 320,519.t2 320,5t9,12 320,519.t2 320,519.12 320,5t9.t2 320,5t9.12 320,519.12 320,st9.12 320,519.12 320,519.12 320,519.12 320,5t9.t2 320,519.12 320,5t9.12 320,519.12 320,5t9.12 320,5t9.t2 320,5t9.12 320,5t9.t2 320,5t9.t2 320,519.12 320,5t9.12 320,519.12 320,5t9.12 320,5t9.12 320,s19.t2 320,519.t2 320,519.12 320,5 19. l2 320,5t9.12 320,5t9.t2 320,5t9.t2 320,5t9.t2 320,5t9.12 320,519.12 320,5t9.12 320,519.12 320,519.12 320,519.12 320,519.t2 320,st9.t2 320,519.t2 320,s19.t2 320,519.t2 Water Elevation (wL) 5,501.39 5,501.40 5,501.45 5,501.54 5,501.56 5,50 1.54 5,50 1.39 5,50 1.32 5,501.41 5,50t.42 5,50t.44 5,501 .40 s,501.48 5,501.44 5,501.40 5,50 1.55 5.50 I .39 5,50 r.34 5,501.5 I 5,501 ,30 5,501.25 5,501.54 5,50 1.70 5,501.41 5,50 1.32 5,50 r.52 5,50t.44 5,501.49 5,501.35 5,501 ,71 5,501.3s 5,50 1.32 5,50 l. I 9 5,50 1.86 5,501.48 5,501.81 5,501.25 5,501 .52 5,501 .60 5,501.44 5,501.61 5,501.45 5,501 .68 5,50t.62 5,501 .60 5,501 .49 5,501.56 5,501.60 5,501.56 5,501 .58 5,50 1 49 5,501.56 5,501.40 5,501.55 5,501.39 5,501.5 8 5,50 1.60 5,50 1.54 5,501 .45 5,498. l5 5,501.79 5,501 87 5,502.05 5.501 .92 Length Of Riser (L) -0.2r -0.21 -0,2t -0.2t -0.21 -0.21 -0.21 -0.21 -0.21 -0.2t -0.21 -0.21 -0.21 -0.2t -0.21 -0.2t -0.21 -0.21 -0.21 -0.21 -0.2t -0.2t -0.21 -0.2t -0.2 r -0.2t -0.2t -0.21 -0.21 -0.21 -0.21 -0.2t -0.2t -0.21 -0.21 -0.21 -0.21 -0.21 -0.21 -0.21 -0.21 -0.21 -0.21 -0.2t -0.2t -0.2t -0.2t -0.21 -0.2t -0.2t -0,21 -0.21 -0.2t -0.21 -0.21 -0.21 -0.21 -0.21 -0.2t -0.2t -0.2t -0.21 -0.2t -0.21 Monitor Well Number 5 5 Date Of Monitoring 6t28t0t 7/2101 7 n0/01 7^6/0t 7/2st0t 7t3y0l 8/9t01 8lt4/01 8t20l0l 8/27101 917/0t 9^2t01 9/l 8/0 I 9t26/01 t0t2/0t t0/9t01 I 0/r5/0 I t0125/01 l l/l/01 I l/5/0 I nlt9l0l t2/3t01 12fi0/01 t2lt8/01 t2/24t01 t2/31/01 t/9t02 Ut4/02 y24/02 v29/02 2/6102 2/t3/02 2/2v02 3il/02 316/02 3/t4102 3t2v02 3t27 t02 4/2102 4t9t02 4fi8t02 4t23/02 5/2t02 5t7102 5^6102 5t20/02 5t3U02 6t4t02 6^2/02 6lt7l02 6/27 t02 7ts/02 "118t02 7 I t5102 7 t25t02 81y02 8120102 8t29t02 9t5t02 9il0t02 9t20102 9t26t02 t0t2/02 10/10/02 Top of Screened Interval (blw.LSD) 95.5 955 95.5 95.5 95.5 95.5 95.5 95.5 95.5 95.5 95.5 95.5 95.5 95.5 95.5 95 95 95 95 Bottom of Screened Interval (blw.LSD) 133.5 133.5 133.5 133.5 133.5 133.5 133.5 Total Depth Of Well 136.3 136.3 136.3 t36.3 136.3 136.3 r 36.3 136.3 r 36.3 136.3 136.3 136.3 136.3 136.3 136.3 136.3 136.3 136.3 r 36.3 136.3 136.3 136.3 136.3 r 36.3 r 36.3 136.3 136.3 136.3 136.3 136.3 136.3 136.3 136.3 136.3 136.3 136.3 136.3 136.3 136.3 136.3 136.3 136.3 136.3 1 36.3 136.3 136.3 136.3 136.3 1363 136.3 136.3 136.3 136.3 136.3 136.3 r 36.3 136.3 136.3 136.3 136.3 136.3 tJo.1 136.3 136.3 Measuring Point Land Surface Elevation (LSD) (MP) 5,609. r 8 5,608.97 5,609. l8 5,608.97 s,609.18 5,608.97 5,609. I 8 5,608.97 5,609. r8 5,608.97 5,609. t8 5,608.97 5,609. l8 5,608.97 5,609. l8 5,608.97 5,609.18 5,608.97 5,609.18 s,608.97 5,609.18 s,608.97 5,609. l8 5,608.97 5,609. l8 5,608.97 s,609. l8 5,608.97 5,609.18 5,608.97 5,609.18 5,608.97 5,609.18 5,608.97 5,609.1 8 5,608.97 5,609.18 5,608.97 5,609. l 8 s,608.97 5,609. I 8 5,608.97 5,609.18 5,608.97 5,609.18 5,608.97 5,609. l8 s,608.97 5,609. l 8 5,608.97 5,609. l 8 5,608.97 5,609.18 5,608.97 5,609.18 5,608.97 5,609 18 5,608.97 5,609. I 8 5,608.97 5,609. l8 5,608.97 5,609. l8 5,608.97 5,609. l8 5,608.97 5,609.18 5,608.97 5,609.18 5,608.97 5,609. l 8 5,608.97 5,609.18 5,608.97 5,609. I 8 5,608.97 5,609.18 5,608.97 5,609.18 5,608.9'7 5,609.18 5,608.97 5,609. r8 5,608.97 5,609. 18 5,608.97 5,609. l8 5,608.97 5,609. l8 5,608.97 5,609. l8 s,608.97 5,609. l8 s,608.97 5,609.18 5,608.97 5,609.18 5,608.97 5,609. l8 5,608.97 5,609. l8 5,608.97 5,609.18 5,608.97 5,609. l8 5,608.97 5,609.18 5,608.97 5,609. l8 5,608.97 5,609. l8 5,608,97 5,609.18 5,608.97 5,609. l8 5,608.97 5,609. I 8 5,608.97 5,609. l8 5,608.97 s,609. l8 5,608.97 5,609. l8 5,608.97 5,609.18 5,608.97 5,609.18 5,608.97 Total or Measured Depth to Total Depth Water to Water (blw.NIP) (blw.LSD) 107.58 t07.'19 t07 .57 107.78 t07.52 t01.73 107.43 107.64 t07.41 t07 .62 107.43 t07.64 107.58 t07.79 107.65 107.86 t07.56 107 .77 107.55 t07.76 107.53 t07.74 t07 .57 107 .78 t07.49 t07.70 107.53 107 .74 t07 .57 t07.78 107.42 t07.63 107.58 107.'t9 107.63 107.84 107 .46 107.67 t0'7.67 107.88 107.72 107.93 t07.43 t07.64 l07 .2't 107.48 107.56 t07.77 107.65 107.86 t07.45 107.66 107.53 10"t.74 107,48 t07.69 t07.62 107.83 107.26 107.47 107.62 r07.83 107.65 107.86 107.78 107.99 107.1 1 107 .32 t07.49 107.70 t07.16 107.37 107 .72 107.93 t07.45 t07.66 t07.37 t07.58 107.53 t07 .74 107 .36 t07.57 107 .52 107.73 107.29 107.50 107.35 107.56 t07.37 107.58 107.48 107.69 107.41 107.62 t07.37 107.58 t07.41 107.62 t07 .39 107.60 107.48 t07.69 t07.41 t07.62 t07.57 107.78 t07.42 t07.63 107.58 t07.79 t07.39 107.60 t07.37 107.58 t01.43 t0'7.64 t01.52 t07.73 u0.82 il 1.03 107.18 t07.39 107.10 107.31 106.92 107.13 107.05 107 .26 133 133 T JJ r33 133 133 133 133 95.5 95.5 95.5 95.5 95.5 95.5 95.5 95.5 95.5 95.5 95.5 95.5 95.5 95,5 95.s 95.5 95.5 95.5 95.5 95.5 95.5 95.5 95.5 95.5 95.5 9s.5 95.5 95.5 95.5 95.5 95.5 95.5 95.5 95.5 95.5 95.5 95.5 95.5 95.5 95.5 95.5 95.5 95.5 95.5 95.5 133.5 133.5 133.5 t 33.5 r 33.5 133.5 133.5 133.5 133.5 r 33.5 133.5 r33 5 133.5 133 5 133.5 l3 3.s 133.5 133.5 133.5 133.5 133.5 133.5 133.5 133.5 133.5 133.5 133.5 133.5 133.5 133.5 133.5 133.5 133.5 133.5 133.5 r 33.5 133.5 133.5 r 33.5 133.5 133.5 133.5 133.5 133.5 r 33.5 I33.5 133.5 I33.5 13 3.5 Water Levels and Data, Over Time White Mesa Mill Monitor Well 11 Easting 2,578,798.t0 2,578,798.10 2,578,798.10 2,578,198.10 2,578,'.l98.10 2,578,'198.10 2,578,798.10 2,578,798.10 2,578,798.t0 2,578,798.10 2,s78,798.t0 2,578,798.10 2,578,798.t0 2,578,798.10 2,578,798.10 2,578,798.10 2,s',t8,798.10 2,578,798.t0 2,578,798.10 2,578,798.10 2,578,798.10 2,578,798.10 2,578,798.t0 2,578,798 I0 2,578,798.10 2,578,798.t0 2,578,798.10 2,578.798.10 2,578,798. l0 2,578,798.10 2,578,798,10 2,578,798.10 2,578,798,10 2,578,798.10 2,s78,798.10 2,578,798.10 2,578,798.10 2,578,798.10 2,578,',l98.10 2,578,798.10 2,578,798.t0 2,578,798.10 2,578,798. I 0 2,5't8,798.10 2,578,798.10 2,578,798.10 2,578,798.10 2,578,798.10 2,578,798,10 2,578,798.10 2,578,798.10 2,578,798.t0 2,578,798. l0 2,578,798.t0 2,578,'198.10 2,578,798.10 2,578,798.10 2,578,798. l0 2,578,798.10 2,578,',l98.10 2,578,798.10 2,578,798. l0 2,578,798.10 2,578,798.t0 2,578,798.10 2,s78,798.t0 2,5'18,798.t0 2,578,798.10 2,578,798.t0 2,578,798.10 2,578,798.t0 2,578,798.t0 Northing 320,245.47 320,245.47 320,245.47 320,245.47 320,245.47 320,24s.47 320,245.41 320,245.47 320,245.47 320,245.47 320,245.47 320,245.47 320,245.47 320,245.47 320,245.47 320,245.47 320,245.47 320,245.47 320,245.47 320,245.47 320,245.47 320,245.47 320,245.47 320,245.47 320,245.47 320,245.47 320,245.47 320,245.47 320,245.47 320,245.47 320,245.47 320,245.47 320,245.47 320,245.47 320,245.47 320,245.47 320,245.47 320,24s.47 320,245.47 320,245.47 320,245.47 320,245.47 320,245.47 320,245.47 320,245.47 320,245.41 320,245.47 320,245.47 320,245.47 320,245.47 320,245.47 320,245.47 320,245.47 320,245.47 320,245.41 320,245.47 320,245.47 320,245.47 320,245.4'7 320,24s 47 320,245.47 320,245.47 320,245.47 320,245.47 320,245.47 320,245.47 320,24s.47 320,245.41 320,245.47 320,24s.47 320,245.47 320,245.47 Water Elevation (wL) 5,507.38 5,506.80 5,s06.80 s,500.88 5,507.88 5,507. l 3 5,507.80 5,507.97 5,507.80 5,507.97 5,507.63 5,508.3 8 5,508.22 5,507.63 5,507.97 5,502.80 5,508.80 5,508.30 5,508.20 5,508.3 I s,508.20 s,508.30 5,508.28 s,508.64 5,508.24 5,508.30 5,508.74 s,s08.35 5,s08.27 5,508.29 5,508.88 5,508.53 5,508.62 5,508.44 5,508.93 5,508.85 5,508.83 5,509.28 5,509. l0 5,509.45 5,509.60 5,509.88 5,509.80 5,509.93 5,5 r0.03 5,5 10.36 5,510,38 5,5 10.30 5,5 l 0.54 5,5 10.75 5,5t0.24 5,5 10.85 5,510.78 5,51 L30 5,51 L40 5,5 I 1.30 5,510.80 5,511.05 5,5 I I.40 5,s l 1.60 5,5 I 1.30 5,51 1.60 5,5 12.05 5,5t2.65 5,512.25 5,5 t2.53 5,5t2.82 5,5t2.93 5,5 12.9 r 5,5 12.88 5,5 t2.98 5,5 t 3. l2 Date Of Monitoring 9/184 t2lt/84 2/v8s 6/y8s 9/y85 12fi/85 3/186 6/r9/86 9nt86 t2/l./86 2120/87 4128/87 8^4t87 tv20t81 U26t88 6^188 8123t88 l].l2l88 3t9189 6t2U89 9nt89 l/t5t89 2lt6/90 5t8t90 8/7 t90 t1^3190 2127/91 5t21t9t 8t27 t9l t2l3l9l 3/17 t92 6^v92 9n3t92 t2l9l92 3t24193 6/8t93 9t22t93 tzlt4/93 3t24t94 6il5194 8^8194 t2/t3194 3n6t95 6127195 9t20t95 t2ltv95 3128196 6/7196 9^6t96 lt22/96 3t20t97 6ilU9'l 9t30t97 3^6198 5lt2l98 9t24t98 n/3t98 2il8t99 strt99 7t6t99 9t28t99 t2/9t99 3l t1 100 616100 9t4t00 l l/30/00 3t23t0t 5/1 8/01 5t24t0l st3v0l 6lsl0l 6^3/01 Measuring Point Land Surface Elevation (LSD) (MP) 5,608.51 5,610.80 5,608.51 5,610.80 5,608.51 5,610.80 5,608.51 5,610.80 5,608.51 5,610.80 5,608.51 5,610.80 5,608.51 s,6r0.80 5,608.s r s,610.80 5,608.51 5,610.80 5,608.51 5,610.80 5,608.51 5,610.80 5,608.51 5,610.80 5,608.51 s,610.80 5,608.51 5,610.80 5,608.51 5,610.80 5,608.51 5,610.80 5,608.51 5,610.80 5,608.51 5,610.80 5,608.51 5,610.80 5,608.51 5,610.80 5,608.5 I 5,610.80 5,608.5 I 5,610.80 5,608.5 I 5,610.80 5,608.51 5,610.80 5,608.51 5,6r0.80 5,608.51 5,610.80. 5,608.51 5,610.80 5,608.51 5,610.80 5,608.51 5,610.80 5,608.51 5,610.80 5,608.5 I 5,610.80 5,608.5 I 5,610.80 5,608.51 5,610.80 5,608.5 r 5,610.80 5,608.5 r 5,610.80 5,608.5 r 5,610.80 5,608.51 5,6r0.80 5,608.51 5,610.80 5,608.51 5,610.80 5,608.5 I 5,610.80 5,608.5 I 5,610.80 5,608.5 I 5,610.80 5,608.5 I 5,610.80 5,608.51 5,610.80 5,608.51 5,610.80 5,608.51 5,610.80 5,608.5 I 5,610.80 5,608.5 I 5,610.80 5,608.5 I 5,610.80 5,608.51 5,610.80 5,608.sr 5,6r0.80 5,608.51 5,610.80 5,608.51 5,610.80 5,608.5 l 5,610,80 5,608.51 s,610 80 5,608.5 r s,610.80 5,608.51 5,610.80 5,608.5 r 5,610.80 5,608.5 l 5,610.80 5,608.51 5,610.80 5,608.51 5,610.80 5,608.5 r 5,610.80 5,608.5 I 5,610.80 5,608.5 I 5,610.80 5,608.51 5,610.80 5,608.51 5,6r0.80 5,608.sr 5,610.80 5,608.5 I 5,610.80 s,608.s l 5,610.80 5,608.s 1 5,610.80 5,608.51 5,610.80 5,608.5 r 5,610.80 Length Monitor Of Riser Well (L) Number 2.29 I I 2.29 t 1 2.29 I I 2.29 I I 2.29 I l 2.29 r l 2.29 I I 2.29 I I 2.29 ll 2.29 I I 229 II 2.29 I I 2.29 I I 2.29 I I 2.29 r l 2.29 I I 2.29 I I 2.29 I I 2.29 ll 2.29 I I2.29 r r 2.29 I I 2.29 r I 2.29 I l 2.29 1l 2.29 l I 2.29 1l 2.29 l I 2.29 I I 2.29 I I 2.29 I I 2.29 I I 2.29 I I 2.29 1l 2.29 l l 2.29 l r 2.29 I I 2.29 I I 2.29 l I 2.29 I I 2.29 I I 2.29 I I 2.29 I I 2.29 r I 2.29 I I 2.29 I I 2.29 I I 2.29 I I 2,29 I I 2.29 I l 2.29 I I 2.29 I I 2.29 l l 2.29 l l 2.29 I I 2.29 I I 2.29 I I 2.29 I I 2.29 I I 2.29 I I 2.29 lt 2.29 I I 2.29 r l 2.29 l l 2.29 ll 2.29 I r 2.29 I r 2.29 I I 2.29 I I 2.29 I I 2.29 I I 2.29 I I Total or Measured Total Top Of Bottom Of Depth to Depth to Screened Screened Total Water Water Interval Interval Depth Of (blw.MP) (blw.LSD) (blw.LSD) (blw.LSD) Well 103.42 l0 t. t 3 90.70 130.40 135 104.00 l0r.7r 90.70 130.40 135 104.00 t0t.7t 90.70 130.40 135 t09.92 107.63 90.10 t 30.40 135 102.92 100.63 90.70 130.40 135 t03.67 10t.38 90.70 130.40 135 103.00 100.71 90.70 130.40 135 102.83 100.54 90.70 130.40 135 103.00 100.71 90.70 130.40 135 102.83 100.54 90.70 130.40 135 103.17 100.88 90.70 130.40 t35 102.42 t00.13 90.70 130.40 135 102.58 100.29 90.70 130.40 135 103.17 100.88 90.70 130.40 t35 102.83 100.54 90.70 130.40 I 35 108.00 r05.7r 90.70 130.40 135 102.00 99.'7t 90.70 130.40 135 102.50 100.21 90.70 130.40 135 102.60 100.31 90.70 130.40 t35 102.49 100.20 90.70 130.40 135 102.60 100.31 90.70 130.40 135 102.50 100.21 90.70 130.40 135 t02.52 100.23 90.70 130.40 135 t02.16 99.8't 90.70 130.40 135 t02.56 t00.27 90.70 130.40 t35 102.50 100.21 90.70 130.40 135 102.06 99.77 90.70 130.40 t35 102.45 100, 16 90.70 130.40 135 102.58 100.29 90.'70 130.40 r35 102.51 t00.22 90.70 130.40 135 101.92 99.63 90.70 130.40 135 "t02.27 99.98 90.70 130.40 135 102.18 99.89 90.70 130.40 135 t02.36 100.07 90.70 130.40 135 r0r.87 99.58 90.70 130.40 135 101.95 99.66 90.70 130.40 135 101.97 99.68 90.70 130.40 135 101.52 99.23 90.70 130.40 135 r0r.70 99.41 90.70 130.40 135 101.35 99.06 90.70 130.40 135 101.20 98.91 90.70 130.40 135 100.92 98.63 90.70 130.40 135 10r.00 98.71 90.70 130.40 135 100.87 98.58 90.70 130.40 135 t00.7't 98.48 90.70 130.40 135 100.44 98.15 90.70 130.40 135 100.42 98.13 90.70 130.40 135 100.50 98.2t 90.70 130.40 135_ 100.26 97.97 90.70 130.40 r35 100.05 97.76 90.70 130.40 135 100.56 98.2't 90.70 130.40 135 99.95 97.66 90.70 130.40 135 100.02 97.73 90.70 130.40 135 99.50 97 .2t 90.70 130.40 135 99.40 97.1 90.70 130.40 135 99.50 97.21 90.70 130.40 135 100.00 97.7t 90.70 130.40 135 99.'15 97.46 90.70 130.40 135 99.40 97.1 90.70 130.40 135 99.20 96.9t 90.70 130.40 135 99.50 97 .2t 90.70 I 30.40 135 99.20 96.91 90.',70 r 30.40 135 98.75 96.46 90,70 130.40 135 98 15 95.86 90.70 130.40 135 98.55 96.26 90.70 130.40 135 98.27 95.98 90.70 130.40 135 9't .98 95.69 90.70 r 30.40 135 97 .87 95.58 90,70 130.40 135 97.89 95.60 90.70 130.40 r3s 97.92 95.63 90.70 130.40 135 97.82 95.53 90.70 130.40 135 97.68 9s39 90.70 130.40 135 Water Levels and Data, Over Time White Mesa Mill Monitor Well 1l Easting 2,578,',l98.t0 2,578,798.t0 2,578,798.t0 2,578,798.10 2,578,798.t0 2,578,798.t0 2,578,798.t0 2,578,798.10 2,578,798.10 2,578,798.t0 2,578,798.10 2,5'18,798.10 2,578,798.10 2,578,798.10 2,578,798.10 2,578,798.10 2,578,798.t0 2,578,798.10 2,578,798.t0 2,578,798.10 2,578,798.10 2,578,798.10 2,578,798.10 2,578,798.10 2,578,'798.10 2,578,798.10 2,578,798.t0 2,578,798.10 2,s-18,798.t0 2,578,798.10 2,578,798. l0 2,578,798.10 2,578,798.10 2,578,798.t0 2,578,798.t0 2,578,798.10 2,s78,798.10 2,578,798.10 2,578,798.t0 2,578,798.t0 2,578,798.10 2,578,798.t0 2,578,798.10 2,578,798.t0 2,578,798.10 2,578,798.t0 2.578,798.10 2,578,798.10 2,578,798.10 2,578,798.t0 2,578,798.10 2,5"18,798.10 2,578,'198.10 2,578,'798.10 2,5 78,798. I 0 2,518,198.t0 2,578;798.10 2,578,798. l0 2.578,798.10 2,578,'198.t0 2,578,798. r0 2,578,798.t0 2,578,198.10 Northing 320,245.47 320,24s.47 320,245.4'1 320,24s.47 320,245.47 320,245.47 320,245.4'7 320,245.47 320.245.4',1 320,245.47 320,245.47 320,245.47 320,245.47 320,245.47 320,245 47 320,245.47 320,245 47 320,24s.47 320,245.47 320,245.47 320,245.47 320,245.47 320,245.47 320,245.47 320,245.4'l 320,245.47 320,245.47 320,245.47 320,245.47 320,245.47 320,245.47 320,245 47 320,245.47 320,245.47 320,245.47 320,245.47 320,245.47 320,245.47 320,245.47 320,245.47 320,24s.47 320,245 47 320,245.4-t 320,245.47 320,245.47 320,245.47 320,245.47 320,245.47 320,245.47 320,245.47 320,245.47 320,245.47 320,24s.47 320,245.4',1 320,245.47 320,245.47 320,24s.47 320,245.47 320,245.47 320,245.41 320,245.47 320,245.4'l 320,245.4'7 Water Elevation (wL) 5,5t2.87 5,5 12.8 I 5,5t2.82 5,5t2.90 5,512.99 5,5 13.04 5,5 13.04 5,512.93 5,512.92 5,5 13.00 5,5 l3.0 r 5,5 13.06 5,513.04 5,5 13. l0 5,5 13.09 5,5 13. 1 r 5,5 13.28 5,5 r 3.03 5,5 13.02 5,5t3.24 5,5 13. l5 5,512.97 5,5 13.38 5,513.64 5,513.22 5,5 13.16 5,5 13.45 5,513.39 5,5 13.41 5,5 13. r 6 5,5 13.65 5,5 l3.32 5,513.27 5,5 13.07 5,5 13.82 5,5t3.52 5,5 13.84 5,513.30 5,5 13.58 5,s 13.69 5,5 r 3.45 5 {t17' 5,5 13.5 3 5,5 13.82 5,5 I3.79 5,5 13.75 5,513.77 5,5 l3,66 5,5 l3.73 5,5 13.68 5,513.76 5,5 13.69 5,513.77 5,513.6r 5,5 13.78 5,513.64 5,513.86 5,513.87 5,5 r 3.82 5,5t3.79 5,5 13.82 5,5 13.96 5,514.03 Date Of Monitoring 6/22t0t 6/28101 712/01 7lt0t0l 7lt610l 7125/0t 713t/0t 819/01 8/t4t0t 8/20t01 8127l0l 917l0t 9lt2/0t g^8/0r 9t26l0t t0t2t0t 10/9/0 I I 0/15/01 10t25/01 I t/l/01 I t/5101 tyt9l0l t2t3/01 t2^010t t2/t8t0t t2/24101 tzt3v0l y9t02 vt4t02 y24/02 v29102 2t6t02 2il3t02 2t2U02 34t02 316102 3^4t02 312v02 3t27/02 4t2t02 4t9t02 4il8t02 4123102 5t2/02 517102 5fi6102 5120/02 5t3t/02 6/4102 6fi2/02 6fi7/02 6t27/02 7 t5102 718102 7/15t02 7/25t02 8il/02 8t20t02 8/29102 9t5t02 9il0t02 9120102 9126/02 Measuring Point Land Surface Elevation (LSD) (MP) 5,608.5r 5,6r0.80 5,608.51 5,610.80 5,608.51 5,610.80 5,608.51 5,610.80 5,608.5 I 5,610.80 5,608.51 5,610.80 5,608.51 5,610.80 5,608.51 5,610.80 5,608.51 5,610.80 5,608.51 5,6r0.80 5,608.51 5,610.80 5,608.51 5,6r0.80 5,608.51 5,610.80 5,608.5 I 5,610.80 5,608.51 5,6r0.80 5,608.51 5,610.80 5,608.5 I 5,610.80 5,608.51 5,610.80 5,608.5 I 5,610.80 5,608.51 5,610.80 5,608.51 5,610.80 5,608.51 5,610.80 5,608.51 5,610.80 5,608.51 5,6r0.80 5,608.51 5,610.80 5,608.51 5,610.80 5,608.51 5,610.80 5,608.51 5,610.80 5,608.51 5,610.80 5,608.5 r 5,610.80 5,608.5 r 5,610.80 5,608.5 I 5,610.80 5,608.5 I 5,610.80 5,608.5 I 5,610.80 5,608.s r 5,610.80 5,608.5 I 5,610.80 5,608.s I 5,610.80 5,608.51 5,610.80 5,608.51 5,610.80 5,608.5 I 5,610.80 5,608.51 5,6r0.80 5,608.51 5,610.80 5,608.5 I 5,610.80 5,608.51 5,610.80 5,608.51 5,610.80 5,608.51 5,610.80 5,608.51 5,6r0.80 5,608.51 5,610.80 5,608.51 5,610.80 5,608.51 5,610.80 5,608.51 5,610.80 5,608.51 5,610.80 5,608.51 5,610.80 5,608.5r 5,610.80 5,608.51 5,610.80 5,608.51 5,610.80 5,608.51 5,610.80 5,608.51 5,610.80 5,608.5r 5,610.80 5,608.51 5,610.80 5,608 s1 5,610.80 5,608 51 5,610.80 5,608.51 5,610.80 Length Monitor Of Riser Well (L) Number 2.29 I I 2.29 l r 2.29 I I 2.29 I I 2.29 I I 2.29 I I 2.29 I I2.29 r r 2.29 I I 2.29 I I 2.29 l l 2.29 I I 2.29 I I 2.29 I l 2.29 I I 2.29 1l 2.29 lt 2.29 r I 2.29 I I 2.29 I I 2.29 r l 2.29 I I 2.29 ll 2.29 I I 2.29 I r 2.29 I I 2.29 I I 2.29 ll 2.29 l r 2.29 I l 2.29 I I 7.29 I l 2.29 I l 2.29 I I 2.29 l l 2.29 I I 2.29 l I 2.29 I I 2.29 I I 2.29 l l 2.29 I I 2.29 I I 2.29 I I 2.29 I I 2.29 r l 2.29 ll 2.29 ll 2.29 I I 2.29 ll2.29 r r2.29 r r2.29 r l 2.29 I I 2.29 I I 2.29 l I 2.29 I I 229 II 2.29 I I 2.29 t I 2.29 l I 2.29 I I 2.29 I I 2.29 lt Totrl or Measured Total Depth to Depth to Water Water (blw.MP) (blw.LsD) 97.93 95.64 97.99 95.70 97.98 95.69 97 .90 95.61 97 .8t 95.52 97.76 95.47 97.76 95.47 97.87 95.58 97.88 95.59 97.80 95.5 I 97.79 95.50 97 .74 95.45 97 .76 95.47 97.70 95.41 97 .7 | 95.42 97.69 95.40 97.52 95.23 97.77 95.48 97 .78 95,49 97.56 95.27 s7.65 95.36 97.83 9s.54 97.42 95. t3 97.16 94.87 97.58 95.29 97.64 95.35 91 .35 95.06 97 .4t 95.12 9'7 .39 95.10 9'7.64 95.35 97.t5 94.86 97 .48 95.19 9't .53 95.24 97 .73 95.44 96.98 94.69 97.28 94.99 96.96 94.67 97 .50 95.21 97.22 94.93 97.1 I 94.82 97.35 95.06 97.08 94.79 97.27 94.98 96.98 94.69 9'1.0t 94.'72 97.05 94.76 97.03 94.74 97.t4 94.85 97.07 94.78 91.t2 94.83 9't.04 94.75 91.tt 94.82 97.03 94.74 97.t9 94.90 9'7.02 94.73 9'1.16 94.87 96.94 94.65 96.93 94.64 96.98 94.69 97.0t 94.72 96 98 94.69 96.84 94.55 96.77 94.48 Top Of Bottom Of Screened Screened Total Interval Interual Depth Of (blw.LSD) (blw.LSD) Well 90.70 130.40 l3s 90.70 130.40 135 90.70 130.40 r35 90.70 130.40 t35 90.70 130.40 135 90.70 130.40 135 90.70 130.40 135 90.70 130.40 135 90.70 130.40 r35 90.70 130.40 r 35 90.70 130.40 t35 90.70 130.40 135 90.70 130.40 135 90.70 130.40 135 90.70 130.40 135 90.70 130.40 135 90.70 130.40 135 90.70 130.40 135 90.70 130.40 135 90.70 130.40 135 90.70 130.40 135 90.10 130.40 135 90.70 130.40 135 90.70 130.40 135 90.70 130.40 135 90.70 130.40 135 90.70 130.40 135 90.70 130.40 135 90.70 130.40 135 90.70 130.40 135 90.70 130.40 r35 90.70 130.40 135 90.70 130.40 135 90.70 130.40 t 35 90.70 130.40 135 90.70 130.40 135 90.70 130.40 135 90.70 130.40 t35 90.70 130.40 135 90.70 130.40 135 90.70 130.40 135 90.70 130.40 t35 90.70 110.40 l3s 90.70 130.40 r35 90 70 130.40 135 90.10 130.40 135 90.70 130.40 135 90.70 130.40 135_ 90.70 130.40 t35 90.70 130.40 135 90.70 130.40 r35 90.70 130.40 135 90.70 130.40 r 35 90.70 130.40 135 90.70 130.40 135 90.70 130.40 135 90.70 130.40 135 90.70 130.40 135 90.70 130.40 135 90.70 130.40 135 90.70 130.40 135 90.70 130.40 135 90.70 130.40 135 Water Levels and Data, Over Time White Mesa Mill Monitor Well 12 Easting Northing 2576,66s.06 320,683.29 2,s7 6,665.06 320,683.29 2,s76,66s.06 320,683.29 2,s76,665.06 320,683.29 2576$65.06 320,683.29 2,s76,665.06 320,683.29 2,s76$6s.06 320,683.29 2,s76$65.06 320,683.29 2,576,665.06 320,683.29 2,576,665.06 320,683.29 2,s76,665.06 320,683.29 2,576,665.06 320,683.29 2,s76,66s.06 320,683.29 2,576,665.06 320,683.29 2,s76,66s.06 320,683.29 2,576,665.06 320,683.29 2,57 6,665.06 320,683.29 2,576,665.06 320,683.29 2,576,665.06 320,683.29 2,516,665.06 320,683.29 2,576,665.06 320,683.29 2,576,665.06 320,683.29 2,576,665.06 320,683.29 2,576,665.06 320,683.29 2,s'16,665.06 320,683.29 2,5'16,66s.06 320,683.29 2,576,665.06 320,683.29 2,576,665.06 320,683.29 2,576,665.06 320,683.29 2,576,665.06 320,683.29 2,576,665.06 320,683.29 2,576,66s.06 320,683.29 2,576,665.06 320,683.29 2,s76,665.06 320,683.29 2,576,665.06 320,683.29 2,576,665.06 320,683.29 2,576,665.06 320,683.29 2,s76,665.06 320,683.29 2,s76,665.06 320,683.29 2,576,66s.06 320,683.29 2,576,665.06 320,683.29 2,576,665.06 320,683.29 2,s76,665.06 320,683.29 2,576,665.06 320,683.29 2,576,665.06 320,683.29 7,576,665.06 320,683.29 2,576,66s.06 320,683.29 2,576,665.06 320,683.29 2,576,665.06 320,683 29 2,576,66s.06 320,683.29 2,s'16,66s.06 320,683.29 2,516,66s.06 320,683.29 2,576,665.06 320,683.29 2,576,665.06 320,683.29 2,576,665.06 320,683.29 2,576,665.06 320,683.29 2,576,665.06 320,683.29 2,576,66s.06 320,683.29 2,576,665.06 320,683.29 2,576,665.06 320,683.29 2,576,665.06 320,683.29 2,s'76,665.06 320,683.29 2,s76,66s.06 320,683.29 2,576,66s.06 320,683.29 2,576,665.06 370,683.29 2,576,665.06 320,683.29 2,576,665.06 320,683.29 2,576,665.06 320,683.29 2,s'76,665.06 320,683.29 2,576,665.06 320,683.29 2,5"16,665.06 320,683.29 2,576,66s.06 320,683.29 Measuring Point Land Surface Elevation (LSD) (MP) s,608.60 5,609. ls s,608.60 5,609. ls s,608.60 5,609. l 5 s,608.60 5,609. l s 5,608.60 5,609. 15 5,608.60 5,609. l5 s,608.60 5,609. r5 s,608.60 5,609. ls 5,608.60 5,609. l s s,608.60 5,609.15 s,608.60 5,609. r5 5,608.60 s,609. l5 5,608.60 5,609. l5 5,608.60 5,609. l5 s,608.60 s,609. l5 5,608.60 5,609. 15 5,608.60 5,609. 15 5,608.60 5,609. l5 5,608.60 5,609. l5 5,608.60 5,609. l5 5,608.60 5,609. l5 5,608.60 s,609. l5 5,608.60 5,609. l5 5,608.60 5,609.15 5,608.60 s,609. t5 5,608.60 s,609. l5 5,608.60 5,609. 15 5,608.60 s,609. l5 5,608.60 5,609.15 5,608.60 5,609. I 5 5,608.60 5,609. l s 5,608.60 s,609. l5 5,608.60 5,609. 15 5,608.60 s,609. 15 5,608.60 5,609. l5 5,608.60 5,609. 15 5,608.60 5,609. 15 5,608.60 5,609. 15 s,608.60 5,609.15 5,608.60 5,609. 15 5,608.60 5,609. l5 5,608.60 5,609. l5 5,608.60 5,609. l5 5,608.60 5,609. l5 5,608.60 5,609. l5 5,608.60 5,609. l5 5,608.60 5,609. 15 5,608.60 5,609. 15 5,608.60 5,609.15 5,608.60 5,609. r5 5,608.60 5,609. 15 5,608.60 5,609. I 5 5,608.60 s,609, l s 5,608.60 5,609. 15 5,608.60 5,609.15 s,608.60 s,609. rs 5,608.60 s,609. r5 5,608.60 5,609. I 5 5,608.60 5,609. I 5 5,608.60 5,609. l5 s,608,60 5,609. l s s,608.60 5,609. r5 s,608.60 s,609.15 5,608.60 s,609, I 5 5,608.60 5,609. l s 5,608.60 s,609. l s 5,608.60 5,609. rs 5,608.60 5,609. ls s,608.60 s,609. l s s,608.60 s,609. ls 5,608.60 5,609. l 5 5,608.60 5,609.15 Length Monitor Of Riser Well (L) Number 0.55 t2 0.55 t2 0.55 t2 0.55 t2 0.55 t2 0.55 t2 0.55 t2 0.55 t2 0.55 t2 0.55 t2 0.55 t2 0.55 t2 0.55 t2 0.55 t2 0,55 t2 0.55 12 0.55 t2 0.55 t2 0.55 t2 0.55 t2 0.55 t2 0.55 t2 0.55 t2 0.55 12 0.55 t2 0.55 t2 0.55 t2 0.55 t2 0.55 t2 0.55 t2 0.55 t2 0.55 t2 0.55 t2 0.55 t2 0.55 tz 0.55 t2 0.55 t2 0.55 t2 0.55 t2 0.55 t2 0.55 t2 0.55 t2 0.55 t2 0.s5 t2 0.55 t2 0.55 t2 0.55 t2 0.55 t2 0.55 12 0.55 t2 0.55 t2 0.55 t2 0.55 12 0.55 12 0.55 t2 0.55 t2 0.55 t2 0.55 t2 0.55 t2 0.55 t2 0.55 t2 0.55 t2 0.55 t2 0.55 t2 0.55 t2 0.55 t2 0.55 t2 0.55 t2 0.55 t2 0.55 t2 0.55 t2 0.55 t2 Total or Measured Total Depth to Depth to Water Water (blw.MP) (blw.LSD) lll,75 lll.20 109.58 109.03 r 10.08 109.53 r09.83 r09.28 108.83 108.28 109.6'7 109.12 I 10.00 109.45 109.25 108.70 109.25 108.70 l l t.17 1t0.62 ll0.t7 109.62 109.67 109. l2 108.50 107.95 109.61 109. 12 109.6'7 I09. t2 109.58 109.03 109.80 109.2s 109.25 108.70 109.60 109.05 109.23 108.68 109.16 108.8 r 109.25 108.70 109.45 108.90 109.53 108.98 t09.73 108.68 109.00 108.45 t09.22 108.67 109.56 109.0r 109.60 109.05 t09.72 109.17 t09.44 108.89 109.53 108.98 109.53 108.98 109.64 109.09 109.60 109.05 109.67 109.t2 109.65 109. l0 109.35 108.80 109.60 109.05 109.46 108.91 109.60 109.05 109.35 108.80 109.44 108.89 109.30 r08.75 109.28 108.73 t09.16 108.6r 109.3 I 108.76 109.21 108.66 109.1 l 108.56 t09.49 108.94 109. t5 108.60 108.96 108.41 109.00 108.45 109.00 r08.45 109. l0 108.55 109.50 108.95 109.50 108.95 109.50 108.95 109.30 108.75 109.32 108.77 109.50 108.95 109.30 108.75 109.30 108.75 109.20 108.65 109.r6 108.61 t09.t2 108.57 109.17 r08.62 109.23 108.68 109.16 108.61 r09.03 108.48 t09.25 108.70 109.58 109.03 Top Of Bottom Of Screened Screened Totrl Interval Interval Depth 0f (blw.LSD) (blw.LSD) Well 84 t24 130.30 84 t24 130.30 84 t24 130.30 84 124 130.30 84 124 130.30 84 t24 130.30 84 124 t30.30 84 124 130.30 84 124 130.30 84 124 130.30 84 124 130.30 84 t24 130.30 84 t24 130.30 84 124 130.30 84 124 130.30 84 t24 130.30 84 t24 130.30 84 t24 130.30 84 t24 130.30 84 t24 130.30 84 124 130.30 84 124 130.30 84 t24 130.30 84 124 130.30 84 t24 130.30 84 t24 130.30 84 t24 130.30 84 124 130.30 84 t24 130.30 84 t24 130.30 84 124 130.30 84 t24 130.30 84 t24 130.30 84 t24 130.30 84 t24 130.30 84 t24 130.30 84 124 130.30 84 t24 130.30 84 t24 130.30 84 t24 130.30 84 t24 130.30 84 t24 130.30 84 124 130,30 84 t24 130.30 84 t24 130.30 84 t24 130.30 84 t24 130.30 84 124 I 30.30 _ 84 124 130.30 84 124 130.30 84 124 130.30 84 t24 130 30 84 t24 130.30 84 t24 130.30 84 124 130.30 84 124 130.30 84 124 130.30 84 124 130.30 84 124 130.30 84 t24 130.30 84 t24 130.30 84 124 130.30 84 124 130.30 84 t24 130.30 84 t24 130.30 84 t24 130.30 84 t24 130.30 84 t24 130.30 84 t24 130.30 84 t24 130.30 84 124 130.30 84 124 130.30 Water Elevation (wL) 5,497.40 5,499.s7 5,499.0',7 5,499.32 5,s00.32 s,499.48 5,499. l5 s,499.90 5,499.90 5,497.98 5,498.98 5,499.48 5,500.65 5,499.48 5,499.48 5,499.57 5,499.35 5,499.90 5 4qq 55 5,499.92 s,499.79 5,499.90 5,499.70 5,499.62 5,499.92 5,500. t5 5,499.93 5,499.59 5,499.55 5,499.43 5,499.7 | 5,499.62 5,499.62 5,499.51 5,499.55 5,499.48 5,499.50 5,499.80 5,499.55 5,499.69 5,499.55 5,499.80 5,499.7 | 5,499.85 5,499.87 5,499.99 s,499.84 5,499.94 5,500.04 5,499.66 5,500.00 5,500. t9 5,500. l5 5,500. t5 5,500.05 5.499.65 5,499.65 5,499.65 5,499.85 5,499.83 5,499.65 5,499.85 5,499.85 5,499.95 s,499.99 5.500.03 5,499.98 5,499.92 5,499.99 5,500. t2 s,499.90 5 4qq 57 Date Of Monitoring 9/y84 t2nl84 2/t/85 6/v85 9fi/85 t2^t85 3^186 6/19t86 9n186 t2/v86 2/20187 4128/87 8^4/8'.1 lt20t87 v26/88 6/l/88 8t23t88 tt/2188 3t9t89 612v89 91l/89 nlt5l89 2^6/90 5t8t90 8t7/90 tUt3l90 2/27191 512I19l 8t27 t9l t2l3l9l 3n7t92 6^t/92 9lt3l92 t2t9t92 3124/93 6t8t93 9122/93 t2fi4t93 3/24194 6^5t94 8/t8t94 t2lt3l94 3il6195 6t27t95 9t20t9s t2^y95 6t7 t96 9^6t96 lt22t96 3/20t97 6,l.v97 9t30t97 346t98 5^2/98 9/24t98 l 1/3/98 2/t8t99 5^U99 7t6t99 9128199 3il'1t00 6t6t00 914100 l r/30i00 03123t0t 05i I 8/0 I 05t24t01 05/3 l/0 I 06t05t0t 06/ I 3i0 I 06122101 06t28t01 Water Levels and Data, Over Time White Mesa Mill Monitor Well 12 Measuring Point Land Surface Elevation (LSD) (MP) 5,608.60 5,609. 15 5,608.60 5,609. l5 s,608.60 s,609. ls s,608.60 5,609. r5 s,608.60 5,609. l5 5,608.60 5,609. l5 5,608.60 5,609. l5 5,608.60 5,609. l5 5,608 60 5,609.15 5,608.60 5,609. l5 5,608.60 5,609.15 5,608.60 5,609. l5 5,608.60 5,609. r5 5,608.60 5,609. t5 5,608.60 5,609. rs 5,608.60 5,609. l5 5,608.60 5,609. l5 5,608.60 5,609. l5 5,608.60 5,609. l5 5,608.60 5,609. I 5 s,608.60 5,609. 15 s,608.60 5,609. 15 5,608.60 5,609. t5 5,608.60 5,609. ls 5,608.60 5,609. l5 5,608.60 5,609. l 5 5,608.60 5,609. l 5 5,608.60 5,609. I 5 5,608.60 5,609. l5 5,608.60 5,609. l5 s,608.60 5,609.15 5,608.60 5,609. t5 5,608.60 5,609.15 5,608.60 5,609.15 5,608.60 5,609. I 5 5,608.60 s,609. l s 5,608.60 5,609. l5 5,608.60 5,609.15 5,608.60 5,609. l5 5,608.60 5,609.15 s,608.60 5,609. r5 5,608.60 5,609. l5 5,608.60 5,609.15 5,608.60 5,609.15 5,608.60 5,609. l5 5,608.60 5,609. l5 5,608.60 5,609. l5 5,608.60 5,609. l5 5,608.60 5,609. l5 5,608.60 s,609 ls 5,608.60 5,609. l5 5,608.60 5,609. l5 5,608.60 s,609. rs 5,608.60 5,609, I 5 5,608.60 5,609. l 5 5,608.60 5,609. I 5 5,608.60 5,609. l5 5,608.60 5,609. I 5 5,608.60 5,609. I 5 5,608.60 s,609. l s 5,608.60 5,609. I 5 Length Monitor Of Riser Well (L) Number 0.55 t2 0.55 t2 0.55 t2 0.55 t2 0.55 t2 0.55 t2 0.55 t2 0.55 12 0.55 t2 0.55 t2 0.55 t2 0.55 t2 0.s5 t2 0.55 t2 0.55 t2 0.55 t2 0.55 t2 0.55 t2 0.55 t2 0.55 t2 0.55 t2 0.55 t2 0.55 t2 0.55 t2 0.55 t2 0.55 t2 0.55 t2 0.55 t2 0.55 t2 0.55 t2 055 t2 0.55 t2 0.s5 t2 0.55 t2 0.55 t2 0.55 t2 0.55 t2 0.55 t2 0.55 t2 0.55 t2 0.55 12 0.55 t2 0.55 t2 0.55 t2 0.55 t2 0.55 t2 0.55 t2 0.55 t2 0.55 t2 0.55 t2 0.55 t2 0.55 t2 0.55 t2 0.55 t2 0.55 t2 0.55 t2 0.55 t2 0.55 t2 0.55 t2 0.55 t2 0.55 t2 Total or Measured Depth to Date Of Water Monitoring (blw.MP) 07 t02/01 t09.23 07lt\lot 109.20 07 ^6t0t r09. u 07t2st0t 109.t2 07/3U0r 109,14 08/09i0r 109.22 08/L4t01 t09.22 08t2010t 109.t5 0812710t 109.17 09107101 109.53 09n2/01 t09.23 09/r8t0t 109.17 0912610t 109.18 t0t02t0t 109.16 10/09/01 109.06 l0/ 15/01 t09,23 10t25/0t t09.27 I l/01/0t 109.08 I l/05/01 109.23 11/19/01 109.35 t2/0310t 109.12 t2^010t 108.93 t2\8/0t t09.26 t2l24t0t 109.30 t2/11/01 109.1 I 0y09to2 109.09 0vt4l02 109.08 01/24t02 109.33 0t/29t02 r08.96 02/06t02 t09.23 02^3t02 109.21 02t2102 t09.42 03t0t/02 r08.82 03106102 t09.1 I 03n4t02 108.88 03t2t t02 109.41 03127102 109,14 04t02102 109.06 04109102 t09.25 04il8t02 109.08 04123102 109.27 05t02t02 109.02 05107102 109.04 05/t6/02 109.07 05120t02 109.r4 0513y02 109.16 06/04t02 109.r3 06/12t02 109.18 06/17t02 109.13 06/27t02 t09.17 07t0st02 r09.r0 07108t02 t09.25 07/15t02 109.09 07/25102 109.21 08/01/02 109.06 08/20t02 r09.10 08/29/02 109.15 09/05t02 109.15 09^0t02 109.17 09t20t02 109.09 09/26t02 109.05 Total Top Of Bottom Of Depth to Screened Screened Water Interyal Interval (blw.LSD) (blw.LSD) (blw.LSD)Easting Northing 2,s76,66s.06 320,683.29 2,576,66s.06 320,683.29 2,5',76,665.06 320,683.29 2,5'76,665.06 320,683.29 2,5'16,665.06 320,683.29 2,576,665.06 320,683.29 2,s76,66s.06 320,683.29 2,s76,665.06 320,683.29 z,s't6,665.06 320,683.29 2,s76,665.06 320,683.29 2,576,665.06 320,683.29 2,5'76,665.06 320,683.29 2576,66s.06 320,683.29 2,576,665.06 320,683.29 2.s76.665.06 320,683.29 2,576,665.06 320,683.29 2,576,665.06 320,683.29 2,576,665.06 320,683.29 2,s76,665.06 320,683.29 2,576,665.06 320,683.29 2,s76,665.06 320,683.29 2,576,66s.06 320,683.29 2,576,665.06 320,683.29 2,576,665.06 320,683.29 2,576,665.06 320,683.29 2,576,665.06 320,683.29 2,576,665.06 320,683.29 2,576,66s.06 320,683.29 2,576,665.06 320,683.29 2,576,665.06 320,683.29 2,576,66s.06 320,683.29 2,576,665.06 320,683.29 2,576,665.06 320.683.29 2,576,665.06 320,683.29 2,s76,66s.06 320,683.29 2,s16,665.06 320,683.29 2,576,665.06 320,683.29 2,576,665.06 320,683.29 2,576,665.06 320,683.29 2,576,66s.06 320,683.29 2,576.665.06 320,683.29 2,576,665.06 320,683.29 2,576,665.06 320,683.29 2,576.66s.06 320,683.29 2,576,665.06 320,683.29 2,576,66s.06 320,683.29 2,576,665,06 320,683.29 2,576,665.06 320,683.29 2,5',76,665.06 320,683.29 2,s76,665.06 320,683.29 2,576,665.06 320,683.29 2,s76,665.06 320,683.29 2,s76,66s.06 320,683.29 2.s76,665.06 320,683.29 2,576,665.06 320,683.29 2,5',76,665.06 320,683.29 2,576,665.06 320,683.29 2,516,665.06 320,683.29 2,576,665.06 320,683.29 2,s76,66s.06 320,683.29 2,576,665.06 320,683.29 Water Elevation (wL) 5,499.92 5,499.9s 5,500.04 5,500.03 5,500.01 5,499 93 5,499,93 5,500.00 5,499.98 5,499.62 5,499.92 s,499.98 { 4qq o7 5,499.99 5,500.09 5,499.92 5,499.88 5,500.07 5,499.92 s,499.80 5,500.03 5,500.22 5,499.89 5,499.85 5,500.04 5,500.06 5,500.07 { 10(} e, 5,500. r9 5 4qq q, 5,499.94 5,499.73 5,500.33 5,500.04 5,s00.27 5,499.74 5,500.01 5,500.09 5,499.90 s,500.07 5,499.88 5,500. r 3 5,500. I I 5,500.08 5,500.01 5,499.99 5,s00.02 5,499.91 5,500,02 5,499.98 5,500.05 5,499.90 5,500 06 5,499.94 5,500.09 5,500.05 5,500.00 5,500.00 5,499.98 5,500.06 5,500. l0 108.68 84 108.65 84 108.56 84 108.57 84 108.59 84 108.67 84 108.67 84 108.60 84 108.62 84 108.98 84 108.68 84 108.62 84 108.63 84 108.61 84 108.5 I 84 108.68 84 t08.72 84 108.53 84 108.68 84 108.80 84 108.57 84 108.38 84 r08.7r 84 108.75 84 108.56 84 108.54 84 108.53 84 108.78 84 108.41 84 108.68 84 108.66 84 108.87 84 108.27 84 108.56 84 108.33 84 108.86 84 108.59 84 108.5 I 84 108.70 84 108.53 84 t08.72 84 108.47 84 108.49 84 108 52 84 108.59 84 108 61 84 108.58 84 108.63 84 108.5 8 84 108.62 84 108.55 84 108.70 84 108.54 84 108.66 84 108.5 I 84 108.55 84 108.60 84 108.60 84 108.62 84 108.54 84 108 50 84 Total Depth Of Well I 30.30 r 30.30 r 30.30 I 30.30 I 30.30 r30 30 l 30.30 I 30.30 l 30.30 I 30.30 I 30.30 l 30.30 I 30.30 I 30.30 r 30.30 I 30.30 I 30.30 l 30.30 I 30.30 r 30.30 l 30.30 I 30.30 l 30.30 I 30.30 I 30.30 l 30.30 130.30 130.30 I 30.30 l 30.30 I 30.30 I 30.30 I 30.30 I 30.30 130.30 130.30 130.30 I 30.30 l 30.30 l 30.30 r 30.30 I 30.30 l 30.30 l 30.30 I 30.30 l 30.30 I 30.30 l 30.30 _ I 30.30 r 30.30 I 30.30 I 30.30 I 30.30 r 30.30 I 30.30 I 30.30 r 30.30 I 30.30 I 30.30 I 30.30 I 30.30 t24 t24 t24 124 t24 124 t24 124 124 t24 t24 124 124 t24 t24 124 124 124 124 124 t24 t24 124 t24 124 t24 124 t24 t24 124 124 124 124 t24 t24 124 t24 t24 t24 t24 t24 t24 124 124 124 t24 124 t24 124 t24 124 t24 124 124 t24 t24 t24 124 124 124 Water Levels and Data, Over Time White Mesa Mill Monitor Well 14 Easting 2,578,142.39 2,578,142.39 2,578,142.39 2,s78,142.39 2,578,142.39 2,s78,142.39 2,578,142.39 2,578,142.39 2,578,t42.39 2,578,142.39 2,578,142.39 2,578,142.39 2,s78,142.39 2,578,142.39 2,578,142.39 2,578,142.39 2.578,t42.39 2,518,142.39 2,578,r42.39 2,578,t42.39 2,578,t42.39 2,578,t42.39 2,578,t42.39 2,578,142.39 2,578,142.39 2,578,142.39 2,578,142.39 2,578,r42.39 2,578,r42.39 2,578,t42.39 2,5'78,t42.39 2,578,142.39 2,5'78,142.39 2,578,r42.39 2,578,142.39 2,578,142.39 2,578,142.39 2,578,142.39 2,578,142.39 2,578,142.39 2,578,142.39 2,578,t42.39 2,578,t42.39 2,578,142.39 2,578,t42.39 2,578,142.39 2,578,t42.39 2,578,t42.39 2,578,t42.39 2,578,142.39 2,578,142.39 2,578,142.39 2,578,142.39 2,578,t42.19 2,578,142.39 2,578,142.39 2,578,142.39 2,578,142.39 2,578,142.39 2,578,142.39 2,578,142.39 2,578,142.39 2,578,142.39 2,578,142.39 2,578,142.39 2,578,142.39 2,578,t42.39 2,578,142.39 Northing 3 19, I 56.70 3 1 9,1 56.70 3 19, l 56.70 3 19, r 56.70 319,156.70 3t9,t56.'70 3 19, I 56.70 319,156.70 319,156.70 319,156.70 3 1 9,1 56.70 319,156.70 3 1 9,1 56.70 3 19,156.70 3 I 9,156.70 3 l9,l 56.70 3 19, I 56.70 3 19,156.70 319,t56.70 3 1 9,1 56.70 3t9,156.70 319,156.70 3 r9,156.70 3 19, r 56.70 3 19,156.70 3 19,156.70 3 r 9,1 56.70 3 r9, r56.70 319,156.70 319,156.70 3r9,156.70 3 19,156.70 3 1 9,1 56.70 319,t56.70 3 19, I 56.70 3 r9, l 56.70 319,156.70 319,156.70 3 1 9,1 56.70 3 19, I 56.70 3 19, I 56.70 319,156.70 319,156.70 3 r9, l s6.70 3 19, I 56.70 3 1 9,1 56.70 3 l9,l s6.70 3 l9,l 56.70 3 1 9,1 56.70 3 19,156.70 3 1 9,1 56.70 319,156.70 319,156.70 319,156.70 319,156.70 3 I 9,1 56.70 3 1 9,1 56.70 319.156.70 319,156.70 3 19.156.70 319,156.70 3 1 9,1 56.70 3 r9, l 56.70 3 19,156.70 319,156.70 319,156.70 3 1 9,1 56.70 3 19,156.70 Measuring Point Elevation (MP) 5,598. t4 5,598. l4 5,598. l4 s,s98.14 s,598. l4 5,s98. l4 5,598.14 5,598.14 5,598. l4 5,598. l4 5,598. I 4 5,598. I 4 5,598. l4 5,598. I 4 5,598. l4 5,598. I 4 5,598. I 4 5,598. l4 5,598. l4 5,598. l4 5,598. l4 5,598.14 5,598. l4 5,598. l4 5,598. I 4 5,598. I 4 5,598. l4 5,598. l4 5,598. l4 5,598.14 s,598. t4 5,598.14 5,598. l4 5,598. I 4 5,598. l4 5,598. t4 5,598. l4 5,s98. l4 5,598. l4 5,598. l4 5,598. I 4 5,598. l4 5,598. t4 s,598. I 4 5,598. l4 5,598. l4 5,598. l4 5,598. l4 5,598.14 5,598. I 4 5,598. I 4 5,598. l4 5,598. t4 5,598. l4 5,598. I 4 5,598. l4 5,598. t4 5,s98.14 5,598. l 4 5,598. I 4 s,598. l4 5,598. t4 5,s98. l4 5,598. I 4 5,s98. l4 s,s98. I 4 5,598. l4 5,598. l4 Monitor Length Of Well Riser (L) Number 0.01 14 0.01 t4 0.01 14 0.01 r 4 0.01 14 0.01 14 0.01 t4 0.01 t4 0.01 t4 0.01 t4 0.01 t4 0.01 t4 0.01 t4 0.01 t4 0.01 14 0.01 t4 0.01 t4 0.01 t4 0.01 14 0.01 14 0.01 t4 0.01 t4 0.0 r t4 0.0 r 14 0.01 t4 0.01 t4 0.01 14 0.01 t4 0.01 t4 0.01 t4 0.0r 14 0.01 t4 0.01 t4 0.01 14 0.01 t4 0.01 t4 0.0 r 14 0.01 t4 0.01 t4 0.01 14 0.01 t4 0.01 t4 0.01 t4 0.01 t4 0.01 t4 0.01 14 0.0 r 14 0.01 t4 0.01 t4 0.01 t4 0.01 t4 0.01 t4 0.01 t4 0.01 t4 0.01 t4 0.01 t4 0.01 t4 0.01 t4 0.01 14 0.01 t4 0.01 t4 0.01 t4 0.01 t4 0.01 t4 0.01 t4 0.01 t4 0.01 t4 0.0 r 14 Date Of Monitoring 9lt/84 t2l1/84 211185 6lt/8s 9ll/85 12t1185 3fi/86 6n9/86 9/t/86 t2/v86 2/20/8"1 4/2818'7 n/t5/89 2/16/90 5t8190 8t7 t90 rt/13t90 2t27 t9t 512l19l 8t27 t9t t2t3t9t 3n7/92 6/lLt92 9/13t92 t2/9t92 3t24t93 618193 9t22193 t2t t4/93 3124/94 6n5194 8/18t94 12il3194 3n6t95 6t27 /9s 9120/95 tztlLt95 3t28/96 6/7 t96 9n6t96 ll22l96 3t20/97 6/rt/97 9/30/9',7 3^6t98 5^2198 9t24t98 l l/3/98 2/18/99 5fiU99 7 t6t99 9t28/99 1219/99 3/17 /00 617100 914100 l l/30/00 03t23t01 05/ I 8/0 I 0sl24l0l 05/3 t/01 06/05/0 I 06/ I 3/0 I 06t22t01 06t28t01 0'7102101 07/ I 0/0 I 07 I t610t Total or Measured Total Depth to Depth to Water Water (blw.MP) (blw.LSD) 77.33 77.32 73.00 72.99 77.33 77.32 73.t7 73.16 7"1.00 76.99 77.50 77.49 77.00 76.99 7'7 .t7 77 .16 77.08 77 .07 79.00 78.99 79.33 79.32 78.00 '77.99 105.20 105.19 105.34 105.33 105.44 105.43 105.47 105.46 r05.00 104.99 105.37 105.36 105.40 105.39 105.45 105.44 r05.60 105.59 105.25 105.24 105.29 105.28 105.43 105.42 105.58 105.57 t05.44 105.43 105.38 105.37 105.51 105.50 105.22 105.21 105.41 105.40 105.30 105.29 105.23 105.22 105.2 I 105.20 r05.10 105.09 105.12 105. I I 105.08 105.07 10s.00 104.99 104.91 104.90 105.20 105. l9 104.96 104.95 104.72 r04.71 105.1 I 105. l0 i04.86 104.85 104.9"1 104.96 105.00 104.99 104.80 t04.79 104.90 104.89 105.00 104.99 105.00 104.99 105. l7 105. l6 105.00 104.99 104.95 104.94 105.00 104.99 104.90 104.89 105.00 104.99 105.20 105. l9 104.93 104.92 104.82 104.81 t04.'16 104.75 104.78 t04.77 104.83 t04.82 t04.72 104.71 104.55 104.54 104.86 104.85 104.95 104.94 104.92 104.91 104.86 104.85 104.79 104.78 Water Elevation Land Surface (wL) (LSD) 5,520.81 5,598. l3 5,525.14 5,598. I 3 5,520.81 5,598.13 5,524.97 5,598. I 3 5,52t.t4 5,598. l3 5,520.64 5,598.13 5,52t.t4 5,598. l3 5,520.97 5,598. l3 5,521.06 5,598. l3 5,519.14 5,598.13 5,518.81 5,598.13 5,520.t4 5,598. l3 5,492.94 5,598. r3 5,492.80 5,598.13 5,492.70 5,598.13 5,492.67 5,598. 13 5,493.14 5,598. l3 5,492.77 5,598.13 5,492.74 5,598. l3 5,492.69 5,598. 13 5,492.54 5,598. l3 5,492.89 5,598.13 5,492.85 5,598.13 5,492.7r 5,598.13 5,492.56 5,598.r3 5,492.70 5,598. l3 5,492.76 5,598. l3 5,492.63 5,598. l3 5,492.92 5,598. l3 5,492.73 5,598. l3 5,492.84 5,598.13 5,492.91 5,598.13 5,492.93 5,598.13 5,493.04 5,598. 13 5,493.02 5,598.13 5,493.06 5,598. l3 5,493.t4 5,598.13 5,493.23 5,598.13 5,492.94 5,598.13 5,493.18 5,598.13 5,493.42 5,598.13 5,493.03 5,598. l3 5,493.28 5,598. t3 5,493.17 5,598. 13 5,493.14 5,598. 13 5,493.34 5,598. l3 5,493.24 5,598. l3 5,493.14 5,598.13 5,493.14 5,598.13 5,492.97 5,598.13 5,493.t4 5,598. I 3 5,493.19 5,598. l3 5,493.14 5,598. l3 5,493.24 5,598.13 5,493.r4 5,598. I3 5,492.94 5,598. l3 5,493.21 5,598.13 5,493.32 s,s98.13 5,493.38 5,598. l3 s,493.36 5,598. l3 5,493.3 I 5,598. l3 5,493.42 5,598.13 s,493.59 s,598.1 3 5,493.28 5,598.13 5,493.19 5,598.13 5,493.22 5,598. t 3 5,493.28 5,598. l3 5,491.35 5,598. l3 Top Of Screened Interval (blw.LSD) 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 Bottom Of Screened Interval (blw.LSD) 120 t20 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 t20 120 120 120 120 120 r20 120 120 120 120 120 120 120 120 r20 t20 t20 120 120 120 120 120 120 t20 t20 120 120 t20 120 120 120 r20 120 120 120 120 120 t20 t20 120 t20 120 t20 120 120 120 120 120 Total Depth Of Well t29.1 129.1 129.l 129.1 129.1 129.1 129.1 t29.1 129.1 129.1 129.1 129.1 129.1 129.1 129.1 129.1 129.1 129.1 129.t 129.1 t29.t 129.1 t29.1 129.t 129.1 129.1 129.t tzg.r 129.t 129.1 t29.1 129.1 129.r 129.1 129.1 129.1 129.1 t29.1 129.1 129.1 r29.r 129.1 129.1 129.1 129.1 -129.1 r29.r r29.t 129.1 129.1 t29.1 129 t29 129 129 129.1 129.1 t29.1 129.l 129.1 129.1 129.1 t29.1 129.1 129.1 129.1 129.1 r29.r Water Levels and Data, Over Time White Mesa Mill Monitor Well 14 Easting 2,578,142.39 2,578,t42.39 2,578,142.39 2,578,142.39 2,578,142.39 2,578,t42.39 2,578,1,42.39 2,578,142.39 2,578,142.39 2,578,142.39 2,578,t42.39 2,578,142.39 2,578,142.39 2,578,142.39 2,578,r42.39 2,578,t42.39 2,578,142.39 2,578,t42.39 2,578,t42.39 2,578,t42.39 2,578,142.39 2,578,t42.39 2,s78,142.39 2,578,t42.39 2,578,t42.39 2,578,r42.39 2,578,142.39 2,578,142.39 2,578,t42.39 2,578,142.39 2,578,142.39 2,578,r42.39 2,578,142.39 2,578,142.39 2,578,142.39 2,578,142.39 2,578,142.39 2,578,t42.39 2,578,142.39 2,578,142.39 2,578,142.39 2,578,142.39 2,578,142.39 2,578,142.39 2,578,142.39 2,578,142.39 2,578,t42.39 2,578,142.39 2,578,142.39 2,578,142.39 2.578.142.39 2,578,142.39 2,578,142.39 2,578,142.39 2,578,r42.39 2,578,142.39 2,578,142.39 2,578,142.39 Northing 319,156.70 3 19,156.70 3 1 9,1 s6.70 3r9,156.70 319,156.70 3 1 9,1 56.70 319,156.70 319,156.70 319,156.70 3 1 9,1 56.70 3 l 9,1 s6.70 319,156.70 319,r56.70 3 19,156.70 319,r56.70 3 1 9,1 56.70 3 r9, r56.70 3 19,156.70 319,156.70 319,156.70 319,156.70 319,156.70 319,156.70 319,156.70 319,156.70 3 19,156.70 3 19,156.70 3 I 9,1 56.70 3 19,156.70 3 19, I 56.70 3 l9,l s6.70 3 1 9,1 56.70 3 I 9,156.70 3 l9,l 56.70 3 I 9,1 56.70 3 l 9,1 s6.70 3 l 9,156.70 319,156.70 319,r56.70 3t9,t56.70 3 I 9,156.70 3 l 9,156.70 319,156.70 319,156.70 3r9,156.70 319,156.70 319,156.70 3r9,1s6.70 319,156.70 319,156.70 319,156.70 3 r 9,1 56.70 319,156.70 3 1 9,1 56.70 3 I 9,156.70 3 19,156.70 319,156.70 3 1 9,1 56.70 Water Elevation (wL) 5,493.40 5,493.40 5,493.28 5,493.26 5,493.34 5,493.33 5,493.50 5,493.32 5,493.37 5,491.35 5,493.36 5,493.50 5,493.25 5,493.23 5,493.43 s,493.3 r 5,491. 1 6 5,493.50 5,493.72 5,493.29 5,493.23 5,493.48 5,493.41 5,493.41 5,493.22 5,493.63 5,493.30 ( do1 ,1 5,493.01 5,493.74 s,491.44 5,493.60 5,493. I 9 5,493.46 5,493.54 5,493.28 5,493.53 5,493.35 5,493.60 5 4q1 56 5,493.50 5,493.48 s do1 10 5 141 d1 5,493.38 5,493.44 5,493.34 s,493.43 5,493.27 5,493.43 5,493.29 5,493.48 5,493.45 5,493.40 5,493.36 5,493.42 5,493.49 5,493.54 Monitor Well Number t4 t4 t4 14 t4 14 14 l4 l4 t4 t4 t4 t4 t4 t4 t4 I4 t4 t4 t4 t4 l4 t4 l4 t4 t4 t4 t4 t4 t4 t4 t4 l4 t4 l4 t4 t4 t4 t4 t4 t4 t4 t4 t4 t4 t4 t4 t4 t4 t4 t4 14 t4 14 l4 t4 t4 t4 Date Of Monitoring 07 t25/0t 07 t3t/01 08/09/0 r 08/t4l0t 08/20t01 08/27101 09t07 t01 09n2/01 09/ r 8/0 r 09t26t01 t0t02l0t l 0/09/0 l l0/15/01 t0/2510t l1/0li0l I l/05/01 I r/19/01 t2l03l0t t2lt0/0t 121t8/01 12t24/01 t2l3U0t 0U09t02 0vr4t02 0U24102 0U29102 02106102 02fi3102 02t2U02 03/0v02 03106102 031 t4t02 0312U02 03127t02 04/02102 04/09t02 04/18/02 04/23102 05/02t02 05/07 t02 05/16/02 0s/20/02 0513U02 06/04t02 06t12t02 061t7102 06127102 0710s102 07108102 07 I t5102 07t25/02 08101102 08t20102 08/29t02 09/05/02 09/t0/02 09/20t02 09/26t02 Measuring Point Land Surface Elevation Length Of (LSD) (MP) Riser (L) 5,598. I 3 5,598. 14 0.0 I 5,598.13 5,598.14 0.01 5,598. I 3 5,598. 14 0.0 I 5,598. I 3 5,598. 14 0.0 I 5,598.13 5,598.14 0.01 5,598.13 5,598.14 0.0r 5,598.13 s,598. 14 0.01 5,s98. 13 5,598. 14 0.01 5,598.13 5,598.14 0.01 5,598. 13 5,598. 14 0.01 5,598.13 5,598.14 0.01 5,598. 13 5,598.14 0.01 5,598. 13 5,598.14 0.01 5,598.13 5,598.14 0.01 5,598.13 5,598.14 0.0r 5,598.13 5,598.14 0.01 5,598.13 5,598.14 0.01 5,598.13 s,598.14 0.01 5,598. l 3 5,598. 14 0.0 I 5,598.13 5,598.14 0.01 5,598.13 5,598.14 0.01 5,s98. 13 5,598. 14 0.01 5,598.13 5,598. 14 0.01 5,598.13 5,598. 14 0.01 5,598.13 5,598.14 0.01 5,s98.13 5,s98.14 0.01 5,598.13 5,598.14 0.01 5,598.13 5,598.14 0.01 5,598.13 5,598.14 0.01 5,598.13 s,598.14 0.01 5,598.13 5,598.14 0.01 5,598.13 5,598.14 0.01 5,598. 13 5,598.14 0.01 5,598.13 5,598.14 0.01 5,598. I 3 5,598. 14 0.0 I 5,598.13 5,598.14 0.01 5,598.13 5,598.14 0.01 5,598. l 3 5,598. 14 0.0 l 5,598.13 5,598.14 0.01 5,598.13 5,598.14 0.01 5,598.13 5,598.14 0.01 5,598.13 5,598.14 0.01 5,598.13 5,598.14 0.01 5,598.13 5,598.14 0.01 5,598.13 5,598. 14 0.01 5,598. 13 5,598. 14 0.01 5,598.13 5,598.14 0.01 5,598.13 5.598.14 0.0r 5,598.r3 5,598.14 0.01 5,598.13 5,598.14 0.01 5,598.13 5,598.14 0.01 5,598.13 5,598.14 0.01 5,598.13 5,598.14 0.01 5,598.13 5,598.14 0.01 5,598. l 3 5,598. 14 0.0 I 5,598.13 5,598.14 0.0r 5,598.13 5,598.14 0.01 5,598. 13 5,598.14 0.01 Total or Measured Total Depth to Depth to Water Water (blw.MP) (blw.LSD) t04.74 104.73 104.74 t04.73 104.86 104.85 104.88 104.87 104.80 t04.79 104.81 104.80 t04.64 104.63 t04.82 104.81 104.17 104.76 104.79 104.78 104.78 104.77 104.64 104.63 104.89 104.88 104.91 104.90 t04.71 104.70 104.83 104.82 104.98 104.97 t04.64 104.63 t04.42 104.4 r 104.8s 104.84 104.91 104.90 104.66 104.65 104.73 104.72 t04.73 104.72 t04.92 104.91 104.51 104.50 104.84 104.83 104.91 104.90 105.1 3 105.12 . t04.40 104.39 104.70 104.69 t04.54 104.53 104.95 104.94 104.68 t04.67 104.60 104.59 104.86 104.85 104.61 104.60 t04.79 104.78 t04.54 104.53 104.58 104.57 104.64 104.63 t04.66 104.65 t04.7 5 104.'7 4 t04.7t 104.70 104.'76 104.75 104.70 104.69 104.80 t04.79 t04.7 | 104.70 104.87 104.86 104.7t 104.70 104.85 104.84 104.66 104.65 104.69 104.68 t04.74 104.'73 104.78 104.71 104.72 104.71 104.65 t04.64 104.60 104.59 Top Of Bottom Of Screened Screened Total Interval Interval Depth Of (blw.LSD)(blw.LSD) Well 90 120 t29.1 90 120 129.1 90 120 129.1 90 t20 129.1 90 120 129.1 90 r20 t29.1 90 120 129.1 90 120 129.1 90 120 129.1 90 120 129.1 90 r20 129.1 90 120 t29.r 90 t20 t29.1 90 120 t29.1 90 t20 t29.1 90 120 t29.1 90 r20 t29.1 90 120 129.1 90 120 t29.1 90 120 r29.r 90 120 129.1 90 t20 129.1 90 120 129.t 90 120 129.1 90 120 t29.1 90 120 129.1 90 120 r29.r 90 t20 129.1 90 t20 129.1 90 120 129.1 90 tzo 129.r 90 120 129.1 90 120 r29.r 90 120 1,29.1 90 120 r29.r 90 120 129.1 90 120 129.1 90 t20 t29.r 90 120 t29.1 90 120 129.1 90 120 129.1 90 r20 t29.t 90 120 r29.r 90 r20 t29.1 90 120 t29.r 90 t20 -t2g.t 90 120 t29.1 90 120 179.1 90 120 129.t 90 120 t29.t 90 120 129.1 90 t20 t29.1 90 r20 t29.1 90 t20 129.1 90 120 t29.t 90 t20 129.t 90 120 129.1 90 120 129.1 Water Levels and Data, Over Time White Mesa Mill Monitor Well l5 o Easting 2,577 ,451.45 2,577 ,451.45 2,517 ,451.45 2,577,451.45 2,577 ,451.45 2,577 ,451.45 2,577,4s1.45 2,577 ,451.45 2,577 ,451.45 2,57'7 ,451.45 2,577,451.45 2,577,451.45 2,577 ,451.4s 2,577 ,4s1.45 2,577,451.45 2,5^77 ,451.4s 2,577,4s1.45 2,577,451.4s 2,577,451.45 2,577 ,451.45 2,577 ,451.45 2,577,451.45 2,577,451.45 2,5'77,4s1.45 2,57't,4st.4s 2,577,451.45 2,5'77,4s1.45 2,577,451.45 2,577,4s1.45 2,577,451.4s 2,577,451.45 2,577 ,451.4s 2,577,45l.45 2,577 ,451.45 2,577,451.45 2,577 ,451.45 2,57'7 ,451.45 2,577 ,451.45 2,577 ,451.45 2,577 ,451.4s 2,577 ,451.45 2,577 ,451.4s 2,577 ,451.45 2,5'77 ,4st.4s 2,577,451.45 2,577,451.45 2,577,45t.4s 2,577,451.45 2,577,451.45 2,577,4s1.45 2,577,451.45 2,577 ,451.45 2,57'7,451.45 2,s77,451.4s 2,517,45t.4s 2,s"17,45t.45 2,s77,45t.45 2,577,4s1.45 2,577,451.45 2,577,451.4s 2,577,451.45 2,577 ,4s1.45 2,577,451.45 2,5't7 ,45t.4s 2,577 ,451.45 2,577 ,451.45 Northing 319,296.27 319,296.27 319,296.27 319,296.27 319,296.27 3t9,296.27 319,296.27 3t9,296.27 319,296.27 319,296.27 319,296.27 319,296.2'7 319,296.27 319,296.27 3t9,296.27 319,296.27 319.296.27 319,296.27 3t9,296.27 319,296.27 319,296.27 319,296.2'7 3t9,296.27 3t9,296.27 3t9,296.27 3t9,296.27 3t9,296.27 3t9,296.27 3t9,296.27 3t9,296.27 3t9,296.2'7 3t9,296.27 3t9,296.27 3t9,296.2',7 319,296.27 319,296.27 319,296.27 319,296.2'7 319,296.27 319,296.27 319,296.27 319,296.27 319,296.27 319,296.27 319,296.27 3t9,296.27 319,296.27 319,296.27 319,296.27 3tq,296.27 3t9,296.27 319,296.2'7 3t9,296.27 319,296.2"/ 3t9,296.2'7 319,296.27 319,296.27 319.296.27 319.296.27 319,296.27 3t9,296.27 3t9,296.27 3t9,296.27 319,296.27 3t9,296.27 319,296.27 Measuring Point Elevation (MP) 5,599.91 5,599.9 r 5,599.9 t 5,599.91 5,599.91 5,599.91 5,599.91 s,599.9t 5,599.9t 5,599.9 r s,599.91 5,599.9 r 5,599.9 r s,s99.91 5,599.91 5,599.91 5,599.91 5,599.91 5,599.91 s,s99.9t 5,599.91 5,599.91 5,599.91 5,599.91 5,5 99.91 s,s99.91 5,599.91 5,599.9t 5,599.91 5,599.9 l 5,599.9t 5,599.91 s,599.9t s,s99.91 5,599.91 5,599.91 5,599.91 5,s99.91 5,599.91 5,599.91 5,s99.91 5,599.91 s,s99.91 5,599.91 5,599.9 r 5 5qq qt s,599.91 5,599.91 5,599.9 r 5,599.91 5,599.91 5,599.91 5,599.91 5,599.91 5,599.91 5,599.91 5,599.9t s,599.91 5 5qq qt 5,599.9 r 5,599.91 5,599.91 s,599.91 5,599.91 5,599.91 5.599.91 Monitor Length Of Well Riser (L) Number 0.73 15 0.'73 15 0.73 15 0.73 15 0.73 r 5 0.73 t 5 0.73 t 5 0.73 15 0.73 l s 0.73 15 0.73 15 0.'t3 l s 0.73 15 0.73 15 0.73 r 5 0.73 r 5 0.73 t 5 0.73 r 5 0.73 t 5 0.73 15 0.73 r s 0.73 t 5 0.73 15 0.73 15 0.73 15 0.73 15 0.73 l s 0.73 15 0.73 15 0.73 15 0.73 r 5 0.73 l s 0.73 t 5 0.73 r 5 0.73 15 0.73 t 5 0.73 r 5 0.73 15 o.73 15 0.73 15 0.73 l5 0.73 15 0.73 15 0.73 l s 0.73 15 0.73 r 5 0.73 r 5 0.73 r s 0.73 15 0.73 I s 0.73 l 5 0.73 15 0.73 15 0.73 15 0.73 15 0.73 15 0.73 15 0.73 r 5 0.73 I 5 0.73 r 5 0.73 15 0.'r3 15 0.'73 15 0.73 t 5 0.73 r 5 0.73 r s Date Of Monitoring tUt5/89 2n6/90 st8/90 8/7190 lrlt3l90 2127l9l st2v9t 8l27l9t t2t3t9t 3/t7/92 6il1/92 9il3t92 t2t9t92 3/24/93 618193 9t22t93 12n4193 3t24t94 6lt5l94 8n8194 3fi6t95 6t27 t9s 9l20l9s 12fiIt95 3128/96 6l'7196 9t16/96 tv22l96 3120t97 6^t/97 9130197 3n6/98 sA2/98 9t24t98 tU3l98 2n8/99 5nv99 7t6t99 9/28t99 t2t9t99 3/17t00 6/7t00 9/4t00 l t/30/00 03t23/01 05i r 8i0 r 05124/01 0st3t/01 06t05/0t 06lt3l0l 06t22t01 06t28/0t 07102101 07fi\t0t 07n610t 07 t2510t l'il3U01 08/09/0 I 08/ I 4/0 l 08t20101 08127101 09107101 09n2t0t 09/l 8/0 I 09t26/01 t0l02l0l Total or Measured Total Depth to Depth to Water Water (blw.MP) (blw.LSD) 107.6'7 106.94 107.47 106.'t4 107.40 106.67 107.59 106.86 107.70 106.97 107.70 106.97 108.45 t07 .'72 107.62 106.89 107.76 107.03 t07 .7 t 106.98 107.52 106.79 107 .71 106.98 107.58 106.85 107 .61 106.88 107 .63 106.90 107 .69 r 06.96 107.43 106.70 107.58 106.85 108.23 107.50 107.44 106.71 107.35 t06.62 107.3 r 106.58 t07 .29 106.56 107.20 106.47 107. l0 r06.37 t07.45 106.72 t07.42 106.69 107. l0 106.37 107 .44 106.7 | 107 .13 106.40 107.3 I 106.58 107.00 t06.27 106.83 106.10 107.20 106.47 t 07.50 106.77 r07.00 106.27 t07.45 106.72 107.10 106.37 t07.32 106.59 107.40 106.67 107 .2s 106.s2 107.35 t06.62 t07.36 106.63 107.3 r r 06.58 t07 .24 106.5 I r07. I 8 106.4s tj't.2t 106.48 t07 .23 r 06.50 107.13 106.40 106.95 t06.22 tj't.27 106.54 t07 .34 106.6 I 107.29 106.56 107.25 t06.52 107.17 106.44 107.15 106.42 107 .16 106.43 107.26 106.53 107.28 106.s5 107.20 106.4'7 107 .21 106.48 107.08 106.35 t07 .23 106.50 107. I 8 106.45 107.22 106.49 t07.20 106.47 Water Elevation Lend Surface (wL) (LSD) 5,492.24 5,599.18 5,492.44 5,599.18 5,492.5t 5,599.18 5,492.32 5,599.18 5,492.21 5,599. l 8 5,492.21 5,599.r8 s,491.46 s,599.18 5,492.29 5,599.r8 5,492.15 s,s99. I 8 s,492.20 5,599.18 5,492.39 5,599. l 8 5,492.20 5,599.18 5,492.33 5,599.18 s,492.30 5,599.18 5,492.28 5,599.18 s,492.22 5,599.18 5,492.48 5,599.18 5,492.33 5,599. l8 5,491.68 5,599.r8 s,492.47 5,599.18 5,492.56 5,599.18 5,492.60 5,s99.18 5,492.62 5,599.18 5,492.7 | 5,599. l8 s,492.81 5,599. l8 s,492.46 5,599. l8 5,492.49 5,599. l8 5,492.81 5,599.18 5,492.47 5,599.18 5,492.78 5,599.18 s,492.60 5,599.1 8 5,492.91 5,599.18 5,493.08 5,599. l8 5,492.'71 5,599.18 5,492.4t 5,599.18 5,492.91 5,599.18 s,492.46 5,599.1 8 5,492.81 5,599. l 8 s,492.s9 5,599.18 5,492.5t 5,599.18 s,492.66 5,599.18 5,492.56 5,599.18 5,492.55 s,599.18 s,492.60 s,599.r8 s,492.6"t 5,599. t 8 5,492.73 5,599. l8 5,492.70 5,599. l8 s,492.68 5,599.r8 5,492.78 5,s99.18 5,492.96 5,599.18 5,492.64 5,599.18 5,492.57 5,599.18 5,492.62 5,599.1 8 5,492.66 5,599.18 5,492.74 5,599.18 5,492.76 5,599.l8 s,492.7s s,599.18 s,492.65 5,599.r8 5,492.63 5,599.18 5,492.71 5,599.18 s,492.70 5,599.18 s,492.83 5,599.18 s,492.68 5,s99.18 5,492.73 5,599.l8 5,492.69 5,599.18 s,492.7 | 5,599.18 Bottom Of Screened Totel Interval Depth Of (blw.LSD) Well 129 138 129 138 t29 138 129 t38 129 138 129 138 129 138 129 138 129 138 129 138 t29 138 129 138 129 r38 129 138 129 138 129 138 129 138 129 138 129 138 129 138 129 138 129 138 t29 138 129 138 t29 138 129 138 t29 138 t29 138 129 138 129 138 129 138 t29 138 t29 r38 t29 t38 129 138 129 138 129 138 t29 r38 129 138 129 138 tz9 138 t29 r38 129 138 129 _ 138 129 138 t29 138 t29 138 t29 138 129 138 t29 138 t29 138 129 138 129 138 t29 138 t29 138 t29 138 t29 138 129 138 129 l 38 129 138 t29 138 129 r38 129 l 38 129 138 129 138 129 138 Top Of Screened Interval (blw.LSD) 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 oo 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 Water Levels and Data, Over Time White Mesa Mill Monitor Well 15 Easting 2,577,4s1.45 2,577 ,4sl.4s 2,577,451.45 2,577,4s1.45 2,577,45t.45 2,577,4s1.45 2,577,451.45 2,577,45t.4s 2,577 ,451,45 2,577,451.45 2,577,45t.45 2 ,57 7 ,4s t .4s 2,577,451.45 2,57'7,45t.45 2,57't,451.45 2,577,451.45 2,577,451.45 2,511,451.45 2,577,451.45 2 ,57 7 ,45 | .45 2,577 ,451.45 2,s77 ,451.4s 2 ,57'7 ,45 | .45 2 ,57 7 ,45 I .45 2,577,451.45 2,577 ,451.45 2,577,451.45 2,577,451.45 2,577,451.45 2,577,45r.45 2,577,451.45 2,577,45t.45 2,577,451.45 2,577,451.45 2,57'7,451.45 2,571,451.45 2,577,451.45 2,577,451.45 2,577,451.45 2,571,451.45 2,577,45t.45 2,577,451.45 2,577,451.45 2 ,s7 7 ,45 r .4s 2 ,57 7 ,45 I .45 2,s77,45t.4s 2,577,45t.45 Northing 319,296.27 3t9,296.27 3t9,296.27 3t9,296.27 319,296.27 319,296.27 319,296.27 319,296.27 319,296.27 319,296.27 110 106 r? 319,296.2'.7 3t9,296.27 3t9,296.27 319,296.27 319,296.27 319,296.27 319,296.27 319,296.27 319,296.27 319,296.27 3t9,296.2't 3t9,296.27 3t9,296.27 3t9,296.27 3t9,296.27 319,296.27 319,296.2',7 319,296.27 319,296.27 319,296.27 319,296.27 319,296.27 319,296.27 319,296.27 319,296.2'l 319,296.27 319,296.27 319,296.27 319,296.27 319,296.27 319,296.27 319,296.27 319,296.27 319,296.27 3t9,296.27 319,296.27 Measuring Point Elevation (MP) 5,599.91 5 sqq qt 5,599.91 5,599.9t 5,599.9 r 5,599.91 5,599.91 s,s99.91 5,599.91 5,599.91 5,599.91 5,599.9 r s,s99.91 5,599.9t 5,599.91 5,599.91 5,599.91 5,599.91 5,599.91 5,599.91 5,599.9t 5,599.91 s,599.91 5,599.91 5 500 ql 5,599.91 5,599.9 r 5,s99.9 r 5,599.91 s,599.91 5,599.91 s,s99.91 5,s99.91 5,599.91 5,599.91 s,s99.91 5,599.91 s,s99.91 5,599.9r 5,599.9 r 5,599.91 5,s99.91 5,599.91 5,599.91 5,s99.91 5,599.9 I 5,599.91 Date Of Monitoring r 0/09/0 l l0/15/01 t0l25l0t l l/01/01 I r/05/01 I t/l 9/0 I t2/03/0t t2/t0lot t2/t8t0l t2l24t0t tzl3U0t 0U09t02 0Ut4t0z 0U24/02 0U29102 02/06/02 02/13/02 02/2t/02 03/01/02 03/06t02 03fi4102 03t2U02 03127t02 04102102 04109102 04t18102 04/23/02 0s102102 05/07/02 05/t6/02 0s/20/07 0513t/02 06104/02 06/12/02 06lt'7102 06/27/02 07 tlst02 07 t08102 07/15/02 07/zs/02 08/0t/02 08120/02 08t29102 09t0st02 091t0102 09t20/02 09126/02 Top Of Screened Interval (blw.LSD) 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 oo 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 Water Elevation Land Surface (wL) (LSD) 5,492.85 s,599. l8 5,492.63 5,599.1 8 5,492.60 5,599.1 8 5,492.77 5,599. l 8 5,492.67 5,599. I 8 5,492.54 5,599.18 5,492.78 5,599. l8 s,492.87 5,599.r8 5,492.63 5,s99. r 8 5,492.59 5,599.18 5,492.78 5,599. t 8 5,492.74 5,599.18 s,492.73 5,599.18 5,492.s8 5,s99.18 s,492.9r s,s99.18 5,492.61 s,599.18 s,492.61 5,599.r8 5,492.42 5,599. 18 5,493.0 r 5,s99.1 8 5,492.78 5,599. t 8 5,492.90 5,s99.18 5,492.52 5,599.18 5,492.76 5,599.18 s,492.84 5,599.18 5,492.65 5,599. t 8 5,492.86 5,599. I 8 s,492.67 5,599. l 8 5,492.91 s,s99.l 8 5,492.88 5,s99. l 8 5,492.82 5,599.18 5,492.80 5,599.18 5,492.73 5,599. I 8 5,492.78 5,s99.18 5,492.72 5,599.18 5,492.77 5,599.18 s,492.69 s,599.18 s,492.77 5,599.18 5,492.63 5,599.18 5,492.78 5,599.18 5,492.64 5,s99.18 5,492.82 5,599.18 5,492.80 s,s99.18 5,492.70 5,599.18 s,492.70 5,599. I 8 5,492.75 5,599.18 5,492.82 5,599.18 5,492.85 5,599. I 8 Monitor Length Of Well Riser (L) Number 0.73 15 0.73 15 0.73 15 0.'13 r s 0.'73 t 5 0.73 l s 0.73 15 0.73 r 5 0.73 15 0.73 15 0.73 15 0.73 15 0.73 15 0.73 t 5 0.73 r 5 0,73 15 0.73 15 0.73 15 0.73 15 0.73 t 5 0.73 15 0.73 15 0.73 15 0.73 15 0.73 15 0.73 15 0.73 15 0.73 15 0.73 r 5 0.73 15 0.13 15 0.73 t 5 0.73 15 0.73 15 0.73 15 0.73 15 0.73 l s 0.73 r 5 0.73 15 0.73 15 0.73 15 0.73 t5 0.'73 15 0.73 l s 0.73 15 0.73 t 5 0.73 15 Total or Measured Total Depth to Depth to W.ter Water (blw.MP) (blw.LSD) 107.06 106.33 t07 .28 106.55 107.3 I 106.58 t07 .14 106.41 107.24 106.5 r 107.37 106.64 107.13 106.40 107 .04 106.3 I 107.28 r06.55 t07 .32 106.59 107. t 3 106.40 107.17 106.44 I 07.1 I 106.45 I 07.33 106.60 107.00 t06.21 107.30 106.57 107.30 106.57 t07.49 106.76 r06.90 106.17 I07.I ] 106.40 107.01 106.28 107.39 106.66 t07.15 106.42 t07 .07 r 06.34 t07.26 106.53 107.05 106.32 107 .24 106.5 I 107.00 t06.27 107.03 106.30 r07.09 106.36 l07.ll 106.38 107. I 8 t06.45 107.13 106.40 107. I 9 106.46 t0"7 .14 106.41 t07.22 t06.49 t07 .t4 106.41 t07.28 106.55 107. 13 106.40 107 .27 106.54 107.09 106.36 r07. I I 106.38 1,07 .21 106.48 t07.2r 106.48 107. 1 6 106.43 107.09 106.36 r 07.06 106.33 Bottom Of Screened Total Interval Depth Of (blw.LSD) Well 129 138 129 I 38 129 138 tz9 138 129 r38 129 138 t29 138 t29 138 t29 138 129 138 129 138 129 138 129 138 t29 138 129 138 129 138 129 138 129 138 t29 I 38 129 138 129 138 129 138 129 138 129 138 129 138 129 t38 129 l 38 129 r38 129 138 129 138 129 138 129 138 t29 138 129 138 129 138 t29 138 t29 138 t29 138 t29 138 t29 138 129 138 t29 138 t29 I 38 t29 _ 138 129 138 129 I 38 129 I 38 Water Levels and Data, Over Time White Mesa Mill Monitor Well 16 Easting 2,576,66t.65 2,576,661.65 2,576,661.65 2,576,661.65 2,5'76,661.65 2,576,661.65 2,s76,661.65 2,576,661.65 2,57 6,661.65 2,576,661.65 2,576,661.65 2,576,661.65 Water Land Elevation Surfece (blw.MP) (LSD) 5,495.80 s,s85.53 5,494.6't 5,585.53 5,494.56 5,585.53 s,494.56 5,585.53 5,493.72 5,585.53 5,494.57 5,585.53 5,494.5'.1 5,585.53 5,494.57 5,585.53 5,494.34 5,585.53 5,494.22 5,585.53 5,494.57 5,585.53 5,494.s5 5,585.53 Dete Of Monitoring 0U0511993 03/30t1993 09t2911993 12/08il994 04/08t1999 09t0U2000 12t0st2000 03/30t2001 06t22t200r 09il812001 03fi412002 08t2912002 Total or Meesured Totel Depth to Depth to Weter Wrter (blw.MP) (btw.LSD) 90.92 89.73 92.0s 90.86 92.16 90.97 92.t6 90.97 93.00 91.81 92.t5 90.96 92.15 90.96 92.15 90.96 92.38 91.19 92.50 9l .31 92.1s 90.96 92.17 90.98 Bottom of Screened Total Interval Depth Of (blw.LSD) WeIl 88.5 93 88.5 93 88.5 93 88.s 93 88.5 93 88.5 93 88.5 93 88.5 93 88.5 93 88.5 91 88.5 93 88.5 93 Northing 319,820.94 3 I 9,820.94 319,820.94 3t9,820.94 319,820.94 319,820.94 319,820.94 3t9,820.94 319,820.94 319,820.94 319,820.94 319,820.94 Measuring Point Elevetion (MP) 5,586.72 s,586.'.t2 s,s86.72 s,586.72 s,s86.72 s,586.72 5,586.72 5,586;72 5,586.72 5,586.72 5,586.72 5,586.72 Length Of Riser (L) l.l9 l.l9 1.19 1.19 1.19 1.19 l.l9 l.l9 L19 l.l9 l.r9 l.l9 Monitor Well Number l6 l6 l6 l6 t6 l6 t6 l6 t6 t6 16 t6 Top of Screened Interval (blw.LSD) 78.5 78.5 78.5 78.5 78.5 78.5 78.5 78.5 78.5 78.5 '78.5 78.5 Water Levels and Data, Over Time White Mesa Mill Monitor Well l7 Easting 2,s78,892.21 2,578,892.21 2,s78,892.21 2,578,892.21 2,578,892.21 2,578,892.21 2,578,892.21 2,578,892.21 2,578,892.21 2,578,892.21 2,s78,892.21 2,5'78,892.21 2,578,892.21 2,5'78,892.21 2,578,892.21 2,578,892.21 2,578,892.21 2,578,892.21 2,578,892.21 2,578,892.21 2,578,892.21 2,578,892.21 2,578,892.2t 2,578,892.21 2,578,892.21 2,s18,892.21 2,578,892.21 2,578,892.21 2,s78,892.21 2,5'78,892.21 2,578,892.21 2,5'.78,892.21 2,578,892.21 2,578,892.21 2,578,892.21 2,578,892.21 2,578,892.21 2,578,892.21 2.578,892.21 2,5'78,892.21 2,5'78,892.21 2,578,892.21 2,578,892.21 2,578,892.2t 2,578,892.2t 2,578,892.21 2,578,892.21 2,578,892.21 2,578,892.21 2,578,892.21 2,s78,892.21 2,s78,892,21 2,578,892.21 2,578,892.21 2,578,892.21 2,578,892.21 2,s"18,892.21 2,578,892.21 2,518,892.21 2,578,892.21 2,5'.78,892.21 2,578,892.21 2,578,892.21 2,578,892.21 2,578,892.21 2,578,892.21 Northing 318,4s3.44 318,453.44 3t8,453.44 318,453.44 318,453.44 3t8,453.44 318,453.44 318,453.44 3 t8,453.44 318,453.44 3 r 8,453.44 318,453.44 3 18,453.44 3 t8,453.44 3 t8,453.44 3 t8,453.44 3 t8,453.44 3 t8,453.44 3t8,453.44 3 18,453.44 3t8,453.44 3t8,453.44 3t8,453.44 318,453.44 318,453.44 318,453.44 318,453.44 318,453.44 318,453.44 318,453.44 318,453.44 318,453.44 318,4s3.44 3 t8,453.44 3t8,453.44 3 t8,453.44 3t8,453.44 3t8,453.44 318,453.44 318,453.44 318,4s3.44 318,453.44 3 18,453.44 318,453.44 3t8,453.44 318,453.44 3t8,453.44 318,453.44 318,4s3.44 3t8,4s3.44 3t8,453.44 318,453.44 318,453.44 3t8,453.44 318,4s3.44 3 r 8,4s3.44 318,453.44 3 I 8,453.44 318,4s3.44 3 t8,453.44 3t8,453.44 3 I 8,453.44 3 18,4s3.44 3 r 8,453.44 3t8,453.44 318.4s3.44 Measuring Point Elevation (MP) 5,575.09 s,575.09 5,575.09 5,5 75.09 5,5 75.09 5,575.09 5,575.09 5,575.09 5,575.09 5,575.09 5,575.09 5,575.09 5,57 5.09 5,575.09 5,575.09 s,575.09 5,575.09 5,5 75.09 5,575.09 5,5 75.09 5,575.09 5,575.09 5,575.09 5,575.09 5,575.09 5,575.09 5,5 75.09 5 575 0q 5,57 5.09 5,57 5.09 5 575 0q 5,575.09 5,575.09 5,57s.09 s,5 75.09 5,575.09 5,575.09 s,575.09 5,575.09 5,575.09 5,575.09 5,575.09 5,575.09 5,5 75.09 5,575.09 5,5 75.09 5,5 75.09 s,5 7s.09 5,575.09 5,5 75.09 5,575.09 5,5 75.09 5,575.09 5,5 75.09 5,575.09 5,575.09 5 575 0q 5,5 75.09 5,5 75.09 5,575.09 5 575 0q 5,575.09 5,5"t5.09 s,575.09 5,5 75.09 5,575.09 Date Of Monitoring 3t24t93 6t8t93 9122193 12fi4193 3t24194 6lt5l94 8^8/94 t2lt3l94 tU22l96 3tz0/97 6^t/97 9t3019'7 3il6198 s^2t98 9t24l98 tt3/98 2/t8/99 sfiU99 7 t6/99 9t28/99 t2t9/99 3lt'7/00 617100 9t4/00 I 1/30/00 03t23t01 05/l 8i0 l 0st24t0l 05/3 l/01 06t05101 06lt3l0l 06l22l0I 06t28t0t 0710210t 07 n1t0t 07il6101 07 t25t01 07t3v0t 08/09/0 I 08/ 1 4/0 I 08t20t0t 0812710t 09t07 t01 09nzl0l 09/ r 8/0 r 09126/01 t0t02/0r 1 0/09/0 I l0/15/01 t0l25l0t l l/01/01 r l /05/0 1 Itn9t0l t2t03t0t t2fi0l0t t2n8l0l t2l24l0t t2t3v0t 0v09102 0Ut4/02 0124102 0U29l0z 02t06102 02n3/02 \zt2v02 03/0v02 Top Of Screened Interval (blw.LSD) 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 s0 Water Elevation Land Surface (wL) (LSD) 5,487.'71 5,573.81 5,487.50 5,573.81 5,487.49 5,573.81 5,489.73 5,573.81 5,488.37 5,573.8 l 5,487.79 s,573.81 5,487 .7 t 5,573.81 5,487.94 5,s73.81 5,487.79 5,573.81 5,487.80 5,573.8 I s,488.09 5,573.8 l 5,487.89 5,573.81 5,488.09 5,573.81 5,48s.49 5,573.8 l 5,488.09 5,573.81 5,487.09 5,573.8 l 5,488.09 s,573.8 I s,487.89 5,573.8 l 5,488.09 s,s73.81 5,488.26 5,573.8 r 5,488.29 5,573.81 5,488.55 5,573.8 I 5,488.39 5,573.81 5,488.69 5,573.8 I 5,488.79 5,573.8 l 5,489.1 5 5,s73.8 1 5,515.09 5,573.81 s,489.27 5,573.81 5,489.24 5,573.81 5,489.37 5,573.81 s.489.62 5,573.81 5,489.21 5,573.81 5,489.1 6 5,573.8 1 5,489.18 5,573.81 5,489 _26 5,5 73.81 5,489.38 s,573.81 5,489.40 5,573.81 s,489.39 5,573.8 r 5,575.09 5,573.8 I 5,489.28 s,573.81 s,489.38 5,573.81 5,489.39 s,573.81 5,489.58 5,573.81 5,489.40 5,573.81 5,489.50 5,573.81 5,489.49 5,573.81 5,489.52 5,573.81 s,489.69 5,573.81 5,489.46 5,573.81 5,489.43 5,573.81 5,489.68 5,573.8 I 5,489.5 I 5,573.8 I 5,489.48 5,573.81 5,489.86 5,s73.81 5,490.10 5,573.81 5,489.12 5,573.8 r 5,489.65 5,573.8 r 5,489.92 5,s73.81 5,489.86 5,573.81 5,489.88 5,573.8 I s,489.66 5,573.81 5,490.15 5,573.81 5,489.80 5,573.81 s,489.76 5,573.81 s,489.56 5,573.81 s,490.32 5,573.81 Mouitor Length Of Well Riser (L) Number 1.28 17 1.28 17 l .28 t7 1.28 t7 I .28 17 t.28 t7 1.28 t7 r.28 t7 1.28 t] 1.28 t7 1.28 t7 1.28 t7 1.28 t7 t.z8 t'7 1.28 17 t.z8 t7 L28 t'7 I .28 t'/ I .28 t7 I .28 t7 1.28 t7 1.28 t7 l .28 17 1.28 t7 1.28 t7 1.28 t7 I .28 t7 1.28 17 1.28 17 1.28 t'7 1.28 1'.7 L28 I1 I .28 1'7 1.28 17 t.28 t7 I .28 t7 I .28 t7 t.28 t7 1.28 t7 I .28 t7 1.28 t7 1.28 t7 t.28 17 1.28 t7 t.28 t7 I .28 t7 1.28 t7 1.28 t7 1.28 t7 t.28 t7 r.28 t7 t.28 t7 1.28 t7 L28 17 t.28 t7 I .28 t7 t.28 t7 l .28 t7 1.28 t7 1.28 t7 1.28 t7 t.28 t7 l.28 t7 1.28 t7 1.28 t7 1.28 t7 Total or Measured Total Depth to Depth to Water Water (blw.MP) (blw.LSD) 87.38 86. l0 87.s9 86.3 I 87.60 86.32 85.36 84.08 86.72 85.44 87.30 86.02 87.38 86. t0 87. 1 5 85.87 87.30 86.02 87 .29 86.01 87.00 85.72 87.20 85.92 87.00 8s.72 89.60 88.32 87.00 8s.72 88.00 86.72 87.00 8s.72 8'7.20 85.92 87.00 8s.72 86.83 85.55 86.80 85.s2 86.s4 85.26 86.70 85.42 86.40 8s.12 86.30 85.02 85.94 84.66 0.00 -1.28 8s.82 84.54 85.85 84.57 85.72 84.44 85.47 84. l9 85.88 84.60 85.93 84.65 85.91 84.63 8s.83 84.55 85.7 r 84.43 85.69 84.41 85.70 84.42 0.00 -1.28 85.8 I 84.53 85.71 84.43 85.70 84.42 85.51 84.23 85.69 84.41 85.59 84.3 I 85.60 84.32 85.57 84.29 85.40 84.12 85.63 84.35 85.66 84.38 85.4 t 84. 13 85.58 84.30 85.61 84.33 85.23 83.95 84.99 83.7r 85.37 84.09 85.44 84. r 6 85.r7 83.89 85.23 83.95 85.21 83.93 85.43 84. I 5 84.94 83.66 8s .29 84.01 85.33 84.05 85.53 84.2s 84.^17 83.49 Bottom Of Screened Total Interval Depth Of (blw.LSD) Well 100 l l0 r00 l l0 r00 l l0 100 l l0 100 l r0 100 l r0 100 I 10 100 I l0 100 I l0 100 l l0 100 I l0 r00 I l0 100 I l0 100 I l0 100 ll0 t00 I l0 100 I l0 t00 I l0 100 l l0 100 I l0 100 I l0 100 I l0 100 I l0 100 r r0 100 I l0 r00 I l0 100 I l0 100 I l0 100 1 l0 100 l l0 100 I t0 100 I t0 100 I 10 100 I 10 100 I r0 100 I t0 100 I l0 100 I l0 r00 l l0 100 I t0 t00 r r0 t00 I t0 100 110 100 _ ll0 r00 l l0 100 I l0 100 r l0 100 r l0 100 I t0 100 110 100 I l0 100 I l0 100 r l0 100 r l0 100 110 100 I l0 100 I l0 100 I l0 100 I l0 100 1r0 100 110 100 l l0 100 I t0 r00 l l0 100 I l0 100 r t0 \Uater Levels and Data, Over Time White Mesa Mill Monitor Well 17 Easting 2,578,892.21 2,578,892.21 2,s78,892.21 2,578,892.21 2,578,892.21 2,578,892.21 2,578,892.21 2,578,892.21 2,578,892.21 2,578,892.21 2,578,892.21 2,578,892.21 2,578,892.21 2,578,892.21 2,578,892.21 2,s78,892.21 2,578,892.21 2,s78,892.21 2,578,892.21 2,578,892.2t 2,578,892.21 2,578,892.21 2,s78,892.21 2,578,892.21 2,578,892.21 2,578,892.21 2,578,892.21 2,578,892.21 Northing 3t8,453.44 3t8,453.44 318,453.44 318,453.44 318,453.44 3t8,453.44 3t8,453.44 318,453.44 318,453.44 318,453.44 318,453.44 318,453.44 318,453.44 3t8,453.44 318,453.44 318,453.44 318,4s3.44 318,453.44 318,453.44 318,453.44 318,4s3.44 318,453.44 318,453.44 318,453.44 318,4s3.44 318,453.44 318,453.44 318,453.44 Top Of Screened Interval (blw.LSD) 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 Wrter Elevation Land Surface (wL) (LsD) 5,490.01 5,573.81 5,490.18 5,573.81 s,489.6'1 5,573.8 r 5,489.9'7 5,573.81 5,490.0',7 5,573.81 5,489.86 5,573.81 5,490.1I 5,573.81 5,489.93 5,573.81 5,490.21 5,573.81 5,490.18 5,573.81 5,490.13 5,573.81 5,490.06 5,573.81 5,490.06 5,573.81 5,490.12 5,573.8 I 5,490.09 s,573.81 5,490. I 6 5,573.81 5,490.06 5,573.81 5,490.17 5,573.8 t 5,490.01 5,573.8 I 5,490.18 5,573.81 s,490.04 5,573.81 5,490.25 5,573.81 5,490.28 5,573.81 5,490.25 5,573.8 t s,490.23 5,573.8 t 5,490.05 5,573.81 5,490.39 5,573.81 5,490.46 5,573.81 Meesuring Point Elevetion (MP) 5,575.09 5,575.09 5,575.09 5,575.09 5,575.09 5,575.09 5,575.09 5,575.09 5,575.09 5,575.09 5,575.09 5,575.09 5,575.09 s,575.09 5,575.09 5,575.09 5,575.09 5,57s.09 5,575.09 5,575.09 5,575.09 5,575.09 5,575.09 5,575.09 . 5,575.09 5,575.09 5,575.09 5,575.09 Monitor Length Of Well Riser (L) Number 1.28 17 1.28 t7 1.28 l7 t.28 l7 1.28 t7 1.28 t'l 1.28 t7 1.28 t7 1.28 t7 1.28 t7 1.28 t7 1.28 t7 1.28 t7 1.28 t7 1.28 t7 1.28 t7 1.28 t7 1.28 t7 1.28 t7 r.28 t7 t.28 t7 1.28 t7 1.28 t7 1.28 t7 1.28 t7 1.28 t7 1.28 t7 1.28 t7 Date Of Monitoring 03106102 03114/02 03t2U02 03/27t02 04t02/02 04t09102 04/18102 04/23/02 05102/02 0st07t02 0st t6/02 05120t02 0513U02 06104/02 061t2t02 06117102 06t27/02 07t05t02 07t08102 071t5102 07125102 0810v02 08t20/02 08t29t02 09105/02 09110102 09t20t02 09126102 Tot|l or Measured Total Depth to Depth to Water Water (blw.MP) (blw.LSD) 85.08 83.80 84.91 83.63 8s.42 84.14 85.12 83.84 85.02 83.74 85.23 83.9s 84.98 83.70 85.16 83.88 84.88 83.60 84.91 83.63 84.96 83.68 85.03 83.75 85.03 83.75 84.97 83.69 8s.00 83.72 84.93 83.65 85.03 83.75 84.92 83.64 85.08 83.80 84.91 83.63 85.05 83.77 84.84 83.56 84.8 r 83.53 84.84 83.56 84.86 83.58 85.04 83.76 84.70 83.42 84.63 83.35 Bottom Of Screened Total Interval Depth Of (blw.LSD) Well 100 1 l0 100 I l0 100 r l0 100 I l0 100 110 100 I l0 100 I l0 100 I l0 100 1 10 100 I l0 100 r l0 100 I l0 100 I l0 100 I l0 100 I l0 100 I l0 100 I l0 100 I l0 100 l l0 100 I l0 100 I l0 100 I r0 100 l l0 100 I l0 100 I l0 100 I l0 100 I l0 100 I r0 Water Levels and Data, Over Time White Mesa Mill Monitor Well 18 Easting 2,580, I 33.04 2,580, I 33.04 2,580, I 33.04 2,580, I 33.04 2,580,1 33.04 2,580, I 33.04 2,580,131.04 2,580,133.04 2,580, I 33.04 2,580,133.04 2,580,1 33.04 2,580,1 33.04 2,580, l 33.04 2,580,1 33.04 2,580, l 33.04 2,580,133.04 2,580, I 33.04 2,580,t33.04 2,580, I 33.04 2,580, I 33.04 Measuring Point Elevation (MP) 5,657.5t 5,657.51 5,657.51 5,657.51 5,657 .51 5,657.51 5,657.51 5,657.51 5,657.51 5,657.51 5,657.51 5,657.51 5,657.51 5,657.51 5,6s7.sl 5,657.51 5,657.51 5,657.5t 5,657.51 5,657.51 Monitor Length Of Well Riser (L) Number t.27 18 1.27 t 8 t.27 18 t.27 18 1.27 18 1.27 18 1.27 l8 1.27 18 1.27 18 1.2'7 18 1.27 18 1.27 l8 1.27 18 1.27 18 1.27 18 . 1.27 18 1.27 18 1.27 18 1.27 l8 t.27 18 Date Of Monitoring 3/24193 6t8193 9/22/93 12114193 3124194 6n5t94 8fi8t94 12il3t94 4t7t99 stnt99 7t6/99 9lll00 l l/30/00 03/23/01 06122101 09/t 8/01 I l/05/01 03/14/02 08/29/02 09/10/02 Total or Measured Total Depth to Depth to Water Water (blw.MP) (blw.LSD) 92.26 90.99 92.00 90.73 92.12 90.85 91.82 90.55 85.06 83.79 91.65 90.38 91.49 90.22 91.32 90.05 88.00 86.73 87.7s 86.48 87.20 85.93 85.32 84.05 85.05 83.78 84.68 83.41 84.08 82.81 84.50 83.23 83.34 82.07 82.64 81.37 82.0't 80.80 82.01 80.74 Bottom Of Screened Total Interval Depth Of (blw.LSD) Well 133.5 148.5 133.5 148.5 133.5 148.5 133.5 148.5 133.5 148.5 r33.s 148.5 133.5 148.5 133.5 148.5 133.5 148.5 133.5 148.5 133.5 148.5 133.5 148.5 133.5 148.5 133.5 148.5 133.5 148.5 133.5 148.5 133.s 148.5 133.5 148.5 133.5 148.5 133.5 148.5 Northing 325,121.34 325,121.34 325,t21.34 325,121.34 325,121.34 325,12t.34 325,121.34 325,121.34 325,121.34 325,12t.34 325,t21.34 325,t21.34 325,121.34 325,t21.34 32s,121.34 325,121.34 325,12t.34 325,121.34 325,t21.34 325,121.34 Water Elevation Land Surface (wL) (LSD) 5,565.25 5,6s6.24 5,565.51 5,656.24 5,565.39 5,656.24 5,565.69 s,656.24 5,572.45 5,656.24 5,56s.86 s,656.24 5,s66.02 5,6s6.24 5,566.19 5,656.24 5,569.51 5,656.24 5,569.76 5,656.24 5,570.31 5,656.24 5,572.t9 5,656.24 5,572.46 5,656.24 5,572.83 5,656.24 s,s73.43 s,656.24 5,573.01 5,656.24 5,574.17 s,6s6.24 5,574.87 5,656.24 s,s75.44 5,656.24 5,575.50 s,6s6.24 Top Of Screened Interval (blw.LSD) 103.5 103.5 103.5 103.5 103.5 r 03.5 103.5 103.5 103.5 103.5 103.5 103.5 103.5 103.5 103.5 103.5 103.5 103.5 103.5 103.5 Water Levels and Data, Over Time White Mesa Mill Monitor Well 19 Easting 2,581,423.33 2,581,423.33 2,581,423.33 2,581,423.33 2,58t,423.33 2,58t,423.33 2,58t,423.33 2,58t,423.33 2,58t,423.33 2,581,423.33 2,s81,423.33 2,58t,423.33 2,581,423.33 2,58t,423.33 2,581,423.33 2,s81,423.33 2,581,423.33 2,s81,423.33 2,581,423.33 2,s81,423.33 Meesuring Point Elevation (MP) s,6s4.96 5,654.96 s,6s4.96 5,6s4.96 5,654.96 5,654.96 5,654.96 5,654.96 5,6s4.96 5,654.96 5,654.96 5,654.96 5,654.96 5,654.96 5,654.96 5,654.96 5,654.96 5,654.96 5,654.96 5,654.96 Monitor Length Of Well Riser (L) Number 1 .48 19 1 .48 19 I .48 19 l 48 19 I .48 19 I .48 19 I .48 19 1.48 19 1.48 19 1.48 19 1.48 t 9 1.48 19 1.48 19 I .48 19 1.48 19 l .48 19 I .48 19 1 .48 19 I .48 19 1.48 19 Date Of Monitoring 3124193 618/93 9t22t93 l2lt4193 3/24/94 6t15t94 8/t8,t94 t2n3l94 4t7t99 5nU99 716199 9^lOO I t/30/00 03t23/01 06t22101 09/l 8/0 I I r/05/0t 03,L4102 08t29t02 09^o/o2 Total or Measured Total Depth to Depth to Water Water (blw.MP) (blw.LSD) 85.48 84.00 85.49 84.01 8s.30 83.82 85. 15 83.67 87.42 85.94 84.84 83.36 84.70 83.22 84.40 82.92 72.17 70.69 7 t.67 70.19 70.90 69.42 6',7.68 66.20 67 .10 65.62 66.38 64.90 65.67 64.19 64.56 63.08 64.2t 62.'73 62.50 61.02 61.76 60.28 6t.'70 60.22 Northing 324,49t.',l3 324,491.73 324,491.'.l3 324,491.73 324,491.73 324,491.73 324,491.'t3 324,491.73 324,491.73 324,491.73 324,49t.73 324,491.73 324,491.73 324,491.73 324,491.73 324,491.73 324,491.73 324,491.73 324,491.73 324,491.73 Water Elevation Land Surface (wL) (LSD) 5,569.48 5,653.48 s,s69.47 5,653.48 s,569.66 5,653.48 5,569.81 5,653.48 5,567 .54 5,653.48 5,570.12 5,653.48 5,570.26 5,653.48 5,570.56 5,653.48 s,s82;79 5,653.48 5,583.29 5,653.48 5,584.06 s,653.48 5,587.28 5,653.48 5,587.86 5,653.48 5,588.58 5,653.48 5,589.29 5,653.48 5,590.40 5,653.48 5,590.75 5,653.48 5,592.46 5,653.48 5,593.20 5,653.48 5,593.26 5,653.48 Bottom Of Screened Total Interval Depth Of (blw.LSD) Well 131.00 149.00 131.00 149.00 l3 l .00 149.00 131.00 149.00 131.00 149.00 131.00 149.00 131.00 149.00 t31.00 149.00 131.00 149.00 131.00 149.00 l3 l .00 149.00 13 l .00 149.00 l3I.00 t49.00 l3 1.00 r49.00 131.00 149.00 l3 1.00 149.00 131.00 149.00 131.00 149.00 l3 1.00 149.00 l3 I .00 149.00 Top Of Screened Intervel (blw.LSD) 10 r.00 101.00 r01.00 101.00 101.00 101.00 r01.00 101.00 l0l .00 l0 r .00 10 t.00 101.00 101.00 101.00 101.00 101.00 l0l.00 101.00 101.00 t 01.00 Easting 2,576,169.80 2,576,t69.80 2,576,t69.80 2,576,169.80 2,576,169.80 2,576,169.80 2,576,169.80 2,576,169.80 2,576,169.80 2,576,169.80 2,s76,t69.80 2,576,t69.80 2,576,169.80 2,576,169.80 Northing 3 15,490.81 315,490.8 r 3 15,490.8 t 315,490.81 315,490.8r 3 15,490.8 I 315,490.81 315,490.81 315,490.81 315,490.81 315,490.81 3 15,490.81 315,490.81 3 r 5,490.81 Water Elevation (wL) 5,463.37 5,457.57 5,457.63 5,455.35 5,458.14 5,460.98 5,461.07 s,461.13 5,461.r2 5,461.13 5,461.07 5,461.14 5,46t.15 5,46t.17 Land Surface (LSD) 5,539.1 I 5,539.11 5,539.1I 5,539.11 5,539.1 1 5,539.1 I 5,539.1 I 5,539.1 1 5,539.1 I 5,539.1 I 5,539.11 5,539.1 l 5,539.11 5,539.1 I O Water Levels and Data, Over Time OWhite Mesa Mill Monitor Well20 Measuring Length Monitor Point Elevation Of Riser WelI (MP) 5,s40.60 5,540.60 5,540.60 5,540.60 5,540.60 5,540.60 5,540.60 5,540.60 5,540.60 5,540.60 5,540.60 5,540.60 5,540.60 5,540.60 (L) Number 1.49 20 1.49 20 1.49 20 t.49 20 t.49 20 1.49 20 1.49 20 t.49 20 1.49 20 1.49 20 1.49 20 1.49 20 1.49 20 1.49 20 Date 0f Monitoring 8l2sl94 9/14/94 9t16194 9t19t94 t2lt3/94 9/5t00 11t29t2000 03/30/2001 06122/01 09/l 8/0 l I 1/05/01 03114/02 08129/02 09110/02 Total or Measured Depth to Water (blw.MP) 77.23 83.03 82.97 85.25 82.46 79.62 79.53 79.47 79.48 79.47 79.53 79.46 79.45 79_43 Total Depth to Water (blw.LSD) 75.74 81.54 81.48 83.76 80.97 78. l3 78.04 77.98 77.99 77.98 78.04 77.97 77.96 77.94 Total Depth Of Well 87 87 87 87 87 87 87 87 87 87 87 87 87 87 Water Levels and Data. Over Time ^ White Mesa Mill Monitor Well2l ! Easting 2,574,794.90 2,574,794.90 2,574,794.90 2,s74,794.90 2,574,794.90 2,s74,794.90 2,574,794.90 Northing 316,87 r.69 3t6,87 t.69 316,87 r.69 316,87 t.69 316,871.69 316,871.69 316,87 t.69 Water Elevation (blw.MP) 5,499.30 s,499.30 s,499.30 s,499.30 5,499.30 s,499.30 s,499.30 Land Surface (LSD) 5,560.52 5,560.52 5,560.52 5,560.52 5,560.52 5,560.s2 5,560.s2 Measuring Point Elevation (MP) s,s62.3s 5,562.3s 5,562.3s 5,562.3s 5,562.3s 5,562.35 5,562.35 Date Of Monitoring 08t25n994 091r4t1994 091t611994 091t911994 tzlt3lt994 0410711999 0910y2000 Total or Measured Depth to Water (blw.MP) 92.00 92.00 92.00 92.00 92.00 92.00 92.00 Total Depth to Water (blw.LSD) Dry Dry Dry Dry Dry Dry Dry Total Depth Of Well 92 92 92 92 92 92 92 Length Monitor Of Riser Well (L) Number 1.83 2l 1.83 21 1.83 2t 1.83 2t 1.83 2t 1.83 2l 1.83 2t Easting 2,580,981.05 2,580,981.05 2,580,981 .05 2,580,981.05 2,580,981.05 2,580,981.05 2,580,981 .05 2,580,98 r.05 2,580,981.05 2,s80,981.05 2,580,981 .05 2,580,981 .05 2,580,981 .05 2,580,981.05 2,580,981 .05 Northing 313,968.74 313,968.74 313,968.74 313,968.74 313,968.74 313,968.74 313,968.74 313,968.74 313,968.74 3t3,968.74 313,968.74 313,968.74 313,968.74 313,968.74 313,968.74 O Water Levels and Data, Over Time O- White Mesa MiIl Monitor Well22 Total or Measuring Measured Water Point Monitor Depth to Total Depth Elevation Land Surface Elevation Length Of Well Date Of Water to Water Total Depth (WL) (LSD) (MP) Riser(L) Number Monitoring (blw.MP) (blw.LSD) OfWeIl s,445.12 5,516.08 5,517.47 1.39 22 8t25t94 72.35 70.96 n4 5,444.02 5,516.08 5,517.47 1.39 22 9t12t94 73.45 72.06 I 14 5,439.98 5,516.08 s,517.47 1.39 22 9fi4t94 77.49 76.10 n4 s,438.79 5,516.08 5,51"t.47 1.39 22 9fi6t94 78.68 77.29 114 s,439.4s 5,s16.08 5,517.47 1.39 22 9n9t94 78.02 76.63 rt4 5,444.t7 s,s16.08 5,517.47 1.39 22 12fi3t94 73.30 71.91 14 5,44s.81 s,5r6.08 5,s17.47 r.39 22 9tst00 71.66 70.27 114 5,445.97 5,516.08 s,st7.47 1.39 22 tv29t2000 7r.50 70.11 114 s,446.25 5,516.08 5,sr7.47 1.39 22 03t30t200r 71.22 69.83 tt4 5,446.44 5,516.08 5,517.47 1.39 22 06t22t01 71.03 69.64 tr4 s,446.6t 5,516.08 s,517.47 1.39 22 09/18/01 70.86 69.47 tt4 5,446.45 5,516.08 5,517.47 1.39 22 1l/05/01 71.02 69.63 tt4 5,446.12 5,516.08 5,5t7.47 1.39 22 03/t4/02 7t.35 69.96 tt4 5,447.14 5,516.08 5,5t7.47 1.39 22 08t29t02 70.33 68.94 tt4 5,447.27 5,516.08 5,5t7.47 1.39 22 09n0t02 70.20 68.81 tt4 Water Level Data Fall 2002 Temporary Wells TW4-I TW4-2 TW4-3 TW4-4 TW4-5 TW4-6 TW4-7 TW4-8 TW4-9 TW4 - 10 TW4-il TW4 - t2 TW4 - 13 TW4 - 14 TW4 - 15 TW4 - t6 TW4 - t7 TW4 - 18 TW4 - 19 TW4A Water Levels and Datao Over Time White Mesa Mill Temporary Well 4-1 Total or weter lVleasuring Lensth Monitor MeasuredEasting Northing Land Surrece -."otLt of Riser well Depth to Total Depth(x) (v) Elevation (LSD) l-teYation G) Number Date Of Water to Water Total Depth(MP) Monitoring (blw.MP) (blw.LSD) Of Well 2,580,890.59 320,862.99 5,537.23 5,617.56 5,618.58 ',t.02 TW4-l ll/08i1999 81.35 80.33 lll.04 2,580,890.59 320,862.99 5,537.38 5,617.56 5,618.58 1.02 TW4-l n/0911999 81.20 80.18 lll.04 2,580,890.59 320,862.99 5,537.48 5,617.56 5,618.58 1.02 TW4-l 0t/0212000 81.10 80.08 lll.04 2,580,890.59 320,862.99 5,5f7.48 5,617.56 5,618.58 1.02 TW4-l 0l/10/2000 81.10 80.08 111.04 2,580,890.59 320,862.99 5,537.23 5,6t7.56 5,618.58 1.02 TW4-l 0111712000 81.35 80.33 lll.04 2,580,890.59 320,862.99 5,537.28 5,6t7.56 5,618.58 1.02 TW4-l 0t/2412000 81.30 80.28 I I1.04 2,580,890.59 320,862.99 5,537.28 5,617.56 5,618.58 1.02 TW4-l 02/0112000 81.30 80.28 111.04 2,580,890.59 320,862.99 5,537.18 5,617.56 5,618.58 1.02 TW4-r 02/0712000 81.40 80.38 lll.04 2.580,890.59 320,862.99 5,537.48 5,617.56 5,618.58 1.02 TW4-l 0211412000 81.10 80.08 I I1.04 2.580,890.59 320,862.99 5,537.48 5,617.56 5,618.58 t.02 TW4-l 0212312000 81.10 80.08 lll.04 2,580,890.s9 320,862.99 5537.58 s,6t7.s6 5,618.58 t.02 TW4-l 03/01/2000 81.00 79.98 I I1.04 2,580,890.59 320,862.99 5537.68 5,617.56 5,618.58 1.02 TW4-l 03/08/2000 80.90 79.88 I I1.04 2,580,890.59 320,862.99 5537.98 5,6t7.56 5,618.58 1.02 TW4-l 0311512000 80.60 '19.s8 I I1.04 2,580,890.59 320,862.99 5537.68 5,617.56 5,618.58 t.02 TW4-l 0312012000 80.90 79.88 I I1.04 2,580,890.59 320,862.99 5537.68 5,6t7.s6 5,618.58 1.02 TW4-l 0312912000 80.90 79.88 I I1.04 2,580,890.59 320,862.99 5537.43 5,617.56 5,618.58 1.02 TW4-l 0410412000 81.15 80.13 I I1.04 2,580,890.s9 320,862.99 5537.18 5,617.56 5,618.58 1.02 TW4-l 0411312000 81.40 80.38 I I1.04 2,580,890.59 320,862.99 5537.48 5,617.56 5,618.58 1.02 TW4-l 0412112000 81.10 80.08 lll.04 2,580,890.59 320,862.99 5537.68 5,617.56 5,618.58 1.02 TW4-l 0412812000 80.90 79.88 lll.04 2,580,890.59 320,862.99 5537.58 5,617.56 5,618.58 1.02 TW4-l 05/0r/2000 81.00 79.98 lll.04 2,580,890.59 320,862.99 5537.88 5,617.56 5,618.s8 1.02 TW4-r 05/ll/2000 80.70 79.68 lll.04 2,580,890.59 320,862.99 5537.58 5,617.56 5,6r8.58 r.02 TW4-l 05/15/2000 81.00 79.98 lll.04 2,580,890.59 320,862.99 5537.88 5,617.56 5,618.58 r.02 TW4-l 05/25/2000 80.70 79.68 l 11.04 2,580,890.59 320,862.99 5537.88 5,617.56 5,618.58 1.02 TW4-l 06/0912000 80.70 79.68 lll.04 2,580,890.s9 320,862.99 5537.9 5,617.56 s,618.58 1.02 TW4-r 06/1612000 80.68 79.66 lll.04 2,580,890.59 320,862.99 5537.88 5,617.56 5,618.58 1.02 TW4-1 061261?000 80.70 79.68 lll.04 2,580,890.59 320,862.99 5538.1 5,617.56 5,618.58 1.02 TW4-t 07106/2000 80.48 79.46 lll.04 2,580,890.59 320,862.99 5538.66 5,617.56 5,618.58 1.02 TW4-1 08i 15/2000 79.92 78.90 I I1.04 2,580,890.59 320,862.99 5538.33 5,6t7.56 5,618.58 1.02 TW4-l 09/08i2000 80.25 79.23 I I1.04 2,580,890.59 320,862.99 5539.9 5,617.s6 5,618.58 r.02 TW4-l t01r912000 78.68 77.66 lll.04 2,580,890.59 320,862.99 5540.55 5,617.56 5,618.58 1.02 TW4-l ll/30i2000 78.03 77.0r 111.04 2,580,890.59 320,862.99 5540.74 5,617.56 5,618.58 1.02 TW4-l 1210612000 77.84 76.82 I l1.M 2.580,890.59 320,862.99 ss42.39 5,617.56 5,618.58 t.02 TW4-l 0Ut4l200t 76.t9 75.17 I I1.04 2,580,890.59 320,862.99 5543.99 5,61'/.56 5,618.58 1.02 TW4-t 021091200t 74.59 73.57 lll.04 2,580,890.59 320,862.99 5544.96 5,617.56 5,618.58 1.02 TW4-t 0312912001 73.62 72.60 lll.04 2,580,890.59 320,862.99 5545.45 5,617.56 5,618.58 1.02 TW4-t 04130/2001 73.13 72.11 lll.04 2,580,890.59 320,862.99 5545.89 5,6t7.56 5,618.58 1.02 TW4-l 0sl3ll200l 72.69 7t.67 I I t.04 2,580,890.59 320,862.99 5546.19 5,6t7 .56 5,618.58 l .02 TW4- r 0612212001 72.39 7 r.3'7 I I 1.04 2,580,890.59 320,862.99 5546.50 5,617.56 5,618.58 1.02 TW4-l 0711012001 7?.08 71.06 I I1.04 2,580,890.59 320,862.99 5547.18 5,6t7.56 5,618.58 1.02 TW4-l 08/10/2001 71.40 70.38 I I1.04 2,580,890.59 320,862.99 5547.59 5,617.56 s,618.58 1.02 TW4-l 0911912001 '10.99 69.97 I I1.04 2,580,890.59 320,862.99 5547.84 5,6t7.56 5,618.58 1.02 TW4-l 1010212001 70.74 69.72 I I1.04 2,580,890.59 320,862.99 5548.12 5,6t7.56 5,618.58 t.oz TW4-t lll07l200l 70.46 69.44 I I1.04 2,580,890.59 320,862.99 5548.6s 5,617.56 s,6r8.58 1.02 TW4-t 121031200t 69.93 68.91 I I1.04 2,580,890.59 320,862.99 5548.87 5,617.56 5,618.58 1.02 TW4-1 0110312002 69.71 68.69 I I1.04 2,580,890.59 320,862.99 5549.37 5,6t7.56 5,618.58 1.02 TW4-l 0210612002 69.21 68.19 lll.04 2,580,890.59 320,862.99 5s50.00 5,6t7.56 5,618.58 1.02 TW4-l 0312612002 68.58 67.56 lll.04 2,580,890.59 320,862.99 5550.22 5,617.56 5,618.58 1.02 TW4-l 0410912002 68.36 67.34 111.04 2,580,890.59 320,862.99 5550.81 5,617.56 5,618.58 1.02 TW4-l 0512312002 67.77 66.75 1l1.04 2,580,890.59 320,862.99 5550.79 5,617.56 5,618.58 1.02 TW4-1 0610512002 67.79 66.77 111.04 2,580,890.59 320,862.99 5551.08 5,617.56 5,618.58 1.02 TW4-t 07t0812002 67.50 66.48 111.04 2,580,890.59 320,862.99 5551.54 5,6t7.56 5,618.58 1.02 TW4-l 0812312002 6'7.04 66.02 lll.04 2,580,890.59 320,862.99 5551.79 5,617.56 5,618.58 1.02 TW4-l 09ilv2002 66.79 65.77 I I1.04 I Easting (x) 2,s80,916. l l 2,580,916. I I 2,580,916. I I 2,580,916.11 2,580,916.11 2,580,916.11 2,580,916.11 2,580,916.1 I 2,580,9r6.11 2,580,916. r I 2,580,916.1 I 2,580,916. I I 2,580,916. I I 2,580,9r6.11 2,580,9t6.11 2,580,916.11 2,580,916.11 2,580,916.1 I 2,580,916.1 r 2,580,916.1 1 2,580,916. I I 2,580,916.11 2,s80,916.11 2,580,916.1 I 2,580,916.11 2,580,916.1 I 2,580,916.1I 2,580,916. I I 2,580,916. l I 2,580,916.1 I 2,580,9r6.11 2,580,9r6.1I 2,580,916. I I 2,580,916.11 2,580,9 1 6.1 1 2,580,9r6.11 2,580,9 1 6. u 2,580,9 16. r r 2,580,9 16. I I 2,580,916.1 I 2,580,916.11 2,580,916.11 2,580,916. I I 2,580,916.1 I 2,580,916.11 2,580,916.1 I 2,580,916.11 2,580,916.1 I 2,580,916.1 I 2,580,916.11 2,580,916. I I 2,580,916.1 I 2.580.916.1 I 5,622.76 5,624.72 5,622.76 5,624.72 5,622.76 5,624.72 s,622.76 s,624.72 5,622.76 5,624.72 5,622.76 5,624.72 5,622.76 5,624.72 5,622.76 5,624.72 5,622.76 5,624.'12 5,622."16 5,624.72 5,622.76 5,624.72 5,622.76 5,624.72 5,622.76 5,624.72 5,622.76 5,624.72 5,622.76 5,624.72 5,622.76 5,624.72 s,622.76 s,624.72 5,622.76 5,624.72 5,622.16 5,624.72 s,622.76 s,624.72 5,622.76 5,624.72 5,622.76 5,624.72 5,622.76 5,624.72 5,622.76 5,624.72 5,622.76 5,624.72 5,622.76 s,624.72 5,622.76 5,624.72 5,622.76 5,624.72 5,622.76 5,624.72 5,622.76 5,624.72 5,622.76 5,624.72 s,622.76 5,624.72 5,622.'76 5,624.72 5,622.76 5,624.72 5,622.76 5,624.72 5,622.76 5,624.72 5,622.7 6 5,624.72 5,622.76 5,624.72 5,622.76 5,624.72 5,622.76 5,624.72 5,622.76 5,624.72 5,622.76 5,624.72 5,622.76 5,624.72 5,622.76 5,624.72 5,622.76 5,624.72 5,622.76 5,624.72 5,622.76 5,624.'72 5,622.'76 s,624.72 5,622.76 5,624.72 5,622.76 5,624.72 5,622.76 5,624.72 5,622.76 5,624.72 5,622.76 5,624.72 5.622.76 1.96 TW4-2 1.96 TW4-2 1.96 TW4-2 1.96 TW4-2 1.96 TW4-2 1.96 TW4-2 r.96 TW4-2 1.96 TW4-2 1.96 TW4-2 t.96 TW4-2 1.96 TW4-2 1.96 TW4-2 1.96 TW4-2 1.96 TW4-2 1.96 TW4-2 1.96 TW4-2 1.96 TW4-2 1.96 TW4-2 t.96 TW4-2 1.96 TW4-2 1.96 TW4-2 1.96 TW4-2 1.96 TW4-2 1.96 TW4-2 1.96 TW4-2 1.96 TW4-2 1.96 TW4-2 1.96 TW4-2 1.96 TW4-2 1.96 TW4-2 1.96 TW4-2 1.96 TW4-2 r.96 'tw4-2 1.96 TW4-2 1.96 TW4-2 1.96 TW4-2 1.96 TW4-2 1.96 TW4-2 1.96 TW4-2 1.96 TW4-2 1.96 TW4-2 1.96 TW4-2 1.96 TW4-2 t.96 TW4-2 1.96 TW4-2 1.96 TW4-2 1.95 TW4-2 1.96 TW4-2 1.96 TW4-2 1.96 TW4-2 1.96 TW4-2 t.96 TW4-2 1.96 TW4-2 Total or Measured Depth to Total Depth Water to Water (blw.MP) (blw.LSD) 76.t5 74.19 76.15 74.19 76.40 74.44 76.20 74.24 76.40 74.44 76.00 74.04 76.t0 74.14 76.10 74.14 7s.70 73.74 75.60 73.64 75.s0 73.54 75.40 73.44 75.50 73.54 74.80 72.84 75.00 73.04 75.30 73.34 7s.20 73.24 75.00 73.04 74.90 72.94 74.90 72.94 74.60 72.64 74.90 72.94 74.60 72.64 74.60 72.64 74.50 72.s4 74.65 72.69 74.55 72.59 74.30 72.14 73.85 71.89 73.56 71.60 73.s2 71.56 77.t5 75.19 76.19 74.23 74.59 72.63 72.06 70.10 7 1.90 69.94 7 | .72 69.7 6 71.78 69.82 7t.28 69.32 7 t.03 69.07 70.93 68.97 70.58 68.62 70.s8 68.62 69.93 67.97 69.98 68.02 69.81 67.85 69.57 6'7.61 69.33 67.37 68.99 67.03 68.91 66.97 68.8 I 66.85 68.68 66.72 68.47 66.51 Total Depth Of Well t2t.t25 t2t.t25 12t.125 121.125 t2t.l25 121.125 t2t.t25 t21.125 t2t.t25 t2t.t25 121.125 121.125 t2t.t25 t2t.t25 t2t.t25 t2t.t25 t2t.t25 t2t.t25 t2t.l25 t2t.t25 t2t.t25 t2r.t25 tzt.l25 t2t.t25 tzl.t25 tzt.t25 t2t.t25 t2t.t25 t2t.t25 t2t.t25 121.125 t2t.t25 t2t.t25 t2t.t25 r2t.t25 121.125 121.125 121.125 121.125 t2t.t25 t2t.125 t2t.t25 t2t.tz5 t2I.t25 t2t.t25 t2t.t25 t2t.t25 12t.t25 t2t.t25 t2t.t25 t2t.t25 tzt.t25 t2t.t25 Water Levels and Data, Over f ime White Mesa Mill Temporary Well 4-2 "L'"lfl, ""10;;1*.. :,# ;"ff* *;lill" (z) t*rpl (L) Number Northing (v) 321,115.39 321,115.39 32 1,1 1 5.39 321,1 15.39 321,1 15.39 321,1 15.39 321,1 15.39 321,1 15.39 32 t,l I 5.39 321,1 15.39 321,115.39 321,1 15.39 321,t t5.39 12l,l 15.39 321,1 15.39 321,1 15.39 32 l,l 15.39 32r,t 15.39 321,1 15.39 32 1,1 r 5.39 32 1,1 1 s.39 321,1 15.39 321,lL5.39 32 l,l 15.39 321,1 15.39 32 1, il 5.39 321,|5.39 321,1 15.39 321,1 15.39 321,1 15.39 321,1 15.39 32 1, il 5.39 321,r 1s.39 321,1 r5.39 321,1 15.19 321,1 15.39 321,1 15.39 32 1, u 5.19 321,1 15.39 321,1 1s.39 321,1 15.39 32 r,1 1 5.39 32 1,1 I 5.39 321,lL5.39 321,1 15.39 321,1 15.39 32r,r 15.39 32r,1r5.39 321,1 15.39 321,1 15.39 321,1 I 5.39 32t,lL5.39 321,1 15.39 5,548.57 5,548.57 5,548.32 5,548.52 5,548.32 5,548.72 5,548.62 5,548.62 5,549.02 5,549.12 5549.22 5549.32 5549.22 5549.92 5549.72 5549.42 ss49.5Z 5549.72 5549.82 ss49.82 5550. l2 5549.82 5550. r 2 s550. I 2 5550.22 5550.07 5550. l 7 5550.42 5550.87 555r.r6 555 1.20 554't.57 5548.53 5550. I 3 5552.66 5552.82 55 53.00 5552.94 5553.44 5553.69 5553.79 5554. l4 5554.14 5554.79 5554.74 5554.9 r 5555. l5 5555.39 5555.73 5555.79 5555.9 1 5556.04 5556.25 Date Of Monitoring 111081t999 n/09/1999 01/02/2000 0U10t2000 0t/17 /2000 0U2412000 02/01/2000 02/07t2000 o211412000 02t23t2000 03/01/2000 03/08/2000 03/ t 5/2000 03/2012000 03/29/2000 04/04/2000 04/13/2000 04/21/2000 04t2812000 05/01/2000 0s/l 1i2000 05/ I 5/2000 05/2512000 06/09/2000 06n6t2000 06126/2000 07106t2000 08/ I 5/2000 09/08/2000 t0/19/2000 I l/30/2000 t2106/2000 0vr4/2001 02t09t200l 03t291200t 04/3012001 05/3 l/2001 06122t200r 07 I t0l200r 08/ r 0/200 r 09/t9tz00l t0/02/2001 11t07 t2001 12t0312001 0U0312002 02/06t2002 03t26/2002 0410912002 05t2312002 06105/2002 07t08t2002 08t2312002 091rv2002 { Water Levels and Data, Over Time White Mesa Mill Temporary Well 4-3 Mersurins Total or Easting Northing -:1:i Land surface ,"r", ' :::itn Monitor Measured (z) (v) Erevetion (LsD) "'[;.;;o, ofRiser *['*. Dateof '#"til" t:ili,::litrotarDeprh Monitoring (blw.MP) (blw.LSD) Of Well 2,580,918.88 321,663.86 5,565.78 5,631.21 5,632.23 1.02 TW4-3 1129fi999 66.45 65.4 141.00 2,580,918.88 321,663.86 5,566.93 5,63r.21 5,632.23 1.02 Tw4-3 0U02t2000 65.30 64.28 141.00 2,s80,9r8.88 321,663.86 5,567.03 5,63t.2t s,632.23 t.02 Tw4-3 0l/10/2000 6s.20 64.18 141.00 2,580,918.88 321,663.86 5,566.83 s,63t.2t s,632.23 t.02 TW4-3 01tt7t2000 6s.40 64.38 141.00 2,580,918.88 321,663.86 5,56'1.13 5,631.21 5,632.23 1.02 Tw4-3 0v24t2000 65.10 64.08 141.00 2,580,918.88 321,663.86 5,567.33 5,611.21 5,632.23 1.02 TW4-3 02/0U2000 64.90 63.88 141.00 2,580,918.88 32'.t,663.86 5,567.13 5,631.21 5,632.23 ',1.02 TW4-3 02/07t2000 65.10 64.08 141.00 2,580,918.88 321,663.86 5,567.43 5,631.21 5,632.23 t.02 TW4-3 02,L4t2000 64.80 63.78 141.00 2,580,918.88 32t,663.86 s,s67.63 s,63t.2t s,632.23 1.02 TW4-3 02t23t2000 64.60 63.s8 141.00 2,580,918.88 321,663.86 5,567.73 5,631.21 5,632.23 1.02 Tw4-3 03/01/2000 64.50 63.48 141.00 2,580,918.88 321,663.86 5567.83 5,63r.21 5,632.23 1.02 TW4-t 03/08i2000 64.40 63.38 141,00 2,580,918.88 321,663.86 5567.70 5,631.21 5,632.21 1.02 TW4-3 03/15/2000 64.s3 63.51 141.00 2,580,918.88 321,663.86 5568.03 5,63r.2t 5,632.23 r.02 TW4-3 03t20t2000 64.20 63.18 141.00 2,580,918.88 321,663.86 5567.93 s,631.21 5,632.23 1.02 TW4-3 03t29t2000 64.30 63.28 141.00 2,580,918.88 321,663.86 5567.63 5,631.2't s,632.23 1.02 Tw4-3 04t04t2000 64.60 63.58 141.00 2,580,918.88 321,663.86 5567.83 5,631.21 5,632.23 1.02 Tw4-3 04fi1t2000 64.40 63.38 141.00 2,580,918.88 321,663.86 5568.01 5,63r.21 5,632.23 1.02 TW4-3 04t2v2000 64.20 63.18 141.00 2,580,918.88 321,663.86 5568.23 5,63r.2t 5,632.23 1.02 TW4-3 04t28t2000 64.00 62.98 141.00 2,580,918.88 321,663.86 5568.13 5,63t.21 5,632.23 1.02 TW4-3 0s/01/2000 64.10 63.08 141.00 2,580,918.88 321,663.86 5568.s3 5,631.21 s,632.23 1.O2 TW4-3 05,lt/2000 63.70 62.68 141.00 2,580,918.88 321,663.86 5568.23 5,631.21 5,632.23 t.02 Tw4-3 05/t5t2000 64.00 62.98 141.00 2,580,918.88 321,663.86 5568.51 5,631.21 5,632.23 1.02 Tw4-3 05t25/2000 61.70 62.68 141.00 2,580,918.88 321,663.86 5568.61 5,631.21 5,632.23 r.02 TW4-3 06/09t2000 63.62 62.60 141.00 2,580,918.88 321,663.86 5568.69 5,631.21 5,632.23 1.02 TW4-3 06/16t2000 63.54 62.52 141.00 2,s80,918.88 321,663.86 5568.45 s,63t.21 s,632.23 1.02 Tw4-3 06126t2000 63j8 62.76 t41.00 2,580,918.88 321,663.86 5568.61 5,631.21 5,632.23 1.02 TW4-3 01/06t2000 61.62 62.60 141.00 2,580,918.88 321,663.86 5557.68 5,631.21 5,632.23 1.02 TW4-3 0"1106t2000 74.55 73.53 141.00 2,580,918.88 32r,663.86 5568.76 s,63t.21 5,632.23 1.02 TW4-3 08i15/00 61.47 62.45 141.00 2,580,918.88 321,663.86 5568.76 5,631.21 s,632.23 t.02 TW4-3 09/08/00 63.47 62.4s 141.00 2,580,918.88 321,663.86 5569.17 5,63t.2t 5,632.23 1.02 TW4-3 l0/19i00 63.06 62.04 t41.00 2,580,918.88 32t,663.86 5569.27 5,631.21 5,632.23 1.02 TW4-3 I l/30/00 62.96 61.94 141.00 2,580,918.88 321,661.86 5568.79 5,631.21 5,632.23 1.02 TW4-3 t2t06t00 63.44 62.42 141.00 2,580,918.88 321,663.86 ss69.43 5,63t.2r 5,632.23 r.02 TW4-3 0t/t4i0l 62.80 61.78 141.00 2,580,918.88 321,663.86 5569.75 5,631.21 5,632.21 t.02 TW4-3 02/09t01 62.48 61.46 141.00 2,580,918.88 32t,663.86 5570.34 s,631.21 5,632.23 t.02 TW4-3 03t29t01 61.89 60.87 141.00 2,580,918.88 321,663.86 5570.61 5,631.21 5,632.23 1.02 TW4-3 04t30t0t 61.62 60.60 141.00 2,580,918.88 321,663.86 5570.70 5,631.21 s,632.23 1.02 TW4-3 05/3li0t 61.53 60.51 141.00 2,580,918.88 321,663.86 5570.88 5,631.21 5,632.23 t.02 TW4-l O6t22t0t 61.35 60.33 141.00 2,580,918.88 321,663.86 557t.02 5,631.21 5,632.23 1.02 TW4-3 07n0tot 61.21 60.19 141.00 2,580,918.88 321,663.86 557t.70 5,63t.2t 5,632.23 t.O2 TW4-3 08/10/01 60.53 59.51 141.00 2,580,918.88 321,663.86 5572.12 5,631.21 5,632.23 1.02 TW4-3 09,l9t0t 60.1I 59.09 141.00 2,580,918.88 321,663.86 5572.08 5,631.21 5,632.23 1.02 TW4-3 t0t02tot 60.15 59.13 141.00 2,580,918.88 321,663.86 5572.78 5,631.21 5,632.23 1.02 TW4-3 lt07t0t 59.45 58.43 141.00 2,580,918.88 321,663.86 5s73.27 5,631.21 5,632.23 1.02 TW4-3 t2/03t01 58.96 57.94 141.00 2,580,918.88 321,,663.86 5573.47 5,631.21 5,632.23 1.02 TW4-3 0I/03t02 58.76 57.74 141.00 2,580,918.88 321,663.86 5573.93 5,631.21 5,632.23 1.02 TW4-3 02/06t02 58.30 57.28 141.00 2,580,918.88 321,663.86 55'74.75 5,63 l.2l 5,632.23 t.02 TW4-3 03/26t02 57.48 56.46 141.00 2,580,918.88 321,663.86 s574.26 5,631.21 s,632.23 1.02 TW4-3 04/09t02 s7.97 s6.9s 141.00 2,580,918.88 321,663.86 5575.39 5,631.21 5,632.23 r.02 TW4-3 05/23t02 56.84 55.82 141.00 2,580,918.88 321,663.86 5574.84 5,631.21 5,632.23 t.02 TW4-3 06105102 57.39 56.37 141.00 2,580,918.88 321,661.86 5575.33 5,631.21 5,632.23 1.02 TW4-3 07t08t02 56.90 55.88 141.00 2,s80,918.88 32t,663.86 ss7s.79 5,631.21 5,632.23 1.02 Tw4-3 08t23t02 56.44 ss.42 141.00 2,580,918.88 321,663.86 5576.08 5,631.21 5,632.23 t.02 TW4-3 09/1t02 56.15 55.13 141.00 Water Levels and Data, Over Time White Mesa Mill Temporary Well 4-4 water Measurine Total or Easting Northing Etevation Land Surface ;;; " :"":fn Monitor Measured (x) (y) (blw.MP) (LSD) rt.n"iio, ofRiser -,well Depth to Total Depth (z) j_r_j (L) Number Date Of Water to water Total Depth Monitoring (blw.MP) (blw.LSD) Of Well 2,580,936.51 320,594.77 5,514.39 5,612.30 5,613.49 l.l8 TW4-4 05/25t2000 99.10 97.92 114.50 2,580,936.51 320,594.77 5,518.99 5,612.10 5,613.49 l.l8 TW4-4 06109/2000 94.50 93.32 114.50 2,580,936.s1 320,594.77 5,512.15 5,6t2.30 5,613.49 Ll8 TW4-4 06/1612000 101.34 100.t6 114.50 2,580,936.51 320,594.77 5,517.47 5,612.30 5,613.49 l.l8 TW4-4 06t26t2000 96.02 94.84 I 14.50 2,580,936.51 320,594.77 5,520.15 5,612.30 5,613.49 t.l8 TW44 07t06t2000 93.34 92.t6 114.50 2,580,936.51 120,594.77 5,523.89 5,612.30 5,6t3.49 l.l8 TW4-4 08/15i2000 89.60 88.42 114.50 2,580,936.51 320,594.77 5,524.56 5,6t2.30 5,613.49 l.l8 TW4-4 09/08t2000 88.93 87.'15 114.50 2,580,936.51 320,594.77 5,523.62 5,612.30 5,613.49 l.l8 TW4-4 t0/19t2000 89.87 88.69 114.50 2,580,916.51 320,594.77 5,524.91 5,612.30 5,613.49 l.l8 TW4-4 fit30t2000 88.58 87.40 114.50 2,580,936.51 320,594.77 5,518.55 5,612.30 5,613.49 l.18 TW4-4 12t06t2000 94.94 93.76 I14.50 2,580,936.5 I 320,s94.77 5,528.93 5,612.30 5,613.49 1. t 8 TW4-4 0vt4t200t 84.56 83.38 I 14.50 2,580,936.51 320,594.77 5,529.09 5,612.30 s,613.49 t.t8 Tw4-4 02/09t2001 84.40 83.22 I 14.50 2,580,936.51 320,594.77 5,529.54 5,612.30 5,613.49 l.18 TW4-4 03t29t2001 83.95 82.'t7 114.50 2,580,936.51 320,594.71 5,530.24 5,612.30 5,613.49 l.l8 TW4-4 04t30t200t 83.25 82.07 I14.50 2,s80,936.51 320,s94.77 5,530.27 5,612.30 5,613.49 l.t8 Tw4-4 05t3U2001 83.22 82.04 I14.50 2,580,936.51 320,594.77 s,534.41 5,612.30 5,613.49 l.l8 TW4-4 06t22t200t 79.08 77.90 I14.50 2,580,936.51 320,594.77 5,533.15 5,612.30 5,613.49 l.l8 TW4-4 07n0t200r 80.34 79.16 I14.50 2,580,936.51 320,594.77 5,534.04 5,612.30 5,6t3.49 l.l8 TW4-4 08/10/2001 79.45 78.27 114.50 2,580,936.5r 320,594.77 s,s34.47 5,612.30 5,6t3.49 l.r8 TW4-4 09/19t200t 79.02 77.84 114.50 2,580,936.51 320,s94.77 5,533.29 s,612.30 5,613.49 1.18 TW4-4 r0t02/200r 80.20 79.02 ll4.s0 2,580,936.51 320,s94.77 5,533.87 5,6t2.30 5,613.49 l.18 'tw4-4 tU07t200t 79.62 78.44 I14.s0 2,580,936.51 320,594.77 5,534.28 5,612.30 s,6t3.49 t.t8 Tw4-4 12t03t200t 79.2t 78.03 I14.50 2,580,936.51 320,594.'7',7 5,534.72 5,612.30 5,613.49 r.18 TW4-4 0v03t2002 78.77 '17.59 I14.50 2,580,936.51 320,594.77 5,535.44 5,6t2.30 5,613.49 l.l8 TW4-4 02t06t2002 78.05 76.87 r 14.50 2,580,936.51 320,s94.77 5,s36.4s 5,6t2.30 5,6t3.49 l.l8 TW4-4 03t26t2002 77.04 75.86 114.50 2,580,936.51 320,594.77 5,536.41 5,612.30 5,6t3.49 1.18 TW4-4 04t19t2002 77.08 7s.90 114.50 2,580,936.51 320,594.77 5,537.34 5,612.30 5,613.49 1.18 TW4-4 05t23t2002 76.t5 74.97 114.50 2,580,936.51 320,594.71 5,537.31 5,612.30 s,6r3.49 l.l8 Tw4-4 06/0s/2002 76.t6 74.98 I14.50 2,580,936.51 320,594.77 5,537.98 5,612.30 5,613.49 l.18 TW4-4 07/08t2002 75.51 74.33 I14.50 2,580,936.51 320,594.77 5,538.83 5,6t2.30 5,613.49 1.r8 TW4-4 08/23t2002 74.66 73.48 u4.50 2,580,936.st 320,594.77 s,s39.28 5,6t2.30 5,6t3.49 1.18 TW4-4 09nU2002 74.2t 73.03 114.50 Easting (x) 2,s80,859.24 2,s80,8s9.24 2,580,859.24 2,s80,859.24 2,s80,8s9.24 2,580,8s9.24 2,580,859.24 2,s80,859.24 2,580,859.24 2,580,859.24 2,580,859.24 2,580,859.24 2,580,859.24 2,580,859.24 2,580,859.24 2,580,859.24 2,580,859.24 2,580,859.24 2,580,859.24 2,580,859.24 2,580,859.24 2,580,859.24 2,580,859.24 2,580,859.24 2,580,8s9.24 2,580,859.24 2,580,859.24 2,580,859.24 2,580,859.24 2,580,859.24 2,580,859.24 2,580,859.24 2,580,859.24 2,580,859.24 2,580,859.24 2,580,859.24 2,580,859.24 2,580,859.24 2,580,859.24 2,580,859.24 2,580,859.24 2,580,859.24 2,580,859.24 2,580,859.24 2,s80,859.24 2,580,859.24 2,580,859.24 2,s80,8s9.24 2,580,859.24 2,s80,859.24 2.580,859.24 2,s80,859.24 1.95 TW4-5 1.95 TW4-5 1.95 TW4-5 1.95 TW4-5 1.95 TW4-5 1.95 TW4-5 1.95 TW4-5 1.95 TW4-5 1.95 TW4-5 1.95 TW4-5 1.95 TW4-5 1.95 TW4-5 1.95 TW4-5 1.95 TW4-5 1.95 TW4-5 1.95 TW4-5 1.95 TW4-5 1.95 TW4-5 1.95 TW4-5 1.95 TW4-5 1.95 TW4-5 1.95 TW4-5 1.95 TW4-5 1.95 TW4-5 1.95 TW4-s 1.95 TW4-5 1.95 TW4-5 1.95 TW4-5 1.95 TW4-5 1.95 TW4-5 1.95 TW4-5 1.95 TW4-5 r.95 TW4-5 1.95 TW4-5 1.95 TW4-5 1.95 TW4-5 1.95 TW4-5 1.95 TW4-5 1.95 TW4-5 1.95 TW4-5 1.95 TW4-5 1.95 TW4-5 1.95 TW4-5 1.95 TW4-5 1.95 TW4-5 1.95 TW4-5 1.95 TW4-5 1.95 TW4-5 1.95 TW4-5 1.95 TW4-5 1.95 TW4-5 1.95 TW4-5 Total or Measured Depth to Total Depth Water to Water (blw.MP) (blw.LSD) 61.40 59.45 61.10 59.15 61.35 59.40 61. l0 59. 15 61.20 59.25 61.20 59.25 60.80 s8.8s 60.80 s8.8s 60.s0 s8.55 60.70 58.7560.66 58.7160.00 s8.05 60.40 58.45 60.70 58.75 60.50 58.55 60.30 s8.35 60.20 58.25 60.20 58.25 59.80 57.85 60.20 58.25 59.95 58.00 59.90 57.95 59.78 57.83 59.90 57.95 59.80 57.8s 59.6s 57.70 59.63 57.68 59.38 57.41 s9.r9 57.24 59. l0 57 .t5 59.07 s7.12 58.66 56.71 58.50 56.55 58. 16 56.21 57.98 56.03 57.98 56.03 57.89 55.94 57.78 55.83 57.53 55.58 57 .42 55.47 5't.34 55.39 57.21 5s.26 56.86 54.9t 56.91 54.96 56.74 54.79 56.31 s4.36 s6.58 s4.63 56. t 5 54.20 56.28 54.33 57.05 55. l0 55.80 53.8s 55.68 51.73 Total Depth Of Well t21.7 5 121.7 5 t2t.7 5 121.7 5 12t.7 5 121.7 5 t21.75 t21.75 121.7 s 121.7 5 12t.7 5 12t.7 5 12t.75 r21.75 121.75 121.75 tzt.75 t21.75 12r.75 t2t.7 5 t2r.7 5 121.7 5 t21.7 5 121.7 5 12t.75 tzt.'75 121.7 5 121.75 tzr.75 12t.75 12t.75 121.75 t2t.7s tzt.'75 t21.7 5 121.7 5 121.75 121.75 121.75 12t.7 5 12t.7 5 12t.7 5 tz|.7 5 12t.7 5 tzt.7 5 12t.75 tzt.7 5 t2t.7 5 t21.7 5 t2t.7 5 121.7 5 121.75 Water Levels and Data, Over Time White Mesa Mill Temporary Well 4-5 Measuring Land Surface Point Length Monitor (LSD) Etevation of Riser well (MP) G) Number Northing 0) 322,002.88 322,002.88 322,002.88 322,002.88 322,002.88 322,002.88 322,002.88 322,002.88 322,002.88 322,002.88 322,002.88 322,002.88 322,002.88 322,002.88 322,002.88 322,002.88 322,OO2.88 322,002.88 322,002.88 322,002.88 322,002.88 322,002.88 322,002.88 322,002.88 322,002.88 322,002.88 322,002.88 322,002.88 322,002.88 322,002.88 322,002.88 322,002.88 322,002.88 322,002.88 322,002.88 322,002.88 322,002.88 322,002.88 322,002.88 322,002.88 322,002.88 322,002.88 322,002.88 322,002.88 322,002.88 322,002.88 322,002.88 322,002.88 322,OO2.88 322,002.88 322,002.88 322,002.88 Water Elevation (z) 5,579.30 5,579.60 5,579.35 5,579.60 5,579.50 5,579.50 5,s79.90 5,579.90 5,580.20 5580.00 5580.04 5580.70 5580.30 5580.00 5580.20 5580.40 5580.50 5580.50 5580.90 5580.50 5580.75 5580.80 5580.92 5580.80 5580.90 558 1.05 558 1.07 558 1.32 558l.s l 5581.60 5581.63 5582.04 5582.20 5582.54 5582.72 5582.72 5582.8 I 5582.92 5583. l7 5583.28 5583.36 5583.49 5583.84 5583.79 5583.96 5584.39 5584. I 2 5584.55 5584.42 5583.65 5584.90 5585.02 s,638.75 5,63 8.75 5,638.75 5,638.75 5,638.75 5,638.75 5,638.75 5,638.7s 5,638.75 5,638.75 s,638.7s s,63 8.7s 5,63 8.75 5,638.7s 5,638.75 5,638.75 5,638.75 5,638.75 5,638.75 5,638.75 5,618.75 5,638.7s 5,63 8.75 5,638.7 5 5,638.7s 5,638.75 5,638.75 5,638.7s 5,638.75 5,638.75 5,638.75 5,638.7 s 5,638.75 5,638.75 5,638.75 5,638.7 5 5,63 8.75 5,63 8.75 5,638.75 5,638.75 5,63 8.75 5,63 8.75 5,63 8.75 5,63 8.75 s,63 8.75 s,63 8.75 5,63 8.75 5,638.7s s,638.7s 5,638.75 s,638.75 5,638.75 5,640.70 5,640.70 5,640.70 5,640.70 5,640.70 5,640.70 5,640.70 5,640.70 5,640.70 5,640.70 5,640.70 5,640.70 s,640.70 5,640.70 5,640.70 5,640.70 5,640.70 5,640.70 5,640.70 5,6q.70 5,640.70 5,640.70 5,640.70 5,640.70 5,640.70 5,640.70 5,640.70 s,640.70 5,640.70 5,640.70 5,640.70 5,640.10 5,640.70 5,640.70 5,640.70 5,640.70 5,640.70 5,640.70 5,640.70 5,640.70 5,640.70 5,640.70 5,640.70 5,640.70 5,640.70 5,640.70 5,640.70 5,640.70 5,640.70 5,640.70 5,640.70 5,640.70 Date Of Monitoring 01t02/2000 0Ut0/2000 0vt7t2000 0U24/2000 02/01/2000 02/07t2000 02/t412000 02t23t2000 03/0 I /2000 03/08/2000 03/l 5/2000 03120/2000 03/29/2000 04104/2000 04/13/2000 04/2U2000 04/28t2000 05/0 r /2000 05/lLt2000 05/t512000 05125t2000 0610912000 06fi6/2000 06/26/2000 07/06/2000 07/13t2000 08/ I 5/2000 09/08/2000 t0A9/2000 rU30t2000 t2/06/2000 0Ut4t200t 02/0912001 03t29/200t 04/301200r 05/3 1i200 I 06/22/200t 07 I t0/2001 08/ I 0i200 I 09ilg/200t r0t02/200t llt07 t200t 12t03/200r 0v03/2002 02t06t2002 03t26/2002 04109t2002 05123t2002 06105t2002 07t08t2002 08t23t2002 09/n12002 Water Levels and Data, Over Time White Mesa Mill Temporary Well 4-6 Total or Easting Northing -y"t:l Land Surface T;L';'* :::ilL Monitor Measured (x) (v) Elevation --a;;;--- ",.*i" of*iser *ff*" Dareof '#"til" t:ili,TlJtrotarDepth (MP) Monitoring (blw.MP) (blw.LSD) of well 2,580,893.58 320,343.83 5,522.28 5,607.33 5,608.78 1.4s TW4-6 0s12s12000 86.s0 8s.0s 100.00 2,580,893.58 320,343.83 s,52r.98 5,607.33 s,608.78 t.4s TW4-6 06/0912000 86.80 8s.3s 100.00 2,580,893.58 320,341.83 5,522.35 5,607.33 5,608.78 1.45 TW4-6 06/t612000 86.43 84.98 100.00 2,s80,893.s8 320,343.83 s,s22.t4 5,607.33 s,608.78 1.45 TW4-6 0612612000 86.64 8s.19 100.00 2,580,893.58 320,343.83 5,522.25 5,607.33 5,608.78 1.45 TW4-6 0710612000 86.53 85.08 100.00 2,580,893.58 320,343.83 5,522.35 5,607.33 5,608.78 1.45 TW4-6 08/15/2000 86.43 84.98 100.00 2,580,893.58 320,343.83 5,522.40 5,607.33 5,608.78 1.45 TW4-6 09/08/2000 86.38 84.93 100.00 2,580,893.58 320,343.83 s,522.40 5,607.33 5,608.78 1.4s TW4-6 t011912000 86.38 84.93 100.00 2,580,893.58 320,343.83 5,522.09 5,607.33 5,608.78 1.45 TW4-6 1113012000 86.69 85.24 100.00 2,580,893.58 320,343.83 5,522.29 5,607 .33 5,608.78 1.45 TW4-6 12t0612000 86.49 85.04 100.00 2,580,893.58 320,343.83 5,522.66 5,607.33 5,608.78 1.45 TW4-6 0Ut4l200t 86.12 84.67 100.00 2,580,893.58 320,343.83 5,522.72 5,607.33 5,608.78 1.45 TW4-6 0210912001 86.06 84.61 100.00 2,580,893.58 320,343.83 5,522.90 5,607 .33 5,608.78 t.45 TW4-6 0312912001 85.88 84.43 100.00 2,580,893.58 320,343.83 5,522.70 5,607.33 s,608.78 t.45 TW4-6 04t3012001 86.08 84.63 100.00 2,580,893.58 320,343.83 5,522.89 5,607 33 5,608.78 1.45 TW4-6 0513v200r 85.89 84.44 100.00 2,580,893.58 320,343.83 5,522.88 5,607.33 5,608.78 1.45 TW4-6 0612212001 85.90 84.45 100.00 2,580,893.58 320,343.83 5,522.96 5,607.33 5,608.78 1.45 TW4-6 0711012001 85.82 84.37 100.00 2,580,893.58 320,343.83 5,523.10 5,607.33 5,608.78 1.45 TW4-6 08i10/2001 8s.68 84.23 100.00 2,580,893.58 320,343.83 5,523.23 5,607.33 5,608.78 1.45 TW4-6 0911912001 85.55 84.10 100.00 2,580,893.58 320,343.83 5,522.9t 5,607.33 5,608.78 1.45 TW4-6 1010212001 85.87 84.42 100.00 2,580,893.58 320,343.83 5,523.25 s,607.33 5,608.78 1.45 TW4-6 rUo7l200l 85.53 84.08 100.00 2,580,893.58 320,343.83 5,523.46 5,607.33 5,608.78 1.45 TW4-6 1210312001 85.32 83.87 100.00 2,580,893.58 320,343.83 5,523.36 5,607.33 5,608.78 1.45 TW4-6 0110312002 85.42 83.97 100.00 2.580,893.58 320,343.83 s,523.50 5,607.33 5,608.78 r.45 TW4-6 0210612002 85.28 83.83 100.00 2,580,893.58 320,343.83 5,523.94 5,607.33 5,608.78 1.45 TW4-6 0312612002 84.84 83.39 100.00 2,580,893.58 320,343.83 5,523.75 5,607.33 s,608.78 1.45 TW4-6 0410912002 85.03 83.58 100.00 2,580,893.58 320,343.83 5,524.23 5,607.33 5,608.78 1.45 TW4-6 0512312002 84.55 83.10 100.00 2,580,893.58 320,343.83 5,523.98 5,607.33 5,608.78 r.45 TW4-6 0610512002 84.80 83.35 100.00 2,580,893.s8 320,343.83 5,s24.31 5,607.33 5,608.78 1.45 TW4-6 0710812002 84.47 83.02 100.00 2,580,893.58 320,343.83 5,524.36 5,607.33 s,608.78 1.45 TW4-6 0812312002 84.42 82.97 100.00 2,580,893.58 320,343.83 5,524.49 5,607 .33 5,608.78 1.45 TW4-6 0911112002 84.29 82.84 100.00 03/26t2002 56.31 04t09t2002 s6.s8 0512312002 56.15 06t05t2002 56.28 Water Levels and Data, Over Time White Mesa Mill Temporary Well 4-7 Total or Easting Northing -y"t:l Land Surface Measuring Lensth Monitor Measured (x) (v) Erevation '"",i:il,"* .,i#ji", orrier _["i:, Dateor ,#",il" ,:j"i,T:J.rotarDepth Monitoring (blw.MP) (blw.LSD) Of Well 2,580,872.64 320,988.26 5,552.37 5,619.87 5,621.07 1.20 TW4-7 nl29ll999 68.70 67.50 121.00 2,s80,872.64 320,988.26 5,553.57 s,619.87 5,621.07 1.20 TW4-7 0v0212000 67.50 66.30 121.00 2,580,872.64 320,988.26 5,553.87 5,619.87 5,621.07 1.20 TW4-7 0l/10i2000 67.20 66.00 121.00 2,580,872.64 320,988.26 5,5s3.72 5,619.87 s,621.07 t.20 TW4-7 0v17t2000 67.3s 66.1s 12r.00 2,s80,872.64 320,988.26 s,s53.97 s,619.87 5,621.07 1.20 TW4-'7 0v2412000 67.10 6s.90 121.00 2,580,872.64 320,988.26 5,553.87 5,619.87 5,621.07 1.20 TW4-7 0210112000 67.20 66.00 121.00 2,580,872.64 320,988.26 5,553.87 5,619.87 5,62r.07 t.20 TW4-7 0210712000 67.20 66.00 121.00 2,580,8'72.64 320,988.26 5,554.17 5,619.87 5,621.07 1.20 TW4-7 0211412000 66.90 65.70 121.00 2,580,872.64 320,988.26 5,554.27 5,619.87 5,621.07 1.20 TW4-7 0212312000 66.80 65.60 121.00 2,580,872.64 320,988.26 5554.37 5,619.87 5,621.07 1.20 TW4-7 03/01/2000 66.70 65.50 121.00 2,580,8'72.64 320,988.26 5554.37 5,619.87 5,621.07 1.20 TW4-7 03/08/2000 66.70 65.50 121.00 2,580,8'72.64 320,988.26 5554.2'7 5,619.87 5,621.07 1.20 TW4-7 031t512000 66.80 65.60 121.00 2,s80,872.64 320,988.26 5554.77 5,619.8't 5,62t.07 t.20 TW4-7 0312012000 66.30 65.10 121.00 2,580,872.64 320,988.26 5554.57 5,619.87 5,621.07 1.20 TW4-7 0312912000 66.50 65.30 121.00 2,580,872.64 320,988.26 5554.27 5,619.87 5,621.07 1.20 TW4-7 0410412000 66.80 65.60 121.00 2,580,872.64 320,988.26 5554.57 5,619.87 5,621.07 t.20 TW4-7 0411312000 66.50 65.30 121.00 2,580,872.64 320,988.26 5554.77 5,619.87 5,621.01 1.20 TW4-7 04/2112000 66.30 65.10 121.00 2,580,872.64 320,988.26 5554.87 5,619.87 5,621.07 1.20 TW4-7 04/2812000 66.20 65.00 121.00 2,580,872.64 320,988.26 5554.87 5,619.87 5,621.0'7 1.20 TW4-7 05/01/2000 66.20 65.00 121.00 2,580,872.64 320,988.26 5555.27 5,619.87 5,62t.07 1.20 Tw4-'.l 05/l t/2000 65.80 64.60 121.00 2,580,872.64 320,988.26 5554.97 5,6t9.87 5,621.07 1.20 TW4-7 05/15/2000 66.10 64.90 121.00 2,580,872.64 320,988.26 5555.27 5,6t9.87 5,62t.07 t.20 TW4-7 05125/2000 65.80 64.60 121.00 2,580,872.64 320,988.26 5555.33 s,6t9.87 5,621.07 1.20 TW4-7 06109/2000 65.74 64.54 r2r.00 2,580,8'12.64 320,988.26 5555.45 5,619.87 5,621.07 1.20 TW4-7 06/16/2000 6s.62 64.42 121.00 2,580,872.64 320,988.26 5555.22 s,6t9.8',7 5,621.07 1.20 TW4-7 06126/2000 65.85 64.6s 121.00 2,580,872.64 320,988.26 5555.45 5,619.8'7 5,621.07 1.20 TW4-7 0110612000 65.62 64.42 121.00 2,580,8'12.64 320,988.26 5555.74 5,619.87 5,621.07 1.20 TW4-7 08/15/2000 65.33 64.13 121.00 2,580,872.64 320,988.26 s5ss.96 5,619.87 5,621.07 1.20 TW4-7 09/08/2000 6s.l r 63.91 121.00 2,580,872.64 320,988.26 5556.20 5,619.87 5,62t.07 1.20 TW4-7 1011912000 64.87 63.67 121.00 2,580,872.64 320,988.26 5556.45 5,619.8'7 5,62t.07 1.20 TW4-7 I l/30/2000 64.62 63.42 121.00 2,580,872.64 320,988.26 5556.15 5,619.87 s,621.07 1.20 TW4-7 1210612000 64.92 63.72 121.00 2,580,872.64 320,988.26 5556.89 5,619.87 5,621.07 t.20 TW4-7 0vt4t200t 64.18 62.98 121.00 2,580,872.64 320,988.26 5s57.07 5,6t9.87 5,621.07 1.20 TW4-7 0210912001 64.00 62.80 121.00 2,580,872.64 320,988.26 5557.62 5,619.87 5,621.0'7 1.20 TW4-7 031291200t 63.45 62.25 121.00 2,580,872.64 320,988.26 5557.51 5,619.87 5,621.07 t.20 TW4-7 04/3012001 63.56 62.36 121.00 2,580,872.64 320,988.26 s557.77 5,619.87 5,621.07 1.20 TW4-7 05/3r/2001 63.30 62.10 121.00 2,580,872.64 320,988.26 5557.84 5,619.87 5,62r.07 1.20 TW4-7 0612212001 63.23 62.03 12t.00 2,580,872.64 320,988.26 5557.98 5,619.8'7 5,62r.07 r.20 TW4-7 0711012001 63.09 61.89 121.00 2,580,872.64 320,988.26 5558.33 5,619.87 5,621.07 1.20 TW4-7 08/10/2001 62.74 61.54 121.00 2,580,872.64 320,988.26 5558.57 5,619.87 5,62r.07 r.20 TW4-7 0911912001 62.50 61.30 121.00 2,580,872.64 320,988.26 5558.53 5,6t9.87 5,62r.07 r.20 TW4-7 1010212001 62.54 6r.34 121.00 2,580,872.64 320,988.26 5558.62 5,619.87 5,62t.07 1.20 TW4-7 lll07l200l 62.45 61.25 121.00 2,580,872.64 320,988.26 5559.03 5,6t9.87 5,621.07 1.20 TW4-7 1210312001 62.04 60.84 121.00 2,580,872.64 320,988.26 5559.08 5,619.87 5,62t.O7 1.20 TW4-7 0U0312002 61.99 60.'19 121.00 2,580,872.64 320,988.26 5559.32 5,619.87 5,621.07 1.20 TW4-7 0210612002 61.75 60.55 121.00 2,580,872.64 320,988.26 5559.61 5,619.87 5,621.07 1.20 TW4-7 0312612002 61.44 60.24 121.00 2,580,872.64 320,988.26 5s59.5s 5,619.87 5,621.07 1.20 TW4-7 0410912002 6t.s2 60.32 121.00 2,580,872.64 320,988.26 5560.06 5,619.87 5,62t.07 t.Zo TW4-7 0512312002 61.01 59.81 121.00 2,580,872.64 320,988.26 5559.91 5,6t9.87 5,621.07 1.20 TW4-'l 0610512002 61.16 59.96 121.00 2,580,872.64 320,988.26 5560.09 5,619.87 5,621.07 1.20 TW4-7 0710812002 60.98 59.78 121.00 2,580,872.64 320,988.26 5560.01 5,6t9.87 5,621.07 1.20 TW4-7 0812312002 6r.06 59.86 121.00 2.580.872.64 320,988.26 5560.23 5,619.87 5,621.07 1.20 TW4-7 0911112002 60.84 59.64 121.00 Water Levels and Data, Over Time White Mesa Mill TEMPORARY Well4-8 2,581,030.74 2,58r,030.74 2,581,030.74 2,581,030.74 2,s8 I,030.74 2,58t,030.74 2,58 1,030.74 2,58t,030.74 2,58 l,030.74 2,58t,030.74 2,58r,030.74 2,58 1,030.74 2,581,030.'.|4 2,581,030.74 2,s8 1,030.74 2,58 1,030.74 2,581,030.74 2,581,030.14 2,58t,030.74 2,58 I ,030.74 2,58t,030.74 2,58t,030.74 2,58r,030.74 2,58t,030.74 2,s81,030.74 2,581,030.74 2,58 1,030.74 2,581,030.74 2,581,030.74 2,58t,030.74 2,58 r,030.74 2,58 1,030.74 2,58 r,030.74 2,58 1,010.74 2,s8t,030.74 2,58t,030.74 2,58 1,030.74 2,581,030.74 2.58 1,030.74 2,58t,030.74 2,58 1,030.74 2,58 r,030.74 2,58 1,030.74 2,58t,O30.74 2,581,010.74 2,581,030.'74 2,581,030."t4 2,581,030.74 2,581,030.74 2,s8 1,030.74 2,581,030.74 2,581,030.74 Land Surface (LSD) 5,619.93 5,6 19.93 5,6 19.93 5,6 19.93 s,619.93 s,619.93 5,619.93 5,6 r 9.93 5,619.93 5,619.93 5,619.93 5,619.93 5,6 l 9.93 5,619.93 s,619.93 5,619.93 5,6 19.93 5,6 r 9.93 5,6 19.93 5,6 19.93 5,6 19.93 5,6t9.93 5,6 r 9.93 5,619.93 5,6 r 9.93 5,6 19.93 5,619.93 5,6 19.93 5,619.93 5,619.93 5,619.93 5,619.93 5,619.93 5,619.93 5,619.93 s,619.93 5,619.93 5,619.93 5,619.93 5,619.93 5,6 19.93 5,6 19.93 5,6 r 9.93 5,6 19.93 5,6 r 9.93 5,6 19.93 5,619.91 5,6t9.93 s,6 r 9.93 5,6 19.93 5,6 19.93 5.61 9.93 Length Monitor Of Riser Well (L) Number 1.47 TW4-8 1.47 TW4-8 t.47 TW4-8 I.47 TW4-8 1.4"/ TW4-8 1.47 TW4-8 1.47 TW4-8 1.47 TW4-8 r.47 TW4-8 t.47 TW4-8 1.47 TW4-8 t.47 TW4-8 1.47 TW4-8 t.47 TW4-8 1.47 TW4-8 t.47 TW4-8 1.47 TW4-8 1.47 TW4-8 1.47 TW4-8 r.47 TW4-8 t.47 TW4-8 1.47 TW4-8 1.47 TW4-8 t.47 TW4-8 1.47 TW4-8 1.47 TW4-8 1.4',7 TW4-8 1.47 TW4-8 r.47 TW4-8 1.47 TW4-8 t.47 TW4-8 t.47 TW4-8 1.47 TW4-8 t.47 TW4-8 t.47 TW4-8 t.47 TW4-8 t.47 TW4-8 1.47 TW4-8 1.47 TW4-8 1.47 TW4-8 1.47 TW4-8 1.47 TW4-8 1.47 TW4-8 t.47 TW4-8 1.47 TW4-8 1.47 TW4-8 1.47 TW4-8 1.47 TW4-8 1.47 TW4-8 1.47 TW4-8 1.47 TW4-8 1.47 TW4-8 Total or Measured Depth to Total Depth Wrter to Water (blw.MP) (blw.LSD) 75.00 73.53 75.20 73.73 74.90 73.43 75. l0 73.63 74.80 73.33 74.90 73.43 74.90 73.43 74.s0 73.03 74.45 72.98 74.35 72.88 74.35 72.88 74.30 12.83 73.90 72.43 74.00 72.53 74.20 72.73 74.00 72.53 73.80 72.33 73.70 72.23 77.70 72.23 73.40 7 l,93 73.70 72.23 73.50 72.03 73.50 72.03'13.40 71.93 73.53 72.06 73.45 71.98 73.24 71.77 73.00 7 t.s3 72.5t 7t.04 72.46 70.99 72.55 71.08 7 t.73 70.26 7 r.51 70.04 71.03 69.56 70.90 69.43 70.72 69.25 70.67 69.20 70.38 68.91 70.08 68.61 69.9t 68.44 69.76 68.29 69.59 68. r 2 69.18 67 .7 | 69.24 67.77 69.02 67 .55 68.55 67.08 68.51 67. l0 68.20 66.73 68.24 66.77 68.08 66.61 67.91 66.44 67 .7 t 66.24 Total Depth Of Well r 26.00 126.00 126.00 126.00 126.00 126.00 126.00 126.00 126.00 126.00 126.00 126.00 126.00 126.00 126.00 126.00 126.00 126.00 126.00 126.00 126.00 126.00 126.00 126.00 r 26.00 126.00 r 26.00 126.00 126.00 126.00 r 26.00 r 26.00 126.00 126.00 126.00 126.00 126.00 126.00 126.00 126.00 126.00 r 26.00 r 26.00 126.00 126.00 126.00 l 26.00 126.00 126.00 126.00 126.00 126.00 Northing 0) 320,97 6.89 320,976.89 320,976.89 320,976.89 320,976.89 320,976.89 320,976.89 320,976.89 320,976.89 320,976.89 320,97 6.89 320,976.89 320,976.89 3?0,976.89 320,976.89 320,976.89 320,976.89 320,976.89 320,976.89 320,976.89 320,976.89 320,976.89 320,976.89 320,976.89 320,976.89 320,976.89 320,976.89 320,976.89 320,976.89 320,976.89 320,976.89 320,976.89 320,976.89 120,976.89 320,976.89 320,976.89 320,976.89 320,976.89 320,976.89 320,976.89 320,976.89 320,976.89 320,976.89 320,976.89 320,916.89 320,976.89 320,976.89 320,976.89 320,976.89 320,976.89 320,9'76.89 320,97 6.89 Weter Elevation (blw.MP) 5,546.40 5,546.20 5,546.50 s,546.30 s,s46.60 5,546.50 5,546.50 5,546.90 5,546.95 5547.05 5547.05 5547.tO 5547.50 5547.40 5547.20 5547.40 5547.60 5547.70 5547.'70 5548.00 5547.70 5547.90 5547.90 5548.00 5547.87 5541.95 5548. l6 5548.40 5s48.89 5548.94 5 548.85 5549.67 5549.89 5550.37 5550.50 5550.68 5550.73 555 1.02 555 1.32 5551.49 5551.64 5551.81 5552.22 5552.16 5552.38 5552.85 5552.83 5553.20 5553. I 6 5553.32 5553.49 555 3.69 Measuring Point Elevation (MP) 5,621.40 s,62t.40 5,621.40 5,62t.40 5,62t.40 s,621.40 5,621.40 5,621.40 5,621.40 5,62t.40 5,621.40 s,62t.40 5,62t.40 s,62t.40 5,621.40 5,621.40 5,62t.40 5,62t.40 5,621.40 5,62t.40 5,621.40 5,621.40 5,621.40 s,62r.40 5,62t.40 5,621.40 5,621.40 5,621.40 5,621.40 5,621.40 5,62r.40 5,621.40 5,621.40 5,621.40 5,621.40 5,621.40 5,62t.40 5,621.40 5,621.40 5,621.40 5,62t.40 5,621.40 5,621.40 5,621.40 5,62r.40 5,621.40 5,62t.40 5,621 .40 5,62r.40 5,62t.40 5,62t.40 5,62t.40 Date Of Monitoring tt/2911999 0U02t2000 0 r/l 0/2000 0vt712000 0U24/2000 02lot/2000 02/07/2000 02/14t2000 02/2312000 0310v2000 03/08/2000 03115/2000 03120/2000 03/2912000 04/04t2000 04/t3t2000 04/2v2000 04/2812000 05/0 I /2000 0s/1U2000 05/ r 5/2000 0512512000 06t0912000 06/r6/2000 06126/2000 07106/2000 081 t5/2000 09/08i2000 r0/19/2000 I l/30/2000 t2/06/2000 0vt4/2001 02t09/2001 03t2912001 04t30/2001 05t31/2001 06/22/2001 0'7/t0/2001 08/ I 0/200 I 09/19/200t t0t02/2001 tU07 /2001 t2/03/2001 0v03/2002 0210612002 03t26t2002 04/0912002 05t23t2002 06/0st2002 0t/08t2002 08t2312002 09ilU2002 Water Levels and Data, Over Time White Mesa Mill TEMPORARY Well4-9 rl or Eastins Northing "X;::" Landsurrace :!TLii- #ltJL *;;,T' ffiil1"J rotarDepth(x) (v) ol (LSD) t'i,;;"' (") Number Date of water to water Totar Depth Monitoring (blw.MP) (blw.LSD) Of Well 2,s80,874.19 321,83r.07 5,577.09 5,636.u s,637.s9 r.48 TW4-9 t2/20/1999 60.50 59.02 12t.33 2,580,874.19 321,83r.07 s,s77.09 s,636.1l 5,637.59 1.48 TW4-9 0v02t2000 60.s0 s9.02 12r.33 2,580,874.19 321,831.07 5,577.29 5,636.1I 5,637.59 1.48 TW4-9 0t/10/2000 60.30 58.82 121.33 2,s80,874.19 321,83r.07 5,s77.09 5,636.11 s,637.s9 1.48 TW4-9 0vt7t2000 60.50 s9.02 l2l.3l 2,580,874.t9 321,83r.07 5,577.39 5,636.1I 5,637.59 1.48 TW4-9 0U2412000 60.20 58.72 121.33 2,580,874.19 321,831.07 s,s77.29 5,636.1I 5,637.59 1.48 TW4-9 021012000 60.30 s8.82 121.33 2,580,874.19 321,831.07 5,577.19 5,636.1I 5,637.59 1.48 TW4-9 0210712000 60.40 58.92 121.33 2,580,874.19 321,831.07 5,577.69 5,636.11 5,637.59 1.48 TW4-9 02/14t2000 59.90 58.42 12t.33 2,580,874.19 321,831.07 5,s77.69 5,636.11 5,637.59 1.48 TW4-9 02t23t2000 59.90 58.42 r2r.33 2,580,874.t9 321,831.07 5577.'19 5,636.11 5,637.59 1.48 TW4-9 03/01/2000 59.80 58.32 12t.33 2,580,874.19 32 I ,83 I .07 5577 .79 5,636. I I 5,637 .59 I .48 TW4-9 03i08/2000 59.80 58.32 r2r.33 2,580,874.t9 321,83 1.07 5577.89 5,636.ll 5,637.59 1.48 TW4-9 03i15/2000 59.70 58.22 121.33 2,580,874.19 321,831.07 5568.49 5,636.[ 5,637.59 1.48 TW4-9 03t20/2000 69.10 67.62 121.33 2,580,874.19 321,831.07 5578.14 5,636.11 5,637.59 1.48 TW4-9 03t29t2000 59.45 57.97 121.33 2,580,8'74.19 321,831.07 5577.84 5,636.11 5,637.59 1.48 TW4-9 04/04t2000 59.75 58.27 121.33 2,580,874.19 321,831.07 5578.04 5,636.11 5,637.59 1.48 TW4-9 0411312000 59.55 58.07 121.33 2,s80,874.19 321,831.07 5578.24 5,636.11 5,637.s9 1.48 TW4-9 0412112000 59.35 57.87 121.33 2,580,874.19 321,831.07 5578.39 5,636.1I 5,637.59 1.48 TW4-9 0412812000 59.20 57.72 t21.33 2,580,874.19 321,831.07 5578.39 5,636.11 5,637.s9 1.48 TW4-9 051OU2000 59.20 57.72 121.33 2,580,874.19 321,831.07 5578.79 5,636.11 5,637.59 1.48 TW4-9 05^v2000 58.80 57.32 121.33 2,580,874.19 321,83r.07 5578.39 5,636.1I 5,637.59 1.48 TW4-9 05/15i2000 59.20 s7.72 121.33 2,580,874.19 321,831.07 5578.79 5,636.11 5,637.59 1.48 TW4-9 05/25/2000 58.80 57.32 121.33 2,580,874.19 321,83t.0'7 5578.81 5,636.il 5,637.59 1.48 TW4-9 061O9t2000 58.78 57.30 121.33 2,580,874.t9 321,831.07 5578.89 5,636.11 5,637.59 1.48 TW4-9 06/16t2000 s8.70 57.22 121.33 2,580,874.19 321,831.07 ss78.74 5,636.1l 5,637.59 1.48 TW4-9 06/26/2000 58.85 57.37 12r.33 2,580,874.19 321,83t.07 5578.86 s,636.1I 5,637.59 1.48 TW4-9 07/06/2000 58.73 57.2s 12r.33 2,580,874.19 321,831.07 5579.04 5,636.1I 5,637.59 1.48 TW4-9 08i 15/2000 58.55 57.07 12r.33 2,580,874.t9 32r,811.07 5579.25 5,636.11 5,637.s9 1.48 TW4-9 09/08i2000 58.34 56.86 121.33 2,580,874.t9 321,83r.07 5579.59 5,636.11 5,637.59 1.48 TW4-9 t0/19t2000 58.00 56.52 121.33 2,580,874.19 321,831.07 5579.84 s,636.11 5,637.59 1.48 TW4-9 ll/30/2000 57.75 56.27 12r.33 2,580,874.19 32r,831.07 5579.7t 5,636.11 5,637.59 1.48 TW4-9 t2/06/2000 57.86 s6.38 r2t.33 2,580,874.19 321,831.07 5580.18 5,636.11 5,637.59 1.48 TW4-9 0t/14/200t 57.41 55.93 12t.33 2,580,874.t9 321,831.07 5580.30 5,636.1 5,637.59 1.48 TW4-9 02/09t200t 57.29 55.81 121.33 2,580,874.19 321,831.07 5580.66 5,636.11 5,637.59 1.48 TW4-9 03t29t2001 56.93 55.4s 121.33 2,s80,874.t9 321,831.07 5580.75 5,636.1I 5,637.59 1.48 TW4-9 04/30t200t 56.84 55.36 t2r.33 2,580,874.t9 321,831.07 5581.04 5,636.1l 5,637.59 1.48 TW4-9 05i31/2001 56.55 55.07 12t.33 2,580,874.19 32r,831.07 5581.12 5,636.1I 5,637.s9 1.48 TW4-9 061221200t s6.47 54.99 121.33 2,580,874.19 321,831.07 558l.ls 5,636.11 5,637.59 1.48 TW4-9 07tr0t2001 56.44 54.96 12t.33 2,580,874.t9 321,831.07 5581.51 5,636.1I 5,637.59 1.48 TW4-9 08/10/2001 56.08 54.60 121.33 2,580,874.19 321,831.07 5581.70 5,636.1I 5,637.59 1.48 TW4-9 09/l.9t2001 55.89 54.4t 121.33 2,580,874.19 321,831.07 558r.61 5,636.1I 5,637.59 1.48 TW4-9 t0t02t200t 55.98 54.50 121.33 2,580,874.19 321,83r.07 5581.83 5,636.11 5,637.59 1.48 TW4-9 ll07l200t 55.76 54.28 121.33 2,580,874.19 321,831.07 5582.17 5,636.11 5,631.59 1.48 TW4-9 t2t0312001 55.42 51.94 121.33 2,580,874.19 321,831.07 5582.21 5,636.n 5,637.59 1.48 TW4-9 0v03t2002 55.38 53.90 121.33 2,s80,874.t9 321,831.07 ss82.s7 s,636.11 5,637.s9 1.48 TW4-9 02t06/2002 ss.02 s3.s4 121.33 2,580,874.19 321,831.07 5583.12 5,636.11 5,637.59 1.48 TW4-9 03t26t2002 54.47 52.99 121.33 2,580,874.19 321,831.07 5582.77 5,636.1I 5,637.59 1.48 TW4-9 04/0912002 54.82 53.34 121.33 2,580,874.19 321,831.07 5583.21 5,636.11 5,637.59 1.48 TW4-9 05t23t2002 54.38 s2.90 121.33 2,580,874.19 321,831.07 5582.94 5,636.r I 5,637.59 1.48 TW4-9 06t05t2002 54.65 53.17 121.33 2,580,874.19 321,831.07 5582.71 5,636.1I 5,631.59 1.48 TW4-9 07t08t2002 54.88 53.40 12t.33 2,580,874.19 321,831.07 5583.67 5,636.1t 5,637.59 1.48 TW4-9 08t23t2002 s3.92 52.44 121.33 2,580,874.t9 321,831.07 5583.82 5,636.1I 5,637.59 1.48 TW4-9 09nv2002 53.77 52.29 121.33 0l/00/1900 0.00 0l/00/1900 0.00 Easting (x) 2,s80,649.2s 2,580,649.2s 2,s80,649.25 2,580,649.2s 2,580,649.25 2,s80,649.2s 2,580,649.25 2,580,649.25 2.580.649.25 Northing (y) 321,674.47 12t,674.47 321,674.47 321,674.47 32t,674.47 32t,674.47 321,674.47 321,674.47 321,674.47 Water Elevation (z) 5,576.7 5 5,s76.92 5,577.43 5,577.22 5,577.80 5,577.47 5,577.55 5,578.10 5,578.24 Water Levels and Data,Over Time White Mesa Mill Monitor Well TW4-10 Measuring Land Surface point Length Monitor Measured (LSD)ElevationofRiserWellDepthtoTotalDepth (Mp) G) Number Date of Water to water Total Depth Monitoring (blw.MP) (blw.LSD) Of Well 5,631.99 5,634.24 2.25 TW4-10 0t/03t2002 57.49 55.24 5,631.99 s,634.24 2.25 TW4-10 0y06/2002 57.32 5s.07 s,631.99 5,634.24 2.25 TW4-10 03t26/2002 56.81 54.56 5,631.99 s,634.24 2.2s TW4-10 04/09t2002 s7.02 54.77 s,631.99 5,634.24 2.25 TW4-10 05t23t2002 56.44 54.19 5,631.99 5,634.24 2.25 TW4-10 06/05/2002 s6.77 54.52 5,631.99 s,634.24 2.2s TW4-10 07/08t2002 s6.69 54.44 5,631.99 s,634.24 2.2s TW4-10 08t23t2002 56.14 53.89 5,631.99 5,634.24 2.25 TW4-10 09n1t2002 56.00 53.75 Water Levels and Data, Over Time White Mesa Mill Monitor Well TW4-11 water Lend Surfrce "Hil;" Length Monitor Elevation (LsD) Erevetion of Riser well (z) .*p) (L) Number Totel or Measured Depth to Total Depth Water to Weter (blw.MP) (blw.LSD) 75.30 73.60 74.89 73.t9 74.s9 72.89 74.78 73.08 74.32 72.62 74.61 72.91 74.40 72.70 74.t8 72.48 74.05 72.3s Total Depth Of Well Easting (x) 2,580,669. l0 2,580,669. r0 2,580,669. t0 2,580,669. l0 2,s80,669. l0 2,580,669. l0 2,580,669. l0 2,580,669. l0 2,580,669. l0 Northing (v) 321,238.89 321,238.89 321,238.89 32t,238.89 321,238.89 321,238.89 321,238.89 32 1,238.89 321,238.89 5,623.62 1.70 5,623.62 1.70 5,623.62 1.70 5,623.62 1.70 s,623.62 1.70 5,623.62 1.70 5,623.62 t.70 5,623.62 1.70 s,623.62 1.70 Date 0f Monitoring 0U03t2002 02t06t2002 5,548.32 5,621.92 s,s48.73 5,621.92 5,549.01 5,621.92 5,548.84 5,62t.92 5,549.30 5,621.92 5,549.01 5,621.92 5,549.22 5,621.92 5,549.M 5,621.92 5,549.57 5,621.92 TW4-ll TW4-11 TW4-l I 03t26t2002 TW4-l I 04t09t2002 TW4-l l 0512312002 TW4-l l 06/05/2002 TW4-t I 07/08/2002 TW4-l I 08/23t2002 TW4-r r 09/lt/2002 .- Water Levels and Data, Over Time White Mesa Mill Monitor Well T\il4-12 Erstrng Northing ,[",fi. Lendsurrace ::ti,!- o","1*1, \Tjil' H||:] rotrrDcpth(x) (v) <rl GsD) "fi;Ji" Gt Number Date of water ro wrter Totrt Depth Monitorlng (blw.MP) (blw.LSD) Of Well 2,581,403.10 321,694.82 5,580.91 5,622.38 5,624.23 1.85 TW4-12 08/2112002 43.32 41.47 2,581,403.10 321,694.82 5,581.54 5,622.18 s,624.23 l.8s rW4-12 09/n/2002 42.69 40.84 Water Levels and Data, Over Time White Mesa Mill Monitor Well TW4-13 Easting Northing (x) (y) 2,581,328.24 321,zts.86 2.581,328.24 32t.215.86 Water Elevation (z) s,529.66 5,618.09 5,530.66 5,618.09 Measuring Lrnd surfrce Point Length (LSD) Elevation of Riser (MP) G) Monitor Well Number Date Of Monitoring TW4-13 08/23/2002 TW4-13 09fiU2002 Totrl or Measured Depth to Total Depth Water to Weter (blw.MP) (blw.LSD) 90.28 88.43 89.28 87.43 Total Depth Of Well 5,619.94 t.85 5,619.94 1.85 Water Levels and Data, Over Time White Mesa Mill Monitor Well TW4-14 Erstlng Northing (x) (v) 2,580,231.28 320,s23.11 2,580,23r.28 320,523.t1 s,s18.90 s,6t0.92 5,s19.28 5,6t0.92 s,612.77 1.85 5,612.77 1.85 Monitor Well Number Date Of Monltoring TW4-r4 08/23t2002 TW4-14 09/1U2002 Total or Measured Depth to Total Depth Water to Wrter (blw.MP) (blw.LSD) 93.87 92.02 93.49 91.64 "r;F" Landsurrace :## .{;i1, Total Depth Of Well Water Levels and Data, Over Time White Mesa MiIl Monitor Welt TW4-15 Eestlng Northing(x) (v) 2,s80,321.28 121,699.03 2,580,321.28 321,699.03 Meesuring Lend Surface Point (LSD) Elevetion (MP) Length Monitor Of Rlser Well (L) Number Dete Of Monltoring 1.30 Tw4-15 0812312002 t.30 Tw4-15 09/ut2m2 Totrl or Measured Depth to Totel Depth Water to Wrter Olw.MP) (blw.LSD) 50.70 49.40 50.48 49. 18 Water Elevetion (z)Totrl Depth Of WelI 5,574.75 5,624.15 5,625.4s 5,574.97 5,624.15 5,625.45 'r Water Levels and Data,0ver Time White Mesa Mill Monitor Well TW4-16 Totrl or Erstins Northins "*Y;T;, Land surrace :Fi,l"t #l*I Yjil' Hffil rotar Depth(r) (v) - (;i -- GsD) "t#;i"' - (r) Number Date or wrter ro wrrer rotrr Depth Monitorlng (blw.MP) (blw.LSD) Of Well 2,580,186.31 121,271.06 5,562.91 5,622.t9 5,624.02 1.83 TW4-16 08t23t2002 6l.l I 59.28 2,580,186.31 32t,271.06 5,s63.45 5,622.19 5,624.02 1.83 TW+16 0911112002 60.57 58.74 Water Levels and Data, Over Time White Mesa Mill Monitor Well TW4-17 Measurins Tot'l or Easting Northing -y1:1_ Land surface ,"". ' :":i:n Monitor Meesured (x) (v) Erevarion o.;t "T#.;" .tf. ,*ffi:. Dateor ,#",jI" tlj"ri,:tj.rotarDepth Monitoring (blw.MP) (blw.LSD) Of Well 2,580,186.31 320,826.86 5,542.t7 5,623.80 5,625.24 1.44 TW4-17 08/23t2002 83.07 81.63 2,580,186.31 320,826.86 5,542.39 s,623.80 5,625.24 1.44 TW4-t7 09ilU2002 82.85 8t.41 Water Levels and Data, Over Time White Mesa Mill Monitor Well TW4-18 Easting Northing (x) (v) 2,580,777.ls 322,157.43 2,580,777.ls 322,157.43 Meesuring Land Surface Polnt Length (LSD) Elevrtion of Riser 0\ry) G) Monitor Well Number Date Of Monitoring TW4-18 08t21t2002 TW4-18 0911112002 Totel or Meesured Depth to Totel Depth Water to Water (blw.MP) (blw.LsD) 56.15 54.00 55.87 s1.72 Wrter Elevetion (z\Totel Depth Of Well 5,585.13 5,639.13 5,641.28 2.r5 5,585.41 s,639.13 5,641.28 2.r5 Water Levels and Data, Over Time White Mesa Mill Monitor Well TW4-19 Easting Northing (x) (v) 2,580,327.20 322,149.3s 2.580.327.20 322,149.35 Water Elevation (z\ 5,s81.88 5,629.53 5,s82.t4 s,629.53 Measuring Land surfece Point Length (LsD) Elevetion of Riser (MP) G) Monitor Well Number Date Of Monitoring TW4-19 08/23t2002 TW4-19 09/tU2002 Totol or Mersured Depth to Total Depth Weter to Wrter (blwMP) (blw.LSD) 49.s1 47.6s 49.25 47.19 Totel Depth Of Well 5,63 I .39 1.86 5,63 1.39 1.86 ab Water Levels and Data, Over Time White Mesa Mlll Monitor Well4A Total or Easting Northing -y"1::- Land surface Measuring Lenoth Monitor Measured (x) (v) Ere'Tton '"T"llT'* ",#l:, orn-*er .ff;1. Drteor ?"'li ':iir_?ii."rotar.Dcpth Monitorlng (blw.MP) (blw.LSD) Of Well 2,580,906.21 320,981.40 5,560,53 5,620.51 5,622.31 1.80 TW,MA 0812312002 61.78 59.98 2,580,906.21 !20,981.40 5,560.76 s,620.51 3,622.31 1.80 TW4-4A 0911112002 61.55 59.75 o Water Level Data Fall 2002 Piezometers P1 P2 P3 P4 P5 Piezometer Water Level Readings (all readings in feet below top ofcasing) Pt - 76.91 P2 - 15.91 P3 - 35.01 P4 - 59.03 P5 - 51.06 IxrsnxATroNAL UnnNruu (use) ConponATroN Independence Plaza, Suite 950 . 1050 Seventeenth Street o Denver, CO 80265 . 303 628 7798 (main) . 303 389 a125 (fax) September 6,2002 VIA OVERNIGHT DELIVERY Mr. William J. Sinclair Director, Division of Radiation Control Utah Department of Environmental Quality P.O. Box 144850 168 North 1950 West Salt Lake City, UT 841l4-4850 Transmittal of Brushy Basin Contour Map, White Mesa Mill Site Utah DEQ Notice of Violation and Groundwater Corrective Action Order UDEQ Docker No. UGQ-20-01 of August23,1999 Dear Mr. Sinclair: Enclosed please find an updated copy of the contour map approximating the top of the Brushy Basin contact in the area of the White Mesa Mill. This map incorporates the information obtained from the recent drilling completed as a part of the installation of additional chloroform investigation wells and the installation of piezometers near the existing wildlife ponds. If you have any questions please feel free to call me at (303) 389-4160. Very truly yours, */.'"-ZW'ft.%/ Harold R. Roberts Vice President - Corporate Development 4;\$$&F Q.o^'tb?i ^"flQtr"rttgD ?o L., Q.r"- .. t;,. Mr. William J. Sinclai0 September 6,2002 Page2 of2 Don Ostler, UDEQ, w/ attachments Dianne Nielson, UDEQ Loren Morton, DRC, w/ attachments David Cunningham, DEQ, SE District Health Department, w/o attachments Dave Arrioti, DEQ, SE District Health Department, w/o attachments Fred Nelson, Utah Asst. Attorney General, ilo attachments Terry Brown, U.S. EPA Region VIII, w/ attachments Richard Graham, U.S. EPA Region VIII, il attachments Dan Gillen, U.S. NRC, Washington D.C., w/ attachments William von Till, NRC, d attachments Charles Cain, U.S. NRC, Region IV, w/ attachments Ron F. Hochstein, IUSA, w/ attachments David C. Frydenlund, IUSA, w/ attachments Michelle R. Rehmann, IUSA, w/ attachments T. Kenneth Miyoshi, IUSA, il attachments Ron E. Berg, IUSA, w/ attachments \\ \\ d'\\ \\i Ni i\__ \_-- (< )=/F ^)Ar l-.r-/ =, I Ii [' ) \\,r l!=t'o:r- ----;F38S--___ 5450 __________r - - - - - -----.'------t 5 440i\\\___ S4JO "-d \1, \ "-"" "-t" J,----- --s--\___ S42o .t-{ ----- 5470 _\'-\ )._-_-=._:\ ,) ft-.- -7 \\\\_\ i\1 t"/\ ,^Q\ 6k, .-' r' ,,, )-)Ato 7 ,,r' 'o2o ..__ 28 .sr - ---. \\\\r. -\\\.. ,.-.._]:;___ ss.o t f--::-5s40 \\ ll lt t/(- S==:-*::: "Eoir- -sr==r S4gO z/' 4, li ir ir:l ti ll tl tl tl tl tl tl tl tl tl EXP LAN ATI ON o MW-ll 5479 o BASIN CONTACT IN FEET AMSL 5536 SHOWNG APPROXIMATE ELEVATION OF BRUSHY BASIN CONTACT E PIEZOMETER5552 SHOWING APPROXIMATE ELEVATION OF BRUSHY BASIN CONTACT '---.? CONTOUR LINE IN FEET AMSL, DASHED WHERE UNCERTAIN PERCHED MONITORING WELL SHOWNG APPROXIMATE ELEVATION OF BRUSHY TEMPORARY PERCHED MONITORING WELL FEET AMSL N A FEET AMSL I If 0 3000 SCALE IN FEET IN IN APPROXIMATE ELEVATION OF TOP OF BRUSHY BASIN Date gt05t02 Reference: 71800068 IxrBnuerro*orO UnaNrul,r (use) ConponArroN Independence Plaza, Suite 950 . 1050 Seventeenth Street o Denver, CO 80265 . 303 628 7798 (main) o 303 389 al25 (fax) May 3,2002 Via Airmail Mr. William Sinclair Director State of Utah, Department of Environmental Quality Division of Radiation Control 168 North 1950 West Salt Lake City, UT 84114-4850 Re: ChloroformlnvestigationSchedule Dear Bill: Please find enclosed a copy of the schedule for the short-term actions regarding the chloroform investigation at the White Mesa uranium mill. The key dates are as follows: Event Date Start of DNAPL Sampling Submiual of DNAPL Report Submittal of TW Work Plan Start of Well Installation Submit Drilling Results Hydraulic Analysis Work Plan Start of Pump Tests Report Submittal Tailings S o lution Char acterization Work Plan Start of Sampling Submiual of RCRA Analysis for Interim Action Plan Start of Interim Action Plan 07.08.02 09.23.02 05.t7.02 07.0r.02 08.30.02 05.24.02 07.08.02 08.23.02 05.31.02 07.01.02 05.10.02 08.r2.02 Mr. William Sinclair Re: Chloroform Investigation Schedule Page2 of2 As per our discussions, the week of July 8 - 12,2002 has been set as a week where a significant amount of field work will be done and where it is imperative that Loren Morten is on-site for that work. International Uranium (USA) Corporation will make every effort to maintain this schedule and we appreciate DEQ's ability to work with us on this tight schedule in order to further the chloroform investigation. Sincerely,? Ron F. Hochstein President and Chief Executive Officer Intemational Uranium (USA) Corporation RFH:mlh cc: David Frydenlund - IUSA Ken Miyoshi - IUSA Loren Morten - UDEQ Michelle Rehmann - IUSA Harold Roberts - IUSA William von TiII - Nuclear Regulatory Commission Encl. Document4 INmnNerroNeLf UneNruvr (use) ConponATIoN lndependence Plaza, Suite 950 . 1050 Seventeenth Street . Denver, CO 80265 o 303 628 7798 (main) o 303 389 4125 (fax) May 9,2002 Via Express Courier Mr. William J. Sinclair Division of Radiation Control State of Utah Department of Environmental Quality 168 North 1950 West Salt Lake City, UT 84114-4850 Re: Transmittal of Temporary Well and Piezometer Installation/Completion Report Utah DEQ Notice of Violation and Groundwater Corrective Action Order UDEQ Docket No. UGQ-20-01 of August 23, 1999 Dear Mr. Sinclair: In accordance with the updated Chloroform Investigation Schedule discussed with you on April 24,International Uranium (USA) Corporation ("IUSA") hereby transmits the enclosed summary of temporary well and piezometer installation at the White Mesa Mill to date, and construction schematics for all temporary wells and peizometers. lf you have any questions, please contact Michelle at (303) 389-4131. Yo Vice President and General Counsel ll \N\'it':ti* ' rf+,)'.]\L ',*1tr',a t' Mr. William J. Sinclair O May 9,2002 Page2 ofZ cc: Don Ostler, DEQ, with attachments Dianne Nielson, DEQ, without attachments Loren Morton, DRC, with attachments David Cunningham, DEQ, SE District Health Department, without attachments Dave Arrioti, DEQ, SE District Health Department, without attachments Fred Nelson, Utah Asst. Attorney General, without attachments Terry Brown, U.S. EPA Region VIII, with attachments Richard Graham, U.S. EPA Region VIII, with attachments Dan Gillen, U.S.NRC, Washington, D.C., with attachments Bill von Till, U.S. NRC, Washington, D.C., with attachments Charles Cain, U.S. NRC, Region IV, with attachments Michelle R. Rehmann, with attachments Ron F. Hochstein, with attachments Harold R. Roberts, with attachments T. Kenneth Miyoshi, with attachments Ronald E. Berg, with attachments S:\MRR\Chloroformlnvestigation\2002\Sinclair050902wellpiezocompletionrpttransmittal.doc HYDRO GEO CHEM, INC. Elnlirlnmenta.l Science (* Te chno logv May 8,2002 Michelle Rehmann lnternational Uranium Independen ce PLaza Suite 950 1050 17th Street Denver, CO 80265 Dear Michelle, This letter report provides abrief summary oftemporary well and piezometer installation at the White Mesa Site to date, and includes construction schernatics for all temporary wells and piezometers. t A detailed description of the installation of temporary wells TW4-1 through TW4-9 is provided in IUSA and HGC, 2000'. Tunporary wells TW4-10 and TW4-11 were instatled in December 2001, using a methodology similar to that ernployed in the installation of the previous wells. This methodology involved air rotary drilling supplanented by water/foam when needed. The new temporary wells were installed as part of the ongoing investigation into the occurrence of chloroform in perched water at the site. As before, drilling and construction was performed by Bayles Exploration, Inc., and borings logged by Lawrence Casebolt, under contract to International Uranium (USA) corporation (IUSA). Locations of all temporary wells are provided in Figure 1, which incorporates a new expanded base map that will be used to plot future well installations and analytical results. Well construction schematics for all tunporary wells, generated from information provided primarily by Mr. Casebolt, and boring logs prepared by Mr. Casebolt for ternporary wells TW4-10 and TW4-11, are included in the attachment. Five (5) piezometers were installed at the approximate locations shown in Figure 2 during December, 2001. These installations were placed to evaluate whether seepage from witdlife ponds may be influencing perched water levels at the site. I I USA and HCC, 2000. tnvestigation of Elevated Chloroform Concentrations in Perched Groundwaer at the Wnn. ffiffiffilrD, near Blanding. Utah. C :\7 I 8000tCORRESP\050202 MRLETTER. DOC 5I West Wetmore, Suite l0I Tucson, Arizona 85705-1678 r.c MAY 092002 Et' 520.2e3.rs00 s2o.2s3.tsso-Fax 8oo.727.5547-ToilFree The piezometers were constructed as pennanent installations with a borehole seal and a gravel pack in the annular space surrounding the screened interval. As with the temporary wells, drilling and construction was performed by Bayles Exploration, [nc. and borings logged by Lawrence Casebolt under contract to IUSA. The drilling method, air rotary supplernented by water/foam when needed, was also the same as for the ternporary wells. Well construction schematics, generated prirnarily frorn information provided by Mr. Casebolt, and boring logs provided by Mr. Casebolt, are included in the attachment. As shown in the logs and schematics, once borings were advanced a few feet into the Brushy Basin shale drilling was terminated except at Piezometer # 3, where the boring was advanced a little more than 40 feet into the Brushy Basin, then backfilled with 40 feet ofbentonite. The lower 40 feet of each boring was screened. Casing and screen were I inch diameter, schedule 40, flush-thread PVC. Once the casing and screen were installed, a gravel pack consisting of pea gravel was added to the annular space, up to the top of the screened interval. A seal of bentonite chips was then added, then the annular space grouted to the surface. Please call me in Tucson if you have any questions or comments. Stewart J. Smith Senior Hydrogeologist Attachments C:\7 I 8000\CORRESP\050202MRLETTER. DOC EXPANATION o tw4-2 temporary perched monitoring well perched monitoring well MW.4 o TEMPORARY PERCHED MONITORING WELL LOCATIONS \\ lt ll il lt t! . IT-I a lll-rt cP-taaLU a rr-lo \ o ['( \ r--frJ 'r\t- \ )f ;,'5^r ta \_' y.,/ \\'\ I,'' dc\r";/.1 1/1r-r / ( I I T58S FYPI ANATION lv -\ ,'^*24-J1-,2 u /*-t' . MW-II PERCHED MONITORING VGLL O TEMPORARY PERCHED MONITORING ITELL c P-l PIEZOMETER LOCATIONS TOP OF CASING ELEVATION: 5618.58 ft omsl 4" DIA PVC CAP covER (s GALLON BUCKET OR 8" DIA. PVC CAP) GROUND ELEVATION = 5617.56 ft omsl ,IOMINAL 11" DlA. BOREHOLE\71\l\\7\71\l\\7\7 10 8,' DIA PVC CASING 20 30 + NOMINAL 6 1/4" DlA. BOREHOLE 40 -. 50 UJ LJ LL -60FL L.Jo 4,, DIA. SCH 40 FLUSH THREAD PVC CASING 70 80 4,' DIA. .02 SLOT SCH 40 FLUSH THREAD PVC SCREEN 90 100 110 BRUSHY BASIN 4" DIA. PVC CAP APPROXIMATE DEPTH OF CONTACT WTH BRUSHY BASIN (NOr ro scALE) WELL CONSTRUCTION SCHEMATIC TW4-1 TOP OF CASING ELEVATION = 5624.72 ft omsl 4'' DIA PVC CAP covER (s GALLON BUCKET OR 8" DIA. PVC CAP) GROUND ELEVATION: 5522.76 ft omsl ,INAL 11" DIA. BOREHOLE:\l\\7\zz\z\\7rz 10 8" DIA PVC CASING 20 30 + NOMINAL 6 1/4" DlA. BOREHOLE 40 .. 50 ul L.JL- r60t-(L L.Jo 4,' DIA. SCH 40 FLUSH THREAD PVC CASING 70 80 4" DIA. .02 SLOT SCH 40 FLUSH THREAD PVC SCREEN 90 100 110 120 BRUSHY BASIN 4'' DIA. PVC CAP APPROXIMATE DEPTH OF CONTACT WITH BRUSHY BASIN (Nor ro scALE) WELL CONSTRUCTION SCHEMATIC TW4-2 TOP OF CASIIigELEVATION 4" DIA PYC CAP: 5632.23 ft omsl GROUND ELEVATION: 5631.21 ft omsl covER (5 GALLON BUCKET OR 8'' DIA. PVC CAP ' /. \ \-\ \/ /-/ z \ \-\\z l; MINAL 11" DIA. BOREHOLE/.\z\\7\71\/t\\7\7 8'' DIA PVC CASING 10 20 30 + NOMINAL 6 1/4" DlA. BOREHOLE 40 a- 50 LrJ L.J LL r60F(L Lrlo 4" DIA, SCH 40 FLUSH THREAD PVC CASING 70 80 4" DIA. .02 SLOT SCH 40 FLUSH THREAD PVC SCREEN 90 100 110 120 130 140 BRUSHY BASIN APPROXIMATE DEPTH OF CONTACT WTH BRUSHY BASIN 4" DIA. PVC CAP (NOT TO SCALE) WELL GONSTRUCTION SCHEMATIC TW4-3 TOP OF CASING ELEVATION: 5613.49 ft omsl 4'' DIA PVC CAP covER (s GALLON BUCKET OR 8" DIA. PVC CAP) GROUND ELEVATION = 5612.3 ft omsl 10 20 30 + NoMINAL 6 1/4" DlA. BoREHoLE 40 -50L.J LJ tJ- r60f-L LrJo 4,, DIA. SCH 40 FLUSH THREAD PVC CASING 70 80 4" DrA. .02 SLOT SCH 40 FLUSH THREAD PVC SCREEN 90 100 110 BRUSHY BASIN APPROXIMATE DEPTH OF CONTACT WTH BRUSHY BASIN PVC CAP (Nor ro scALE) WELL CONSTRUCTION SCHEMATIC TW4.4 TOP OF CASING ELEVATION: 5640.70 ft omsl 4,' DIA PVC CAP covER (5 GALLON BUCKET OR 8'' DIA. PVC CAP) GROUND ELEVATION = 5638.75 ft omsl 10 8" DIA PVC CASING 20 30 + NOMINAL 6 1/4" DlA. BOREHOLE 40 .. 50 t!l! u_ r60F(L UJo 4,, DIA. SCH 40 FLUSH THREAD PVC CASING 70 80 4" DtA. .02 SLOT SCH 40 FLUSH THREAD PVC SCREEN 90 100 110 120 BRUSHY BASIN APPROXIMAIE DEPTH OF 4'' DIA. PVC CAPCONTACT WTH BRUSHY BASIN (NOT TO SCALE) WELL GONSTRUCTION SCHEMATIC TW4-5 TOP OF CASING ELEVATION = 5608.78 ft omsl 4'' DIA PVC CAP covER (s cALLoN BUCKET OR 8" DIA. PVC CAP) GROUND ELEVATION: 5607.33 ft omsl OMINAL 11" DIA. BOREHOLE/ t\ t\\7\7 t\ I \\7\7 8" DIA PVC CASING 10 20 30 + NOMINAL 6 1/+" DlA. BOREHOLE 40 a. 50 Lrl UJL -60F o_ UJo 4" DIA. SCH 40 FLUSH THREAD PVC CASING 70 80 4" DtA. .02 SLOT SCH 40 FLUSH THREAD PVC SCREEN 90 100 BRUSHY BASIN 4,, DIA. PVC CAP APPROXIMATE DEPTH OF CONTACT WTH BRUSHY BASIN (Nor ro scALE) WELL CONSTRUGTION SCHEMATIC TW4.6 TOP OF CASING ELEVATION: 5621.07 ft omsl 4,, DIA PVC CAP covER (s cALLoN BUCKET OR 8,' DIA. PVC CAP) GROUND ELEVATION = 5619.87 ft omsl o {rwA 10 20 30 + NOMINAL 6 1/4" DtA. BOREHOLE 40 a. 50 Lrl Lrl LL r60F(L UJo 4'' DIA. SCH 40 FLUSH THREAD PVC CASING 70 80 4" DrA. .02 SLOT SCH 40 FLUSH THREAD PVC SCREEN 90 100 110 120 BRUSHY BASIN 4'' DIA. PVC CAP APPROXIMATE DEPTH OF CONTACT WTH BRUSHY BASIN (NOT TO SCALE) WELL CONSTRUCTION SCHEMATIC TW4-7 TOP OF CASING ELEVAT]ON = 5621.40 ft omsl 4'' DIA PVC CAP covER (5 GALLON BUCKET OR 8'' DIA. PVC CAP) GROUND ELEVATION: 5619.93 ft omsl o .1r r\\s\/ tr, \\\\7 l; {OMINAL 11" DIA. BOREHOLE\71\l\\7t71\l\\?\7 8" DIA PVC CASING 10 20 30 + NOMINAL 6 1/4" DlA. BOREHOLE 40 a- 50 LJtil LL -60F.(L Luo 4" DtA. SCH 40 FLUSH THREAD PVC CASING 70 80 90 '100 110 120 4" DtA. .02 SLOT SCH 40 FLUSH THREAD PVC SCREEN BRUSHY BASIN APPROXIMATE DEPTH OF CONTACT WTH BRUSHY BASIN 4'' DIA. PVC CAP (Nor ro scALE) WELL CONSTRUCTION SCHEMATIC TW4-8 TOP OF CASING ELEVATION: 5637.59 ft omsl 4" DIA PVC CAP covER (s GALLON BUCKET OR 8" DIA. PVC CAP) GROUND ELEVATION: 5636.11 ft omsl \)/z)//. r-vr\)/z)r/s ,IOMINAL 11" DIA, BOREHOLE\7 t\ t\\7 \7 2 \ l\\7 \Z 8" DIA PVC CASING 10 20 30 + NoMINAL 6 1/4" DlA. BoREHoLE 40 a- 50 UJ UJ LL -60F(L UJa 4" DIA, SCH 40 FLUSH THREAD PVC CASING 70 80 90 100 '110 120 4" DIA. .02 SLOT SCH 40 FLUSH THREAD PVC SCREEN BRUSHY BASIN APPROXIMATE DEPTH OF 4'' DIA. PVC CAPCONTACT WTH BRUSHY BASIN (Nor ro scALE) WELL GONSTRUCTION SCHEMATIC TW4.9 TOP OF CASING ELEVATION = 5634.24 ft omsl PVC CAP) covER (s GALLON BUCKET OR 8,, DIA. 4'' DIA PVC CAP GROUND ELEVATION: 5631.99 ft omsl l/zY1Yi*/uYl-r-vr\)zu) lttotvttNRL 11" DtA. BoREHoLE?\vl\l\\7\7/\t\\7\7 8'' DIA PVC CASING 10 20 30 + NOMINAL 6 1/4" DlA. BOREHOLE 40 a- 50 t]J UJ LL -60F(L LJo 4" DIA. SCH 40 FLUSH THREAD PVC CASING 70 80 4" DIA. .02 SLOT SCH 40 FLUSH THREAD PVC SCREEN 90 100 110 BRUSHY BASIN 4,, DIA. PVC CAP APPROXIMAIE DEP]H OF CONTACT WTH BRUSHY BASIN (NoT To scALE) 1 06' CONSTRUGTION SCHEMATIC TW4-10 TOP OF CASING ELEVATION: 5623.62 ft omsl 4" DIA PVC CAP covER (s cALLoN BUCKET OR 8" DIA. PVC CAP) GROUND ELEVATION = 5621.92 ft omsl //#IINAL 11" DIA. BOREHOLE\/\\7\ZZ\/\\7\7 10 DIA PVC CASING 20 30 + NOMINAL 6 1/4" DlA. BOREHOLE 40 Fs0IJ UJ LL r60F(L LrJa 4,, DIA, SCH 40 FLUSH THREAD PVC CASING 70 80 4" DtA. .02 SLOT SCH 40 FLUSH THREAD PVC SCREEN 4" DIA. PVC CAP 90 100 BRUSHY BASIN APPROXIMATE DEPIH OF CONTACT WTH BRUSHY BASIN (Nor ro scALE) GONSTRUCTION SCHEMATIC TW4-11 TOP OF CASING ELEVATION : 5655.46 ft omsl .I,' DIA. PVC CAP GROUND ELEVATION = 5654.41 ft omsl / l\-i$)),,,{.2,r\}xi(/.}>). <N9I,f.rX4L,7 ..b:.DrA. BoREHoLE\ 6" DIA PVC CASING 10 20 30 NOMINAL 4 Y+" DIA. BOREHOLE 40 CEMENT GROUT a- 50 LLI UJh r60t--(L UJo 1'' DIA. SCH 40 FLUSH IHREAD PVC BENTONITE SEAL CASING 70 80 1" DtA. SCH 40 O.O2 SLOT PVC FLUSH THREAD SCREEN 90 100 110 GRAVEL PACK (PEA GRAVEL) BRUSHY BASIN APPROXIMATE DEPTH OF CONTACT WTH BRUSHY BASIN (NOT TO SCALE) GONSTRUCTION SCHEMATIC PIEZOMETER rl TOP OF CASING ELEVATION : 5628.68 ft omsl 1'' DIA. PVC CAP GROUND ELEVATION: 5627.85 ft omd \./,/; / /-\<\\>>\//.((\\>>)/,(/,..\)}(\gy,t)t{t,l,W",,grl. BoREH oLE 10 6" DIA PVC CASING 20 NOMINAL 4 Y+" DIA. BOREHOLE 30 CEMENT GROUT 40 -50L.JulL. -60F(L Lrlo 1" DIA. SCH 40 FLUSH THREAD PVC CASING BENTONITE SEAL 70 .I" DIA. SCH 40 FLUSH THREAD O.O2 SLOT PVC SCREEN 80 90 100 GRAVEL PACK (PEA GRAVEL) BRUSHY BASIN APPROXIMATE DEPIH OF 1 00' CONTACT WITH BRUSHY BASIN (NOr ro scALE) WELL CONSTRUCTION SCHEMATIC PIEZOMETER 12 TOP OF CASING ELEVATION : 5637.96 ft omsl 1" DIA. PVC CAP GROUND ELEVATION = 5635.06 ft omsl /.+.'r7,\Zi,^#',ri)//.'.(..r:z)'tZ..f':h'Z'(S,/)).<'Y(J 10 NOMINAL 4 7+" CEMENT GROUT DIA. BOREHOLE 20 30 BENTONITE SEAL 40 -50hJ u_J LL -60FL lrJo 1" DtA. SCH 40 FLUSH THREAD PVC CASING GRAVEL PACK (PEA GRAVEL) 70 1,, DIA. SCH 40 O.O2 SLOT PVC FLUSH THREAD SCREEN 80 BRUSHY BASIN APPROXIMATE DEP]H OF 90 100 CONTACT WTH BRUSHY BASIN BENTONITE 1 00' (NOT TO SCALE) WELL CONSTRUCTION SCHEMATIG PIEZOMETER 13 TOP OF CASING ELEVATION : 5591.33 ft omsl 1'' DIA. PVC CAP GROUND ELEVATION: 5589.65 ft omsl t;::i.))t/,{t;}:}.r)1/.vS35 $srrygy.Ilt4l,.7,!3"....911.. BoR EH oLE 10 6'' DIA PVC CASING 20 CEMENT GROUT NOMINAL 4 Yl" DIA. BOREHOLE 30 40 1" DIA. SCH 40 FLUSH THREAD PVC CASING BENTONITE SEAL -. 50 t! LJh r60F o_ UJo 1" DtA. SCH 40 O.O2 SLOT PVC FLUSH THREAD SCREEN 70 80 GRAVEL PACK (PEA GRAVEL) 90 BRUSHY BASIN APPROXIMATE DEPTH OF CONTACT WTH BRUSHY BASIN (Nor ro scALE) WELL CONSTRUCTION SCHEMATIC PIEZOMETER 14 TOP OF CASING ELEVATION : 5584.38 ft omsl 1,, DIA. PVC CAP GROUND ELEVATION: 5582.88 ft omsl /..,(\)7/S{\}7/,({$)). '*l(;\gMJ) 41,7,b", DrA. BoREHoLE 10 6" DIA PVC CASING CEMENT GROUT NOMINAL + Y4" DIA. BOREHOLE 20 30 40 1" DIA. SCH 40 FLUSH ]HREAD PVC CASING f. 50 UJ UJL -60F(L ulo BENTONITE SEAL 70 80 90 100 110 1" DIA. SCH 40 FLUSH THREAD O.O2 SLOT PVC SCREEN GRAVEL PACK (PEA GRAVEL) BRUSHY BASIN APPROXIMATE DEPTH OF 107.5' CONTACT WTH BRUSHY BASIN (Nor ro scALE) WELL CONSTRUGTION SCHEMATIC PIEZOMETER 15 Et,---tl oilc" /2'?o'2oo) Geosogi* t. ee:aloll Drilling Co,Holc Progerty /ttl;fi ltttnttill project nh/-Y lrtatt 3 Unil No. Scc.- Trp. Counly Jaa Iaan Snte uh,l Locolioo No. 7/?$/o Rgc. - Elev. -..,{ err,s J-oF J- t0. ztorE - t o. ot,LL ' i FLUIO LfYJL REUANK9o 25. 5, ,7'f \ 10. t25 t7,t 20, 22,t, 2r.o 2?,f. 3 37,' 42,r' q?,f,. ,o.0 52.f b2,' 7?, 7i.o e,{- 9tf, ?0,0 ?ts ?;.b. ?7r. 82d- tol.f- / o?,r. / lo, t rz.f / /i. / t7.i- lu / ?-2,t- | 2r.o PEnCGTTAGS corPoSlrlor luAoc QQQQ@@@@@ €B@30t .ot @tot !.{3rl Hotc No. f0* tl No. Scc._ Twp. _ Rge. _ Elev. ptoe I or I r.o. ortll Q"i Fluto Lsvrl 4o nEuAnxso 2S 5.0 7i 35 37,f- q25, t/{., l7,f- 52.1. 55.0 57.f. b2,, bi 675 7ZS. 7i.o 77f lrlo 81.;- 8i. 8zr lo, ?z q{ ?vi- h2 lo i, /07,r- /to, ilz.t )/J' il7.r / tzz-f- /7i.t PERCEXTACC GOTPOSITIOX lll^oc QQQQQ@@@@ffi,}@@ PNELo, l, to. FeorE t.o. ortll lo-2,5 fl, FLUIO LEVEL REUARKS 2ao 22 2,f.0 zr,f- 3do 32,5: t5. 3?,s- qo.o ?2d qf,0 fl,i 5ao 5?5 ff. 5l,f 0A0 ir?.i CS,O 67i 740 ?2,i. 7i.o 77.i 8o.o 82.i. $.it> I7.f {o.o q z.;'. 1f,0 It{ r oo.O toz.{ /0f,0 1c7,f / /o,0ttz,i //i.0 r/t,i- 12o.D /?2 t' t Lf.b PERCEilTACE COCPOSIfloil IUAOC, *Y,. QQQQ@@@@@@ffi 3:li,i,r i:'ll"iJ.ffL Dri,ins' co @ta&rylea,ttin taa-Hore No. eqsuberbL P.oE t or I 7.O. PAOOE _ r.o. oRtLL IOO.O_FLUIO LEYEL n 2,5 tz.f r?.f. zz5. 2f,o z7'5 30. ,2.' 37' lo,o yt.f f$o N€UARK5 7.f 10,0 4Vt s0.0 d1.f 5?,{, o0.o o2.f 75 ns 82-f 62r czd 7ao 72.f- ,q2,9 js, t7,t lm , t025. lt7,f Uae tll.f L lq,f /, I PENCE}ITAGC COCPOSITrc}r IHAOE QQQQQ@@@@ffi@@ PAO| I oF _ EO. PnOrE _ t.o. ottlL lno.op FLUIO LFVCL R€UARKS0 2. 5.o 7t too t2 ls,0 l7,f 2ao 22,€ 25,0 27,f y.o t2.f Ito trf 10,0 12.{ 4to 121. 9.0 52.{ 5f,o s7.f (.oO 62., o5.O o?.f 70.t) 72,f 75.o 7r.f ,ao E?.f 87s ?o,o I ll ; lr II ll $ lr lr t lr lt II I lr lr ?2.i 7io ?tf /oz.S tof,, /07.f, ilo,o t/2.f, //f,. / t7,t- I tzz.Sl /2t1o QQQQ PERCEXTAG€ GOIIPOSITIO}I IUAGC @@@@@@@ I a I A,bnt h 't {,r j.,ti.ij I .,{ ProE I oF I to. rnorE r.o. ontll 9n.n FLUIO LEYEL R€MARKS ail la. 43/,t,o- 2.r. 6,o- 75- ,.' l?.1 ; /f'O- lZ,S 20. n.f- tio 27f 3ao 32.s 37f 10.0 f z.{ li,0t/vf {o,o 52,i SS.D 57,f 00,0 b2,5 6i.o 07f 70,0 - 72.i 7i,0 77{ 0ao 82{' 85.0 svf 1o.o ?25 1i.0 ,11.f / oaD /oz,f. tot0 lo7,f / ltl,o //z,i Itf.0 /tzf- / 20.0 ,22.i- r ZiD PERCEI{TAGE COUPOSITIOH IMAOE QQQQ@@@@@ffi$d#@ .,Jrt'J*g9., ''Cesalrft Dritting'co. &{b f,?/aaili^. frrc. Hote No. przrn/e,-t,cl/ts Unit No. Sec.- Twp. Loco lion Elev- etoc I or I 2.i 5,0 .. tt /40 i' /2,i o 22,i. 2sl,o 27,{ 3o,o 32,; tf.0' 17,{ zo.D 3fo 37.s qo.0 q2.f f i.o 17s {o.o f Z.t 5'5'.o J 7,t (?o,D b2.f, bf,t) 07,; 7O.O. 72,r- 7i.0 77,i- 8o 82.f- iti.o 87.f' ?o:oqz.i 1i,0 17,i 100.o tozf. t750 t 07i. t lo.o tl2.f 1/5:o // /.t' / zo.o I22. / 2i.o PERCEXTAGE COrlPOSTnOX rUAOEo2tott (# 30t ffi.ot to- PnorE t o. ontll lo'l.f FLUD LEVEL REilAnKs B;tdh.47/\l d'crl {tr+ r, rl rt I It h D rl ll ll tl tt rl ,l rl lr !l l l j 1l It It n I t, lr Ir t) o .9 Loa CL c.ostt, oo o o o co Eo oo Eoo g)c,6 o fo T G.cF r Complete items 3, 4a, - - " svvr.v' ror Jcr vrues l I srsv rvror I . F;;i'i"r;;#:'#";#lHr""" the reverse or this rorm so that we can return rhis I :"JfJJ:g,*.ices (for an t ,",r[.tn't form to the flont of the mailpiece, or on the back if space does not L n id^.oooo-,- nr.,pcrmit. rr'e rrrarrvreue, or on lne Dack if space does not I 1 tr AddreSSee,s AddreSS :fl1'"rJ;#'##E;:,fl1fls,?ffii,;.9;,."#!f;#?il8i3"f,'."1""i,,,1,""Si;f,l3TliJ I ,- *..,,.","oDerivery SENDER: : 33fl381: ll::: 1 andtor 2 tot addirionar services. I t atso wish to receive the r for fee. 4a. Article Number DENVER CO 80265 fl Return Receipt for Merchandise E COD 7. Date of ::Y f::f ;,hia r e s s 1 o n r Yl t ref, i6ii6 a or Agent) l{tr-??'iE9s,TJ,ii[r trw:/{? ",,,,*{,s,iillEB}fti8'|#i'Ifl'.Y."8#" ltr n"oi't"'"i (certiried 1050 sEvENfErrrrrl*s? u I L JJL' I fl Exoress Mail E lnsured xo o '4t<. PS Form 381 1, December .t g94 Domestic RGturnEGEr 02595-98-B-022e E0 TTtf, m JI EO E Ef rf Et EtrE EI a\- JI rl trl EIE r\- postage Certifred Fee _ Beturo Recerot Fno(Endorsemcn t Req u,re-ol festflcled Delrver, ro-{tsndorsemeot R*qirrJ State of Utatr Department of Environmental Quality Dianne R. Nielson, Ph.D. Executive Drector DIVISION OF RADIATION CONTROL Dane L Finerft,ock Director IoNM.|,r*,r*. Govemor GARYHERBERT Licutenant Gwemor March 9,2005 CERTIFIED MAIL RETURNED RECEIPT REOUESTED Mr. Harold R. Roberts Vice President - Corporate Development International Uranium Corporation Independen ce Plaza, Suite 950 I 050 Seventeenth Street Denver, CO 80265 SUBJECT:Groundwater Contamination Investigation Report and Groundwater Corrective Action Plan White Mesa Uranium Mill Near Blanding, Utah: August 23,1999 Notice of Violation and Groundwater Corrective Action Order UDEQ Docket No. UGQ-20-01 - Request for Additional Information Dear Mr. Roberts: We have reviewed the May 29,zl}4,International Uranium Corporation response letter and the May 26,2W4,Final Report Long Term Pumping At IVM-4, fW4-t9, ana fW+-t5 White Mesa Uranium Mill Near Blanding, Utah. After review of these reports we have determined that additional information is required. As you recall, the August 23,1999 DRC Notice of Violation and Groundwater Corrective Action (GCA) Order, Docket No. UGW20-01 required IUC to: 1.Submit within thirty (30) days of receipt of the Order a plan and timetable for conducting a Groundwater Contaminant Investigation (GCI) and submittal of a report for Executive Secretary approval, pursuant to the provisions of UAC R317-6-6.15(D), and Submit within thirty (30) days of receipt of the Order a plan and timetable for submittal, implementation, and completion of a Groundwater Corrective Action Plan (CAP) for Executive Secretary approval, pursuant to the provisions of UAC R317-6-6.15(D). 2. 168 North 1950 West . PO Box 144850 . Salr Lake City, UT 84114-4850 . phone (801) 5364250. fax (801) 533q97 T.D.D. (801) 5364414 . wttrtl.deq.unhgov lltnh! Where iileas connect" Mr. Harold Roberts March 9,2005 Page2 It's been over five years since the GCA Order was issued to IUC and the GCI and CAP are not yet completed. It is now time to complete the GCI and CAP. Within 30 days of the receipt of this letter please submit a schedule to complete the following: I. Groundwater Contamination Investigation Report We acknowledge progress since August 1999 investigating of the extent and migration of the chloroform contamination wherein IUC has installed 20 new wells at the facility. This work has led to better understanding of the problem. However, in order for the Executive Secretary to approve the Contamination Investigation report the following issues, in addition to other issues required in UAC R3l7-6-6.15(D), need to be resolved: L Source Identification and Delineation - We acknowledge IUC's position that the former leach fields are the only chloroform source terms at the facility. However, the DRC feels that Tailing Cells I and? are also a possible chloroform source for the following reasons: a) Facility history shows that the majority (approximately 70 to 8l%oby volume) of the chloroform used at the site was discharged to Tailing Cell 1, indicating it may be a possible chloroform source. Consequently, additional subsurface investigative confirmation work is required thru installation of monitoring wells in strategic locations between the former leach field and Tailing Cell 1. Chemical and hydrogeoloic data gathered from these new wells would assist in determining if Tailing Cell I is chloroform source. b) Monitor wells TW4-15 and TW4-16 are immediately adjacent to the east side of Tailing Cell2 and have had elevated chloroform concentrations 7,800 ug/l on 6123103 (Operations Report For NovemberlDecember 2003, ruC 2004) and 530 ugfl on 6122104 (2no Quarter 2A04 Monitoring Report), respectively. Both of these concentrations are well above the 70 ug/l groundwater quality standard. The chloroform concentrations in these wells may indicate leakage from TailingCell2 and a possible chloroform source. Additional subsurface investigative confirmation work in this area needs to be accomplished to evaluate Cell 2 as a chloroform source. c) DRC split sample results from September 2002 in monitor well TV/4- 17, adjacent to Tailing Cell2, had elevated concentrations of iron (6,600 ug/l), manganese (4,690 ug/l), nickel (57.1 ug/l), and zinc (222 ug/l). These were the highest concentrations of metals at the site and were well above upgradient concentrations detected in other monitoring wells. Hence, they may be an indication of possible leakage from Tailin g Cell 2. As a result of the above issues IUC's claim regarding the leach fields as the sole contaminant source is unsubstantiated. Lacking this confirmation work, the DRC must !, Mr. Harold Roberts March 9,2OO5 Page 3 conservatively conclude that the tailings cells are a possible chloroform contaminant source. 2. Need To Define Chloroform Plume Boundaries - the Chloroform plume is not bounded to the west and north of well T\ry4-19, or west of wells TrW4-15 and TW4-16. In addition, there is approximately 800 feet between TW4-4 and TW4-17 where the chloroform concentrations are unknown and if present may continue to migrate downgradient undetected. Therefore, new wells need to be installed in strategic locations to adequately bound the plume. 3. Joint Survey - The issue ofjoint orientation, density, and average aperture width is important because it has bearing on aquifer permeability and the potential for preferred groundwater flow pathways. Previously pump test analysis of two (2) wells at IUC, MW- 11 and MW-14, has concluded that aquifer conditions are controlled by fractures (2/93 Umetco/Peel Report, p.5-6; and6194 Umetco Report, p.2l). Previously, the Executive Secretary had determined it necessary to have a joint survey study of the bedrock formations at the edge of White Mesa in order to complete an assessment of the possibility of fracture controlled groundwater flow at the facility In a phone conversation on January 5, 2005, Mr. Harold Roberts expressed concern about the difficulty of interpolating joint sets at the edge of White Mesa to the area affected by the chloroform plume under the facility. We have considered your concern and in a follow-up phone conference of January 6, we agreed that in lieu of ajoint survey IUC would provide core drilling during installation of new monitor wells to better examine the possibility of fracture controlled groundwater flow at the facility. Please provide a proposal that identifies which monitor well locations and depth intervals wifl be core drilled and sampled. Please be prepared to properly preserve core samples for identification, physical characteristics testing (fracturing, porosity, hardness, etc.), and chemical analysis. If you agree with the above issues please provide a plan and schedule to complete the GCI within 30 days of the receipt of this letter. If you disagree please explain why or propose an alternative plan. II. tr'inal Groundwater Comective Action Plan (CAp) ln order for the Executive Secretary to approve the CAP, the following requirements need to be addressed and resolved prior to a 30-day public comment period [see UAC m17-6-6.15(E)]: l. Completeness and Accuracy of Corrective Action Plan [see UAC R317-6-6.15(E)(1U: The Executive Secretary must affirm that the ruC CAP is complete and accurate. As a part of this, the chloroform source(s) and plume must be identified and delineated. In addition, the chloroform plume must be bound and controlled. The CAP should discuss Mr. Harold Roberts March 9,2W5 Page 4 the selection of corrective action technology and the rational for its selection. The corrective action technology should contain site-specific design and construction details. 2. Action Protective of Public Health and the Environment [see UAC R3l7-6-6.15(EX2)l: The CAP should discuss how the corrective action technology and remediation activities will protect public health and the environment. 3. Action Meets Concentration Limits lsee UAC R317-6-6.15(EX3)l: The CAP should discuss how the corrective action technology and remediation activities will achieve corrective action limits specified in UAC R317-6-6.15(G). In addition, the CAP should describe how the facility would come to a decision that cleanup goals are achieved and site remediation is complete. 4. Action Produces a Permanent Effect lsee UAC R317-6-6.15(EX4)l: The CAP should discuss how the corrective action technology and remediation activities will permanently control or remove the pollutants to ensure the public that they are no longer a threat to the public health and environment. 5. Action May Use Other Additional Measures tsee UAC R317-6-6.15(E)(5)l: The Executive Secretary may consider additional measures in the CAP to better ensure that the criteria for factors specified in UAC R317-6-6.15(G) are meet. Please demonstrate how the CAP meets each of the above information needs. III. Unsolved And Additional Issues In order for the Executive Secretary to approve the CAP the following issues, in addition to other issues required in UAC R317-6-6.15(D), need to be addressed and resolved: l. New Observation Wells at TV/4-15 and TW4-19 - Previously the DRC asked that new observation wells to be installed north and west of pumping well TW4-19 (4127lC/DPIC Request, p.2). DRC reviewed the February 22,2005 Work Plan for Installation of 8 New Groundwater Monitoring Wells and Additional Chloroform Investigation Wells White Mesa Uranium Mill Near Blanding, Utah (Work Plan). The proposed three new well locations shown on Figure 2 of the Work Plan appear to be in the locations that will aid in bounding the chloroform plume and help determine drawdown and chloroform capture efficiency at well TW4-19. Please complete these wells as permanent observation wells in accordance to USEPA RCRA Technical Enforcement Guidance Document (TEGD) Chapter 6. Also, groundwater contours presented in Figure 5 of the HGC 2004 report do not indicate a drawdown cone at pumping well TW4-15, like that seen at pumping well MW-4. Therefore, their needs to be at least three observation wells, completed in strategic locations around pumping well TW4-15 to demonstrate drawdown and chloroform capture )' Mr. Harold Roberts March 9,2005 Page 5 efficiency. In the future, please insure that all wells selected for pumping are completed with nearby observation wells to verify drawdown and capture efficiency. 2. Capturine Chloroform Concentrations at TW4-16 and TW4-4 - Previously the DRC asked for a schedule to modify the pump and treat system to provide hydraulic capture of the chloroform plume in wells TW44 and TV/4-16 (4l27lW DRC Request, p.2). Based on the water levels presented in Figures 5 and 6 in HGC 2004, we agree that pumping from well TW4-15 is drawing down water at well TW4-16 (3.2 feet). However, the magnitude of this drawdown was not great enough to cause hydraulic capture. As a result, the groundwater contours indicate that near well TV/4-16 groundwater continues to flow south Another area lacking hydraulic capture of the plume is near well TW4-4 where contaminated groundwater continues to flow south. Therefore, we have concluded that the chloroform concentrations at wells TW44 and TW4-16 are still not being captured. Therefore, as requested in DRC letter dated Apil27, 2004, please modify pumping operations to demonstrate capture of the elevated chloroform concentrations at wells TW4-4 and TW4-16. Complete Well TW4-4 as a Pumping Well - In the April27,2004 DRC letter we requested that well TW4-4 be completed as a permanent well, in accordance to USEPA RCRA TEGD Chapter 6 in order to facilitate its use as a pumping well. Please modify the well constrgction accordingly. Please perform remedial construction of this well, and submit a well completion diagram for Executive Secretary approval, to verify well construction. Well Completion and Development - The Api127,2004 DRC request for well development of MW-4, TW4-15, TW4-16, T-W4-17, TW4-18 and T'W4-19 to the 5 NTU turbidity standard found in the USEPA RCRA TEGD Chapter 6 remains unresolved. Please develop these and all other TW series wells so they meet the USEPA RCRA TEGD 5 NTU standard, to the extent reasonably practicable. Recovery Test - The April 27,2004 DRC request for a schedule for a recovery test at all the pumping wells MW4, TW4-15, and T'W4-19 also remains unresolved. The necovery test should be performed after the installation of the observation wells around TW4-15 and TW4-19. Please perform the recovery test as outlined in Item 11, in the DRC letter dated, 4pri127,2004. Perched Zone Groundwater Hydraulic Testing - To better understand the preferred groundwater flow path(s) and velocities in the perched zone exiting chloroform wells T'w4-3, ml4-4, Tw4-6, Tw4-1l,Tw4-11 Tw4-13, and rw4-17 must be aquifer tested to determine local hydraulic conductivity. Please provide the results of this testing with the analysis thereof, for Executive Secretary review and approval. In addition, please ensure that all new wells installed are also aquifer tested to determine local permeability. 3. 4. 5. 6. Mr. Harold Roberts March 9,2005 Page 6 7. Need for Permanent Monitor Well Completions - The TW series wells are an important part of the chloroform contamination investigation. However, it appears that operation of the pump and treat system will require long-term groundwater head and quality monitoring from most of these wells. Also, wells used for compliance monitoring purposes must be completed as pennanent installations in accordance with the USEPA RCRA TEGD, as per UAC R317-6-6.30. Consequently the TW series wells must be completed as permanent monitoring wells. Please propose which wells will be completed as permanent monitoring wells. 8. Operations and Reporting Plan - Please submit a Revised Operations and Reporting Plan that addresses and resolves previous issues stated in DRC Apil27 ,20O4 (ltem 12) request. 9. Maintenance Plan for Pumping System - This Plan should address, among other issues, winterizing operations, and mechanical and electrical features. Please provide a maintenance plan and a schedule for Executive Secretary review and approval, to modify the pumping system to operate continuously during winter conditions. 10. Ouarterly Monitorine Reports - On January 10, 2005 DRC received six quarterly h thg 3d qurrt"r iOOl ru*pling event to tfre 4e qu"arter 200+ sampling ev_ent. The report for 2* quarter 2003 sampling event is still missing. Please send the 2nd quarter 2003 sampling ieport within 30 days of receipt of this letter. 11. Additional Monitoring Information - In a letter dated April I1,2002, DRC requested that IUC add dichloromethane, chloromethane, chloride, and carbon tetrachloride to the list of quarterly monitoring parameters in all future contaminant investigation groundwater sampling and analysis. In addition, the letter requested field redox measurements in all groundwater sampling at the facility. Other than the 2OO23,d quarter sampling performed in September 2002, the above parameters were not provided in any of the quarterly groundwater monitoring Reports provided in the January 10. 2005 submittal. Please provide this missing water quality sampling data, or explain why it was not collected. In addition we are missing copies of the original laboratory Reports for a number of quarterly sampling events. Please submit, within 30 days of receipt of this letter, the laboratory reports and chain of custody forms for the above listed parameters for all quarterly groundwater sampling events after April 2002. 12. Groundwater Monitoring Ouality Assurance Plan (OAP) - The IUC Ground Water Discharge Permit (Permit) requires a QAP (Part I.H.6). A QAP also needs to be developed for the CAP and could be incorporated in the QAP for the Permit. P1ease submit one QAP for the Permit and CAP. IvIr. Harold Roberts March 9,2005 PageT 13. Content of Ouarterly Monitoring Reports - The quarterly groundwater monitoring reports should include the following reporting format and content: a) Introduction b) Sampling and Monitoring Plan: Description of monitor wells sampled. Describe sampling methodology, equipment and decontamination procedures. Identify all quality assurance samples, e.g. trip blanks, equipment blanks, duplicate samples etc. c) Data Interpretation: Interpretation of groundwater levels, gradients, and flow directions. The interpretation would include a discussion on: l) A current site groundwater contour map,2) hydrographs to show groundwater elevation in each monitor well over time, 3) depth to groundwater measured and groundwater elevation from each monitor well summarized in a data table, that includes historic groundwater level data for each wel1, 4) an evaluation of the effectiveness of hydraulic capture of all contaminants of concern. Interpretation of all analytical results for each well, including a discussion on: l) a current chloroform isoconcentration map, 2) graphs showing chloroform concentration trends in each well thru time and, 3) analytical results for each well summarized in a data table, that include historic analytical results for each well. Provide an electronic copy of all laboratory results for groundwater quality monitoring conducted during the quarter. Please contact us so we may discuss and agree on the most efficient electronic format necessary. Conclusions and Recommendations Copies of IUC field records, laboratory reports, and chain of custody forms By way of a reminder, from this point forward we advise that all feature pumping wells, monitor wells, observation wells, and piezometers should be drilled and installed in accordance to USEPA RCRA TEGD Chapter 6, as permanent installations. Wells installed with no filter pack, annular cell and protective surface completions may allow debris to fall down the open area of the boring which may contaminate the groundwater and/or compromise well hydraulics. In addition, in the 11. lll. d) e) Mr. Harold Roberts March 9,2405 Page 8 feature if wells that do not have permanent completions and need to be points of compliance monitoring, will be required to have permanent completions [see UAC R317-6-6.3(D(6)]. Therefore, in order to prevent the integrity of the well and save costs in time and materials it best seryes the facility to install wells as permanent completions during initial well installation. Resolution of all the above open issues will allow us to proceed forward towards approval of the GCI and CAP and a public comment period in accordance with UAC R3l7-6-6.15(E). Thank you for your cooperation in this matter. Clearly, we need to understand your position regarding these open issues. Please respond to this information request with in 30 days of receipt of this letter. We would be happy to meet with you to discuss any of these open issues. Please contact Dean Henderson at 801-536-0046 with any questions. Utah Division of Radiation Control DLF/DCH:dh cc: Rob Herbert, DWQ Bill VonTill, NRC - Washington, D.C. F/."{UC_Cr_CAP_I-05 File: Intcmational Uranium Corporation - GW Permit ane L. F inertr@k Directdr INTBnNATTo*t Uneuruu (use) ConponerroN Independence Plaza, Suite 950 . 1050 Seventeentl Street . Denver, CO 80265 o 303 628 77g8 (main) o 303 3gg 4p1 gu<) May 28,2004 VIA OVERIVGIIT DELIVERY Mr. Dane L. Finerfrock Executive Secretary Utah Radiation Control Board Department of Environmental Quality 168 North 1950 West PO Box 144850 Salt Lake City, Utah 84114-4850 )-, .il{islr1- Re: Division of Radiation Confrol ("DRC") Review of Interim Report Long Term Pumping at MW-4 and TW4-19, Request for additional Information Dear Mr. Finerfrock: This is in response to the DRC's April 27,2}O4letter requesting additional information following the DRC review of the July 9, 2003 krterim Report Long Term pumping at MW-4 and TW4-19. Intemational Uranium (USA) Corporation's ("IUSA') responses to your request correspond to the numerical sequence of the DRC comments in the April27, 2004letter. l) The Final Report on Long Term Pump Tests at Mw-4, Tw4-19 and rw4-15, covering the period of April 2003 to December 2013,has been prepared by Hydro Geo Chem, Inc. ("HGC'), and is included as an attachment to this letter. 2) IUSA will work $rith HGC to determine the best location for installation of piezometers to the north and west of well TW4-19. As a part of working with DRC in preparation of the Groundwater Quality Discharge Permit ("GWeDp') for the White Mesa Mill ("MilI') IUSA has proposed the installation of additional groundwater monitoring wells for monitoring of the perched groundwater under, and down gradient of the Mill and tailings ponds. Language in the draft GWeDp requires submittal of a work plan for installation of the new monitoring wells within 30 days after issuance of the permit and installation of the monitoring wells within 60 days after work plan approval. ruSA will include the two additional piezometers in the work plan prepared for installation of the new monitoring wells, and install the piezometers at the time the drill rig is mobilized for installation of the monitoring wells. t FinerfrockLetter to Dane L. May 28,2004 Page 2 3)The Final Report on Long Term Pump Tests at MW-4, TW4-19 and TW4-15, prepared by HGC, indicates that TW4-16 hydraulically responded to the pumping of TW4-15 that was initiated on August 8, 2003. The drawdown reported in Tw4-16 was approximately 4 feet at the time pumping was stopped in late November. Based on this information, continued pumping of TW4-15 should provide capture of the chloroform plume in the area of TW4-16. well TW4-4 did not indicate drawdown from the pumping of the other wells. TW4-4 is known to be an extremely low yield well, and the effectiveness of pumping this well will be evaluated as a part of a long-term remediation plan. See additional comments on well TW4-4 inparagraphs 4 and 10, below. The necessity to gravel pack and seal well TW4-4 will be evaluated after the action proposed in paragraph 8 is evaluated. In the event it is determined to be advantageous to fully complete TW4-4 the work will be done in conjunction with the monitor well installation progftrm described in paragraph 2 above. Information on determination of confined or unconfined aquifer conditions is presented in the Report on Long Term Pump Tests at MW-4, TW4-19 and TW4- 15, prepared by HGC. This report is included with this letter. See paragraph 1 above. Mill maintenance personnel have been directed to devise a method to recover the lost bailer from TW4-13. ruSA will advise DRC on the efforts and if the bailer has been successfullyremoved from the well. Mill maintenance personnel have been directed to install 8-inch surface casings on all temporary wells that did not have the casing installed as a part of the original construction. This is primarily on wells Tw4-1 through Tw4-9. once the surface casings have been installed, an S-inch PVC cap with a 4-inch hole for the well casing will be installed. This work should be completed within the next 30 days. ruSA will advise DRC when the work is complete. All the wells used for pumping during the long term pump test showed high levels of suspended solids in the pumped water. This included MW-4, TW4-19 and TW4-15, all of which were gravel packed as a part of the initial construction. During the long-term pump test,327,360, 1,035,516 and 305,300 gallons of water were pumped from each of the wells respectively, at pumping rates providing for maximum draw down of the wells. All three of these wells were drilled by air rotary, with water and foam injection through the saturated zones. Drilling mud was not used for completion of the holes. HGC geologists suspect that the turbid water from the wells is inherent in the geologic formations and may be present regardless of any additional efforts to develop the wells. It is unclear why it is 4) s) 6) 7) 8) I inerfrockLetter to Dane L. F May28,2004 Page 3 critical that the water pumped from the temporary wells be required to meet EPA turbidity standards as a part of pumping the wells for removal of chloroform contaminated water. The procedure for restarting the pumping from Mw-4, TW4-15 and TW4-19, described in paragraphs 9 and 10, will hopefully eliminate the pump failures as a result of the high turbidity. 9 and 10) ruSA has located and purchased down hole water level probes and surface conhollers that will allow for setting of high and low pumping levels in MW4 and the TW wells used for long term remediation efforts. The equipment will allow ruSA to pump the wells at maximum pump capacity for short time durations, shut the pump down at maximum drawdown, and then restart the pump when the water level has recovered to a pre-determined level. Adjusfinents to the shut down and startup water levels can be made from control boxes located at each well head. Copies of the vendor information on the probe and controller are attached for you information. This pumping cycle will hopefully eliminate the problem previously encountered with plugging of the pumps and flow meters due to continuously pumping at extremely low flow rates from the wells. As soon as the control equipment is received and installed, IUSA will begin testing of the individual wells to establish the optimum pumping levels for MW-4, TW4-15 and TW4-19. ruSA will advise DRC when the pumping has started and when the individual wells are operating at steady state conditions. IUSA will continue to collect water samples for chloroform and nitrate analysis on a monthly basis from all pumping wells, and water levels in the nearby wells will be monitored on the schedule maintained up to the end of pumping last November. 1l) The ability to conduct the recovery test planned for the end of the long term pump test was lost when mechanical failure of some of the pumping equipment and freezing conditions resulted in termination of pumping from all the wells in late November 2003. Because of the unplanned shutdown of the pumps IUSA was unable to conduct the recovery test as initially planned. Based on the pumping plan described in paragraph 9 and 10, above, it is uncertain if we will see the same draw down in all the adjacent wells as we did during the Long Term Pump Test. After the pumps have run for a reasonable time period under the proposed operating plan (no less than 60 days under steady state conditions) IUSA and HGC will evaluate the draw down information and consult with DRC on the necessity to conduct a recovery test and if there is basis for correlation of the data from a recovery test with the previous Long Term Pump Test data. 12) IUSA will continue to report pumping data and analytical data to DRC on a monthly basis according to the format established in the work plan for the Long Term Pump Test. IUSA will update the criteria for monthly reporting to the DRC in the form of a revised Operations and Reporting Plan, incorporating the changes to the pumping procedures, the additional pumping wells, and the information l inerfrockLetter to Dane L. F May 28,2004 Page 4 requested in item 12 of DRC's April 27 letter. The Plan will be submitted to DRC for review and approval by no later than June 30, 2004. Until then the previously established reporting and sampling procedures will be followed. l3)kt order to ensure the long term operation of the pumping system IUSA will prepare and implement a Maintenance Plan to ensure that the pumps andpipelines will be protected from the effects of winter time conditions, and for routine, scheduled maintenance of the system. ruSA will submit the Maintenance Plan to DRC not later than July 15, 2004. These comments hopefrrlly address the requests detailed in your Apil27,2004 letter. If you have any additional comments please feel free to contact me at 303.389.4130, or Harold Roberts at 303.389.4160. Da{tp C. Fr}denlund Vice President and General Council Attachment cc: William Sinclair, UDEQ Loren Morton, UDEQIDRC Ron F. Hochstein T. Kenneth Miyoshi Harold R. Roberts Click to go to www.geotechenv.com Fluid Level Sensor Geotech Fluid Level Sensor Geotech's line of submersible pressure sensors are designed for ruggedness and long life to meet the harsh environments encountered in liquid level measurement and controt. MAXIMUM RATINGS Supply Voltage Supply Current Maximum pressure Loop resistance lsolation, loop to earth ground PERFORMANCE Output Accuracy Non-linearity Zero error Span error Compensated Temperature range Operating Temperature range Long Term stability Response Time ENVIRONMENTAL Position Effect Vibration Shock Life PHYSICAL Sensor Length Sensor Diameter Sensor Weight Proof Pressure Burst Pressure Media compatiblity STOCK ITEMS Sealed gauge and absolute sensors 0.1 0 % of span for 90' rotation No change after 10G RMS 20 to 2000 Hz No change after 100Gs for 11 m 1 million pressure cycles High accuracy and repeatability Fully temperature compensated AII wetted materials are 316 Stainless Steel Designed to be intrinsically safe 100% computer tested and calibrated Complete range of signal outputs Choice of absolute or sealed gauge transducers Optional "Probe Pal" signal booster & noise filter for accuracy at deeper depths. Geotech Fluid Level Sensor 12-36 )4 0-30,50, 100 200,300,500, 1000 0-400 500 4-20 0.25 0.1 5 10.1 10.1 0 to B0' -4O to 125' 10.3 2 VDC mA (self limited) PSI absolute o VAC peak, VDC mA % of Span, BFSL % of Span, BFSL % of Span % of Span C % of Span over 6 months milliseconds lnches lnches Grams 71tB 1.0 348 3x or 1200 PSl, whichever is less 5x of 2400 PSl, whichever is less Liquids or gasses compatible with 31655 0-200 PSI 500'cable 0-300, 0-350 PSI 1000'cable 0-500 PSI 1500'cable All other lengths to customers order add 3 days to normal 2 day delivery Notes - Probe is protected from reverse polarity supply connection. - Cable is double shielded, double jacketed polyurethane. CALL GEOTEGH TODAY (800) 833-7958 Geotech Environmental Equipment, lnc. 8035 East 40th Avenue . Denver, Colorado 80207 (303) 320-4764 . (800) 833-7958 . FAX (303) 322_7242 email: sales@geotechenv.com website: www.geotechenv.comFluid Level Sensor.qxd Rev.1 ot Position Descri CU 3OO Product No. I 96422776 The control uni t CU 300 i s devel oped for the SQE submersi bl e pumps. The CU 300 enabl es:-control of the pump on the basi s of sensor si gnal s, -sett.i ng of operati ng parameters, and -moni tori ng of operati on and al arm i ndl cati on, i f any, The CU 300 i ndi cates the fol I owi ng al arms: -No contact, -overvol tage, -Undervol tage,-Dry runni ng, -Speed reduct.i on, -overtemperature, -Overl oad, -Sensor al arm. The CU 300 recei ves al arm si gnal s from the motor for the fol I owi ngparameters: -Dry runni ng.-lnci pi ent pump,hotor defect.-Too hi gh temperature i n motor el ectroni cs.-Supply failure. As standard, the CU 300 i ncorporates an al arm si gnal rel ay. The CU 300 enabl es the use of: -Remote control R'100: Wi rel ess i nfra-red remote control by means ofthe Rl0O enabl es change of factory setti ngs and moni tori ng of the i nstal I ati on by cal I i ng up actual operati ngdata, e. g. speed, operati ng hours and power consumpti on.-External sensors: Recepti on of data from external sensors and controlaccordi ng to the data recei ved, e. g. fl ow rate, pressure, water I evel and conducti vi ty-External potentiometer SPP 'l: Manual speed control. Price Price on request Mi ni mum ambi ent temperature: -22 'F Maxi mum ambi ent temperature: 122 "F Max output for rel ay: 250 VAC / 8A / AC-1 Techni cal : Approval s on namepl ate: Materi al s: Materi al : El ectri cal data: Mai ns frequency: Rated vol tage: Rated current: Encl osure cl ass ( I EC 34-5) : Othersr Net wei ght: Language i n documentati on: UL, CUL, JET, CISPR_14_TiCKmarK, CE PPO 60 Hz1 x 100-240 V 130 A I P55 4.41 lb GB GTTI'NEDF(OS ,,x Company name: Created by: Phone: Fax: Date: 1 -800-833-7958 303-322-1242 0511812004 1t7 CU 3OO @ lnstallation and operating instructions O No contact O Overvoltage O Undervoltage O Dry running O Speed reduction O Overlemperature O Overload O Sensoralarm CONTENTS 1. General 1.1 Expansionpossibilitiss1.2 On/Off button 2. CU 300 as an alarm unit2.1 D6scription2.2 lnstallation2.3 Location2.4 Mounting tha CU 3002.5 Electricalconnection2.5.1 Mains supply2.5.2 Pump supply2.5.3 Alarm signal relay2.5.4 Digital input2.6 Description of dry-running protectlon2.6.1 Function2.7 Settings2.7.1 Required R100 settings2.4 Description of the dewatering function2.8.1 Applications2.8.2 Function2.9 Settings2.9.1 Bsquired R100 settings2.9.2 Run/slop timss 3, CU 300 wlth constant pressure control-0toGbar 3.1 Oescription3,2 Function3.3 Positioning the pressure sensor3.4 System sizing3.5 lnstallation3.6 Localion3.7 Mounting th6 CU 3003.8 Eloctricalconnsction3.8.1 Mains supply3.8.2 Pump supply3.8.3 Alarm signal relay3.9 Seltings3.9.1 Bequirsd R100 settings 3.10 Slart-up 4, CU 300 with constant pressure control - 0 to 10 bar 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.8.1 4.8.2 4.8.3 4.9 4.9.1 4.10 Description Function Positioning the pressure sensor System sizing lnstallation Location Mounting the CU 300 Electrical connection Mains supply Pump supply Alarm signal relay Settings Required 8100 settings Start-up CU 300 with constant pressure control - two-pump operatlon 19Page 5 5 5 6 6 6 6 b 7 7 7 7 II 8 8 8 I 9III 10 10 10 11 12 12 12 12 13 13 13 14 14 14 14 15 5. 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.8.1 5.4.2 5.8.3 5.8.4 5.8.5 5.9 5.9.1 5.10 6. 6.1 6.2 6.2.1 6.2.2 0.2.3 6.3 6.4 6.5 6.6 6.6.1 6.6.2 6.6.3 6.6.4 6.7 6.7.1 7. 7.1 7.2 7.3 7.4 7.5 7.5.1 7.5.2 7.5.3 7.5.4 7.6 7.6.1 19 19 20 20 20 20 20 21 21 21 22 22 22 22 22 22 23 23 23 23 23 23 24 24 24 25 25 26 26 26 26 2A Description Function Positioning tho pressurs sensor System sizing lnstallation Location Mounting the CU 300 Electrical connection Auxiliary relay Mains supply Pump supply Alarm signal relay Flow switch and pressure sensor Sattings Bequired Rl00 seltings Start-up CU 300 with sensors General Sensor functioning Alarm limits Warning limits StarVslop limits lnstallation Location Mounting the CU 300 Electrical connection Mains supply Pump supply Alarm signal relay Sensors Settings Bequired R100 settings CU 300 connected to polentiometer Doscription lnstallation Location Mounting the cu 300 Electrical connection Mains supply Pump supply Alarm signal r€lay Potentiometer SPP I Settings Roquired R100 settings 27 27 27 27 27 28 28 29 29 29 29 29 15 15 15 16 16 16 16 17 17 18 18 18 '18 18 8. CU 300 connected to wat6r meter8.1 OescriptionA.2 lnstallation8.3 Location8.4 Mounting the CU 3008.5 Elgclricalconneclion8.5.1 Mains supply8.5.2 Pump supply8.5.3 Alarm signal relay8.5.4 Water meler (pulse flow meter)8.6 Settings8.6.1 Required R100 settings 9. Constant water level 9.1 Description9.2 Function9.3 lnstallation9.4 Location9.5 Mounting the CU 3009.6 Elsctricalconnection9.6.1 Mains supply9.6.2 Pump supply9.6.3 Alarm signal relay9.6.4 Lovel sonsor9.7 Senings9.7.1 Requirsd Rl00 settings 10. CU 300 connected to RS-232, RS-485 10.t Description 10.2 CU 300 connectod to a PC diroctly 10.3 lnstallation 10.4 Location 10.5 Mounting the CU 300 10.6 Eloctrical connection 10.6.1 Mains supply10.6.2 Pump supply10.6.3 Alarm signal relay10.6.4 BS-485 input10.6.5 RS-232 inpul 10.6.6 Modem10.6.7 PCToolCUS00 11. Alarm lunctions '11.1 No contact 1 l.2 Overvoltage 11.3 Undervoltage 11.4 Dry running 11.5 Speed reduction '11.6 Overtemperature 11.7 Overload 11.8 Sensoralarm '12. CU 300 with R100 12.1 Menu OPEBATION 12.1.1 Setpoint'12.1.2 Operating mode 12.1.3 Alarm 12.2 Menu STATUS 12.2.1 Operating mode12.2.2 Actual setpoint and external selpoint12.2.3 Temperature'12.2.4 Speed12.2.5 Power input and power consumption12.2.6 Operating hours and number of starls12.2.7 Sensor I and sensor 2'12.2.8 Digital inpul'12.2.9 Accumulated flow and energy per m3 12.3 Menu LIMITS12.3.'l Sensor 112.3.2 Stop, sensor 112.3.3 Waming, ssnso|l12.3.4 Alarm, sensor 112.3.5 Sensor 212.3.6 Slop, sensor2 '| 2.3.7 Warning, sensor 212.3.8 Alarm, sensor 212.3.9 Stop type12.3.10 Digital input 12.3.11 Accumulated llow'12.3.12 Warning, temperaturo't2.4 Menu INSTALLATION 12.4.1 Controllor 12.4.2 Externalsstpoint12.4.3 Aulomatic restart12.4.4 Start dslay 12.4.5 Bun/Stop 12.4.6 Dry-running stop12.4.7 Dryrunning protection 12.4.8 Maximum speod12.4.9 Button on CU 300'12.4.10 Number 13. Technical data 14. Disposal 30 30 30 30 30 31 3l 31 31 32 32 32 33 33 JJ JJ 33 33 s4 s4 35 35 35 35 35 36 36 36 37 37 37 38 38 38 39 39 39eo 39 40 40 40 40 41 41 41 42 42 43 47 47 47 47 48 48 48 49 49 49 49 49 49 50 50 5o 50 50 50 51 51 51 51 51 52 52 52 52 52 53 53 54 54 54 54 55 55 56 57 Belors beginning installation procedures, those installation and operating insiruc- tions should be studied carefully. The in- stallation and op6ration should also be in accordance with local regulations and ac- cepted codes of good practice. 1. General The control unit CU 300 is developed for the SQE submerslble pumps. The CU 300 covers lhe voltago range: 'I x 100-240 V -1O%l+6%,50/60 Hz, PE. The CU 300 enables:. control of the pump on the basis of sensor signals,. setting of operating parameters, and. monitoring of operation and alarm indication, if any. The CU 300 indicates the following alarms:. No contact,. Overvoltage,. Undervoltage,. Dryrunning,. Speed reduction,. Overtemperature,. Overload,. Sensor alarm. Ths individual alarms aro described in detail in sec-lion 1 1. Alam tunctions. The CU 300 receivas alarm signals lrom the motorfor the ,ollowing paramoters:. Dry running.. lncipient pump/motor defect.. Too high iemporature in motor electronics.. Supply failure. As standard, the CU 300 incorporates an alarm sig-nal rslay. 1.1 Expansion possibllities The CU 300 enables the uss of:. Remote control Rl00: Wireless infra-red remote control by means of the R1 00 enables change ol lactory settings and mon- itoring of the installation by calling up actual opor- ating data, e.g. speed, operating hours and powor consumption.. External sensors: Beception ol data from external ssnsors and con-trol according to the data recsivad, e.g. flow rats,pressure, water level and conductivily.. External potentiometer SPP 1: Manual spoed control. '1,2 On/Off button By means of the On/Olf button on the CU 900, it ispossible to. siarvstop the pump and. reset possibls alarms. Fis. I The green and red indicator lights in the On/Off but- ton indicate pump operating condition as follows: ' lf the On/Orf bunon has b6en used to stop the pump, this button must also be used for restarting. lf tho On/Otf button is pressed for minimum S sec- onds, ihe pump is started, irrespsctive of any activefaulvalarm indications. When the On/Otf button is releassd, the pump will stop. o =F lndication Description Grsen indicatorlightpermanently on.Pump is operating. Green indicator lighl flashing. Pump has bson stopped by either:. a sonsor,. an external on/otf switch or. a stop command rrom the R100. Red indicator light permanently on. Pump has been stopped by m6ans ot th6 on/off button." Red indicator light flashino. The CU 300 is communicat- ino with the R 100. IxrgRNerrou,tr! UneNrul,t (use) ConponATroN r.: Independence Plaza, Suite 950 . 1050 Seventeenth Street . Denver, CO 80265 . 303 628 7798 (main) . 303 389 4125 (fax) August 26,2004 VIA OVERNIGHT DELIVERY Mr. Dane L. Finerfrock Executive Secretary Utah Radiation Control Board Department of Environmental Quality 168 North 1950 West PO Box 144850 Salt [^ake City, Utah 84114-4850 Division of Radiation Control ("DRC') Review of Interim Report Long Term Pumping at MW-4 and TW4-19, May 5, 20}4,International Uranium (USA) Corporation's ("IUSA') response letter Dear Mr. Finerfrock: On May 5,2004, ruSA responded to several issues raised during the DRC review of the July 9, 2003 Interim Report Long Term Pumping at MW4 and TW4-19. Among other comments, DRC requested that ruSA repair the exposed surface casings on all temporary chloroform investigation wells. In our response, ruSA confirmed that Mill maintenance personnel had been directed to install 8-inch surface casings on all temporary wells that did not have the casing installed as a part of the original construction, or where the casing had been damaged or deteriorated. This was primarily on wells TW4-l through TW4-9. In addition to the surface casing, an 8-inch PVC cap with a 4-inch hole for the well casing was to be installed. On June 28,2004, the wells were inspected and it was confirmed that all wells in need of repair had been attended to, and the surface casing and well caps had been installed as directed. The attached photographs confirm the repairs on wells TW4-l through TW4-8. The surface casing and caps on the remaining wells are in good condition. Re: Lctter to Dane L. Fir;"k August 26,2W Page 2 If pu have any atritional commonts please f,cel fre€ to contrct me at 303.3E9.4130, or Harold Robcrts st 303.389.4150. ice President and Gsneral Council Attachment cc: William Sinclair, UDEQ Ioren Morton, UDEQ/DRC Ron F. Hochstein T. Ke'nneth Miyoshi Harold R. Roberts TW4-t TW4-2 TW4-3 a T\N4-7 Chloroform Plan From: To: Date: Subject: May 19,2002 "Ron Hochstein" <rhochstein @ intluranium.com> "William J. Sinclair" <bsinclai@deq.state.ut.us> 512110210:05PM Chloroform Plan Via e-mail Dear Bill, Once again we would like to thank you for taking the time to meet with us on April24,2002 to discuss and conf irm the approaches to be used in furthering the chloroform investigation. I apologize for the delay in getting this to you but as I mentioned last week at Scottsdale there was one minor question that we were wanting some clarification on, which we received. The following summarizes our discussions in that meeting and the previous meeting held on April 17,2002. Vertical Sampling to address question of DNAPL Objective: Vertical Sampling will be used to test for DNAPL. Methodology: A sample will be collected at one point at the bottom of each sampled well by use ol passive diffusion bags. lnterpretation: ln any well in which the chloroform concentration of the sample is less than 1% of the chloroform solubility, it will be concluded that DNAPL is not present. Conclusion: Samples will be collected from the bottom of the 12 existing wells. lf chloroform concentrations less than 1% of the solubility of chloroform are observed, the DNAPL issue is resolved, -fes!il I Bill Sinelair - Chloroform Plan and the plume is defined as a dissolved plume. One percent of the solubility of chloroform is assumed to be 80,000 pg/L. Brushy Basin Contour Map Objectives: 1. Further define surface of Brushy Basin using appropriate existing data and data from the new fully penetrating wellto be installed adjacent to MW-4. 2. Develop updated map of the top of the Brushy Basin 1. IUC will drill a well down gradient of and in close proximity to MW-4. 2.IUC will incorporate data from this well and additionalwells and borings that have verifiable elevation data as DEQ requested, and will submit an updated map. The ultimate abandonment of the existing MW-4 will be based on the determination that the conditions (i.e. chloroform concentrations and results from split sampling) have stabilized and are similar in MW-4A to those in MW-4. During the drilling of MW-4A, core will be recovered, to the extent possible, from immediately above and below, and throughout the saturated zone. Hydraulic Analyses Objective: Reevaluate K values. Wells to be evaluated: Pump tests will be done on MW-16 through MW-19, MW-1, -3, -5, -20, -22,andall wells with K value calculated based on data f rom historic slug or packer tests to generate the data for calculation of K values. K in area of the TWs will be evaluated during a long{erm pump test fEitt sinetiir - Chloroform Paoe 3 isrrr: -! -r.'i:.. ;:,j--:Y- J (see below). A set of assumptions to be applied in the calculation of the hydraulic conductivity for each well will be determined. Hydro Geo Chem's WHIP software (copies of WHIP documentation was provided in the meeting ol April24, 2OO2) andlor AQTESOLV will be used to interpret the field data. Loren Morton to advise Stewart Smith if, after review ol the WHIP documentation, use of WHIP will be acceptable to DEQ. After the initial analyses of the field tests have been completed, Stewart Smith will meet with Loren Morton to review the data and compute a reasonable range of K values and, if possible, an agreed-upon K value for each welltested. A reasonable range of K values and, if possible, an agreed upon value will be computed for each well. Water Levels Objective: Determine cause of increasing water levels near MW-4 Data: IUC will present data that incorporates the piezometers and the most recent well level data, including temporary wells TW-10 and -11. DEQ and IUC agreed that the wildlife ponds are contributing to the increasing water levels in MW-4. DEO asked IUC to submit the as-built reports for the piezometers adjacent to the wildlife ponds, survey data, and water leveldata, with IUC's interpretation of why there is increasing water level in MW-4, and this issue will be resolved. Plume Delineationi lsoconcentration Maps To delineate the area of chloroform contamination in the perched groundwater using a level of 80 mg/L as the definition of the plume boundary. Data: A total of eight (8) additional monitoring wells will be drilled. Three are to the east of the current area of investigation, three are to the west (along the edge of Cell2), and one each, on the down gradient edge of the scale house leach field and old Mill leach field. lnterpretation: DEQ indicated that if analytical results from the three wells on the east and on the west come back less than 80 mg/L, allowing for recovery time in each well, then the plume would be considered to be bounded. Tailings Characterization To characterize chemical and organic content of tailings solutions. Data: Three streams will be sampled by IUC: slimes drains from Cells 2 and 3, and the tailings solution from Cells 1 and 3. IUC willtake grab samples of the solutions, which are pumped from the slimes drains in Cells 2 and 3. For the tailings solutions, samples will be taken from the reclaim discharge in the Mill during the upcoming Mill run. Frequency of samples from slimes drain water will be dependent upon how often the slimes drains operate. The sampling frequency for the tailings solution will be detailed in a sampling plan to be submitted to DEQ by the end of May. Chlorof orm Concentration Trends illSinelair - Chloroform Plan Discussion: A letter was provided to Loren Morten detailing the data used for the chloroform/nitrate scatter plot provided as Figure 7 of the November 9, 2001 IUC Report. (Addresses request on pg 13 of April 1 1,2002letter from DEQ). Further data will be collected to evaluate nitrate/chlorof orm correlations. Additional G roundwater Monitoring Parameters Carbon Tetrachloride - willcontinue to be analyzed during the split sampling events. lf the concentration exceeds 5 mg/L then the sampling frequency will be adjusted to quarterly sampling. Chlorof orm Daughter Products (dichloromethane, chloromethane, & chloride) - continue sampling the chloroform daughter products as part of the annual split sampling event. ln the event the concentrations of any of the daughter products exceed the State limits then the sampling frequency will be re-evaluated. ln addition, IUC will consider sampling for the daughter products prior to and during the agreed upon remediation of the plume, if necessary (this would be partially dependent upon the remediation path chosen). Groundwater Redox Measurements - this parameter will not be considered until a remediation plan is approved and implemented, and may only be applicable for certain remediation techniques. Nitrogen Species - analysis for additional nitrogen species is not likely necessary given the current environment. Nevertheless, analysis for additional nitrogen species may be considered once a remediation plan is approved and implemented, and may only be applicable for certain remediation techniques. Split Sampling Laboratory Validation Procedures Michelle Rehmann and Loren Morten to arrange for IUC's and DEQ's labs to exchange and discuss validation procedures and to ensure that both labs are following similar procedures. lnterim Action - Long Term Pump Test Pending approval on the classification of the chloroform contaminated water, the interim action plan appears to be a positive approach to learn more about the hydraulic properties of the perched water zone and to provide interim reduction of the chloroform plume. lf there are any inconsistencies with the foregoing please do not hesitate to contact me. A final schedule, which incorporates your concerns and our discussions, has been sent to you under separate cover. Flon Hochstein President and Chief Executive Officer lnternational Uranium (USA) Corp. Phone (303) 389 - 4153 Fax (303) 389 - 4126 "Loren B. Morton" <lmorton @deq.state.ut.us>, "Michelle Rehmann (lUC)' <mrehmann@intluranium.com>, "Stewart Smith" <stewarts@hgcinc.com>, "Harold R. Roberts" <hroberts@intluranium.com>, "David C. Frydenlund" <davef @intluranium.com> ffi tr Apnl2,2OO2 ,1. Motycorp License Amendment and Hearing - t#^ W &'+Wfllry*0"; /2 MoabProjectUpdate ,iMfrWW,*' [,(, Shrus orMa,ywoodproject; CI'11^C*?r *!' ril,1tr')""?'-i# Htr / iwwtr f'az":,&,#ff,,e, Jrr-/ *m,ffi* i;ffiw'q ury^'""' r -,^"u"aq )kjt5} k l*. fr^*R'/w"tT" ,',n'n+'*"-'fl' - E /o *^fffiT M r, ytA,I. [Yl,,a ,,,",& kzzoft&) h ryu.^ Af t*_! h-"^-0. Internationr r'Ti:L(usA) corporation b W rulp#i *,_ j"tP"'** with wp a Utah Department of Environmental Quality * *\Y- AGENDA ,r,,.GeneralDiscussiononPublicPerceptionofWhiteMesaMillomWr:wl^ ,re:,^. -^t_!1)_?y;;,H,{".,+;, I 8. Fernald Silos uu,ff+L:n;_W" ^"*U = /r **ementstatestatus- y4^,* aft_r " s::L"itrh*#trh\* [-to' na.iation control Board vacancies '"trLr"tr+,*l^- , ^ ra.t r n 0 -t^ r 1. Brienng on New project,rdffir;, P";; -*.r,-F 1f? t0'-0 ^*' Dbr,rncr ^rd^;0 "-{ 'l+q# "r#^-,{: ^[--, ., ;-- i rn^f^^ :^A - )lrarvr-.il_*O":-m )Ar o/'dorr* ,t+". Jr, c*0,;, "1,% p'p"[! DOA p^"Xrgcrots e h"L *e, + lb-D"/" * '^oY-ff:^o Lr,'lrr- cs-:t U$^J" [atazz) -*fr"t1+4 fqf*4 - 'r*JL"* *a \{ c",La o o ryy. W : d^".t*! e( N, rvA/'\ 6 " & luwat< tn^u^P^'A\'Wt""9^^# I d,o *"* "pa^? +"rt, "$^ fttnnt' ,uofr,u'fo@ w tt/^{or',;' Wc'$ -%mwflr"ffI?f#ruo r-,noclro *il.-+4% EXPLANATION temporary Perched well showing chloroform (uG/L) in n 7o2 initialsamplingr' 834 second samPlingNS third sampling&16 fourth sampling8116 11/00 samplingU7 0U01 sampling390 06/01 sampling300 09/01 sampling170 1201 sampling 5300rs200 perched monitoring welltt MW.4 showing chloroform (uGA) in 9/01 and 12101 samPlings (E 4700 new temporary Perched monitoring well showing chloroform (uG/l) in i n itial samPl ing (21 2@21 NOTE: sample vialfor tw4-1 broke in transit to the laboratory so no analYsis was Performed on 9/01 samPle RUAw.,t CHLOROFORM ANALYTICAL RESULTS (uG/L) FOR TEMPORARY PERCHED WELLS (4th Quarter, 2001 results for allwells except new wells tw4-1O and tw4-11 samoled 2l2OO2l ffaorr€d Dii6 RaldHE Flelrrr I *J&qt$ilk'-'r' EXPLANATION MW-0o perched groundwater monitoring well temporary Perched groundwater monitoring well tw4-lo NEWTEMPORARY PERCHED GROUNDWATER MONITOHING WELL tlrt; @b"'r0J* ]& aotna- lr PERCHED ZONE CHLOROFORM IN UG/L (4th quarter 2001 results for al! wells except new temporary wells sampled in february,2002) lppinod Deio Horgffi FICUB \\ ll ltlll '55E0 5570 5560 55505540 5530 5520 N t - o Jooo SCALE IN FEET EXPLANATION . TT-11 PTRCHED ilONITORING UEIJ.- 55t3 stto*rc wATER tEvEL lN FEEr (^xsL) " 5s2z IETP(NARY PEROIED XONIoRNC UTE.T s{oHNG W T€R tEvEL il FEEI (AilSL) - 5585 W tER TEYEL CXnmrrR, oA$lED *IERE UNCERTAIN . WATEH LEVEL GONTOUR MAP 4th QUARTER,2OOI WATER LEVELS FOR AI.I WELLS EXCEPT }GTY TENPORARY WAJ-S SAT|PIED I{ FEBRUARY, 2OO2 HYD\O GEO CHEM, INC. En vi ron m rlt<!!i e n r e,t" Te ch n o I og.t, April 19,2OO2 Mr. William Sinclair Utah Department of Environmental Quali Division of Radiation Control 168 N. 1950 West P.O. Box 144850 Salt Lake City, Utah 84114-4850 Dear Mr. Sinclair, This letter is a response to item #l 1A of your March 7 ,2002letter to International Uranium (USA) Corporation regarding Figure 7 of the chloroform update report dated November 9,2001. The data provided on this figure included the 4fr Quarter 2000 and 1't Quarter 2001 chloroform and nitrate analytical results for MW-4 and the associated temporary wells at the White Mesa Uranium Mill site. The 2nd Quarter 2001 data that appeared in Table 1 of the report were not included in Figure 7. The scatter plot shown in Figure 7 was generated for interpretive purposes prior to my receipt of the 2nd Quarter, 2001 data but was inadvertently not updated at the time of report preparation. Anached is an updated plot showing data from the 4fr Quarter, 2000 through the 4m Quarter, 2001. Neither the previous nor the updated plots contain data for TW4-6, because this well has generally been non-detect for both chloroform and nitrate. These data would therefore plot at or very near the origin, and would not be distinguishable from other data plotting near the origin. They also would not be suitable for computing correlation coefficients because their inclusion would result in a falsely high correlation coefficient. As you can see, however, inclusion of additional data on the scatterplot does not significantly change the pattern nor does it change HGC and IUSAs interpretation of the results. Stewart J. Smith Senior Hydrogeologist G:V I 8000EORRESFO204 I 9WS.wpd ,C ffiit""\l$^ ^d il)U,,"S EL" r,,rrop Sincerely, 5I West Wetmorc, Suite I0I Tucson, Arizona 85705-1678 $520.293.1500 520.293.1550-Fax 80O.727 .5547 -Toll .r-rec ooo!tA o = E r-r oP9d60 o tttttltltl_____t______t_ttttlltlltttllttIIlltltltt-t------t---llttlttltttltltlllttlltttlttttttttttttlttttttttttttt_t______l_____lltttlllllttlttllllltttttt -l------l-----ttttttllttlltttltt iooi-l---li{ttorfr! i i ioi ittrll| | f -o-I itrllltttllrttlltrllriiriiI loor i ttllli i.iiittlllrttllrrttltrttltttlli i l or ii i ol l lttttliit iitrrlltttlltttrriiioitlrrl?rtl r r i)iiiii lllll tllllttlll ttttl trtlli i i io iOl r,tttllrrttl --t- r-----r- F-----l-ttrlltttllrrtlltttllrttllrrttlttrllrrttltttrltttllrtttrtttllttrll--l-- | -----r - t------t-tttrltttttttttrttttrtttttrtttrtltttltrli i i ioirtttl (yeu) olerllu tuF =Eae2u><srrU)t Egeroo!JtlJoIIOogRhfro-o- -5>= E8ErgH HF=