HomeMy WebLinkAboutDRC-2001-001101 - 0901a06880acc23cIrtERx,rtroO
Unaxruvr (use)
ConronATroN
Independence Plaza, Suite 950 r 1050 Seventeenth Street o Denver, CO 80265 . 303 628 7798 (main) . 303 389 + I25 r f rrx)
January 28,2000
Via Facsimile and Overnisht Mail
Don A. Ostler, P.E.
Executive Secretary
Utah Water Quality Board
P.O. Box 16690
288 North 1460 West
Salt Lake City, UT 841l6-0690
Re: Transmittal of Program for Delineation of Elevated Chloroform
at lvfW-4, for Chloroform lnvestigation Phase 4 - Utah DEQ
Groundwater Corrective Action Order, UDEQ Docket No.
August 23,1999
Dear Mr. Ostler:
in Perched Groundwater
Notice of Violation and
UGQ-20-01, Issued on
Attached is International Uranium (USA) Corporation's ("[USA's") report, "Program for
Delineation of Elevated Chloroform in Perched Groundwater at M'W-4" ("Program for
Delineation"), which is being submitted by IUSA in accordance with the Revised Schedule for
Contamination Investigation Submittals (Revision l) dated October ?2, 1999. This report follows
implementation of the Revised Phase 2 Work Plan on November 2, 1999, which included a
significant drilling program.
Based on the analysis of the data by our independent hydrologists and geochemists, IUSA has
been advised that the data from the accelerated drilling program have been sufficient to essentially
delineate the occurrence of elevated chloroform in perched groundwater in the vicinity of MW-4
Therefore, it is intended that one additional round of sampling, to ensure that the samples
collected from the temporary wells are representative of the perched groundwater, will be used to
corroborate the results found to date.
Mr. Don A. Ostler
January 28,2000
Page2 ofZ
Please note that the remaining tasks identified in Section 4.2 of the Program for Delineation will
be implemented on March 6, 2000, as stated in the updated Schedule for Submittals of October
22, 1999. If you have any questions regarding this Program for Delineation, please contact
Michelle Rehmann at (303) 389-413I
ice President and General Counsel
DCF:smc
Attachment
cclatt. Dianne Nielson, DEQ
William J. Sinclair, DEQ
Loren Morton, DRC
David Cunningham, DEQ, SE District Health Department
Dave Arrioti, DEQ, SE District Health Department
Fred Nelson, Utah Asst. Attorney General
Terry Brown, U.S. EPA Region VIII
Milt Lammering, U.S. EPA Region VIII
Thomas H. Essig, U.S. NRC, Washington, D.C.
Bill von Till, U.S. NRC, Washington, D.C.
Charles Hackney, U.S. NRC, Region IV
Michelle R. Rehmann
EarlE. Hoellen
Ronald F. Hochstein
William N. Deal
Ronald E. Berg
PROGRAM FOR DELINEATION OF ELEVATED CHLOROFORM
IN PERCHED GROUNDWATER AT MW.4
JANUARY 28,2OOO
Submitted to:
U.S. Nuclear Regulatory Commission
Utah Department of Environmental Quality
U. S. Environmental Protection Agency
Prepared by:
Stewart Smith
Hydro Geo Chem, Inc.
Tucson, Arizona
Roman Z. Pyrih, Ph.D.
Geochem Ventures International
Golden, Colorado
Roman S. Popielak
Knight Piesold
Denver, Colorado
Submitted by:
International Uranium (USA) Corporation
Denver, Colorado
Contact: Michelle Rehmann
303 389 4r3 I
1.0
2.0
TABLE OF CONTENTS
INTRODUCTION AND SUMMARY
S OI,JRCE I}N/ESTIGATION
On-Site Sources of Chloroform
Evaluation of Cells as a Potential Source
Chloroform
2.3 Evaluation of Leach Fields as a Potential Source of
Chloroform
2.4 Soil Gas Survey.
2.5 Pumping Tests.
3.0 SOTJRCEIDENTIFICATION
Page
I
5
5
6
lnstalling Temporary Wells TW 4-l and TW 4-2. 9
Sampling Temporary Wells TW 4-l and \\N 4-2 I I
lnstalling Temporary Wells TW 4-3, TW 4-7, and TW 4-8.... I I
Sampling Temporary Wells TW 4-3, TW 4-7, and TW 4-8. . , . 12
Installing Temporary Wells TW 4-5 and TW 4-9. 13
Sampling Temporary Wells TW 4-5 and TW 4-9. 14
2.1
2.2
40
3.1
3.2
3.3
3.4
3.5
3.6
5.0 CONCLUSIONS
FIGURE I
FIGURE 2
TABLE I
APPENDIX
DELINEATTON OF THE EXTENT OF ELEVATED CHLOROFORM
CONCENTRATIONS TN PERCHED GROI.INDWATER. ... .. .. 15
4.1 AdditionalWork.
7
7
8
l6
t7
1.0 INTRODUCTION AND SUMMARY
Chloroform was detected at the White Mesa Mill in monitoring well MW-4
during groundwater split sampling conducted on May ll, 1999 The results of the
sampling and analyses indicated chloroform present in groundwater from MW-4, at
concentrations of 4,520 and 4,700 p,glL. Subsequent sampling of MW-4 on September
28, 1999, reported similar concentrations of chloroform, at 5,820 and 6,200 1tglL.
Monitoring well MW-4 is located about 1,800 feet southeast of the Mill process buildings
and about 600 feet east of tailings Cell No. 2. Monitoring well MW-4 is situated cross-
gradient to the direction of groundwater flow. At the mill site, the hydraulic gradient is
generally to the south / southwest.
Possible historic sources for the presence of chloroform in groundwater were
evaluated and reported previously; these include:
Upgradient agricultural, industrial, and/or defense activities
An historic septic system and leach field, that was designed to accept both
sanitary and laboratory wastes, and that was located immediately southwest of the
existing scale house, and inspected and approved by the Utah Division of Health.
Another possible source that was considered was direct introduction of chloroform into
MW4 as a result of well tampering. As reported previously, hydrological and
geochemical evidence indicates that the Mill tailings cells are not the source of the
chloroform in MW4
A soil gas survey conducted in September of 1999 indicated that chloroform
originating in the historic leach field could have entered the soil in the past by way of the
leach field and migrated to the south toward MW-4. The leach field is approximately
1,000 feet north of MW-4. However, although the soil gas results indicate that no
significant soil source currently exists in the sampled areas, the soil gas results alone
could not rule out tampering as an explanation for the elevated levels of chloroform in
monitoring well MW-4.
Pumping tests conducted at NAry-4 during September of 1999 were used to (l)
estimate how far dissolved chloroform may have migrated downgradient of well MW-4 if
introduced into the well in the early 1990's as a result of tampering, and (2) to determine
the feasibility of removing groundwater containing chloroform by pumping MW-4, based
on estimating how much pumping would be required. Based on a preliminary analysis of
the pump test data, the average hydraulic conductivity of at least a portion of the
Dakota./Burro Canyon Formation in the vicinity of MW-4 was estimated to be higher than
the average for perched zone wells at the site. This finding resulted in a reevaluation of
the approach to determining whether chloroform observed in WM-4 originated from an
upgradient location, or could have been introduced by well tampering.
Therefore, in order to collect additional hydrological and geochemical
information to help delineate the extent of chloroform occurrences in the perched
groundwater in the vicinity of MW-4, and in accordance with the revised work plan
"Interim Results and Revisions to Work Plan (October22, 1999)", an expedited drilling
program was implemented during the week of November l, 1999. This drilling program
was designed to provide data necessary to evaluate the upgradient source area vs.
tampering question. A total of seven borings were completed and temporary
groundwater monitoring wells were installed and sampled for chloroform. Details of the
drilling and sampling program are provided in Section 3.0, Source ldentification.
The chloroform results from the drilling and sampling program essentially rule
out the hypothesis that chloroform in MW-4 originated as a result of well tampering.
Because higher concentrations were found upgradient of MW-4, and lower
concentrations at downgradient and cross-gradient locations, the results clearly point to
an upgradient source, to the north of MW-4.
Based upon the initial groundwater sampling of the temporary wells, on historical
perched hydraulic gradients at the site, and other background data from the site, the
highest chloroform concentration in the perched groundwater occurs at monitoring well
MW-4. The concentrations drop off in the upgradient and downgradient directions, and
cross-gradient of MW-4. Concentrations drop off most rapidly in the downgradient
direction (to the south) and cross-gradient (to the east and west); while concentrations
decrease gradually in the upgradient direction (to the north). Extensive sampling of
perched groundwater to the west of MW-4, at numerous monitoring wells located in the
footprint of the tailings cells, has indicated non-detectable chloroform (at less than I
pgL), with the only exception being a concentration of 1.2 tlglL detected at upgradient
well MW-I.
Within the area of perched groundwater affected by chloroform, the highest
chloroform concentration continues to be in the immediate vicinity of monitoring well
MW-4. The sharp decrease in concentrations between MW-4 and the nearest
downgradient temporary boring is consistent with movement of groundwater through the
coarser-grained, higher permeability zone observed at depths between approximately 70
and 100 feet below land surface during drilling. The more gradual drop off of
concentrations in the upgradient direction is consistent with residual chloroform in the
perched water zone left behind by the passing of a high concentration "slug" that is now
centered near MW-4. It is likely that chloroform "bled" into surrounding lower
permeability materials that are now slowly releasing chloroform into upgradient water
that is moving through the system, resulting in reduction of chloroform concentrations in
the previously affected materials.
The distribution of chloroform in the perched water in the vicinity of MW-4,
based on the initial sampling of the temporary wells, is consistent with a past release of
chloroform to the perched water over a short period of time at an upgradient location,
most likely at the abandoned leach field near the present scale house, located to the north
of MW-4
Section 4.1 contains recommendations for additional work The sampling results
to date indicate that elevated chlorolonr concentrations are confined to a relatively
narrow zone, and that elevated concentrations have not moved significantly downgradient
of MW-4 at the present time. Details of this preliminary scenario may change as the
temporary wells continue to recover, and additional sampling of the wells is performed.
To obtain additional data to corroborate these results, additional chloroform samples will
be collected and analyzed from each of the temporary borings and from MW-4 during
March of 2000. The results of this additional sampling and analysis, and other relevant
data collected to date, will be used to formulate decisions regarding whether or not any or
all of the temporary wells will be either abandoned or converted into permanent
monitoring wells.
The key conclusions of this report are that (l) the data are consistent with an
upgradient source of chloroform, most likely the abandoned leach field near the scale
house, located to the north of MW-4; and (2) subject to the results of the additional work
planned (as detailed in Section 4.1), the zone of elevated chloroform concentrations in the
perched water is considered to be substantially delineated.
2.0 SOURCE INVESTTGATION
Possible sources for the presence of chloroform in MW-4 were reconstructed
through personal interviews, searches of records, and examination of aerial photographs
from the USGS and BLM. Land and properties upgradient of the White Mesa Uranium
Mill were used for various agricultural, industrial, and defense activities. It is likely that
chemicals such as chloroform were used in these activities. An irrigation ditch that
historically provided water to ponds and fields north of the mill site, and that extended as
far as MW-4, may have served as a pathway for chloroform, as well as other agricultural
or industrial contaminants.
2.1 On-Site Sources of Chloroform
Chloroform was never used in mill processing operations, and essentially none of
the alternate feeds that have arrived at the mill for processing have contained detectable
levels of chloroform. Since the beginning of activities at the White Mesa Uranium Mill,
the only use for chloroform was in laboratory analyses of uranium, Between 1977 and
1979, a temporary laboratory analyzed ore samples and conducted amenability testing on
uranium ore. Liquid eflluent that would have included chloroform from the volumetric
analyses of uranium was discharged to a septic system and leach field constructed in
L977 by Energy Fuels Nuclear. This septic system and leach field, that was designed to
accept both sanitary and laboratory wastes, located immediately southwest of the existing
scale house and approximately 1,000 feet north of MW-4, was inspected and approved by
the Utah Division of Health.
Prior to 1980, all of the laboratory wastes, which would have included
chloroform, were discharged to the leach field. Currently, laboratory wastes are pumped
directly to the tailing cells.
22 Evaluation of Cells as a Potential Source of Chloroform
Since 1980, Cell No. I has received laboratory eflluent containing small amounts
of chloroform. As reported in the "Hydrogeological Evaluation of White Mesa Uranium
Mill," prepared by TITAN Environmental Corporation in 1994, tailings solution from the
slimes drain indicated only traces (17 p,glL) of chloroform. This concentration is orders
of magnitude lower than the levels reported in MW-4 (4,520 and 4,700 VglL) during the
split sampling in May 1999.
Hydrological and geochemical evidence indicates that the cells are not the source
of the chloroform in MW-4. Monitoring well MW-4 is situated cross-gradient to
groundwater flow in the area. The hydraulic gradient is to the south/southwest, and there
is no basis to assume that chloroform or any other constituent would have migrated
laterally to MW-4.
Secondly, there has been no temporal change in the major ion chemistry of the
groundwater in MW-4, or for that matter, in any of the monitoring wells located in the
footprint of the tailings cells, or downgradient of the tailings impoundment. Had seepage
from the tailings cells somehow migrated cross-gradient to NfW-4, a change in the water-
quality fingerprint of the groundwater would have been observed. Tailings solutions
impounded in the cells are highly acidic, and elevated in magnesium, chloride, and
sulfate concentrations. The groundwater in MW-4 is presently calcium-sulfate type
water, and has always had a calcium-sulfate fingerprint.
Finally, chloroform has not been detected in monitoring wells located in the
footprint of the tailings cells or immediately downgradient of the tailings impoundments.
The only exception was upgradient monitoring well MW-1, in which chloroform was
detected at a concentration of 1.2 ytglL
23 Evaluation of Leach Fields as a Potential Source of Chloroform
Prior to 1980, as discussed previously, liquid effluent was discharged from a
temporary laboratory into a State-approved leach field that is located immediately
southwest of the existing scale house. These efTluents probably contained chloroform.
Although unlikely, another leach field located southeast of the offrce/lab building may
have received liquid effluent from early 1979 to mid 1980. Both areas were targeted for
further investigation.
2.4 Soil Gas Survey
In September of 1999, IUSA commissioned a soil gas survey of the soils in and
around the leach fields, the irrigation ditch, and monitoring well MW-4. The soil gas
sampling was conducted by Tracer Research Corporation, under oversight from IUSA
and Hydro Geo Chem, Inc., primarily to delineate any shallow soil (alluvial) source areas
that may have caused the chloroform occurrences in MW-4. The survey was also
designed to test the hypothesis that chloroform originating in the leach field could have
migrated to the south toward MW-4.
Soil gas at approximately 37 locations was sampled and analyzed on-site for
chloroform, methylene chloride, and carbon tetrachloride using a hydraulically activated
drive-point rig and separate mobile laboratory. Samples were collected in the areas of the
leach fields located southwest of the existing scale house and southeast of the offrce/lab
building, along the irrigation ditch, and near monitoring well MW-4. Chloroform
concentrationswere low and ranged from non-detectto 0.5 micrograms per liter. Slightly
higher concentrations of chloroform were reported in soil gas samples from the leach
field areas than from the area around monitoring well MW-4.
Higher concentrations detected at the leach fields suggest that chloroform could
have entered the soil in the past by way of the leach fields. However, the soil gas results
indicate that no significant soil source of chloroform currently exists in the sampled
areas. The soil gas results alone could not be used to rule out tampering as an
explanation for the elevated levels of chloroform in monitoring well MW-4. Results of
the soil gas survey are presented in the "Chloroform Source Assessment Report", which
was transmitted on September 30, 1999.
25 Pumping Tests
Pumping tests were conducted at IvtW-4 during the week of September 27,1999
to (1) estimate how far dissolved chloroform may have migrated downgradient of well
MW4 if introduced intothe well in the early 1990's as a result of tampering, and (2) to
determine the feasibility of removing groundwater containing chloroform by pumping
MW-4, and to estimate how much pumping would be required Based on a preliminary
analysis of the pump test dat4 the average hydraulic conductivity of at least a portion of
the Dakota./Burro Canyon Formation in the vicinity of MW-4 was estimated to be one to
two orders of magnitude higher than previously estimated. This is likely due to water
levels on the east side of the site having risen into higher permeability materials over the
last several years based on measurements at MW-4 and two other monitoring wells on the
northeastern side of the site.
Based on calculations presented in the revised work plan, "[nterim Results and
Revisions to Work Plan" (October 22, 1999), it was determined that chloroform
introduced into MW-4 in l99l could have traveled as much as approximately 130 leet
downgradient ofMW-4. Because the volume of water potentially affected by chloroform
was too large to pump back unless a method for management of large volumes of water
were to be devised, a decision was made to install temporary borings in the vicinity of
MW-4 to delineate the extent of elevated chloroform concentrations in the perched water.
The higher hydraulic conductivity estimates likely resulting from water levels rising into
higher permeability materials also suggested the possibility of an upgradient source area,
such as the abandoned leaching field near the scale house.
3.0 SOURCE 1DENTIFICATION
In order to collect additional hydrological and geochemical information to help
delineate the extent of chloroform occurrences in the perched groundwater in the vicinity
of MW-4, and in accordance with the revised work plan "lnterim Results and Revisions
to Work Plan (October 22, 1999)", several borings were completed and temporary
groundwater monitoring wells were installed. Installation of the temporary wells was
staged. The first boring, TW 4-2, was located approximately 125 feet north (upgradient)
of MW-4, and the second boring, TW 4-1, was located approximately 130 leet south
(downgradient) of N V-4. The downgradient boring was located at approximately the
distance that chloroform dissolved in groundwater would have traveled, had MW4 been
tampered with, and chloroform introduced into the well in the early 1990s
Installing Temporary Wells TW 4-l and TW 4-2
The temporary wells that were installed and sampled at the site are located
approximately as shown in Figure l. The well identification numbers reflect the
numbering of the wells on the permit application and do not reflect the order of
installation.
As indicated above, the first temporary well to be installed (TW 4-2) was located
upgradient of MW4 and the second temporary well (TW 4-l) was located downgradient
of MW-4, based on historical perched groundwater elevation measurements at the site.
These two borings were constructed during the week of November l, using an air-rotary
drilling rig. Prior to drilling, a pit was excavated adjacent to each boring and lined with
plastic sheeting to capture any liquids brought to the surface during drilling.
Ten feet of 8-inch diameter polyvinylchloride (PVC) conductor casing was
installed in the upper l0 feet of each boring after drilling to lO-foot depth using an I l-
inch tricone bit. Upon installation of the conductor casing, drilling proceeded using a
6t/+-inch diameter tricone bit to a depth of approximately 52t/z feet below land surface
3.1
(bls) using air as a drilling fluid. From this depth to the total depth of each boring, a 2-
inch diameter coring bit was used. The borin-es were then reamed to a diameter of 6t/q
inches using the tricone bit. Total depth of the upgradient boring (TW 4-2 on Figure l)
was approximately 120 feet bls, and of the downgradient boring (TW 4-l on Figure l),
approximately I l0 feet bls. A small volume of drilling foam was injected into boring
TW 4-l beginning at a depth of approximately 77 feet bls to improve lost circulation.
First water was encountered at a depth of greater than 80 feet bls in boring TW 4-l and at
a depth of approximately 8l feet bls in boring TW 4-2
Each boring was completed with temporary casing and well screen. Casing and
well screen consisted of 4-inch diameter, flush-thread, schedule 40 PVC. The screen was
equipped with 0.02 inch factory slots. [n each boring, the lower 40 feet was screened.
Boring TW 4-l was screened between approximately 70 and ll0 feet bls, and TW 4-2
between approximately 80 and 120 feet bls. The temporary surface completions
consisted of 5-gallon plastic buckets inverted over the well casing, conductor casing, and
annular space. A 4-inch (approximate) diameter hole was cut into the base of each
bucket to allow the 4-inch well casing to pass through the base of the bucket. Each well
casing was capped with a PVC cap. This completion protects each boring from entry of
surface debris or precipitation, until a decision is reached whether to abandon the boring
or to convert it into a perrnanent perched water monitoring well.
Drill cuttings and drill core recovered from each boring were logged by a
licensed, professional geologist at intervals of approximately Lt/z feet of drilled depth.
Samples of cuttings and core were placed in plastic Ziplock@ bags and core boxes,
labeled with the boring location and depth interval, and stored on-site. Lithologic logs of
the borings prepared by the geologist are provided in the Appendix.
As shown in the lithologic logs, a conglomeratic zone was encountered between
depths of approximately 75 feet bls and 95 feet bls in boring TW 4-l and between depths
of approximately 77.5 and 97.5 feet bls in boring TW 4-2. ln both cases, these zones
were underlain by sands containing finer-grained silt and shale materials. First water was
l0
encountered within this zone in boring TW 4-2, and circulation was temporarily lost
within this zone in boring TW 4- I . Because the static perched water level in this area is
approximately 68 feet bls based on recent water level measurements in MW-4, this
suggests that formation materials above this conglomeratic zone have a lower
permeability. These observations are consistent with the results of pumping tests
conducted at MW-4 during the week of September 27,1999. The contact between the
Burro Canyon/Dakota sandstone and the Brushy Basin shale was located at
approximately 105 feet bls in both borings.
3.2 Sampling Temporary Wells TW 4-l and TW 4-2
Sampling of the first two temporary wells was conducted during the week of
November 8, 1999. Each well was purged of 3 casing volumes or until dry by using a
submersible and/or bladder pump and was allowed to recover sufficiently for sample
collection. During the purge, temperature, electrical conductivity, and pH were
measured. Perched groundwater samples were collected using disposable polyethylene
bailers from approximately the center of the water column in each well. Samples were
placed in 40 ml VOA vials with no headspace, capped, labeled, and temporarily stored in
a cooler at approximately 4"C for shipment to the analytical laboratory for chloroform
analysis.
Chloroform was detected in groundwater of the upgradient well (2,510 pgll in
TW a-2); very little chloroform was detected in groundwater of the downgradient well
(5 8 p/L in TW 4-l) as shown in Figure 2. Copies of the analytical reports are provided
in the Appendix. Well completion and analytical parameters are provided in Table l.
3.3 Installing Temporary Wells TW 4-3, TW 4-7, and TW 4-8
Based on the results of sampling temporary wells TW4-l and TW 4-2, and the
criteria detailed in the revised work plan, temporary well TW 4-3, located upgradient of
temporary well TW 4-2 , and temporary wells TW 4-7 and TW 4-8, located cross-
ll
gradient of well MW-4, were installed at the approximate locations shown in Figure l,
during the week of November 15. The presence of a soil pile prevented installation of
TW 4-7 at a distance greater than about 30 feet west of MW-4. Drilling procedures were
similar to those for temporary wells TW 4- l and TW 4-2, except that borings were drilled
entirely with a 6t/q-inch tricone bit, using small volumes of drilling foam to improve
circulation in the deeper portions of the borings. As during the previous drilling, lined
pits were installed adjacent to the borings to capture any liquids brought to the surface
Cuttings brought to the surface during drilling were logged by the professional geologist
at approximately ZYz foot intervals and samples of cuttings stored in labeled Ziplock@
bags. Copies of the drilling logs are provided in the Appendix.
The lithology of borings TW 4-3 and TW 4-7 was similar to the first two borings
drilled, with coarser grained materials between approximately 75 and 95 feet bls
underlain by sands containing finer-grained silty and shaly materials. The contact with
the Brushy Basin Shale was at approximately 97.5 feet bls in borings TW 4-3 and TW 4-
7, and at approximately 102.5 feet bls in boring TW 4-8. Although the coarser grained
zone was evident in borings TW 4-3 and TW 4-7, recovery of water in the borings soon
after installation was observed to be much slower than in boring TW 4-8, suggesting a
lower permeability for this zone.
Boring TW 4-3 was screened between approximately 67 and 97 feet bls, boring
TW4-7 between approximately 80 and 120 bls, and boring TW 4-8 between
approximately 85 and 125 feet bls, using the same type of well screen and casing as used
in the first two temporary wells. The surface completions of these wells were also similar
to that of the initial wells.
Sampling Temporary Wells TW 4-3, TW 4-7, and TW 4-8
Perched groundwater sampling of wells TW 4-3, TW 4-7, and TW 4-8 followed
the same procedures as the sampling of temporary wells TW 4-l and TW 4-2, and was
performed during the week of November 29, 1999. As shown in Figure 2 and Table l,
3.4
t2
chloroform was detected at a concentration of 702 p,glL in temporary well TW 4-3
(approximately 700 leet north of MW-4), at a concentration of 256 pgll in temporary
well TW 4-7 (approximately 30 leet west of MW-4), but was not detected at a I VdL
detection limit in temporary well TW 4-8 (approximately 120 feet east of MW-4).
Copies of the laboratory analytical reports are provided in the Appendix.
The chloroform results essentially rule out the hypothesis that chloroform in MW-4
originated as a result of well tampering. Because higher concentrations were found
upgradient of MW-4, and lower concentrations at downgradient and cross-gradient
locations, the results clearly point to an upgradient source, to the north of N/tW-4.
Installing Temporary Wells TW 4-5 and TW 4-9
Based on the results of sampling the previously installed temporary wells, and the
criteria detailed in the work plan, temporary wells TW 4-5 and TW 4-9 were installed at
the approximate locations shown in Figure l, during the week of December 13, 1999.
Both wells are located upgradient of temporary well TW 4-3 (and MW-4) based on
historical perched water elevations measured at the site. Temporary well TW 4-9 is
located approximately 200 feet north of temporary well TW 4-3, and temporary well TW
4-5 approximately 400 feet north of temporary well TW 4-3
Drilling and logging procedures were identical to those used for drilling borings
TW 4-3, TW 4-7, and TW 4-8. Copies of lithologic logs for the borings prepared by the
professional geologist are provided in the Appendix. Well completion and analytical
parameters are provided in Table l.
First water was encountered at slightly deeper depths in temporary borings TW 4-
5 and TW 4-9 than in the previous borings, at approximately 92 feet bls in temporary
boring TW 4-5, and at approximately 87 feet bls in temporary boring TW 4-9. Lithology
was generally similar to previous borings except that in boring TW 4-5 conglomeratic
materials were not encountered until a depth of approximately 97 feet bls. The larger
3.5
li
depths to frrst water and to the conglomeratic zone are to be expected considering the
higher land surface elevations in this area compared with the more downgradient wells.
Both borings were drilled to a total depth of approximately 120 feet bls. The
contact with the Brushy Basin shale was encountered at a depth of approximately 102
feet bls in boring TW 4-5 and at a depth of approximately 105 feet bls in boring TW 4-9.
The casing and screen used to complete the temporary wells was the same as used
in previous installations. Both temporary installations were screened in the lower 40 feet,
between approximately 80 and 120 feet bls. Surface completions were slightly different
than in previous borings, with the 4-inch well casing extending through a 4-inch diameter
hole cut in an 8-inch diameter PVC cap covering the 8-inch conductor casing. This
provides each temporary installation with additional protection from surface debris or
precipitation, until the installations are abandoned or converted to permanent monitoring
wells.
Sampling Temporary Wells TW 4-5 and TW 4-9
Perched groundwater in temporary wells TW 4-5 and TW 4-9 was sampled during
the week of December 20, 1999, using the same procedures employed at previously
installed wells. Chloroform was detected at a concentration of 29.5 ltglL in the sample
from well TW 4-5, and at a concentration of a 2a p,glL in the sample from well TW 4-9.
Copies of the laboratory analytical reports are provided in the Appendix. Well
completion and analytical parameters are provided in Table l.
3.6
l{
40 DELINEATION OF THE EXTENT OF ELEVATED CHLOROFORM
CONCENTRATIONS TN PERCFIED GROUNDWATER
Based upon the initial groundwater sampling of the temporary wells, on historical
perched hydraulic gradients at the site, and other background data from the site, the
highest chloroform concentration in the perched groundwater occurs at monitoring well
MW-4. The concentrations drop off in the upgradient and downgradient directions, and
cross-gradient of MW4 (Figure 2). Concentrations drop off most rapidly in the
downgradient direction (to the south) and cross-gradient (to the east and west); while
concentrations decrease gradually in the upgradient direction (to the north). To the south,
at temporary well TW 4-1, the concentration of chloroform was reported to be 5.8 pglL;
to the east, at temporary well TW 4-8, the concentration was reported to be non-
detectable (at less than I p/L); and to the west, at temporary well TW 4-7, the
concentration was 256 y:,glL (about 30 feet west of monitoring well MW-4) As indicated
earlier, the presence of a soil pile prevented installation of TW 4-7 at a distance greater
than about 30 feet west of MW-4. Extensive sampling of perched groundwater to the
west of MW-4, at numerous monitoring wells located in the footprint of the tailings cells,
has indicated non-detectable chloroform (at less than I pgL), with the only exception
being a concentration of I 2 VdL detected at upgradient well MW- I .
The direction olthe perched groundwater hydraulic gradient at the present time is
approximately north to south near MW-4, consistent with past measurements at the site,
based on depths to water measured in the temporary wells, and land surface elevations
estimated from the site land surface elevation contour map. An accurate estimate of the
hydraulic gradient will require more time for water levels in the temporary wells to fully
recover, and the casing elevations to be surveyed.
The distribution of chloroform in the perched water in the vicinity of MW-4,
based on the initial sampling of the temporary wells, is consistent with a past release of
chloroform to the perched water over a relatively short period of time at an upgradient
location, most likely at the abandoned leach field near the present scale house (Figure 2)
l5
Within the area of perched groundwater aflected by chloroform, the highest
chloroform concentration continues to be in the immediate vicinity of monitoring well
MW-4. The sharp decrease in concentrations between MW-4 and TW 4-l is consistent
with movement of groundwater through the coarser-grained, higher permeability zone
observed at depths between approximately 70 and 100 feet bls during drilling. The more
gradual drop off of concentrations in the upgradient direction is consistent with residual
chloroform in the perched water zone left behind by the passing of a high concentration
"slug" that is now documented to be near MW-4. lt is likely that chloroform "bled" into
surrounding lower permeability materials that are now slowly releasing chloroform into
upgradient water that is moving through the system, resulting in reduction of chloroform
concentrations in the previously affected materials.
4.1 Recommendations for Additional Work
The sampling results to date indicate that elevated chloroform concentrations are
confined to a relatively narrow zone, and that elevated concentrations have not moved
significantly downgradient of MW-4.
To ensure that samples collected from the temporary wells are representative of
the perched groundwater, at least one additional round of sampling will be needed after
the wells have had more time for recovery and equilibration. The water levels in the
temporary wells will be observed to aid in selecting the appropriate time to collect the
additional round of samples. It is anticipated that the additional samples could be
collected no later than mid-March of 2000. Field measurements will include depth to
water, electrical conductivity, temperature, and pH. Chloroform sampling procedures
will be the same as described previously.
Based on the results of this additional sampling and analysis, and other relevant
data collected to date, a decision will be made for each temporary well whether to
abandon it or convert it into a permanent monitoring well. Abandonment and/or conver-
sion procedures will follow State of Utah Administrative Rules for Water Well Drillers.
l6
50 CONCLUSIONS
Data collected at the site to date indicate that elevated chloroform concentrations
in perched water are confined to a relatively narrow zone, and do not extend significantly
downgradient of MW-4 at the present time. The data are also consistent with an
upgradient source of chloroform, most likely the abandoned leach field near the scale
house, located to the north of MW-4. Subject to the results of the additional work
planned (as detailed on Section 4.1 above), which may modify this interpretation, the
zone of elevated chloroform concentrations in the perched water is considered to be
substantial ly del i neated.
t7
o
I UEAI',r
- - -\J'F '"- **)} r-'r-.' \ I\ l!
-)---i-,.=-ii-ia -/-:--a--F
\ t(
-l\ \*
((\\
.5
oul{r
o
I
(E
UJFr<;
=C)z
J
o
(E
oFa-
xo(E
(L
TL
I
I
i
i
I
./L/ \\--/)A
Ir
I ; MW-4 W\t4)Q 8r i61('t.-._z \ )
tw4-'1 1\.,,*rr-.r/
-2
t.)
4
;'1
NOTE: WELL LOCATIONS APPROXIMATE
+,l
APPROXIMATE TEMPORARY WELL LOCATIONS
AND CHLOROFORM CONCENTRATIONS (ug/l)
BASED ON INITIAL SAMPLING
\pproved Oare R6laren@ sure
2
TABLE 1
TEMPORARY WELL COMPLETION DATA, FIELD MEASUREMENTS,
AND CHLOROFORM ANALYSES
t =Depth to water measured on January 3, 2OOO
2
=Only 30 feet of undamaged screen available at time of instaltation
TW+1 TW4-2 TW4-3 TW4-5 TW4-7 Tw/t-8 TW4-9
Approximate screened
interval
(feet bls)
70-1 10 80-120 67-972 80-120 80-120 85-1 25 80-120
Depth to Waterl
(feet below measuring wint)
81.1 76.4 65.3 61.4 67.5 75.2 60.5
PH 6.80 7.06 6.72 6.24 6.87 6.97 6.26
Electrical Conductivity
(mS/cm)
4063 3581 3655 't787 4056 3402 3049
r emPerarure
(o c)13.1 14.4 13.4 14.5 14.4 14.2 13.3
untorororm
(pilL)5.8 2510 702 29.5 256 <1 4.2
Note:
H :\7 1 800\Well_Completion_Tablel
APPENDIx
[)EI ti ro
Dote //- s-Q'i Georogrs , ?rrr,.,- Driring 9.6 vnnrts Ex)r,,r-.,u:rltcr.:1tl,I-
Propertytrl|rcAtsA /il,i{ prolecl /l il.q P*nsc l,No -.---- Sec.- Twp _ Rge
Elev.
-
o
z)
5o
7,J
)o.o
/2,t
/to
t79
2o.o
22.f
2iD
zz.i
9.o
37.;.
,not f or I
ro. PnoeE
ro. ontLL /i0.(\
FLUIO LEVEL
R€MARK 5
hcq
{",
t-35
r7,5
ttO,0
4?.5
t/ t,
,azi.
T o.o
52.f
:oD -
/)
5i.o
boo
a;.0
boo
85 tt
io,t
'7'i o
/D0
/ ot.
lto.o
fD.
PERCEIITAGE COUPOSITIOX ITIAGE
@@7t rot
/
oti
a.-
.' /rr,/r;A
4,/,8
^+ )a
.o$0,
YRITE
NI
N
IJ
N
^l_
.N
N
Il
tu
J'l i
I
1i,l'i.i($.':hHa:tQQQQ
t5l @@qB
SAI'IPLE DESCRIPTION KEY
DEPTH SCALEScaIAE-F-so' for drirtsamples and 1"-5| for core.
SAMPLE TAKEN
Mark t.hrough interval whichspecial chip sample is
saved, with an rxn markthrough core interval with
shad i ng .
GRAPHIC LOGscaitlEitiEck symbol forinterval.
ALTERATION-TE,[Eion
+ Dissolutionf
8 oxidation
GAMLS ANOMALY (probe)
T 3xBG ; .009 TraceI .010 .049 Low Mineral2 .050 .199 High Mineral
IRON OXIDE
H - HernatiteL LimoniteG Geothite
Abundan t
Modera te
Trace
PYRITE-MARCAS ITE@ent.
-Habi tE-;-ggregate
C Interangular cement,G GlobulesI IndividualM MassiveMT Marcas i t ic tex t.ureO Organic replacement
Al terat ionFEE-T TarnishedP Pseudomorphs af ter pyr i t.e
METATLIC MINERALS
ffiand clarify inremarks and metallic minerals
observed.
( Mosr rNis rpbs ttJorrcu2o, etc. )
NON-IIETALLIC MINERALS clari fy inremarks any non-metallicminerals observed. (Barite,
Anhydrite, Gypsumr Calcite,etc. )
REACTION -1Og HCL@S StrongM Mode ra t.eW Weak
VW Very WeakN None
CARBON MATERIAL
Amount In percent
Tvpe
C CoalF Dist.inct woody fragmentsH HumicHY HydrocarbonI Interbedded trashL Lignit ic
BRECCIA NOMENCLATURE=--See s@use grainsize, sorting and angularitycolumns for classification ind
,.iescr ipt ion .
REMARKS
Use to clar!-fy and expand onthe columnar data. ExflrinanythiUg not evident or anr/special characteristics suihas: heavy rninerals, tuffaceou-ness, cvclic sedimentation,fossils, sedimentarv struc-tures, fornation picks, etc.
A
l'1
T
I
BRECCIA PIPE
I Definate
I unsure
Peb
vc
c
mt
vf
ore
LITHOLOGYStanAffi-abbreviation for rocktype.
COLORffiTocf-Color Chart of wet
samples.
GRAIN SIZESE[.iAffine Ca rbona tes
Pebble
Very Coarse
Coarse
Med ium
Fine
Very Fine
SORTING
W Well-sortedl,l Moderately-sortedP Poorly-sortedU Un-sorted
ANGULARITY
VA Very AngularA Angulara subangularr SubroundedR Rounded
WR Weil Rounded
CEMENT-MATRIX
A Argillaceous
C CarbonateD DolomiteS SilicaF Ferrug inous
vc
c
m
f
vf
' oo*
s-o,.$
Dote //'02-1? Geologist I C ^''do./cs 8,4//€) €x"i,t'<'/'1D,c)iD4lole No. /2.
Properly d)H/rE UESAnt& Prolect mA'4 " 'Z Unil No. Sec.
-
Twp.
-
Rge
PAOE
-
OF
-
r.o. PaocE
r.o. OntLL lZ0,f
FLUIO L€Y€L
RE TIA RK S
^+
od)
o
2.5
5.0
7,f,
/ao
/2,f,
/f,
t7,,
20.0
225
Jr.O
x'),s
30.0
3z(
lsa
37,t
10.o
q2.f
45.
.17 t-
S0o
5z,f
57,5
bzt
o7,s
72.f
77;
0zs
8t.s
5n*lt
1/r
Qt€
)07s
/tz
tt7'f-
tzi.f
f.a
PERCET{YAGE CO'
QQQQQ@.
'ox llt^oE
ttl @@qB{@@
SAMPLE DESCRIPTION KEY
DEPTH SCALEScaltfs-F-5o' for drirt
samples and 1"-5t for core.
SAMPLE TAKEN
IRON OXIDE
Hema t i te
L imon i t.e
Geoth i t.e
Abundant
Mode ra te
Trace
A
M
T
H
L
G
l,-ryFoush| :5$:'-ifi,
through core
shad i ng .
.049 Low Mineral
. t99 High Mineral
Ore
PYRITE-I'IARCASITE
Amount, - In percent..
-Habi tE-:-ggregate
C Interangular cementc GlobulesI IndividualM MassiveMT Marcasitic textureO Organic replacement
Al tera t, ion
F--FresE_T TarnishedP Pseudomorphs af ter pyr i t,e
METALLIC MINERALSffiand clarify inremarks and metallic minerals
observed.
( I'tos2, N is' Pbs'IJOa' CU2O' etc . )
NON-METALLIC MINERALS clar i fy inremarks any non-metaIlicminerals observed. (Barite,
Anhydrite, Gypsum, CitIcite,etc. )
REACTION -1OI HCL@S StrongM ModerateW Weak
VW Very WeakN None
CARBON MATERIALAryolqt In percent
TvpeC CoaIF Distinct woody fragmentsH HumicHY HydrocarbonI Int.erbedded trashL Lignitic
BRECCI A NOI'IENCLATURE
use grainsize, sorting and angularitycolumns for classification anddescription.
REMARKS
Use to clari-fy and expand onthe columnar data. Xxplrinanything not evident or an\,,special characteristics suchas: heavy rninerals, tuffaceou-ness, cvcl ic sedimentat ion ,fossils, sedimentarv struc-tures, fornnation picks. etc.
interval which
sample is
an 'xu mark
int,erval with
GRAPHIC LOG
StantiEEI rock symbol forint.erval.
ALTERATION=T-[ffiion
Dissolut ion
Ox idat ion
++
oo
I .010
?.0503 .200
Peb
vc
c
m
t
vf
SORTING
BRECCIA PIPE--l-Dffi;te
I unsure
LITHOLOGY
StanaarA-abbreviation for rock
type.
COLORffiTock-Color Chart of wet
samples.
GRAIN SIZE
ffiAsEone Carbona tes
PebbIe
Very Coarse
Coarse
l'led ium
Fine
Very Fine
W }le I l- sor tedl,t Moderately-sortedP PoorIy-sortedU Un-sorted
ANGULARITY
VA Very AngularA Angulara subangularr SubroundedR Rounded
WR WelI Rounded
CEMENT-MATRIXA ArgillaceousC CarbonateD DolomiteS Silica
vc
c
m
tvf
GAMMA ANOMALY (Probe)
T 3xBG - .009 Trace
Ferrug inous
'oo
Dote //-tA-?? Geologrst z,(asCE;-' Dritling Co.4A/rt) f,,-r,i. ,'. . rru?. Hote No ,* -7
Progerly/)HriY mt'rrqr* Prolect AU-q /AA:E L Unit No Sec. _ Twp __ Rge
Counly ,n^sfM,) Stote qrAa Locotron Elev.
--eaot f or
r0. Paor€
r.o.0ntLL
FLUIO LEV E L
R€NARK S
0
z,)
5'.0
7,f
/00
/2f
/S.D
/7f
2dc)
zzi
:\. u
4 t,).
3o
3zf
35
,1) :-
t/a0
t/2,f.
t/sl0
't 7t'
foo
4'z ?-
,i75.
600
(.-z f
+: trl- r, .tr q.,., tr , v
---j_--1_1-
Ab14^l.t^-
(i,
b7.i
70 ,2
77 \-
go
82.
g7r
1a
7z.f-
I't.;.
loot)
t'02i'
/of
i)
/ tz.,
il7t
lZa
lzl
rZl
o ct< 1l
r C.
kQp roLl L'-n
n lar4
4rrgr (
LFr Lz
PERr:FrrY^ ^- colPostTtolt tuAGC,fr/, rtI. ...\. ';
\-,a @@
o,i
{d "or
*J /*7,
o" o:f /,tt ,; /,r)'(*ri
PYntre
Isl.,r r: :i
3li:l a r
r5t i0r
QQQQ
,.L+rpJ,\a-.!'
SAI"IPLE DESCRI PTION KEY
DEPTH SCALE
scaie--Is-TT-50' for driIlsamples and 1u-5r for core.
SAMPLE TAKEN
Mark through interval whichspecial chip sample is
saved, wit,h an ,Xn markthrough core inEerval with
shad i ng .
GRAPHIC LOGFtEnG-rciEck symbol forint,erval.
ATTERATION--]--[ffiion
+ Dissolutionf
8 ox idat ion
G,/U!!MA ANOMALY ( probe )T 3xBG .009 TraceI .010 .049 Low Mineral2 .050 .199 High Mineral3 .200 > Ore
BRECCIA PIPE|-Dffiere
I unsure
LITHOLOGY
Standard abbreviat.ion for rocktype.
COLOR6ffiock-Color Chart of wet,
samp Ies .
GRAIN SIZEsanffi;e Carbona tes
IRON OXIDEE----TErnatTte A AbundantL Limoni te M ModerateG Geothite T Trace
PYRITE-MARCAS I TE@ent.
-Habi t,E-Tqgregate
C Interangular cementG GlobulesI IndividualH MassiveMT Marcasitic textureO Organ ic replacement,
Al t.era t ionF-EE=
T TarnishedP Pseudomorphs af ter pyr i t,e
METALLIC MINERALS
ffiand clarify inremarks and met,allic minerals
observed.
( Mosr,N is,pbs,uor,ctJ 20, etc. )
NON-METALLIC MINERALSM clarify inremarks any non-metatlicminerals observed. ( earite,
Anhydr i te , Gypsum, CErlc i t,e ,etc. )
REACTION -IOt HCL@S StrongM ModerateW Weak
VW Very WeakN None
CARBON MATERIAL4rngulrt I n percent
TvpeC CoaIF Distinct woody fragmentsH HumicHY HydrocarbonI Interbedded trashL Lignitic
BRECCIA NOMENCLATURE
use grainsize, sorting and angularitycolumns for classification inddescr ipt ion.
REMARKS
Use to clari-fy and expand on
tha an'l rrmno- rlolo rtrh'l - : --gui4. !/rPr*lrranything not evident or an:,special characteristics suchas: heavy rninerals, tuffaceou-
ness , cvcl ic sedimentat ion ,fossils, sedimentarv struc-
tures , f ornnat ion p icks . etc .
Peb
vc
c
m
f
vf
Pebble
Very Coarse
Coarse
Med i um
Fine
Very Fine
SORTING
W WeII-sortedM Moderately-sortedP PoorIy-sortedU Un-sorted
ANGULARITY
VA Very AngularA Angulara subangularr subroundedR Rounded
WR Well Rounded
CEI,lENT-MATRI XA ArgillaceousC CarbonateD DolomiteS SilicaF perrug inous
vc
c
m
fvf
Dote J/-/Z:31-- Geologist t C "s tLEotl Drilling
Properly /u//fg 4ESA ltltLL Prolecl M
Counly 3a o f ua) 51s1s u rAl Loco lron
Co. 8,a:tuEJ f vPiu,l,t-t'J. lDc H o le No <)F!'
Unil No. Sec.
-
Twp
-
Rge
Elev"
-
PA6E
-
OF
ro. PeocE
r.o.0etLL
FLUIO LEVEL
REMARK S
/?t.o
/27i
lSoo
/)2.i.
/3t.
/37,
fo.
ori
t*"o,
*i /$d"olt' zt
: s.'
QQQQ
PERCETTAGE COUPOSITIOX ITTAGE
@@@@ffi,r rot i-sr )6-r i5r
{ffi
aot
Fr,4li:{:9
t0t
DEPTH SCALE
scaltisfT-50' for driII
samples and 1"-5| for core.
SAMPLE TAKEN
GRAPHIC LOG
S can-GEiEck symbol f orint,erval.
ALTERATIONJlffiion
Di ssolut ion
Ox idat ion
I .010 .049 Low Mineral2 .050 .I99 High Mineral3 .200 > ore
Mark through interval whichspecial chip sample is
saved, with an uX' mark
t.hrough core interval with
shad i ng .
SAI'1PLE DESCRIPTION KEY
rock
IRON OXIDE
H ---He-rna [Tte
L LimoniEe
G Geothite
Abundan t
Modera t,e
Trace
PYRITE-MARCAS ITE@ent.
-Habi tE-Tggregate
C InEerangular cementG GlobuIesI IndividualM Massive
MT Marcasitic text.ureO Organic replacement
AlteraEionF-n'".h--
T TarnishedP Pseudomorphs after pyrite
METALLIC MINERALS
ffiand clarify inremarks and met.allic minerals
observed.
( ttos, , N is r pbs ,tJo2,cu2o, e tc . )
NON-METALLIC MINERALS clari fy inremarks any non-metallicminerals observed. ( Barite,Anhydrite, Gypsum, Calcite,etc. )
REACTION -IOT HCL@S StrongM ModerateW Weak
VW Very Weak
N None
CARBON MATERIAL
Amount - In percent
CoaI
Oistinct woody fragments
Humic
Hydrocarbon
Interbedded trashL Lignitic
BRECCI A NOI.IENCLATURE
See sample manual - use grainsize, sorting and angularitycolumns for classif ication ind
descr ipt ion.
REMARKS
Use to clarify and expand onthe colrrmna-r da-ta" I:.pl-arnanything not evident or an'special characteristics suchas: heavy ruinerals, tuf f aceou-ness, cvcl ic sedimentat ion ,fossils, sedimentarv struc-
tures , f orrnat ion p icks , etc .
A
M
T
++
oo
BRECCIA PIPE-]-oeEE;te
I unsure
LITHOLOGY
StanAila-abbrev iat ion f or
Lype.
COLOR
GSA Rock-Color Chart of wet
samples.
GRAIN SIZESanAilone Carbona tes
Peb
vc
c
m
f
vf
SORTING
PebbIe
Very Coarse
Coarse
Med i um
F ine
Very Fine
W WeII-sorted
M Moderat.ely-sortedP Poorly-sortedU Un-sorted
ANGULARITY
VA Very AngularA Angulara subangularr subroundedR Rounded
WR WeIl Rounded
CEMENT-MATRI XA ArgillaceousC CarbonateD Dolom i teS SiIicaF Ferrug inous
vc
c
m
t
vf
Tvpe
C
P
H
HY
I
GAI{MA ANOMALY ( PTobe )T 3xBG .009 Trace
Dote -//: /2 11 Geologisl / Ca;( Lt /: Drilling
Properly u)tit?E nes^ ittLv Prolect ruW-tl l)l;ll5E Z
Counly SAo:atn"'l Slote tli-lrt Locotron
gs. fiAy'LLs r yftoi.-4:. c/i /r,e Hqt g
Unil No. Sec.
-
Twp
No. "/' -
-
Rge
Elev.
-^t.e'
ael
onoe I oF
-
r.D. PnoaE
r 0. ontLL
FLUIO L€Y € L
REMARK S
0
2.f
5,t)
7i
/o.t)
l1:
,,.: l)
r7d
'ioa
250
z7.f
30,0
32.'
3
37.f
4 D.b
42,5
lio
t 7.i
9D.o
s2,f
5)0
57.f
bo.
bz.,
bi,
G7,;
7o o-
/2.>
79.o
/7r-
82.r
85,0
87,t
?o,D-
tu.r-
1i.0 -
?7,i
/00.o
/ D2f
llo
11l,f,
tt7.f
hc-{ &
rbor a
t,r 4f il"t,
rrr C{t
,1n 1-lt tS
{'rrr
r.1,
-o *.td
GE COUPOSTT|OX tilAOt
@@15t 201 6e
' oo*
.,,ro ,
f ,(fl
/"t/*7
,-ttt0
--1---l
-l
-. I
.-l
., . ' l
tn - li orbn
lza
QQQQq,
r.cqlt. ^
€B30t
SAMPLE DESCRIPTION KEY
DEPTH SCALE
ScaTe--Is-Trr-50' f or drill
samples and 1u-5, for core.
SAMPLE TAKEN
Mark through inEerval whichspecial chip sample is
saved, wit.h an uxn mark
through core interval with
shad i ng .
GRAPHIC LOGffinffil rocf symbol for
i nt.erva I .
ALTERATION-l-TEffiion
Dissol ut ion
Ox idat ion
E44!tA ANoMALY ( probe )
eI .010 .049 Loh, Mineral? .050 .199 High Mineral3 .200 ) Ore
BRECCIA PIPE--l-Dtrin-ere
I unsure
LITHOLOGY
Standffi-abbreviation for rock
type.
COLOR
MTock-Color Chart of wet
samples.
GRAIN SIZESndsEne Carbona tes
PebbIe
Very Coarse
Coarse
Med ium
Fine
Very Fine
W WeII-sorted
l'! Moderately-sortedP PoorIy-sortedU Un-sorted
ANGULARITY
VA Very AngularA Angulara subangularr SubroundedR Rounded
WR Well Rounded
CEMENT-MATRI Xa-T@ffIEEous
C CarbonateD DolomiteS Silica
P YRI TE-I"IARCAS I TE
Amount - In percent..
-Habi tE--Tgg reg a teC Int,erangular cementc GlobulesI IndividualM MassiveMT Marcasitic textureO Organic replacement,
AI tera t ion
F _EE_
T Tarnished
P Pseudomorphs after pyrit,e
METALLIC MINERALS
ffiand clarify inremarks and metallic minerals
observed.
( MoS, , N is , Pbs luo2 t cu2o, e t,c . )
NON.METALLIC MINERALSt',tafficlarify inremarks any non-metailicminerals observed. ( Barite,
Anhyd r i te , Gypsum , Ca lc i t,e ,etc. )
REACTION -lot HCL@S StrongM ModerateW Weak
VW Very Weak
N None
CARBON MATERIAL
Amount In percent
Tvpe
C CoaIF Distinct woody fragmentsH HumicHY HydrocarbonI Int,erbedded trashL Lignit ic
BRECCIA NOMENCLATURE
use grainsize, sorting and angularitycolumns for classification anddescri.ption.
REMARKS
Use to clari-fy and expand onthe eol-umnar data. Xxplatnanything not evident or anr,/special characteristics suchas: heavy lninerals, tuffaceou-
ness , cvcl ic sedimentat ion ,fossils, sedimentarv struc-tures, fornation picks. etc.
IRON OXIDE
Hema t i te
L imon i te
Geoth i te
Abundant
Modera t,e
Trace
A
M
T
H
L
G
++
oo
Peb
vc
c
m
t
vf
SORTING
vc
c
m
E
vf
Ferrug inous
gqls
-//-/7'4? Geolog rst L. Cast,tct/' Drilling Co.
Properly A),//rE tlE54 t'llLProlect W Uni
Counly S,qi'fual Srcle ur,-,ttr Locolron
a
64 qLL-.': ./VPloRA,-/otr' ,-tl. H o le
I No
-
Sec.
-
Twp
no ri
-
Rge
Elev.
-
,nu, / o,
r.0. PnocE
r 0. 0RtLL
FLUIO LEV E L
R€MARKS
0
2.i
5.D
7.i
to.o
/2.i
/;0
t 7.f
zoo
22.t
25.o
2?.,
b,o
32.,
35o
37,s
q0,0
42.i
15,0
. tl7'{
fo.o
52.r
tto
57s
h0,0
"2';b5.o
b7,r
70.o
72.i.
7iD
77.i
80.
?2,;-
tt,
62t-
?7r
lo0,o
/oz,
ID
/07.t=
ilz.5
I t:1
lt7,
lt
/Z7S
/2;
7D,
m?tT
ro ll rh0rl ll
PERCEXTAG€COI'POS,. IUAGE
QQQQQQ(. @@qB'ffi68
' oo*
sg ,$'{c
PYflITE
t. --.t_::l::.
I :.:l_-.
l: --F,-t-. -
t--
t-'-
SAMPLE DESCRIPTION KEY
DEPTH SCALE
Scale is I -50r for drill
l "-5 r for core.samples and
SAMPLE TAKEN
Mark through interval whichspecial chip sample is
saved, with an 'Xo mark
through core int.erval with
shad i ng .
GRAPHIC LOGStantiE-fr-Eck symbol forinterval.
ALTERATIONl-Tffiion
+ Dissolut, ionf
3 ox idar ion
GAMMA ANOMALY (probe)
T 3xBG .009 TraceI .010 .049 Loh, Mineral2 .050 .I99 High Mineral3 .200 ) Ore
BRECCIA PIPE--T-DAEGate
I unsure
LITHOLOGYStana;fr-abbreviation for rocktype.
COLORffi-TocX-Color Chart. of wet.
samples.
GRAIN SIZE
SanA-s tone Carbona tes
IRON OXIDE
H -- Hernat.Ite AL LimoniLe M
c Geothite T
PYRITE-I'iARCAS I TE
Amount - In percent.
'Habi E
E---Tggregate
C Interangular cementG GlobulesI Ind iv idualM MassiveMT Marcas i t ic t.ex t.ureO Organic replacement
Al t,erat ion
F--FresE_
T Tarnished
P Pseudomorphs after pyrite
METALLIC MINERALS
ffiand clarify inremarks and metallic minerals
observed.
( MoS,NiS rPbS 1UO2tCU2O, etc. )
NON-METALLIC MINERALS clarify inremarks any non-metallicminerals observed. ( Bari te,Anhydrite, Gypsum, CaIcite,etc. )
REACTION -IOT HCL@S StrongM ModerateW Weak
VW Very WeakN None
CARBON MATERIAL
@ogfrt In percent
TvpeC CoaIF Distinct woody fragmentsH HumicHY HydrocarbonI Int,erbedded ErashL Lignit ic
BRECCIA NOMENCLATURE
-
See@use grainsize, sorting and angularitycolumns for classif ication inddescr ipt ion.
REMARKS
Use to clari-fy and expand onthe ccl-,.,;:nar i,aia. Ixpla inanything not evident or an:,special characteristics such
as : heavy rnineral s, tuf f aceou-ness, evcl ic sedimentat ion ,fossils, sedimentarv struc-tures, formation picks. etc.
Abundan t
Mode ra te
Trace
Peb
vc
c
m
t
vf
PebbIe
Very Coarse
Coarse
Med i um
Fine
Very Fine
SORTING
W WelI-sortedM Moderately-sortedP PoorIy-sortedU Un-sorted
ANGULARIT{VA Very Arrgul;lrA Angulara subangularr SubroundedR Rouncled
IVR WelI Rounded
CEMENT-MATRI XA ArgillaceousC CarbonateD Dolom i teS SilicaF Ferrug inous
vc
c
m
tvf
DEC 23 '99 A=:34l,H :SNtrrONrL LRFNIUr1 (u=F)
P.CC
-
O"
-
to. raoc€
7o- ortLL l?n'u
Ft ute L6v/fL
R€^IARK5
o
2ri
ID
?,,t'
tt.o
/2;J
/E
'7,1
OAQ
DEC a= '99 g3:35Pr4 T5iNFTIONFL URFNJUm (USt)
gola /21 5- 14 Gaologist t , CA5€6oLr
Progerly k)H//F flda ^tUA Project mH/'4 P4ese 2
CoUntY <aJ 7t1A\)Slol2 lfA t+
o
2,1
l,a
7.i
./a
t2,i
,2u
2
22
250
"7t.
32
a?,6
,0.
5
15.
DriUing Co ,nu,t tt Frpl)&fioi, /A)C
?.3/3
Hole No. 4r'd?'oa?fi'os
Locolion-
Unil No.- Sec.- Tr9.
-
Rqc.
-
Elev-
-^.$odl
,aeA _ o, _
ED. P'E'C
7 A 9ratll
FLUIO LSYJL
AEHARK S
co>Lor,,
70
74.
7it)
7'r,t.
tl I
'^c[ colTottTror Di^erAAQG)E: @@@@@@
I ABORATORY ^ NAI YSIS REPORTJtrPA METHOD 8260
Client:
Project:
Sample ID:
Laboratory ID:
Matrix:
Dilution Factor:
C.A.S. #
International Uranium (USA) Corp.
None
MW#4-2
99-34330-r
Water
500
TARGET COMPOI.]NDS
Date Sampled:
Time Sampled:
Date Received:
Date Analyzed:
Date Reported:
CONCENTRATION
fus/L)
1 l-08-99
l4:23
l l-10-99
1 l-10-99
November ll, 1999
REPORT
LIMIT (Fs/L)
67-G3 Chloroform (Trichloromethane)2,510 250
ND - Analyte not detected at staled limit of detection
RUNTIME QAALITY ASSUrdNCE REPORT
INTERNAL STANDARDS
Pentafluoroberzene
Fluorobenzene
1,4 - Difluorobenzene
Chlorobenzene - d5
1,4 - Dichlorobenzene - d4
ICAL / CCAL
AR.EA
1385091
2t38t37
2061084
1444182
556p.22
CONCENTRATION
10.0
10.4
9.74
9.93
PERCENT
RRCOVERY
96.6%
98.6Vo
97.2%
tot%
95.8%
PERCENT
RECOVERY
100%
104%
97.4%
99.3%
ACCEPTANCE
RANGE
s0-200%
50-200%
50 -2C0 %
50 - 2A0 Vo
50-200%
ACCEPTAIICE
RANGE
86-tt\%
88-ll0%
86-Lr5%
80-t20%
ARNA
1338477
2108480
2002938
t462ttt
532827
SYSTEM MONITORING COMPOT]NDS
Dibromofluoromethane
Toluene - d8
4 - Bromofluorobenzene
1,2 - Dichlorobenzene - d4
MFTHOITS USF'D IN THTS ANAI YSIS:
EPA 50308, EPA 82608
sec: r:\reports\clienB99\inrernarional_uranium_corp\casper_org\3433G1-3_8260_c_w.xls Extractor / Analyst:
I ABORATORY ANAI YSIS REPORT, RPA MF'THOD 8260
Client:
Project:
Sample ID:
Laboratory ID:
Matrix:
Dilution Factor:
C.A,S. #
International Uranium (USA) Corp.
None
MW 4-1
99-34330-2
Water
l0
TARGET COMPOT]NDS
Date Sampled:
Time Sampled:
Date Received:
Date Analyzed:
Date Reported:
CONCENTRATION
fus/L)
I l-09-99
09: 15
I l-10-99
I t-10-99
November ll, 1999
REPORT
LIMIT (ps/L)
Chloroform (Trichloromethane)5.79 5.0
ND - Analyte not detected at stated limit of detection
RUNTIME QUALITY ASSURANCE REPA RT
rN T'.RNAT STANDARDS
Pentafluorobenz ene
Fluorobenzene
1,4 - Difluorobenzene
Chlorobenzene - d5
I,4 - Dichlorobenzene - d4
AREA
1309069
2037695
1946186
t400445
517517
ICAL / CCAL
AREA
1385091
2t38t37
2061084
r444t82
CONCENTRATION
10.1
l0.l
9.89
9.9t
PERCENT
RECOVF"RY
94.5%
9s.3%
94.4%
97.0%
PERCENT
RECOVT'RY
tjt%
tot%
98.9%
99.1%
ACCEPTANCE
RANGF
50 - 200 70
50 - 240 7o
50-200%
50-200%
50-200%
ACCEPTANCE
RANGE
86-tt8%
88 - ttO 70
86-115%
80-120v
ssfi2z 93.1%
SYSTPM MOMTORTNG COMPOLII{DS
Dibromofluoromethane
Toluene - d8
4 - Bromofluorobenzene
1,2 - Dichlorobenzene - d4
MFTHONS USRD IN TTilS ANAI YSTS:
EPA 5O3OB. EPA 82608
sec: r:\reports\clients99\inrernarional_uranium_corp\casper_org\3433G I -3 8260 c w. xls Extractor / Amlyst:
r ARORATORY ANALYSIS REPORT, EpA METHOD 8260
Client:
Project:
Sample ID:
Laboratory ID:
Matrix:
Dilution Factor:
c.A.s. #
International Uranium (USA) Corp.
None
TRIP BLANK
99-34330-3
Water
I
TARGET COMPOIINDS
Date Sampled:
Time Sampled:
Date Received:
Date Analyzed:
Date Reported:
CONCENTRATION
firg/L)
09-2t-99
09:00
I l-10-99
I l-10-99
November 11, 1999
RBPORT
LIMIT (ps/L)
67-66-3 Chloroform (Trichloromethane)ND 0.50
ND - Analyte not detected at stated limit of detection
RUNTIME QAALITY ASSURANCE REPORT
TNTERNAI STANDARDS
Pentafluorobenzene
Fluorobenzene
1,4 - Difluorobenzene
Chlorobenzene - d5
1,4 - Dichlorobenzene - d4
ARF',A
r426953
2190.239
2119062
1408839
5t5754
ICAL ICCAL
AREA
1385091
2t38137
2061084
r4Mr82
s56f.22
CONCF'NTRATTON
9.94
9.39
9.84
9.85
PERCENT
RECOVFRY
103Vo
ro2%
to3%
97.6%
92.8%
PERCENT
RECO!'F'RY
99.47o
93.9%
98.4%
98.5%
ACCEPTANCE
RANGT'
50 -200 70
50-200%
50-200%
50 - 200 70
s0-200%
ACCEPTANCE
RANGF
86-tt8%
88-ilo%
86-tt5%
80-r20%
SYS'I-F',M MOIYITORING COMPOTJNDS
Dibromofluoromethane
Toluene - d8
4 - Bromofluorobenzene
1,2 - Dichlorobenzene - d4
MF',THODS USF'TI IN TIIIS ANAI,YSIS:
EPA 50308, EPA 62608
sec: r:\reports\clients99\international_uranium_corp\casper_org\3433G1-3_E260_c_w.xls Extractor / Analyst:
I ARORATORY ANAI YSIS REPORT, T'PA MF'THOD 8260
Client: International Uranium (USA) Corp.
Project: None
Sample ID: Method Blank
Laboratory ID: MBl l l0
Matrix: Water
Dilution Factor: I
Date Sampled:
Time Sampled:
Date Received:
Date Analyzed:
Date Reported:
CONCENTRATION
N/A
N/A
N/A
1 l-10-99
November 11, 1999
REPART
LIMIT (ps/L)C.A.S. # TARGET COMPOLINIIS (ps/L)
67-66-3 Chloroform (Trichloromethane)ND 0.s0
ND - Analyte not detected at stated limit of detectian
RANTIME QAALITY ASSURANCE REPORT
TNTERNAI STANDARDS
Pentafluorobenzene
Fluorobenzene
I,4 - Difluorobenzene
Chlorobenzene - d5
1,4 - Dichlorobenzene - d4
AREA
1314661
2066298
1968827
1399798
5 19845
ICAL / CCAL
AREA
1385091
2t38137
206r084
1444t82
55ffi22
CONCENTRATION
9.86
r0.l
9.87
9.87
PERCENT
RFCOVERY
94.9%
96.6%
9s5%
96.9%
93.5%
PERCENT
REICOVT'RY
98.6%
tjr%
98.7Vo
98.7%
ACCEPTANCE
RANGF"
50-200%
50-240%
50-200%
s0-200%
50-200%
ACCEPTANCE
RANGE
86-tr8%
88-110%
86-rt5%
80 - 120 o/o
SYSTEM MOIYTTORING COMPOTINTIS
Dibromofluoromethane
Toluene - d8
4 - Bromofluorobenzene
1,2 - Dichlorobenzene - d4
MF'THODS USED TN T}{IS ANAI.YSIS:
EPA 50308, EPA 82608
sec: r:\reports\clients99\international_uranium_corp\casper_org\3433Gt-3_8260_c_w.xls Extractor / Analyst:
Page 1 of 1
r ARORATORY ANALYSIS REPORT, EpA MFTHOD 8260
Volatile Organic Compounds
Client:
Project:
Sample ID:
Laboratory ID:
Matrix:
Dilution Factor:
International Uranium (USA) Corp.
None
WMMW 4-3
99-34718-L
Water
100
Date Sampled:
Time Sampled:
Date Received:
Date Analyzed:
Date Reported:
Lt-29-99
I l:15
t2-0t-99
12-06-99
December 7, 1999
C.A.S, # TARGET COMPOTJNDS
CONCENTRATION
tus/L)
REPORT
LIMIT (ps/L)
67{63 Chloroform (Trichloromethane)702 50.0
ND - Analyte not detected al stated limit of detectian
RANTIME QUALITY ASSUR4.|VCE REaORT
rNTF'.RNAT STANT}ARDS
Pentafluorobenz ene
Fluorobenzene
1,4 - Difluorobenzene
Chlorobenzene - d5
1,4 - Dichlorobenzene - d4
ARF',4
r253884
2root79
1806787
rt9t577
42ffi92
ICAL / CCAL
AREA
r236227
2143817
184801 I
1243554
433162
PERCENT
RF'.COVT'RY
ror%
98.0%
97.8%
95.8%
98.4%
PERCENT
Rr'.covERv
893%
r00%
98.OVo
99.5%
ACCEPTANCE
RANGE
50-200%
50-200%
50 -2m %
50-200%
50-200%
ACCEPTAIYCE
RANGF'
86-tt8%
88-110%
86-tts%
80-r20%
SYSTEM MOMTORING COMPOUNNS
Dibromofluoromethane
Toluene - d8
4 - Bromofluorobenzene
1,2 - Dichlorobenzene - d4
CONCENTRATION
8.93
10.0
9.80
9.95
METHODS USFD IN THTS ANAT YSTS:
EPA 5O3OB, EPA 82608
sec: r:\reports\clients99\internatiorul_uranium_corp\casper_org\34718-l-3 E260 chloroform w.xls Analyst:
Volatile Organic Compounds
Client:
Project:
Sample ID:
Laboratory ID:
Matrix:
Dilution Factor:
lnternational Uranium (USA) Corp.
None
WMMW 4-7
99-34718-2
Water
100
Date Sampled:
Time Sampled:
Date Received:
Date Analyzed:
Date Reported:
tt-29-99
13:40
tz-ot-99
t2-06-99
December 7, 1999
C.A.S. # TARGET COMPOTJIYDS
CONCENTRATION
0rS/L)
REPORT
LIMIT (ps/L)
67{63 Chloroform (Trichloromethane)256
ND - Analyte not detected at stoted limit of detectian
RANTIME QAALITY ASSARANCE REPORT
50.0
1236227
2143817
184801 I
t243554
433162
CONClrNTRATION
8.83
l0.l
9.75
9.90
103%
98.6Vo
98.s%
96.4%
98.170
PERCENT
RNCOVERY
88.3%
tlt%
97.5%
99.0%
ACCEPTANCE
RANGF"
50 -200 70
50-200%
50 -200 70
50 - 200 70
50-200%
ACCEPTANCE
RANGE
86-tr8%
88-tto%
86 - tt5 V.
80-r20%
ICAL / CCAL PERCENT
ART'A RECOVERYINTNRNAI STANDARDS
Pentafluoroberzene
Fluorobenzene
1,4 - Difluorobenzene
Chlorobenzene - d5
1,4 - Dichlorobenzene - d4
ARF'A
t272417
2114092
18r9369
1t98472
424791
SYSTF'M MOIYTTORING C OMPOT]NDS
Dibromofluoromethane
Toluene - d8
4 - Bromofluorobenzene
1,2 - Dichlorobenzene - d4
MF'.TTIOI}S USED IN THIS ANAI,YSIS:
EPA 5O3OB, EPA 82608
sec: r:\repors\clien699\inrernarional_uranium_corp\casper_org\34718-l-3_E260 chloroform w.xls Analyst:
r ABORATORY ANAr YSIS REPORT, EpA METHOD 8260
Volatile Organic Compounds
Client;
Project:
Sample ID:
Laboratory ID:
Matrix:
Dilution Factor:
lnternational Uranium (USA) Corp.
None
WMMW 4-8
99-347t8-3
Water
2
Date Sampled:
Time Sampled:
Date Received:
Date Analyzed:
Date Reported:
tr-29-99
l4:15
t2-0t-99
12-06-99
December 7, 1999
C.A.S. # TARGET COMPOT]hIDS
CANCENTRATION
ftrg/L)
REPORT
LIMIT (ps/L)
6',7-6-3 Chloroform (Trichloromethane)1.0ND
ND - Analyte not detected at stated limit of detectian
RUNTIME ,ALITY ASSU RANCE REPORT
TNTTFRNAL STANDARDS
Pentafluorobenzene
Fluorobenzene
1,4 - Difluorobenzene
Chlorobenzene - d5
1,4 - Dichlorobenzene - d4
ARRA
1262865
207t869
t79t926
r187297
419853
TCAL / CCAL
AREA
r236227
2143817
184801 I
12435s4
433162
CONCF'-NTRATION
8.85
10.l
9.61
9.97
PERCE}IT
RT"COVERY
to2%
96.6%
97.0%
95.5%
96.9%
PERCENT
RFCOVERY
88.5%
tot%
96.t%
99.7%
ACCEPTANCE
RANGF',
50-200%
50-200%
50-200%
50-200%
s0-200%
ACCEPTANCE
RANGE
86-rt8%
88-110%
86-rt5%
80-r20%
SYSTNM MOMTORING COMPOLINNS
Dibromofluoromethane
Toluene - d8
4 - Bromofluorobenzene
1,2 - Dichlorobenzene - d4
METTIOI}S USED TN TTIIS ANAI-YSIS:
EPA 5O3OB, EPA 82608
sec: r:\reports\clients99\international_uranium_corp\casper_org\34718-l-3_8260_chloroform_w.xls Analyst:
r AROR^TORY ANALYSIS REPORT, EPA MF'THOD 8260
QC RESUr TS - MATRTX SPIKE (MS)*MATruX SPTKF DUPT rCATT',. (MSn)
Client:
Sample Set:
l.aboratory ID:
Matrix:
l{l!r, #lFfi r,4 {,i,iSIH,lltP,,i{:Bff ,::t:,,,,: ;,,::::t:,:::::,:;:
International Uranium (USA) Corp.
99-347 1 8- I through 99-347 1 8-3
99-34703 S
Water
Date Sampled:
Date Received:
Date Analyzed:
Date Reponed:
%
96.8Vo
91.5%
92.9Vo
X).9Vo
93.9%
1t-29-99
I 2-0 1 -99
t2-06-99
December 7, 1999
Pentaf'luorobenzene
Fluorobenzene
ICAL / CCAL
ARFA
t236227
2t43817
ililiilili:iii:iii:::l::l::iii:::i:::::ii:::i:iiiiiii:iilij:]iiii:iitli:]ii
SPIKED SAMPLE
ARFA
1202800
t970720
1731857
I 137815
40/359
,],:,:,:,:,:,:,:,:,:,:,:,:,:,:,:,t,:'t,:::,:,:,],:':,::,,:,j,,,,:)1:,,:,t,ll:,:,,,,11
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
: : : : :
:
: :: :: : :: |
:::: :::::::::: :::::: j::: :: : ]:: :
:
:
:
:
:
:
:
:
:
:
:
:
:
: : :
:
:
:
:
|: i :
SPIKE DUPLICATE
ARF'-A
I 196336
1962279
l7 16938
I l 30268
406598
ACCEPTANCE
RANGF.
50 -2W %
50 -200 %
50-200%
50-200%
50-2NVo
ACCEIrTANCE
R.ANGF'
86 - t|r Vo
88-lr0%
86-trs%
80-120%
%
97.3Vo
91.97o
93.7 7o
9l.5Vo
93.47o
1,4 - Dit'luorobenzene 1848011
Chlorobenzene - d5 1243554
1,4 - Dichlorobenzene-d4 433162
SYSTE M MON ITORIN G CO M POA N DS
Dibromofluoromethane
Toluene - d8
4 - Bromofluorobenzene
1.2 - Dichlorobenzene-d4
SPIKF,II SAMPI F NNSUI TS
Chloroform (Trichloromethane)
sprr# {ru+r rc .: rn .tl*aPrim,,rlrsur,.ts
SPIKE DUP
CONCFNITRATION
Chloroform(Trichloromet 8.67
, .,'jii,::,,:: -:..:::..'::::'..' ., ... ....,.,....,,
1 ." ,
MATRIX SPIKF: O
MATRIY SPIKF IIUPLICATE: O
Report Approved By:
SPIKEDSAMPLE PERCENT SPIKEDUPLICATE PERCENT
CONCF'NTRATION RECOVFRY CONCENTRATION RF'-COVF'RY
8.81 88.170 8.'t1 87.7%
l0.l l0l7o l0.l l0l7o
e.6e 96.9% 9.71 97.1%
9.88 98.8Vo 9.19 97.9Vo
SPIKED SAMPLE ORJG. CONC. SPIKE AMOI.INT
CONCENTRATION (tgtt.\ * QIEIL\
9.04 0.70 10.0
ORIG. CONC. SPIKE
Qtgtr t UglL)
0.70 10.0
PERCENT ACCEFTANCE
RECOYERY RANGE
83.4% 80 - t20 %
:i*:::fiofi ,:ffi:,inauadditrtiffi eomectiou
PERCENT RPD
RECOVT'RY RPTI I II\,IITS
79.7% 4.4% tO Eo
Analyst:
Reviewed:
of 2 Matrix Spike resuls are outside of established QC Limis
of I Matrix Spike Duplicate results are outside of established QC Limia
sec: r:\reports\clients99\internatiornl_uranium_corp\casper_org\3471E-l-3_8260_chloroform_w.xls
LABORATORY ANAI YSIS REPORT. EPA METHOD 8250
Volatile Organic Compounds
Client:
Project:
Sample ID:
Laboratory ID:
Matrix:
Dilution Factor:
International Uranium (USA) Corp.
None
Method Blank
MBl206
Water
I
Date Sampled:
Time Sampled:
Date Received:
Date Analyzed:
Date Reported:
N/A
N/A
N/A
t2-06-99
December 7, 1999
C.A.S. # TARGET COMPOTINDS
CONCENTMTION
tus/L)
REPORT
LIMIT (pe/L)
67-66-3 Chloroform (Trichloromethane)1.0ND
ND - Analyte not detected at stated limit of detection
RUNTIME SUALITY ASSURAIYCE REPORT
TNTF"RNAI STANDARDS
Pentafluorobenzene
Fluorobenzene
1,4 - Difluorobenzene
Chlorobenzene - d5
1,4 - Dichlorobenzene - d4
ARF',A
t13t249
L9t425t
1640887
1087l4l
382573
TCAL / CCAL
ARF'A
r236227
2t43817
184801 I
1243554
433162
CONCENTRATION
9.1I
r0.2
9.67
9.92
PERCENT
RECOVT'.RY
91.5%
89.3%
88.8%
87.4%
88.3%
PERCENT
RECOVT'.RY
9t.t%
t02%
96.7%
99.2%
ACCEPTANCE
RANGT'-
50-200%
50 - 200 70
50-200%
s0-200%
50-240%
ACCEPTANCE
RANGF'
86-tr8%
88-lr0%
86-tts%
80 - l2O 7o
SYSTF',M MOMTORING COMPOT]NTIS
Dibromofluoromethane
Toluene - d8
4 - Bromofluorobenzene
1.2 - Dichlorobenzene - d4
METHOT}S USED IN THIS ANAI YSIS:
EPA 50308, EPA 82608
sec: r:\reports\clients99\international_uranium_corp\casper_org\3471E-l-3_826,0_chloroform_w.xls Analyst:yw
I AROR^TORY ANAI YSIS RF'PORT, F'PA MF'THON 8T60
Volatile Organic Compounds
Client:
Project:
Sample ID:
Laboratory ID:
Matrix:
Dilution Factor:
International Uranium (USA) Corp.
None
MW 4-5
99-35177-2
Water
2
Date Sampled:
Time Sampled:
Date Received:
Date Analyzed:
Date Reported:
t2-20-99
08:00
L2-22-99
t2-22-99
December 28. 1999
CONCENTMTION REPORT
LIMIT (ps/L)
Chloroform (Trichloromethane)1.0
ND - Analyte not detected at stated limit of detection
RANTIME QUALITY ASSURAIICE REPORT
TNTF'RNAI STANDARNS
Pentafluorobenz ene
Fluorobenzene
1,4 - Difluorobenzene
Chlorobenzene - d5
1,4 - Dichlorobenzene - d4
ARF'.A
t323t0t
t530240
t493049
978970
4156/,6
TCAL / CCAL
AREA
r293422
1491700
t438496
913905
403629
PERCENT
RNCOVER\.
102%
103%
tM%
to1%
to3%
PERCEI{T
RF'COVHRY
l0l7o
99.4%
96.5%
99.8%
ACCEPTANCE
RANGE
50-200%
s0 -2w %
50-200%
so-200%
50-200%
ACCEPTAI\CE
RANGF
86-rt&%
88-110%
86-tts%
80-120%
SVSTFM MONITORING COMPOT]NDS
Dibromofluoromethane
Toluene - d8
4 - Bromofluorobenzene
1,2 - Dichlorobenzene - d4
CONCENTRATION
l0.l
9.94
9.6s
9.98
MF'THODS USI:D TN THIS ANALYSIS:
EPA 50308, EPA 82608
sec: r:\reports\clien699\international_uranium_corp\casper_org\35177-l-2 8260 c w.xls Analyst:yw
t
4
r ARORATORY ANAI \rSrS REPORTT FpA MFTHOn 9260
Volatile Organic Compounds
Client:
Project:
Sample ID:
Laboratory ID:
Matrix:
Dilution Factor:
International Uranium (USA) Corp.
None
MW 4-9
99-35177-l
Water
2
Date Sampled:
Time Sampled:
Date Received:
Date Analyzed:
Date Reported:
L2-20-99
07:40
t2-22-99
t2-22-99
December 28, 1999
C.A.S. # TARGET COMPOT]NDS
CONCENTRANON
fue/L)
REPART
LILIIT (ps/L)
67{63 Chloroform (Trichloromethane)4.24
ND - Analyte not detected at staled limit of detectian
RUNTIME SAALITY ASSURANCE REPORT
1.0
TNTF.RNAT . STANT}ARI}S
Pentafluorobenzene
Fluorobenzene
1,4 - Difluorobenzene
Chlorobenzene - d5
1,4 - Dichlorobenzene - d4
AREA
1346809
t542480
1 521726
r003824
4274ffi
ICAL / CCAL
AREA
1293422
149t700
t438496
913905
403629
CONCENTRATTON
9.92
9.84
9.83
10.3
PERCENT
RF'COVNRY
lO47o
1037o
106%
rt0%
t06%
PERCENT
RNCOVRRY
99.2%
98.47o
98.3%
1037o
ACCEPIANCE
RANGE
50-200%
50-200%
s0 -2C0 %
50-200%
s0 -2C0 %
ACCEPTANCE
RANGF
86-tt8%
88-ll0%
86-tts%
80-120%
SYSTEM MONITORING COMPOTJI\DS
Dibromofluoromethane
Toluene - d8
4 - Bromofluorobenzene
1,2 - Dichlorobenzene - d4
MF'THODS USED IN THIS ANAI,YSIS:
EPA 50308, EPA 82608
sec: r:\reports\clients99\intermtional_uranium_corp\casper_org\35177-l-2_E26O-c-w.xls Analyst:
t
I
r ARORATORY ANAr YSrS RFPORT, FpA MFTHOp 9.60
Volatile Organic Compounds
Client:
Project:
Sample ID:
Laboratory ID:
Matrix:
Dilution Factor:
International Uranium (USA) Corp.
None
Method Blank
MBt222
Water
1
Date Sampled:
Time Sampled:
Date Received:
Date Analyzed:
Date Reported:
N/A
N/A
N/A
12-22-99
December 28, 1999
C.A.S. # TARGET COMPOT]NDS
CONCENTRATION
fus/L)
REPORT
LIMIT (Fs/L)
6'7-6-3 Chloroform (Trichloromethane)ND
ND - Analyte not detected at stued limit of detection
RUNTTME 0AALITY ASSARANCE REPORT
1.0
NTFRNAT. STANTIARNS
Pentafluoroberzene
Fluorobenzene
1,4 - Difluorobenzene
Chlorobenzene - d5
1,4 - Dichlorobenzene - d4
AREA
r30t219
1459572
t414540
893839
377458
ICAL / CCAL
ARF'A
1293422
1491700
1438496
913905
403629
CONCENTRATTON
9.16
9.86
9.83
9.87
PERCENT
RECOIT'RY
l0l7o
97.8Vo
98.3%
97.87o
93.570
PERCENT
RECOVFRY
9t.6%
98.6%
98.3%
98.',7%
ACCEPTANCE
RANGF
50-200%
50-200%
50-200%
50-200%
50-200%
ACCEPTANCE
RANGT'-
86 - 118 70
88-110%
86-tr5%
80 - 120 vo
SYSTEM MONITORTNG COMPOTJNDS
Dibromofluoromethane
Toluene - d8
4 - Bromofluorobenzene
1,2 - Dichlorobenzene - d4
METHOTIS US[:D TN THIS ANAT.YSIS:
EPA 5O3OB, EPA 82608
Analyst:yw
l
I
I ABORATORY ANALYSIS REPORT, EPA METHOD 8260
QC RESIII.TS - MATRIX SPIKF (MS). MATRIX SPIKE DUPT.ICATR O,ISD)
Client:
Sample Set:
Laboratory ID:
Matrix:
hil Ar,-{rl, ilV.rrni t,t.,,:rr
International Uranium (USA) Corp.
99-35 177 - | through 99-3 5 17 7 -2
99-35131 S
Water
SPTKED SAMPLE
AREA
t4t3073
1591354
r564601
r051674
473552
,,:,,:.:::,':,.',:,,,,,,:,:.:t:t:,1,,',,',:,1,,,1:i:i:i:i:i:ii:iliilllliljliijlllj
SPIKE DUPLICATE
AREA
r39s227
1586093
1563690
t053275
463663
PERCENT
RE.COVERY
99.$Vo
Date Sampled:
Date Received:
Date Analyzed:
Date Reported:
t2-20-99
12-22-99
12-22-99
December 28. 1999
Pentafluorobenzene
ICAL / CCAL
ARF'.A
1293422
Fluorobenzene 1491700
1,4 - Difluorobenzene 1438496
Chlorobenzene - d5 913905
1,4 - Dichlorobenzene-d4 401629
SYSTF M MO N ITORI NG CO M POU N NS
D ibromot'luoromethane
Toluene - d8
4 - Bromofluorobenzene
1,2 - Dichlorobenzene-d4
SPIKF,D SAMPT T. NESULTS
Chloroform (Trichloromethane)
SPIKE DUP
CONC['NTRATTON
Chloroform (Trichloromet 9.90
SPIKED SAMPLE PERCENT SPIKE DT]PLICATE PERCENT
CONCF'NTRATTON RF'COYERY CONCFNTRATION RF'-COVFRY
e.'76 97.6% e.77 911%
10.I t0t% e.e5 99.5%
l0.l lUt% 9.91 99j%
9.9s 99.5% 10.3 103Vo
SPIKED SAMPLE ORIG. CONC. SPIKE AMOUNT
CoNCFNTRATTON QrgL\ * (!gL\
9.48 0.00 10.0
i:till,l]:il::::iili::::::
%
109%
107%
l09Vo
tL5%
ttldLLI /O
::j:l:i:li:::::i:::i::]::::;:]:tli:li::l:
%
1087o
1067o
t09%
tt5%
tt5%
ACCETTANCE
RANGF'
50-200%
50 -200 %
50-200%
50-200%
50-2007
ACCEPTANCE
RANGtr'
86-18%
88-lr0%
86-15%
80-t20%
*:
PERCENT ACCEPTANCE
RF'COVERY RANGE
94.8Vo 80 - t20 %
l:,inffi del,dilution correction
RPD
r IMITS
t0%
MATIUX SPIKF:
MATRIX SPIKE DUPI ICATF:
Report Approved By:
0
0
of 2 Matrix Spike resuls "." "r"ro" li"."iiiri"J qc'il;r;'
of I Matrix Spike Duplicate results are outside of established QC Limis
RPD
4.4%
Analyst:
Reviewed:
sec: r:\reports\clients99\imernational_uranium_corp\casper_org\35177-l-2_8260_c_w.xls
INrrnNauoNAL
UneNtuu (use)
ConponATIoN
Independence Plaza, Suite 950 ' 1050 Seventeenth Street 'Denver, CO 80265 . 303 628 7798 (main) . 303 389 4125 (fax)
August 4,2000
BY FACSIMILE AND OVERNIGHT EXPRESS
Mr. Don A. Ostler
Executive Secretary
Utah Water Quality Board
State of Utah Department of Environmental Quality
Division of Water Quality
288 North 1460 West
P.O. Box 144870
Salt Lake City, Utah 84114-4870
Re: White Mesa Uranium Mill; August 23,1999 Notice of Violation and Groundwater
Corrective Action Order; Docket No. UGW20-01: Request for Additional
Information
Dear Mr. Ostler:
Thank you for your letter of July 3, 2000, which we received on July 12, 2000 under
cover of a July 10, 2000 letter from Bill Sinclair, in which you requested certain
additional information relating to the above-captioned matter.
In your letter you ask that we provide to you a schedule for collection and submittal of
the information requested in the letter within 30 days of receipt of the letter.
We are currently working with our independent experts in preparing a response to your
information requests, and have scheduled a meeting with Bill Sinclair and his staff,, as
well as staff from your Department, on August 15, 2000 to discuss our preliminary
responses in order to ensure that all requests will be answered to your satisfaction. We
intend to develop a schedule for the finalization of our responses based on the outcome of
that meeting.
.... "i
".';
,
,/.
",/' .i
/ "k-i6
; i AU0 j,u;
' q+.'n.'
.r,
;,.
Mr. Don A. Ostler
August 4, 2000
Page2 of2
I hope this meets with your satisfaction. If you have any questions or concerns with the
foregoing, please contact me at (303) 389-4130.
ice President and General Counsel
Loren Morton, DRC
Bill Sinclair, DRC
Dianne Nielson, DEQ
Fred Nelson, Utah Attorney General
David Bird, Parsons, Behle & Latimer
Bill von Till, NRC - Washingon D.C.
Ron Hochstein
Michelle Rehmann
JUL-03-00 A?i4 Fromr IttlTERt,lATiOiIAL |JRANIUlti 30338941
FAXNO:
PFIONENO:
ZE
o
T-lEg P 0l/10 Job-788
tffi,ffi,?fll!
ConrouTroN
Iu&padcncePlaza, Suite 950 , 1050 Severt6eflth Strwt , Denver, CO 80265 , 303 dZB 77gg (main) , 301 3gg 4l2S (f$0
FACSIMILE TBANSMITTAL
William Sinslair, Director (E0l) s334oe7
UDEQ Division ofRsdiation Control (8ol) s36-425s
David C. Frydenlund DATEr lune 30, 2000
International Uranium Corporation FAGE I oF: l0
IF AI,L PACES ARE NoT RECEIVED, PLEASE CALL; ShaTon C*TToII
PHoNENo: (303) 389413s
,10
\
ue
\t
't
iMP0RTAI.IT/CONFIDENTIAL: FAX messagcs sre serclimEc rec€ivd
of equipment faiturE or humarr crror' This Communicstion is intended soteiy for tlre addressee shou,n'abova. ffcssfi iltlfty-our offrce irnnrodistsly
a1.any.of the lsleptrcne or Fax numbos ehowr sbove if you w no{ he ddressee or sqreone responrible for delivaing it to rhc 64dreEsee, We r€tai
4U rlBhtr antlprivilegas€s to this colttmunioation end prohibit uty disecnrination, distribution or copyirrg by or to urlyo* other than thc address€lour ofiice will ansnge for its return by the united ststes postsl servicc or by commercial cerier to us
07;44 From; INTERI{ATIOtlAL URAIIIU}rl
TurRRruerrr)NO
Unrrmruru (usn)
ConrroR,trloru
0
o
T-008 P.02/1 0 Job-7BB
ln.h,tn,r'r(lr,!rr.(' Plrrz;r, Srrite 950 . 1050 Scvetttrcnth litt'ect r Denver. CO ft()96.5 r 303 S28 7708 (maiu) I 303 389 4195 (fu)
June 30, 2000
VIA FACSIMILE
Don A Osthr, P.E.
Executlvo Secretary
Utah Wateredrry Bosrd
P.O, Box 16690
288 North 1460 West
Salt Lrkc City,IJT 8,+ll4-0690
Re: Interim Report and Revised Work Plan for Chloroform Invostigation
Utah DEQ Notioe of Violatiou and Grourdwator Correctivc Actiou Order, [IDEQ Dockct
No. UGQ,?0"01, Iszued on August 23, 1999
DeqrMr. Ostler:
Tha purpost of this letter is to provide Internationel Uranium (USA) Corporution's ('[USA's"]
interim rsport and Revised Work Plan for the complotion of the investigation into chloroform
cotrturfitrtion baing conductcd by IUSA undcr thc rcfcrcneed Ordcr. Aocording to thc Rovisod
$chedule for Contamination Investigation Submittals, submitted to you on Ostob€r 22, 1999, a,
final rcport (the 'B.eport"), was due May 26, 2000, However, drilling rosulis during May
suggo$ted a possible need t0 reevaluate the nerf phases of the Investigatiou therefora on May
23, 2000IUSA requosted an extension to that filing date, with the intent thst this interim report,
whioh inolud* I rcvircd $oopc of work, would bc provided to UDEQ by today's date,
BACKGROIIND
A eurnmary of work relqted to the chloroform investigation $ the tffhite Mesa Mill site tkough
Iatu*ry 2O0O, i* provided in tlre docunrent entitlsd t'Progr*rn for D*lirrc*ion of Elcvrtod
Ctrloroform in Perched Groundwater at lyfW4" (the "Delineation Rcpofi") submitted lanuary 28,
2000. At that time, an initial round of perched groundwrter rmples had been collected ttom
esch temporaty well within a few weeks of installation. A second round of perched groundwster
samples was subsquently collected from thetemporary wells during the week of March 13, 2000,
uring tho flffio $rothods end anolytioal procedureo employod in the initial aernpling.
JUL-0t-00 07,44 From;lltlTERl.lATl0NAL URANIUlll 30338911 2 T-3tS P.03/l 0 Job-700
Mr. Don A. 0stler
Iune 30, 200O
Prge 2 of4
Eased on the initial round of sampling of the temporary wells, the downgradient extent of the
elevgted chlnrnform concantrations in perchecl groundwater wf,s oonridered, at the time, to he
cubeteffiially delineated. At IW4-1, the rcmporary well instdled spproximatdy 130 feet
downgredient ofltIlil-d bascd on historicat perched groundwater elevations measured at the site,
the concentrations of chloroform exceeding 5,000 IgiL f,t IvI\t-4 dropped to less thar 6 ttg/L at
TW4-1. However, during the second round of wnpling in Morch of 2000, ptrloroform was
rletected at i conccntration of l,l00 yglt. * TW4-1. Concentratinnr at other temporlry perched
monitoring welle hsd either remeined rbout the senre or hed increesed by no more thgn e fsdor of
2.5, md thc concontr*tion dctcctod at TW4-8, locatod oross gradiont to l'fW.4, had incrcascd
from <[ to 21.8 pg& (Tsble t).
The inueeses dctected rt moet of the temporary wellg are not zurprising, because the first round
of slnplos was collccttd within a frw wrcks of wcll instaliation, and romc dilution of the
groutrdwatw in tlro vicinity of the wells is expected as a result of wpll installation, Tlris dilution
may result in lower concentrations unlilthe wells have had sufficient time to reoover, Becsuee the
wolls hrd 3 to 4 months to recover by the time the second round of samples was collected, the
rciltlf.n ofthe secnnd round ere considered reJrresentative. The increase in ooncentration at TW+
I by more than an order of magnitude betrween the initial and eecond round of sarupling wu much
groatcr than would bt oxpcclcd to rcsult ftom insufficient reoovcry timo. A corrfrmatory s+mple
wae therefore collectod on April 10, 2000, to ensure that the second round sample result was not
eompromised by laborttory rnrlytical error or by possible cross-contaminetion cturing sompling.
Chloroform wss detected at 1,490 pgll in the confirmfltory sample - a rralue similar to, but
highar than, thc conccntration of 1,100 pgil dotoctod in thc socond round sample. Because
TW4-l is located downgradient of wells affected by elevated chloroform concentrfltion$ it is likely
th* thc dctcc'tcd inoreasor in pcrohed groundwator chlorqform soncpntrations at TW4-1 q,ro rpol.
The increasing concentrations suggest that the groundweter zone affhsted by elevated chloroform
conoentntions may heve migrated downgradient into the vicinity of T\[4-1.
ADDITIONAL DATA AND PNELIMINARY CONCLUSTONS
As a result of the data collected during the delineation progrem, IUSA determined thst the aree to
the south of TW4-l required firrther deiineation. In order to accornplish this, as well as provide r
mefll* to epntinue monitoring thc downgradicnt cdgc of thc zonc, trro additionsl temporary
puched monitoring walls were installed to the south (downgradient) of TW4-l during the week
of May 8. These wells were located approximately 250 and 500 feet south of TW4-1. Drilling
and well instellation procedures were the same &s used previously at the site. Sampling of these
wells was delayed until Jurp 6, 2000 due to lack of water in the wells. Based on tho June 6
urnplc rcrultq ec shorvn on Tablo t, no chlorofomr was dstoetcd et e 0.05 pglL roporting limit in
eithm of these two new wells, designated TW4-6 and TW4-4, while the drloroform lsvol in T,W4-
l, ttom a sample collected on the same date, was l,)30 pg/L.
0o
JUL*03-00 07;48 Frqm; INTERilA
Mr. Don A Ostlu
June 30, 2000
Prge 3 of4
T I ONAL
o
URAN I UM 30338941 zio T-t0E P.04/l 0 Job-788
Besed on thesc additional datq as well a$ the previous data collected to date in this Investigatiorl
thc following preliminEry conclueione *re made:
t) The perched zono chtoroform plume is adequately delineated based on tho nondetectable
chloroform levels at th6 two new temporary wells downgradient ofTW4-I
3) The cufient number and placernent of temporary perched zone wells is edequete for enntinuerl
monitoring of ohlorofonn in tho pcrchod youndwater, Furthermore, becnuse the plume has
juu reached T1il4.1, cuntinued monituring of Elrlurulirrrn r]ousfntr'stiotl$ at the new
downgradient wells will allow a$ flccurate estimate of the rste of plume movement when it
rercher the nerrert of these urells.
3) The average permerbiliry of thc perched zone is relatively low downgradlent of T1V4-I as
ludlcarcd by:
a) The smalt thickness ofthe conglomeratic zone near the baso of the perched zone logged in
tho two new horingf,, f,,nd
b) The low rate of watrr level recovsry in the now wclls,
a) Thc lowcr av$ragc permoability of the perched zone downgrdient of TW4't will oontrol the
evdrqge rate of perched groundwater flow tltough the systenr, implying thnt the rate is
relatively low, and the rate of plurne movement will be diminished. This rcduction in
permeabtllty downgradient of TW4-t (and MW*l), which suggests permoability valuEr morp
consistont with those dofllmented throughout the Mll site, is also consistent with the
rclmivcly rrpid riso in wser tevcls measured in IW\il-{ ovcr thc la$t scvcrfl ycafr, It is
pnscihle that this rise in water levels at IvfW-4 may be attributable to increased upgradient
$ourc€s ofweter $uoh as inigatiort andlor seepage r'rom the wildlife ponds.
A low rate of groundwater llow implies that continurd monitoring of the plume is appropriate in
the ner term and that other aotivities may not be necessary u this time,
JUL*03-00 [f;40 From:lNTERllATl0llAL URANIU}r|
Mr. Don A. Ostler
Iune 30, 2000
Page 4 of4
In light of theso r€cont r$ults, and consistent with there prelinrinery corrcluEions, IUSA is
rubmitting thig revised inteilm r6p6rt to tlDEQ, together with the #tnched revised $cope ofwork
rnd timetable to report on the rcsults ofthis Investigation, At this time, we expect that we should
bo able to deliver uhe Report within 30 ro 45 days,
Vico President rnd General Counsel
DCF:stdc
Attachments
cc: DianneNielson, DEQ
Williem tr. Sinctalr, DEQ
Lsren Morton, DRC
David Cunningham, DEQ, $E District Heslth Department
Deve Arrioti, DEQ, SE Dirtrict Health Dep*rtunent
Frcd Nclson, Utah Asst. Attorney General
Terry Brown, U.S. EPA Region VIII
Milt t{milroring, U,S. EPA Reeion VUI
Phillip Ting, U,S. NRC, Wrshinglon, D.C.
Billvon Till, U.S. NRC, Washington, D.C.
CharlesHackney, tJ.S. NRC, Reginn IV
MichelleR. Rehmann
Ron F. Hoclutoin
Wiltiam N. Derl
Ronald E. Berg
e0a36941 e0 T-3!9 P.05/l 0 Joh-I80
o
JUL-03-00 07:16 From:l||TERllATl0tlAL URAltlIU}i4 3033891t 26o T-38$ P.0E/l0 Joh-788
TABLE 1
lllcd 01r00 Dillled 05100
n,a-r TWa.e TW4-t TWa{TW+7 TW4{TWI-0 T1A''J TWa{
Apptorlmrta rcrcrncd
lntcrvd
(frrt b/r)
70-l 10 80-120 67-971 80.120 80-120 as-12s 80.120 72-112 57-97
D.Fft to Wrtcr'
(!.d b.low m.rruring
Polntl
81,1 7A,4 65,3 61.4 67,5 75,2 60.5 94.53 a7.?3
Chloroform
tusfl-l (lrt rnmpllnsl
5.8 2,510 702 29,5 258 <1 4,2 N8 NS
Chlorotorm
(ttorl] l2nd mmollnul
1,100 s,5?0 834 {9 616 21.8 1"88 N8 NS
Ghlorpiorm
{uolLl (Srd remullnol
1,490 Ng NS NS NS NS NS N8 NS
Chlors,form
lllsrLl (lth mmpllml
1,640 N6 NE NB NB NB Ng q0.50 <0.50
Not :'t;o,,pt la wilu rme'di,tad on January 9, rddd
z:ON 3orc.l olundampCrctton rvrf,rih ailina olinstalafrln
A/S=aorffiopl.d
3-O.pn to l/,aIU nel6will on Juna 6, 2000
JUL-03-00 07r47 From: INTERNATI0NAL URAI'{IUt,|o 30338911e8 T-369 F.0l/10 Job-788a
REVISED
SCHEDULE FOR CONTAI{INATION
II.IlfE S TIOATION S TIEMITTALS
Revision 2
UDEQ Docket No. UCQ-20-01/August 23, 1999
Subrnitted by Internationnl Uranium (U $A) Corporarion
Submined
Septomber 20, 1909
Revised October 22, 1999
Revissd June 30, 20M
l. CHARACTERIUATION OF CHLOROFORM POLLUTION IDENTIFIED in lr4\tr-4
The charasterizttion of chlorofonn pollution identified in lvfW-4 will include descriptionu
of:
(l) The amount, fornL concentration, toxieity, environmental fate and transport, and
other signifi cant charflcteristics of chloroform;
(2) The areal and vertical extent of the chloroform coflcentration and distribution; and
(3) The extent to which chloroform has migrated and is expected to migrate.
Characterizetion of chloroform pollution that hes been deteeted at I4W-4 will bo
accompliehed in the following ph&ses, with each being modified and/or guided by data
guhered in the preceding phase:
Phffig, [: Chloroform Souree Assessment ReportlCopies to hIRC, UDEQ, and U.S
EPA, Interview, hiotorioat roscarch, and ficld work is largoly complctc. Thcrc dua will
be compited into 4 report, with the assistance of a technical expert.
Milegtonc: Scptembcr 30
Strtur: Rcport submitted Scptcrnbor 29* 1999
Phege,fl: Work Plan for Evaluetion of Representativeness of N,fltr-4 for Chloroform
Detection/Copies to I.IRC, UDEQ, and U.S. EPA. Preliminary plans have been
developed, and willbe incorporated into a field Work Plan.
Milertone: September t4
Strtus: Submitted Septembcr rS, 1999
iUL-03-00 07t47 From:iNTERNATI0tlAL URAltllU[,l 303 38911 T-36$ P.08/10 Jsb-788
Ehe$.3s: trmplomontntion of Work Plen for Evaluation of Repreeontetivonsss of 1!tW-4
for Chloroform Detection. The Work Plan will be implemented as soon ns possible upon
its completion to Ensure that necessary data tbr subsequent phases are collected promptly
and, hopefully, before mflior weather ohanges which might afrect the schedule.
Milertones Seplembcr 28
Strtur: Implemontcd $eptcmber 28
P,hase 2h: Report on Representativ€nes$ of lvf\[-4 for Chloroform Detection copied to
NAC, LIDEQ, end U,S. EFA. Data will be evaluated by indeperrdent geochemicel,
hydrolory, *nd fate and transport experts, and they will assist IUSA in preparatlon of a
rcPon,
Milertoncr Novcmbs {
Bcvircd Milutonel Subrnit interim results and Reviced Phnce 2 Worh PIrn on
Octobcr 22
Phase 3: Resampling ofMlV4
IWilcrtonc: Octobcr 29
Bcvired fftivity to conduct sampling ss por Bevised Pharo l rvork prrn
Revised Milprtonc: Implement Reviced Phffie 2 work Plnn Novcmber l
Ehag$.4: (Dependent upon results of Phase 3) (a) Devclopment of monitonng progriln
for chloroform il IdW-4 or (b) Development of progr*m for the delineation of a potontial
chloroform plume in the area of ldw-4, and copies of plan for such progrem to NRC,
IJDEQ, ond U.S. EPA. Indepondent technioal sxperts wilt aseist IUSA in either the
devotopmont of a monitoring progmm for ehloroform at Nd\il-4 or development of a
progrEm for delineation of a potential chloroform plume.
Milectonc: Novcmbcr 26
Bcvirod Milestoncl Jruuary 2E
Phflqe 5i @ependent upil results of Phase 4) (a) Implementation of program for
monitoring chloroform Bt }d\il-4 or (b) Implementetion of program for the deiineation of a
potential chloroform plume in the area of U[\Y*4. If a program for monitoring chloroform
at lv{lil-4 is indicatod, based on results of Phase 4, then it will be implernented within the
flrst quartor of the year 2000, I(, however, s progrem for delineetion of a potential
chloroform plume ir indicated by Phase 4 results, then weather may affect IUSAts abitity
to implement the field program at the same proposed date ae for (a), and therefore r later
date ir indiceted for the cornpletion of (b).
Itlilatonc for (a): Jrnurry 10, 2000
Milstonc for (h): March 6,2000
Bwired Milostone for (r): February 14,2000
Duc to ddection of chloroform in TW4-1, two rdditionrl wellr wero drillcd during
thc wcok of Mey I, 1000 to complrtr ddincltion. Aftrr rEcor'pnr, thcrc wrlk
provided wnter for srmpling rnd rnrlyeis. Resultr end preliminrry conclurions
wert trrnsmitted to UIIEQ on June 30,2000,
EEo
JUL-03-80 07:48 Fromr INTERi{ATI0iIAL URAI|IU[,l
O
30338911e8 T-3Eg P.0$/10 Joh-I88o
L ACITITY CI{AMCTERIZATION
The Faeility Characterization will includo descriptione ot
(l) Location of Chloroform present and media of occurrenoe;
(Z) tlydrogeologlc condltlons underlying and upgradlenr and downgradlenr of rhp
frcility;
(3) Surfaco wstsre in the aree;
(4) Climatologic and meteorologic conditions in the erea of the facility;
(5) Type, location and description of possible sources of chloroform at the facility; and
(6) Oroundwster withdrewals, pumpage rotes, end usage within a 2-mile radius.
3, DATAREPORT
The Data Report will include:
(l) Datl packages including quality B*eursnce and quality control reports;
(2) A description of the data used in the report; and
(3) A description ofany dnta gaps encountered, how those gaps affect the analysis and
eny plene (ifwerrnnted) to nU thoee gaps.
4, FINAL REPORT
A rerport including sharaoterieation of chloroform pollution identified in IvfW-4, facility
charasterizstioU and a data report will be s€nt to NRC, UDEQ, and U.S. EPA on or
beforp Mrrch 20, 2000 if program (a), described in Phase 5 is followed, or Mry 26, 2000
if program (b) described in Phase 5 is followed. This date will allow for inolusion of data
*om Phase 5 of the characterization of chloroform pollution, ifrequired,
Bcvired report date for progrflm (a): April 24,2000, Thir rsriloctone wm rwired m
pcr IUC letter to UDEQ on May 23, 2000. The finel report will bc rubmitted no
Irtcr tbrn Augurt 14,2000,
JUL-03-00 07:48 Fromr lllTERl,lAT URAII I |J[4 3033894r T-369 P.10/10 Job-IBB
s, EVALUATToN OF EIOIIT OTI-IER PARAMETERS DISCUSSED IN trDEQ
TRA}ISMITTAL LETTER OF AUGUST 23, 1999
In the Uansmittal letter accompanying the Notice of Violation Erd Groundwater
Conoctive Aption Order dated August 23, 1999, the Director of tho Division of Radi$ion
Control reque$ed thd ruSA include certain porEmeters, which are generally refened to in
an accomplnyrng Issue Paper as "somo or rll (sic) which may be due to background
Eoundunter conditions at the site", in the Oroundwater Contaminant Investigation
mandated by the attached order. The August 23 letter deecribes the parameters of
interest, which are not part of the Notice of Violation and Groundwater Corrective Action
Ordcr, as followr:
-'In addition to the chloroform discovered in IUC monitoring well lvf!#'4, four (+) Gic)
other pollutants have been identified in wells sampled which Eppenr to be in exceEs of
State herlth baged groundwater standards, including: Gross alph* []vfW-2, I\,IW-3, ]d\il-4,
IvfW-I2, MW-14, Iv[\il-I5, ]vf!V-17, lv[1il-18, and ]v{W-191, nitrato-l-nitritc (l'0 [Ii4W4j,
msnginese ltvf\il-I, Mw"], I\4w4, Iv{\[-ll, ]r{\il-14, }d\il-15, }r,I\il-I7, and }vf!v-l8J,
sElenium [N{\il-IsJ, and total uranium [MW-r, h4W-4, }vilil-I4, [,f\il-15, I\d\il-l7, N,t\il-
18, rnd IWItr-191, Threo (3) other potential indicators of groundwater pollution wEre also
found in concentrations below State health based groundwater standards, ammonia, iron"
and tetrahydrofuran,"
Although the lotter describes B[oups of 'nfour" and "three" parametors, IUSA understands
thqt UDEQ r6qu6sts review of e rotel ofebb! (not eeven) psrnmeters, thoss being:
0ross alpha
Nitraternitrite (N)
Manganese
Sctcnium
Total uraniurn
Ammonia
Iron
Totrahydrofuran
A repgrt on the evaltution ofthe above eight parameters will be sent to NRC, UDEQ, and
U,S, EPA on or before Novcmber 30, [999. This wnc completed on Novernbor t9,
1999.
I Ol'lALI ?6o
4
INrenNnrro*o{
UnnNruu (use)
ConponeuoN
lndependence Plaza, Suite 950 . 1050 Seventeenth Street . Denver, CO 80265 . 303 628 7798 (main) r 303 389 al25 (fax)
November 9,2001
VIA OVERNIGHT MAIL
Mr. William J. Sinclair
Director, Division of Radiation Control
Utah Department of Environmental Quality
P.O. Box 144850
168 North 1950 West
Salt Lake City, UT 84114-4850
Re: Update report regarding IUSA's October 4, 200 report on investigation of
elevated Chloroform Concentrations in Perched Groundwater at the White Mesa
Uranium Mill. Utah Division of Water Quality Notice of Violation and
Groundwater Corrective Action Order; Docket No. UGW20-01.
Dear Mr. Sinclair:
This transmits International Uranium (USA) Corporation's ("IUSA's") Contaminant
Investigation report entitled Update to Report -"Investigation of Elevated Chloroform
Concentrations in Perched Groundwater at the White Mesa Uranium Mill near Blandine"
Utah". This report is an update to the Contaminant Investigation Report (the "CIR") that
IUSA submitted to the Utah Department of Environmental Quality ("UDEQ") on
October 4,2000 (IUSA and HGC, 2000), and addresses questions raised by UDEQ's
letter to IUSA in response to the CIR dated June 7, 2001. Items addressed in this report
are also pursuant to a meeting between IUSA and UDEQ on October 5,2001.
Please note that this report includes a recommendation for installing two additional
temporary wells, for the purpose of additional delineation of the areas of the perched
zone containing chloroform, and in the locations discussed during the meeting with
UDEQ. IUSA would like to install these two additional wells during the week of
-
Mr. William J. Sinclair
November 9, 2001
Page2 of2
December 3, 2001, so that the wells can be sarnpled during the first qrafiet 2002
sampling event. Should you have any guestions or comments concerning this or any
other part of this report, please contact mg at 303.389.4131.
Sincerely,
Michelle R. Rehmann
Environmental Manager
cclatt: Larry Mize, UDEQ Division of Water Qualrty
Loren Morton, UDEQ Division of Radiation Control
RonF. Hochstein,IUSA
David C. Frydenlund, IUSA
Harold R. Roberts,IUSA
Richard E. Bartlett, IUSA
Ron E. Berg,IUSA
Stewart J. Smith, Hydro Geo Chem
S:\STAFFlMRR\Chloroformlnvestigation\commentsonGClRreport\tansmittalLtupddechloroformlnvestigationReport
UPDATE TO REPORT(IhIVESTIGATION OF' ELEVATED CHLOROFORM CONCENTRATIONS IN
PERCHED GROT]NDWATER AT THE WHITE MESA URANIUM MILL NEAR
BLANDING, UTAH''
Prepared By:
INTERNATIONAL URANIUM (USA) CORPORATION
Independen ce Plaza, Suite 950
I 050 Seventeenth Street
Denver, CO 80265
and
IIYDRO GEO CHEM, INCORPORATED
51 West Wetmore Street, Suite l0l
Tucson, A285705
November 9,2001
TABLE OF CONTENTS
1. INTRODUCTTON AND SUMMARY.............. ..............3
2, DNAPL ISSUES ........5
2.1 Vertical Profiling of Existing Perched We11s........ ....................5
2.2 Potential for DNAPL to Exist in the Vadose 2one......... ..........6
2.3 Evaluation of the Potential for DNAPL to Exist in the Saturated 2one.......................7
2.3.1 Detected Concentrations with Respect to Chloroform So1ubi1ity...........................7
2.3.2 Comparison of MW4 to Nearby Temporary Wells ......... 10
2.3.3 Vertical Profiling of MW-4 .......... 11
2.4 Brushy Basin Contact .......12
3. ADDITIONAL PLUME DELINEATION .................... 15
3.1 Analytical Results from Temporary Wells............... .............. 15
3.2 Hydraulic Gradient in the Vicinity of MW-4 ....... 16
3.3 Need for Additional Wells to Delineate Chloroform in the Perched Zone.................17
3.4 Temporal Trends in Chloroform Concentrations and Relationship to Nitrate ........... 18
4. COORDTNATES REQUESTED BY UDEQ ................20
5. PERCHED ZONE PERMEABILITY .........27
5.1 Permeability Distribution of the Perched Zone ......... .............21
5.2 Conglomeratic Zone Near MW-4 ............... ..........21
ONGOING GROLINDWATER MONITORING AND REPORTING............... ...........,.... 23
ADDITIONAL GROTINDWATER MONITORING PARAMETERS ......,.....25
7.1 Dichloromethane Analytical Results From Split Sampling........... ...........25
7.2 Direct Measurement of Redox Conditions in the FieId......... ...................26
7.3 Feasibility of Enhancing Reductive Dechlorination In-Situ...... ...............26
8. REFERENCES ......... .....................28
6..
7.
1
2
J
4
5
6
7
8
9
F'IGURES
Chloroform Analytical Results (trg\L) for Temporary Perched Wells
Contour Map of Top of Brushy Basin, White Mesa Uranium Mill Site
Water Level Contour Map December, 2000, White Mesa Uranium Mill Site
Water Level Contour Map September - October, 2001 White Mesa Uranium Mill Site
Proposed Locations of New Temporary Perched Wells
Nitrate Analytical Results (mg\L) for Temporary Perched Wells
Scatterplot of Chloroforrn vs. Nitrate, Temporary Perched Wells and MW-4
Perched Zone Permeability Based on Pump and Slug Tests, and Constant Head Packer
Tests, White Mesa Uraniurn Mill
Approximate Intervals of Conglomeratic Sandstone Logged in Temporary Well Borings
A
B
C
D
E
APPENDICES
Vertical Profile Sampling Bailer
Use of Soil Gas to Detect DNAPL
Coordinates Requested by UDEQ
Analytical Results
U.S.G.S Manual Chapter 6.5 and Hydrolab Parameter Specifications
1. INTRODUCTION AND SUMMARY
International Uranium (USA) Corporation ("IUSA") submiued a Contaminant
Investigation Report entitled "Investigation of Elevated Chloroform Concentrations in Perched
Groundwater at the White Mesa Uranium Mill near Blanding, Utah" (the "CIR") to the Utah
Department of Environmental Quality ("UDEQ') on October 4, 2000 (IUSA and HGC, 2000).
This report has been prepared as an update to the CIR, and to address questions raised by
UDEQ's letter to IUSA dated June 7, 2001 in response to the CIR. Items addressed in this report
are also pursuant to a meeting between IUSA and UDEQ on October 5, 2001.
This report discusses analytical results to date, trends in chloroform concentrations in the
vadose or perched water zones at the site, and additional delineation of the areas of the perched
zone containing chloroform. This report also discusses the potential for degradation of
chloroform in the perched water and the feasibility of enhancing in-situ reductive dechlorination
of chloroform.
Important results of the investigation to date are that:
1. The data do not indicate that chloroform DNAPL exists at the site either in the vadose
zone or the perched water zone.
The data do not indicate that a continuing chloroform source exists.
Data are consistent with the abandoned scale house leach field as the sotuce for the
MW4 chloroform, and for the chloroform to have entered the perched water as a
"slug" over a relatively short period of time (1-2 years).
Additional wells are needed to delineate the chloroform plume to the west and
northwest of MW-4.
2)
3)
4)
S:\STAFAMRR\Chloroformlnvestigation\UpdateChloroformlnvestigationReport I l-9-01
5) Rapid degradation of chloroform in the perched water is unlikely without
enhancement.
Additional delineation of the chloroform in the perched water is proposed to be
accomplished by adding two new temporary wells to the west and northwest of MW-4, and by
vertical profile sampling in selected wells, to define the chloroform concentrations in three
dimensions. Additional characterization of groundwater gradients in the northeast portion of the
site, which have been changing and may affect chloroform migration in the perched water, will
be accomplished by phased installation of piezometers. In addition, IUSA will continue to
perform quarterly monitoring of chloroform and will transmit such data to the UDEQ in
accordance with a schedule provided herein.
SlsTAFI\MRR\Chloroformlnvestigation\UpdateChloroformlnvestigationReport I l_9_01
2.DNAPL ISSUES
UDEQ has expressed concern that dense, non-aqueous phase liquid (DNAPL)
chloroform may exist in the vadose and perched water zones in the vicinity of MW-4 and the
abandoned scale house leach field. This section uses existing soil gas and groundwater data
from the site to demonstrate that DNAPL does not exist in either the vadose or perched water
zones at the site, and that no evidence for continuing chlorofofln source exists.
2.1 Vertical Profiting of Existing Perched Wells
Initial sampling to evaluate the potential for stratification of chloroform concentrations
was conducted in the fall of 1999, and reported in the CIR. As indicated in the CIR, multi-depth
sampling of MW4 was conducted dwing the week of September 27, 1999. Two samples were
collected, one from the top of the water column (approximately 70-73 feet bls) and one from the
base of the water column (approximately ll7-120 feet bls). The shallow sample was collected
first. Both samples were collected using disposable teflon bailers. Samples were collected
without purging the well, to prevent disturbance of the water column-
Samples were collected in 40 ml VOA vials, with no headspace, capped, labeled, and
stored in a cooler with blue ice at 4oC for shipment to the offsite analytical laboratory (Energy
Laboratories, Casper, Wyoming). Chloroforn was detected in the shallow sample at a
concentration of 6,200 pglL, and in the deep sample at a concentration of 5,820 ltglL. Because
concentrations did not increase with depth, the presence of DNAPL (i.e., free chloroform
product) was not indicated in MW-4.
S:\STAFflMRR\Chloroformlnvestigation\UpdateChloroformlnvestigationReport I l_9-01
As UDEQ has requested further evaluation of the vertical distribution of chloroform
concentrations, a Sampling Plan, with the Data Quality Objective of evaluating the potential for
stratification of chloroform concentrations in the Chloroform Investigation wells, will be
developed. This Sampling Plan will include the following key features:
. Procedure to collect samples from discrete depths using disposable bailers with
double check values
Requirements for field records
Methodology for evaluation of results
Evaluation of the feasibility of testing experimental USGS procedure using passive
diffusion bags in at least one well, to provide comparison to conventional method
results
. This sampling will take place in the first quarter of 2002
Appendix A contains manufacturer specifications for disposable bailer designed to collect
samples from discrete intervals in groundwater.
2.2 Potential for DNAPL to Exist in the Vadose Zone
Soil gas sampling is a useful means to detect the presence of pure phase volatile organic
compounds (VOC) that reside in the vadose zone. This applies to chloroform, which has a vapor
pressure of 160 mm Hg. As discussed in Appendix B, soil gas ooncentrations in excess of llYo
of a VOC pure phase saturated vapor pressure are indicative of the presence of the pure phase.
For chloroform, soil gas concentrations in excess of 100,000 pgll would be indicative of pure
phase.
The possibility that residual pure phase chloroform exists as a DNAPL within the vadose
6SlsTAFRMRR\Chloroformlnvestigation\UpdateChloroformlnvestigationReport I l-9-01
2.3
zone beneath the abandoned scale house leach field is not supported by the trace level
soil gas chloroform concentrations measured in the vicinity in 1999 (<1 pg/L). The measured
concentrations are indicative of low concentrations of chloroform dissolved in vadose pore
waters. Furthermore, the possibility that DNAPL exists within the perched zone is not supported
by the relatively low chloroform concentrations detected at wells TW4-5 and TW4-9, which are
the temporary wells located closest to the leach field (Figure l).
Evaluation of the Potential for DNAPL to Exist in the Saturated Zone
The possibility that chloroform DNAPL may exist in the perched zone beneath the
abandoned scale house leach field and/or may traveled downgradient along the Brushy Basin
contact toward MW{ is remote. This possibility is not supported by data collected from the
temporary perched wells at the site or from MW-4.
Perched water chloroform concentrations exceeding lYo of the solubility of chloroform
(8,000-10,000 mg/l) would have to exist to indicate the presence of DNAPL (Cohen and
Mercer, 1993). The highest groundwater concentrations detected at the site (<7 mglL) are more
than 3 orders of magnitude lower than the solubility of chloroform. While the solubility of
chloroform in the perched water may be slightly depressed by the presence of trace
concentrations of carbon tetrachloride (500 mglL dissolved in the pure chloroform used in the
ore assay lab as suggested in UDEQ's June 7, 2001 letter to IUSA) and by the presence of
inorganic solutes in the perched water, as detailed below, it can be demonstrated that this
depression is not significant.
S1sTAFF\MRR\Chloroformlnvestigation\UpdateChloroformlnvestigationReport I l-9-01
The effect of 500 mg/l carbon tetrachloride contaminant on the solubility of chloroform
used at the site would be negligible, potentially lowering the solubility by less than 0.05yo,
because the mole fraction of carbon tetrachloride in the mixture would be less than 0.05%. The
presence of significant concentrations of other solvents in perched groundwater near MW-4,
which could potentially lower the solubility of chloroform, is not supported by past analytical
results. Furthermore, as detailed below, the impact of salinity on chloroform solubility, which
will depend on the concentrations of salts in the water, is also not significant.
The solubility of a neutral organic compound such as chloroform in water containing
dissolved inorganic salts is generally lowered as the concentration of the inorganic salts increases
(Schwarzenbach,lgg3; Garrels and Christ, 1965; and Harned and Owen, 1950). The depression
of solubility is generally not significant, unless the concentration of the salts is greater than about
0.1 molar (M). At MW-4, the dominant anion is sulfate, which averages approximately 2,000
mg/I, or 0.021M, based on data presented in TITAN, 1994. The average concentrations of
chloride, sodium, calcium, and potassium ions averags approximately 0.0013M, 0.014M,
0.010M, and 0.0003M, respectively, at MW-4. These concentrations are too low to have a
significant effect on the solubility of chloroform in the perched water, at most reducing solubility
by a few percent. Even in seawater, where salt concentrations are orders of magnitude higher
than in the perched water, the depression of solubility of neutral organic compounds is typically
less than a factor of 2 (Schwarzenbach, 1993).
Schwarzenbach, 1993, provides a methodology for estimating the impact of salinity on
the solubility of neutral organic compounds. Salting constants (K') for various types of salts are
provided, with the highest that of sodium sulfate (K, : 0.55). Using the formula provided in
Schwarzenbach,
S:\STAFRMRR\Chloroformlnvestigation\UpdateChloroformlnvestigationReport I l-9-01
Cfl*n - 19-K;lsattl, gsat
where Ciil,,,, : solubility of neutral organic compound in salty water,
K, : salting constant,
C:' : solubility of neutral organic compound in pure water,
and assuming that
Kr:0.55, and
[salt]: [SonJ = 0.021M,
the solubility of chloroform in perched water is calculated as 0.975 Cf' or 97.5%o of the
solubility in pure water, a reduction in solubility of less than3Yo.
The actual reduction in solubility is likely to be lower for chloroform, however, because
the salting-out effect is lower for polar organic compounds (Schwarzenbach, 1993). Because
chloroform is somewhat polar, owing to it's asymmetry, which accounts for it's high solubility
(10 times that of carbon tetrachloride, which is non-polar), the actual depression of chloroform
solubility in perched water is likely to be less than 2.5%o. Because the estimated reduction in
chloroform solubility is so small, and is nearly an order of magnitude lower than typical
laboratory analytical error of + 20o , the effect of perched water salinity on the solubility of
chloroform can be ignored.
Furthermore, the assumption that DNAPL is not indicated unless dissolved groundwater
concentrations greater than l%o of the solubility of the pure product are detected (Cohen and
Mercer, 1993) is considered reliable because the lowering of solubility by other factors such as
the presence of other solvents, is taken into account in this assumption.
S:\STAFAMRR\Chloroformlnvestigation\UpdateChloroformlnvestigationReport I l-9-01
2.3.2 Comparison of MW-4 to Nearby Temporary Wells
Chloroform concentrations in the past have been higher at MW-4 in comparison with
nearby temporary wells, although these differences have been slight in recent sampling events.
The differences do not indicate DNAPL that may be present at MW-4 or that these differences
result from well construction factors, possibilities suggested in UDEQ's June 7, 2001 letter.
Recently measured chloroform concentrations at MW-4 are not significantly higher than
at nearby temporary wells. Concentrations at TW4-l and TW4-2, located immediately
downgradient and upgradient, respectively, of MW-4, are within approximately 5oh and l2o/o,
respectively, of concentrations at MW-4 as of the June 2001 sampling (Figwe 1).
Concentralions at MW-4 are within 8Yo of concentrations at TW4-2 in the September, 2001
sampling. (Concentrations between MW4 and TW4-l cannot be compared for the September,
2001 sampling because the TW4-1 sample vial broke in transit to the laboratory and no analysis
was performed). These results suggest that differences in concentrations ire more likely the
result of recovery than well construction factors or the potential presence of DNAPL at MW-4 as
suggested by UDEQ. Differences in concentration between MW-4 and nearby temporary wells
would be expected to be much larger if DNAPL were present neat MW-4. The slightly lower
concentrations at the nearby temporary wells, and the reduction in the differences in nearby
temporary wells relative to MW-4 over time are consistent with recovery of temporary wells
from the air rotary drilling process (as discussed in Section 3). In other words, the reason that
MW-4 has had the highest concentrations is more likely due to its age rather than construction.
Furthermore, it is highly unlikely that chloroform DNAPL could have migrated more
than 1,200 feet from the source area (the abandoned scale house leach freld) to the vicinity of
MW-4. The Burro Canyon/Brushy Basin contact is an erosional surface with numerous small-
S:\STAFAMRR\Chloroformlnvestigation\UpdateChlorofqrmlnvestigationReport I l-9-01 10
scale irregularities that would prevent movement of any DNAPL very far from the source area.
Even if small scale inegularities did not prevent the movement, the farther the DNAPL moved
from the source area, the more spread out it would become, exposing more surface area to the
groundwater and making it easier to dissolve. Also, it can be demonstrated that more than
sufficient volume of water has passed beneath the abandoned leach field source area to have
dissolved all of the chloroform potentially disposed there.
Assuming the following conditions,
Width of abandoned leach field:
Average saturated thickness :
Average hydraulic gradient :
Average hydraulic conductivity :
20 feet
30 feet (conservative)
0.016 ff/ft
I ff/day
Approximately 520,000 gallons of perched water have passed beneath the leach field over the
past 20 years. (The average hydraulic conductivity was based on the results of a pump test at
MW-4 in 1999, which yielded a transmissivity of 38.4 ft2 lday. Dividing this by the saturated
thickness of the perched zone at that time, approximately 40 feet based on a depth to the Brushy
Basin of 108 feel bls depicted in the geophysical log of MW-4, yields an average hydraulic
conductivity of I foot/day.) Assuming a solubility of chloroform of 8,000 mgll, or 5 x l0-3
gallon chloroform/gallon water, sufficient perched water has flowed beneath the source area to
have dissolved more than l0 times the amount potentially used in the ore assay laboratory.
2.3.3 Vertical Profiline of MW-4
As stated above under 2.1, previous vertical profile sampling of MW-4 in 1999 did not
indicate that concentrations increased with depth, as would be expected if DNAPL existed near
MW-4.
STsTAFRMRR\Chloroformlnvestigation\UpdateChloroformlnvestigationReport I l_9_01 l1
2.4
Samples were collected from depths of approximately 7l feet bls (approximately 2 feet
below the top of the water column) and from near the base of the well (approximately I 18 feet
bls) using a disposable bailer. The shallow sample was collected first, then the deep sample. If
chloroform DNAPL were present at the base of the well, concentrations would be expected to be
significantly higher there than at the top of the water column. Instead, sampling results showed
no significant difference in concentration between the deep and shallow samples. Chloroform
was detected at a concentration of 6,200 pg/L in the shallow sample and a concentration of 5820
5,280 pgll in the deep sample.
More rigorous vertical profile sampling of MW-4 is proposed to characteize the vertical
distribution of chloroform concentrations at the site as discussed above in Section 2.1.
Brushy Basin Contact
UDEQ has expressed concern that the Brushy Basin contact at MW-4 may be depressed
and may harbor a pool of chloroform DNAPL. This concern is based on a reported contact depth
of 125 ft below land surface (bls) at MW-4. However, the Brushy Basin contact at MW4 is
considered to be at a depth of 108 ft bls based on lithologic logs of nearby temporary wells TW4-
|,TW4-2,TW4-7 and TW4-8, and on the geophysical log for MW-4 provided in TITAN, 1994.
The geophysical log for MW-4 provided in TITAN, 1994, depicts the Burro
Canyon/Brushy Basin contact at 108 ft bls. This depth is consistent with the lithologic logs of
nearby temporary perched monitoring wells TW4-l,TW4-2,TW4-7, and TW-4-8, which depict
the contact at approximately 103 ft, 105 ft, 98 ft, and 105 ft bls, respectively. This would place
the base of the screened interval of MW-4, which extends to ll2 ft bls, approximately 4 feet
below the contact.
S:\STAFRMRR\Chloroformlnvestigation\UpdateChloroformlnvestigationReport I l-9-01 t2
The 125 foot depth that has been previously reported for the Brushy Basin at MW4 is
apparently based on the well completion diagram provided in TITAN, 1994, which depicts a
contact between "sandstone" and "claystone" at 125 ft bls. However, no additional lithologic
information is provided to indicate whether the "sandstone" is continuous from the surface to
125 ft bls, or whether the "sandstone" is a lens or layer encountered within the Brushy Basin.
The formation names are also not designated on the diagram'
During drilling of temporary wells TW4-3 and TW4-7, the borings were extended into
the Brushy Basin to characterize the lithology of the uppermost portion of the formation. Thin
layers or lenses of sandstone and/or conglomeratic sandstone were found at a depth of
approximately 108-l 12 ft bls in TW4-7, l0 feet below the Brushy Basin contact, and depths of
approximately 125-132 ft bls in TW4-3, 25 feet below the contact. These lenses or layers in the
Brushy Basin were separated from the base of the Burro Canyon by shales, siltstones and
claystones. These low permeability materials would hydraulically isolate the lenses or layers of
sandy/conglomeratic material within the Brushy Basin from the Burro Canyon.
With regard to the geophysical log of MW-4, there is a clear response in the natural
gamma at 108 ft bls. This response is also consistent with the natural gatnma response at the
Brushy Basin contact as depicted in other geophysical logs at the site and is consistent with the
lithology logged at nearby temporary wells. Because the geophysical log depicts the Brushy
Basin contact at 108 ft bls in MW-4 and because this is consistent with lithologic logs of nearby
temporary wells, the 108 foot depth is considered reliable.
Therefore, any DNAPL potentially present near MW4 would be expected to enter the
well screen, and to raise the measured chloroform concentrations at MW-4 nearer the solubility
S:\STAFflMRR\Chloroformlnvestigation\UpdateChloroformlnvestigationReport I l-9-01 l3
of chloroform (8,000-10,000 mg/l). Because the measured concentrations of chloroform at MW-
4 are more than 3 orders of magnitude lower than the solubility, no DNAPL is indicated.
Furthermore, if DNAPL were present near MW-4, concentrations should be at least one to two
orders of magnitude higher that at TW4-1, TW4-2 and TW4-4, rather that only 5%o, l2%o, and
48% higher as of the June, 2001 sampling.
Installation of an exploratory boring near MW-4 as suggested by UDEQ to characterize
the contact is not considered necessary based on the geophysical log of MW4 provided in
TITAN, 1994, the lithologic logs of nearby temporary wells, and the lack of evidence for
DNAPL in the analytical data. The depth to Brushy Basin of 108 feet bls depicted on the
geophysical log of MW-4 is consistent with the depths provided in the nearby lithologic logs and
is considered reliable.
A contour map of the top of the Brushy Basin, using the 108 ft depth at MW-4, is
provided in Figure 2.
S:\STAFRMRR\Chloroformlnvestigation\UpdateChloroformlnvestigationReport I l-9-01 t4
3.1
3. ADDITIONAL PLUME DELINEATION
UDEQ has expressed concern that more temporary perched wells are needed to define the
extent of chloroform in the perched water, and that piezometers are needed in the northeast
portion of the site to better define changing water level gradients and to identifu sources of
recharge. This section discussed the distribution of chloroform in the perched water both
spatially and temporally, the need for new temporary wells to the west and northwest of MW-4
based on observed trends in the chloroform data, and the relationship of chloroform to nitrate
which is consistent with a leach field origin.
Analytical Results from Temporary Wells
Chloroform analyical results for MW-4 and temporary wells are shown in Figure 1. The
chloroform plume is bounded to the south (downgradient) by non-detect results at TW4-6,
although the recent detection of 3.6 pgll chloroform at TW4-6 may indicate arrival of
chloroform at that well. The upgradient well (TW4-5) and lateral wells (TW4-7 and TW4-8)
show chloroform concentrations in excess of 100 ltglL, although concentrations at these wells
are much lower than at MW-4, TW4-l and TW4-2.
The increases in concentration detected in most of the temporary wells after installation
are most likely related to recovery of concentrations that were lowered as a result of the air
rotary drilling method, and the generally long recovery times expected when wells are installed
in low permeability formations. Temporary wells located downgradient (south) of MW-4 are
affected by both the recovery process and by continued southerly migration of the chloroform
STsTAFnMRR\Chloroformlnvestigation\UpdateChloroformlnvestigationReport I l-9-01 15
plume. These and other temporal trends will be discussed further in Section 3.5. IUSA will
continue to monitor and report results to the UDEQ.
3.2 Hydraulic Gradient in the Vicinity of MW-4
The hydraulic gradient in the vicinity of MW4 has historically been to the south (IUSA
and HGC, 2000). Recent water level contour maps are provided in Figures 3 and 4.
The change in water levels and change in hydraulic gradient to a more westerly direction
in the vicinity of the abandoned leach field are recent, and the direction of the hydraulic gradient
dwing most of the period of migration of the plume was southerly. A southerly gradient still
exists near MW-4 and at the downgradient edge of the plume. The recently detected more
westerly hydraulic gradient near the scale house leach field is of no concern unless a residual
chloroform source is present, but the assumption of a residual source is not supported by any of
the soil gas or groundwater data collected to date. IUSA plans to install piezometers, in a phased
fashion, in the northeast portion of the site to fuither investigate the increase in water levels and
change in hydraulic gradient. This work will be described in a report to UDEQ due on
November 16,2001.
The water level map provided by UDEQ in their June 7, 2001 letter to IUSA indicates a
concern as to whether or not there may be a possible groundwater mound near MW-4.
This feature is likely not a mound but the result of locally
related to the stratigraphy of the perched zone. This type of feature
aquifers even where the hosting lithology consists of unconsolidated
S:\STAFAMRR\Chloroformlnvestigation\UpdateChloroformlnvestigationReport I l-9-01
semi-confined conditions
is common in water table
layered sands and gravels
t6
with local interbeds of silt and clay. These small-scale fluctuations in the regional flow field can
be ignored when considering the large scale flow of groundwater and transport of solutes.
3.3 Need for Additional Wells to Delineate Chloroform in the Perched Zone
The vertical dimension of the chloroform in perched water will be addressed by vertical
profile sampling as discussed in Section2.l. The lateral dimension of the plume is defined in
large part by the existing temporary well network but further delineation is likely needed to the
west and northwest of MW-4. Additional downgradient delineation may be needed in the future
as the plume continues to move to the south.
UDEQ provided a chloroform isoconcentration map in its June 7,2001 letter to IUSA.
While this map indicates that further lateral delineation of the plume is needed, to the west and
northwest of MW-4, the chloroform isoconcentration map prepared by UDEQ displays a number
of features that are not hydrogeologically reasonable. These features are related to:
Non-uniform distribution of input data leading to unavoidable errors in computer
gridding and contouring unless specific measures are taken to counteract them,
The impossibility of providing hydrogeologic input to the computer gridding and
contouring algorithm such BS, for example, historical groundwater gradient
information, and
The assignment of detectable chloroform concentrations to downgradient wells that
have always been non-detect for chloroform
Some of the resulting erroneous features displayed in the map include the following:
1) The depicted plume extends farther cross-gradient and up-gradient than down-
gradient which is not hydrogeologically reasonable.
1)
2)
3)
SjsTAFRMRR\Chloroformlnvestigation\UpdateChloroformlnvestigationReport I l-9-01 t7
The detectable chloroform isoconcentration contours extend up to and beyond wells
that have always been non-detect for chloroform, which is not hydrogeologically
reasonable.
"Bulls eye" features occur that are related to the non-uniform distribution of data,
choice of gridding parameters, and unavoidable limitations of the gridding and
contouring package. There is no hydrogeologic mechanism that can result in such
features.
Unless chloroform is actually detected at the downgradient wells, the downgradient
edge of the plume will always be at or just beyond these same wells that are non-
deiect for chloroform, resulting in a plume whose extent is time independent. This is
not hydrogeologically reasonable unless a steady-state condition has been reached.
The apparent northwest trend in the isoconcentration contours in the map produced by
UDEQ is an artifact resulting partly from the well density west and northwest of MW-4, and
partly from the non-uniform distribution of data, the lack of hydrogeologic input in producing
the map, and the assignment of detectable chloroform concentrations to wells that have been
non-detect for chloroform.
IUSA proposes to install two nsw temporary wells to the west and northwest of MW-4,
as shown in Figure 5, to help delineate the extent of the plume to the west and northwest where
control is poor. Additional wells to the east and south may be considered at a later time based on
the results of continued monitoring at the site.
Temporal Trends in Chloroform Concentrations and Relationship to Nitrate
Figure I shows the chloroform concentrations over time measured in MW-4 and
temporary wells near MW-4. As discussed in section 3.1, initial increases in most of the
temporary wells are likely related to recovery from the drilling process which used primarily air
as a drilling fluid, and small amounts of water as needed to maintain circulation. Increases at
wells upgradient (north) of MW4 are most likely due to recovery alone, while downgradient
2)
3)
4)
3.4
S:\STAFRMRR\Chloroformlnvestigation\UpdateChloroformlnvestigationReport I l-9-01 l8
wells (south of MW-4) are expected to respond to both recovery and continued downgradient
(southerly) plume movement. For example, the rapid increase in concentration at TW4-l after
installation could not likely have resulted from recovery alone, but must also have resulted from
movement of the leading edge of the plume past that well. Increases in concentration from non-
detect to 3,200 pglL at TW4-4 are also likely to have resulted primarily from continued plume
movement to the south.
Concentrations at upgradient wells TW4-5, TW4-9, and TW4-3 have stabilized or
decreased after the initial increase related to recovery. Concentrations at lateral wells TW4-7
and TW4-9 are stabilizing. These trends are consistent with the initial interpretation of a "slug"
of chloroform entering the perched water over a relatively short period of time (1-2 years) and
migrating downgradient toward MW-4, TW4-1, and TW4-4. The width of the plume near MW-
4 will be addressed by the installation of two new temporary wells to the west and northwest of
MW-4.
Figure 6 is a plot of nitrate concentrations over time at MW4 and the temporary wells.
There is a clear correlation between chloroform and nitrate concentrations which is consistent
with a leach field origin. Figure 7 is a scatterplot of chloroforn vs. nitrate through the
June,200l sampling, which illustrates this correlation.
S:\STAFflMRR\Chloroformlnvestigation\UpdateChloroformlnvestigationReport I l_9_01 t9
4. COORDINATES REQUESTED BYUDEQ
A copy of estimated coordinates for the following locations was previously transmitted to UDEQ
on September 7,2001, and was provided during the meeting on October 5. They are also
provided in this report in Appendix C.
. Former mill offrce building sanitary leach field,
. Former mill office building laboratory wastewater holding tarrk and pipeline to
Evaporation Cell l.
. Former office trash disposal area
20SlsTAFRMRR\Chloroformlnvestigation\UpdateChloroformlnvestigationReport I l-9-01
5. PERCHED ZONE PERMEABILITY
UDEQ has expressed concem about the permeabilities derived from the hydraulic tests at
MW-4, and whether chloroform could have migrated from the abandoned scale house leach field
to MW-4, and whether chloroform could have migrated from the abandoned scale house leach
field to MW-4 via conglomeratic materials logged in temporary wells at the site, as suggested in
the CIR. This section discussed the results of hydraulic testing at MW-4, the probable
coincidence of a high permeability zone evident in the MW-4 test data with conglomeratic
materials logged in nearby temporary wells, and the likelihood that these conglomeratic
materials influence the flow of perched water and transport of chloroform near MW-4.
5.1 Permeability Distribution of the Perched Zone
An updated perched zone perneability map is provided in Figure 8. The permeabilities
plotted on the map are based on the results of pump and slug tests where available, or on
constant head packer tests within the perched zone. Test results by Peel were used where
available, except the value plotted for MW-4 (3.5 x lOa cm/s), which was based on a
transmissivity of 38 ft2lday measured during a1999 pump test by HGC. The saturated thickness
at that time was calculated as 39 feet assuming a Brushy Basin contact at 108 ft bls. A detailed
discussion of tests at MW-4 will be provided in a report to UDEQ due on November 16.
5.2 ConglomeraticZone Near MW-4
Varying thicknesses of conglomeratic material are present below the water table in all
temporary wells north of TW4-1 (Figure 9). The base of this zone is approximately 95 feet bls in
TW4-1, and TW4-2, and approximately 88 ft bls in TW4-7. A higher permeability zone with a
base at a depth of approximately 95 feet below top of casing (btoc) is evident in the drawdown
data collected during a pump test by Peel at MW-4 in 1992 (UMETCO,1994). During the first
S:\STAFF\MRR\Chloroformlnvestigation\UpdateChloroformlnvestigationReport I l-9-01 21
3 hours of pumping at a constant rate of 0.46 gpm, only about 2 % feet of drawdown was
measured. Then, as water levels dropped below approximately 95 feet btoc, the rate of
drawdown increased by about a factor of 30. Similar behavior occurred in a test conducted at
0.92 gpm, except that the break in slope occurred in about half the time. This behavior is
consistent with dewatering of a higher permeability zone having a base at 95 feet btoc near MW-
4 at about 3 hours into the test. This zone most likely coincides with the conglomeratic zone
logged at nearby temporary wells. Because this conglomeratic zone is present below the water
table at all wells north (upgradient) of TW4-1, and has a relatively high permeability based on
the pump tests at MW-4, it likely influences the flow of the perched water, and therefore the
transport of chloroform, in the vicinity. Furthermore, the least productive temporary wells at the
site, TW4-4 and TW4-6, have very thin conglomeratic zones that are located above the water
table where they cannot at present affect the movement of perched water at the site.
A detailed discussion of tests at MW4 and interpretation of results will be provided in a
report to UDEQ due November 16.
S:\STAFAMRR\Chloroformlnvestigation\UpdateChloroformlnvestigationReport I l-9-01 22
6. ONGOING GROT]NDWATER MONITORING AND REPORTING
As stated in Section 5.1 of the CIR, the sampling results to date indicate that elevated
chloroform concentrations are confined to a relatively narrow zone. Elevated chloroform
concentrations have not moved significantly downgradient of TW4-4.
To ensure that samples collected from the temporary wells are representative of the
perched groundwater, continued monitoring has been performed on a quarterly basis in the
temporary wells (TWs) and in MW-4. Measurements have included depth to water, electrical
conductivity, temperature, pH, and chloroform concentration. Nitrate has also been measured in
temporary wells TW4-1, TW4-3, and TW4-4.
Continued potential movement of the elevated chloroform concentrations is being
monitored using the new temporary wells, TW 4-4 and TW 4-6 located downgradient of TW 4-l.
Also, based on hydraulic conductivity estimates at MW-4, and the magnitude of the groundwater
gradient, the travel times can be used to estimate the effective porosity of the perched zone in
this vicinity.
IUSA will continue to collect chloroform data for all of the wells involved in the
chloroform investigation, including well MW-4, all the existing TW-4 series wells, and all future
monitoring wells that are installed to delineate the area of chloroform contamination.
Table 1 is a swnmary of data collected to date from the TW-4 series wells. Quarterly
analytical results which were not preciously transmitted to UDEQ in split sampling data
S:\STAFnMRR\Chloroformlnvestigation\UpdateChloroformlnvestigationReport I l-9-01 23
packages for data collected since the tansmittal of the CIR to the present are included in
Appendix D.
To ensure adequate time for sample analysis, laboratory data validation, IUSA data
validation, and reporting,IUSA proposes to submit the data, together with the quarterly sunmary
report, to UDEQ in accordance withthe following schedule:
Ouarter Submittal Due Date
January - March May 30
April - June August 30
July - September November 30
October - December February 30
I
L
1
o1
SfSTAfF\MRR\Chloroformlnvestigation\UpdatcChloroformlnvestigationReport I l-9-01 24
7. ADDITIONALGROUNDWATERMONITORINGPARAMETERS
The primary purpose for measuring additional groundwater parameters within ard near
the chloroform plume should be to establish the likelihood that chloroform is degrading nrlturally
(either chemically or biologically) within the perched water.
The natural degradation pathway for chloroform is for chlorine atoms to be succt:ssively
replaced by hydrogen under anaerobic, reducing conditions, via reductive dechlorination.
Chloroform will degrade to its daughter product, dichloromethane (DCM) undo: these
conditions, and may ultimately degrade to methane. The presence or absence of DCM would
help establish whether or not this process is occurring at a significant rate.
The presence of nitrate concentrations in the perched water near MW-4 that are gt:nerally
higher than the chloroform concentrations, however, indicates that groundwater conditions are
not presently favorable for this process. Under conditions favorable for reductive dechlorination,
nitrate will also be expected to degrade, and at a higher rate than chloroform. For this reason,
existing analytical data provides an indirect estimate of redox conditions, which do not appear
favorable for reductive chlorination.
7.1 Dichloromethane Analytical Results From Split Sampling
Previous split sampling analytical results indicate that DCM is not present in lrerched
water near MW4 at detectable concentrations (l pglL). This is consistent with conditions that
are not favorable for reductive dechlorination of chloroform.
SlsTAFflMRR\Chloroformlnvestigation\UpdateChloroformlnvestigationReport I l_9_01 25
7.2 Direct Measurement of Redox Conditions in the Field
At UDEQ's request, IUSA had evaluated the feasibility of obtaining relatively reliable
measurements of reduction-oxidation potential (redox, or ORP) for groundwater, usirrg field
instruments. As described in the U.S.G.S. Field Manual, Chapter 6.5, in contrast to other field
mesaurements, the determination of redox "should not be considered a routine measurement"
and is "not recommended in general because of the difficulties inherent in its theoretical concept
and its practical measurement" (see Appendix D). The U.S.G.S. notes that "Eh measnrement
may show qualitative trends, but generally cannot be interpreted as equilibrium values".
Hydrolab Corporation, the supplier of the Hydrolab Surveyor 4a Instrument currently being used
at the Mill for field measurement of pH, temperature, and electrical conductivity in groundwater,
has indicated that the instrument's available redox electrode, which can be retrofitterl to the
Mill's instrument, has somewhat improved capability of measuring redox, as compared with
earlier models. Hydrolab's Tech Note 204 listing parameter specifications is included in
Appendix D. Response time is not specified on Tech Note 204, and IUSA will need to erstablish
a procedure to determine at what point the redox value would be selected. Also, to avoid
potential exposure to quinhydrone, the Mill would use Zobell solution to calibrate the new redox
electrode, after it has been added to the instrument.
7.3 Feasibility of Enhancing Reductive Dechlorination In-Situ
Reductive dechlorination can be enhanced in-situ by adding substances such as hydrogen
release compound, or substances that accomplish the same purpose such as molasses or ethyl
alcohol, which release hydrogen during fermentation (Odom, Martin J et al, 1995), and mixing
S1sTAFflMRR\Chloroformlnvestigation\UpdateChloroformlnvestigationReport I l_9_01 26
them with the perched water. The mixing process will be facilitated at the site because
temporary wells currently exist along almost the entire extent of the chloroform plume,, with a
number of wells completed in that portion of the plume with the highest chloroform
concentrations. Existing data indicate that this process will be feasible, however additional data
yvill be collected prior to making a final deterrrination of the feasibility and developing a work
plan for implementation.
27S:\STAFF\MRR\Chloroformlnvestigation\UpdateChloroformlnvestigationReport I l-9-01
Y
=
N
INo)
oz @z oz U)z az
or*$-
(o
o(o(a
$
oo
(f)
(o
oo(9-
l.C)
t-(a
oi
F-t\d
No
ot
,)I\l
=
oN
Io@
N\r
@
oq (/)z oz c!
$ao)(o
q
(a$
o,lo o,ro o ro
o
DI\t
E
()
N
Ilo
@
oq
N
U)z U)z C\lo F-o (o o@r
o@r o o Ci
Isl
oN
Io@
(oloN
(o
@
oz az @o)(o
$@(o
t-$t-
ooa
oo6t
o)q (o$
N
lf,(o
c\i
It
E
lo
Fo)Itr,
t-lr)
az oz U)z
lr)
CJ
q
(f)o (a
o o
r,I<f
oN
Io@
r()
oiN
o)$U)z oz srN
F
l.c)lo(\t
(o(o
N
o$N
ott
N
(or
ci
@
@
(f)
r-.q
(o
Y
=
C\l
I6lt-
U)z ct)z az roo ro@
c"j
o@ot
N
oo
(",
ooc.l
(r)
Nq lo+os
E
t-o)Ir-(o
NoIr
\l(r)
@
az az (o
(f)o
(o
(Y'o
t-$(a
oo)
(f)
oo(Y)
F-o)lo
oq q
N
$
E
o6l
Io@
orro
N
o(\I
|.r)-
l()
U)z @z
oNc\l
ro
o
c\to{
$
oo,@
(o
oolf)
to
ooo)
$
r*o Nor
t-(o
o)
*
o
Iot-
oq
lr)
oO-
oo)
a.U)z
o(o
ryN
orir
st_
(f,
os
(f)-
N
ooo
(o z CD\N
ror
F-
@
@
6
e
o)
,=
Eo
L^ot(,EE36o,E
o
E'=oL
CLo-
J(,) o,
=-cv:
-o-EEoo\aPso U,
LVo
3^b, s,
Y6-Etr
EE9oOE
=No
3taCY -o.Etr*sYaoii
!vo
g,
Eatr
BAgT
cF
=A cJoAYf.+;=tF
Eboc)
6E
o-
EEtS-c o)>{.8-
- cL-
-tr !26H h3o Y
E EE
Io
,c,o
-^{otrtc
vgcEt(uBo9RO;<:F!-
()v
-^{otctc
-= o-cEtoo.h9=9;6e
{otrrc3o-cEtoou,F9E96
^Lo
{-oEiEeocEtooo9=955e
^o)JC:\:g, o.EEvoo(,,(UoEEz-
^o,JC
o, o_EE
ao(tr
tsQ2 <4,-o
^oJC
cDoEE
oo(Er
=<z<O
o
o
o
E(!
(!
o.
IE(,
lEc
!,tr
.E
tro
g
-ELUJEJOoo{=l-O'=
EoGo
oo
a(!
o
CL
EoF
!,tr
.E
T
==
o
x
-c.o(E
Eo
g
-9Eooo€o
N
i
EEEHg5tso(Eq0)o
ootrs
ililo<22
8. REFERENCES
Cohen, Robert M and James Mercer. 1993. DNAPL Site Evaluation. Library of Congress
Hamed, Herbert S and Benton B Owen. 1950. The Physical Chemistr.v of Ele,ctrolytic
Solutions. American Chemical Society Monograph Series. Reinhold Publishing t3o{P.
Intemational Uranium (USA) Corporation, and Hydro Geo Chem (HGC), 2000. Investiplation of
Elevated Chloroform Concentrations in Perched Groundwater at the White Mesa
Uranium Mill Near Blanding. Utah. Submitted to UDEQ.
Odom, J Martin, Jo Ann Tabinowski, Michael D. Lee, and Babu Z. Fathepure, 1995. A:raerobic
Biodeeradation of Chlorinated Solvents: Comparative Laboratory Study of Aquifer
Microcosms. In Bioremediation of Chlorinated Solvents. Bafielle Press.
Schwarzenbach, Renee P; Phillip M Gschwend, and Dieter M Imboden. 1993. Environmental
Organic Chemistrv. John Wiley and Sons.
Titan, 1994. Hydroeeologic Evaluation of White Mesa Uranium Mill. Submitted to Energy
Fuels Nuclear.
Umetco, 1994. Groundwater Study. 1994 Update. White Mesa Facility, Blanding, Utah
Submitted to United States Nuclear Regulatory Commission.
U.S. Geological Survey, 1998. Reduction-Oxication Potential (Electrode Method). Chapter 6.5,
Field Manual. Available online at
huo ://water.us gs. eoviowq/IieldManual/Chapter6/6. 5-contents.html
SisTAFflMRR\Chloroformlnvestigation\UpdateChloroformlnvestigationReport I l-9-01 28
o
EXPLANATION
temporary perched well
showing chloroform (uG/L) in
^ 702 initial samplingt 9-g-+ second .urptingNS third sampling
9!9 fourth sampting836 11/00 sampling347 03/01 sampting390 06/01 sampling300 09/Ol sampting
6300j 53oo
f,",ff-i1ffi llL"H,:,:iii.
(uG/L) in 6/01 and g/01
samplings
NOTE: sample vialfor
tw4-1 broke in
transit to the
laboratory so
no analysis
was performed
on 9/01 sample
CHLOROFORM ANALYTICAL RESULTS (uG/L)
FOR TEMPORARY PERCHED WELLS
(through september, 2001 )
Approved Date Relerence Figure
1
\\
\
\\)
r'
I
)=of*.?a
'
=t,
.t
\
I
5170
\\
1i
5430
\\
\\
5420
541 0
(
N
I
a r*-20
5449 .f,r \
xlt:x \r'---7ei ^// '/-
-
0 J000
SCALE IN FEET
FYPI ANATION
o Mw-11
551 3
" 5522
PERCHED MONITORINC WELL SHOWNG TOP OF
BRUSHY BASIN IN FEET (AMSL)
TEMPORARY PERCHED MONITORING TIELL
SHOWNG TOP OF BRUSHY BASIN IN FEET (AMSL)
-- CONTOUR LINE IN FEET (AMSL), OASHED WIERE UNCERTAIN * ASSUMED TO BE AT ELEVATION OF
BASE OF SCREENED INTERVAL
l,' | ${ag 'Lno\\o f,u-l
555
\
\ -o\ ZO
\
\
\\-
ll z o ,tY-t5tt JZ -45+73
rw-3. 5466'
CONTOUR MAP OF
TOP OF BRUSHY BASIN
WHITE MESA URANIUM MILL SITE
Date
10/30/01
\\
\\j\\\
\\(
Nl', V:\-r\./
.z- {, /,.<le\\-../ \\.
---- 5sgo
a rx-!9
55EE
-
0
SCALE IN FEET
FXPLANATION
3000
\:\r )\\
^\ \-r )
r ----\.\
.r
\l L -rlx\r"--rn.J1-.2 u.r-
-r'
a Mw-ll
551 3
5522
PERCHED MONITORING VTELL
SHOTTING WA]ER LEVEL IN FEET (AMSL)
TEMPORARY PERCHED MONITORING WEU
SHoWNG WATER LEVEL IN FEET (AMSL)
----5585 WATER LE\EL CONToUR, oASHED IIHERE UNCERTAIN
ti
\l
I\
N\
A \'\r',\
I tt..
+
WATEH LEVEL CONTOUR MAP
DECEMBER, 2OOO
WHITE MESA URANIUM MILL SITE
Date
o/30/01
I
N
t
-
0 3000
SCALE IN FEET
EXPI ANATION
\\l )---a\ ,)-
Ix\r'-a€t J--.--,2 t,r-
/'
\\
\\)\\
r'
)
t E(z )4r,. \.,&(r--l.Ci -.r
\F \ ,/
)S ,z'L/=*>:
l^\le
tl/
\/J/
\/l
,,1
4'
/o: j\
5580
5570
5560
5540
5530
5520
;:s:sj0..__
5500
5490
5480
tl
tl
il
tl
ll
I
tl
1l
i
tl
I
ll
\Irl-2r
\l
\1
\\
a
\\
\\\\
---
5585 WATER LEIEL CONTOUR, oASHED rifttERE UNCERTATN
a Mw-1l
551 J
'ss22
PERCHEO MONITORING \IELL
SHOI$NG WATER LEVEL IN FEET (AMSL)
.IEMPORARY PERCHED MONITORING WELL
SHOWNG WATER LEVEL IN FEET (AMSL)
T37S
.!hi'
,,t
WATER LEVEL CONTOUR MAP
SEPTEMBER . OCTOBER, 2OO1
WHITE MESA URANIUM MILL SITE
Date
o/30/0r
EXPLANATION
MW.4O perched groundwater
monitoring well
tw4-16' ' temporary perched
groundwater monitoring
well
PROPOSED
TEMPORARY WELL
PROPOSED LOCATIONS OF NEW
TEMPORARY PERCHED WELLS
Approved Date Flelerence
5
Figure
o
EXPLANATION
temporary perched well
showing niirate (mg/L) in
1 .02 1 1/00 sampilng
14.5 03/01 sampling
14.0 06/01 sampling
9.02
perched monitoring well
MW-4 showing nitrate
(mg/L) in 6/01 sampling
ND = not detected at 0.1mg/L
NITRATE ANALYTICAL RESULTS (mg/L)
FOR TEMPORARY PERCHED WELLS
Approved Date Re,e rence Figure
6
uJF#srE
=>@a>z><tAo-i
LL trt
P=ooJLUI-OOsErr LIIlo-b>rLLd<rtiloFO-
3Ea'
ooo(o
ooo
lf,)
=CD
J
EI-oob
S-6o
-CC)
oooc!
i roi i I ilrrtttt-i--- : Of 1 I lI
llttt
ttll
ltlllt
ltlttliiorl
lI
rtlttti
lttttl
lttttl
lrtttt
lttltt
-l- --r- r-----T- -T------] -llttlt
lrttttt
lrttt
rlltttt
ltlt
lill
lttr
I I dL I Irilurli 6i ; i
rll
lll| -,--- - | --l--itqirtl
ltltlt
ltttttl
lrttti
lttLttiliplil
ltltrtt
lrlttt
&liiitl
-l-__ _L,,___L __L_____i __-]__
itil
lttt!
lti
t;
lrllt
tttli
liltti
lttttlt
I r r r
-
r i l
rrtttlti I i lo i i Ilrtltt
ltltllt
rtltltt
-l--- -r------J- --r------r-- ---t-lttli
lltlil
llttrl
lrtrl
ltti
lilltl
lilt1
lrltll
litltl
ltltt
ltlt
ltlioffirrrrqP
---l
lltliiiiii4
lltltiiirTf*ilii6l
tl
lrtttr
ooO
(ygu) elerlru
PROPERW
BOUNDARY
\\\
)\
(
r'
I
I
iiiliiliijjii,
ffiil['
N
(<)=r*) u')
'
=t,
.t
\
;lllllllllll:ilil1!ililtlililt!ililtlililtlililt!ililt:ililt!ililt!ililt!ililt!ililrlililtnuxrrrrTl
PERCHED MONITORING WELL SHOWNG PERCHED
PERMEABILITY lN cm,/s
PERCHED ZONE PERMEABILITY 2 1O-1cm/s
PERCHED ZONE PERMEABILITY
BETWEEN 1o-a cm/s AND lo-scm,/s
ll
lt
I
ZONE
/(Ill'lltl\ PERCHED zoNE PERMEABILITY < 1d5 cmlsqlw
NOTE: PUMP TEST (DRAWDOW\ OR RECO\ERY) RESULTS
ARE PLOTTEO WHERE AVAILABLE. IVI-IERE NOT AVAILABLE, SLUG TEST
OR CONSTANT HEAD PACKER TEST RESULTS ARE PLOTTED
SCALE IN FEET
a Mw-11
1xl0-t
@s
..I:SS
i\i\$
,;-(.1.5)1s';{}-\r'-:-:-r{:l:}}
ss\\i:)NN
illlfflllmm
wiliiiii,
Tlll,ffit!iltliiN&*
ruaKS
$-.S-^i.\^.- =ffi
fiili
I l[l ilIil | | li I ll i il ll li i
:\-:"ql:i:\:L NO. 2.-\:,:-)l---:>:
NTS.N
iiiiiiiiiiiiiiii
iiiiiiiiiiiiiiti
q'
PERCHED ZONE PERMEABILITY
BASED ON PUMP AND SLUG TESTS, AND
CONSTANT HEAD PACKER TESTS
aoz
,, lxIF,z o;Pi<3;
fr3=
ZsI
H=F
=s=5e=taa
O- 7 ,-,
KEE
ooJ
OO(o
OO$r
ox()
O
P
=oa
C)()
CXcuCDao
o
(U
E'=5e(oo-
o_
(U
,t
., ...1,-" - .. ; t.:t
v-vMt
L.'M}
L.VMI
z-v
6-rlvu
OO$q)
CI
rr. u)
="1 fr Itrl es<l E kzl h-x<I E E
tl.l obxl =blJJl 6 r=L
I
I
I
---l
IOo
Lolr)
O(o
LO
(ieel) uorle^olo
9-V
APPENDIX A
Vertical Profile Sampling Methods
'a oo
edech
Environmental Equipment, lnc.
s$
lrrrrtd
.lrP
Leaders in manufacturing and distributing
ground and surface water sampling, analytical,
filtration, and remediation equipment.
Bailers
Geotech Disposable and Reusable Bailers
Geotech disposable and reusable bailers are available in many
configurations and materials to meetyour specific sampling needs.
lmproved bailer design
- Geotech's 'Orbit Flux' design fills 33% faster than other bailers
- V-notch design for trouble free cord attachment, and accurate pouring
Weighted disposable bailer as heavy as most double-weighted without the extra
cost
Manufactured under strict clean-room conditions
- Made of virgin, FDA approved high{ensity poly resin
- The polyethylene contains no plasticizers or additives, and no regrinds are
special clean
Product sampler for floating hydrocarbons
VOC sampler uses a unique desagn that allows sample transfer to VOA vials
with minimal loss of VOGs
PVC white and clear
- Diameters from .675" to 3.5' in lengths 12'to 60"
- Recessed check and double check available
Slainless Stee! Geobailers
- 1" and '1.75' diameters are 36' long
- Rugged and durable for well development
Teflon@ Geoballers
- 1.25" and 1.625' diameters are 36' long
- Most inert material available
Geotech Disposable Bailers are avallable in the following configurations:
Material Diameter Lenoth Confiourations Units/case
Accessories
Poly VOC tips for 1.5" diameter bailers ......'...............24 per case
Poly VOC tips for 3" diameter bai|ers...............'..........9 per case
Teflon@ VOC tips for 1.5' diameter bailers.....'..'.........12 per case
Poly free product samplers......... .........24 per case
Optional double check valve bailers isolate the sample, sealing as the bailer is
removed from the well at specific depths
Disposable Accessories
Geotech Pressurized Disposable Bailers
This special disposable bailer provides the convenience of using inJine dispos-a-filtersil in the field even when
pumps are not available. By using a pneumatic hand pump you can filter your samples directly from the bailer,
saving time while maintaining sample integrity.
Each bailer comes complete with a barbed hose adapter for attaching the hand pump to the top of the bailer,
and a special adapter with a notched thread to be used with a dispos-a-filteril at the bottom. ln order to dis-
place the check ball and establish a smooth flow, an additional large barbed removal device is included for bot-
tom emptying without filtering.
oRDER TODAY (800) 833-7958
APPENDIX B
Use of Soil Gas to Detect DNAPL
a
Innovative Soil Gas
.:, , Thursday September 25, 1997 ,'
r/*vldharqGaiden Hotef Cos( Mesb, Catifornia
THE USE OF SOIL GAS DATA TO OBTATN SOIL VOC CONCENTRATIONS
AND
TO IDENTTFY THE PRESENCE OF NAPL
by
Harold W. Bentley
Hydro Geo Chem, lnc.
6905 E. Ocean Blvd
Long Beach, California 90803
Gary R Walter
Hydro Geo Chem, lnc.
1430 N. 6th Avenue
Tucson Arizona, 85705
THE USE OF SOIL GAS DATA TO OBTATN SOIL VOC CONCENTRATIONS
AND TO IDENTIFY THE PRESENCE OF NAPL
1. Conversion of soil Gas Concentrations to soil concentrations
The concentration of a Voc in soir gas can be converted to its total concentration in the soil
by considering the equiribrium raws goveming the partitioning of the Voc between the gas, liquid,
ano sotid phases. The reasoning and methodology are as follows:
Unless a separate liquid phase of Voc, i.e., a NAPL, is present, the SOil gas concentration
is controlled by the distribution of the Voc between the soil, water and soil organic matter' lf the
moisture content in the soit is greater than 5%, normally the case, the vapor phase contarninant
concentration will be controlled by its gas-water distribution coefficient, the Henry's Law coefficient
(H). The Henry's Law coefficient can be written in its dimensionless form' Hr. The dimensionless
Henry,s Law coefficient relates lhe concentration of a compound in the vapor phase to its
concentration in the aqueous phase
He = Co/C' = l1/RT '- PtS
where H is the Henry's Law coefficient
R is the ideal gas constant
T is degrees Kelvin
P" is the VOC's vapor density (the vapor
as mass/unit volume)'
and S is the water solubilitY
pressure of the pure liquid expressed
Theaqueous.phaseconcentrationwillinturnbecontrolledbythedistributionof
contaminants between water and the solid soil matrix. This distribution is govemed by lG' the
water-solid distribution coefficient. Rarely is the direct distribution of contaminants between the gas
and solids imPortant.
lf the water-solid distribution is controlled by adsorption onto organic carbon, which occurs
above organic carbon concentrations of approximately 0.001 (fraction)' (chiou and shoup' 1985)
the water-solid distribution coefficient is
(1)
c.
K^.jU^vw
Koc ' o/oOC
(2)
100
where Cg
c*
Koc
foc
is the concentration in the solid [mass VOC/mass solidS]
is the concentration in the water[mass VOC/volume water]
is the water'organic carbon distribution coefficient
is the fraction, Ly weight, of organic carbon in the soil
c:\info.doc\sgs-soil.cnv
The total soil VoC concentration (M/L3; is the sum of the mass/unit volume in each of the three,:.
phases:
_Y
C, = CrPa + C*0* + CoFr'lJ
is the concentration in the gas [M/V air]
is the total concentration in the soil [M/V (bulk volume soil)]
is the bulk dry soil density [M/V solid]
is the total PorositY
is the water filled PorositY
The ratio of a VOC's total concentration in the soil gas to its concentration in the soil is given by
subsiituting (1) and (2) in (3) and dividing by bulk density (po) to convert soil concentration units
from mass/volume to mass/mass:
cr KD. u*
c, Ho Hogo
(0r - e,)
where C, is the total concentration in the soil (M/M)
Table 1 presents an example of the results of using (4) to relate soil gas and soil concentrations.
For each of the compounds listed, a soit gas concentration of 100 pg/L was converted to the
equivalent soil VoC concentration in pg/kg. The soil parameters utilized in the calculation were
fo" (fraction) = 0.005; total porosity (fraction) = 0.40; volumetric moisture content (fraction) = 0.2i
and dry soit bulk density (gm/cm3) = 2.00.
(3)
cs
ct
Po
er
and e,
(4)
9b
c:Unfo.doc\sgs-soil.cnv
TABLE 1, CONVERI }ION OF SOIL ;AS TO T()TAL SOIL CONCENTRATION
Soil
Conc.
(vg/Kg)
Hr'
(H/Rr)
Ko.
(mus)
SGas-Soil
Conversion
Factor
Soil Gas
Conc.
(Fg/L)
COMPOUND l(o" (mils)Henry's
Coeff. (H)
1.0 0.55 0.75 100 75
ccl4 110 2.41E'2
0.1 19 0.1 55 2.24 100 224
Chloroform 31 2.87E'3
0.179 0.15 1.50 100 150
1,1 DCA 30 4.31E-3
0.07 10.2 100 1020
1,2 DCA 14 9.78E4 0.0407
1.41 0.325 0.401 100 40.1
1,1 DCE 65 3.40E'2
7.58E'3 0.315 o.245 1.2 100 120
cis 1,2 DCE 49
o.273 0.295 1.55 100 155
trans 1 ,2 DCE 59 6.56E'3
0.707 0.775 1.33 100 134
1,1,1 TCA 155 1.70E'2
0.379 0.63 2.03 100 203
TCE 126 9.10E'3
2.598-2 1.08 1.82 1.88 100 18
PCE 364
8.19E-2 3.41 0.285 0.212 100 21.2
Vinyl Chloride 57
0.415 2.31 100 232
Benzene 83 5.59E'3 0.233
0.267 5.5 19.4 100 1940
Ethyl Benzene 1 100 6.43E'3
1.5 5.86 100 586
Toluene 300 6.37E-3 0.265
0.293 1.2 4.53 100 453
Xylene 240 7.04E'3
* RoYS Griffin, 1989' - 1'1'1 TCA
* Montgomery & Welkom' 1990 - all others'
It can be shown by sensitivity analysis of (4) that for all but the most water-soluble
compounds, the ratio of soil gas to tot"i toir concentration is most sensitive to G' next to H''
and that the other parameters nave retaiiv"i,littf" effect' Thus, for all but the most quantitative
apprications, rhe soii jarameter important in carcurating the conversion of soil gas concentration
to total soil concentration is total oiganic carbon' Reaionable estimates of moisture content'
porosity, and bulk Oensity, the additional soil parameters, will be sufficient for most purposes'
c:\inf o.doc\sgs-soil.cnv
o
.9lr
o
\o
ot-o
o-
Eo
LL
t()o
E
(U
t-
c'6
(9
Ec
(U
U)
N
G)
=.9
LL
CO
Ho
*f
.-.: u)
'LL
{.'r
t,. '
t-iif'
@
o
=.9
LL
tr)
oL-
=.9,
LL
(o
G)t-f,
.9,
LL
l'-
o
.9
LL
ot-:l
.9)
LL
o)
0)t-
=.9,
LL
ot-
=.9
LL
r
0)l-
=.9
LL
2.PredictingthePresenceorruapufromSoilGasConcentrations
Equation4isvalidinmostsoilgasapplications.butcanunderpredictatotal
soir concentration in cases where a separate non-aqueous riquid phase is present. The total
VOC soir concentration i, tnen a function of the Voc concentration in the NAPL and the amount
of NApL in the soit.
"in
such , "..., arthough Equation 4 continues to account for the VOC's
partitioned into soil, water, and soil gas' it does not account for the VOCs dissolved in the
NAPL. Where NAPL is present, thaprediction of voc soil concentrations from soil gas
concentrations is not possible because the vapor pressure of a VOC in the NAPL is a function
;f ;i;;;.;;ntration in'tn" runpr- and the amount of NAPL is generallv unknown'
when a VOC concentration in the NAPL is high, its distribution between the
NAPL and the gas phase can be estimated by Raoult's Law
c (j) - p.x,
c
(s)
where
an"d
liquid) is equal to 1:
p" is the vapor density (pure-compo-und vapor pressure) of the ith VOC
X, is tne mole fraction of the ith VOC
The sum of the mole fractions of compounds making up a NAPL (or any
Dx,' 1.0
il
(6)
(7)
Where n is the number of compounds in the NAPL'
Assuming the NAPL is composed of VOCs, that is, each of the dissolved
compounds has a reasonable vapor pressure, the substitution of (5) into (6) yields
g c'(,) - 1? ps(D
t h e s u m of r h e 0,.,,::l; ;i;, ili |f;3ii): #::': l?.'"Iii'; i ::ryiil li ix
giixffi
vapor pressure ,nortJ "ppro""h
1. However, a lower than the theoretical value of 1'0 for the
summation in (7) shoulO.Ue useO to indicate the presence of a NAPL in unsaturated soils' ln
watersaturated soils, because of attenuation by advective and diffusive Processes, only 1% of
the saturated solubility of a groundwater contaminant is the criterion used to determine the
presence of NAPL in lrounjwater (Feenslra and others, 1991), Soil gas is less likely to be
attenuated by advective processes, and the diffusive transport of a gas borne compound is
much more effective than that of a "orpo,nO
dissolved in water' both processes leading to a
larger zone of o.t.ciion for soil gas sources. Thus a larger criterion than the 't% of the
c:tnfo.doc\sgs-soil.cnv
theoretical value is appropriate. We suggest, based on observations at a number of soil gas
sites, that lOoh of the theoretical value be used to determine that a NAPL as present at a soil
gas sampling location. The appropriate criterion, therefore, is i,:
i\ cs(i) > o1Z-/i.1 Ps (r)
(8) ;
As an example of the use of this criterion, suppose that lhe soil gas data obtained at a point
location are
PCE
TCE
= 2,500 pg/L
= 4,200 ltglL
Cis 1,2-DCE = 10,000 Fg/L
The calculations utilizing Equation I are summarized in Table 2.
TABLE 2. EXAMPLE OF USING SOIL GAS TO DETERMINE NAPL PRESENCE
Soil Gas
,ralyte
Vapor Pressure
(mm)
(@20 "c)
Molecular
Weight (g)
Conversion Factor
lpg/(mm.L'g)l
Vapor
Density p.
(pg/L )
Observed
Concentration
Co (ug/L )
co/Ps
PCE 14 165.8 54.7 127,000 2,500 o.02
TCE 19 131.4 54.7 137,000 4,200 0.03
1,2 cis DCE 180 97 54.7 955,000 10,000 0.01
SUM of Co/!"0.06
According to this calculation, the soil gas concentralions divided by their respective
pure-solvent vapor pressures sum to less than 0,1 . Thus NAPL is not present where this soil gas probe
was located, and the con-centrations of PCE, TCE, and 1,2 cis DCE at this location can be calculated by
the methods summarized in Table 1.
References
Chiou, C.T. and T.D. Shoup, Environ. Sci. Technol. 1985, 19, 1196'
Feenstra, S., D.M. McKay, and J.A.Cherry, 1991. A method for assissing residual NAPL
based on organic concentrations in soil samples
c :\info.doc\sgs_soil.cnv
c{
o
f
.9)IL
:e*t-
o-co+.F 5ra- +-,Oq-
->9.- I-q.o
bEO(U-t-L$-
&o(u0
It
- -yl_
JJ.o -a
,.T_o.X
EC
c,
ol-o-c
=
jO-t- a()) (u;a.-a
J(Uo- cr)
7-C
-.HqE:Er
-cO-
6z=.boq? - J .tA=-a x
L, L :.Isr\-%t- ({.l -- C-OO-^,
38fl
o.gq u*+, attq vI-JAo-oEb-I- l- ,.r
=yY,l_, Ei
9-.e,
agE
'= u),-L1-t- .=
E#s1
ll2rF(E0(9o
Efi
EE
oO'Ool
.rJ S..fi'
F
cf)
o
)
.9)
LLttoutg
E
=
rt
o
=.o)
LL
a
q
!r{
,l
ala\/t\/
-*l %L)lo-
o.9EP 6P
-*. -C OC *,-EE,-
€ 8oP
!i rr=(U0!+ o-c EE o a.98 BEEb ee *r- I O-(u# EEgtr o o:') .--R OE dgEE *E;
OL
- tD'fO = AE EE fr,:o c#' E o)-c '= = o- E
=# =; bE
= o (Jo-trq, a.(I,(I,O
o
I
X
oE;=oo+,q6t=8r
b.aa*vI.-.0=u \ra():=
t-Fr*- t-oG
EOEed
bz
)-l-Fal-l.-AEoo
FO
U)
,9E
.["f,r
"[^] r
LO
c)
.9)lt
g ? 9=E EEET6 a:H 3Efi#BE.e=;=f; flE 3ri.=(uC_
et rsE=
EEEEEE'
E sE $gEs
EfiHgEfi
(o
o)
)
.9)
TL
"h]=
a
!o
ooEs
th
J
o-
z
o
oo
oq
ao-
o
F
a$e c E
-srl o 'E
EBE s: E(J'tu tr E o 6 aG {88f; =E s
>H8 g:'H5 8E;9P38bT
EE *E;gUEguHEsTEgs
;EEEg= ElE
sEAgEte=E
E1EgEiEEE9.E@ o 28 q
=
o
rEifr€ EEEg5 = g, a
= E i -e
EEITE gg;t'05 e E
;EEEEliEetrtEgaeetfi
APPENDIX C
Coordinates Requested bY UDEQ
Approximate Coordinates
Misc. Features ' White Mesa MillSite
Revised using 2001 Topographic Map
( all coordinates aIe approximate )
Jones Well
Jet Pump
Feature EastingNorthing Elevation
water well #1 2580084 323314
Tesl Well 2580945 322d7
Tailinos Cells - Aopproximate Boundaries
CellNo. Ea{89_l,l9Ithin.q
1-l--.- zsrt4en s23190
NE 2579365 32314s
sE 257935s 522078
sw 2576795 322150
A 2576880 322415
2..-- 2st67gs s221fi
NE 2580210 3220/,0
sE 2580210 320745
sw 2576845 321680
3rc2576845 321680
NE 2s80210 320745
sE 2s79593 320100
sw 2s7601s 320825
4A-.-- zsrter,g 320411
NE 2579593 320100
sE 2578860 319021
sw 2577469 319266
2581252 318910
2581250 329460
MW-13 2577590 319547
MW-6-1 2578895 320530
MW-6-2 2578895 320530
MW-7-1 2578125 320886
MW-7-2 2578125 320886
MW-8-1 2577265 32@25
MW-8-2 2577265 320925
D&M 3 2580092322720
D&M I 2581380 327365
GH-94-l 2576459 320549
GH-94-21 2577257 320385
GH-94-3 2577245 320046
GH-94-4 2577365 319598
D & M 12 2578314 326932
D&M282577380 317340
Dimensions (lt. x tt.)
95 100
Area (6q.tl.) 9500
Dimensions (fl. x fl.)
21 56
Aree (sq.tr.) 1176
Dimensions (It. x tt')
100 160
Area (sq.ft.) 16000
Dimensions (lt. x tt.)
75 130
Area (6q.ft.) 9750
Ruin Spring 2574294 310375 5391
Cottonwood Spring 2570024 317880 5238
Westwater Spring 2574166 321692 5493
Former Leach Field (near oflice)
NW 2580274 322228
NE 2W569 322228
sE 2580369 322128
sw 25W274 322128
Olct Leach Field (scale house)
NW 2580765 322279
NE 25ffi786 322279
sE 2580786 322223
sw 2580765 322223
Current Loach Field (east ol Mill yard)
NW 2581224 3225{
NE 2581324 322530
sE 2*1324 322370
sw 2581224 322370
Land Fill
NW 2581040 322915
NE 25811'15 322915
sE 2581115 322785
sw 25810/,0 322785
Sedimentation Pond
NW 2579420 322Us
NE 2579465 322il5
A 2579465 322400
B 2579555 322355
sE 2579555 322175
sw 2579420 322175
Lab Waste Holding Tank
2580085 322408
Abandoned Monitor Wells, Bore Holes, and Angle Holes
Feature Easling Northing Elevation ( all coordinates are approximate )
5570
5588
5588
5588
5588
5590
5590
5634.3
5679.3
5s97
5585
5579
5572
56,48.1
5547.6 11/0912001 9:25 AM
o
APPENDIX D
Analytical Results
b* \ttkal Ttb; (eqi
'
,.Il!
Bllllngt. C..P.r' Glll.tt
Hclcnr. Rrpld CltY
LABORATORY ANALYSIS REPORT
Client: INTERNATIONAL I'IRAML'M (USA) CORPORATION
Project: White Mesa Mill
Contact: WallY Brice
Sample Matrix: Liquid, Water
Date Received: 04-02-01
Report Date: APriI 9,2001
a
ENEFGY LABORATORIES, INC.
SHIPPING:2393 SALT CREEK HIGHWAY ' CASPER' WY 82601
MAILING: P.O. EOX 3258 ' CASPER' WY 82602
E-mail: casper@energylab.com ' FAX: (307) m4'rffig
Fuoue' (3d7) 2ss-051s ' ToLL FREE: (888) 235'051s
Laboratory ID Sample Date / Time Sample ID Nitrate * Nitrite as N'
ms,lL
WMMTW4-11 < 0.100l-31914-l 03-26-2001 14:02
0t-319r4-2 03-26-2001 15:49 WMMTW4-15 < 0.10
r0.00r-31914-3 03-29-2001 11:08 WMMTW4-12
01-319144 03-29-2001 12:38 WMMMW4 8.77
tt4-ll iS 4 ( or gt*I bL,4 ( or g,
$ r.ra' rys+"V;.*.' eoile'iio<
[rrrnrvitt{- t4
NOTES:
(l)Thesevaluesareanassessmentofanalyticalprecision.Theacceptancerangeis0-20%lbrsampleresultsabovel0times
the reporting limit. This range is not applicable to samples rvith results belorv l0 tirrres the reporting linrit'
(2)Thesevaluesareanassessmentofanall,ticalaccuracy.They-areapercentrecoven.ot'thespikeaddition.ELlperlbnns
a matrix spike on l0 percent of all samples fbr each analytical method'
msh: r:\reporrs\clients200l\international-uranium-corp\liquitt\3 l9l4-l-4'xls :-i...:"!
Reporting Limit
Spike2
04-04-2OOl 17:13
Date/Time AnalYzed
GOmPLETE ANALYTIGAL SERVICES .i :
'- 'J
.J t)
A6
;L
=q ti ;l +
lf) ra SE;eY=\
::^- r,a -l
1r oi ni!rtEF \
uskp u.c
=\c
N
a<P-.
Ll ^i(?- ^t>>rS>
d$ *F-!q*
x)rr\
F.ui.e>
\$-F *s''€i?Eu.tZTr-iUvt3:Hu*
5sH<9<\
= ...i\>oiEsfrt - Ia
ES{z_ikl\q
i:*i;;
=3,=n
6)
o
anrt
q)
q)
c)F
6
q)
6z
(J
(u
c,ta6iJ
U)
{Jq)
e0
F
O
U)
I
t)
c)
C)&
C)
a!
o
F
(",zro) oqY,6)
nrltj auufi uououtafi s41osls1toi nnfi tt-y
O n A S ilt y:adilaldwog
stauptuoc {o JaqunN
+
r)
5
t,t'
$*
ledTEo\oxB{.
€ ral
d!A
:)
a)
2
II
-j '\
:\\ .v
=\Li .f\\J;-r N!:i \)
U'
-i\
=
j\
in
:'a --.'\
/=:c-,t\,
d-i
+-J
=di\a-
-
\=
o
I
1)
;
o
o
o
--O
9
0
,
30
>r
O
,J
=h).a o
F
eO
ir
o
3q
=J= .a.T ..lT-2 \H/
5,7G{
=a
=d
=
l=j
I :'
IJ
KEl-
I .-
IJlpt:
O ,n"tgy Laboratories, r"9O
SAi{PLg COIIDITION REPORT
Chi" t"porg provides informagion about Ehe condition of Ehe sample(s)' and assocaEed
sampte Lr"toby information on receipt aE the laboraEory'
Client: InEernationaf Urani,,q (USA) Corporatsion Description: WATER
Lab ID(s): 01-31914-1 Thru 01-31914-4 Matrix: Liquid
Delivered by: upe DaEe&Time Rec'd: 02-APR-01 1OOO DateATime col'd: 25-II!AR-01 1402
Received by: Sara Eawken Logged In by: Sara Hawken
Chain of custody form completed & signed:
Chain of custodY seal:
Chain of custodY seal inEact:
iignature matchl chain of custody vs' seal:
Sample received TemPerature: .
samiles received within holding time:
samites received in proper conEainers:
Samptes ProPerlY Preserved:
Yee CommenEs:
No CommenEs:
N/A Comment,s:
N/A CommenEs:
5C CommenEs:
Yes CommenE,s:
Yes Comments:
Yee Commenus:
Bottle TlPee Recal'ved:
C@elta:
.-ti-l
.1. i? :!n.'iUb llU.
lr:
| ,rr"rgry Laboratories, rnc |)
REPORT PACKAGE SUMMARY FINAL PAGE
ELI-B EnergY Laboratories,
ELI-G EnergY Laboratories,
ELI-H EnergY LaboraEories,
ELI-R EnergY LaboraEories,
Acronyns and Definitions
Inc. - Bil1ings, Mont.ana
Inc. - Gil1eEte, WYoming
Inc. - Helena, Montana
Inc. - Rapid CiEY,SouEh Dakota
sample
staEed Limit. of DetecEion
co - CarrY over from Previous
ip - InsufficienE Parameters
N/A - Not Applicable
NA - NoE Ana1Yzed
ND - AnalYEe NoE DeEected aE
NR - Analyt,e Not Requested
NST - No SamPle Time Given
NSD - No SamPle Dat,e Given
client ID: WMMMW4 is associated Eo Lab rD: 01-31914-4
client. ID: WMMrW-11 is associaEed to Lab ID: 01-31914-1
Client ID: WMMM. 12 is associaEed Eo I,ab ID: 01.31914.3
client ID: WMMr$I-15 is associaE,ed Eo Lab ID: 01-31914-2
This is the lasE page of the Laboratory
Additional QC is available upon request '
The report conEains the -number of pages
Reviewed BY:
Analysis Report. :i.r,l.{ii.ri ili,.
indicated by the last 4 dtgpes.' :'-\ .n,.')':.-' ,.;l-i '
'-_,'- j'::-.'
i 1 n? i.in. ,', gL I arJ.
: I i ,.:
T*Vor fs^tr.'\ *t1t AAJ
,
Bllllngt. C..P.t' Gll1.n.
H.l.nr. Rtpld CltY
ENERGY LABORATORIES, INC.
SHIPPING:2393 SALT CREEK HIGHWAY ' CASPER, WY 82601
MAILING: P.O. EOX 3258 ' CASPER' WY 82602
E-rnail: casper@energylab'com ' FAX: (307) 234'1539
PHONE: (307) 235-0515 ' TOLL FREE: (888) 235'051s
LABORATORY ANALYSIS REPORT
Client: INTERNATIONAL URANIIIM (USA) CORPORATION
Project: White Mesa lVlill
Contact: WallY Brice
Sample Matrix: Liquid, Water
Date Received: 04-02-01
Report Date: APril9, 2001
Laboratory ID Sample Date / Time Sample ID Nitrate * Nitrite as N,
melL
01-3 1913-l 03-29-200109:32 WMMTW4-1 7.15
0L-3t913-2 03-29-200111:08 wMMTW4-2 r0.2
0t-31913-3 03-28-2001 17'35 wMMTW4-3 r.85
0t-319134 03-27-200109:02 WMMTW44 t4.5
01-31913-5 03-28-2001 l1:04 wMMTW4-5 3.88
0r-31913-6 03-26-2N1 16:20 wMMTW4-6 0.13
0t-31913-7 03-27-2@1 14:56 wMMTW4-7 2.46
01-3r913-8 03-27-2001 16:54 wMMTW4-8 < 0.10
01-31913-9 03-27-2001 11:20 wMMTW4-9 < 0.10
01-31913-10 03-26-2001 14:01 WMMTW4-10 < 0.10
furunTut1-t0 i-s P Bto---k-futSrr.wr
NOTES:
(l) Thesevaluesareanassessmentofanalylical precision. Theacceptanceran*seis0-20%tbrsarnpleresultsabovel0times
the reporting limit. This range is not applicable to samples with results below l0 times the reporting limit'
(2) These values are an assessment ofanalytical accuracy. They are a percent recovery ofthe spike addition' ELI pertbrms
amatrixspikeont0percentofallsamplesfbreachana|yticalmethod.
mslr: r:\reports\clients200l\international-uranium-corp\liquid\31913-l-10'xls . i- "
Quality Assurance Data
RPDI
0444-2001 15:30
Date/Time Analyzed
GOMPLETE ANALYTTGAL SERVICE$ :
,
o.J- \
U) --
\ "z^.
'{J
S:A'a' r-. 'c:=\r. ,;. +rlIlR
= r.. F.
p u-g*.-= \
\o
Noo(R-.
lA c,iE?- (\t\
=e=Ood fi\Pt) *B.€ir.\Ja o2B
\$1F *s'vr\€-.$!aE
t-j.tZP\U
uiSEHsa
E^TH
<.oQr.
= ...8
i siri*L)
EStz,il.t \q
xi;-
E ".='1
t)
()
(u
q
q)
o
(,)
F
nqtj aut$f uouotatafi rp11os1s1toJ ntfi trp-On A g 16 Y:ad,galdtttog
steuqo1uoc lo fiqunN
''r$/s-t
+
stfi
avsrs
3
o
itn
T{Tiai
\:.
rt ,-
t\
=J!,,1 raiz
a
2
!
!
' :-l
U u '1-)='a-\
-
.r)
o
!
(\l
,- -t!)\
I
1)
+
J
30
9
1'It)
:J
:0
I
IU
eo-8 7)
go,I--
o
t-
a)
"O
o
a/)
?
"e3
4
tpt:l=
l-lal'z
t-..t>
t-
l!
1.14t=| .-
Ial-,
It.
a Energy r,.boratories, rng O
SAMPLS COIIDITION REPORT
This reporU provides informat.ion about t'he condition of Ehe sample (s) ' and assocaEed
"".pf".r=coayinformationonreceiptaEEhelaboraEory'
Clienu: Inter:latioaal Uranir:m (USA) Corporation DescripEion: WATER
tab ID(s): 01-31913-1 Thru 01-31913-10 Mat'rix: Liquid
Delivered by: uPs Date&Time Rec'd: 02-APR-01 1OOO DaEe&Time coI'd: 29-,iAR-0L 0932
Received by: Saia ttawten Logged In by: Sara Hawken
Chain of custody form compleEed & signed: Yes Comments:
irrii" of custodY sear ' No comments:
it"i" ot cust,odj, sear inEact: N/A comments:
iig"ic"r. match; chain of cusEody vs' seal: N/A commenLs:
ffi;i; received TemperaEure: . 5c commentrs :
i"rnir"" received wiitrin holding Eime: Yes comments:
i"*if." received in proper conLainers: Yes commenEs:
;;;i;= Properly preierved: Yes comments:
BottLe tYPea Received:
Cmeata:
,_. f i I tl
O ,rr"tgY Laboratories, rnc O
REPORT PACKAGE SUMIT{ARY FINAL PAGE
Acronyns and Definitions
ELI-B Energy Laboratories, Inc' - Billings' Montana
sir-c enerly LaboraLories, Inc' - GilleEte' Wyoming
gl,f-H energy Laboratories, Inc' - He1ena' Montana
SLf-n energy Laboratories, Inc' - Rapid CiEy'South DakoEa
co - Carry over from previous sample
ip - Insufficient Parameuers
N/A - Not. APPlicable
NA - NoE AnalYzed
ND-ArralyteNotDeuecEedat,StaLedLimiEofDet,ecLion
NR - l\nalyte Notr RequesEed
NST - No SamPIe Time Given
NSD - No SamPle Date Given
Client ID: WMMTW4-1
Client ID: glMMfW4-10
Client, ID: WMlt[IW4-2
ClienU ID: WMMM4-3
Client ID: !{MMfi{4-4
Client ID: WMM!W4-5
Client ID: WMMIW4-5
Client. ID: VlMldTW4-7
C1ient ID: WMlr!TW4-8
Client ID: WMIITW4-9
is associated to Lab ID: 01-319L3-1
is associaEed to Lab ID: 01-31913-10
is associat,ed E,o Lab rD: 01-31913-2
is associated Eo Lab ID: 01-31913-3
is associated Eo Lab rD: o1-31913-4
is associaEed Eo Lab rD: o1-31913-5
is associated to Lab rD: 01-31913-5
is associaEed Eo Lab ID: 01-31913-7
is associaEed Eo l,ab ID: 01-31913-8
is associaEed Eo Lab ID: 01-31913-9
Reviewed BY:Approved By:
This is the 1ast, page of t,he Laboratory
AddiEional QC is available upon requesE '
The reporE conLains the.number of pages
T-'^ Atlf r: r "^ ?inF ljnitt.ivil'.'' .'"'
lasE 4.t'ng5rs.,l ! .ir i-. i: ll f,) '. . , w'.. U - .' ;'-
-<--.--.- ]:
Analysis RePort..
indicated bY the
0l-31913-1 03-29-2001 09:32 wMMTW4-l 7.15
ot-31913-2 03-29-2Wl 11:08 wMMTW4-2 to.2
01-31913-3 03-28-2001 17:35 WMMTTV4-3 1.85
01-319134 03-27-200109:02 WMMTW44 14.5
01-31913-5 03-28-2001 ll:M wMMTW4-5 3.88
01-31913-6 03-26-2001 16:20 wMMTW4-6 0.13
0t-31913-7 03-27-200l 14:56 wMMTW4-7 2.46
01-31913-8 03-27-2001 16:54 wMMTV/4-8 < 0.10
01-319r3-9 03-27-2001 ll:20 wMMTW4-9 < 0.10
01-31913-10 03-26-2001 14:01 WMMTW4-10 < 0.10
Quality Assurance Data
Method EPA 353.2
Reporting Limit 0. r0
RPD'0.8
Snike2 94
Analyst rwk
Date/Time AnalYzed 04{4-2001 15:30
NOTES:
(l) These values are an assessment ofanalytical precision. The acceptance range is0-20o/o for sample results above l0 times
the reporting limit. This range is not applicable to samples with results below l0 times the reporting limit.
(2) These values are an assessment ofanalytical accuracy. They are a percent recovery ofthe spike addition. ELI performs
a matrix spike on l0 percent of all samples for each analytical method.
rnsh: r:\reports\clients200l\international_uranium-corp\liquid\31913-l-l0.xls
01-31914-L 03-26-2001 l4:O2 WMMTW4-11 < 0.10
0t-31914-2 03-26-2001 1.5:49 WMMT$/4-15 < 0.10
0t-31914-3 03-29-2001 11:08 WMMTW4-12 10.0
o1-319144 03-29-2Nl 12:38 WMMMW4 8.77
Quality Assurance Data
Reporting Limit
RPD'
Spike2
0/.44-200l 17:13Date/Time AnalYzed
NOTES:
( I ) These values are an assessment of analytical precision. The acceptance range is 0-20% for sample results above I 0 times
the reporting limit. This range is nor applicable to samples with resutts below l0 times the reporting limit'
(2) These values are an assessment of analytical accuracy. They are a percent recovery of the spike addition. ELI performs
a matrix spike on l0 percent of all samples for each analytical method.
msh: r:\reports\clients200l \international_uranium-corp\liquid\3 I 914-1-4.xls
Volatile Organic ComPounds
Client:
Project:
Sample ID:
Laboratory ID:
Matrix:
Dilution Factor:
International Uranium (USA) Corporation
WHITE MESA MILL
WMMTW4-l
01-31916-l
Liquid - WATER
2N
Date Sampled:
Time Sampled:
Date/Time Received:
Date Analyzed:
Date Reported:
03-29{1
09:50
04{241 10:00
04-0441
April 12, 2001
ND - Analytc not detcctcd ot stotcd linil oI detcction
:,: .:,::::::.:::::,:,...:l
:r:::]::,:: ::::'j::::::::,:I
NI T'RNAT STANDARNS
Pentafluorobenzcne
Fluorobenzene
1,4 - Difluorobenzene
Chlorobenzene - d5
1,4 - Dichlorobenzene - d4
ICAL / CCAL
ARITA
I 150521
2388861
t?75533
1163446
458781
ACCEPTANCE
RANGE
50 -zffi %
50 -zffi %
50 -2W %
50 -20o %
50 -20o %
ACCEPTAI\CE
RANGN
86- ll8 7o
88-110%
86 - ll5 Vo
80 - l2Q Vo
AREA
t16ffi70
2433ils
t769122
l 189063
4737M
CONCT'NTRATION
9.45
10.3
9.91
9.90
PERCENT
RECOVF'R\I
lOlVo
l02Vo
99.67o
lO2Vo
lO3Vo
PERCE}TT
Rncovtr'Rv
94.SVo
lO37o
99.lVo
99.0%
Dibromofluoromethane
Toluene - d8
4 - Bromofluorobenzene
1,2 - Dichlorobenzene - d4
MF'THONS USFN IN TIIIS ANAI YSTS:
EPA 5o3oB, EPA E2608
scc: r:\reporu\clicrrts2fl)l\in.gm.domluranium-corp\caspcr-org\319161.19-E26(h-chloroform-l.w.rls
Analyst:rlo
Volatile Organic ComPounds
Client:
Project:
Sample ID:
laboratory ID:
Matrix:
Dilution Factor:
International Uranium (USA) Corporation
WHITE MESA MILL
wMMTW4-2
0l-31916-2
Liquid - WATER
2N
Date Sampled:
Time Sampled:
Date/Time Received:
Date Analyzed:
Date Reported:
03-2941
I l:12
0442{l 10:00
044441
April 14,2001
ND - Analyte not iletccteil at stated limit of detcction
::ijri:;:::r::
rNTT'RNIT STANTTARIiS
Pentafluorobenzene
Fluorobenzene
1,4 - Difluorobenzene
Chlorobenzene - d5
1,4 - Dichlorobenzene - d4
ICAL / CCAL
ART'A
I 150521
2388861
r775533
lt63M6
458787
PERCENT
BF.COVTRY
tN%
lolVo
98.7%
lolTo
t03%
PERCEI.IT
RNCO\rER\l
93.6%
t03%
99.3Vo
98.8%
ACCEPTAI{CE
R.^NGE
fi-2W%
so -20o %
50 -200 7o
50 -?N %
s0 -zffi %
ACCEPTANCE
RANGE
86-ll8%
88-110%
86-tts%
80-r20%
ARRA
1t54034
2407856
17529ffi
I 171985
471262
Dibromofluoromethane
Toluene - d8
4 - Bromofluorobenzene
1,2 - Dichlorobewere'd4
CONCF'NTRATION
9.36
10.3
9.93
9.88
MT'T'HODS USFN IN THIS ANAI YSTS:
EPA 5BOB, EPA E26OB
scc: r:\rc?ortsklicrrrofi)t\intcr,ladonel uBnium-corpbaspcr-org\3l9lGl.l9-E26(b-chloroform-l-w.xls Amlyst:rlo
Volatile Organic ComPounds
Client:
Project:
Sample ID:
I-aboratory ID:
Matrix:
Dilution Factor:
Internationat Uranium (USA) Corporation
WHITE MESA MILL
wMMTW4-3
0l-31916-3
Liquid - WATER
100
Date SamPled: 03-2841
Time SamPled: L7:56
DateiTime Received: Oa424l 10:00
Date AnalYzed: 04{441
Date Reported: APril 14,2001
Ef,-lorof orm(f richloromethane)
ND - Analytc not detected at sntcd limil of detcctbn
ACCEPTAN-CE
ABEA
l 158619
240/i030
t745382
117590/.
4'12736
101%
rot%
101%
to3%
PBRCEI{T
RNCOVT'RY
94.8Vo
ro3%
lOlVo
98.5%
RANGT'.
50'2OO Vo
so -2@ %
50 -2@ %
50 -20o %
50 -ZCo Vo
ACCEPTANCE
RANGN
E6-ll8%
88-ll0%
86-115%
80-120%
II\TF'RNAI STANTTARDS
Pentafluorobenzene
Fluorobenzene
1,4 - Difluoroberzene
Chlorobenzene - d5
1,4 - Dichlorobevr'ne' M
ARtr'A Rr..CO\rF'RY
SYSTF'M MOMTORING COMPOINTIS
Dibromofluoromethane
Toluene - d8
4 - Bromofluorobenzene
1,2 - Dichlorobenznte - d4
l 150521
2388861
n63446
4s8787
CONCTT.ITRAflON
9.48
10.3
l0.l
9.85
1775533 98.37o
EPA 50308, EPA E260B
scc:r:\rcponsklicils2oot\i'Icrnatioml-uranium-corp\casper-org\31916t.19-E260b-chloroform-l-w.rls
Analyst:
Votatile Organic ComPounds
Client:
Project:
Sample ID:
LaboratorY ID:
Matrix:
Dilution Factor:
International Uranium ruSA) Corporation
WHITE MESA MILL
WMMTW44
0l-3191fl
Liquid - WATER
2W
Date Sampled:
Time Sampled:
Date/Time Received:
Date Analyzed:
Date Reported:
03-27-Ol
' 09:00
04{2{1 10:00
,044ffi1
April 14,2001
ND - Analytc not detecteil al stated limit of ilctcctbn
rT{Ttr'RNAI STANTIARDS
Penufluorobenzene
Fluorobenzene
1,4 - Difluorobenzeue
Chlorobenzene - d5
1,4 - Dichlorobenzene - d4
ABEA
980162
2227683
t5722tO
t044'.188
410680
lcAL lccAL
AREA
r 150521
2388861
1775533
tt634r',6
458787
PERCEI{T
RECO\rF'RY
8s2%
93.3Vo
88.5%
89.87o
89.SVo
PERCET$T
RrcovnRv
98.3%
t06%
106Vo
99.ZVo
ACCEPT
BANGE
s0 -20o %
50 -20o %
50 -?fr %
fi -2A0 Vo
50 -2W %
ACCEPTAI{CE
RANGE'
86-ttB%
88-ilo%
86-rts%
8o-l20Vo
Dibromofluoromethane
Toluene - d8
4 - Bromofluorobenzene
1,2 - Dichlorobenzene - d4
CONCENTRATfON
9.83
10.6
10.6
9.n
EPA 5O3OB, EP'A 8260B
scc: r:\rcports\clians2(Dt\incrmdonr|-unnium-corp\caspcr-org\319t61.t9-D6ft-ch]oroform-]-w.rls
Analyst:rlo
Volatile Organic Compounds
Client:
Project:
Sample ID:
Laboratory ID:
Matrix:
Dilution Factor:
International Uranium (USA) Corporation
WHITE MESA MILL
wMMTW4-5
0t-31916-5
Liguid - WATER
l0
Date Sampled:
Time Sampled:
Date/Time Received:
Date Analyzed:
Date Reported:
03-28{l
ll:22
0442{1 10:00
ot-04{r
April 14,2001
ND - Analyte not detectcd at sroted limit of dctcctbn
TT{TF'RNAI STANTTAITD.S
Pentafluoroberzene
FluorobenzPne
1,4 - Difluorobenzene
Chlorobenzene - d5
1,4 - Dichlorobenzene - d4
ARFA RECOVERY RANGE
5O - 2O0 Vo
50 -20o %
s0-2@%
so -200 %
50 -20o %
ACCEPTANCE
RANGIT
86-118%
88-ll0%
86-tts%
EO - l2O Vo
sYsTF.M MOMTORTNG COMPOUNTIS
Dibromofluoromethane
Toluene - d8
4 - Bromofluorobenzene
1,2 - Dichlorobenzene - d4
l r50521
2388861
t775533
1t63446
458787
CONCT'NTRATION
9.46
10.4
r0.1
9.76
AREA
1t07374
2345208
1698810
I 159686
466834
96.2%
98.2%
95.7%
99.77o
102%
PERCENT
RECO\rF'RY
94.6%
1447o
lOlVo
9'.t.6Vo
MF'THOTIS IISF'II IN TIIIS ANAI YSIS:
EPA 5O3OB, EPA E26OB
scc: r:\rcporsklicrngo0l\inarnrdoml-unnium-corp\caspcr-org\3I9161.19-8ll60b-chloroform-l-w.rls Amlyst:rlo
Volatile Organic ComPounds
Client:
Project:
Sample ID:
Laboratory ID:
Matrix:.
Dilution Factor:
International Uranium ruSA) Corporation
WHITE MESA MILL
wMMTW4-6
01-319166
Liquid - WATER
2
Date Sampled:
Time Sampled:
Date/Time Received:
Date Analyzed:
Date Reported:
03-26{1
l6:30
O44241 10:00
04{4{l
April 14,2001
ffi r-oform(Trichloromethane)
ND - Anolytc not detccted al statcd limit ol detcctbn
nITFRNAI STANDARDS
Pentafluorobenzene
Fluorobenzene
1,4 - Difluorobenzene
Chlorobenzene - d5
1,4 - Dichlorobenzene - d4
Dibromofluoromethane
Toluene - d8
4 - Bromofluorobenzene
1,2 - Dichlorobenzene - d4
ICAL / CCAL
AREA
I 150521
2388861
1775533
1163M6
458787
CONCtr'NTRAflON
9.58
10.4
r0.0
9.U
nE, :Iii:ii:ii:iii.ii
PERCENT
RNCOVF'RY
98.7%
9 jlVo
96.ZVo
99.6%
l02Vo
PERCENT
RFCO\IERY
95.8%
lO47o
lAOTo
98.470
IIJiEEIT
ACCEPTANCE
RANGE
50 -200 Vo
s0 -zffi %
50 -N Vo
50 -2OO 7o
50 -?-00 70
ACCEPTANCE
RANGF
86-ttB%
88 - ll0 7o
86 - ll5 Vo
w-t20%
ABEA
1t35759
23821n
1708345
I 159355
467805
EPA 50308, EPA 12608
scc:r:\rcpors\clicnts200l\iilct'r'lio|raluranium-corp\caspcr-org\3l9tGt't9-E26r6-cfrloroform-l'w'xls
Analyst:rlo
Volatile Organic Compounds
Client:
Project:
Sample ID:
Laboratory ID:
Matrix:
Dilution Factor:
International Uranium (USA) Corporation
WHITE MESA MILL
wMMTW4-7
0l-3t9tG'.t
Liquid - WATER
r00
Date Sampled:
Time Sampled:
Date/Time Received:
Date Analyzed:
Date Reported:
96.lVo
97.3%
945%
97.7%
03-2841
l5:09
O4{2{1 10:00
04-0441
April 14,2001
ND - Analyte nol dctcctcd at statcd limit oJ dclection
PERCENT@
T{TF'RNAI STAT{NAITDS
Pentafluoroberuzr;trc
Fluorobenzene
1,4 ' Difluorobenzene
Chlorobenzene - d5
1,4 - Dichlorobenzene - d4
ARRA
l r05485
2323615
t678345
r 136308
448761
RANGN
5O -20o Vo
50-2@%
50 -200 7o
so -2fr %
50 -2ffi %
ACCEPTANCE
RANGR
86-ll8%
88-u0%
86 - ll5 Vo
80 - 120 Vo
ARRA RF'COVF'RY
SVSTT'M MOT{ITORING COMPOUNNS
Dibromofluoromethane
Toluene - d8
4 - Bromofluorobeozcne
1,2 - Dichlorobenzene - d4
l 150521
2388861
t775533
tt634/,6
CONCENTRAT'ION
9.38
10.5
10.0
9.83
458787 ' 97.870
PERCENT
RF'COVERY
93.8%
105%
tN%
98.37o
MF'TTIOTIS IISF'N IN TTIIS ANAI.VSIS:
EPA 50308, EPA E2608
scc: r:\rcporsklienrs2fl)l\iucrnadonrluranium-corp\caspcr-org\3l9l6l'19-&26(b-chloroform-l'w'xls Analyst:rlo
Votatile Organic ComPounds
Client:
Project:
Sample ID:
Laboratory [D:
Matrix:
Dilurion Factor:
International Uranium (USA) Corporation
WHITE MESA MILL
wMMTW4-8
0l-31916-8
Liquid - WATER
r0
Date Sampled:
Time Sampled:
Date/Time Received:
Date Analyzed:
Date Reported:
03-2601
17:00
044241 10:00
04-04{l
April 14,2001
ffi
67s-3
::. 1.: ::,:
::::]::::::::
Chloroform (Trichloromethane)
ND - Analyte not detcctcd at statcd limil of debctbn
rNTF'RNAI STANTIARTIS
Pentafluorobenzene
Fluorobenzene
1,4 - Difluorobenzene
Chlorobenzene - d5
1,4 - Dichlorobenzene - d4
,:,1:;;.:;,.,::::,,71trgilV7fi1-fj.
ARf,'.A
1090084
23097fi
1ffi765
r l 19681
44236'l
ICAL ICCAL
ABEA
I 150521
2388861
1775533
11634/,6
458'187
PERCENT
RNCOVERY
94.77o
96;t Vo
93.87o
96.27o
96.4%
PERCEtr{T
RNCO\rF'RY
95:1Vo
tu%
lOlVo
99.47o
ACCEPTANCE
RANGE
50-20o%
so -200 %
50 -20o Vo
s0 -2@ %
50'200 Vo
ACCEPTANCE
RANGF
86-il8%
88-110%
86-tts%
80-r20%
Dibromofluoromethane
Toluene - d8
4 - Bromofluorobenzcne
1,2 - Dichlorobenzene - d4
CONCENTRATION
9.5't
10.4
l0.l
9.94
MFTHODS usr'n IN TIIIS ANAI VSIS:
EPA 50008, EPA 82608
scc:':\rcporBklicnts2(Dl\inrermtiorl-uranium-corpbasper-org\3l9l6l-t9-&16(b-chloroform-l.w.xls
An lyst:rlo
Volatile Organic ComPounds
International Uranium (USA) Corporation
WHITE MESA MILL
wMMTW4-9
01-31916-9
Liquid - WATER
2
Client:
Project:
Sample ID:
Laboratory ID:
Mauix:
Dilution Factor:
Date Sampled:
Time SamPled:
Date/Time Received:
Date Analyzed:
Date Reported:
' 03-n4r
I l:35
M42{l 10:00
0445{1
April 14,2001
::a:L.- :.Yr-i= :: i..:i:T::-= .,i:rr:.'.. 1i:." ":' :: i 11i:1}': :
dlorofo"m (Itichloromethane)
ND - Analytc not derccteil at stucd limit ol detcction
l;jiii,l:1,.,.ii,ii:ii :;:i:ii; ;,i:,;:':::l:,i
rNT'F'RNAI STANDARNS
Pentafluorobenzene
Fluorobenzene
1,4 - Difluorobenzene
Chlorobenzene - d5
1,4 - Dichlorobeirzene - d4
Dibromofluoromethane
Toluene - d8
4 - Bromofluorobenzene
1,2 - Dichlorobenzete - d4
ICAL / CCAL
AREA
I 150521
2388861
t7'15533
116346
45878',7
CONCT'NTRATION
9.50
10.5
10.1
9.80
PERCEi.IT
RPCOVF'RY
92.8%
96.5Vo
93.47o
95.9Vo
VI'.5Vo
PERCENT
RECOVF'RI.
95.O%
105%
tol%
98.07o
ACCEPTANCE
RANGtr'.
fi -2OO Vo
so -20n %
fi -Zffi Vo
50 -2W %
so -20o %
ACCEPTANCE
RANGN
86- ll8 %
88-110%
t6-rr5%
w-t20%
ARF'A
1067998
2306313
t658294
l r 15898
44',tO9l
EPA 5o3oB, EPA E260B
scc:r:\rcporrsblianrs2ol\inrcrnadonal_unnium_corp\caspcr_org\3r9r6r-r9_&160b-chroroform-l-w-rls
Amlyst:rlo
Volatile Organic ComPounds
Client:
Project:
Sample ID:
L,aboratory ID:
Matrix:
Dilution Factor:
International Uranium (USA) Corporation
WHITE MESA MILL
wMMrw4-lo q A
0l-31916-10
Liquid - WATER
2
Date Sampled:
Time Sampled:
Date/Time Received:
Date Analyzed:
Date Reported:
03-23-01
12:45
04{2O1 10:00
0445-01
April 14,2001
ND - Anatyte nol detected at slatcd limit of dctcction
Chloroform (Trichloromethane)
T{TT'RNAI STANT}ARNS AREA
Pentafluorobenzeirc 1081645
Fluorobenzene 228U51
1,4 - Difluorobenzene 1630418
Chlorobenzene - d5 1103332
1,4 - Dichlorobenzene - d4 437'154
SYSTEM MONrTORn\IG COMPOIINNS
Dibromofluoromethane
Toluene - d8
4 - Bromofluorobenzene
1,2 - Dichlorobenzene - d4
ARIIA RNCOVERY
I 150521
2388861
t775533
1t63446
458787
CONCF'NTRATION
9.5s
10.6
lo.2
9.91
94.0%
95.s%
91.87o
94.8%
95.4%
PERCENT
Rtr'COVF'RV
9s.5%
lMTo
l027o
99.1%
RANGE
s0 -20o %
50 -20o %
50-?fo%
50 -2OO 7o
50 -2fi 7o
ACCEPTANCE
RANGN
86-ttB%
88-u0%
86-tt'%
80-120%
MF'THODS UST'II IN TIIIS ANAI YSIS:
EPA 5O3OB, EPA 82608
scc: r:\rc?ora\clicnts2OOl\iucrnedonal unnium-corp\caspcr-org\3l9l6l-19-til6(h-chloroform-l.w.rls Amlyst:rlo
r ABORATORV ANALYSIS REPORT, T'PA T\MTHON 8260
Volatile Organic ComPounds
Client:
Project:
Sample ID:
I-aboratory ID:
Matrix:
Dilution Factor:
International Uranium (USA) Corporation
WHITE MESA MILL
wMMrw4-ll a4
01-3191611
Liquid - WATER
2
Date Sampled:
Time Sampled:
Date/Time Received:
Date Analyzed:
Date Reported:
03-2341
12:47
0442{1 10:00
04{541
April 14,2001
ND - Analyte not detected dt storcd limil of delection
. : .::: i::: r:::1::
INTT'RNAI S-TANDARDS
Pentafluorobenzene
Fluorobenzcne
1,4 - Difluorobenzene
Chlorobenzene - d5
1,4 - Dichlorobenzene - d4
ICAL ICCAL
ARNA
1150521
238886r
t'175533
tt63u6
458787
PERCENT
RRCOVERY
94.5%
96.87o
93.6Vo
93.9Vo
93.lVo
PERCEI.IT
RNCO\rERY
95.3%
tM%
r02%
99.17o
ACCEPTAIYCE
RANGN
fi-2@%
50 -20o Vo
50-2W%
fi -200 Vo
50 -2@ %
ACCEPTAI{CE
RANGIT
86-ttB%
88-ll0%
86-trs%
w-t20%
ARRA
1087398
23tzt6l
1661249
1093054
427271
SYSTT,'M MONITORING COMPOIINDS
Dibromofluoromethane
Toluene - d8
4 - Bromofluorobenzene
1,2 - Dichlorobenzene - d4
CONCT'N"I'RATION
9.53
10.4
to.2
9.91
Mtr'TTIOTIS USf,'II T{ TTIIS ANAI YSIS:
EPA 5o3oB, EPA EZ608
scc: r:\rcporsklicnts2d)t\intcrmrionrliranium-corp\cesper-org\3l9l6l-19-6260b-chloroform-l'w'xls Analyst:
Volatile Organic ComPounds
Client:
Project:
Sample ID:
Laboratory ID:
Matrix:
Dilution Factor:
Internationat Uranium (USA) Corporation
WHITE MESA MILL
wMMTw4-12 Dqp. oF Tlal 4- 2-
0t-319t6-12
Liquid - WATER
2W
Date Sampled:
Time Sampled:
Date/Time Received:
Date Analyzed:
Date Reported:
03-2941
ll:24
044241 10:00
04{641
April 14,2001
'''.:j :
i:r:
ND - Anatyte not dctectcd at stated limil of dctectbn
::.1.:: :::.:1.r:::.::::: ....:',. ":. ... .
ICAL/CCAL PERCEI.IT @
ii:iii::ii::::::iti;i:i,i[
Ctrlorofornr (Trichlorom ethane)
TNTERNAI.STANTIARNS ARNA
Pentafluoroberzene 954374
Fluorobenzene 2199976
1,4 - Difluoroberzene 1545815
Chlorobenzene - d5 1054565
1,4 - Dichlorobenzene - d4 411'116
Dibromofluoromelhane
Toluene - d8
4 - Bromofluorobenzene
1,2 - Dichlorobenzene - d4
4,410
ARNA RECOVT'RY
I 150521 83.0%
2388861 92.lVo
t'175533
t163446
458787
CONCFNTRATION
10.0
10.8
10.4
9.83
87.17o
90.6%
89.7%
PERCENT
RECOVFRV
TNVo
lO87o
lMTo
98.3%
RANGF'-
fi -2Co Vo
50 -2OO Vo
50 -ZCo Vo
50 -zfi %
50 -20o %
ACCEPTANCE
RANGF
86 - ll8 7o
88-u0%
86 - ll5 Vo
80 - 120 Vo
EPA 50308, EPA E2608
scc: r:\rcports\clicntg0ot\inernetional uranium-corp\caspcl-org\319161.t9-E26&-chloroform-l-w.rls Analyst:rlo
-\
Client:
Project:
Sample ID:
LaboratorY ID:
Matrix:
Dilution Factor:
International Uranium (USA) Corporation
WHITE MESA MILL
wMMTw4-13 (Lnial|, 9n or 1o
01-31916-13 7wr1'nfi a-n<)
Liouid - wArER SaHP 'HX P oC v'ze.lG'
z ('f-ott r*a^%?
1*
Date Sampled:
Time Sampled:
Date/Time Received:
Date Analyzed:
Date Reported:
03-23{1
14224
0442{1 10:00
04-0541
April 14,2001
Volatile Organic ComPounds
ND - Anatyte not ilctccted at stated limit of iletection
INTT'RNAI.STANDARNS ARF'.A
Pentafluorobenzene 1056010
Fluorobenzene 2291350
1,4 - Difluorobenzene 1639990
Chlorobenzene - d5 1102979
1,4 - Dichlorobenzene - d4 429163
Dibromofluoromethane
Toluene - d8
4 - Bromofluorobenzene
1,2 - Dichlorobenzene - d4
CONCNI{TRATION
9.s6
10.5
r0.1
9.85
PERCEhIT
RECOVERY
91.8Vo
95.9Vo
{2.470
94.8%
935%
PERCEI{T
RF'.COVERY
95.6Vo
l05Vo
lOlVo
98.5Vo
ANCE
RANGN
5O -2.0O Vo
fi-20o%
50 -20o %
50 -20o %
50-zfo%
ACCEPTANCE
RANGT'
86-118%
E8-110%
86-trs%
w-r20%
ICAL / CCAL
ARIIA
l 150521
2388861
1775533
1163446
458787
EPA 50308, EPA E260B
scc: r:\rcporsklicrils2oot\inrcnutiorBl unnium-corp\caspcr-org\3t9l6l-t9-E260b-chloroform-l'w'xls Analyst:rlo
Volatile Organic Compounds
Client:
Project:
Sample ID:
I-aboratorY ID:
Mauix:
Dilution Factor:
International Uranium (USA) Corporation
WHITE MESA MILL
WMMTW4-14 A n*I*, P+12 (^ 1o
ol-3tet6-14 D- l+
Liquid - WATER
2
Date Sampled:
Time Sampled:
Date/Time Received:
. Date Analyzed:
Date Reported:
03-25{l
12:33
04{2{1 10:00
0445-01
April 14,2001
Chloroform (Trichloromethane)
ND - Analytc not detcctad at stated limil of dctcction
TNTTRNAI STANTIARNS ART'.A
pentafluorobenzene 1053851
Fluorobenzene 2258371
1,4 - Difluorobenzene 1603542
Chlorobenzene - d5 1090824
1,4 - Dichlorobenzene - d4 4264;03
Dibromofluoromethane
Toluene - d8
4 - Bromofluorobenzene
1,2 - Dichlorobenzene - d4
CONCH\TTRAflON
9.62
10.6
10.1
9.78
ICAL / CCAL
. ARBA
1 150521
2388861
1775533
1t63446
45878t
PERCEI{T
Rr.COVFRY
9t.6%
94.5%
il).3Vo
93.8%
92.9%
PERCEi.IT
RncovFRv
96.2%
t06%
tor%
97.8%
ACCEPTANCE
ITANGIT
50-m%
50-20o%
50-2W%
50 -2W %
50 -2@ %
ACCEPTAIYCE
RANGT'
86-ttB%
88-110%
86-tts%
80 - t?0 vo
ME'THODS USFD IN TIIIS ANAI YSIS:
EPA 50308, EPA t2608
scc: r:\rcpora\clicnrofl)l\idernadorElutanium-corpbaspcr-org\3t916l-t9-&16$-cfiloroform-l-w'xls
Amlyst:rlo
Volatile Organic ComPounds
Client:
Projecr:
Sample ID:
Laboratory ID:
Mauix:
Dilution Factor:
Internationat Uranium (USA) CorPoration
WHITE MESA MILL
wMMTW4-ls (L<nsaL pnGr to
01-3191615 ClllaroQ*rr.ur,z(lS'
Liquid - WATER
2
Date Sampled:
Time SrmFled:
Date/Time Received:
Date Analyzed:
Date Reporrcd:
03-25-01
13:35
04{241 10:00
0445{1
April 14,2001
ND - Analyte not detcclcd al statcd limil of dctcctba
TNTXIRNAI. STANDARITS
Pentafluorobenzene
Fluorobenzene
1,4 - Difluorobenzene
Chlorobenzene - d5
1,4 - Dichlorobenzene - d4
ICAL / CCAL
ARITA
l 150521
2388861
1775533
1163446
4s8787
PERCEI{T
RT'.cOVERY
92.6%
94.6%
97.57o
93.SVo
97.SVo
PERCEI.IT
RECOVF'RY
94.7Vo
1057o
tot%
99.$Vo
jIE
ACCEPTANCE
RANGr.
50 -2W %
50 -20o %
50 -ZCo Vo'
50 -20o %
s0 -20o %
ACCEPTANCE
RANGE
86 - ll8 7o
88-ll0%
86-tr'%
80-t20%
AREA
1064856
2258935
t6249ffi
1088081
419852
Dibromofluoromethane
Toluene - d8
4 - Bromofluorobenzene
1,2 - Dichlorobenzene - d4
CONCT'JYTRATION
9.47
10.5
10.1
9.98
EPA 5O3OB, EPA E26OB
scc: r:Vcporsblicnts200l\incrnational uranium-corp\caspcr-orgBl9lGl.l9-8260b-chlorofo'm-l-w.ils Analyst:rlo
Volatile Organic ComPounds
Client:
Project:
Sample ID:
Laboratory ID:
Matrix:
Dilution Factor:
International Uranium (USl'1 Corporation
WHITE MESA MILL
WMMMW4
01-31916-16
Liquid - WATER
400
Date Sampled:
Time Sampled:
Date/Time Received:
Date AnalYzed:
Date Reported:
03-29-01
12:5O
O4{2{l 10:00
0445{l
April 14,2001
ND - Anatytc not dctcckd at statcd limil of itctectba
fl\TTF'RNAI STAI{NARNS ABEA
Pentafluorobenzene Io4'2OW
Fluorobenzene 223W95
1,4 - Difluorobenzene 1612893
Ctrlorobenzene - d5 1075862
1,4 - Dichlorobenzene - d4 42U45
Dibromofluoromethane
Toluene - d8
4 - Bromofluorobenzene
1,2 - Dichlorobenzene - d4
ICAL / CCAL
ABEA
I 150521
2388861
t'175533
t163446
458787
CONCF'NTRATION
9.46
10.4
10.2
9.98
PERCE}.IT
RECO\IERY
9O.6Vo
93.77o
fi.8%
92.5Vo
91.67o
PERCENT
Rncovr.RY
94.6Vo
lO4Vo
lO2Vo
. 9.8%
l::.:::.::::::::i l:::::::::::::::::::;::::::::::;: ii 1 r.. l. : '. '
ACCEPTANCE
RANGE
s0 -2fi %
5O -Zffi Vo
50 -20o 7o
s0 -20o %
50 -200 Vo
ACCEPTAT{CE
RANGN
86-ttB%
E8-u0%
86 - ll5 Vo
80-r20%
EPA 50308, EPA 82608
scc:r:\rcPors\clicnrs2OOt\irrrcrrutioorl-ursnium-corp\casper-org\3t9161.19-&160b-chloroform-l.w.rls
Analyst:rlo
Volatile Organic Compounds
Client:
Project:
Sample ID:
Laboratory ID:
Matrix:
Dilution Factor:
International Uranium (USA) Corporation
WHITE MESA MILL
WMMMWlT
0t-31916-17
Liquid - WATER
2
.Date Sampled:
Time Sampled:
Date/Time Received:
Date Analyzed:
Date Reported:
03-2541
l4:48
04-0241 10:00
0445-01
April 14,2001
Chloroform (Trichloromethane)
ND - Analyte not dctccrcd a, statcd limil of dctcctbn
rNTTF'ITNAI . STANNARNS
Pentafluorobenzene
Fluorobenzene
1,4 - Difluorobenzene
Chlorobenzene - d5
1,4 - Dichlorobenzene - d4
tcAL lccAL
ART"A
l 150521
2388861
t775533
tt63M6
458787
ACCEPTANCE
RANGE
50-20o%
s0-2@%
s0 -20o %
s0-20o%
fi -20o Vo
ACCEPTANCE
RANGN
86- 118 %
88-ll0%
86-ll5%
80-120%
AREA
t055347
227m,30
1618320
1091563
432256
CONCENTRAT"ION
9.61
10.6
t0.2
9.88
PERCENT
RECOVF'RY
91.7%
9s.0%
9l.lVo
93.8%
94.2Vo
PERCBNT
RECOVERY
96.t%
1067o
102%
98.8Vo
Dibromofluoromethane
Toluene - dE
4 - Bromofluorobenzene
1,2 - Dichlorobenzene - d4
I,TFTHOnS USFD IN TIIIS ANAI YSIS:
EPA 5o3oB, F,PA E2608
scc: r:vcporsblicns2ool\inlernationrl uranium-corpbespcr-org\3t9t6l-19-&160b-chloroform-l'w'rls Amlys:r},o
r RORATORY ^N I YSIS REPORT, EP VfFTHOD 8^60
Volatile Organic ComPounds
Client:
Project:
Sample ID:
LaboratorY ID:
Matrix:
Dilution Factor:
Internationat Uranium (USA) Corporation
WHITE MESA MILL
WMMTW4 COMP
0r-3191G18
Liquid - WATER
100
Date Sampled:
Time SamPled:
Date/Time Received:
Date AnalYzed:
Date Reported:
03-30-0r
M:36
0442{1 10:00
04{5-01
April 14, 2001
ND'Analytc not detcctcd ol statcd limit of dctectbn
hITF'RNAI. STANNARNS
Pentafluorobenzene
Fluorobenzene
1,4 - Difluorobenzene
Chlorobenzene - d5
1,4 - Dichlorobenzene - d4
Dibromofluoromethane
Toluene - d8
4 - Bromofluorobenzene
1,2 - Dichlorobenzene - d4
AREA
1036677
2249534
r598837
1072il9
416945
n.0%
{2.2Vo
90.9%
PERCE}.TT
RrrcovFRY
94.4Vo
lMTo
102%
99.27o
RANGE
50 -2Co Vo
5O -Z0o Vo
50 -20o %
50 -20o %
50 -20o %
ACCEPTANCE
RANGf,'.
86-u8%
88-u0%
86-tt'%
8o-l20Vo
ART'.A RNCOVF'RY
1 150521 90.1%
2388861 94.2Vo
t775533
1t63446
458787
CONCENTRATION
9.4
10.6
t0.2
9.92
EPA 5O3OB, EPA 82608
scc:r:Vcpors\clicntg(Dt\inrcrnarionrluranium-corp\clspcr-org\3l9tGl-t9-E260b-chloroform-l-w'xls
Amlyst:rlo
Client:
Project:
Sample ID:
Laboratory ID:
Matrix:
Volatile Organic ComPounds
International Uranium (USA) Corporation
WHITE MESA MILL
TRIP BLANK
01-31916-19
Liquid - WATER
I
Date Sampled:
Time Sampled:
Date/Time Received:
Date Analyzed:
Date Reported:
03-1641
l6:10
04{241 10:00
04{441
April 14,2001
ND - Anatyte not dctcctcd a, sauil Emit of detection
II\ITT'RNAI STANNARDS
Pentafluorobenzene
Fluorobenzene
1,4 - Difluorobenzene
Chlorobenzene - d5
1,4 - Dichlorobenzene - d4
ARPA
l 191328
24s2721
1788376
1218017
49194.1
ICAL / CCAL
ARDA
l 150521
2388861
1775533
1163446
458787
CONCF'N"TRATTON
9.59
10.2
9.89
9.79
PERCENT
RECO\IF'RY
tu%
to3%
tot%
105%
r0'l%
PERCET{T
RNCOVF'RY
95.970
102Vo
98.9Vo
97.9Vo
ACCEPTA}ICE
RANGE
50 -20o Vo
5O -20o 7o
50-zffi%
50 -240 7o
5O -2AO Vo
ACCEPTANCE
RANGE
86-trB%
88-110%
86-rts%
80 - r?i vo
Dibromofluoromethane
Toluene - d8
4 - Bromofluorobenzene
1,2 - Dichlorobenzene - d4
I\{F'THOTIS USF'TT IN TIIIS ANAI YSIS:
EPA 5O3OB, EPA 82608
scc: r:v@ors\clicns200l\incmarional uranium-corp\i:aspcr-oig\3t9l6l-19-&260b-chloroform-l-w'xls Analyst:rlo
Client:
Project:
Sample ID:
Laboratory ID:
Matrix:
Dilution Factor:
Volatile Organic ComPounds
International Uranium (USA) Corporation
WHITE MESA MILL
Method Blank
M80404
Water
I
Date Sampled:
Time Sampled:
Date/Time Received:
Date Analyzed:
Date Reported:
N/A
N/A
N/A
04-0441
April 12,2001
::.r.:ili:ili:r: i:,::lllii::iii,iiiili:i:iiiii
E:;{tSii :f
,. .r,,:.,,,,ii.
6t6-3 Chloroform (Trichloromethane)
ND - Anatytc not detectcd at statcd limi, oI detection
rNITT'RNAI STANNARNS ARFA
Pentafluorobenzene 1184558
Fluorobenzene 2435440
1,4 - Difluorobenzene 17823'19
Ctrlorobenzene - d5 1183537
1,4 - Dichlorobenzene - d4 464888
ICAL ICCAL
ARFA
r 150521
2388861
1775533
ll63u6
458787
PERCENT
Rr.CO\rF'RY
lOSVo
lO2Vo
tN%
' l02Vo
lOlVo
PERCENT
RT'COVF'RY
95.37o
102%
98.8Vo
98.5Vo
ACCEPTANCE
RANGN
50 -200 %
50 -?-oo vo
50 -200 7o
50 -20o %
50 -2ffi Vo
ACCEPTANCE
RANGN
86-trB%
88-ll0%
86-rr5%
ffi-lNVo
Dibromofluoromethane
Toluene - d8
4 - Bromofluorobenzene
1,2 - Dichlorobetaene' M
CONCF'NTRATION
9.53
10.2
9.88
9.85
BPA 5o3oB, EPA 82608
scc:r:\rc?or6klicils200t\incrnationduranium-corp\caspcr-orgBl9l6l.l9-E260b-drloroform-l.w.rls
Analyst:rlo
Client:
Sample Set:
kboratory ID:
Matrix:
International Uranium (USl1 Corporation
0l-3l916l through 0l-3l9lGl9
0l-3l9lGl7 S
Liquid - WATER
Date Sampled: 03'29{l
Date/Time Received: 0442{l 10:00
Date Analyzed: M{5{l
Date Reported: APril 12, 2001
Pentafluoroberzene
Fluoroberzene
1,4 - Difluorobenzene
Chlorobenzerc - d5
1,4 - Dichlorobenzened4
%
89.2Vo
n^7%
89.9%
91.6%
y2.6%
iii:i::ii:X;:X::ii:iiiiiiri:i::i:i::ii::liiil
SPIKE DT'PLICATE
AITF'A
10349s8
?2372y2
1600@8
10601El
4,4/E,B
rii:i:ii;:iiii:i:::::iii:i;iiiii:iiiil:iil::rli:i:::,::ti:,illt
SPII(E DIJPLICATE
CONCT'N'I"RATTON
9.51
10.6
10.4
9.n
%
90.0%
93.7%
90.r%
9t.t%
n.5%
iiri iiii:ii:irri::ii;:iiii::iii:;ii:;;i:iii:i;iii:ii
PERCEIYT
RT'COVT'II\I
95.7%
to6%
tu%
99.77o
ACCEPTAI{CE
BANCE
50 -?40 vo
s0 -2w %
s0 -20o %
50-2W %
50 -20o %
ACCEPTANCE
RANGF'
86- ll8 %
E8-lr0%
86 - ll5 Vo
80-r20%
ARE,A
I 150521
2388861
t775533
tt6346
ART'-A
tv25937
?2t343t
1595730
to65324
Dibromofluoromethane
Toluene - d8
4 - Bromofluorobenzene
1,2 - Dichlorobenzened4
Chloroform (Trichloromethane)
SPIXE DI,JP
chloroform (Trichloromettr-flTff*
458781 Affi
:::i:: ::::;:i::i,::liiii:i:liitltiiti::::iii;illiiix:li:::iji
SPIKED SAMPLE PERCENT
CONCF'NTRAfl ON RRCOVERY
e.62 96.2%
10.6 106%
ro.3 103%
e.es 99.5%
SPIKED SAMPLE ORJG. CONC. SPIKE AMOI.'NT
+:liii:;:iltil:;:i:l:il:;:::;:iii:iiri;:ir
I :ri:i:::,.::'i
i::i:::'i.'r;i':::: :.:: ::':::'i:i:r:.il:::;i::i':r:
PERCENT . .ACCEPTANCE
RECOVER.Y R,AilGT'
9E.5% 70 - t30 %
CONCFNTR.ATION (r8ll)*
9.85 ND
Gglr)
10.0
. "".,a..:':.:i::.: : : ".':.:'::"'.:'
omc. coxc.
t$ctt,i-
ND
. . ,l ]:1::::::::::l:.:,
SPII(E
tuen)
10.0
PERCENT
Rtr'COVERY
tot%
RPII
2.t%
RPD
IJMIIS
20%
MAII,iXj,BIXL 0 of 2 Matrix Spike resuls arc ousidc of esublished QC Limis
l,t frP Sr.rKF nUpI I.:aTF: 0 of I Matrix Spikc Duplicare resulE are outsidc of csablished QC Limits
scc: r:\r@orts\clicnts2ool\incrmtioml uranirmr-corp\caspcr-org\3t9lGl.l9-8260b-chloroform-l-w.rls Analys:rlo
a
rgNflfi 'c)r/
glll169r. Cl.Prr Glllotir
Hrlonr BrPld CltY
O fu/o:nzL
OrderNo: C01060297
qAaC - Data Validation:
ENERGY LABORATORIES, INC.
SHIPPING:2393 SALT CREEK HIGFTWAY ' CASPEF' WY 82601
iiailir.ro' i.o. Bo( s258 ' cASPER, wY 82602 -
;;;ili;;;P;r@ enersrvlab'com' FN(: (304 ?n'1fs
Fior'iliirizl zss'osi-s ' roLL FREE: (8s8) 23s5ts
July 10, 2001
Wally Brice
International Uranium Corp' (ruC)
PO Box 809
Blanding, Utah 84511
RE: White Mesa Mill
Mr. Brice:
The following cover letter is a sunmary of the attached analytical results for the above
referenced Project.
This packet contains one invoice, thirteen pages- of analytical results' one page of quality
assurance data, the project chain of cur,"av, ira the sampre receipt condition report. This packet
contains 20 pages including this cover letter'
There were no problems with the analyses and all data for the batch QC met UsEPA or
laboratory sPecifi cations;:
.
If you have any questions regarding these test results, please feel free to call' Energy
Laboratories, Inc. appreciates the opportu*ty to provide you with analytical services for your
#tu- s:ra E Cuo='
Approved BY:
GO]f,PLETE ANALYTIGAL SEBVICES
@fl
CLIENT:
Lab Order:
Project:
Lab ID:
Intemational Uranium (USA) Corp-Blandin
c0r060297
White Mesa Mill
COlO6O2g7'OOl Matrix: AQUEOUS
Report Date: 07/05/01
collection D^tet 0612110l l0:34
Client SamPle ID: WMMTW4-I
VOLATILE ORGANIC COMPOUNDS
Chloroform
Sun: 1,2-Dichlorobenzened4
Sun: Dibromofluoromehane
Sun: p-Bromofl uorobenzene
Sun: Toluene-d8
6000 uS/L
99.8 %REC
111 %REC
102 %REC
102 %REC
2OO sw8260B
8o-120 sw8260B
8o-120 sw8260B
8o-120 sw8260B
8o-120 sw8260B
0d28/01 17:03 / rlo
OOlzUOl 17:03 / rlo
06128/01 17:03 / rlo
06128101 17:03 / rlo
06/2€Y01 17:03 / rlo
Reporl
Definitions:
ND - Not detected at the rcporting limil
J - Analy{e detected below quantitation limits
B - Analye detecled in thc associatcd method blank
MCL - Maximum contaminant levcl
QCL - Qualitycontrol limil
S - Spike rccovery oulsidc acccpted recovcry limis
R - RPD outside accepted recovcry limits
* - Value exceeds maximum conlaminant level
RL - Analyte rcPorting lcvel
Page I of13
@T
CLIENT:
Lab Order:
Project:
Lab ID:
International Uranium (USA) Corp-Blandin
c01060297
White Mesa Mill
CO|O6O217'OO2 Matrix: AQUEOUS
Report Date: 07105/01
Collection Datez 06122101 10:42
Client SamPle ID: WMMTW4-2
VOLATILE ORGANIG COMPOUNDS
Chloroform
Sun: 1,2-Dichlorobenzene{4
Sun: Dibromofl uoromethane
Sun: p-Bromoff uorobenzene
Sun: Toluene'd8
5500 ug/L
101 %REC
114 %REC
102 %REC
100 %REC
SW82608
80-120 sw8260B
8o-120 sw8260B
80-120 sw8260B
80-120 SW8260B
0612U01 17|46lrlo
0d28/01 '17:46 ltlo
06/28/01 17:46 lrlo
06/28/01 17:46ltlo
06/28101 17.46 lrlo
Rcport
Definitions:
ND - Not detcctcd at the rcporting limit
J - Analyc dctectcd below quantiution limits
B - Analyre dctccred in the associated method blank
MCL - Maximum contaminant level
QCL - Qualitycontrol limit
S - Spike recovery outside accepied recovcry limits
R - RPD outside acceptcd recovery limits
r - Value excceds maximum contaminant level
RL - AnalYe rtPorting level
Page 2 of l3
@D
CLIENT:
Lab Order:
Project:
Lab ID:
Intemational Uranium (USA) Corp-Blandin
c01060297
White Mesa Mill
C01060297-003 Matrix: AQT EOUS
Report Date: 07/05/01
Collection Datet 0612110l 09:M
Client SamPle ID: WMMTW4-3
VOLATILE ORGANIC COMPOUNDS
Chloroform
Sun:'t,2'Dichlorobenzened4
Sun: Dibromofl uoromelhane
Sun: P-Bromoff uorobenzene
Sun: Toluene'd8
390
98.8
113
102
101
udL
ToREC
%REC
%REC
06REC
so sw8260B
80-120 sw82608
80-120 sw8260B
80-120 sw8260B
80-120 sw8260B
06128/01 '18:28 / rlo
oal2Uol 18:28 lrlo
06l2UO1 18:28lr1o
06/28/0'f 18:28lrlo
06/2U01 18:28 lrlo
Report
Definitions:
ND - Not dctectcd at the reporting limit
J . Analyc derected belowquantitation limits
B - Analyc detected in thc associated method blank
MCL - Maximumcontaminant level
QCL - Quality connol limit
S - Spike rccovery outsidc acccptcd rccovery limits
R - RPD outside acceptcd recovcry limits
+ - Value exceeds maximum contaminont level
RL - AnalYe rcPorting lcvel
Page 3 of 13
CLIENT:
Lab Order:
Project:
"'1',o
@r
Anatvses Result Units a!4 RL QCL Method Analysis Date / By
VOLATILE ORGANIC COMPOUNDS
Chloroform
Sun: 1,2-Dichlorobenzened4
Sun: Dibromofl uoromethane
Sun: P-Bromofl uorobenzene
Sun: ToluenedS
Intemational Uranium (USA) Corp-Blandin
c0r060297
White Mesa Mill
COLO6O2I7-OO4 Matrix: AQT EOUS
Report Date: 07/05/01
Collection Datez 06120101 09:36
Client SamPle ID: WMMTW44
MCL/
2OO sw8260B
8o-120 sw8260B
80-120 sw8260B
80-120 sw8260B
8o-120 sw8260B
3100
100
1't3
103
101
uS/L
ToREC
ToREC
%REC
o/oREC
OOaU01'19:11/tlo
06X28/01 19:11 / rlo
OOl28lO1 19:1't / rlo
06/2€1101 '19:11 / rlo
OAnilO1 19:11 / rlo
Reporl
Dcfinitions:
ND - Not detected at thc reporting limit
J - Analye detected below quantitation limits
B - Analyc dclecrcd in the associated mcthod blank
MCL - Maximum contaminant level
QCL - Qualitycontrol limit
S - Spike rccovcry outside acccptcd rccovery limits
R - RPD outsidc accepted recovery limits
r - Value exceeds maximum contaminant levcl
RL - Analyte rePorting level
Page 4 of 13
@U
CLIENT:
Lab Order:
Project:
Lab ID:
Intemational Uranium (USA) Corp-Blandin
c01060297
White Mesa Mill
col060297-005 Matrix: AQUEOUS
Report Date: 07/05/01
Collection Date: 06120101 14:14
Client SamPle ID: WMMTW4-5
Analysis Date /
VOLATTLE ORGANTC COMPOUNDS
Chloroform
Sun: 1,2'Dichlorobenzene-d4
Sun: Dibromofl uoromethane
Surr: P-Bromofl uorobenzene
Sun: Toluene-d8
240
99.3
117
102
102
ug/L
%REC
o/oREC
%REC
%REC
10 SW826OB
8o-120 sw8260B
8o-120 sw8260B
8o-120 sw8260B
80.120 sw8260B
06128101 '19:53 / rlo
06t28/01 19:53 / rlo
06/28101 19:53 / do
06128101 19:53 / rlo
06t2U01 19:53 / rlo
Report
Definitions:
ND - Not detectcd at the reporring limit
J - Anolyle detected bclow quantitalion limits
B - Analye detected in the associated method blank
MCL - Maximum conlaminanl levcl
QCL - Quality connol limit
S - Spike recovery outside acccpted recovery limits
R - RPD outside accepted rccovery limis
* - Value excceds rnaximum contaminant level
RL - AnalYc rcPoning level
Page 5 of 13
@s
CLIENT:
Lab Order:
Project:
Lab ID:
International Uranium (USA) Corp-Blandin
c01060297
White Mesa Mill
C01060297-006 Matrix: AQUEOUS
Report Date: 07/05/01
Collection Date2 06120101 09:58
Client SamPle ID: WMMTW4'6
VOLATTLE ORGANIC COMPOUNDS
chlorolorm
Surr: 1,2-Dichlorobenzene{4
Sun: Dibromofl uoromethane
Sun: P-Bromofl uorobenzene
Surr: Toluene-d8
ND
100
114
102
102
ug/L
%REC
ToREC
%REC
06REC
2.0 SW8260B
8o-120 sw8260B
8o-120 sw8260B
8o-120 sw8260B
8o-120 sw8260B
06t28/01 20:36 / rlo
06/281/01 20:36 / do
06/28U01 20:36 / rlo
06t28/0'l 20:36 / rlo
06/2€1101 20:36 / rlo
Report
Definitions:
ND - Not detectcd at thc reporting limit
J - Analy{e detected bclow quantiution limits
B - Analyle dclected in thc associated npthod blank
MCL - Maximum contaminant level
QCL - Qualitycontrol limit
S - Spike recovery outsidc accepted recovery limits
R - RPD outside acccpted rccovcry limits
r - Value cxceeds rnaximum contaminant lcvcl
RL - AnalYtc rcPortinB level
Page 6 of 13
@s
CLIENT:
Lab Order:
Project:
Lab ID:
International Uranium (USA) Corp-Blandin
c0r06029',7
White Mesa Mill
CO1,O6O297-007 Matrix: AQUEOUS
RePort Date: 07/05/01
Collection Date: 06/20/01 l2:55
Ctient SamPle ID: WMMTW4-8
Result Units Qual
MCL/
RL QCL Method Analysis Date / By
Analyses
VOLATILE ORGANIC COMPOUNDS
Ghlorolorm
Sun: 1,2-Dichlorobenzene{4
Sun: Dibromofl uoromethane
Sun: p-Bromoff uorobenzene
Sun: ToluenedS
180
101
112
103
102
ug/L
ToREC
o/oREC
%REC
%REC
10 sw8260B
80-120 sw8260B
80-120 sw8260B
80-120 sw8260B
80-120 sw8260B
06128/01 2'l:19 lrlo
0628Y01 21:19 / rlo
OOl2UOl 21:'19 / rlo
0628/01 21:19 / rlo
06t28Y01 21:19/rlo
Report
Definitions:
ND - Not dctected at the rcporting limil
J - Analye dctccted bclow quantitation limits
B - Analye detccted in the associated method blank
MCL - Maximum contaminant level
QCL - Quality control limit
S - Spike recovery outsidc acceptcd rccovery limits
R - RPD outside accepted rccovery limits
r - Value exceeds maximum contaminant levcl
RL - AnalYe rePoning level
Page 7 of 13
CLIENT:
Lab Order:
Project:
Lab ID:
Intemational Uranium (USA) Corp-Blandin
c01060297
White Mesa Mill
C01060297-008 Matrix: AQUEOUS
RePort Date: 07/05/01
Cotlection Datez 06120/01 ll:09
Client SamPle ID: WMMTW4-9
MCL/
ORGANIC COMPOUNDS
Chloroform
Sun: 1,2-Dichlorobenzened4
Surn Dibromofl uoromethane
Surr: P-Bromofl uorobenzene
Sun: Toluen+d8
59 ug/L
98.3 %REC
112 %REC
103 o/oREC
102 %REC
2.0 sw8260B
8o-120 sw8260B
8o-120 sw8260B
8o-120 sw8260B
80-120 sw8260B
0628/01 22:0'l lrlo
06/28/01 22:01 lrto
06128/01 2;01 ltlo
06t28U01 22:01 lrlo
Rcport
Definltions:
ND - Not detccted at thc rcporting limit
J - Analye detected below quantitation limits
B - Analyte delected in the associated mcthod blank
MCL - Maximum contaminant level
QCL - Quality control limit
S - Spike rtcovery outsidc acceptcd recovery limits
R - RPD outside accepted recovery limits
* - Value excceds maximum contaminant lcvel
RL - Analyte rcPorting level
Page 8 of 13
@{r
CLIENT:
Lab Order:
Project:
Lab ID:
International Uranium (USA) Corp-Blandin
c01060297
White Mesa Mill
C01060297-009 Matrix: AQT EOUS
Report Date: 07/05/01
Collection Date: 06121101 09:50
Client SamPle ID: WMMTW4-7
Result Units Qual
MCL/
RL QCL Method Analysis Date / By
Analyses
ORGANIC GOMPOUNDS
Chloroform
Sun:'1,2-Dichlorobenzene-d4
Sun: Dibromofl uoromethane
Sun: p-Bromofl uorobenzene
Sun: Toluene-d8
1100 ug/l-
98.5 o/oREC
113 %REC
103 o/oREC
101 %REC
so sw8260B
80-120 sw8260B
8o-120 sw8260B
8o-120 sw8260B
8o-120 sw8260B
0612€/01 2:44lr1o
06128/01 22:44 lrlo
062&01 2:44 ltlo
06/28/01 22;44ltlo
06r2U01 2;44 lr1o
Report
Definitions:
ND - Not dctected at the rcporting limit
J - Anolye detccted below quantitation limits
B - Analy{e detcctcd in lhc associated method blank
MCL - Maximum contaminanl level
QCL - Qualityconnol limit
S - Spike recovery outside acccpted recovcry limis
R - RPD outside accepted rtcovery limis
r - Value cxcceds maximum contaminanl lcvel
RL - AnalYe rcPorting level
Page 9 of l3
@t
CLIENT:
Lab Order:
Project:
Lab ID:
International Uranium (USA) Corp-Blandin
c0t060297
White Mesa Mill
C01060297-010 Matrix: AQUEOUS
RePort Date: 07/05/01
Collection Datet 06122/01 I l:25
Client SamPle ID: WMMMW4
VOLATTLE ORGANIC COMPOUNDS
Chloroform
Surr: 1,2-Dichlorobenzened4
Sun: Dibromofluoromethane
Sun: P-Bromofl uorobenzene
Sun: Toluene'd8
6300 udL
99.0 %REC
117 %REC
10s %REC
101 %REC
400 sw8260B
8o-120 sw8260B
8o-120 sw8260B
8o-120 sw8260B
8o-120 sw8260B
06r28U01 23:261 rlo
06/28/01 23:26 lrlo
06/28/01 23:26ltlo
06/2U01 23:261 rlo
06/2&01 23:26 lrlo
Report
Definitions:
ND - Not dctectcd at the reponing limit
J - Analye dctected bclow quantitation limits
B - Analye detected in the associated method blank
MCL - Maximum contaminanl lcvel
QCL - Qualityconnol limit
S - Spikc recovery outside acceptcd rccovery limits
R - RPD outside acccpted rtcovcry limits
t - Valuc exceeds rnaximum contaminant lcvcl
RL - AnalYc rc'Poning levcl
Pagc l0 ofl3
EETT
CLIENT:
Lab Order:
Project:
Lab ID:
Intemational Uranium (USA) Corp-Blandin
c01060297
White Mesa Mill
C01060297'011 Matrix: AQUEOUS
Report Date: 07/05/01
Collection Dzte: 06121101 09:04
Client SamPle ID: WMMTW4-10
VOLATILE ORGANIC COMPOUNDS
Chloroform
Sun: 1,2-Dichlorobenzene{4
Surr: Dibromofl uoromethane
Sun: P-Bromofl uorobenzene
Sun: Toluene-d8
320
97.9
116
102
102
ug/L
o/oREC
%REC
0/6REC
o/oREC
2.0 sw82608
80-120 sw8260B
8G120 sw8260B
8o-120 sw8260B
8G,120 sw8260B
06/29/01 fl):09 / rlo
06129/01 00:09 / rlo
06129/01 00:09 / rlo
06/29/01 fi):09 / rlo
06/29/01 00:09 / rlo
Report
Definitions:
ND - Not delccted at thc rcporling limit
J - Analyle detcctcd below quantiurion limits
B - Analye detectcd in the associated mcthod blank
MCL - Maximum contaminant lewl
QCL - Qualitycontrol limit
S - Spike recovcry outside accepted rccwery limits
R - RPD outside accepted rccovery limis
r - Value excecds maximum contaminanl level
RL - AnalYe rePorting level
Page ll of13
CLIENT:
Lab Order:
Project:
Lab ID:
VOLATILE ORGANIC COMPOUNDS
Chloroform
Surr: 1,2'Dicilorobenzened4
Sun: Dibromofl uoromethane
Sun: P'Bromofl uorobenzene
Sun: Toluens'd8
International Uranium (USA) Corp-Blandin
c01060297
White Mesa Mill
COlO6O2g7'Ol2 Matrix: AQUEOUS
RePort Date: 07/05/01
Collection Datez 0612110l l2:ll
Client SamPle ID: WMMTW4-I I
3.0
102
118
103
102
udL
%REC
%REC
0/6REC
%REC
1.0 SW826OB
8o-120 sw8260B
8o-120 sw8260B
8o-120 sw8260B
80-120 sw8260B
06/2901 00:51 / rlo
06/29/01 00:51 / rlo
06/29/01 00:5'l / rlo
06/29/01 $:51 / rlo
06/29/01 @:51 / rlo
Report
Dcfinitions:
ND - Not dctccted at thc reporting limit
J - Analfe detected bclow quantitation limits
B - Analyte detected in thc associated method blank
MCL - Moximum contaminlnt level
QCL - Qualitycontrol limit
S - Spike recovcry outside acccpted rccovcry limits
R - RPD outsidc acceptcd recovcry limits
* - Value excecds maximum contaminant lcvcl
RL - Analytc rcponing level
Page 12 of13
trEg
CLIENT:
Lab Order:
Project:
Lab ID:
Intemational Uranium (USA) Corp-Blandin
c01060297
White Mesa Mill
CO|O6O297-013 Matrix: AQUEOUS
Report Date:
Collection Date:
Client Sample ID:
07t0510r
06122101 13:50
WMMTW4-Comp
MCLI
RL QCLResult Units
1oo sw8260B
8o-120 sw8260B
80-120 sw8260B
80-120 sw8260B
80-120 sw8260B
Method Analysis Date / By
06x29/01 01:34 / rlo
06129/01 01:34 / rlo
06t29/01 01:34 / rlo
06129/01 01:34 / rlo
0d29/01 01:34 / rlo
VOLATILE ORGANIC COMPOUNDS
Chloroform
Surr: 1,2-Dichlorobenzene-d4
Sun: Dibromofl uoromethane
Sun: p-Bromofl uorobenzene
Sun: Toluene-d8
960
101
118
103
103
ug/L
o/oREC
%REC
%REC
%REC
Report
Delinitions:
ND - Not detectcd at the reporting limit
J - Analyle detected below quantiution limits
B - Anolyte detccted in the associated method blank
MCL - Maximum contaminant lercl
QCL - QualitYcontrol limit
S - Spike recovery outside accepted recovcry limits
R - RPD outsidc acceptcd recovcry limits
+ - Valuc excccds maximum contaminant level
RL - AnalYe rcPorring level
Page 13 of l3
ogE
Nrp(,
'=otsg' ;?0-(r, t
=8UB RdE$
E(,:l q)EU)
o
ot
o(r
Ex.c)s46rE6l-
@E
-9uidr
6(Eoo=o-oEo6JEA eCJ
o
UJEs
{
ED
..8
5!o)E
.Ytr&iu,*g EEE ECPSYti a
hi6Eg doo6q)
F
a H =B
=Gr
c)EEE
BEt=
E=
ciE: s.Eb -q3 5 &
?-o's\
q)!!o
6\
e
6'5
o
6
o
.E,.o
o
9I
o
o
,d.tr<
.c!
ti
SE*q5B
uE;?AU o
q)
U
v,6'F
I.E
a,e
OE€=o;abo>Hg
oL!€'d9
=o
9-I
o=&6
-go'EA
vtd
J .9,ooE
EZooa=9q
-89
-D6 E39;oooo=
AicgoaEzd
c1z
€o
otroNco.o
e9eG9o ,1.tcooq6
clF
ii ii
=foo
q,g
.EE
q)
Eo
o
o
EI€o
)
U)
t!,
ocoNco.oo
.9Eo6
€N,
Ji :.OEya
o
IttSEE6 E€
E:EeEEPEqpEs
Ei6'ePE=suuE=r==E@@.nu)o
U)
oooooilF-?-
ooooo
ooooo ooooo(')(t
(v)
oooooc)N(\lN6l
F---F
oooooF@6@G('
6F-d:r(\ldro(\roo
FFFF?
@oooo
1r)o,
oooo
oooo
oooosrNN(\l
Ff?F
oooQ00co@@
cDtc)rl-oOtiF--
ooooo6NN(\'(7
-r--F
oooootaGo@.oao
r(oorco)$Esed
F&
Fi
rc&
&
lliat-a)a
Uo
11
UtlF
Fl
z
ooooo8888tooooo
-F-FFEEEEE
(ooooo
ro
O)
ooooooo
88888o (') cr, (t q)
rrOD-CrCD
oooo
oooo
FFF-
qoooo
oooooN-N(\aE)if)Fo(9-F)0(\lOO
FFFFT
acDaqo)c"
=CD!TNF-d;-'od
E
l(!
:E0
o.L,o,O
:. lr):,p
!w-
'6NO Ei^B.Y 6l <',oaEteq2=€EU=@E
otroJoF
U)
(l,coNco
-oo
o
o
Eo
oo
o
$eO6CE
8E8Eoo
€Eop.orE€i?yoo
Eo
c)
zv -o!rl+cr- E'A6,&
osaN
.Do?OEl'a9dF0-Att
=t8H IE2$trcr
=0)tru)
E
IoE
o(LEtos=orEN-
@s .9
oo
6(!oo icL(,):9'0 do-€ aCJ
olux.s
{
E'I
.. i6::L 0,)tr
.YFi6u)
=8 EE$ E?3 xPrD*aY2Ui;BP "oO(L
-ooF
.,, R B
=Ergo
E!taohc0u)
(., EE6E:clCtbE=6=
ciEo s
EoOl!=c
osaN
aoo
FoEl'i96?Got
=o-aoUB Rd2$ct7
=otu)
o
5o
tr.
o(L
EteN=
6E(\l '-i
IDE o,
iri A; =EF =Eao:dt '-^ Ji}:
?J
{
ED
..8
=b)t
.Ytr(L6u)
=B eAro=FS s?B Y8? h
ot7BP -ooo6q,
F
Y=dRi fr
=GridAo.=
FIo,;c(oEo
@
:lt
Jtrg
@
Eo3
o
=ctsg .9
Ed(!86 E
Gtsooa--(rla
oo:':BC
E6
o
rli<--ri;.\
E':-.:
==
=EE..: :
>.\te.a
=sgza=
It
NS
=
ay>*i.f;E
4.-.;sio=
E-ii
=di'
RS
€=.i .l
ES.
=e
d
ii
>
?
iE!
a I.;nd,i;
=d(t :.8
E
ie?
J-t=i: x?r6-.2c5'iidi.i
5-.q
I :'!i c,a{ .; ^Jiittli
!'i.:
?,8
L€=
zl=
TV)
Et40d"
H
H
e ..= Id iD3^a_5
3 AIFB
ffil"t a"isplos/st!6 ).elefr ttV
o n A s 1v1 y:edt1 eldwes
**ffi
I!r?F
.iS
4
t5
5
I{
.E o
I
o
I{
O-ooxd$
RR
iiooI
.oco€o-
o0
o
EGz
o(!
troo
Ir
c
€IJ
$rs {l oGq
: ----l E
oul
E,
kzgo
=Eolrz
'J
ulo.
F
Eo
Fz
E
o.
ulo
u,Jr
atrcUHE"\t-liAhlo
':- [rrv)>\trJU
F\o
e\
li(\U
ag'69
oc)
U)q
;o
be
FT
CO
U
E;E:?:tHx
=F:.*+BE
:.,siE
E
=\oNAoo
ER-.
Eq- 6r>>{SS-rA\O>
E$ st4 ttB.€
T\QF.2=
{t:
H $S\rr\s- .!p?Et-i.t
=Et,ifr ElEtsd
EEN<o€A.
FO .S< ib
iEEtrt s Ll
ESSz_5tri \q
s
*.3i F
v)z
Q
F
U)z
z
v)
-J
x
trJ
Eaa-
Eol-
la,o
U
!a
tr]
rav)
o
ao
oil
a
C)0
G'tr
o
oo.
F
ro ./2H z2 g O?C8
nqtj aqtfi uowntefi sp11oyt11ol ntfi ttp-On A S A Y:ad(1 aldutog
stauToluoc to raqunN
itj
d
[3
JgIFJ(a
J
JI
dfpti
uF.
co "l -t
*{:jdSdo
E
c)
.9o
;c
G)(h
t
f{
,a
rE ,i.xF-!s -S
ll\J
"\o\lE\a .5\l-n
6J\Edzr
6Jt3
o\cthJzt{rIEq
;
h
s
A
J
a.)
t)
a0
o
t)
o
a)i
6
olt
.o
E{)
q
crtr
q)il
\t
q)
G
El)
E
o
q
rud
N
q)
6Eq0
I
ru
6)()
it)
{)
6
ao
;
o
q)(,
il,
d,
9)
6
a0
a)
i,&
O ,o"tgy r,aboratories, rnc-f
SAMPLE COIIDITION REPORT
Thisreport,providesinformat,ionaboutEhecondit'ionofthesample(s)'andassocated
="*pf. Lr=toiy information on receipt aL the laboraEory'
oescriPtion: WATER
Liquid,Miac
Date&Time Col'd: 21-WN-01 1034
FasBeUt
Client.: InEernational Uraniun (USA) Corporatioa
Lab ID(s): 01-33939-1 Thru 0L-33939-14 MaErix:
Delivered by: UPS Date&Time Rec'd: 25-{ILN-01 1000
Received by: Sara Hawken Logged In by: TablEha
Chain of cusEody
Chain of custodY
Chain of custodY
Signature match,
Sample received
Samples received
Samples received
SamPles ProPerlY
Botstle Ttrl)ea Received: 39-{0ML VOA NF ECL(ABC)
C@aeDEE:
form compleEed c signed: Yeg commenEs:
seal: No Comments:
seal inEact: N/A Comments:
chain of cusEody vs. seal: N/A Comments:
Temperature: 5C CommenEs:
w:.ifrin holding time: Yes commenLs:
in proPer containers: Yes Comment's:
Preserved: Iee Comments:
tflrrilit 'Cr,/
Bllllngr . CerPcr Gllbnr
Hetonr. R.pld Clty
LABORATORY ANALYSIS REPORT
Client: INTERNATIoNAL I.,RANII.IM (UsA) coRPoRATIoN
Contact: WaIIY Brice
SamPle Matrix: Liquid, Water
Date/Time Received: 0612612001 10:00
RePort Date: JulY 11' 2001
LaboratorY ID Sample Date / Time Sample ID Nitrate + Nitrite as N, mg/L
0r-33936-r 0612112001 10:31 wMMTW4-1 8.8r
0r-33936-2 0612212001 10:38 wMMTW4-2 9.67
0t-33936-3 0612ll200l08:58 wMMTW4-3 2.61
01-33936-4 061221200109:34 WMMTW44 14.00
0t-33936-5 0612012001 14:09 wMMTW4-5 6.47
0t-33936-6 o6n1n(n109:45 wMMTW4-6 < 0.10
wMMTW4-7 2.6501-33936-7 0612l/200109:50
01-33936-8 0612012001 12:51 wMMTW4-8 < 0.10
0t-33936-9 06120/2001 11:00 wMMTW4-9 0.r5
01-33936-10 0612212001 1l:20 WMMMW4 9.02
0l-33936-1 I o6t21l200l 08:58 WMMTW4-10 2.96
WMMTW4-11 3.190t-33936-12 061211200l l2:t5
0t-33936-13 0612112001 12:17 WMMTW4-12 0.66
NOTES:
( I ) These values are an assessment of analytical precision. The acceptance range is 0-20olo for sample results above I 0 times
the rcporting limit. This range is not applicable to sarnples with results below l0 times the reporting limit'
(2) These values arc an assessment ofanalyical accuracy. They are a percent recovery ofthe spike addition' ELI performs
a matrix spike on l0 percent of all samples for each analytical method'
msh: r:\reports\clients2fi)l\intcmational-uranium-corp\liquid\33936-l-13'xls PAGE i:0.
o
ENERGY LABORATORIES, INC.
SHIPPING:2393 SALT CBEEK HIGHWAY . CASPER. WY 82601
MAILING: P.O. BOX 3258 ' CASPER' WY 82502
E-rnail: casper@€n€rgy'lab'cont ' FAX: (307) 234'1639
PHONE: (307) 235'0515 ' TOLL FREE: (888) z3s'osls
,;r ';; 1. '1" i
r-,1 r: -,: ..' 'J
i\ :'- i\ arit,,ll,'
BPA353.2
RPDI
061271200114:18
GO]UIPLETE ANALYTIGAL SERVIGES r,0
aE!t".(,)o
sto
bc
EE:c6-
iqc
i;.?
=':.:
a:
eEFt-:!:
aea,
-;t ir.a
za=
N+
N=
.^!
c
zJa9F:<
-q i,j;i .E
aEe
=a4
=xF
is€ "i,sG
NiES
.-: _:
'q-
F
e
g
72.
t-L?.r{5
\igqeE3=+q..i fli!dr,E :. S.
:.: s
) ! !r
=€
?
E3g-
,4t
* 2A
'1 42.UC.a
A^iE
+cqat!t:
ii*
=t-
E'i.i
-=
", ?. o:
i4=
:i:
Ec-
l^oo
J i55
\l -rN; * s9+ Edz.LX.::o
E E.U 5Eri O c a:
rJ..r r(
:tF ii Q-
fi+pf I
-?ru#54 ffi e u u -e u u n u o I e p 6 efi s p t I o g rs t lo$ n 1efi t 1f
O n A S 14 7:adt1 e@wes
3l=
N rf)
*$i;
oco
o-
a6
o
E(Ez
ENcoo
>.
d9zg
Qo$q-riolt_
o
lrJG
kzga
FG
UJox
UJ
atrcUEr)Jtrd>..HatREv)2r\L.J E
Fr O-\J urF\2A. Ltl\)J.o.z\
lfa|*i
U
*s"s
g
(!c.9
{g
at.9t".(,r|a
oro
ic
5r
o-9-97Z-Z-< \\-rg9
6.:
E.,T :83 sJH-E
=u-6q-g aEOEi6:=
.r ..e ..: +
5 E {?$"
"u 3##,8
:i :i-:.
ii i'+
{j-rz,..Yzai
:.;.:
::
ai-;;a;
-.\ iv.a
=42==j-<c ?
!tr
'r 'T
N=
s
=-c
ail-=--z4 tt
.. t, .=
E'E:
!ii
isf?€{ri.is.E
l-\
I
=
az
l-l-tlr,,
==
!=:
+_ss!5+.:;i :i
=!E
a
€
a
a*'r
7.r=
2iiUC.i
*:;il3!
iririi*Fi;t
a:--
=i:
-=
. at-€=
'r-= -
z7a
.jiF.
Ed-
^*-a"*.r"r%\
.teq1Q euyl uo11ep6en spllos/sllos ra@m )N
O n A S 14 y:adt1 eldweg
f.l
I
rl5
e
d
{t(n
i.i
oa-otr
o
qt
CIt
l-:5l!-.
€tFOiln/<'-
it$i
oco
o-
ou
o
E
Gz
o
G
coo
>.cir
J{loGq
I
o
]UE
<kwzo.o
?-o
ofiFOzx
EuJLZru9@j-
ut=
dE
IL
=
atrcU
Eatrxa\[P\{hQ-J,5Gq
cz\
|T.l\U
O Energry Laboratories, ,rr"O
SAT.IFLE COIIDITION REPORT
This reporu provides informaEion about the condition of Ehe
.Ir"pf"--."tt"liy information on receipt at Ehe laboratory'
Client: Interaational Uranir:m (USA) Corporatioa
i"u-ipf=l r 01-33935-L Thru 01-33935-13 Matri
i"iir.t"a by: IIPS Date&Time Recrd: 25-''uN-01 1000
Received by: Sara ttawken Logged In by: Kerr:l
Chain of custody form completed a sigrned: l-ea CommenEs:
A;i; oi .""t"av seal: conunents:
A;i; or ",r"toay sear intact': N/A comments:
il1r"."=.-*"t.i,l chain of cusEody vs' sealt I{o commenEs:
Sample recelveo Temperature:. 5C Comments:
;;;r;"-;eceived witrrin holding time: Yes comments:
;ffii;; t."":.".a in proper containers: Yee colffnent's:
Samples eroperry pre-seied: Yea Commengs:
sample (s), and assocated
DescriPtion: WATER
x: IrJ.quid
OaCecTime Col'd: 21-iILN-01 1031
Scbroeder
Bottle TlPca ReceJ'ved:
c@BGrltsa!
O ,o"tgy r,aboratories, -ot 'O
REPORT PACKAGE SUMMARY FINAL PAGE
Acronlmts and Definitioas
El,I-B Energry Laboratories, Inc' - Billings' MonEana
il;-c i".t!y Laboratories, rnc' - GilleEue' wyoming
sii-E anergy Laboratories, Inc' - Helena' Montana
il;-* i".til Laboratories, rnc' - Rapid city'south Dakota
co - Carry over from Previous samPle
ip - Insufficient Parameters
N7A - Not' APPlicab1e
NA - Not, AnalYzed
ND - Irnalyte NoE Detected at
NR - Analyue NoE Reguested
NST - No SamPle Time Given
NSD - No SamPle Date Given
stated Limit of DetecLion
fEis FSaEege eonEain; Efia Eo11ol,Yi;g elienE ID(s) ana ra5 ID(;)
client ID: !{MMMI{4 is associated to Lab ID: 01-33936-10
Efi""t ID: wMMrW{-l is associated to Lab ID: 01-33936-1
Ef i""t ID: l{t6[rw{-10 is associated to Lab fD: 01-33936-11
cii."t rD: wMrr!T[4-U is associated to Lab rD: 01-33936-12
if i""t ID: ?wr'rTw{-l2 is associated to Lab ID: 01-33935-13
Cfi."t ID: t{Ml'tTW{-2 'is associated to Lab ID: 01-33935-2
ifi""t rD: wlll{tw4-3 is associaEed to Lab rD: 01-33935-3
Efi.tt ID: WMI'!TW4-4 is associ'ated Eo Lab ID: 01-33935-4
cfi"r,t rD: w!Mrw{-S is associaEed to Lab rD: 01-33935-5
client ID: t{M}f;fi{4-5 is associated to Lab ID: 01-33935-6
Cfi""u fD: ffirofTW4-7 is associated Eo Lab ID: 01-33935-7
Cf i""t ID: WMlr[TW{-8 is associated to Lab ID: 01-33935-8
CLient ID: l{M}lEW{-9 is associaEed to Lab ID: 01-33936-9
Approved BY:&Reviewed BY:
Analysis Report.
indicated bY the last 4
Ti?ACiiii':! i:t. P,I,CE 1,i0.This is the last page of the Laboratory
Aaaitiot"l QC is available upon requesE'
ih. t po=E contains t'he number of pages disir"
3 :j i"..i :ibR0?i0,:'.
ttov-09-0 I r0:40am From-luc ELAttDllIL 801 678 2224 _-,_ :::::- ,|,Y'
r't?5
*;;;;;;'#*r;,;ff .1"eiiitw'!":'Jrft'3#8''*?-#:Hbl:i::#'
LABORAT ORY AI'IAIYTIC AL REPORT
Lsb Order:
RePort Date:
c0I090685
10/lo0IInternational Uraniurn (USA) Corp
il[" CIW SanPling - White Mcsa MillClient:
Project:
Collection Date:
DateReceived:
09/20/01 10:52
ostzitoiLrb ID: C01090685'00I
ClientSamPleID: WMMTW4'2 Matrix: AQUEOUS
Result Uuits
MCL/
Qual -Ir--9gI--ll!.".trh"L -
e"'lvltDllelBv
AnalYses
voGs
chloroform
4900
'101
93.5
83-o
e5.6
ug/L
%REC
ToREC
%REC
%REC
80-120
80-120
80-120
B0-120
sw8260B
sws260B
sw82608
SW82608
sws260B
1O/O4,O1 00:56 / rh
1OrO4r01 0O:58 / rh
1O04/01 00;56 / rh
10/04/01 00:56 / rh
10104,01 00:56
'
rh
Surr: 1,Z-Dlchtgrobenzene-d4
S urr- Dibromo0uoromethane
Sun: P-Bromotluorobenzene
Sun: Toluene'd8
Lab ID:c01090685-002
Collectiou Date:
DaftReceived:
09/20/0I 10:25
09l25tOL
Ctier.tSamPleID: WIIMTW4:3
Analyses
vocs
Chlomform
Mstrir: AQIJEOUS
MCIJ
RL QCL Method
sw8250B
swE260B
sw8it60B
sw8re0B
sw82608
Datc / BY
1Om2/Ol 2:3Olrh
to/Oztol 23O lrh
10/0?J01 *:3Olrft.
1O/0zO'l ?;3O 1fi1
lOrO?JOl 22'-10 I th
Result Units Qual
Surc 1,2-Dichlorobonzen+d4
Sun: Dibromofl uoromehane
Sun: p-Bromofl uotobenzene
300
102
109
88.6
96.9
ugrL
o/oREC
%REC
%REC
%REC
80-120
80-120
60-120
B0-120
Surn Toluene'd8
iau IP: C01090685-003
"rr"o.SamPlelD:
WMMfW44
Collection Date:
DsteReceived:
Matrix:
Method
09/20/01 10:50
09nsl0r
AQUEOUS
MCIJ
RL QCL Arralysis Date / BY
Result Units Qual
Analyses
vocs
Chloroform
Sun:'1,z'Dichlorobenzened4
Surr Dibromofluoromethane
Sun: P'Bromofl uorobenzene
Sun: Toluene'd8
3200 ugn-
'101 %REC
107 %REC
88.9 %REC
s6.5 %REC
200 sw8260B
sw8260B
sw82608
sw82508
SW8260B
loro2,ol 23;11 / rh
10r0z01 23:'t1 , rh
'10/0201 23111 l6
$n2l}1 23;11 t rh
1UO2JO1 23:11 lrh
8G'.t20
B&120
6G120
8c120
nL. errutyt" t"Pqning lcvcl
ND - Not dcttctsd x rhc rcPoninE lirnir
RcPort
Detinilions;MCL . Marimum contamincnt lcvcl QCL - QualirY conrrol litrit
llov-09-0 I l0:40am From-lUC ELAI{DltlG B0l 678 2224 T-555 P.003101? t-725
-8 . CaW4 WY8ffi02
wwwenergytab.com+ 'ilc. '23s3 sar creek Hr.slwav (8fr02:!9:Q4!EnG!^H9.o#!?L"2. nqtq . Far.?o7.234.txas' caspr@energyab'Z'f,f FEf ;rffi ,tiffi;Y?07.'o7s-:'ii-ib7'i:iireii"cispteenersvtab'c'
LABORAT ORY AFIALYTICAL REPORT
Clicnt:
Proiect:
International Uraniunr (USA) Corp
3rd Qu CIW Sampling ' White Mesa Mill
Lab Order: C01090685
Report Datc: t0/16/01
Lab ID: c01090585-0M
Clicnt SemPlcID: WMI\'iTW 'S
MCU
RL QCL
Collestion Date:
DateReceived:
Metrir:
Method
0980/01 10:05
09/25/01
AQIJEous
AnalYsis Date / EY
Result Units QorlATlYtut_
vocs
Chlorotprm
20 sw82608
sw8260B
sw8260B
SW82608
sw8260B
10/04/01 01:37 / rh
10/04/01 01:37/rh
10/04m'l 01:37 / rh
10104/01 01:37, rh
1 o/04r01 01:37 / rh
Sun: 1,2-Dichloroberaene'd4
Surr. Dibromolluoromefiane
Surr P-Bromofl uorobenzene
Sun. Toluene'd8
240
100
92,5
82.8
94.3
iJgrL
%REC
%REC
%REC
%REC
8G120
80-120
80-120
8G120
Lab ID: C01090585-005
Client SemPle ID: WMMTW4-6
Collectiou Date:
DgteReccived:
Matrir:
0920/0109:16
09tzslor
AQI.JEOUS
Arelysit Date / BYMCL/
Quel RL QCL MethodResult Units
AnalYses
vocs
Chloroform
Surr: 1.2-Dictrlorobenzened4
Sun: Oibromofluoromelhane
Srlm PBromofl uorobenzene
Sun: Toluene'dE
3.6
99.0
100
85.9
98,1
ug/L
%REC
%REC
%REC
%REC
2-a sw8260B
sw8260B
sw82608
sw8260B
swE260B
1010301 13;21 t h
'lUO3r01 '13:21 / rh
10/03101 13:21 / rh
1UOU01 13121 , rh
'10/0U01 '13:21 / rh
B0-120
8G120
6G120
80-120
Lab ID: C01090685-006
Clicnt SemPle ID: WIVII\4TW4-7
Collection I)ate:
DatcReceived:
Metrir:
09/20/01 t0:43
09n5l0r
AQUEOUS
Arrlysis Date /BYMCI./
RL QCL MethodRcsult Uuits Qu.l
AualYses
vocs
Chloroform
Sun: 1,2-Dk:hlorobenzen+d4
Surr: Dibomofl uoic methane
Surr: p-BrEmofl uorcbenzone
Surr: Tgluene-dE
fiao udl
e8.g %REC
98-6 %REC
88.7 %REC
96.2 %REC
100 sw8260B
B0-120 sw8260B
8G'120 sw8260B
8G120 sw82608
BO-120 sw8260B
10/03,01 14;02lth
1O/03/Ol 14':OZ I th
10/03/01 14:0?/rh
1O/OUOI 14tOZ t rh
1o/03/ol 14i0zlln
Raport
Dcfirlition!:
ND - Nor dcrcocd ar rhc rcPomng limir
MCL - Mlximum contaminant lcvcl
RL - Analle rcPoning lcvel
QCL' QualitY control limit
r.. a= I'il.;..i- IlrJ'
-:'- n !i ll
l0:40arn From-lUC BLAtlOlt{L
- ENEBGYLAEuuA*
80r 678 2224 T-555 P.001/012 t-125t{ov-09-0 I
ra Fiii eea-zss.oltl' 307':
''f;,,ry'f,f %95#r#!Y'##,3;:,8/*.',.ffi i&{dr'ffi '
I-AB OR"A,T ORY ANALYTICAI RE PO RT
Client:
Projcct:
Iirteroatiooal Uranium (USA) Corp
3rd Qr CTW Sampling - White Mesa Mill
Lab Order: C01090685
Report Date: 10i 1tr01
Lab ID: C0I090685-0o7
Client SampleID: WMNfl'W4'8
Collection Date: 09/20/01 09:a6
DateReceived: 09/25101
Mstrlr: AQUEOUS
MCL/
RL QCL Method Aaslysis Dite / BY
Result Units Qual
AnalYscs
vocs
Chloroiorm
Surc 1,2'Dichlorobenzened4
Surr Olbromolluorgmethane
Sun: f Bromolluorobenzene
Surn Totuened8
180
99.4
102
87.8
95.9
ug/1
%REC
%REC
%REC
YoREC
BG120
8G120
80-120
8G120
SW826OB
sw8250B
sw8260B
sw82608
sw8260B
10/0U01 14:43 / rh
1u03/01 14:43 / rh
10103^,1 14:43 / rh
1U03r01 14:43 / rh
1003/01 14:a3 / th
Lab ID: C01090685-008
Client SamPle II): WMIVIT!Y4-9
Collection Date: 09/20/01 09:3I
DateReceivcdz 09125101
Matrir: AQUEOUS
Result Units Qud
MCIJ
RI QCL Method
sw8260B
sw82508
sw8250B
sw8260B
sw82608
Drte / By
10/04/01 O227 lrh
lOrM/Ol 0227 lth
10/04/01 o2i27 I th
1O04r01 O2t27 lth
1OlO4/01 O2i27 t rh
AnalYscs
vocs
Chlorofonn
Sun: 1,Z'Didrlorobenzened4
Surr: Dibromofl uoromethane
Surr: PB romofi uorobGnzene
Surn Toluene-d8
19
89.2
t2.'r
84.8
97-3
ug/L
%REC
%REC
%REC
'/oREC
2.O
80-120
8tr120
8G.120
80-120
LabID: C01090685-009
Client SamPle ID: WMI\'II\{W4
Collecfiou Date: 09/20/01 II:20
DateReceived = 09 l25l0l
Matrix: AQUEOUS
MCIJ
RL QCL Method ArrlYsis Date / BY
Result Units Qual
Aflalyses
VOCS
Chloroform
Sure'l .2'DichloroberEened4
Sun'. Dibromofl u oromethane
Surc P.Bromoll uorobenzene
Sun. ToluenedS
5300 ug/L
102 %REC
1OZ o/6REC
87.2 %REC
96.7 %REC
400 sw8260B
8o-120 sw8260B
8O-120 sw826oB
80-120 sw8260B
80.120 swE260B
1U03/01 16:04 / rh
1U0U01 16:04/rh
lOrGYol 1604 / rh
1U03r01 16:04 / rh
,0/0u01 16:M/rh
Rcport
Dcfinitionr:
ND - Nor derccted lr drc rcportinS limit
MCL - Milcimum con nninant levcl
RL - Antlytc rcPoning lcvcl
QCL - QuolitYcontrol limit
-rl , a,,.. :1 a|; r.n
l.:.!..r.., . ., ..1!:b.rv.
i -,'ll.:t'.'C"
llov-09-0 I l0:40am From-llJC BLAI{Dlllc 801 678 22e4
faiFiiiias,zsslsts ' 307.- ,lts ' Fil( 307'2el "casper@eneryYlab.a,or,"neiifr:,*;:v!:*,9tr:f;*":rffiiE;#rt-
T-555 P.005/01? F-125
' hwc WYEruz
www:metgylab.am
LAB ORATORY AITiALYTICAL Rf, PORT
Intcrnational f|1anissl pSA) Corp
3rd Qr CIW Sampliug - White Mcsa MilI
Lrb Order: C01090685
Report Date3 10/16/01
Lab ID: C01090685-010
Client SamPle fD: TriP Blauk
Collection Date:
DateReceived:
Mauix:
08i22/01 10:20
09/25101
AQUEOUS
Result Units Qod
MCU
RL QCL lvlcthod lfsvsP"rllf
Arrlyses
vocs
Chloroform
Surc 1,2-Piclrlorobemened4
Sun: Dibromofl uoromelhtsne
Surr- p-Bromofl uorobenzene
Sufi: Toluene'd0
ND u0/L
101 %REC
102 %REC
86.7 %REC
9€-7 %REc
1.0 sw8260B
80-120 51^/82608
8()-120 sw8260B
8o-120 sw6260B
Eo-120 SW8260B
lOlOZlOl 16:59 / rh
$rcAcl 16:59/ rh
10/02,01 16:59
'
rh
10/02tol 16159/rh
1010201 16:59 / rh
Report
D.ftEitio4t:
ND - Not dercrtcd at the reportirtg limit
MCL - Maximurn contaminant levcl
RL - tualfc rePorting lwcl
QCL - QulirYcontrtl limit
:,ilE ilO
v
F
Eo
o
!
d't-
aG
oE
D
a,E
o
6
c0
a
llt
!()E-
BEz-rllEE.T,
=E-J;qF <?,3tldD
EEF
6UJ-cB{E€ i
Ed.go ut'*p F
lu6H,r
Eo
c,
2.E
E_r.EFE'E 'z
AJ9E
-3 .a
=-tG,EEU€E
tr-g
o=zE
olz
::*5 1:C.q
(qH86
17
f
F=OEl'-q6rO-olrNtr
=eEE IE2 sEA
=4,da
.0
(DEao-
Fff-ce.{=
@E
6Jf -e.I
.dE I
88 EGo-_EE.dFEc,eJ
{o=-.,lD5E
.Yl"' f,
;U)+B E:E=Fs sO7B YP.t2 AY2UAEP -o(JL
-o!,F
v=;S E
=ErEE>-Fo-E
C(!E6t)
:tt
Jc
C,
E
E0E
o
6;e o,
EE EG=h
tsao
E
6EQ, Efo_rD E.
=q,BE o,42s58n- .a
E
oE(]oFtr-eosl=NE
oJ ta
I-9 Sl-E.!
6c! =aol 5cJ.6JEB B
-JE
=$ E
=dEoA
f-c'allEOHoa
{*
-v
Ea
-toEo
:E
ci
.,=o'O- :l \E6 EE6 E
da..8
=5pEHvtEB e3E 6NCCP?B Ct? b
o6EP dgtr.
.1,q,F
tlov-09-01 I 0:41 ant From-lUC BLAllDlllco 801 678 2224
ocoo
o@Qo
T-555 P.005/012 F-125
cr600
GOOO
oOOe(\r q{ c{ c{
EBBB
COF(DO-gEg
oooc,
oogc
CTAOCtCt
o
oooo
oooo
S
Qo
qo
-Umi{ i=
H\O (\l
@
Ba
oo
N€
3
tr
ld
0-
m
u
I
I
vd
IJtr
U
J
la
6O6l't6lD
N;
.H
NN
g EE
ni ilE $.O q,^
!- o:( (o
E sgI ;fi{ o-J sll.('to> -o
HHTuJ .xz o.7
ItJ o- r
cooor-Froooo
--F?
ct-r 4'e, F'^- tsr(J
F
frld
-l
ETE,i=aDa
UaJ
Ul-{t'(
I
zI
ooeoGl(\t(\N
oooo.Oq,EG'
o-6lOorOEaiFbtD
cr6OO
ooOoo
6ooocrC\t$r({
FFT-
600QEbc)@@
-oCDtllc]Ouiot
--€o
o(:oo
qso()o
23:EE
=z
((l4BEUg
aJr
PlYEoFE
5:.=getsl-Gpa
Grn'+Ee5'E c)E85
EE5
Hoo5EEe!l.ftEStr F-oPFP-gEEs
ETEEa69E
-dEo=E:.6_ +i.
=LLLLE =.:b rJr r>t. , ^ ..,-l
! U) ,tli -U)t A: ' : . . -r..Eo
Yes
EEEo n-a!;-!IEEE
=bo6'UEFCEEEgcota4EH,jo o.F
EE=g=
;i@@cDIt)o
;0dYceo.oo,qEN
EEE0,-oEEEeUEEU
=-aod)(,FFE4EE9c$J€qEE--OEFEELs=i35==yaDu)u)u,
Eo
;:g
.-' E
HE.B
UFF.
A6(\l(oE)z.dEi3no(f)c,r(I,
=-:au?di-oo@
Ei3Aoo
f
OE| ''ie5FO-oiec/
=_Bus edz $58E, U)
6
o
(E,
o
o_?E-oes!=E
C}J Ea
EotuEE -=
al,L
E_S E
<f
s4eEd* p
Ed
6AEL=
l- +rqj,EtD
tE5
at)
I|tTE
.U
E
Ec
0'E
rioe o,
EotUo=tr
{@5--E
=!e,JE.
:zl-naq)tsg sEE E?E X8? ts
6;EP d9o-
@
@t-
c
r0
EoE
2
E
.;
s
Eu
=
Eu
o
EE
D
o
.E
2
E
=
E.7o9o.;UEL.:
oxADHiiots
?E'ay
EBxu
l, .'5E
&E
-Co
q'd
qC
2t3-ts.a=
=_EH.E
6dr=Di-E,go
Et
96
-c5d:6 :-S
o;z
E. ^- ^rnie-.r_:i r:u,
o
:-'. :r, 11
-,
EHdoo
6EQ'E?lL9 s tr
ii r\Eg 6o-
dE$
cg
=q,d. u)
s
o
G,or?G.octst=.{Ea3?-c o=dj, J-
88 Ea.,, +lpo{E* 6
GJ
J
EJ_
..lE
=!q)JN
.Ytr(Lfr'htsg q,
.i6=E.!g!dtEz?= YH?,6ue
@aEe -o9o-{,oF
E=aa a,3 H p
8s
hEE.Dbd,
ch
c,IFI
€
Oac,
(D(,
ci6o o-o.=5.EtsEE6 E
slt Ell ?2?4
oo(eo
oooO
oooON(\Ns.rrrf
8BB8
oOeo
T-555 P.007/012 t-7?5
oocrocl
o(locr0
gLAiIOI NGaI 0 :11 an F rom- I IJC o
c,(rec
(ro(Do
oooONC\C\C{
8ts8
Alr.qrO O i.riFF(6o
oooo
oooo
c2oooo
s{(Jo
oo
grta!=
H\E|(\t€
*
cn
coo(ro(, (\a Sa (\ a!
FTFTF
rlooQQEG'864
<rtO@tJ)ooodriq r-- s? o!
OEF-(Dd)ar@o)
c.zUF:^F
A
14il
Ft4Fri14
tEfaHa
Ja
UoI
U
F
F1
z
3
d4B€OAUg
ui+3rYeptr.H
=i.1 trLl-CGHhd
=u)EsE'Y:PuE8e3Es
;:@
=,z"-iqEBuli
cro(rOO
60000u!lr)ro|{rlr,
oooocld
oocoBgtB6ooo
FTFP
Q(foo
gr$Iotolo
--:dF':aF:rf) rO N at th--- lrl\tt
n(E)FraFE-6Ytf)-c'ddoi
c,cd)
rrlGol&I9aEus6ECo(DqE
Cr- l-
ii- l:5:E' n':t':L "aa ut -',,
n -r'l-ld-:t'';l.J ,t)t't
oc(,
.E
q,
EC'
0
=o
Ee3o
at
Pa,
Lo
E
@-oo
E
=d6-ct
_o :_ELoa;
L(J
+dl 0iccE,ES@=cN90
E E€
P9HoOEEESEPgEFEE({Eq€
FO eF
LLLELbLL)=r=agto)an
See
FEEg EE
EEEE
=Oodt()Fbe6'FEEEiSTE
-o .. ., '. .'6!EEEEaaaa(J
Esdec
F
otl-qda o pFSue REE$5flE ct)
G
0ld.
oLEtro(ra=t.Ec,J E6?00
rn.go6 E
EL@=PE {A-f BiJ
dtr5..8
EE)e
v
:rE;oEB eSE f;,9B Y8? b
z;rt i6Ee d(JrL
ooF
2,=o, * frENE
ai iio=,\*-E
E'EF6th
@c,Ib?EBe4(f1
EB
6'o=oE= 5.Ets6N:E.,(){.
.iasdoo
FbEe'e GU, ('r E-!5:6
-FES R02$eg50,trut
Etr
o
E,oo-?tr(for{=rtEEJ E
-gIotD
d6oo .E
6-c,LsE #ct'ft'6
EJ
J(D5
-_d
JE
!trtLfrotsg e;G1F$ s
-=!(H?, h5e
OoEg d(Jo-
-oq,
F
!G=J=.DdoitsEolr
q=
L !'c, .9EtoE.Do,
:lt.*
o
d
EIo-c
@E
d
O=oq=>rEbE6=E
l{ov-09-0 I
6EEE
o
E
c.B
.J
r)
c
Eo
I
o
UE
c0
3
E
b
69o-:UE
E=ax
e Oo>3S
oEiJE'o 9AR
ho
tlo69EE
xLl'ag
b
.A u,
3_'E
J.oboE
LE(,Caaod
cb
c;
€q
oog6d:E3
,EA;
0
tE.c: r:0.
o,-, i (.r'1:
og6
'Do
C'El-96
?[ootr
= r',8E Es9scqfto(j||a
-o
og,
Eo-Eta.i|!=
=E(5J
.E
SD
ooEodoe0oE9i Jd+ 6rJ
EDl.,8
_b dr)tr.:ctro-fr .ti)
EB eEE Eq B Yg2 ts
ooEP d9L6o
E$ E
t?Fo.3
EGEe
ln6IU) tt6E6>E=ct-5=
6;a o,
e=hEg E
ctoocro
ooooo
oooooo(\a$a(\s{
aoooo
F-€€€@
801 678 2?21
o€ooc,
crooclc,
GOOOOaJ,Gl(\l(\lt\
FFF-'
oooeQN6rr@sl
ooeoo
oooco|r,
T's55 P.008/012 t-t25
€reO9o
NFF?F
ocroocloNN(\I(\l
ooOOOFAcDqre
From-luc BLNDINbl0:4lam o
sI
Uo
E
go
tr \a
FTo
*
cn o(]ooo
ao
t9
8B;*b!-dDo)q,gHts;H
oooeO88888eeee9
oocQO@6FoN; d, t\ i.- aOaoo)ot60l
c.z
d_EoF
Fi
tElil
iiil1
ETtaHe
JU)
Qo
Fl
U
Ei
-]
z
=z,
d,ao-!',HEuJsAFv1 i
=rYooEE5i'FqEE
7u)
Ehf.EEbEXIJE6s
=85
i:t)
ZY BHE.}
U>E-
EEEEEir)ooaDo
t-'.,: t.--
lriti 0
!lOOreEoGIo
FEHE EIIPiSP
EcEr6EEPAbFE
E*6EP€uuul:Uub-uA
= u, ur.u).q,Eo
r.) 'l ,.
' 'l
tes
E€HEI--
E5:*
EEEE
E*AtaP{cr.:ui:UL9LL
PU)U)OU'
5
SpeQGO,EEr{
EEE.8p9PPHoeEEE(,EI-ts6EEq
E}EEEEEEEEt==3fva4rooto
EH6oc
OEl-q6
Ee &Etrt+ Re2 scufotu)
6
d!troLEE
E.\a=BE
OJ Eg
odt6HAA=
a@!PEJdB 6EJ(t
EN
..G
-E d))t
EXf,o
*P !t
6@=RE gq B vts? ki2
6;Ee d9L
hdl
o F =B
=s.Ee4E!t(!H@
at)
(rt
c!og,
@ql
@o
oo
Ei;o oO-=\EE 6OEtr
og8
oc
r=ctEla(t6
ILtr E t
=,eB+ Roo=
CC,EE
a6
0,toILsE
C5eN=EEE'JFE
-qididr
d66Cl4fiE:il-H 6-)a
C)
UJe*
JE!
..8
--L .'lJE.
.!zD,Lhq,+8 EES E"PB XH? b
=o zA;EEP d9(Ladl
=@ia E EEd.r
idxo-=F-g
E(Eh6U'
(DoIEAEB62
et-
E=
tri;oG'
de_x
E.E P;; o i
Nov-08-0 I
Tc
Eo
6
EI
d.I
o
o
Eo
Ito
q
Gtr.(
rn
.Z
E
-6
6.=e.E
rU
!lbH8
E ?';4EFoubfr{u1€
Q=o-Ca
.,,aE
ca d,
.:
-c
,l .gbT;
'u -co€a-9q
e6
fl!:B!E
s1 6AE
o.a-ro
A+Zh
E
a3 n; ^tnr'f-..J; t 'v '
.'?-. n -. r , t --
From-lUC BLNDlllcl 801 678 2224
ooooo6l<e-+
ooocQo$tcv(\l(\l
ESBEE
T-555 P.009/012 F'725
oa5000(\I?-FF
ooO(roFll $l (\a na s{
act(f,oc5Fo666
l0 r4lam
ooo(roNFTFT
olocoo
lr)
ooooe
a6600rO tO tO rO rf,
qoooe
rO
6
tra
Ico
€J
t3n
ooooo6'
(o
CI
Q\oels
a
cz
00,
F.GOOOO6AINAI(\
rffF-
ctctoo(2l\ q, C, q, q,
lr)t}€arrl!oood9r
h&c
Fr
rc
F(
Efeiltts
Fta
Uoj
UFTF
-]
Z
croocrcl
ooO(Jo|{,
aaaaa6Cloooooooo
-+FFr
ta-loO-E6.{lsto600slt,
EEEEE
EEEEEi66o).ool
F.@coll]lQ6i;c.ifcilr) l(, lt! tl stt
r-r<
€qB€
OtGu-9?E
llEsDh!EBt-(llp </2
(nF.EsoEHt:860
EEE
U..P
zv 6r-lgo
=EE'UFF,
.+
E
.utroNqoIC'
o
=u6
g cr-
o-Ets.e6Eo
otrq,
tro6o
!co
9drFCE946o. l-
UEt3u) ct)
oCfi,_e
o
Eo
E
=Eq
E
B{,6
3
U)
sYocq,
Co&l
eo
El2o
E sr-
brotrodiE(J
oeoNeoIlo
ot
oc
E
Pq
E
=ctt
oE
.E
oE
E
ol
6
Eo
E6
2
cn
E
(D
ENeo
-oo
o-
'Jb
ECY
-e :.otsoi;Eo
6gE
(Dc!:AEl-r96 IL9 E d
-i-6e BaE SCg
=(l,dq)
E
o
G,
6
o_EtoN=
EtrOJ .E
-9Ei s
88 +epEEE E
{G
=G5E
-tlFA#u,+g E@-Es g;iB YH?, b52fiE dodzal
=o9'uo & PEd
dA
E.EF(!Ete
U)
d6{
I
rf:!@rllo
ar,6
c,
C)
6
;6 o
e=hEE E
6sa(!
13F
oE
.lt ;
EE E
TJtrov Ro€ E
Eg
=og, u)
G
0,Eo
0-EtC'N=
a,E
9J g
ot=EE !
88 E6,6ts.gE ErEb
CJ
J
q
J..6
JT
.!c
=o-hu)*g E6=E(\lON@t9B s8? B>#
60EP -o9o_oa,
Eog d3 E s
8.8I.co-9tr(dEE
an
{ao?Uf !tB38Zce
EE
ci
;E Oor-rEE E
,oga
c,ct-ot
I?(lFtL,r, .rt E
=!o3$ Pe2 S
Eq
=oE@
Itr
{jil,o(LFEoeN=R"E6Jreo
id id r-
iD(EAA#
ao!@iaJdE g
{
EE E
E1ts-!
EOhdo
e?C'
ct6'o
o(J
5.eog
EE 6E6 E
6,,
..o
!!tl,--Jd
-!(tr(Lfru)BE oA6=FS E€z!zB7 s
I
o@[t O, !dOF(J(J(L
o
@F
llov-09-0 I
llov-09-0 I I 0 :42am
iii-iitr"#ri;'1'r*!,ef;t
LAB ORATORY ANALYTICAL REP ORT
Client:
Project:
Istcnurtional tJrani"* (JSA) Corp
3rd Quarter 200i Sarrpling Event Wbite Mcsa Mill
Lrb Order: C01090647
Report Date: l0/04/01
Lsb ID: C01090647-001
Client Semple ID: WI\'IIVITW4'1
MCL/
RL QCL
Collectioa Date:
DateReceived:
Msrix:
Mcthod
09/20101 1i:02
09taslol
AQUEOUS
Analysis Dete / BY
QualAnaIYses
NON.METALS
Result Units
0.50 E353.2 09126101 19:27 / rwk
12-8 mg/L
Nifogen, Nitsate.}Nirrlte as N
Lab ID: C01090647-002
ClientS*mPlelD: WMIVITW4-Z
Collection Dste:
DateReceived:
Matrix:
0920/01 t0:55
0925/01
AQI,EOUS
Analysis Dste / BYMCIJ
RL QCL MethodRcsult Untts QuaIAnalyses
NON.METALS
Nitrooen. NiEte+Nitrlte as N
0.50 E353.2 Ogr26r0t 19:29 / rwk
1r.4 mg/L
Lab ID: C01090647-003
ClientSamPlelD: WMMTW+3
Collection Date:
DrteReceived:
Matrix:
Method
09120/01 10:30
agnsl0r
AQUEOUS
MCIJ
RL QCL Analysis Date / BYResult Units Qusl
AnalYses
0.10 E353.2 09126/01 19:33 I rwltNON{UIETALS
Nitrogen, NitBte+Nitite Es N mg/L
Lab ID; C01090647404
Client SarnPte ID: WMIvITW44
Collcction Date:
DateReceived:
Meh:ix:
Method
09/20101 10:50
09tzsl0l
AQUEOUS
MCIJ
RL QCL Analysis Date I BY
Result Units QuslAnslyses
NON.T'ETALS
Nirogen, Nit6t€+Nittlte aB N
E3s3.2 09126/01 19:39 / rwx
14.8 ME,L 'r_00
ReDort
DellDition3:
ND - Not dexsctcd st thE rcporting limit
MCL - Maximum connminant lcvcl
RL - AnalYc rePoring lcvel
QCL - QualirY conuot limir
':;'r r i':'l"i ''iIrr-,t_.i:1.._,....
:'l :. '. I- ';: ;'i ti
-..' L-: !.. .' , t '..,'
i,'lif
i- rl
il4.
.:t
tlov-09-01 I 0 :42am
LABORATO RY AT{ALYTICAL REPORT
Client:
Project:
lnternational IJrani'* (USe) Corp
3rd Quarrer 2001 Samplirg EveEtWhite Mesa Mill
Lab Order: C01090647
Report Date: 10/0al0l
Lab ID: C01090647'005
Client SamPle ID: WMIVITW4-5
Collection Date:
DateReceived:
MaEir:
09120/01 l0:10
wlzst01
AQUEOUS
MCIJ
Qual RL QCL Method Analysis Date / BY
Result UnitsAnslyses
NON{NETALS
Nitrogen, NikatE+Niuite as N
o9r28r01 19:41 rru,k0.50z.1O mg/L
Leb ID: C01090647-006
Client SemPleID: WIdMTWffi
Collection Date:
DateReceived:
Matrir:
09/20/01 09:17
09D5l0l
AQUEOUS
MCIJ
Analvses Result Units Qu"l ru a
NON.T/IETALS
Nifogen. NitrBte+Nitril€ as N
E353.2 0S/2U01 1933 / rwk0.10m9a
Lab ID: C01090647-007
Client SarnPle ID: WIvfrITW+7
MCIJ
RL QCL
Collection I)ate:
DtteRcceived:
Matrix:
Metbod
09l2UO1lO:43
o9l25lDl
AQUEOUS
Atrslysis Date / BY
Result Units QualAnalyses
mr26/Ol 19:45 I ruk
0.20NON.I/IETALS
Nit ogen. Nitr8teli{ibite as N 3.38 mg/L
Lab ID: C01090647-008
Client SamPle ID: WIvIMTWTLE
Collection Dstc:
DateReceivcd:
Matrir:
09/20/01 09:48
09tzslor
AQUEOUS
Analysis Date / BYMCL/
RL QCL McthodResillt Urits Qual.Anelyses
NON.MEIALS
Nitrogen, Nikete+Nittite as N
0.10 E3532 09/26/01 18:47 , nrvk
mg/L
RePort
Dcfinitionr:
ND - Not dctcctcd at the r€ponin8 limit
MCL - Maximum conernin3ntlcvcl
RL - AnalYc rcPoning lcvcl
QCL - QuulitY eontrol limit
: I i'[;'.1..1 :'i].
:iil jl; lll ij
t.i.GE i,!il_
: i-, ,3
',a
llov-09-01 I 0:12am 80t 678 2224 T-555 P 012l0t? t'725
i:i"i,ir[ih,*,{8,;?f,.ry,ff il**ti#*'-in',irm",w'
Client:
Project:
LABORATORY AI{ALYTICAL REPORT
International Uranium (USA) CorP
lrd Quaner 2001 SarryIing Eveat Whirc Mesa MiIl
Lab Order: C01090647
ReportDate: l0lM/01
Lab ID: C01090647'009
Client SamPlc ID: WMMTV/+9
MCL/
RL QCL
Collection Date:
DateReceived:
Mstrir:
Method
09B0t0l09:33
09t25101
AQUEOUS
Analysis Date / BYResult Units QualAnalyses
NON.I'IETALS
Nibogen. Nltrete+Nibite as N mE/L 0.10 E353.2 09126/01 19:53, twk
Lab ID: C01090647'010
ClientSamPlelD: wMMNrfW4
Collection Date:
DateRcceived:
Matrix:
O9l2:al$ rl:22
ognsl0l
AQUEOUS
Analysis Date / BYQuet
MCI./
RI QCL MethodResult UnitsAnalyses
NON,METALS
Nluogen. Nit6ta+Nidte as N rnE/L 0.50 E353.2 09126101 19:55 / rwk
Lab ID; C01090647-011
Client SamPle ID: WMMTW4-10
Collection Date:
DsteReceived:
09/20/01 10:10
09l25tot
AQUEOUS
Analysis Date / BY
Matrir:
Qurl
MCIJ
RL QCL MethodResult UnitsAnalyses
NON.METALS
Nimgon. NiuEte+Nitrits as N
E353.2 0S/26101 20:01 / twltmilL020
Report
Dtfinirioas:
ND -Nor deecrcd at thc rcponing limit
MCL - Maxinurn contsminant lwel
RL - AralY. r?orung lcvcl
QcL - Qualiry consol limit
...i -.. 1_-f ?t0r.'ibL rrs.
-1;1 .' :'\ n LIr i-i ,. ' :J':
APPENDIX E
U.S.G.S Manual Chapter 6.5 and Hydrolab Parameter Specifications
Section 6.5
ffiLtsEsr#rytorddtr#
Water Resources--Office of Water Quality
This document is also ovailable in pdfformat:
@Chaoter 6.5.odf
6.5
REDUCTION-OXIDATION POTENTIAL (ELECTRODE
METHOD)
eAilcEm:oiidation potential (as Eh): a Ineilsure of thc
equilitryigrll pote ntial. rclative to the standard lrvdrogen
-
electrodc, clevcloped at the interfac:e bet$'een a noble metal
electrotle ?ltld xn aqLlcotls solution containing electroactivc redox
spccies.
*Section 6.5.1
tReturn to Contents Ibr 6.5--Reduction Oxidation Potenlial (Electrode Method)
tReturn to Chapter .{6 Contents Paee
f Return to Field Manual Complete Contents
f Retum to Water Ouality Information Pages
Maintainer: Offrce of Water QualitY
Webversion by: Genevieve Comfort
Last Modified: I6JUNE98 ghc
In contrast to other field measurements, the determination of the reduction-oxidation polentjal of water
irefened to as redox) should not be considered a routine determination. Measurement_of redox potential,
l"-r-.fU.a t.r. * Eh measurement, is not recommended in general because of the difficulties inherent in
itr Goi.tiral concept and its practical measurement (see "Interferences and Limitations," gi!]I!l)n
6.5.3.A).
equilibrium values.
- (Eh) are valid only when redox species- are (a) electroactive, qld (b) present in the
solution at concentrations of about l0{ molal and higher. Redox species in natural
waters generally do not reach equilibrium with metal electrodes.
procedures for equipment calibration (test procedures) an{ Eh measurement are described in this section
i"iit. ptutinum ileitrode only. Althoirgh the general guidance given here applies to other types of redox
.i..t d.r (such as gold and giassy carb_-on electrodes), it isnecessary toconsult the manufacturer's
instructioni for .o.rict use olthe ipecific electrode selected. Concentrations of redox -species qrn be
a"i.r-i".a by direct chemical analysis instead of using the electrode method (Baedecker and Cozzarelli,
ree2).
I of I I l/08/2001 4:24PM
Section 6.5.1 httR://water;.gov/owq/FieldManuaVChapter6/6.5. I .html
erffi$rcbfor*rP#
Water Resources--Office of Water Quality
This document is also ovailable in pdfformat:
@Chaeter 6.5.1.edf
6.5.1
EQUIPMENT AND SUPPLIES
The equipment and supplies needed for making Eh measurements ysilg the platinum electrode method
*" firi"a'i" table 6.5-i. Eh equipment must belested before each field t ip *4 cleaned soon after use.
Everv instrument system u.e,i for Eh measurement must have a log book in which all the equipment
;;;iir;a "uiiUi"tlo"r
or equipment tests are recorded, along witf, the manufacturer make and model
numbers and serial or property number.
Electrodes. Select either a redox-sensing combination electrode or an electrode pair (a platinum and
reference electrode). Use of the correct electrolyte filling solution is essential to proper
*"ur.rr.-ent and is specified by the electrode manufalturer. Orion Com^pany, for examplg,
.ecommends selection 6f a fillingsolution to best match the ionic strength of the sample solution, in
order to minimize junction potentials.
6.5-r.and supplies used for Eh rneasurernentsr
[rnV, mllllrml[ 4 plus or minuq; plilcm, mlcmrlerrenr per centintrr at 25 degmes felrlur]
/ Mlllirrplt metu r or pH met€r wtth mllllvolt readlng capabllity, prefe rably wlth automatlc
tempsratura csmpensEtor;0.1-mV sensltlvlty; ecale to at laast*1,400 rnvj BNC connector
(see lnst.rumentspsclftcadons forpH mstem,6.4.1 in NFM 6.4)
/ Bedox electrodos, elthsr lal platlnum and rgfarence electode (calamel or silvsr:sllvsr-
ch lorids) or (bl combtnation slectrods
I Elsctrode f illlng solutlons ( Ipfer to manufacturer's sFaclfieatlonsl
/ Thprmometsr lliquid-in-glass or thermlstor typel, csllbratad lees NFM 6.1 for
selsctlon and callbratlon crlter'laF-lor use wlth mllllvolt meters wiihoui temperature
compsn.gator
/ Flowthrough cgllwith valws, tublng, and aeeesories Impermeable to air (for use
urith pump systemf
/ gampltng EYstsm: (11 ln sltu (donrnholsl msasurtment lnstrumsnq or
(?) submersibls pump lused dlth closed-syEbm flourrthrough call). Pump tubing
must be "lmpormeable" to o<Ygen.
l ZoBgll'e soluflon
/ Aqua rogla or manufacturor's recommcndsd slgctrode-cle aning solufton
/ Llqutd nnnph os p hah laboratory-grada detergent
I Mnd abraelvo: crmus cloth or 40& to 600-grlt wetldry Carborundumn pope r
/ Deionlzsd ruEtsr (maxlmum conducfvltt' of 1'0 p$rlcml
/ Botls, squsszs dlspenser for dslonizsd uratsr
I Safqw equlpment gloves, glasses, apron, chemlcEl splll kit
rr Faper tlssues, dlsposable, llnt ftes
/ Waste-disposal contalner
tModily thia list b mEEf, Bpsific needs of the field afio.t.
I of3 I l/08/2001 4:25 PM
Section 6.5.1
common use.
reference electrodes in one body (the OrionrM brand is used for purposes of illustration
only).
ZoBell's solution. ZoBell's is the standard solution for testing redox instruments. ZoBell's solution can
bi obtained from the QWSU in Ocala, Fla., or it can be prepared fresh_(see !elow). Quinhydrong^^_
iolution is sometimes irsed but is not recommended because it is significantly less stable above 30"C and
its temperature dependence is not as well defined as that of ZoBell's.
ZoBell's solution consists of a 0.1 molal KCI solution containing equimolal amounts of KoFe(CN)u *d
KrFe(CN)u. ZoBell's is reported stable for at least 90 days if kept chilled at 4"C. To prepare ZoBell's
solution:
1. Weigh the chemicals (dry chemicals should be stored overnight in a desiccator before use).
1.4080 g K.Fe(CN)6'3H20 (Potassium fenocyanide)
f.0975 g K,fe(CN)u (Potassium ferricyanide)
7.4557 g KCt (Potassium chloride)
2. Dissolve these chemicals in deionized water and dilute solution to 1,000 mL.
3. Store the solution in a dark bottle, clearly labeled with its chemical contents, preparation date, and
expiration date. Keep the solution chilled.
httR://wateSs.gov/owq/FieldManuaVChapter6/6.5. Lhtml
Aqua regia. Aqua regia can be used forcleaning the Eh electrode (check the_electrode manufacturer's
r.do.*"lrrdatioirs). Piepare the aqua regia at the-time of-use--do not store it. To Plepare.the aqua regia,
mix I volume concentrited nitric acid witfr : volumes of concentrated hydrochloric acid.
6.5.1.A
MAINTENANCE, CLEANING, AND STORAGE
Refer to 6.4.t of NFM 6.4 on pH for general guidelines on meter and electrode maintenance, cleaning,
and storaE-Jolow the rnanufactureris guidellnes on-the operation and maintenance of the meters and
electrodei, and keep a copy of the instruction manual with each instrument system. Keep the meters and
electrodes clean of dust and chemical spills, and handle them with care.
Maintenonce
Keep the surface of noble electrodes clean of coatingror 1qit.r"tul deposits. A btightly polishedmetal
surface prevents deterioration of electrode response. The billet-tip is more easily cleaned than the wire
tip on the platinum electrode. Condition and maintain the Eh electrodes as recommended by the
manufacturer.
2 of3 11/08/2001 4:25PM
Section 6.5.1 httn//wateas. gov/owqff ieldManuaUChapter6/6.5. I .html
Cleaning
Keep the O-ring on electrodes moist during cleaning procedures.
combination electrode, rinse the outside of the electrode with deionized water.
> If particulates or precipitates lodge in thg space between the electrode sleeve and the
inner cone of sleeve-type electrode junctions, clean the chamber by flushing out the
filling solution (the precise procedure to be followed must come from the electrode
manufacturer).
> To remove oily residues, use a liquid nonphosphate detergent solution and polish the
surface with mild abrasive such as coarse cloth, a hard eraser, or 400- to 600-grit
wet/dry CarborundumrM paper (Bricker, 1982).
about I minute. Do not immerse the electrode for longer than 1 minute because aqua
regia dissolves the noble metal as well as foreign matter and leads to an erratic electrode
reiponse (Bricker, 1982). Soak the electrode several hours in tap water before use.
TECHNICAL NOTE: Disassembly of the electrode is not recommended for routine cleaning and should
only be used when absolutely needed.Additional cleaning and reco_nditioning procedures are discussed in
NFM 6.4 and in American Pirblic Health Association and others (1992), American Society for Testing and
MAaffi (1990), Edmunds (1973),Adams (1969), and Callame (1968).
Storage
For short-term storage, immerse the electrode in deionized water to above the electrode junction and
keep the fill hole plugged to reduce evaporation of the filling solution. The recommended procl{ures for
long-term storage of electrodes vary with the type of electrode ald by man-ufacturer. The OrionrM
combination electrodes are stored dry after rinsing precipitates from outside of the electrode, draining
the filling solution from the chamber, and flushing it with water (consult the manufacturer's cleaning
instructions). The electrode connector ends must be kept clean. Clean them with alcohol, if necessary.
Store the connector ends in a plastic bag when not in use.
*Section 6.5.2
ORetuln to Section 6.5
tRetum to Contents for 6.5--Reduction Oxidation Potential (Electrode Method)
tRetum to Chapter ,4'6 Contents Paee
f Return to Field Manual Complete Contents
*Return to Water Ouality Information Pages
Maintainer: Offrce of Water Quality
Webversion by: Genevieve Comfort
Last Modified: I6JUNE98 ghc
3 of 3 I l/08/2001 4:25 PM
Section 6.5.2 httR ://wate;s. gov/owqff ieldManuaUChapter6/6. 5.2.hffn1
&rsGsr#krffilrfl
Water Resources--Office of Water Quality
This document is qlso ovailable in pdfformat:
@Chaeter 6.5.2.edf
6.5.2
EQUIPMENT TEST PROCEDURE
Eh measuring systems can be tested for accuracy but they cannot be adjusted. Eh equipmen! ryuslbg
tested, eitherln the laboratory or in the field, against a ZoBell's standard solution before making field
measurements. In general, field testing with ZoBell's is not required, but the protocol used will depend
on study needs.
> Before using, check that the ZoBell's solution has not exceeded its shelf life.
ZoBell's is toxic and needs to be handled with care.
ZoBell's reacts readily with minute particles of iron, dust, and other substances,
making field use potentially diffrcult and messy.
The Eh measurements are made by inserting a platinum electrode coupled with a reference electrode into
the solution to be measured. The resulting potential, read directly in millivolts from a potentiometer
(such as a pH meter), is corrected for the difference between the standard potential of the reference
electrode lieing used at the solution temperature and the potential of the standard hydrogen electrode
table 6.5-2).
TECHNICAL NOTE: Er.1is the whole-cell potential of the reference electrode in ZoBell's solution.
8."1= 238 mV (saturated KCl, immersed with the platinum electrode in ZoBell's at25"C) is the measured
potential of the silver:silver-chloride (Ag:AgCl) electrode;
Er.g= 185.5 mV (saturated KCl, immersed with the platinum electrode in ZoBell's at25'C) is the measured
potential of the calomel (Hg:HgCl) electrode;
Eo :430 mV is the standard electrode potential of ZoBell's solution measured against the hydrogen electrode
at25"C.
Half-cell potentials for the calomel, silver:silver chloride, and combination electrodes are shown in tablc
6.5-2. Table 6.5-3 provides the theoretical Eh of ZoBell's solution as a function of temperature. For
those temperatures not shown on tables 6.5-2 and 6.5-3, interpolate the values. Add the value
corresponding to the solution temperature to the measured potential electromotive force (emf
measurement).
I of5 I l/08/2001 4:26PM
Section 6.5.2
To test Eh equipment, complete thefollowing 7 steps and record results on the Eh data recordform
for the equipment test procedure (fis. 6.5-l):
1. Follow the manufacfurers' recommendations for instrument warm up and operation.
. Set the scale to the desired millivolt range.
. Record the type of reference electrode being used.
2. Unplug the fill hole. Shake the electrode gently to remove air bubbles from the qenli-1g tip of the
eleitrole. Check the level of the filling solution and replenish to the bottom of the fill hole.
. The filling solution level must be at least 1 in. above the level of solution being measured.
. Use only the filling solution specified by the manufacturer.
3. Rinse the electrode, thermometer, and measurement beaker with deionized water. Blot (do not
http ://waterff s. gov/owq/FieldManual/Ch apter 6 / 6.5.2.htni
T*IG 65-4. ltandard half-tell potentirls sf selected reference electrodes
as r function of ternpertture rnd potarrlum chloride rtfereact-solution con-
centration, in votts
[Liquid-junction potcntial included*multiplylnlts by 1 ,000 te corrrrrt ts millivolts; KCl, Potasium
chloride; Ternp !C ternperature in
rM 6dili.d trbllr trfi{muli t 1B7ll.t}lodilid Irm Ei{l!* (Ig7q.
9Nodilrm t IgrI, ild D.l( N6rd,rtotr! U.3. GEbl6gh.l surrrcy, rraller cdmmlri.. tggi; !lr! httr'Bll
Fdtrilunlr inlErlitrd trorrl N6tdilrofttlgirft nlt ri6mh*r$rd n}llrr rhrnrls wlril tidftr glhLiu (lE6*
;lcd in rll lllil t r6tx. lrrrruil ptoyBEd bt $r O]ion Cbflprhy bGt*Lrc Nordlro mt Ytlult v,!fr drrEloPCd
3lrdllailly br rt! ori6Ftx 9&;B Gdu.ladrtale rld p,6vu* glEflil Ednof rd Fltctlth.{Otlontq ft}ilrtr.iuttr rrdrinffardi tu. b r i'fi+ll *nluiohi {yllh l!l*l lanie rlIihoth 6edlfip 0.?
tu6li?Fur6Empl*,r6d.rriiri.brri{t l(f,.t-rrrufi{EdrilllhoialtttdnIl}l.llyiuFpll!d*lhlltOr16Bulrr6d(l
gt m rk6tludnl rndtlr hll.cillpd6illilirho/yiltboE brrl; tilvcr:iilrcrchlorldnr'|.uIii.d l0l b&rohcrt
*laitrbd*.
0.26D 0.268 0.154
8.26I
0.t67 0.161 0.3{8
D.?!E 0.250 0.llG 0.2/it
0.28t B.rr8 o.lll D.z{t
0.?38
D.SCC 0.1*t 0.?s o.lsl
o.?fi) 0.215 D.?t4
B.?16 0.!tl 0.?m
t}.tts o.t{B 0.lll(
D_l$t D.?6 tl.19g
0.105 rI.281 8.tgt
0.?0e D.rs, 0.lm
o.rEB 0.IB 0.lgr
Table 6.5-3, En of ZoBell's solution as a funf,tion
of temoerature
lFrom Nlordrtrom (1977) "C reer Celslur; mV, millivol
l0 {6?
t: {63
l4 +51
16 {53
It 448
tn 441
:: {38
$t +11
zr +3m
?6 ,+2ff
3t 423
]0 4lt
i! 416
3{ .{O?
:6 "l0t
lff :ff'
4A 383
2of5 I l/08/2001 4:26PM
Section 6.5.2 http ://watees. gov/owq/FieldManuaUCh apter6 I 6.5 .2.html
wipe) excess moisture from the electrode.
4. Pour ZoBell's solution into a measurement beaker containing the electrode and temperature
sensor.
. The Eh electrode must not touch the bottom or side of the container.
. Add enough solution to cover the reference junction.
. Allow 15 to 30 minutes for the solution and sensors to equilibrate to ambient temperature.
5. Stir slowly with a magnetic stirrer (or swirl manually) to establish equilibrium between the
electrode(i) and solutlon. Switch the meter to the millivolt function, allow the reading to stabilize
(+5 mV), and record the temperature and millivolt value.
6. Look up the half-cell reference potential for the electrode being used (lablg-6i2). Add this value
to the measured potential to obtain the Eh of ZoBell's at ambient temperature.
. If the value is within 5 mV of the ZoBell Eh given on table 6.5-3, the equipment is ready for
field use. (See the examPle below.)
. Refer to section 6.5.4 if the value is not within 5 mV of the ZoBell Eh.
7. Rinse off the electrodes and the thermometer thoroughly with deionized water. Store the test
solution temporarily for possible verification.
EXAMPLE:
Example of the equipment test procedure using a silver:silver chloride-saturated KCI (Ag:AgCl)
electrode.
Eh: emf + E,",
where:
Eh isthe potential (in millivolts) of the sample solution relative to the standard hydrogen
electrode,
emf or E.",r,,rdis the electromotive force or potential (in millivolts) of the water measured
at the sample temPerature,
E*is the reference electrode potential of the ZoBell's solution corrected for the sample
temperature (1ablc 6.5-2).
a. Follow steps l-5 (above). For this example,
. Measured temperature :22"C
o entf= 238 mV.
b. Check table 6.5-2. The interpolated reference potential :202 mV for Ag:AgCl-saturated
KCI at 22"C.
c. From Eh: emf + E,r,
Eh (ZoBell's) = 238 mV + 202 mV: 440 mV.
3 of 5 ttl08l200t 4:26PM
Section 6.5.2 httn //watef. gov/owq/FieldManuaVChapter6/6. 5.2.hfrnl
is within +5 mV of 438 mV from table 6.5-3.
ready for field use.
d. Check table 6.5-3. The test value of 440 mV
Thus, the equipment is functioning well and
Eh Data Resord
Equipm ent deeeription
Equipnxnt Test Proredurc
end idantifrcstion (model gnd gerial andor W num bsrl:
ItrEtEr
Eh Elsctrsde Rafsrsnce electrsda
ZoBell'a solution: Lot $
---
DEtal prgFarad --- upirad
Eelore aam ple Eh: Aftar sam ple Eh:
'1. Tempsreturg ofZoEEll'ssolution; T =
(rfter equilibration to cm bient:tam perature)
2. Obgsn ed potantial (in millivoltgl of ZoEell's
relative to m aesuring alectroda, at
sm bient tom parBiur€ (E*."*rr*d or gn0l cml =
3. Referance elactrode potantial (in millivoltal
at am bient tsm psrsture from tablp 8.5-3
(Er6h Ersf=
*. Celculeta Eh of ZoBsll's1 l[ = srrnf+Er"t Eh=
5. ThsorEticsl potential {in millivolts}
sf ZoBall's at am bient tam F€rEfurE
frsm tabls t.5-3r Eh (thaorstical)=
G. Subtrsct calculgtpd Eh from Eh thaoreticgl
(Zoball'sl(rtep 4 m inus atap 5l aEh=
7. Chesk: ig *Eh rryithin * 5 mV? Obesrvstians:
Fburc 6.!I-1. Eh drtr record: equlpment test procedure.
*Section 6.5.3
*Return to Section 6.5.1
f Return to Contents for 6.5--Reduction Oxidation Potential (Electrode Method)
f Return to Chapter A6 Contents Page
SReturn to Field Manual Complete Contents
SReturn to Water Ouality Information Pages
Maintainer: Offrce of Water QualitY
4 of5 11108/2001 4:26PM
Section 6.5.3
eusGsrchorfu:dr*r#
httn ://wateJs. gov/owq/FieldManuaUChapter6/6. 5. 3.html
Water Resources--Office of Water Quality
This document is also available in pdfformat:
@Chaoter 6.5.3.odf
6.5.3
MBASUREMENT
To obtain accurate results, it is necessary to prevent losses and gains of dissolved gases in s_olution.
Co"*tt NFM 6.0 for information on pr6cauiionqand ge.ne11l procedures used in sample collection and
NfM O.2Ei alescription of the flowthrough cell used in dissolved-oxygen determination (the
spectrophotometric method).
- significantty wittrln minutes oi even seconds after the collection of a sample.
goal. Iiusing a flowthrough chamber or cell:
Use tubing that is impermeable (relatively) to oxygen.
Channel the sample flow through an airtight cell (closed system) constructed
specifically to accommodate redox or ion-specific electrodes, temperature, and
other sensors.
Connections and fiuings must be airtight.
Purge atmospheric oxygen from the sample tubing and associated flow channels
before measuring Eh.
Measure Eh in situ with a submersible instrument or use an airtight flowthrough system.
First:
l. Record the type of reference-electrode system being used (fis. 6.5-1).
2. Check for the correct electrode filling solution. If working in very hot or boiling waters, change
the reference electrode filling solution daily.
3. Keep the electrode surface brightly polished.
TECHNICAL NOTE: Temperature determines the Eh reference potential for a partic^ular solution and
electrode pair, and may affeit the reversibility of the redox reactions, the magnitude of the exchange current,
I of 5 I l/08/2001 4:28 PM
Section 6.5.3 httR://wateS.gov/owq/FieldManuaVChapter6/6. 5.3.html
and the stability of the apparent redox potential reading. The observed potential of the system will drift until
thermal equilibrium is established. Thermal equilibrium can take longer than 30 minutes but it is essential
before beginning the measurements.
Next, measure the Eh and complete thelieldform (ftg.6JQ):
l. Select an in situ or closed-system sampling method. Immerse the electrodes and temperature
sensors in the samPle water.
. In situ (or downhole)-Lower the sensors to the depth desired and follow the
manufacturer's recommendations.
. Closed-system flow cell--Check that the connections and sensor grommets do not leak, and
that the water being pumped fills the flowthrough cell.
2. Allow the sensors to reach thermal equilibrium with the aqueous system being measured and
record the time lapsed.
. It is essential that platinum electrodes be flushed with large volumes of sample water to
obtain reproducible values.
. Record the pH and temperature of the sample water.
3. Switch the meter to the millivolt function.
. Allow the reading to stabilize (+5 mV).
. Record the value and temperature (see the technical note that follows step 7. below).
. Stabilization should occur within 30 minutes.
4. Take readings of the sample temperature and potential (in millivolts) every few minutes for the
first l5 to 20 minutes.
. It is best to stop the flow of the sample while the reading is being taken to prevent
streaming-potential effects.
. After 15 to 20 minutes, begin to record the time, temperature, and potential in plus or minus
millivolts about every l0 minutes. Continue until30 minutes have passed from the initial
measurement and until the measurements indicate a constant potential.
5. After the measurements have been completed for the day, rinse the electrode(s) thoroughly with
deionized water.
If field calibration is required for a study,
a. Place the electrode(s) and other sensors in ZoBell's solution that has been equilibrated to the
temperature of the aqueous system to be measured. The electrode(s) must not touch the
container, and the solution must cover the reference junction.
b. Allow the electrode to reach thermal equilibrium (15 to 30 minutes).
c. Record the potential reading.
d. Follow steps 5-7 of the equipment test procedure in section 6.5.2.
6. Record all data and calculate Eh (see EXAMPLE, (section 6.5.2).
2of5 I l/08/2001 4:28 PM
Section 6.5.3 httn//wateas.gov/owq/FieldManuaUChapter6/6.5.3.htm1
Fill out the Eh data record form for field measurements frg.6-5-2).
Eh Data Record
Field Mearuremgnts
Field Eh Field Eh1
!. Tamperatu ne and pH of syrtem messuredl T =
-
PH=
2. Time to thermal equilibration;
Mpasurement began at
Measurement ended at
3, Msasursd potantal of wetsr sYstsm (m\llr ernf =
lf, RefErEnco elsctrodE pohntial mV of ZoBsll's
at srmple temperaturel E61 =
-5. Celculate samPle Ehl errf + E oy
(add step 3 + steP tll:Eh =_
5" Figld mggsurementr should agrce within about 10 rrM'
0bseruations:
tThs cscon nEaaurEnEnt i3 rEGaEEry fut qrelity contml.
Flgurr 6.5-4. En data record: field rneasurements.
7. Quality control--Repeat the measurement.
TECHNICAL NOTE: The response of the Eh measurement system may be considgryply slower than that of
thi pH system and that response also may be asymmetrical: the time required for stabilization may be longgl
*frJ"m6uing from an oxidizing to reduiing environment or vice versa. If the readings do not stabilize within
about 30 miriutes, record the po-tential and iis drift; assume a single quantitative value is not possible- If an-
estimate of an asymptotic finil (hypothetical) potential in such adrifting measurement is desired, refer to the
method used by Whitfield (1974) and Thorstenson and others (1979).
6.s.3.A
INTERFERENCES AND LIMITATIONS
Measurements should not be carried out without an awareness of the interferences and limitations
inherent in the method.
3 of 5 I l/08/2001 4:28 PM
Section 6.5.3 httR://wate3s. gov/owq/FieldManuaVChapter6/6. 5. 3.html
-
briige, or internal electrolyte, which can cause drift or erratic.performyc? when
refeience electrodes are used (American Public Health Association and others, 1992).
- th; meisurement if the electrode is left in sulfide-rich water for several hours
(Whitfield, 1974; Sato, 1960).
-
solufions containi-ng chromium, uranium, vanadium, or titanium ions and other ions that
are stronger reduciig agents than hydrogen or platinum (Orion Research Instruction
Manual, written commun., 1991).
- with ZoBell's. An insoluble blue precipitate coats the electrode surface because of an
immediate reaction between ferro- and ferricyanide ions in ZoBell's with ferrous and
ferric ions in the sample water, causing erratic readings.
Many elements with more than one oxidation state do not exhibit reversible behavior at the P]atinum
electiode surface and some systems will give mixed potentials, depending on the pres_ence of_several
different couples (Barcelona and others, tggg; Bricker, L982,p.59-65;Stumm.and Morgan, 1981, p'
490-495; Bricker,'1965,p.65). Methane, bicarbonate, nitrogen gas, gulfate, and dissolved oxygen
generally are not in equifibrium with platinum electrodes (Berner, l98l).
TECHNICAL NOTE: Misconceptions regarding the analogy betweenEh (pe) agd pH-as master variables
and limitations on the interpretati6n of Eh ireasuiements are i:xplained in Hostettler (1984), Lindberg and
Runnells (1984), Thorstenson (1984), and Berner (1981). To summarize:
(l) Hydrated electrons do not exist in meaningful concentrations in most aqueous systems--in contrast, pH
i"i."i.ntr real activities of hydrated protons. Eh may be expressed a.s. pe, tlrg negative logarithm.of the
elictron activity, but conversjon to pi offers no advantage when dealing with measured potentials.
(2) Do not assume that redox species coexist in_ equilibrium. Many situations have been documented in which
diisolved oxygen coexists with hydrogen sulfide, methane, and ferrous iron.
. The practicality of Eh measurements is limited to iron in acidic mine waters and sulfide in waters
under- going sulfate reduction.
. Other redox species are not suffrciently electroactive to establish an equilibrium potential at the surface
of the conducting electrode.
(3) A single redox potential cannot be assigned to adisequilibrium system,lgr can it be assigned to.a water
iainple w'ithout specirying the particular redox species towhich it refers. Different redox elements (iron,
*ungunes", sulfu1r, se6niIm, aisenic) tend not to reach overall eq-uilibrium in most natural water systems;
therJfore, a single Eh measurement generally does not represent the system.
6.5.3.B
INTERPRETATION
A rigorous quantitative interpretation of a measurement of Eh legyireq interactive access to an aqueous
speciation code. Exercise caution when interpreting-a measured Eh using the Nernst equation. The
Nemst equation for the simple half-cell reaction (Marl: M'(,n) + e-) is
4 of5 11108120014:28 PM
Section 6.5.3
where:
4Section 6.5.4
f Return to Section 6.5.2
SReturn to Contents for 6.5--Reduction Oxidation Potential (Electrode Method)
SRetum to Chapter ,4'6 Contents Page
SReturn to Field Manual Complete Contents
SRetum to Water Ouality Information Paees
Maintainer: Office of Water Quality
Webversion by: Genevieve Comfort
Last Modified: 15AUG00 imc
httn //waterf s. gov/owq/FieldManuaUChapter6/5. 5. 3.html
Eh = Eo + 2.303fiI/nF log (attu*,/ a'"*J
n : gal constant;
T = ternperature, in degrees kelvin;
fl = nurnber of electrons in the half-cell rerction;
F = Saradty constrnt; rnd
at*orread. o,,**,= thermodynamic rctivities of the free ions Mr,r,
rnd Ml*,,and not simplythe anrlyticrl concen-
:::lt:;i":ltotarMinoxidationstrteslandtrl'
Measurements of Eh are used to test and evaluate geochemical speciation models, particularly for
suboxic and anoxic ground-water systems. Eh data can be useful fol gaining insights oq qe evolution of
water chemisty and-for estimatingihe equilibrium behavior of multivalent elements- relative !o pI! for
an aqueous syjtem. Eh can delineate qualitatively strong r9q9x gradients; for example, those found in
stratified hk6s and rivers with an anaerobic zone, in an oxidized surface flow that becomes anaerobic
after passing through stagnant organic-rich systems, and in mine-drainage discharges.
5 of5 11108120014:28 PM
Section 6.5.4 http ://waterts. gov/owq/IieldManuaUChapter6/6. 5.4.html
*r&E!
Water Resources--Office of Water Quality
This document is also available in pdfformat:
@Chaoter 6.5.4.edf
6.5.4
TROUBLESHOOTING
Contact the instrument manufacturer if the suggestions in table 6.5-4 fail to resolve the problem.
Check the voltage of the batteries.
Always start with good batteries in the instruments and carry spares.
Tablc 65-4. Tmubleshooting guide for Eh meuurtment
[:t, plus or minury mY, millirmltry etal, electromotive force]
Check m gtar oPsrationl
' Use ehorting leed to estEblish mEter reeding at zero mV.
. ChecklteplEce bBtteri6a.
' Cheek egeinst beckup m eter.
Check alsctrodE opemtion:
' Checkthgt elstrode ref€rance solulion lgvel ie to the
fill hole.
, Plug questiongbla refersncE elsstradg into rsferEnce
almtroda jack and anuther rahrance glac'troda in good
working srdsr of the eam € typs into the indicator
alxtrode jack of the metrr;immgree elestrodesin a
poteesium chloridegolution. racord mV, rinae off snd
imm arae Bl*trodag in ZoBall'a eolution. Tha two mV
readinga ghould be 0 *,5 mV. lt ueing diffarant el*
trodea (Agr4gCl and Hg:HgCl2l, resding ehould bg 44 *
5 mV fur a good refurencs elEtroda,
' Polish platinum tip wth mild ebraaiva lcrocus cloth,
herd aregar, or a 400-60fgrit welUry Carborundumlil
paparf, rinre th oroughly with deioni:ad weter' Uae a
l(im,rriperll if lheee abreeivsa erc not evailgble,
. DrEan snd rEf ll refsr€nc€ al*trolytE chamb6r.
. Oi*onngct rpfurancs Elactrsde, Drain end rafill glEtre-
lyte chEm bBr wth corrst filling solution, Wipe ofi
connsstore on Elrtrode Bnd m Etsr. Uae baekup
eltrtrodg to chackths st rrl
, Read drnfwith fiesh aliquot of ZoEEll'E Bolution;
prepere fresh ZoBall's aolution if poeeibla-
'RBcondition Blffitr6de byclaening with EguE r€giE End
ranawing filling Eolution---ltie ls e leC rmi.
Eh of ZoBsll's golution
erceade theoratieal by
t5 mV
B<easeive drift
ErrEtic psrfsrmBnce
Poor responee whan
using pairad alEstod€s
I of2 4:28 PM
Section 6.5.4
*Section 6.5.5
SRetum to Section 6.5.3
OReturn to Contents for 6.5--Reduction Oxidation Potential (Electrode Method)
OReturn to Chapter ,46 Contents Paee
tReturn to Field Manual Comolete Contents
SReturn to Water Ouality Information Pages
Maintainer: Of,fice of Water Quality
Webversion by: Genevieve Comfort
Last Modified: 16JLINE98 ghc
httn //wate3s. gov/owq/FieldManuaVChapter6/6. 5.4.html
2 of2 I l/08/2001 4:28 PM
Section 6.5.5
&tffisrffitrrclrlkrrlil
httn//watejs. gov/owq/FieldManuaVChapter6/6.5.5.htm1
Water Resources--Office of Water Quality
This document is also wailable in pdfformat:
@Chaeter 6.5.5.odf
o.5.5
RBPORTING
Report the calculated Eh in mV to two significant figures.
Potentials are reported to the nearest 10 mV, along with the temperature at which the measurement was
made, the electrode system employed, and the pH at time of measurement.
clChapter 6.6 Contents
tRetum to Section 6.5.4
ORetum to Contents for 6.5--Reduction Oxidation Potential (Electrode Method
OReturn to Chapter ,4.6 Contents Page
*Return to Field Manual Complete Contents
tReturn to Water Ouality Information Pages
Maintainer: Offrce of Water Quality
Webversion by: Genevieve Comfort
Last Modified: I6JUNE98 ghc
I of I I l/08/2001 4:28 PM
Section 6.5.2 httn //waterJ.gov/owqff ieldManuaVChapter6/6' 5.2.html
Webversion by: Genevieve Comfort
Last Modified: I6JUNE98 ghc
ll/08/2001 4:26PM
LI/OL/?OOL Tf,ti 11:07 FAI
'eEOe
Dc
IE EiE Ig r
Ei iEe El n
Fg EiE ii s
E iiE $i 3.
EE*aE5 BA Ie-= 3E a
EEEE$AE5 tsr8 Ge 5
EIEEEg}p lrh" q* A*i;ieqE=stEE E *
A dr- A =;g9l1ilEEB,iA E t.a EIir =
v
rF EFE 5_
gieE
E
EAAg E
EE3i i
.3 ts-=H *;Eiq FA;Es is e:ts s-tr EEn EgEEE i
HIEE E{ 8-€ e.J r?d E3 6-o *g E-: a-3 EX tEB gB 3 a
"94aoq Ei.f i
IEE E$; sE -eE-: aP q 9L
a?i EEfl E; i B
E{ s r, i EAE c
aE 1 E E EiE Ege = g d 5=E 6F- a- d Q e*6qAEgE?:E+Es*=iE*Btr.8
B;EBlEggE;a * A tr E:E.1
[$=tEF;[iES, i 5 E Fs,E g
BE 3 ,= i eig r
eTaE-i.=#?
E1EgE E?gfsEE*E ire
;-A E E ; iE E-
Ei ?g egE E
HEg$E E€E
EEE*EeAE*-EEEE i$EEg{E BBr5E i = =-:
?er ; r r[ E,eSEd s
is ? EE e"=9- N P=r jdE6 E-Be[ e*e3 E -18
q"E ? [tAE H+tss ss-se 'rfl
o-E6 qFcE +-:fr E.EzaE73 a,'o, ;Efr== tE.t< o 2at o6
=Y 9E
E B P?EE HsqEfE iEaF HE
E = -e
iJ H + L
EEEEg
'"H 5 B-
€E i s,o :-E3 r 5-
=o d 9Z'=FEtEiElEt aee 3 sf,=38l9 + Fn_6 3 BsB 7 AP,E5Aeie g5;E flB6Bf,=E E
=
6g8EE3{t8El
=2qs{qorgE:
=aq'atsflE$aEqcqF$€ 3
df{dog,
=+=#o+E=6rd
3 ieoi:JE5"€13 EJO-9f xB8{q:9.
D!c
doo>-q:84FgE
Ooo5a?qtzo_1;94
--tJoris8
10rggat36O
665Qo_888ea-oo5de3
BEo?
=E5P
3a
)ldlvlo!slnlclBI
7tilIalel:lEli5 I,Tl'at
rBIEIEIEI.aI'o.e
iB--p
rG
:E
looP
t3t€-1
Fc_toiP
EE.?o
1?
ar,a
-o
6JE*illio
Jr{aQe
8U
SEgB
d-a=
@J
E$
6=oo6'3oob=6eYd)
5
B
=oot
Eo3?
5g
&DiE-etog
Eilo
3.6
=oo
ItI
a-i
643
To6o
el
BI
ll*r
E;
=Q.}L
iZ TJii EalE 5o
is [Elr ac.E Ailr* 5g
ir E Aic :t
lE ?i,.9 iB
Qo_
"9 :RJ = -.;s
E3 EE
-, ir a
r 6 ()b
aB E'Eio- EE!fl 3EqE :Iq: EE*E gE
H3 i;
AE =-i,
EE 5:q4 e:
_ f a; Et:r alect
r I.Fg!D Qi
a ,_!Fci46.sH:
F dr
"F {l
=f6'8ir !.€Bf d'rFZB-o
)660oioo86
Bt9aaaoF
D
g
La;IDa
E
=dIj
p
Es-
3
3
E
c.
d
s
E
3
E}dr9d{,!eEia:+itl9.otf-qlc:qi-c
=l
ol
€!
E!_5!
=t
=:or
=iE'-
Dc
o
g
F6da(}a
9
2
D
:-{ E
=EOE.si -
io tl
Oi
19 :!q;io dta ;
rd aiOrx !
Lo I,o ::E :t= .la il3 i7c !!E;
=O]o' iaL i!Orf,r
iEr9r:
5$;-'{1oG-
a'<!l<boEilo9=.Lo
rL
HTia
=6oo
-f@_D'E:$3
agiguo
TTE6
BE.qao'8
entsxoiB
EEoil
as
EE
-.@eeoI
Hs
ets5eqaie
e.3te
Hitg
E*
Coaeis/:E
l-_
eg'8
e-{=-do_G,l
=oDOo{l
igBa
sD
)aq-oJd+roge
ilq
Bq
Or
-efl
eO
9oto2.O
IEsdF9o:
r.dB*oX;-'{1oG-
a'<!l<boEilo9=.Lo
rL
HTia
=6oo
-f8=E:$:
a9iEuo
TEE6
BEcao'fl3!3sxqir6E9;
6E
ar!!- tiaI
=iolol6f!
o'o(
*tT:
oir e.iit
tA:BiI
1f;6IEl!td:f,t1+fLtrlPF
trEil'E 33985r:r"5 :;ie daqi3;EEOr !o-ll rdq ioa IeBi9rl;€-
-O a
aqr !pu ;oa rDal I7ll
P-
=ts )gE
iFO
=E r
B6e6gE
3E
ot
$='
'-Gt
Ic,c4
&
o
i-s;
Bf
IP
a*
lE
iz
=o=E
e
6
EI
g
=o
.g
E
$
tEooreoa
o
a
u_
6'a!3Eaq
obqn
El
=..,iFE
s85?sa
*E
E-9gTrr;ie
BS3ncO
2o
'2,6++
a5-E'
GiG
-a^t
-@3E
?P
B
sa9E-4zda
GE6g
tP
E
*E g[E g
€E BBE
=at 3E* ur< ---< *8e B?-r o
s[ e+i eql g=S (n
Ag EEE il:; g+E A
EE i-.i a
?,,iEE EBt ei'; 5'
EE EEE H
alz P.!c A
*=
=EE
g
iEE+=
Eqs*sF IqEa e6fiL€ ts c.-o )**
d eF$
= EzqE eis* =39N t+$
E ial'* aEsa t-=;o @--a6 a9z
E*eg
(P 3Qfiq{t 6>s 33s gt -
Er[ *i Sa -l* cr O: Eg s
EB[ Ts Ei ;F ea a* qE6
*eEH
P-886f Eq-E P;}ro
plI
EE5eESfE3rr-- - -F
alEEqi
oo
AO
irE
+d'
fLoti
o!
rCr93--oo
=cEo
=Eaqr- ae
!rEL
r8d3
3P3sG-p
QN,=:d-?f-
1=F9E'Et5
5Eoeo-t6root
5E:'o?
bl1=e=o=
TAet:
Eg
+tsE- .t=!:q
aog
aD
o
l+
I
-
s
E
E
6
Ba-
Eo
=EIc
E
Eoo
=I
s
o
e
I
o
3E
E!raq
g
g
a
o,
3,
z
g vvv, vv,
{?N
IL/OL/ZOOL'I'HU II: IJ }'Alt
ES
@(r-()-.1 s;l
1oe
B
q!p:-i
{eaoxX,tx
60eo
rS& 6'6
fq!l 355Q PPP -T'
C5:LtE
it'
il
=@
()
=8.G'o
6Ie=o3
o
III
!
E
6
3D@a
hoo
=P
44'
=G
d
odt
9r-
EEgooo
-3FE
EEE
n
do
ao
roCjib
6qar=5 iFq.r
vo
aE
6
=
o4 Gf= t-r d
=l ? a iD o
asiEBiq
gEerEgE
EEgE Eg3i E3 * 3
Eg iE i s
EggE iEFi ga 1 3E& I' i B
+Eie;E
EE Ei 1 i
EE Ea i F
giEE Ei
d; cd b -;6 qg e F,aH 1e *
EE EE Ed 5=
_os$ :
=77 ao o-G) 6E gE
='.qr; g
EEE 3Ee:5 Eg=3 E; d!. q
FE* isE3 Eq5E I3 Es gsif I
BHEEo Fo :gFfrEges=sv:etat3a-Ed
cDeD
E
6
B
.D
ooo&
llU vu!, vvr
'N N
rr/OL/?OOL TEIT 11:15 FAX
o
E,
A'
o
E'
-o-
=o,
0
(o
(D
(Das0l
@tt
.D
Ct
o
BIa;
0
o,
c,o
==iaEo
CL
+
CL
o
DId{o()
?.o
EL
2
o
o
Nos
EEH-EHff aQ EtJ ?
EEEIBEE EE gE$ E
EE8;*E iE TgF B
E E'U- Ai iB Efi gE FEEE fi"E qIE';i EE q-:e =tgEE lEE?c o:F a-ri Eg e'g aE;
a lEg# iEiB =-? 1E ts8q i'g E=
a iEiB Ee.. E
B ElEc^ 11 ?f, *=reajsZ
=e Hffila s56a' Eil at sE gs 5ifr
+E?s, yE
F EP5. igEiEo PP.49a t.;r Ea
CA6 ,oegilO EJa"t
EIEEsB5i;g-
[E. t- 9f8sl
o !,i .;;ga=
o
=ET!.FBEsb;E
=E€trAB3B6
o
a.
c!eo
fo
=o
-8E
E-a
a
d
6pD
BCaO
go
aGa6
91
C
E
4ooa
=t
oo6
E.!
e?o
D
=
s
P-ctaD
I€o
o.9'
tooo
a,
c
E
E
!p
H
{41 uu4,/ uur
-lo
C,
J
z.oF}o
N(,A
ano
IDa
&
arg
DI
o
1r,o!agl &-aFrgeo
-l=-o=..-i Oo9-Aul 'oE'S(Deo9.9-lr =
E-€i{r -L
-.Ei9sJ-adto
o
a,
7-zI
()(a
9HE9E1la6-7(,
m
llrE!mIb-tgvm
!
x
-m-tl|ln
D>s3E-oozz,SE,E
HEIox
o- {62
aE 5=9
=E
gj,
aeg*
=@<m5'+ElOEsc
sctE
=s EHo{I@ <li.bcl
1'-os.
1E
EPz<,
ts
o
o
c36
e
aI2dF
o
6
oT
fr
EasEE
Iae*B
:=9s
3
6'
o
qc()fr
a6m
o
b
oo
3E
t-z
@t
o
aooo
3
BE6O ?J! -u
"sE=
-zL{c
^ooEaa
EEd6ez
gE;
r+ l+9!)ON33OG
?ti
tsts
t+pora*ie.
EAo
e
a+ f+ a,
b81
7=a
E
E
*6
o
C)
oo
=lbc,
P AEIpD rt
-4DAEEfea
G Elo
6
l+
ts
3
*
O*o
a;c
l+N
iD
:E
st
a
fr
*
-oN
5
a
ob
c2
I0
6r
Pa
a
5goil
Io
c)
7tIII?to
E
=oz
Eb
l6
Pz
l -o
lz
e
ic
d1
i.q }E
EEEiod.lF9Bi
E q'AB
B=€EI
e
8€8f!ooecE=Eg,B
rA
3
az 1)t $-ts
clCrx
frE:
O-st4nOod
3o
I
e_@o
o,ln2
GOot
odof9*
B*
!
Dds
*
E8
ilH3{it>sI
sSgE $ E
i[[5t t
aarol25
qt-ls
EHto
8 [E
5E Y€$E
,d
oq
=o
-Iir
-tEea
0L
ir
6-
o
q
c)
3
B
E_I
f)oE!m2o{5-,u,
EE++EEEF: Er;;
F.. a $
3l.D
Ec-
e
_+o.to@=f E a;
O-E5r6E3€
=og
eedtlo'e
EE
ai
o
D
eo)
dJ
gE
sJE=o 6i
FE
q {JElrseJB;I
5oA
ETB
+
EgEEE
E6
Fca9.-=!
l
so
6!
Eoo
c,
-Ev
:!oEEEEi
E4+q=
* NI'6EEJrl9.9aqIE
IE9
E.n
s
+Te
sSE€d I3 BJP5ooR-3>h- rrt, 'El
- rq'E=r.st q
, !1 E3ic8,,A'l1aaT+
z5'Eo
3.)
E
a l^lro lsE IEElol
c
oooa
vm1g
-6n!.=
aII
2_-c
do nats
6',
€
Efe-=
o,t
eI
J
t
3
E
or
aIr
E
E
Ele
g,
E
{
o
B
3
3J
o
fo
e
+
o-o
7
==
ofo
e
I
o
=o
ee=
€
c,}
El
r-E EA!'FEF
E +g;-
E=qI
-D
aa,
EeA liF'I
qe
6iz,aa
r+B2?gJgs
-o
:t z-{E
z
C
d,
o
5
lO/24/?OOL WED 18:02 FAX
cEodB
!P
U6
-.o
DDo
IgI UUJ/UUJ
To
!lT
o
o
o-to
C'
oo
6"
ao
I
@o
o
U,
5o
C'Bsato5e
e
BF
=z(toao.G
@
50t
F
CI'tr
?or<od
$E
E'
IDp.
Dr<
oo
==5caq
a
!E(oo
FAX
ad8z
m0
G'bU'
o
Fo
a.
E,m
z
n
m
,E
B
=m
mv
c,III!
Eea6
1=a
(t-
6vo!Ir
a>
*a
z{
tr
C'-
'!E,d>mua95!imIi
6
E'lll.E
-6
"SQato,=
f,
Im.o{Eo-3QEt@4-*d
(,ilt:o{
o
-iltan
7
eeEIx*9=:
1Ed-efCs1
ODE1I
oit
d
Ebo
CI
3Gr
I
o
oa
?q
z.
a
2ollr
o
c
Nor
:t
o
r5
O
3
Ie
c
Oto
EoF
e6
o-o
B
E3o
3:
Ea
g
a
+
t,
oI(,
7
o
6
I
:I
5si3
3oE
i,
t+
P
:F
a
R:
t}eg
N-d
=92{Bqlo P.z-- rr?q
]3c
!tEaE{i-[
:Fo
c)
C)cT
1'l
r+
o
J3s
1)ob
3
B
]fo-(,
3
rtai>e
3
I
et}
3o
tlEEdi3e
EO?.3-rEg
7
+o€
e9
3rE(z
7'rdvt
Pc
-t62
6bo
)
P
E6F
iI
i
E
Rg
g
6T5I
P
BE@
I
33
E
P
3
p
3
e'o
3
qE3
5.8+.Eedqd
s
o
B
Eg
oatIt
BE
umz
.DoD
dt
B=.',
ES<o
5Bago?
EE
gE
oi
EE
qg.3rZtCEOEOG
-o
g-i
Ba
Eo3o
=
sgEgEE
ER8i5 s!l.od3=uteo
=
ooOqslg
BE€Eg8ile&lo.
€=
Bil
C)o
=!mz.
aDF
_{oz.g,
oc_o3E
o
o
EJa
I
g
o
ooc
@e
Esg
?IO
=tr 2
iEr*=JFOrE +6'-B+7
B
3
ooq
oa
=o
B
Ec_l
tco
I6
I
&-
II
Dso:1Ir
{
D
an
Eso
6
o
q
9E
f
fi
.E
E-
oo
o
l
9l
iaEgigEr+;
E+E
1E=-&
lrgE- 8=
EE}
s
c,
E
9
o
=
t
IL)
D Ee
9rz
io
a5){
6p
o
a3oF
oo
tco
5
o_
i:i$EtE
rEE g.$'al
esu
a
Ie
5
6DL
E
a
3-
(.,
?_,c6oI
I-t
IT
l
4ID
-{ 20
EEc,z0m
a
OoIe
o
BI
la
o
taab
o
I
e
o
0t
c'o
8o
e
fl
a
i
=
EfiT
=qoetd_rI
o,o
3of,
10,t
6FIt
e55o
ofo
3o77
o
=o
zf
=
I6
3I:t
a
B
e;r
=
E
3
a
I-G
4
e.U
to
3@roI
E,o
u
oo.uc
e1
G1
sElT).=-se;s
Fs_;r-
>!Pg
3
o
!tt,
_3
PI
!
@
P?o
Ta,
I
Po
roI
Ed
t-o
D
E
]-O/24/LOOL WED 18:03
eE
&
E
E
5Fltrrl
=Elq.o I3sl1al
aEt
E? I
E-s I
EEIq9 Itd Ir;l50Idgl
ao Iae I
3g- |e6l-3 t
EEI
Eo I
EEI
Es.ls&l66 I
FHI
aElB4ltEtd=l06,:;
43.Eeqd3tr9d
e.€
rs-'"*{
6q
t€
L EqI irbI -OI 3"qI a&
lgEI -0I oOI Fis
t<t*l+l8
INrpnNerro*ol
UneNrul,r (use)
Conponauou
lndependence Plaza, Suite 950 . 1050 Seventeenth Street o Denver, CO 80265 . 303 628 7798 (main) . 303 389 al25 (fax)
October 15,2002
Via Express Courier
Mr. William J. Sinclair, Director
State of Utah Department of Environme
Division of Radiation Control
168 North 1950 West
P.O. Box 144850
Salt Lake city, uT 84114-4850
tal Quality
Reference:Water Level Map and of Increasing Water Levels Observed in MW-4
Utah DEQ Notice of Vio ion and Groundwater Corrective Action Order
UDEQ DocketNo. U 20-01of August 23,1999
Dear Mr. Sinclair:
In accordance with discussions between nternational Uranium (USA) Corporation (IUSA) and
the Utah Department of Environmental
2002,IUSA is submitting the enclosed
uality (UDEQ) that took place on April l7 and24,
ater level data and a current water level contour map to
resolve UDEQ's question concerning i
Monitoring Well No. 4 (MW-4) at the
ing water levels which have been observed in
ite Mesa Uranium Mill (the Mill). This transmittal
includes water level data from pi and temporary wells drilled in support of the
investigation of the occumence of chloro brm in perched groundwater near the Mill (see IUSA
Temoorarv Well and Piezometer Instal of April 9,2002) as well as
water levels measured during the Septe 2002 split sampling event. These data continue to
support the hypothesis presented to UD at the April meeting, in which UDEQ and IUSA
agreed that the wildlife ponds were co buting to the increasing water levels in MW-4.
[n summary, as noted above, and as ev on the enclosed current water level contour map,
IUSA concludes that the wildlife ponds
We appreciate UDEQ's concurrence on
contributing to the increasing water levels in MW-4.
resolution of this matter.
Sil
IN RNATIONAL URANIUM (USA) CORPORATION
L-.L*. KtZ
helle R. Rehmann,
ironmental Manager
/
Mr. William J. Sinclair
October 15,2002
Re: Water LevelMap and
Page2 of2
MRR/
cc (with data tables):
Loren Morton, DRC
R. William von Till, U.S. NRC,
Harold R. Roberts, IUSA
cc (without data tables):
Dianne Nielson, DEQ
Don Ostler, DEQ
Resolution of I g Water Levels Observed in MW-4
ashington D.C.
David Cunningham, DEQ, SE t Health Department
Dave Arrioti, DEQ, SE District th Department
Fred Nelson, Utah Asst.
Terry Brown, U.S. EPA Region
Richard Graham, U.S. EPA Regi
Dan Gillen, U.S. NRC, Washi D.C.
Charles Cain, U.S. NRC, Region
Ron F. Hochstein, IUSA
David C. Frydenlund, IUSA
Michelle Rehmann,IUSA
T. Kenneth Miyoshi, IUSA
Ronald E. Berg, IUSA
Generalu
n VIII
SIMRR\Chloroforrnlnvestigation\2002\5inclair Water Level (09.26.02\.doc
PROPERTY
BOUNDARY
I
{
I
o)
zo/zh
\\
\\
}\
S,"h\
,l
'1$-?1
I\
tl
\\
\\
t\
t\
\\\\
5480
5470 t-\-
),)
lxr
- --"----=rA/ J,L:'/
-/'
\\t\\\t\
EXPLAN ATI ON /2
7.<r
\, f\,vo MW-11
551 4
PERCHED MONITORING WELL
SHOWNG WATER LEVEL IN FEET AMSL
O TEMPORARY PERCHED MONITORING WELL5524 SHOWING WATER LEVEL IN FEET AMSL
E PIEZOMETER5533 sHowrNG wATER LEVEL tN FEET AMSL
5580- wATER LEVEL coNTouR LINE,
DASHED WHERE UNCERTAIN
NOTE: WATER LEVELS FOR PIEZOMETERS
ARE FROM AUGUST, 2OO2
N
A
I
I+
0 3000
SCALE IN FEET
u
il
//
\.gynt \-''\---5580
a MW-18 P-15s7s e 5578
)..]'.ttn\\ \
crlNo.\. '1
\"\irril
5584
b5\o
o 5519
MW-2
5503
PERGHED WATER LEVELS
SEPTEMBER, 2OO2
Reference:
71800069
't
Water Level Data
Fall 2002
Monitor Wells
MW1
MW2
MW3
MW4
MWs
MW 1l
MW 12
MW 14
MW 15
MW 16
MW 17
MW 18
MW 19
MW 20
MW 21
MW 22
t
Water Levels and Data, Over Time
White Mesa Mill Monitor Well Number I
Water
Elevetion
Easting Northing (WL)
2,5'19,330.42 32s,6'71.85 5,571.03
2,579,330.42 325.671.85 5,565.93
2,579,330.42 325,611.85 5,571.63
2,579,330.42 325,671.85 5,5'73.63
2,5't9,330.42 32s,671.85 5,512.23
2,5-19,330.42 325,6'11.85 5,573.33
2,579,330.42 325,671.85 5,5'71.43
2.579.330.42 325.67t.8s 5,568.03
2.579330.42 325.671.85 5.564.33
2,519,330.42 325,671.85 s,s71.63
2.5',19.330.42 325.67t.85 5.571.63
2,s79,330.42 32s,671.85 5,571.43
2,5'19,330.42 325,671.85 5,571.73
2.579.330.4? 325.671.85 5,572.13
2,s79330.42 325,6'il.85 5,571.83
2,579,330.42 125,671.85 5,572.03
2,5',19,330.42 325,671.85 5.571.96
2,5'79,330.42 325,6'il.85 5,571.7t
2,5'79,330.42 325,671.85 5,569.21
2,579,330.42 325,671.85 5,570.88
2,5'79,330.42 325,671.85 5,571.96
2,5'79,330.42 325,671.85 5,571.30
2,579,330.42 325,6',71.85 5,5',7t.63
2,579,330.42 325,671.85 5,511.71
2.579.330.42 325.6',71.85 5.571.88
2.579,330.42 325,671.85 5,572.46
2,579,330.42 325.671.85 5,572.30
2 .579 .330 .42 325 .67 L85 5 ,57 4 .63
2.579330.42 325.67t.85 5,571.53
2.579.330.42 325.67t.85 5,572.08
2.519,330.42 325.6',7t.85 5,5'11.84
2.5',19,330.42 325,6',7t.85 5,5'11.82
2,519,330.42 325,67t.85 5,572.12
2.579.330.42 325.6'.7t.85 5,5',72.60
2,579,330.42 325.671.85 5,571.83
2,579,330.42 325,671.85 5,572.05
2,579,330.42 325,671.85 5,57?.18
2.5'.79.330.42 325,671.85 5,572.18
2,s79,330.42 325,67t.85 5,57r.93
2,5'19,330.42 325,6'.71 .85 5.571 .93
2,5'79,330.42 325,61t.85 5,571.92
2,579,330.42 325,6',7t.85 5,572.40
2,579,330.42 325,671.8s 5,571.98
2,5't9,330.42 325.6'n.85 5,5',72.t7
2,5'79,330.42 325,671.85 5,5',72.22
2,5'79,330.42 325,671.85 5,5',72.03
2,579,330.42 325,67t.85 5,5',7t.94
2,5'.79,330.42 325,671.85 5,5',7t.59
2,5',79,330.42 325,671.85 5,571.77
2,5't9,330.42 325,671.85 5,571.85
2,5't9,330.42 325,671.85 5,s11.81
2,5'79,330.42 325,67t.85 5,571.95
2,579,330.42 325,671.85 5,571.87
2.579.330.42 325.6',7t.85 5.5'72.03
2.579,330.42 325,671.85 5,572.07
2,s19,330.42 325,671.85 5.572.08
2.579.330.42 325.6',7t.85 5.572.21
2,5'19,330.42 325,671.85 5,572.31
2,579,330.42 325,671.85 5,572.0',7
2,579,330.42 325,671.85 5,5',72.63
2,s'79,330.42 325,67t.85 5,572.38
2,579,330.42 325,67t.85 5,572.63
2,579,330.42 325,671.85 5,5',13.21
2.5',79.330.42 325.6'.71.85 5,572.63
2,579,130.42 325.671.85 5,573.33
2,5't9,330.42 325,67t.85 5,573.53
2.579.330.42 325,67t.85 5,573.81
2,5',79,330.42 325,671.85 5,573.85
2,579,330.42 325,6'7t.85 5,574.05
2,s79,330.42 325,671.85 5.585.87
2.5',19.330.42 325.671.85 5.574.13
Measuring
Lasd Point
Surface Elevation
(LSD) (MP)
5.645.76 5,64'7.63
5.645.76 5,647.63
5,645.76 5,647 .63
5,645.'16 5,647 .63
5.645.',16 5,647.63
5 .645.'16 5,647 .63
5,645.76 5,647 .63
5,645.16 s,64',1.63
5,645.',76 5,641.63
5,645.',16 5,64',7.63
5,645.16 5,64'1.63
5,645.76 5,64'1.61
5.645.76 5,64'7 .63
5,645.',16 s,647 .63
5,645.76 5,64't .63
5,645.76 5,647 .63
5,645.',16 5,647.63
5,645.76 5,647.63
5.645,76 5,647.63
5.645.'16 5,647.63
5,645.'16 5,64't .63
5 ,645.'t6 5,64't .63
5,645.'16 5,647 .63
5,645.'t6 5,647 .63
5,645.'16 5,647 .63
5,645.76 5,647 .63
5,645.76 5,64't .63
5 ,645 .7 6 s ,64't .63
5,645.76 5.647 .63
5 ,645 .7 6 5 ,64',7 .63
5,645.76 5.U1.63
5 ,645 .7 6 5 ,64',7 .63
5,645.76 5,647.63
5,645.'t6 5,64',7.63
5,@5.'16 5,64'l.63
5,645.76 5,64',7.63
5,645.76 5,64',7.63
5,645.76 5,64',1.63
5,645.76 5,647.63
5,645.76 5,64't .63
5,645.76 5,64'l .63
5 ,645 .7 6 s ,64'l .63
5 ,645 .'t 6 5 ,647 .63
5,645.76 5,647.63
5.645.76 5,647.63
5,645.76 5,647.63
5,645;t6 5,64'7 .63
5,645.76 5,64',7.63
5.645.76 5,641 .67
5,645.76 5,647 .63
5,645.76 5,@7.63
5 ,645 .7 6 5 ,641 .63
5 ,645 .',l 6 5 ,647 .63
5,645.'16 5,647.63
5 ,645.76 5,647 .63
5,645;t6 5,647 .63
5,645.76 5,647 .63
5,645.',16 5.647 .63
5 ,645 .'t 6 5 ,641 .63
5 .645 .7 6 5 ,647 .63
5 .645 .7 6 5 ,64',7 .63
5.645.'16 5,647.63
5,645.76 5,641 .63
5 ,645 .7 6 5 ,647 .63
5 ,645 .7 6 5 ,647 .63
5 .645 .7 6 5 ,647 .63
5,645.76 5,647.63
5,645.',76 5,64',7.63
5 .645 .7 6 5 ,64't .63
5,645;t6 5,647 .63
5 ,645 .',l 6 5 ,647 .63
Length
of
Riser
(L)
1.87
t.87
1.87
1.87
1.87
1.87
1.87
1.87
1.87
t.87
1.87
t.87
r.87
t.87
L87
1.87
t.87
t.87
1.87
1.87
1.87
1.87
1.87
1.87
L87
1.87
L87
L87
1.87
1.87
1.87
1.87
1.87
1.87
t.87
1.87
1.87
1.87
Monitor
Well
Number
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
Bottom
Date Toaal Depth Top of of Total
Of Depth to to Screened Screened Depth of
Mtrg. Water Water Interyal lntenal Well
(DOM) (blw. Mp) (blw. LSD) (blw.LSD) (blw.LSD) (TD)
9/25t',19 76.60 14.73 92.00 I12.00 ll'l
t0/10,r9'19 81.70 79.83 92.00 I12.00 lt7
0l/10/1980 76.00 74.13 92.00 I 12.00 ll'7
03120,1980 74.00 72.13 92.00 r 12.00 lt7
06fi7il980 75.40 '73.53 92.00 112.00 ll'l
09/15/1980 74.30 7?.43 92.00 I12.00 ll7
l0/08i 1980 76.20 74.33 92.00 I 12.00 ll7
02n2^98t 79.60 ',7',7.73 92.00 112.00 17
09t0U1984 83.30 81.43 92.00 I 12.00 ll7
t2t01^984 76.00 74.t3 92.00 I12.00 ll7
02101/t985 76.00 74.13 92.00 I12.00 \7
06/0t/1985 '16.20 74.33 92.00 I t2.00 I 17
l r/0t/1985 75.90 74.03 92.00 l 12.00 ll7
t2t0vt985 75.50 73.63 92.00 112.00 ll'1
03/0r/1986 75.80 '.73.93 92.00 l 12.00 I 17
04t0U1986 75.60 73.73 92.00 I12.00 il1
06^9/t986 75.6't 73.80 92.00 I 12.00 ll7
09/01/1986 '15.92 74.05 92.00 112.00 ll7
t2t0vt986 78.42 76.55 92.00 112.00 ll7
02120/L987 76.',75 74.88 92.00 112.00 ll7
04128/1987 ',15.6',1 73.80 92.00 112.00 I 17
08,L4A987 76.33 74.46 92.00 112.00 ll7
tl20^987 76.00 74.13 92.00 I 12.00 ll7
0t/26,L988 75.92 74.05 92.00 112.00 ll7
06/0r/1988 1s.7s 73.88 92.00 112.00 l7
08/2311988 75.1'1 13.30 92.00 I12.00 ll7
l/02il988 75.33 73.46 92.00 112.00 ll7
03t09/1989 73.00 71.13 92.00 I 12.00 tt7
06/21/t989 76.10 74.23 92.00 112.00 n7
09/01/1989 "t5.55 73.68 92.00 r 12.00 I 17
I l/t5/1989 75.',19 73.92 92.00 112.00 ll7
02,L6/t990 75.81 73.94 92.00 I12.00 l1'7
05/08/1990 75.51 '73.64 92.00 I 12.00 11',7
08t07/l990 75.03 '13.t6 92.00 r 12.00 ll7
r l/t]llggo 75.80 73.93 92.00 I 12.00 1l'7
0212't/199t 75.58 _ 73.7t 92.00 I12.00 117
05/2vt99t 75.45 73.58 92.00 112.00 ll7
08/27il99t 75.45 73.58 92.00 112.00 |7
t2/03t99t ',75.'70 73.83 92.00 I12.00 ll',l
03t11/1992 ',7s.70 73.83 92.00 I 12.00 r 17
06t11/t992 75.71 ',73.84 92.00 112.00 tl1
09/t3/t992 75.23 '73.36 92.00 112.00 ll1
t2t09n992 ',75.65 ',73.78 92.00 112.00 ll7
03t24^993 75.50 73.63 92.00 112.00 ll7
06t08^993 '75.41 73.54 92.00 112.00 ll7
09t22^993 '15.60 73.-13 92.00 112.00 ll7
t2/14^993 75.69 73.82 92.00 I 12.00 ll7
03124^994 ',16.04 74.1',7 92.00 112.00 I 17
06^5^994 75.86 73.99 92.00 I 12.00 I 17
08/t8^994 75.78 73.9t 92.00 I 12.00 I 17
t2/t3n994 15.76 73.89 92.00 112.00 ll'l
03,L6/t995 75.68 73.81 92.00 I 12.00 ll7
06t2'7/t995 75.76 73.89 92.00 I12.00 lt7
09120,L995 '75.60 73.73 92.00 112.00 I 17
t2^U1995 75.56 73.69 92.00 112.00 ll7
03/28^996 75.55 ',73.68 92.00 112.00 17
06/0'7fi996 75.42 73.55 92.00 112.00 I l7
09t16/1996 75.32 '.73.45 92.00 I 12.00 I 17
03t20^99-1 ',75.56 73.69 92.00 I12.00 ll1
04t07/L999 75.00 73.t3 92.00 I 12.00 l1'7
05il1n999 75.25 73.38 92.00 I12.00 tt7
07/06/1999 75.00 73.13 92.00 l 12.00 r 17
09105t2000 74.42 72.55 92.00 I 12.00 ll1
l l/30/2000 75.00 '73.13 92.00 I 12.00 lt't
03i30/2001 7430 '72.43 92.00 112.00 n7
06t22/200t 14.t0 '72.23 92.00 112.00 ll'l
09/18/2001 '73.82 7t.9s 92.00 112.00 11',7
I l/05/2001 13.18 71.91 92.00 I12.00 117
03il412002 '13.58 7l;11 92.00 I12.00 ll',?
08t29/2002 61.',76 59.89 92.00 112.00 |7
09fi0/2002 73.50 71.63 92.00 112.00 ll7
8'7
87
8',7
8',7
87
87
87
87
8'l
87
87
87
1.87
1.87
1.87
1.87
1.87
L87
L87
1.87
1.87
t.87
1.87
1.87
1.87
1.87
1.87
1.87
1.87
187
L87
1.87
1.87
Easting
2,s7 6,209.93
2,576,209.93
2,57 6,209.93
2,s7 6,209.93
2,576,209.93
2,576,209.93
2,576,209.93
2,576,209.93
2,576,209.93
2,576,209.93
2,576,209.93
2,576,209.93
2,576,209.93
2,576,209.93
2,576,209.93
2,5',16,209.93
2,576,209.93
2,576,209.93
2,576,209.93
2,576,209.93
2,576,209.93
2,576,209.93
2,57 6,209.93
2,576,209.93
2,57 6,209.93
2,s7 6,209.93
2,576,209.93
2,576,209.93
2,576,209.93
2,576,209.93
2,576,209.93
2,576,209.93
2,s76,209.93
2,576,209.93
2,57 6,209.93
2,576,209.93
2,576,209.93
2,576,209.93
2,576,209.93
2,576,209.93
2,s76,209.93
2,576,209.93
2,576,209.93
2,576,209.93
2,576,209.93
2,5'76,209.93
2,5'16,209.93
2,5'16,209.93
2,576,209.93
2,57 6,209.93
2,576,209.93
2,576,209.93
2,57 6,209.93
2,s7 6,209.93
2,576,209.93
2,576,209.93
2.57 6,209.93
2,s76,209.93
2,57 6,209.93
2,576,209.93
2,576,209.93
Northing
321,969.45
321,969.45
32r,969.45
321,969.45
321,969.4s
321,969.45
321,969.4s
321,969.45
321,969.45
321,969.4s
321,969.45
321,969.45
32t,969.45
321,969.45
32t,969.45
321,969.45
32t,969.45
321,969.45
32t,969.45
32t,969.45
321,969.4s
321,969.45
321,969.45
321,969.45
321,969.45
321,969.45
321,969.4s
321,969.4s
321,969.45
321,969.45
321,969.45
32t,969.45
321,969.45
321,969.45
32r,969.45
321,969.45
321,969.45
321,969.4s
32t,969.45
321,969.45
321,969.45
321,969.45
321969.45
321,969.45
321,969.45
321,969.4s
321,969.45
321,969.45
321,969.4s
32t,969.4s
321,969.45
321,969.4s
32t,969.45
32t,969.4s
321,969.45
321,969.4s
321,969.4s
321,969.45
321,969.45
32t,969.4s
321,969.4s
Water
Elevation
(wL)
5,503.04
5,502.94
s,s03.64
5,505.24
5,503. l4
5,502.64
5,s02.04
5,503.04
5,500.84
5,502.64
5,502.84
5,502.64
5,503.14
s,502.34
5,500.94
s,s02.84
5,502.84
5,503.24
5,s03.3 r
5,503.06
5,503.14
5,501 .89
5,502.97
5,502.06
5,502.72
5,502.72
5,502.81
5,503.06
5,503.14
5,503.04
5,502.84
5,502.74
5,s03.02
5,503.16
5,503.34
5,503.13
5,503.34
5,503.07
5,503.10
s,502.95
5,502.76
s,503.12
s502.92
s,503.05
5,503.14
s,503. l4
5,502.95
5,502.79
5,503.3 I
5,503.10
5,503.16
5,503.22
5,s03.24
5,503.00
5,503.19
5,503.16
5,503.41
5,503.30
5$03.23
5,503.21
5,502.86
o *#[:ffi[ il:.T?',,;Jiil'tr", )
Measuring
Land Point
Surface Elevation
(LSD) (MP)
5,611.23 5,613.14
5,611.23 5,6t3.14
s,611.23 5,613.14
s,611.23 s,6t3.14
s,611.23 5,613.14
s.611.23 5,613.14
5,611.23 5,613.14
5,611.23 5,613.14
5,611.23 5,613.t4
s,611.23 s,613.14
5,611.23 5,613.14
5,611.23 5,613.14
5,611.23 5,613.14
5,6t1.23 5,613.14
5,611.23 5,613.14
5,611.23 5,613.14
5,611.23 5,613.14
5,61t.23 5,613.14
5,61t.23 5,613.t4
5,6rt.23 5,611.14
5,6t1.21 s,613.14
5,6t1.23 5,613.14
5,611.23 5,613.14
5,611.23 5,613.14
5,611.23 5,613.14
5,611.23 5,613.14
5,611.23 5,613.14
5,611.23 5,613.14
s,611.23 5,613.r4
5,6tt.23 5,613.14
5,611.23 5,613.14
5,6t1.23 5,613.14
5,6tt.23 5,613.14
5,611.23 5,613.14
5,611.23 5,613.14
5,611.23 5,613.14
5,611.23 5,613.14
5,6tt.23 5,613.14
5,611.23 5,613.14
5,6tt.23 5,613.14
5,611.23 5,613.14
5,611.23 5,613.14
s,611.23 s,613.14
5,6rt.23 5,613. r4
5 ,611 .23 5,6 I 3. l4
5,611.23 5,613.14
5,611.23 s,613.14
5,6t1.23 5,613.14
5,6tr.23 5,613.14
5,6t1.23 5,613.14
5,611.23 5,613.14
5,611.23 5,613.14
5,611.23 5,613.t4
5,6t1.23 5,613.14
5,611.23 5,613.14
s,611.23 5,613.t4
5,61r.23 5,613.14
s,6tt.23 5,6t3.14
5,611.23 5,613.14
5,61t.23 5,613.14
5,6tt.23 5,613.14
Length
of Monitor
Riser Well
(L) Number
1.91 2
1.91 2
1.91 2
1.91 2
1.91 2
l.9l 2
1.91 2
1.91 2
1.91 2
1.91 2
1.91 2
1.91 2
l.9l 2
1.91 2
1.91 2
1.91 2
1.91 2
1.91 2
1.91 2
1.91 2
1.91 2
1.91 2
l.9l 2
l.9l 2
l.9l 2
l.9r 2
l.9l 2
l.9r 2
1.91 2
1.91 2
l.9l 2
l.9l 2
l.9l 2
l.9l 2
l.9l 2
1.91 2
1.91 2
1.91 2
1.91 2
l.9t 2
1.91 2
1.91 2
1.91 2
1.91 2
1.91 2
l.9l 2
1.91 2
1.91 2
1.91 2
l.9l 2
1.91 2
1.91 2
1.91 2
l.9l 2
1.91 2
1.91 2
1.91 2
1.91 2
1.91 2
1.91 2
1.91 2
Bottom
Date Total Depth Top of of Total
Of Depth to to Screened Screened Depth of
Mtrg. Water Water Interval Interval Well
(DoM) (blw. Mp) (blw. LSD)(blw.LSD) (blw.LSD) (TD)
9125179 l 10.10 108.19 85 12s 128.8
r0lt0l79 110.20 108.29 85 l2s 128.8
1110180 109.s0 107.59 85 125 128.8
3120180 107.90 10s.99 8s t2s 128.8
6117180 110.00 108.09 8s 125 128.8
9115180 l 10.50 108.s9 8s 125 128.8
10/8/80 111.10 109.19 85 125 128.8
2/t2t81 1 10.10 108.19 85 125 128.8
9t1184 t12.30 110.39 85 125 128.8
t2ltl84 I 10.50 108.s9 85 125 128.8
2l1l8s 110.30 108.39 8s 125 128.8
611185 r 10.50 108.59 85 tls 128.8
9/u85 I 10.00 108.09 85 t25 128.8
t0nt85 110.80 108.89 85 125 128.8
tl7l/85 112.20 t10.29 85 125 128.8
t2ltl85 1 10.30 108.39 85 t2s 128.8
3^t86 110.30 108.39 85 125 128.8
4l!86 109.90 107.99 85 tzs 128.8
6119186 109.83 107.92 85 125 128.8
9/U86 110.08 108.17 85 125 128.8
12t1186 110.00 108.09 85 t2s 128.8
2120181 111.25 109.34 85 t2s 128.8
4/28t87 1 10. 17 108.26 85 125 128.8
8lt4l87 I 1 I .08 109.1 7 85 125 128.8
11t20187 110.42 108.51 85 125 128.8
1/26188 110.42 108.51 85 125 128.8
6At88 110.33 108.42 85 125 128.8
8t23t88 110.08 108.17 85 125 128.8
tt/2188 110.00 108.09 85 125 128.8
3t9/89 1 10.10 108.19 85 l2s 128.8
6t2U89 110.30 108.39 85 125 128.8
9/1/89 110.40 108.49 85 125 128.8
ttltslSg 110.12 108.21 85 tzs 128.8
2/16190 109.98 108.07 85 125 128.8
st8t90 109.80 107.89 85 12s 128.8
817190 110.01 108.10 85 r2s 128.8
tu13t90 109.80 107.89 85 125 128.8
2/2719t 110.07 108.16 85 lzs 128.8
5/2t/9t 110.04 108.13 85 125 128.8
8127t91 110.19 108.28 85 125 128.8
12l3l9t 110.38 108.47 85 125 - 128.8
3^7t92 110.02 108.11 85 125 128.8
6nt/92 110.22 108.31 8s 125 128.8
9n3/92 110.09 108.18 85 125 128.8
t2t9t92 110.00 108.09 85 125 128.8
3124193 110.00 108.09 85 12s 128.8
6t8t93 110.19 108.28 85 125 128.8
9122193 110.35 108.44 85 125 128.8
t2n4/93 109.83 107.92 85 125 128.8
3t24/94 110.04 108.13 85 125 128.8
6t1st94 109.98 108.07 85 12s 128.8
8t18194 109.92 108.01 85 lzs 128.8
t2n3l94 109.90 107.99 85 125 128.8
3116195 110.14 108.23 85 12s 128.8
6t27195 109.95 108.04 8s 12s 128.8
9/20t95 109.98 108.07 85 125 128.8
t2n1t95 109.73 107.82 85 125 128.8
3t28196 109.84 107.93 85 125 128.8
6t7t96 109.91 108.00 85 125 128.8
9n6t96 109.93 108.02 85 l2s 128.8
3t20197 110.28 108.37 85 r2s 128.8
Easting
2,576,209.93
2,576,209.93
2,576,209.93
2,576,209.93
2,576,209.93
2,576,209.93
2,576,209.93
2,576,209.93
2,576,209.93
2,576,209.93
2,576,209.93
Northing
321,969.45
321,969.45
121,969.45
321,969.45
321,969.45
321,969.45
321,969.45
321,969.45
321,969.45
121,969.45
321,969.4s
I *#l[:"J'Ii[ li:#?'#"",iil J;" a
Water Land
Elevation Surface
(wL) (LSD)
5,502.64 5,611.23
5,s02.84 5,6t1.23
s,502.94 5,611.23
5,503.14 5,611.23
5,503.1l s,611.23
5,503.04 s,611.23
5,503.12 5,611.23
5,503. r9 5,611.23
5,503.13 5,611.23
4,903.21 5,611.23
5,503.16 5,611.23
Measuring
Point
Elevation
(MP)
5,613.14
5,61 3.l4
5,613.14
5,611.14
5,613.14
5,613.14
5,613.14
5,613.14
5,613.14
5,613.14
5,6t3.14
Length
of Monitor
Riser Well
(L) Number
1.91 2
1.91 2
l.9l 2
t.9l 2
1.91 2
1.91 2
l.9l 2
l.9l 2
l.9l 2
l.9l 2
1.91 2
Date
of
Mtrg.
(DOM)
417199
5ltU99
7 t6t99
91U00
1u3012000
03/30/2001
0612210r
09/18/01
11/05/01
03114102
09110102
Bottom
Total Depth Top of of Total
Depth to to Screened Screened Depth of
Water Water Interval Interval Well
(blw. Mp) (blw. LSD)(blw.LSD) (blw.LSD) (TD)
I 10.50 108.59 85 125 128.8
I 10.30 108.39 85 tzs 128.8
I 10.20 108.29 85 125 128.8
110.00 108.09 85 12s 128.8
I 10.03 108.12 85 l2s 129
I 10.10 108.19 85 t25 129
I 10.02 108.1 I 85 r25 129
109.95 108.04 85 t2s 129
I 10.01 108.10 85 125 129
709.93 708.02 85 t2s 129
109.98 108.07 85 125 129
Easting
2,576,417.89
2,576,417.89
2,576,417.89
2,576,417.89
2,576,417.89
2,576,4t7.89
2,57 6,417 .89
2,57 6,4r7 .89
2,576,4t7.89
2,576,417.89
2,576,417.89
2,576,417.89
2,576,417.89
2,576,4t7.89
2,576,4t7.89
2,576,4t7.89
2,576,417.89
2,57 6,417 .89
2,576,417.89
2,576,4r7.89
2,576,41',7.89
2,576,417.89
2,576,417.89
2,576,417.89
2,576,417.89
2,s76,4t7.89
2,576,417.89
2,576,417.89
2,57 6,417 .89
2,576,417.89
2.576,4t7.89
2,5'76,417.89
2,576,417.89
2,576,417.89
2,s76,417.89
2,576,417.89
2,576,4t7.89
2,576,41'7.89
2,576,417.89
2,576,417.89
2,576,417.89
2,s76,417.89
2,57 6,417 .89
2,576,417.89
2,576,417.89
2,57 6,417 .89
2,57 6,411 .89
2,576,417.89
2,576,417.89
2,576,417.89
2,s76,4t7.89
2,576,4t7.89
2,576,417.89
2,576,4t7.89
2,576,4t7.89
2,576,4t7.89
2,576,4t7.89
2,576,411.89
2,576,417.89
2,576,4t7.89
2,576,4t7.89
2,57 6,4t7 .89
2,516,411 .89
2,s76,417.89
2,576,417.89
2,576,417.89
2,576,417.89
Northing
3 l 7,340.58
3 I 7,340.58
3 l 7,340.58
3 17,340.58
3 l 7,340.58
3 17,340.s8
3 I 7,340.58
3 I 7,340.58
3 l 7,340.58
3 I 7,340.58
3 I 7,340.58
317,340.58
317,340.58
3 17,340.58
3 1 7,340.58
3 I 7,340.s8
3 I 7,340.58
317,340.s8
3 I 7,340.58
3 I 7,340.58
3 I 7,340.58
3 I 7,340.58
3 l 7,340.58
3 17,340.58
3 I 7,340.58
3 l 7,340.58
3 I 7,340.58
3 t 7,340.58
3 t 7,340.58
3 l 7,340.58
3 I 7,340.58
3 I 7,340.58
3 I 7,340.58
3 I 7,340.58
317,340.58
3 l 7,340.58
3 I 7,340.58
3 I 7,340.s8
3 I 7,340.58
3 I 7,340.58
3 l 7,340.58
3 l 7,340.58
3 l 7,340.58
3 l 7,340.58
3 l 7,340.58
3 r 7,340.58
3 r 7,340.58
I I 7,340.58
3 r 7,340.58
3 I 7,340.58
3 r 7,340.58
3 I 7,340.58
3 17,340.58
3 I 7,140.58
3 17,140.58
3 I 7,340.58
3 I 7,340.58
3 t 7,340.58
3 I 7,340.58
3 I 7,340.58
3 1 7,340.58
3 17,340.s8
3 I 7,340.s8
3 I 7,340.58
3 l 7,340.58
3 I 7,340.58
3 I 7,340.58
Water Levels and Data, Over Time
White Mesa Mill Monitor Well 3
Total or
Measuring Measured Top of Bottom of
Water Point Length Monitor Depth to Total Depth Screened Screened Total
Elevation Land Surface Elevation Of Riser Well Date Of Weter to Water Interval Interval Depth Of
(WL) (LSD) (MP) (L) Number Monitoring (blw.MP) (blw.LSD) (blw.LSD) (blw.LSD) Well
5,47t.43 5,552.88 5,554.83 1.49 3 10/8/80 83.40 81.91 67 87 98
5,469.93 5,552.88 5,554.83 1.49 3 2n2t8t 84.90 83.41 67 87 98
5,47t.63 5,552.88 5,554.83 1.49 1 9fit84 83.20 81.71 67 87 98
5,474.03 5,552.88 5,554.83 1.49 3 12nt84 80.80 79.31 67 87 98
5,471.t3 s,ss2.88 s,ss4.83 1.49 3 2/v85 83.70 82.21 67 87 98
5,471.13 5,552.88 5,554.83 1.49 3 6/U85 83.70 82.21 67 8't 98
5,470.43 5,552.88 5,554.83 t.49 3 9nt85 84.40 82.9t 67 87 98
5,471.23 5,552.88 5,554.83 1.49 3 l0/l/85 83.60 82.1 r 67 87 98
5,467.23 5,552.88 5,554.83 t.49 3 I l/l/85 87.60 86. I I 67 87 98
5,470.83 5,552.88 5,554.83 t.49 3 t2/t/85 84.00 82.51 67 87 98
5,470.53 5,552.88 5,554.83 r.49 3 3/t/86 84.30 82.81 67 87 98
5,470.33 5,552.88 5,554.83 1,49 3 4^186 84.50 83.01 67 87 98
s,471.r3 5,552.88 5,5s4.83 1.49 3 6^9t86 83.70 82.21 67 87 98
5,471.83 5,552.88 5,554.83 1.49 3 9nt86 83.00 81.51 67 87 98
5,47t.13 5,552.88 5,554.83 1.49 3 2/20187 83.70 82.21 67 87 98
5,470.83 5,552.88 5,554.83 t.49 3 4t28t87 84.00 82.s1 67 87 98
5,460.08 5,552.88 5,554.83 1.49 3 8^4t87 94.7 5 93.26 67 87 98
5,47t.43 5,552.88 5,554.83 1.49 3 tU20/87 83.40 81.91 67 87 98
5,471.03 5,552.88 5,554.83 t.49 3 U26/88 83.80 82.31 67 87 98
s,47t.r3 5,552.88 5,554.83 1.49 3 6/r/88 83.70 82.2t 67 87 98
5,471.08 5,552.88 5,554.83 1.49 3 8t23t88 83.75 82.26 67 87 98
5,471.08 5,552.88 5,5s4.83 1.49 3 tv2t88 83.75 82.26 67 87 98
5,471.50 5,552.88 5,554.83 r.49 3 3t9189 83.33 81.84 67 87 98
5,470.91 5,552.88 5,554.83 1.49 3 6t2r/89 83.92 82.43 67 87 98
5,471.00 5,552.88 s,554.83 1.49 3 9nt89 83.83 82.34 67 87 98
5,471.00 s,5s2.88 5,s54.83 t.49 3 I 1/15/89 83.83 82.14 67 87 98
5,471.41 5,552.88 5,554.83 1.49 3 2tr6t90 83.42 81.93 67 87 98
s,47t.03 5,552.88 5,554.83 1.49 3 8/7/90 83.80 82.31 67 87 98
5,4'.n.13 5,5s2.88 5,554.83 1.49 3 1Ut3/90 83.70 82.21 67 87 98
5,47 l. I 8 5,552.88 5,554.83 t.49 3 3/5/9t 83.6s 82.t6 67 87 98
5,47t.09 5,552.88 5,554.83 t.49 3 5t21t9r 83.74 82.25 61 87 98
s,470.87 5,552.88 5,554.83 1.49 3 9t26t9t 83.96 82.47 67 87 98
s,470.93 s,ss2.88 s,554.83 t.49 1 t2t5t9t 83.90 82.4t 67 87 98
5,471.08 5,552.88 5,s54.83 t.49 3 3^9t92 83.75 82.26 67 87 98
5,47t.t5 5,552.88 5,554.83 t.49 3 6n6t92 83.68 82.19 67 87 98
5,471.13 5,552.88 s,554.83 t.49 3 9^6t92 83.70 82.21 67 87 98
5,470.97 5,552.88 5,554.83 t.49 3 tvt6t92 83.86 82.37 67 87 98
5,471.06 5,552.88 5,554.83 t.49 3 3t3U93 83.77 82.28 67 87 98
s,470.96 5,552.88 5,554.83 1.49 3 6tr4t93 83.87 82.38 67 87 98
5,410.92 5,5s2.88 5,s54.83 t.49 3 9t30t93 83.91 82.42 67 87 98
5,471.12 s,ss2.88 5,554.83 1.49 3 t2^6t93 83.71 82.22 67 8't 98
5,471.08 5,ss2.88 5,554.83 t.49 3 3130t94 83.75 82.26 67 87 98
5,47t.t0 5,552.88 5,554.83 1.49 3 6t2v94 83.73 82.24 67 87 98
5,471.08 5,552.88 5,554.83 1.49 3 8n8t94 83.75 82.26 67 87 98
5,471.08 5,552.88 5,554.83 r.49 3 t2n3t94 83.75 82.26 67 87 98
5,471.47 5,552.88 5,554.83 1.49 3 I2tI3t94 83.36 81.87 67 87 _ 98
5,471.18 s,5s2.88 5,554.83 r.49 3 3tl6t95 83.65 82.16 67 87 98
5,471.t't 5,552.88 5,554.83 t.49 3 6t27t95 83.66 82.17 67 87 98
5,47 1.1 8 5,s52.88 5,554.83 1.49 3 9t20t95 83.65 82. I 6 67 87 98
5,471.t3 s,ss2.88 5,ss4.83 1.49 3 t2^U9s 83.70 82.2t 67 8'7 98
5,47t.39 5,552.88 5,554.83 1.49 3 3t30t96 83.44 81.95 67 87 98
5,47 t.t1 5,552.88 5,554.83 1.49 3 6t7t96 83.66 82.t'7 67 87 98
5,471.28 5,552.88 5,554.83 1.49 3 9/t6t96 83.55 82.06 67 87 98
5,471.03 5,552.88 5,554.83 1.49 3 3t20/97 83.80 82.31 67 87 98
5,471.08 5,552.88 5,554.83 t.49 3 4t7t99 83.75 82.26 67 87 98
5,470.93 5,552.88 5,554.83 t.49 3 snU99 81.90 82.4t 67 87 98
5,471.43 5,552.88 5,554.83 t.49 3 1t6t99 83.40 81.91 67 87 98
5,4'71.78 5,552.88 5,554.83 1.49 3 2t3t00 83.55 82.06 67 87 ,98
5,471.21 5,552.88 5,554.83 1.49 3 9^t00 83.62 82.13 67 87 98
5,471.18 5,552.88 5,554.83 1.49 3 I t/30/00 83.65 82.t6 67 87 98
5,470.93 5,552.88 5,554.83 t.49 3 3/30/01 83.90 82.41 67 87 98
s,471.20 5,5s2.88 5,554.83 t.49 3 6t22t0t 83.63 82.14 67 87 98
s,471.22 5,552.88 5,554.83 1.49 3 9/18/01 83.61 82.t2 67 87 98
5,471.t4 5,552.88 5,554.83 1.49 3 l li5lor 83.69 82.20 67 87 98
5,47 1 . 1 8 5,552.88 5,554.83 t.49 3 3^4t02 83.65 82.16 67 87 98
5,471.22 5,552.88 5,554.83 1.49 3 8t29t02 83.61 82.12 67 87 98
s,471.22 5,552.88 5,ss4.83 1.49 3 9^0t02 83.61 82.12 67 87 98
Water Levels and Data, Over Time
White Mesa Mill Monitor Well 4
Total or
Easting Northing
"I;H,
LandSurrace :.fiI,i"t #li:L Y.'i," H:l',:l rotarDepth(x) (v) @) (LSD) "tilT|' (L) Number Date of water to water Total Depth
Monitoring (blw.MP) (blw.LSD) Of Well
2,580,905.96 320,991.17 s,s27.63 5,620.77 5,622.33 1.56 MW4 09/25/1979 94.70 93.14 121.33
2,580,905.96 320,99t.t7 5,527.63 5,620.77 5,622.33 1.56 MW4 t0/10/t979 94.70 93.14 121.33
2,580,905.96 320,99t.t7 5,528.43 5,620.77 5,622.33 1.56 MW4 0l/10i1980 93.90 92.34 12r.33
2,s80,905.96 320,991.17 s,s29.93 5,620.77 s,622.33 1.56 MW4 03/20^980 92.40 90.84 12r.33
2,580,905.96 320,991.17 5,528.03 5,620.77 5,622.33 1.56 MW4 0611711980 94.30 92.74 121.33
2,580,905.96 320,991.17 5,528.03 5,620.77 5,622.33 1.56 MW4 0911511980 94.30 92.74 121.33
2,580,905.96 320,991.17 5,527.93 5,620.77 5,622.33 1.56 MW4 10/08/1980 94.40 92.84 121.33
2,580,905.96 320,991.17 5,527.93 5,620.77 5,622.33 1.56 MW4 02/L2^981 94.40 92.84 121.33
2,580,905.96 320,991.17 5,525.93 5,620;77 5,622.33 1.56 MW4 09/0U1984 96.40 94.84 t21.33
2,580,905.96 320,99t.17 5,528.33 5,620.77 5,622.33 1.56 MW4 12/01/1984 94.00 92.44 121.33
2,580,905.96 320,99t.17 5,528.13 5,620.77 5,622.33 1.56 MW4 02/01/1985 94.20 92.64 t2l.l3
2,580,905.96 320,99t.t7 5,528.33 5,620.77 s,622.33 1.56 MW4 06/01/1985 94.00 92.44 r2l.l3
2,580,905.96 320,991.t7 5,528.93 5,620.77 5,622.33 1.56 MW4 09/01i1985 93.40 91.84 121.33
2,s80,905.96 320,99t.r7 5,528.93 s,620.77 5,622.33 l.s6 MW4 r0/01i1985 93.40 91.84 121.33
2,580,905.96 320,991.17 5,528.93 5,620.7'7 5,622.3f 1.56 MW4 I lioli 1985 93.40 91.84 t21.33
2,580,90s.96 320,99t.17 5,528.83 5,620.'77 5,622.33 1.56 MW4 t2/01/t985 93.50 9r.94 t21.33
2,580,905.96 320,991.17 5,512.33 5,620.77 5,622.33 l.s6 MW4 03/01/1986 110.00 108.44 121.33
2,580,905.96 320,99t.17 s,s28.91 s,620.77 5,622.33 l.s6 MW4 06/19/t986 93.42 91.86 121.33
2,580,905.96 320,991.t7 5,s28.83 5,620.77 5,62?.33 1.56 MW4 09/01/1986 93.50 91.94 121.33
2,580,90s.96 320,991.17 5,529.16 5,620;77 5,622.33 1.56 MW4 t2/01/1986 93.17 91.61 121.33
2,580,905.96 320,991.17 5,526.66 5,620.77 5,622.33 1.56 MW4 02/20/t987 95.67 94.1l 12t.33
2,580,905.96 320,991.17 5,529.t6 5,620.77 5,622.33 1.56 MW4 04/28/1987 93.17 91.61 12r.33
2,580,905.96 320,99t.t7 5,529.08 5,620.77 5,622.33 l.s6 MW4 08/t4/t987 93.25 91.69 121.33
2,580,905.96 320,991.17 5,s29.00 5,620.77 5,622.33 1.56 MW4 t1/20/t987 93.33 91.77 121.33
2,580,905.96 320,991.17 5,528.75 5,620.77 5,622.33 1.56 MW4 0t/26/t988 93.58 92.02 121.33
2,580,905.96 320,991.17 5,528.91 5,620.77 5,622.33 1.56 MW4 06/01/1988 93.42 91.86 r2r.33
2,580,905.96 320,991.17 5,528.25 5,620.77 5,622.33 l.s6 MW4 08/2311988 94.08 92.s2 121.33
2,580,905.96 320,991.17 5,529.00 5,620.77 5,622.33 1.56 MW4 I l/0211988 93.33 9t.77 121.33
2,580,905.96 120,991.17 5,528.33 5,620.77 5,622.33 1.56 MW4 03/0911989 94.00 92.44 l2t.l3
2,580,905.96 320,99r.17 5,529.10 s,620.77 5,622.33 1.56 MW4 06/21/1989 93.23 91.67 121.33
2,580,905.96 320,991.1'.t 5,529.06 5,620.77 5,622.33 1.56 MW4 09t01/1989 93.27 9r.71 12t.33
2,580,905.96 320,991.17 5,529.2t 5,620.77 5,622.33 1.56 MW4 tUr5/1989 93.t2 91.s6 121.33
2,580,905.96 320,991.17 5,529.27 5,620.77 5,622.33 1.56 MW4 02/16/1990 93.11 91.55 121.33
2,580,905.96 320,99t.r7 5,529.43 5,620.77 5,622.33 1.56 MW4 05/08/1990 92.90 91.34 12t.33
2,580,905.96 320,99r.17 5,529.40 5,620.77 5,622.33 t.s6 MW4 08107n990 92.93 91.37 121.33
2,580,905.96 320,991.t7 5,529.53 5,620.77 5,622.33 1.56 MW4 ln3lt990 92.80 91.24 121.33
2,580,905.96 320,99t.17 5,529.86 5,620.77 5,622.33 1.56 MW4 02127/1991 92.47 90.91 121.33
2,580,905.96 320,99t.t7 5,529.9t 5,620.77 5,622.33 1.56 MW4 05l2ut99t 92.42 90.86 l2l.l3
2,580,905.96 320,99t.t7 5,529.77 5,620.77 5,622.33 1.56 MW4 08t2711991 92.56 91.00 12t.33
2,580,905.96 320,991.t7 5,529.79 5,620.77 5,622.33 1.56 MW4 t2/03/t991 92.54 90.98 121.33
2,580,905.96 320,991.t7 5,530.13 5,620.77 5,622.33 1.56 MW4 03/L7/t992 92.20 90.64 121.33
2,580,905.96 320,991.17 5,529.85 5,620.77 5,622.33 1.56 MW4 06/nll992 92.48 90.92 12r.33
2,580,905.96 320,991.17 5,529.90 5,620.77 5,622.33 1.56 MW4 091131t992 92.43 90.87 12t.33
2,580,905.96 320,991.17 5,529.92 5,620.77 5,622.33 1.56 MW4 t2to9lt992 92.4t 90.85 121.33
2,580,905.96 320,991.17 5,530.25 5,620.77 5,622.33 1.56 MW4 0312411993 92.08 90.52 121.33
2,580,905.96 320,991.17 5,530.20 s,620.77 5,622.33 1.56 MW4 06/08/1993 92.t3 90.57 121.33
2,s80,905.96 320,991.17 s,s30.19 s,620.77 s,622.33 l.s6 MW4 09t22n993 92.14 90.58 121.33
2,580,905.96 320,991.17 5,529.75 5,620.77 5,622.33 1.56 MW4 t2l|4lt993 92.58 91.02 121.33
2,580,905.96 320,99t.17 5,530.98 5,620.77 5,622.33 1.56 MW4 03/24/1994 91.35 89.79 121.33
2,580,905.96 320,991.17 5,531.35 5,620.77 5,622.33 1.56 MW4 06/15/t994 90.98 89.42 121.33
2,580,905.96 320,991.17 5,531.62 5,620.'77 5,622.33 1.56 MW4 08/18/1994 90.71 89.15 121.33
2,580,90s.96 320,991.17 5,s32.s8 5,620.77 5,622.33 l.s6 MW4 t2/t3fi994 89.75 88.19 121.33
2,580,90s.96 320,99t.t7 s,s31.42 s,620.77 5,622.33 1.56 MW4 03116il99s 88.91 87.35 121.33
2,s80,905.96 320,991.17 5,534.70 5,620.77 s,622.33 r.56 MW4 0612711995 87.63 86.07 121.33
2,580,905.96 320,991.t7 5,535.44 5,620.77 5,622.33 l.s6 MW4 09/2011995 86.89 85.33 121.33
2,580,905.96 320,99t.17 5,537.16 5,620.77 5,622.33 1.56 MW4 12/fi/1995 85.17 83.61 121.33
2,580,905.96
2,580,905.96
2,s80,90s.96
2,580,90s.96
2,580,905.96
2,s80,905.96
2,580,905.96
2,580,905.96
2,580,905.96
2,580,90s.96
2,580,905.96
, sRO gO5 q6
2,s80,905.96
2,580,905.96
2,580,90s.96
2,s80,905.96
2,580,905.96
2,580,905.96
2,580,905.96
2,s80,90s.96
2,580,905.96
2,580,905.96
2,580,905.96
2,5 80,905.96
2,580,90s.96
2,580,905.96
2.580,905.96
2,580,90s.96
2,580,905.96
2,580,905.96
2,s80,905.96
2,580,905.96
2,580,905.96
2,s80,905.96
2,580,905.96
2,580,905.96
2,580,905.96
2,580,905.96
2,580,905.96
2,580,905.96
2,580,905.96
2,580,905.96
2,580,905.96
2,580,905.96
2,5 80,905.96
2,580,905.96
2,580,905.96
2,580,905.96
2,580,905.96
2,580,905.96
2,580,905.96
2,580,905.96
2,580,905.96
2,580,905.96
2,5 80,905.96
2,5 80,905.96
2,580,905.96
2,580,905.96
2,580,905.96
2,580,905.96
2,580,905.96
2,580,90s.96
2,580,905.96
2.s80,905.96
5,538.37 s,620.77
5,539.10 s,620.77
5,539.13 5,620.77
5,542.29 5,620.77
5,542.29 5,620.77
5,551.58 5,620.77
5,552.08 s,620.77
5,552.83 5,620.77
5,553.47 5,620.77
5,622.33 5,620.77
5,622.33 5,620.77
5,622.33 5,620.77
5,622.33 5,620.7'7
5,554.63 5,620.77
5,554.83 s,620.77
5,554.63 s,620.77
5,554.83 5,620.7'7
5,554.71 5,620.77
5,554.73 5,620.77
5,555.13 5,620.77
5,555.13 5,620.77
5,555.23 5,620.77
5,sss.23 5,620.77
5,555.43 5,620.77
5,555.83 5,620.77
s,s5s.43 5,620.77
5,555.13 5,620.77
5,555.33 s,620.'77
5,55s.63 5,620.'77
5,555.73 5,620.'77
5,555.73 5,620.77
5,556.03 s,620.7'7
5,555.73 5,620.77
5,555.98 5,620.77
5,556.05 s,620.77
5,s56. 18 5,620.77
5,556.05 5,620.77
5,556.15 5,620.77
5,556.39 s,620.',77
5,556.68 5,620.77
s,556.98 5,620.77
5,557.08 5,620.77
5,557.55 5,620.77
5,557.66 5,620.77
s,557.78 5,620.77
5,s58.28 5,620.77
5,558.23 5,620.7'7
5,558.31 5,620.77
5,558.49 s,620.77
5,558.66 5,620.77
5,559.01 5,620.77
5,s59.24 5,620.'77
5,559.26 5,620.'7'7
5,559.2'7 5,620.77
5,559.77 5,620.7'7
5,559.78 s,620.77
5,559.96 5,620.77
5,560.16 5,620.77
s,s60.28 5,620.77
5,560.76 5,620.77
s,s60.s8 5,620.77
5,560.43 5,620.77
5,560.44 5,620.17
s,s60.71 5,620;77
MW4 03t281t996
MW4 06t0711996
MW4 0911611996
MW4 03120/L997
MW4 0312011997
MW4 04107n999
MW4 05ltvt999
MW4 07t0611999
MW4 09t28n999
MW4 lLl08/t999
MW4 11t0911999
MW4 n/29/1999
MW4 t2/20/1999
MW4 0U02/2000
MW4 0t/r0/2000
MW4 0vt7t2000
MW4 0t/2412000
MW4 02t0t/2000
MW4 02107/2000
MW4 02/14/2000
MW4 02/23t2000
MW4 03/01/2000
MW4 03/08/2000
MW4 03/15/2000
MW4 03/20/2000
MW4 03/29/2000
MW4 04104/2000
MW4 04113/2000
MW4 04/21/2000
MW4 0412812000
MW4 05/01/2000
MW4 05/l l/2000
MW4 05/15/2000
MW4 05t25t2000
MW4 06109t2000
MW4 06/t6t2000
MW4 06t2612000
MW4 07/06/2000
MW4 08/15i2000
MW4 09/08/2000
MW4 10n9t2000
MW4 r r/30/2000
MW4 12t0612000
MW4 0t/t41200r
MW4 02t09/2001
MW4 03t29/2001
MW4 04t30/200t
MW4 05/31i200 t
MW4 0612212001
MW4 07/t0t2001
MW4 08/10/2001
MW4 09119/2001
MW4 10102/2001
MW4 tv07t200t
MW4 12t03t200t
MW4 0v03t2002
MW4 02106/2002
MW4 03t2612002
MW4 04t0912002
MW4 0512312002
MW4 06t05t2002
MW4 07t08t7002
MW4 08123t2002
MW4 091]].12002
82.40 121.33
81.67 12 I .33
8 l .64 12t.33
78.48 12 I .33
78.48 t2t.33
69.t9 121.33
68.69 t21.33
67 .94 121.33
67.30 t21.33
- 1.56 121.33
- 1.56 121.33
- I .56 121.33
-1.56 121.33
66.t4 121.33
65.94 121.33
66.14 121.33
65.94 121.11
66.04 t21.33
66.04 121.33
65.64 121.33
65.64 121.33
65.54 121.33
65.54 tzt .33
65.34 r 21.33
64.94 t21.33
65.34 t 2l .33
65.64 121.33
6s.44 r 2l .33
65. 14 121.33
65.04 121.33
65.04 121.33
64.74 121.33
6s.04 t21.33
64.79 121.33
64.72 121.33
64.59 121 .33
64.72 121.33
64.62 12t.31
64.38 12t.33
64.09 121.33
63.79 121.33
63.69 tzt.33
63.22 121.33
63.11 121.33
62.99 121.3\
62.49 t 2l .31
62.54 l2l .33
62.46 r2r.33
62.28 12 r .33
62.tt 12 r.33
6t.16 121.33
61.53 121.33
61.51 r21.33
6r.50 121.33
61.00 121.33
60.99 l 2 1.33
60.8 l l2l .33
60.61 l2l .33
60.49 12 I .33
60.01 121.33
60.19 121.33
60.14 l2l .33
60.33 12 I .33
60.06 l2 I .33
320,991.17
320,991.17
320,991.17
320,991.17
320,991.17
320,99t.t7
320,991.17
320,99t.17
320,991.17
320,99 t.17
320,99r.r7
320,99t.r7
320,99t.t7
320,99t.t7
320,99t.17
320,99t.t7
320,99t.t7
320,99t.t7
320,991.t7
320,991.t7
320,991.t7
320,991.17
320,991.17
320,991.1'7
320,991.17
320,991.17
320,991.17
320,99t.17
320,99r.17
320,991.17
320,991.17
320,991.t7
320,99t.t7
320,991.17
320,991.r7
320,99r.17
320,99r.11
320,991.17
320,99 t.r7
320,991.17
320,99t.t7
320,991.t7
320,991.t7
320,991.17
320,991.17
320,991.17
320,99 t.t7
320,99 t.t7
320,99t.t7
320,99r.t7
320,991.17
320,991.1'.7
320,99r.r7
320,991.17
320,99t.t7
320,99t.t7
320,991.17
320,991.1'7
320,991.17
320,99t.t7
320,991.17
320,991.t7
320,99t.17
320,991.17
s 6r, 11
5,622.33
s,622.33
s,622.33
5,622.33
5,622.33
5,622.33
5,622.33
s,622.33
5,622.33
5,622.33
5,622.13
5,622.33
5,622.33
5,622.33
5,622.33
s,622.33
5,622.33
5,622.33
5,622.33
5 Kr' 11
s,622.33
5,622.33
5,622.33
5,622.33
5,622.33
5,622.33
5,622.33
s,622.33
( 6?' t1
5 6r' 11
5,622.33
5,622.33
5,622.33
5,622.33
s,622.33
5,622.33
5,622.33
s,622.33
5,622.33
5,622.33
5,622.33
5,622.33
< 6)) 71
5,622.33
5,622.33
5,622.33
\ 6))'\7
5,627.33
s,622.33
5,622.33
5,622.33
s,622.33
s,622.33
5,622.33
5,622.33
< 6r) 11
5,622.33
5,622.33
5,622.33
< Kr) 11
5 6r' 11
5,622.33
s,622.33
1.56
1.56
1.56
1.56
1.56
r.56
1.56
1.56
1.56
t.56
1.56
1.56
1.56
1.56
1.56
1.56
1.56
L56
1.56
1.56
1.56
1.56
1.56
1.56
1.56
L56
r.56
1.56
1.56
1.56
1.56
1.56
l.s6
1.56
1.56
1.56
1.56
r.56
1.56
1.56
1.56
L56
1.56
r.56
1.56
1.56
1.56
1.56
1.56
L56
1.56
l.s6
I .56
I .56
1.56
1.56
1.56
1.56
1.56
1.56
1.56
1.56
1.56
r.56
83.96
83.23
83.20
80.04
80.04
70.75
70.25
69.s0
68.86
0.00
0.00
0.00
0.00
67.70
67.50
67.70
67.50
67.60
67.60
67.20
67.20
67.r0
67.10
66.90
66.50
66.90
67.20
67.00
66.70
66.60
66.60
66.30
66.60
66.35
66.28
66.1s
66.28
66.18
65.94
65.65
65.35
65.25
64.78
64.67
64.55
64.05
64.10
64.02
63.84
63.61
63.32
63.09
63.07
63.06
62.s6
62.55
62.37
62.17
62.05
6t.57
61.7 5
61.90
61.89
61.62
Water Levels and Data, Over Time
White Mesa Mill Monitor Well 5
Water
Elevation
(wL)
s,499.97
5,500.80
5,500.97
5,500.97
5,500.80
5,501.47
5,500.89
5,50 1.05
5,501.05
5,500.80
5,500.80
5,500.97
5,500.64
5,504.64
5,504.64
5,504.'.12
5,498.47
5,500.89
5,500.07
5,500.88
5,500.82
5,500.89
5,500.83
5,500.84
5 {OO 71
5,499.97
5,500.90
5,500.67
5,500.42
5,500.48
5,500.79
5,500.50
5,500.60
s,500.53
5,500.68
5,500.67
5,500.46
5,500.94
s 500 ss
5,s00.67
5,500.75
5,500.97
5,500.79
5,500.87
5,500.91
5,501 .0s
5,500,95
5,500.87
5,500.98
5,501 .07
5,500.67
5,501.07
5,500.94
5,500.97
5,501.37
5,501. l7
5,500.97
5,500.57
5,500.4't
5,500.97
5,501. t 7
5,501.17
5,50t.42
5,500.97
5,50 1. I 7
5,500.22
5,501 .42
5,501.45
5,501.39
5,501.38
5,50 I .54
5,501.32
5.501.43
Land Surface
(LSD)
5,609. I 8
s,609. r 8
5,609. r 8
5,609 r8
5,609. I 8
5,609. r 8
5,609. r8
5,609. I 8
5,609. r8
s,609. l8
5,609. l8
5,609. l8
5,609. l8
5,609. I 8
5,609. I 8
s,609. r 8
5,609. l 8
5,609. I 8
5,609. r 8
5,609. I 8
5,609.l8
5,609. I 8
5,609. r 8
5,609. I 8
5,609. r 8
5,609. l 8
5,609. l8
5,609. r 8
5,609. l8
5,609. r 8
5,609 l8
5,609. r 8
5,609. I 8
5,609. I 8
5,609. r 8
5,609. r 8
5,609. I 8
5,609. l 8
s,609. I 8
5,609. I 8
5,609. l 8
5,609. I 8
5,609. l 8
5,609. I 8
5,609. r 8
5,609. I 8
5,609. l8
5,609. l8
5,609. l8
5,609. l 8
5,609. I 8
5,609. l 8
5,609. I 8
5,609. l8
s,609 r 8
5,609. l 8
5,609. I 8
5,609. I 8
5,609. I 8
5,609. t8
5,609. l8
5,609. l8
5,609. l 8
5,609. r 8
5,609. l8
5,609. I 8
s,609. l 8
5,609. l8
5,609. l8
5,609. r8
5,609. I 8
5,609. I 8
5,609. l 8
Measuring
Point
Elevation
(MP)
5,608.97
5,608.97
5,608.97
5,608.97
5,608.97
s,608.97
5,608.97
5,608.97
5,608.97
5,608.97
5,608.97
5,608.97
s,608.97
5,608.97
s,608.97
5,608.97
s,608.97
5,608.97
5,608.97
5,608.97
5,608.97
5,608.97
5,608.97
5,608.97
5,608.97
5,608.97
5,608.97
5,608.97
5,608.97
5,608.97
5,608.97
5,608.97
5,608.97
5,608.97
5,608.97
5,608.97
5,608.97
s,608.97
5,608.97
5,608.97
5,608.97
s,608.97
5,608.97
5,608.97
5,608.97
5,608.97
5,608.97
5,608.97
5,608.97
5,608.97
5,608.97
5,608.97
5,608.97
5,608.97
5,608.97
5,608.97
5,608.97
5,608.97
5,608.97
5,608.97
5,608.97
5,608.97
5,608.97
5,608.97
5,608.97
5,608.97
5,608.97
5,608.97
s,608.97
s,608.97
5,608.97
5,608.97
s,608.97
Length
Of Riser
(L)
-0.21
-0.21
-0.21
-0.2t
-0.21
-0.21
-0.21
-0.2t
-0,21
-0.2t
-0.21
-0.21
-0.21
-0.2t
-0.21
-0.21
-0.21
-0.2t
-0.2 r
-0.21
-0.21
-0.2t
-0.21
-0.2t
-0.2t
-0.21
-0.2t
-0.21
-0.2t
-0.21
-0.21
-0.21
-0.21
-0.2t
-0.2t
-0.2 r
-0.2 r
-0.2t
-0.21
-0.2t
-0.2 r
-0.21
-0.2 r
-0.21
-0.21
-0.21
-0.21
-0.21
-0.21
-0.21
-0.21
-0.2r
-0.21
-0.2t
-0.2 r
-0.21
-0.21
-0.21
-0.2 r
-0.21
-0.2t
-0.21
-0.21
-0.2t
-0.2t
-0.21
-0.21
-0.21
-0.2t
-0.2t
-0.21
-0.21
-0.21
Monitor
Well
Number
Dare Of
Monitoring
2tr2t8l
9lt/84
t2/y84
2/U85
6/Ugs
9/v8s
t2^/85
6lt9l86
9/rt86
12/v86
2/20t87
4128187
8lt4/87
I t/20t81
U26t88
6/188
8t23t88
lLt2t88
3/9t89
6t2I/89
9/U89
tt/15t89
2lt6190
5/8t90
8/7 t90
tt/t3190
2t27t9t
5t2U9l
812719t
t2/3t91
3lt7l92
6nU92
9^3192
t2t9t92
3124193
6t8t93
9t22t93
t2/14t93
3t24194
6^5194
8fi8t94
t2/13t94
3lt6195
6t27 t95
9t20t9s
12ilU9s
3t28t96
6t7196
9il6t96
1U22196
3t20t91
6il197
9t30t97
3^6198
5lt2l98
9t24t98
lrt3t98
2n8t99
5ltv99
7 t6199
9t28t99
t2t9t99
3^1100
616t00
9/4t00
I li30l00
3t23t0t
5/l 8/0 I
5t24l0l
5t3U0t
6t5l0l
6il3t0t
6122l0t
'otal or
Measured
Depth to
Water
(blw.MP)
109.00
108.17
l 08.00
108.00
108. l7
107.50
108.08
t07.92
t07,92
108.17
108.17
108.00
r 08.33
I 04.33
104.33
104.25
r 10.50
108 08
108.90
108.09
108.15
I 08.08
108. l4
108. l3
I 08.24
109.00
108.07
r 08.30
I 08.55
108.49
108.18
108.47
I 08.37
108.44
r08.29
r 08.30
108.5 I
l 08.03
108.42
I 08.30
108.22
108.00
108.18
108. l0
108.06
t07.92
108.02
108.10
107.99
107.90
I 08.30
r 07.90
108.03
108.00
107.60
107.80
108.00
108.40
108.50
l 08.00
l 07.80
l 07.80
I 07.55
I 08.00
107.80
108.75
107.55
101.52
I 07.58
I 07.59
t07.43
I 07.65
I 07.54
Total Depth
to Water
(blw.LSD)
109.2 l
108.38
108.21
108.21
l 08.38
t07 .7 |
I 08.29
108.13
r08. I 3
108.38
108.38
108.21
108.s4
104.54
t04.54
104.46
I10.71
108.29
109. I I
108.30
l 08.36
108.29
108.35
108,34
108.45
t09.21
108.28
108.5 I
I 08.76
I 08.70
l 08.39
r 08.68
I 08.58
I 08.65
I 08.50
108.5 l
108.72
108.24
108.63
108.51
108.43
108.21
108.39
108.3 I
108.27
108.13
108.23
108.3 t
108.20
108. r r
108.5 I
r08. I r
108.24
108.2 r
r07.8 I
108.0 r
108.21
108.61
108.7 I
108.21
108.01
108.01
107.76
108.21
108.01
108.96
to't.'76
107.73
107.79
I 07.80
t0'7.64
I 07.86
107.'15
Top of
Screened
Interval
(blw.LSD)
95.5
95.5
95
95
95
95
95
95
95
95
95
95
95
Bottom of
Screened
Intenal
(blw.LSD)
r 33.5
133.5
133.5
133.5
133.5
133.5
133.5
133.5
133.5
133.5
r 33.5
133.5
133.5
133.5
t 33.5
t33
r33
133
133
Total
Depth Of
Well
136.3
136.3
136.3
136.3
136.3
t 36.3
t36.3
136.3
136.3
136.3
136.3
136.3
136.3
r 36.3
r36.3
136.3
136.3
136.3
136.3
136.3
136.3
136.3
136.3
136.3
136.3
136.3
136.3
136.3
136.3
r 36.3
136.3
1 36.3
I 36.3
136.3
136.3
136.3
136.3
136.3
136.3
t 36.3
r 36.3
136.3
136.3
t 36.3
136,3
136.3
136.3
136.3
l36J
136.3
136.3
136.3
136.3
136.3
136.3
136.3
136.3
136.3
136.3
136.3
136.3
136.3
136.3
r 36.3
l36 3
136.3
136.3
136.3
136.3
1 36.3
136.3
136.3
136.3
Easting
2,577,478.42
2,577,478.42
2,57',1,478.42
2,577,478.42
2,577,478.42
2,577,478.42
2,5"17,478.42
2,577,478.42
2,577,478.42
2,s77,478.42
2,57',|,478.42
2,577,478.42
2,577,478.42
2,577,478.42
2,577,478.42
2,577,478.42
2,577,478.42
2,577,478.42
2,577,478.42
2,s77,478.42
2,517,478.42
2,577,478.42
2,577,478.42
2,577,478.42
2,577,478.42
2,577,478.42
2,577,478.42
2,577,478.42
2,577,478.42
2,s77,478.42
2,577,478.42
2,5',77,478.42
2,577,478.42
2,577,478.42
2,577,478.42
2,577,478.42
2,577,478.42
2,577,478.42
2,5',17,478.42
2,577,478.42
2,571,478.42
2,577,478.42
2,517,478.42
2,577,478.42
2,577,478.42
2,577,478.42
2,577,4',18.42
2,577,478.42
2,577,478.42
2,577,478.42
2,577,478.42
2,577,478.42
2,577,478.42
2,577,478.42
2,577,478.42
2,577,478.42
2,577,478.42
2,577,478.42
2,5't7,478.42
2,577,478.42
2,5't'7,478.42
2,577,478.42
2,577,478.42
2,577,478.42
2,577,4'.18.42
2,51't,478.42
2,5'77,478.42
2,577,478.42
2,5-7't,478.42
2,577,478.42
2,577,478.42
2,577,478.42
2,577,4't8.42
Northing
320,s19.t2
320,519.t2
320,5t9.12
320,5t9.12
320,5t9.12
320,5t9.12
320,519.12
320,519.12
320,519.12
320,s19.12
320,519.12
320,519.12
320,5t9.t2
320,519.t2
320,519.t2
320,519.t2
320,5t9.t2
320,519.t2
320,5t9 t2
320,519.t2
320,519.12
320,5t9.t2
320,5t9.t2
320,519.t2
320,5t9.t2
320,5t9.t2
320,519.t2
320,519.t2
320,519.12
320,519.t2
320,5t9.t2
320,519.t2
320,519.12
320,519.t2
320,5t9.t2
320,s19.t2
320,5t9.t7
320,519.12
320,519.12
320,5t9.12
320,5t9.t2
320,519.12
320,5t9.t2
320,519.12
320,5t9.t2
320,519.12
320,5t9.12
320,5t9.t2
320,5t9.t2
320,519.t2
320,519.12
320,519.t2
320,519.t2
320,519.t2
320,s19.t2
320,519.t2
320,519.12
320,5t9.12
320,5t9.12
320,5t9.12
320,5t9.t2
320,5t9.12
320,5t9.12
320,519.t2
320,519.t2
320,519.12
320,5t9.t2
320,519.12
320,5t9.t2
320,st9.12
320,st9.t2
320,519.t2
320.s19.12
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
95.5
95.5
95.5
95.5
95.5
95.5
95.5
95.5
95.5
95.5
95.5
95.5
95.5
95.5
95.5
95.5
95.5
95.5
95.5
95.5
95.5
95.5
95.5
95.5
95.5
95.5
95.5
95.5
95.5
95.5
95.5
95.5
95.5
95.5
95.5
95.5
133.5
133.5
133.5
133.5
133.5
133.5
133.5
133.5
133.5
133.5
r 33.5
133 5
133.5
133.5
133.5
r 33.5
r 33.5
133,5
133,5
133.5
133.5
133.5
133.5
133.5
133.5
r 33.5
133.5
133.5
133.5
133.5
133.5
l3 3.5
r 33.5
133.5
133.5
133.5
r 33.5
133.5
133.5
l3 3.5
133.5
133.5
133.5
133.5
133.5
133.5
l3 3.5
133.5
133.5
r 33.5
r 33.5
133.5
133.5
133.5
95
95
95
95
95
95
95
95
95
95
95
95
95
95
95
95.5
95.5
95.5
95.5
95.5
9s.5
95.5
95.5
95.5
Water Levels and Data, Over Time
White Mesa Mill Monitor Well 5
Easting
2,577,478.42
2,577,418.42
2,577,478.42
2,577,478.42
2,57',1,478.42
2,5'1',7,418.42
2,577,478.42
2,517,478.42
2,577,478.42
2,577,478.42
2,577,478.42
2,577,478.42
2,577,478.42
2,577,418.42
2,577,478.42
2,577,4'18.42
2,5',7'1,478.42
2,577,4'78.42
2,57',1,418.42
2,577,478.47
2,577,478.42
2,577,4',78.42
2,5'17,418.42
2,577,478.42
2,577,478.42
2,577,4']8.42
2,577,478.42
2,577,478.42
2,577,4'78.42
2,577,478.42
2,577,478.42
2,577,478.42
2,577,418.42
2,577,478.42
2,5"1',t,4',78.42
2,577,478.42
2,5',77,478.42
2,s77,418.42
2,577,478.42
2,577,4'78.42
2,577,4',78.42
2,577,478.42
2,577,4'18.42
2,577,478.42
2,577,418.42
2,577,478.42
2,577,478.42
2,s77,478.42
2,577,478.42
2,577,478.42
2,577,478.42
2,577,478.42
2,517,4',78.42
2,577,478.42
2,577,478.42
2,577,478.42
2,577,478.42
2,577,478.42
2,577,478.42
2,577,418.42
2,577,478.42
2,577,418.42
2,517,478.42
2,577,4',78.42
Northing
320,519.12
320,519.12
320,s19.12
320,5t9.t2
320,519.t2
320,5t9.12
320,519.12
320,5t9.12
320,st9.12
320,5t9.t2
320,5t9.t2
320,5t9.t2
320,5t9.t2
320,519.12
320,519.t2
320,5t9.t2
320,5 19.12
320,5t9.t2
320,5t9.t2
320,5t9.12
320,519.t2
320,5t9,12
320,519.t2
320,519.12
320,5t9.t2
320,5t9.12
320,519.12
320,st9.12
320,519.12
320,519.12
320,519.12
320,5t9.t2
320,519.12
320,5t9.12
320,519.12
320,5t9.12
320,5t9.t2
320,5t9.12
320,5t9.t2
320,5t9.t2
320,519.12
320,5t9.12
320,519.12
320,5t9.12
320,5t9.12
320,s19.t2
320,519.t2
320,519.12
320,5 19. l2
320,5t9.12
320,5t9.t2
320,5t9.t2
320,5t9.t2
320,5t9.12
320,519.12
320,5t9.12
320,519.12
320,519.12
320,519.12
320,519.t2
320,st9.t2
320,519.t2
320,s19.t2
320,519.t2
Water
Elevation
(wL)
5,501.39
5,501.40
5,501.45
5,501.54
5,501.56
5,50 1.54
5,50 1.39
5,50 1.32
5,501.41
5,50t.42
5,50t.44
5,501 .40
s,501.48
5,501.44
5,501.40
5,50 1.55
5.50 I .39
5,50 r.34
5,501.5 I
5,501 ,30
5,501.25
5,501.54
5,50 1.70
5,501.41
5,50 1.32
5,50 r.52
5,50t.44
5,501.49
5,501.35
5,501 ,71
5,501.3s
5,50 1.32
5,50 l. I 9
5,50 1.86
5,501.48
5,501.81
5,501.25
5,501 .52
5,501 .60
5,501.44
5,501.61
5,501.45
5,501 .68
5,50t.62
5,501 .60
5,501 .49
5,501.56
5,501.60
5,501.56
5,501 .58
5,50 1 49
5,501.56
5,501.40
5,501.55
5,501.39
5,501.5 8
5,50 1.60
5,50 1.54
5,501 .45
5,498. l5
5,501.79
5,501 87
5,502.05
5.501 .92
Length
Of Riser
(L)
-0.2r
-0.21
-0,2t
-0.2t
-0.21
-0.21
-0.21
-0.21
-0.21
-0.2t
-0.21
-0.21
-0.21
-0.2t
-0.21
-0.2t
-0.21
-0.21
-0.21
-0.21
-0.2t
-0.2t
-0.21
-0.2t
-0.2 r
-0.2t
-0.2t
-0.21
-0.21
-0.21
-0.21
-0.2t
-0.2t
-0.21
-0.21
-0.21
-0.21
-0.21
-0.21
-0.21
-0.21
-0.21
-0.21
-0.2t
-0.2t
-0.2t
-0.2t
-0.21
-0.2t
-0.2t
-0,21
-0.21
-0.2t
-0.21
-0.21
-0.21
-0.21
-0.21
-0.2t
-0.2t
-0.2t
-0.21
-0.2t
-0.21
Monitor
Well
Number
5
5
Date Of
Monitoring
6t28t0t
7/2101
7 n0/01
7^6/0t
7/2st0t
7t3y0l
8/9t01
8lt4/01
8t20l0l
8/27101
917/0t
9^2t01
9/l 8/0 I
9t26/01
t0t2/0t
t0/9t01
I 0/r5/0 I
t0125/01
l l/l/01
I l/5/0 I
nlt9l0l
t2/3t01
12fi0/01
t2lt8/01
t2/24t01
t2/31/01
t/9t02
Ut4/02
y24/02
v29/02
2/6102
2/t3/02
2/2v02
3il/02
316/02
3/t4102
3t2v02
3t27 t02
4/2102
4t9t02
4fi8t02
4t23/02
5/2t02
5t7102
5^6102
5t20/02
5t3U02
6t4t02
6^2/02
6lt7l02
6/27 t02
7ts/02
"118t02
7 I t5102
7 t25t02
81y02
8120102
8t29t02
9t5t02
9il0t02
9t20102
9t26t02
t0t2/02
10/10/02
Top of
Screened
Interval
(blw.LSD)
95.5
955
95.5
95.5
95.5
95.5
95.5
95.5
95.5
95.5
95.5
95.5
95.5
95.5
95.5
95
95
95
95
Bottom of
Screened
Interval
(blw.LSD)
133.5
133.5
133.5
133.5
133.5
133.5
133.5
Total
Depth Of
Well
136.3
136.3
136.3
t36.3
136.3
136.3
r 36.3
136.3
r 36.3
136.3
136.3
136.3
136.3
136.3
136.3
136.3
136.3
136.3
r 36.3
136.3
136.3
136.3
136.3
r 36.3
r 36.3
136.3
136.3
136.3
136.3
136.3
136.3
136.3
136.3
136.3
136.3
136.3
136.3
136.3
136.3
136.3
136.3
136.3
136.3
1 36.3
136.3
136.3
136.3
136.3
1363
136.3
136.3
136.3
136.3
136.3
136.3
r 36.3
136.3
136.3
136.3
136.3
136.3
tJo.1
136.3
136.3
Measuring
Point
Land Surface Elevation
(LSD) (MP)
5,609. r 8 5,608.97
5,609. l8 5,608.97
s,609.18 5,608.97
5,609. I 8 5,608.97
5,609. r8 5,608.97
5,609. t8 5,608.97
5,609. l8 5,608.97
5,609. l8 5,608.97
5,609.18 5,608.97
5,609.18 s,608.97
5,609.18 s,608.97
5,609. l8 5,608.97
5,609. l8 5,608.97
s,609. l8 5,608.97
5,609.18 5,608.97
5,609.18 5,608.97
5,609.18 5,608.97
5,609.1 8 5,608.97
5,609.18 5,608.97
5,609. l 8 s,608.97
5,609. I 8 5,608.97
5,609.18 5,608.97
5,609.18 5,608.97
5,609. l8 s,608.97
5,609. l 8 5,608.97
5,609. l 8 5,608.97
5,609.18 5,608.97
5,609.18 5,608.97
5,609 18 5,608.97
5,609. I 8 5,608.97
5,609. l8 5,608.97
5,609. l8 5,608.97
5,609. l8 5,608.97
5,609.18 5,608.97
5,609.18 5,608.97
5,609. l 8 5,608.97
5,609.18 5,608.97
5,609. I 8 5,608.97
5,609.18 5,608.97
5,609.18 5,608.9'7
5,609.18 5,608.97
5,609. r8 5,608.97
5,609. 18 5,608.97
5,609. l8 5,608.97
5,609. l8 5,608.97
5,609. l8 s,608.97
5,609. l8 s,608.97
5,609.18 5,608.97
5,609.18 5,608.97
5,609. l8 5,608.97
5,609. l8 5,608.97
5,609.18 5,608.97
5,609. l8 5,608.97
5,609.18 5,608.97
5,609. l8 5,608.97
5,609. l8 5,608,97
5,609.18 5,608.97
5,609. l8 5,608.97
5,609. I 8 5,608.97
5,609. l8 5,608.97
s,609. l8 5,608.97
5,609. l8 5,608.97
5,609.18 5,608.97
5,609.18 5,608.97
Total or
Measured
Depth to Total Depth
Water to Water
(blw.NIP) (blw.LSD)
107.58 t07.'19
t07 .57 107.78
t07.52 t01.73
107.43 107.64
t07.41 t07 .62
107.43 t07.64
107.58 t07.79
107.65 107.86
t07.56 107 .77
107.55 t07.76
107.53 t07.74
t07 .57 107 .78
t07.49 t07.70
107.53 107 .74
t07 .57 t07.78
107.42 t07.63
107.58 107.'t9
107.63 107.84
107 .46 107.67
t0'7.67 107.88
107.72 107.93
t07.43 t07.64
l07 .2't 107.48
107.56 t07.77
107.65 107.86
t07.45 107.66
107.53 10"t.74
107,48 t07.69
t07.62 107.83
107.26 107.47
107.62 r07.83
107.65 107.86
107.78 107.99
107.1 1 107 .32
t07.49 107.70
t07.16 107.37
107 .72 107.93
t07.45 t07.66
t07.37 t07.58
107.53 t07 .74
107 .36 t07.57
107 .52 107.73
107.29 107.50
107.35 107.56
t07.37 107.58
107.48 107.69
107.41 107.62
t07.37 107.58
t07.41 107.62
t07 .39 107.60
107.48 t07.69
t07.41 t07.62
t07.57 107.78
t07.42 t07.63
107.58 t07.79
t07.39 107.60
t07.37 107.58
t01.43 t0'7.64
t01.52 t07.73
u0.82 il 1.03
107.18 t07.39
107.10 107.31
106.92 107.13
107.05 107 .26
133
133
T JJ
r33
133
133
133
133
95.5
95.5
95.5
95.5
95.5
95.5
95.5
95.5
95.5
95.5
95.5
95.5
95.5
95,5
95.s
95.5
95.5
95.5
95.5
95.5
95.5
95.5
95.5
95.5
95.5
9s.5
95.5
95.5
95.5
95.5
95.5
95.5
95.5
95.5
95.5
95.5
95.5
95.5
95.5
95.5
95.5
95.5
95.5
95.5
95.5
133.5
133.5
133.5
t 33.5
r 33.5
133.5
133.5
133.5
133.5
r 33.5
133.5
r33 5
133.5
133 5
133.5
l3 3.s
133.5
133.5
133.5
133.5
133.5
133.5
133.5
133.5
133.5
133.5
133.5
133.5
133.5
133.5
133.5
133.5
133.5
133.5
133.5
r 33.5
133.5
133.5
r 33.5
133.5
133.5
133.5
133.5
133.5
r 33.5
I33.5
133.5
I33.5
13 3.5
Water Levels and Data, Over Time
White Mesa Mill Monitor Well 11
Easting
2,578,798.t0
2,578,798.10
2,578,798.10
2,578,198.10
2,578,'.l98.10
2,578,'198.10
2,578,798.10
2,578,798.10
2,578,798.t0
2,578,798.10
2,s78,798.t0
2,578,798.10
2,578,798.t0
2,578,798.10
2,578,798.10
2,578,798.10
2,s',t8,798.10
2,578,798.t0
2,578,798.10
2,578,798.10
2,578,798.10
2,578,798.10
2,578,798.t0
2,578,798 I0
2,578,798.10
2,578,798.t0
2,578,798.10
2,578.798.10
2,578,798. l0
2,578,798.10
2,578,798,10
2,578,798.10
2,578,798,10
2,578,798.10
2,s78,798.10
2,578,798.10
2,578,798.10
2,578,798.10
2,578,',l98.10
2,578,798.10
2,578,798.t0
2,578,798.10
2,578,798. I 0
2,5't8,798.10
2,578,798.10
2,578,798.10
2,578,798.10
2,578,798.10
2,578,798,10
2,578,798.10
2,578,798.10
2,578,798.t0
2,578,798. l0
2,578,798.t0
2,578,'198.10
2,578,798.10
2,578,798.10
2,578,798. l0
2,578,798.10
2,578,',l98.10
2,578,798.10
2,578,798. l0
2,578,798.10
2,578,798.t0
2,578,798.10
2,s78,798.t0
2,5'18,798.t0
2,578,798.10
2,578,798.t0
2,578,798.10
2,578,798.t0
2,578,798.t0
Northing
320,245.47
320,245.47
320,245.47
320,245.47
320,245.47
320,24s.47
320,245.41
320,245.47
320,245.47
320,245.47
320,245.47
320,245.47
320,245.47
320,245.47
320,245.47
320,245.47
320,245.47
320,245.47
320,245.47
320,245.47
320,245.47
320,245.47
320,245.47
320,245.47
320,245.47
320,245.47
320,245.47
320,245.47
320,245.47
320,245.47
320,245.47
320,245.47
320,245.47
320,245.47
320,245.47
320,245.47
320,245.47
320,24s.47
320,245.47
320,245.47
320,245.47
320,245.47
320,245.47
320,245.47
320,245.47
320,245.41
320,245.47
320,245.47
320,245.47
320,245.47
320,245.47
320,245.47
320,245.47
320,245.47
320,245.41
320,245.47
320,245.47
320,245.47
320,245.4'7
320,24s 47
320,245.47
320,245.47
320,245.47
320,245.47
320,245.47
320,245.47
320,24s.47
320,245.41
320,245.47
320,24s.47
320,245.47
320,245.47
Water
Elevation
(wL)
5,507.38
5,506.80
5,s06.80
s,500.88
5,507.88
5,507. l 3
5,507.80
5,507.97
5,507.80
5,507.97
5,507.63
5,508.3 8
5,508.22
5,507.63
5,507.97
5,502.80
5,508.80
5,508.30
5,508.20
5,508.3 I
s,508.20
s,508.30
5,508.28
s,508.64
5,508.24
5,508.30
5,508.74
s,s08.35
5,s08.27
5,508.29
5,508.88
5,508.53
5,508.62
5,508.44
5,508.93
5,508.85
5,508.83
5,509.28
5,509. l0
5,509.45
5,509.60
5,509.88
5,509.80
5,509.93
5,5 r0.03
5,5 10.36
5,510,38
5,5 10.30
5,5 l 0.54
5,5 10.75
5,5t0.24
5,5 10.85
5,510.78
5,51 L30
5,51 L40
5,5 I 1.30
5,510.80
5,511.05
5,5 I I.40
5,s l 1.60
5,5 I 1.30
5,51 1.60
5,5 12.05
5,5t2.65
5,512.25
5,5 t2.53
5,5t2.82
5,5t2.93
5,5 12.9 r
5,5 12.88
5,5 t2.98
5,5 t 3. l2
Date Of
Monitoring
9/184
t2lt/84
2/v8s
6/y8s
9/y85
12fi/85
3/186
6/r9/86
9nt86
t2/l./86
2120/87
4128/87
8^4t87
tv20t81
U26t88
6^188
8123t88
l].l2l88
3t9189
6t2U89
9nt89
l/t5t89
2lt6/90
5t8t90
8/7 t90
t1^3190
2127/91
5t21t9t
8t27 t9l
t2l3l9l
3/17 t92
6^v92
9n3t92
t2l9l92
3t24193
6/8t93
9t22t93
tzlt4/93
3t24t94
6il5194
8^8194
t2/t3194
3n6t95
6127195
9t20t95
t2ltv95
3128196
6/7196
9^6t96
lt22/96
3t20t97
6ilU9'l
9t30t97
3^6198
5lt2l98
9t24t98
n/3t98
2il8t99
strt99
7t6t99
9t28t99
t2/9t99
3l t1 100
616100
9t4t00
l l/30/00
3t23t0t
5/1 8/01
5t24t0l
st3v0l
6lsl0l
6^3/01
Measuring
Point
Land Surface Elevation
(LSD) (MP)
5,608.51 5,610.80
5,608.51 5,610.80
5,608.51 5,610.80
5,608.51 5,610.80
5,608.51 5,610.80
5,608.51 5,610.80
5,608.51 s,6r0.80
5,608.s r s,610.80
5,608.51 5,610.80
5,608.51 5,610.80
5,608.51 5,610.80
5,608.51 5,610.80
5,608.51 s,610.80
5,608.51 5,610.80
5,608.51 5,610.80
5,608.51 5,610.80
5,608.51 5,610.80
5,608.51 5,610.80
5,608.51 5,610.80
5,608.51 5,610.80
5,608.5 I 5,610.80
5,608.5 I 5,610.80
5,608.5 I 5,610.80
5,608.51 5,610.80
5,608.51 5,6r0.80
5,608.51 5,610.80.
5,608.51 5,610.80
5,608.51 5,610.80
5,608.51 5,610.80
5,608.51 5,610.80
5,608.5 I 5,610.80
5,608.5 I 5,610.80
5,608.51 5,610.80
5,608.5 r 5,610.80
5,608.5 r 5,610.80
5,608.5 r 5,610.80
5,608.51 5,6r0.80
5,608.51 5,610.80
5,608.51 5,610.80
5,608.5 I 5,610.80
5,608.5 I 5,610.80
5,608.5 I 5,610.80
5,608.5 I 5,610.80
5,608.51 5,610.80
5,608.51 5,610.80
5,608.51 5,610.80
5,608.5 I 5,610.80
5,608.5 I 5,610.80
5,608.5 I 5,610.80
5,608.51 5,610.80
5,608.sr 5,6r0.80
5,608.51 5,610.80
5,608.51 5,610.80
5,608.5 l 5,610,80
5,608.51 s,610 80
5,608.5 r s,610.80
5,608.51 5,610.80
5,608.5 r 5,610.80
5,608.5 l 5,610.80
5,608.51 5,610.80
5,608.51 5,610.80
5,608.5 r 5,610.80
5,608.5 I 5,610.80
5,608.5 I 5,610.80
5,608.51 5,610.80
5,608.51 5,6r0.80
5,608.sr 5,610.80
5,608.5 I 5,610.80
s,608.s l 5,610.80
5,608.s 1 5,610.80
5,608.51 5,610.80
5,608.5 r 5,610.80
Length Monitor
Of Riser Well
(L) Number
2.29 I I
2.29 t 1
2.29 I I
2.29 I I
2.29 I l
2.29 r l
2.29 I I
2.29 I I
2.29 ll
2.29 I I
229 II
2.29 I I
2.29 I I
2.29 I I
2.29 r l
2.29 I I
2.29 I I
2.29 I I
2.29 ll
2.29 I I2.29 r r
2.29 I I
2.29 r I
2.29 I l
2.29 1l
2.29 l I
2.29 1l
2.29 l I
2.29 I I
2.29 I I
2.29 I I
2.29 I I
2.29 I I
2.29 1l
2.29 l l
2.29 l r
2.29 I I
2.29 I I
2.29 l I
2.29 I I
2.29 I I
2.29 I I
2.29 I I
2.29 r I
2.29 I I
2.29 I I
2.29 I I
2.29 I I
2,29 I I
2.29 I l
2.29 I I
2.29 I I
2.29 l l
2.29 l l
2.29 I I
2.29 I I
2.29 I I
2.29 I I
2.29 I I
2.29 I I
2.29 lt
2.29 I I
2.29 r l
2.29 l l
2.29 ll
2.29 I r
2.29 I r
2.29 I I
2.29 I I
2.29 I I
2.29 I I
2.29 I I
Total or
Measured Total Top Of Bottom Of
Depth to Depth to Screened Screened Total
Water Water Interval Interval Depth Of
(blw.MP) (blw.LSD) (blw.LSD) (blw.LSD) Well
103.42 l0 t. t 3 90.70 130.40 135
104.00 l0r.7r 90.70 130.40 135
104.00 t0t.7t 90.70 130.40 135
t09.92 107.63 90.10 t 30.40 135
102.92 100.63 90.70 130.40 135
t03.67 10t.38 90.70 130.40 135
103.00 100.71 90.70 130.40 135
102.83 100.54 90.70 130.40 135
103.00 100.71 90.70 130.40 135
102.83 100.54 90.70 130.40 135
103.17 100.88 90.70 130.40 t35
102.42 t00.13 90.70 130.40 135
102.58 100.29 90.70 130.40 135
103.17 100.88 90.70 130.40 t35
102.83 100.54 90.70 130.40 I 35
108.00 r05.7r 90.70 130.40 135
102.00 99.'7t 90.70 130.40 135
102.50 100.21 90.70 130.40 135
102.60 100.31 90.70 130.40 t35
102.49 100.20 90.70 130.40 135
102.60 100.31 90.70 130.40 135
102.50 100.21 90.70 130.40 135
t02.52 100.23 90.70 130.40 135
t02.16 99.8't 90.70 130.40 135
t02.56 t00.27 90.70 130.40 t35
102.50 100.21 90.70 130.40 135
102.06 99.77 90.70 130.40 t35
102.45 100, 16 90.70 130.40 135
102.58 100.29 90.'70 130.40 r35
102.51 t00.22 90.70 130.40 135
101.92 99.63 90.70 130.40 135
"t02.27 99.98 90.70 130.40 135
102.18 99.89 90.70 130.40 135
t02.36 100.07 90.70 130.40 135
r0r.87 99.58 90.70 130.40 135
101.95 99.66 90.70 130.40 135
101.97 99.68 90.70 130.40 135
101.52 99.23 90.70 130.40 135
r0r.70 99.41 90.70 130.40 135
101.35 99.06 90.70 130.40 135
101.20 98.91 90.70 130.40 135
100.92 98.63 90.70 130.40 135
10r.00 98.71 90.70 130.40 135
100.87 98.58 90.70 130.40 135
t00.7't 98.48 90.70 130.40 135
100.44 98.15 90.70 130.40 135
100.42 98.13 90.70 130.40 135
100.50 98.2t 90.70 130.40 135_
100.26 97.97 90.70 130.40 r35
100.05 97.76 90.70 130.40 135
100.56 98.2't 90.70 130.40 135
99.95 97.66 90.70 130.40 135
100.02 97.73 90.70 130.40 135
99.50 97 .2t 90.70 130.40 135
99.40 97.1 90.70 130.40 135
99.50 97.21 90.70 130.40 135
100.00 97.7t 90.70 130.40 135
99.'15 97.46 90.70 130.40 135
99.40 97.1 90.70 130.40 135
99.20 96.9t 90.70 130.40 135
99.50 97 .2t 90.70 I 30.40 135
99.20 96.91 90.',70 r 30.40 135
98.75 96.46 90,70 130.40 135
98 15 95.86 90.70 130.40 135
98.55 96.26 90.70 130.40 135
98.27 95.98 90.70 130.40 135
9't .98 95.69 90.70 r 30.40 135
97 .87 95.58 90,70 130.40 135
97.89 95.60 90.70 130.40 r3s
97.92 95.63 90.70 130.40 135
97.82 95.53 90.70 130.40 135
97.68 9s39 90.70 130.40 135
Water Levels and Data, Over Time
White Mesa Mill Monitor Well 1l
Easting
2,578,',l98.t0
2,578,798.t0
2,578,798.t0
2,578,798.10
2,578,798.t0
2,578,798.t0
2,578,798.t0
2,578,798.10
2,578,798.10
2,578,798.t0
2,578,798.10
2,5'18,798.10
2,578,798.10
2,578,798.10
2,578,798.10
2,578,798.10
2,578,798.t0
2,578,798.10
2,578,798.t0
2,578,798.10
2,578,798.10
2,578,798.10
2,578,798.10
2,578,798.10
2,578,'798.10
2,578,798.10
2,578,798.t0
2,578,798.10
2,s-18,798.t0
2,578,798.10
2,578,798. l0
2,578,798.10
2,578,798.10
2,578,798.t0
2,578,798.t0
2,578,798.10
2,s78,798.10
2,578,798.10
2,578,798.t0
2,578,798.t0
2,578,798.10
2,578,798.t0
2,578,798.10
2,578,798.t0
2,578,798.10
2,578,798.t0
2.578,798.10
2,578,798.10
2,578,798.10
2,578,798.t0
2,578,798.10
2,5"18,798.10
2,578,'198.10
2,578,'798.10
2,5 78,798. I 0
2,518,198.t0
2,578;798.10
2,578,798. l0
2.578,798.10
2,578,'198.t0
2,578,798. r0
2,578,798.t0
2,578,198.10
Northing
320,245.47
320,24s.47
320,245.4'1
320,24s.47
320,245.47
320,245.47
320,245.4'7
320,245.47
320.245.4',1
320,245.47
320,245.47
320,245.47
320,245.47
320,245.47
320,245 47
320,245.47
320,245 47
320,24s.47
320,245.47
320,245.47
320,245.47
320,245.47
320,245.47
320,245.47
320,245.4'l
320,245.47
320,245.47
320,245.47
320,245.47
320,245.47
320,245.47
320,245 47
320,245.47
320,245.47
320,245.47
320,245.47
320,245.47
320,245.47
320,245.47
320,245.47
320,24s.47
320,245 47
320,245.4-t
320,245.47
320,245.47
320,245.47
320,245.47
320,245.47
320,245.47
320,245.47
320,245.47
320,245.47
320,24s.47
320,245.4',1
320,245.47
320,245.47
320,24s.47
320,245.47
320,245.47
320,245.41
320,245.47
320,245.4'l
320,245.4'7
Water
Elevation
(wL)
5,5t2.87
5,5 12.8 I
5,5t2.82
5,5t2.90
5,512.99
5,5 13.04
5,5 13.04
5,512.93
5,512.92
5,5 13.00
5,5 l3.0 r
5,5 13.06
5,513.04
5,5 13. l0
5,5 13.09
5,5 13. 1 r
5,5 13.28
5,5 r 3.03
5,5 13.02
5,5t3.24
5,5 13. l5
5,512.97
5,5 13.38
5,513.64
5,513.22
5,5 13.16
5,5 13.45
5,513.39
5,5 13.41
5,5 13. r 6
5,5 13.65
5,5 l3.32
5,513.27
5,5 13.07
5,5 13.82
5,5t3.52
5,5 13.84
5,513.30
5,5 13.58
5,s 13.69
5,5 r 3.45
5 {t17'
5,5 13.5 3
5,5 13.82
5,5 I3.79
5,5 13.75
5,513.77
5,5 l3,66
5,5 l3.73
5,5 13.68
5,513.76
5,5 13.69
5,513.77
5,513.6r
5,5 13.78
5,513.64
5,513.86
5,513.87
5,5 r 3.82
5,5t3.79
5,5 13.82
5,5 13.96
5,514.03
Date Of
Monitoring
6/22t0t
6/28101
712/01
7lt0t0l
7lt610l
7125/0t
713t/0t
819/01
8/t4t0t
8/20t01
8127l0l
917l0t
9lt2/0t
g^8/0r
9t26l0t
t0t2t0t
10/9/0 I
I 0/15/01
10t25/01
I t/l/01
I t/5101
tyt9l0l
t2t3/01
t2^010t
t2/t8t0t
t2/24101
tzt3v0l
y9t02
vt4t02
y24/02
v29102
2t6t02
2il3t02
2t2U02
34t02
316102
3^4t02
312v02
3t27/02
4t2t02
4t9t02
4il8t02
4123102
5t2/02
517102
5fi6102
5120/02
5t3t/02
6/4102
6fi2/02
6fi7/02
6t27/02
7 t5102
718102
7/15t02
7/25t02
8il/02
8t20t02
8/29102
9t5t02
9il0t02
9120102
9126/02
Measuring
Point
Land Surface Elevation
(LSD) (MP)
5,608.5r 5,6r0.80
5,608.51 5,610.80
5,608.51 5,610.80
5,608.51 5,610.80
5,608.5 I 5,610.80
5,608.51 5,610.80
5,608.51 5,610.80
5,608.51 5,610.80
5,608.51 5,610.80
5,608.51 5,6r0.80
5,608.51 5,610.80
5,608.51 5,6r0.80
5,608.51 5,610.80
5,608.5 I 5,610.80
5,608.51 5,6r0.80
5,608.51 5,610.80
5,608.5 I 5,610.80
5,608.51 5,610.80
5,608.5 I 5,610.80
5,608.51 5,610.80
5,608.51 5,610.80
5,608.51 5,610.80
5,608.51 5,610.80
5,608.51 5,6r0.80
5,608.51 5,610.80
5,608.51 5,610.80
5,608.51 5,610.80
5,608.51 5,610.80
5,608.51 5,610.80
5,608.5 r 5,610.80
5,608.5 r 5,610.80
5,608.5 I 5,610.80
5,608.5 I 5,610.80
5,608.5 I 5,610.80
5,608.s r 5,610.80
5,608.5 I 5,610.80
5,608.s I 5,610.80
5,608.51 5,610.80
5,608.51 5,610.80
5,608.5 I 5,610.80
5,608.51 5,6r0.80
5,608.51 5,610.80
5,608.5 I 5,610.80
5,608.51 5,610.80
5,608.51 5,610.80
5,608.51 5,610.80
5,608.51 5,6r0.80
5,608.51 5,610.80
5,608.51 5,610.80
5,608.51 5,610.80
5,608.51 5,610.80
5,608.51 5,610.80
5,608.51 5,610.80
5,608.5r 5,610.80
5,608.51 5,610.80
5,608.51 5,610.80
5,608.51 5,610.80
5,608.51 5,610.80
5,608.5r 5,610.80
5,608.51 5,610.80
5,608 s1 5,610.80
5,608 51 5,610.80
5,608.51 5,610.80
Length Monitor
Of Riser Well
(L) Number
2.29 I I
2.29 l r
2.29 I I
2.29 I I
2.29 I I
2.29 I I
2.29 I I2.29 r r
2.29 I I
2.29 I I
2.29 l l
2.29 I I
2.29 I I
2.29 I l
2.29 I I
2.29 1l
2.29 lt
2.29 r I
2.29 I I
2.29 I I
2.29 r l
2.29 I I
2.29 ll
2.29 I I
2.29 I r
2.29 I I
2.29 I I
2.29 ll
2.29 l r
2.29 I l
2.29 I I
7.29 I l
2.29 I l
2.29 I I
2.29 l l
2.29 I I
2.29 l I
2.29 I I
2.29 I I
2.29 l l
2.29 I I
2.29 I I
2.29 I I
2.29 I I
2.29 r l
2.29 ll
2.29 ll
2.29 I I
2.29 ll2.29 r r2.29 r r2.29 r l
2.29 I I
2.29 I I
2.29 l I
2.29 I I
229 II
2.29 I I
2.29 t I
2.29 l I
2.29 I I
2.29 I I
2.29 lt
Totrl or
Measured Total
Depth to Depth to
Water Water
(blw.MP) (blw.LsD)
97.93 95.64
97.99 95.70
97.98 95.69
97 .90 95.61
97 .8t 95.52
97.76 95.47
97.76 95.47
97.87 95.58
97.88 95.59
97.80 95.5 I
97.79 95.50
97 .74 95.45
97 .76 95.47
97.70 95.41
97 .7 | 95.42
97.69 95.40
97.52 95.23
97.77 95.48
97 .78 95,49
97.56 95.27
s7.65 95.36
97.83 9s.54
97.42 95. t3
97.16 94.87
97.58 95.29
97.64 95.35
91 .35 95.06
97 .4t 95.12
9'7 .39 95.10
9'7.64 95.35
97.t5 94.86
97 .48 95.19
9't .53 95.24
97 .73 95.44
96.98 94.69
97.28 94.99
96.96 94.67
97 .50 95.21
97.22 94.93
97.1 I 94.82
97.35 95.06
97.08 94.79
97.27 94.98
96.98 94.69
9'1.0t 94.'72
97.05 94.76
97.03 94.74
97.t4 94.85
97.07 94.78
91.t2 94.83
9't.04 94.75
91.tt 94.82
97.03 94.74
97.t9 94.90
9'7.02 94.73
9'1.16 94.87
96.94 94.65
96.93 94.64
96.98 94.69
97.0t 94.72
96 98 94.69
96.84 94.55
96.77 94.48
Top Of Bottom Of
Screened Screened Total
Interval Interual Depth Of
(blw.LSD) (blw.LSD) Well
90.70 130.40 l3s
90.70 130.40 135
90.70 130.40 r35
90.70 130.40 t35
90.70 130.40 135
90.70 130.40 135
90.70 130.40 135
90.70 130.40 135
90.70 130.40 r35
90.70 130.40 r 35
90.70 130.40 t35
90.70 130.40 135
90.70 130.40 135
90.70 130.40 135
90.70 130.40 135
90.70 130.40 135
90.70 130.40 135
90.70 130.40 135
90.70 130.40 135
90.70 130.40 135
90.70 130.40 135
90.10 130.40 135
90.70 130.40 135
90.70 130.40 135
90.70 130.40 135
90.70 130.40 135
90.70 130.40 135
90.70 130.40 135
90.70 130.40 135
90.70 130.40 135
90.70 130.40 r35
90.70 130.40 135
90.70 130.40 135
90.70 130.40 t 35
90.70 130.40 135
90.70 130.40 135
90.70 130.40 135
90.70 130.40 t35
90.70 130.40 135
90.70 130.40 135
90.70 130.40 135
90.70 130.40 t35
90.70 110.40 l3s
90.70 130.40 r35
90 70 130.40 135
90.10 130.40 135
90.70 130.40 135
90.70 130.40 135_
90.70 130.40 t35
90.70 130.40 135
90.70 130.40 r35
90.70 130.40 135
90.70 130.40 r 35
90.70 130.40 135
90.70 130.40 135
90.70 130.40 135
90.70 130.40 135
90.70 130.40 135
90.70 130.40 135
90.70 130.40 135
90.70 130.40 135
90.70 130.40 135
90.70 130.40 135
Water Levels and Data, Over Time
White Mesa Mill Monitor Well 12
Easting Northing
2576,66s.06 320,683.29
2,s7 6,665.06 320,683.29
2,s76,66s.06 320,683.29
2,s76,665.06 320,683.29
2576$65.06 320,683.29
2,s76,665.06 320,683.29
2,s76$6s.06 320,683.29
2,s76$65.06 320,683.29
2,576,665.06 320,683.29
2,576,665.06 320,683.29
2,s76,665.06 320,683.29
2,576,665.06 320,683.29
2,s76,66s.06 320,683.29
2,576,665.06 320,683.29
2,s76,66s.06 320,683.29
2,576,665.06 320,683.29
2,57 6,665.06 320,683.29
2,576,665.06 320,683.29
2,576,665.06 320,683.29
2,516,665.06 320,683.29
2,576,665.06 320,683.29
2,576,665.06 320,683.29
2,576,665.06 320,683.29
2,576,665.06 320,683.29
2,s'16,665.06 320,683.29
2,5'16,66s.06 320,683.29
2,576,665.06 320,683.29
2,576,665.06 320,683.29
2,576,665.06 320,683.29
2,576,665.06 320,683.29
2,576,665.06 320,683.29
2,576,66s.06 320,683.29
2,576,665.06 320,683.29
2,s76,665.06 320,683.29
2,576,665.06 320,683.29
2,576,665.06 320,683.29
2,576,665.06 320,683.29
2,s76,665.06 320,683.29
2,s76,665.06 320,683.29
2,576,66s.06 320,683.29
2,576,665.06 320,683.29
2,576,665.06 320,683.29
2,s76,665.06 320,683.29
2,576,665.06 320,683.29
2,576,665.06 320,683.29
7,576,665.06 320,683.29
2,576,66s.06 320,683.29
2,576,665.06 320,683.29
2,576,665.06 320,683 29
2,576,66s.06 320,683.29
2,s'16,66s.06 320,683.29
2,516,66s.06 320,683.29
2,576,665.06 320,683.29
2,576,665.06 320,683.29
2,576,665.06 320,683.29
2,576,665.06 320,683.29
2,576,665.06 320,683.29
2,576,66s.06 320,683.29
2,576,665.06 320,683.29
2,576,665.06 320,683.29
2,576,665.06 320,683.29
2,s'76,665.06 320,683.29
2,s76,66s.06 320,683.29
2,576,66s.06 320,683.29
2,576,665.06 370,683.29
2,576,665.06 320,683.29
2,576,665.06 320,683.29
2,576,665.06 320,683.29
2,s'76,665.06 320,683.29
2,576,665.06 320,683.29
2,5"16,665.06 320,683.29
2,576,66s.06 320,683.29
Measuring
Point
Land Surface Elevation
(LSD) (MP)
s,608.60 5,609. ls
s,608.60 5,609. ls
s,608.60 5,609. l 5
s,608.60 5,609. l s
5,608.60 5,609. 15
5,608.60 5,609. l5
s,608.60 5,609. r5
s,608.60 5,609. ls
5,608.60 5,609. l s
s,608.60 5,609.15
s,608.60 5,609. r5
5,608.60 s,609. l5
5,608.60 5,609. l5
5,608.60 5,609. l5
s,608.60 s,609. l5
5,608.60 5,609. 15
5,608.60 5,609. 15
5,608.60 5,609. l5
5,608.60 5,609. l5
5,608.60 5,609. l5
5,608.60 5,609. l5
5,608.60 s,609. l5
5,608.60 5,609. l5
5,608.60 5,609.15
5,608.60 s,609. t5
5,608.60 s,609. l5
5,608.60 5,609. 15
5,608.60 s,609. l5
5,608.60 5,609.15
5,608.60 5,609. I 5
5,608.60 5,609. l s
5,608.60 s,609. l5
5,608.60 5,609. 15
5,608.60 s,609. 15
5,608.60 5,609. l5
5,608.60 5,609. 15
5,608.60 5,609. 15
5,608.60 5,609. 15
s,608.60 5,609.15
5,608.60 5,609. 15
5,608.60 5,609. l5
5,608.60 5,609. l5
5,608.60 5,609. l5
5,608.60 5,609. l5
5,608.60 5,609. l5
5,608.60 5,609. l5
5,608.60 5,609. 15
5,608.60 5,609. 15
5,608.60 5,609.15
5,608.60 5,609. r5
5,608.60 5,609. 15
5,608.60 5,609. I 5
5,608.60 s,609, l s
5,608.60 5,609. 15
5,608.60 5,609.15
s,608.60 s,609. rs
5,608.60 s,609. r5
5,608.60 5,609. I 5
5,608.60 5,609. I 5
5,608.60 5,609. l5
s,608,60 5,609. l s
s,608.60 5,609. r5
s,608.60 s,609.15
5,608.60 s,609, I 5
5,608.60 5,609. l s
5,608.60 s,609. l s
5,608.60 5,609. rs
5,608.60 5,609. ls
s,608.60 s,609. l s
s,608.60 s,609. ls
5,608.60 5,609. l 5
5,608.60 5,609.15
Length Monitor
Of Riser Well
(L) Number
0.55 t2
0.55 t2
0.55 t2
0.55 t2
0.55 t2
0.55 t2
0.55 t2
0.55 t2
0.55 t2
0.55 t2
0.55 t2
0.55 t2
0.55 t2
0.55 t2
0,55 t2
0.55 12
0.55 t2
0.55 t2
0.55 t2
0.55 t2
0.55 t2
0.55 t2
0.55 t2
0.55 12
0.55 t2
0.55 t2
0.55 t2
0.55 t2
0.55 t2
0.55 t2
0.55 t2
0.55 t2
0.55 t2
0.55 t2
0.55 tz
0.55 t2
0.55 t2
0.55 t2
0.55 t2
0.55 t2
0.55 t2
0.55 t2
0.55 t2
0.s5 t2
0.55 t2
0.55 t2
0.55 t2
0.55 t2
0.55 12
0.55 t2
0.55 t2
0.55 t2
0.55 12
0.55 12
0.55 t2
0.55 t2
0.55 t2
0.55 t2
0.55 t2
0.55 t2
0.55 t2
0.55 t2
0.55 t2
0.55 t2
0.55 t2
0.55 t2
0.55 t2
0.55 t2
0.55 t2
0.55 t2
0.55 t2
0.55 t2
Total or
Measured Total
Depth to Depth to
Water Water
(blw.MP) (blw.LSD)
lll,75 lll.20
109.58 109.03
r 10.08 109.53
r09.83 r09.28
108.83 108.28
109.6'7 109.12
I 10.00 109.45
109.25 108.70
109.25 108.70
l l t.17 1t0.62
ll0.t7 109.62
109.67 109. l2
108.50 107.95
109.61 109. 12
109.6'7 I09. t2
109.58 109.03
109.80 109.2s
109.25 108.70
109.60 109.05
109.23 108.68
109.16 108.8 r
109.25 108.70
109.45 108.90
109.53 108.98
t09.73 108.68
109.00 108.45
t09.22 108.67
109.56 109.0r
109.60 109.05
t09.72 109.17
t09.44 108.89
109.53 108.98
109.53 108.98
109.64 109.09
109.60 109.05
109.67 109.t2
109.65 109. l0
109.35 108.80
109.60 109.05
109.46 108.91
109.60 109.05
109.35 108.80
109.44 108.89
109.30 r08.75
109.28 108.73
t09.16 108.6r
109.3 I 108.76
109.21 108.66
109.1 l 108.56
t09.49 108.94
109. t5 108.60
108.96 108.41
109.00 108.45
109.00 r08.45
109. l0 108.55
109.50 108.95
109.50 108.95
109.50 108.95
109.30 108.75
109.32 108.77
109.50 108.95
109.30 108.75
109.30 108.75
109.20 108.65
109.r6 108.61
t09.t2 108.57
109.17 r08.62
109.23 108.68
109.16 108.61
r09.03 108.48
t09.25 108.70
109.58 109.03
Top Of Bottom Of
Screened Screened Totrl
Interval Interval Depth 0f
(blw.LSD) (blw.LSD) Well
84 t24 130.30
84 t24 130.30
84 t24 130.30
84 124 130.30
84 124 130.30
84 t24 130.30
84 124 t30.30
84 124 130.30
84 124 130.30
84 124 130.30
84 124 130.30
84 t24 130.30
84 t24 130.30
84 124 130.30
84 124 130.30
84 t24 130.30
84 t24 130.30
84 t24 130.30
84 t24 130.30
84 t24 130.30
84 124 130.30
84 124 130.30
84 t24 130.30
84 124 130.30
84 t24 130.30
84 t24 130.30
84 t24 130.30
84 124 130.30
84 t24 130.30
84 t24 130.30
84 124 130.30
84 t24 130.30
84 t24 130.30
84 t24 130.30
84 t24 130.30
84 t24 130.30
84 124 130.30
84 t24 130.30
84 t24 130.30
84 t24 130.30
84 t24 130.30
84 t24 130.30
84 124 130,30
84 t24 130.30
84 t24 130.30
84 t24 130.30
84 t24 130.30
84 124 I 30.30 _
84 124 130.30
84 124 130.30
84 124 130.30
84 t24 130 30
84 t24 130.30
84 t24 130.30
84 124 130.30
84 124 130.30
84 124 130.30
84 124 130.30
84 124 130.30
84 t24 130.30
84 t24 130.30
84 124 130.30
84 124 130.30
84 t24 130.30
84 t24 130.30
84 t24 130.30
84 t24 130.30
84 t24 130.30
84 t24 130.30
84 t24 130.30
84 124 130.30
84 124 130.30
Water
Elevation
(wL)
5,497.40
5,499.s7
5,499.0',7
5,499.32
5,s00.32
s,499.48
5,499. l5
s,499.90
5,499.90
5,497.98
5,498.98
5,499.48
5,500.65
5,499.48
5,499.48
5,499.57
5,499.35
5,499.90
5 4qq 55
5,499.92
s,499.79
5,499.90
5,499.70
5,499.62
5,499.92
5,500. t5
5,499.93
5,499.59
5,499.55
5,499.43
5,499.7 |
5,499.62
5,499.62
5,499.51
5,499.55
5,499.48
5,499.50
5,499.80
5,499.55
5,499.69
5,499.55
5,499.80
5,499.7 |
5,499.85
5,499.87
5,499.99
s,499.84
5,499.94
5,500.04
5,499.66
5,500.00
5,500. t9
5,500. l5
5,500. t5
5,500.05
5.499.65
5,499.65
5,499.65
5,499.85
5,499.83
5,499.65
5,499.85
5,499.85
5,499.95
s,499.99
5.500.03
5,499.98
5,499.92
5,499.99
5,500. t2
s,499.90
5 4qq 57
Date Of
Monitoring
9/y84
t2nl84
2/t/85
6/v85
9fi/85
t2^t85
3^186
6/19t86
9n186
t2/v86
2/20187
4128/87
8^4/8'.1
lt20t87
v26/88
6/l/88
8t23t88
tt/2188
3t9t89
612v89
91l/89
nlt5l89
2^6/90
5t8t90
8t7/90
tUt3l90
2/27191
512I19l
8t27 t9l
t2l3l9l
3n7t92
6^t/92
9lt3l92
t2t9t92
3124/93
6t8t93
9122/93
t2fi4t93
3/24194
6^5t94
8/t8t94
t2lt3l94
3il6195
6t27t95
9t20t9s
t2^y95
6t7 t96
9^6t96
lt22t96
3/20t97
6,l.v97
9t30t97
346t98
5^2/98
9/24t98
l 1/3/98
2/t8t99
5^U99
7t6t99
9128199
3il'1t00
6t6t00
914100
l r/30i00
03123t0t
05i I 8/0 I
05t24t01
05/3 l/0 I
06t05t0t
06/ I 3i0 I
06122101
06t28t01
Water Levels and Data, Over Time
White Mesa Mill Monitor Well 12
Measuring
Point
Land Surface Elevation
(LSD) (MP)
5,608.60 5,609. 15
5,608.60 5,609. l5
s,608.60 s,609. ls
s,608.60 5,609. r5
s,608.60 5,609. l5
5,608.60 5,609. l5
5,608.60 5,609. l5
5,608.60 5,609. l5
5,608 60 5,609.15
5,608.60 5,609. l5
5,608.60 5,609.15
5,608.60 5,609. l5
5,608.60 5,609. r5
5,608.60 5,609. t5
5,608.60 5,609. rs
5,608.60 5,609. l5
5,608.60 5,609. l5
5,608.60 5,609. l5
5,608.60 5,609. l5
5,608.60 5,609. I 5
s,608.60 5,609. 15
s,608.60 5,609. 15
5,608.60 5,609. t5
5,608.60 5,609. ls
5,608.60 5,609. l5
5,608.60 5,609. l 5
5,608.60 5,609. l 5
5,608.60 5,609. I 5
5,608.60 5,609. l5
5,608.60 5,609. l5
s,608.60 5,609.15
5,608.60 5,609. t5
5,608.60 5,609.15
5,608.60 5,609.15
5,608.60 5,609. I 5
5,608.60 s,609. l s
5,608.60 5,609. l5
5,608.60 5,609.15
5,608.60 5,609. l5
5,608.60 5,609.15
s,608.60 5,609. r5
5,608.60 5,609. l5
5,608.60 5,609.15
5,608.60 5,609.15
5,608.60 5,609. l5
5,608.60 5,609. l5
5,608.60 5,609. l5
5,608.60 5,609. l5
5,608.60 5,609. l5
5,608.60 s,609 ls
5,608.60 5,609. l5
5,608.60 5,609. l5
5,608.60 s,609. rs
5,608.60 5,609, I 5
5,608.60 5,609. l 5
5,608.60 5,609. I 5
5,608.60 5,609. l5
5,608.60 5,609. I 5
5,608.60 5,609. I 5
5,608.60 s,609. l s
5,608.60 5,609. I 5
Length Monitor
Of Riser Well
(L) Number
0.55 t2
0.55 t2
0.55 t2
0.55 t2
0.55 t2
0.55 t2
0.55 t2
0.55 12
0.55 t2
0.55 t2
0.55 t2
0.55 t2
0.s5 t2
0.55 t2
0.55 t2
0.55 t2
0.55 t2
0.55 t2
0.55 t2
0.55 t2
0.55 t2
0.55 t2
0.55 t2
0.55 t2
0.55 t2
0.55 t2
0.55 t2
0.55 t2
0.55 t2
0.55 t2
055 t2
0.55 t2
0.s5 t2
0.55 t2
0.55 t2
0.55 t2
0.55 t2
0.55 t2
0.55 t2
0.55 t2
0.55 12
0.55 t2
0.55 t2
0.55 t2
0.55 t2
0.55 t2
0.55 t2
0.55 t2
0.55 t2
0.55 t2
0.55 t2
0.55 t2
0.55 t2
0.55 t2
0.55 t2
0.55 t2
0.55 t2
0.55 t2
0.55 t2
0.55 t2
0.55 t2
Total or
Measured
Depth to
Date Of Water
Monitoring (blw.MP)
07 t02/01 t09.23
07lt\lot 109.20
07
^6t0t
r09. u
07t2st0t 109.t2
07/3U0r 109,14
08/09i0r 109.22
08/L4t01 t09.22
08t2010t 109.t5
0812710t 109.17
09107101 109.53
09n2/01 t09.23
09/r8t0t 109.17
0912610t 109.18
t0t02t0t 109.16
10/09/01 109.06
l0/ 15/01 t09,23
10t25/0t t09.27
I l/01/0t 109.08
I l/05/01 109.23
11/19/01 109.35
t2/0310t 109.12
t2^010t 108.93
t2\8/0t t09.26
t2l24t0t 109.30
t2/11/01 109.1 I
0y09to2 109.09
0vt4l02 109.08
01/24t02 109.33
0t/29t02 r08.96
02/06t02 t09.23
02^3t02 109.21
02t2102 t09.42
03t0t/02 r08.82
03106102 t09.1 I
03n4t02 108.88
03t2t t02 109.41
03127102 109,14
04t02102 109.06
04109102 t09.25
04il8t02 109.08
04123102 109.27
05t02t02 109.02
05107102 109.04
05/t6/02 109.07
05120t02 109.r4
0513y02 109.16
06/04t02 109.r3
06/12t02 109.18
06/17t02 109.13
06/27t02 t09.17
07t0st02 r09.r0
07108t02 t09.25
07/15t02 109.09
07/25102 109.21
08/01/02 109.06
08/20t02 r09.10
08/29/02 109.15
09/05t02 109.15
09^0t02 109.17
09t20t02 109.09
09/26t02 109.05
Total Top Of Bottom Of
Depth to Screened Screened
Water Interyal Interval
(blw.LSD) (blw.LSD) (blw.LSD)Easting Northing
2,s76,66s.06 320,683.29
2,576,66s.06 320,683.29
2,5',76,665.06 320,683.29
2,5'76,665.06 320,683.29
2,5'16,665.06 320,683.29
2,576,665.06 320,683.29
2,s76,66s.06 320,683.29
2,s76,665.06 320,683.29
z,s't6,665.06 320,683.29
2,s76,665.06 320,683.29
2,576,665.06 320,683.29
2,5'76,665.06 320,683.29
2576,66s.06 320,683.29
2,576,665.06 320,683.29
2.s76.665.06 320,683.29
2,576,665.06 320,683.29
2,576,665.06 320,683.29
2,576,665.06 320,683.29
2,s76,665.06 320,683.29
2,576,665.06 320,683.29
2,s76,665.06 320,683.29
2,576,66s.06 320,683.29
2,576,665.06 320,683.29
2,576,665.06 320,683.29
2,576,665.06 320,683.29
2,576,665.06 320,683.29
2,576,665.06 320,683.29
2,576,66s.06 320,683.29
2,576,665.06 320,683.29
2,576,665.06 320,683.29
2,576,66s.06 320,683.29
2,576,665.06 320,683.29
2,576,665.06 320.683.29
2,576,665.06 320,683.29
2,s76,66s.06 320,683.29
2,s16,665.06 320,683.29
2,576,665.06 320,683.29
2,576,665.06 320,683.29
2,576,665.06 320,683.29
2,576,66s.06 320,683.29
2,576.665.06 320,683.29
2,576,665.06 320,683.29
2,576,665.06 320,683.29
2,576.66s.06 320,683.29
2,576,665.06 320,683.29
2,576,66s.06 320,683.29
2,576,665,06 320,683.29
2,576,665.06 320,683.29
2,5',76,665.06 320,683.29
2,s76,665.06 320,683.29
2,576,665.06 320,683.29
2,s76,665.06 320,683.29
2,s76,66s.06 320,683.29
2.s76,665.06 320,683.29
2,576,665.06 320,683.29
2,5',76,665.06 320,683.29
2,576,665.06 320,683.29
2,516,665.06 320,683.29
2,576,665.06 320,683.29
2,s76,66s.06 320,683.29
2,576,665.06 320,683.29
Water
Elevation
(wL)
5,499.92
5,499.9s
5,500.04
5,500.03
5,500.01
5,499 93
5,499,93
5,500.00
5,499.98
5,499.62
5,499.92
s,499.98
{ 4qq o7
5,499.99
5,500.09
5,499.92
5,499.88
5,500.07
5,499.92
s,499.80
5,500.03
5,500.22
5,499.89
5,499.85
5,500.04
5,500.06
5,500.07
{ 10(} e,
5,500. r9
5 4qq q,
5,499.94
5,499.73
5,500.33
5,500.04
5,s00.27
5,499.74
5,500.01
5,500.09
5,499.90
s,500.07
5,499.88
5,500. r 3
5,500. I I
5,500.08
5,500.01
5,499.99
5,s00.02
5,499.91
5,500,02
5,499.98
5,500.05
5,499.90
5,500 06
5,499.94
5,500.09
5,500.05
5,500.00
5,500.00
5,499.98
5,500.06
5,500. l0
108.68 84
108.65 84
108.56 84
108.57 84
108.59 84
108.67 84
108.67 84
108.60 84
108.62 84
108.98 84
108.68 84
108.62 84
108.63 84
108.61 84
108.5 I 84
108.68 84
t08.72 84
108.53 84
108.68 84
108.80 84
108.57 84
108.38 84
r08.7r 84
108.75 84
108.56 84
108.54 84
108.53 84
108.78 84
108.41 84
108.68 84
108.66 84
108.87 84
108.27 84
108.56 84
108.33 84
108.86 84
108.59 84
108.5 I 84
108.70 84
108.53 84
t08.72 84
108.47 84
108.49 84
108 52 84
108.59 84
108 61 84
108.58 84
108.63 84
108.5 8 84
108.62 84
108.55 84
108.70 84
108.54 84
108.66 84
108.5 I 84
108.55 84
108.60 84
108.60 84
108.62 84
108.54 84
108 50 84
Total
Depth Of
Well
I 30.30
r 30.30
r 30.30
I 30.30
I 30.30
r30 30
l 30.30
I 30.30
l 30.30
I 30.30
I 30.30
l 30.30
I 30.30
I 30.30
r 30.30
I 30.30
I 30.30
l 30.30
I 30.30
r 30.30
l 30.30
I 30.30
l 30.30
I 30.30
I 30.30
l 30.30
130.30
130.30
I 30.30
l 30.30
I 30.30
I 30.30
I 30.30
I 30.30
130.30
130.30
130.30
I 30.30
l 30.30
l 30.30
r 30.30
I 30.30
l 30.30
l 30.30
I 30.30
l 30.30
I 30.30
l 30.30 _
I 30.30
r 30.30
I 30.30
I 30.30
I 30.30
r 30.30
I 30.30
I 30.30
r 30.30
I 30.30
I 30.30
I 30.30
I 30.30
t24
t24
t24
124
t24
124
t24
124
124
t24
t24
124
124
t24
t24
124
124
124
124
124
t24
t24
124
t24
124
t24
124
t24
t24
124
124
124
124
t24
t24
124
t24
t24
t24
t24
t24
t24
124
124
124
t24
124
t24
124
t24
124
t24
124
124
t24
t24
t24
124
124
124
Water Levels and Data, Over Time
White Mesa Mill Monitor Well 14
Easting
2,578,142.39
2,578,142.39
2,578,142.39
2,s78,142.39
2,578,142.39
2,s78,142.39
2,578,142.39
2,578,142.39
2,578,t42.39
2,578,142.39
2,578,142.39
2,578,142.39
2,s78,142.39
2,578,142.39
2,578,142.39
2,578,142.39
2.578,t42.39
2,518,142.39
2,578,r42.39
2,578,t42.39
2,578,t42.39
2,578,t42.39
2,578,t42.39
2,578,142.39
2,578,142.39
2,578,142.39
2,578,142.39
2,578,r42.39
2,578,r42.39
2,578,t42.39
2,5'78,t42.39
2,578,142.39
2,5'78,142.39
2,578,r42.39
2,578,142.39
2,578,142.39
2,578,142.39
2,578,142.39
2,578,142.39
2,578,142.39
2,578,142.39
2,578,t42.39
2,578,t42.39
2,578,142.39
2,578,t42.39
2,578,142.39
2,578,t42.39
2,578,t42.39
2,578,t42.39
2,578,142.39
2,578,142.39
2,578,142.39
2,578,142.39
2,578,t42.19
2,578,142.39
2,578,142.39
2,578,142.39
2,578,142.39
2,578,142.39
2,578,142.39
2,578,142.39
2,578,142.39
2,578,142.39
2,578,142.39
2,578,142.39
2,578,142.39
2,578,t42.39
2,578,142.39
Northing
3 19, I 56.70
3 1 9,1 56.70
3 19, l 56.70
3 19, r 56.70
319,156.70
3t9,t56.'70
3 19, I 56.70
319,156.70
319,156.70
319,156.70
3 1 9,1 56.70
319,156.70
3 1 9,1 56.70
3 19,156.70
3 I 9,156.70
3 l9,l 56.70
3 19, I 56.70
3 19,156.70
319,t56.70
3 1 9,1 56.70
3t9,156.70
319,156.70
3 r9,156.70
3 19, r 56.70
3 19,156.70
3 19,156.70
3 r 9,1 56.70
3 r9, r56.70
319,156.70
319,156.70
3r9,156.70
3 19,156.70
3 1 9,1 56.70
319,t56.70
3 19, I 56.70
3 r9, l 56.70
319,156.70
319,156.70
3 1 9,1 56.70
3 19, I 56.70
3 19, I 56.70
319,156.70
319,156.70
3 r9, l s6.70
3 19, I 56.70
3 1 9,1 56.70
3 l9,l s6.70
3 l9,l 56.70
3 1 9,1 56.70
3 19,156.70
3 1 9,1 56.70
319,156.70
319,156.70
319,156.70
319,156.70
3 I 9,1 56.70
3 1 9,1 56.70
319.156.70
319,156.70
3 19.156.70
319,156.70
3 1 9,1 56.70
3 r9, l 56.70
3 19,156.70
319,156.70
319,156.70
3 1 9,1 56.70
3 19,156.70
Measuring
Point
Elevation
(MP)
5,598. t4
5,598. l4
5,598. l4
s,s98.14
s,598. l4
5,s98. l4
5,598.14
5,598.14
5,598. l4
5,598. l4
5,598. I 4
5,598. I 4
5,598. l4
5,598. I 4
5,598. l4
5,598. I 4
5,598. I 4
5,598. l4
5,598. l4
5,598. l4
5,598. l4
5,598.14
5,598. l4
5,598. l4
5,598. I 4
5,598. I 4
5,598. l4
5,598. l4
5,598. l4
5,598.14
s,598. t4
5,598.14
5,598. l4
5,598. I 4
5,598. l4
5,598. t4
5,598. l4
5,s98. l4
5,598. l4
5,598. l4
5,598. I 4
5,598. l4
5,598. t4
s,598. I 4
5,598. l4
5,598. l4
5,598. l4
5,598. l4
5,598.14
5,598. I 4
5,598. I 4
5,598. l4
5,598. t4
5,598. l4
5,598. I 4
5,598. l4
5,598. t4
5,s98.14
5,598. l 4
5,598. I 4
s,598. l4
5,598. t4
5,s98. l4
5,598. I 4
5,s98. l4
s,s98. I 4
5,598. l4
5,598. l4
Monitor
Length Of Well
Riser (L) Number
0.01 14
0.01 t4
0.01 14
0.01 r 4
0.01 14
0.01 14
0.01 t4
0.01 t4
0.01 t4
0.01 t4
0.01 t4
0.01 t4
0.01 t4
0.01 t4
0.01 14
0.01 t4
0.01 t4
0.01 t4
0.01 14
0.01 14
0.01 t4
0.01 t4
0.0 r t4
0.0 r 14
0.01 t4
0.01 t4
0.01 14
0.01 t4
0.01 t4
0.01 t4
0.0r 14
0.01 t4
0.01 t4
0.01 14
0.01 t4
0.01 t4
0.0 r 14
0.01 t4
0.01 t4
0.01 14
0.01 t4
0.01 t4
0.01 t4
0.01 t4
0.01 t4
0.01 14
0.0 r 14
0.01 t4
0.01 t4
0.01 t4
0.01 t4
0.01 t4
0.01 t4
0.01 t4
0.01 t4
0.01 t4
0.01 t4
0.01 t4
0.01 14
0.01 t4
0.01 t4
0.01 t4
0.01 t4
0.01 t4
0.01 t4
0.01 t4
0.01 t4
0.0 r 14
Date Of
Monitoring
9lt/84
t2l1/84
211185
6lt/8s
9ll/85
12t1185
3fi/86
6n9/86
9/t/86
t2/v86
2/20/8"1
4/2818'7
n/t5/89
2/16/90
5t8190
8t7 t90
rt/13t90
2t27 t9t
512l19l
8t27 t9t
t2t3t9t
3n7/92
6/lLt92
9/13t92
t2/9t92
3t24t93
618193
9t22193
t2t t4/93
3124/94
6n5194
8/18t94
12il3194
3n6t95
6t27 /9s
9120/95
tztlLt95
3t28/96
6/7 t96
9n6t96
ll22l96
3t20/97
6/rt/97
9/30/9',7
3^6t98
5^2198
9t24t98
l l/3/98
2/18/99
5fiU99
7 t6t99
9t28/99
1219/99
3/17 /00
617100
914100
l l/30/00
03t23t01
05/ I 8/0 I
0sl24l0l
05/3 t/01
06/05/0 I
06/ I 3/0 I
06t22t01
06t28t01
0'7102101
07/ I 0/0 I
07 I t610t
Total or
Measured Total
Depth to Depth to
Water Water
(blw.MP) (blw.LSD)
77.33 77.32
73.00 72.99
77.33 77.32
73.t7 73.16
7"1.00 76.99
77.50 77.49
77.00 76.99
7'7 .t7 77 .16
77.08 77 .07
79.00 78.99
79.33 79.32
78.00 '77.99
105.20 105.19
105.34 105.33
105.44 105.43
105.47 105.46
r05.00 104.99
105.37 105.36
105.40 105.39
105.45 105.44
r05.60 105.59
105.25 105.24
105.29 105.28
105.43 105.42
105.58 105.57
t05.44 105.43
105.38 105.37
105.51 105.50
105.22 105.21
105.41 105.40
105.30 105.29
105.23 105.22
105.2 I 105.20
r05.10 105.09
105.12 105. I I
105.08 105.07
10s.00 104.99
104.91 104.90
105.20 105. l9
104.96 104.95
104.72 r04.71
105.1 I 105. l0
i04.86 104.85
104.9"1 104.96
105.00 104.99
104.80 t04.79
104.90 104.89
105.00 104.99
105.00 104.99
105. l7 105. l6
105.00 104.99
104.95 104.94
105.00 104.99
104.90 104.89
105.00 104.99
105.20 105. l9
104.93 104.92
104.82 104.81
t04.'16 104.75
104.78 t04.77
104.83 t04.82
t04.72 104.71
104.55 104.54
104.86 104.85
104.95 104.94
104.92 104.91
104.86 104.85
104.79 104.78
Water
Elevation Land Surface
(wL) (LSD)
5,520.81 5,598. l3
5,525.14 5,598. I 3
5,520.81 5,598.13
5,524.97 5,598. I 3
5,52t.t4 5,598. l3
5,520.64 5,598.13
5,52t.t4 5,598. l3
5,520.97 5,598. l3
5,521.06 5,598. l3
5,519.14 5,598.13
5,518.81 5,598.13
5,520.t4 5,598. l3
5,492.94 5,598. r3
5,492.80 5,598.13
5,492.70 5,598.13
5,492.67 5,598. 13
5,493.14 5,598. l3
5,492.77 5,598.13
5,492.74 5,598. l3
5,492.69 5,598. 13
5,492.54 5,598. l3
5,492.89 5,598.13
5,492.85 5,598.13
5,492.7r 5,598.13
5,492.56 5,598.r3
5,492.70 5,598. l3
5,492.76 5,598. l3
5,492.63 5,598. l3
5,492.92 5,598. l3
5,492.73 5,598. l3
5,492.84 5,598.13
5,492.91 5,598.13
5,492.93 5,598.13
5,493.04 5,598. 13
5,493.02 5,598.13
5,493.06 5,598. l3
5,493.t4 5,598.13
5,493.23 5,598.13
5,492.94 5,598.13
5,493.18 5,598.13
5,493.42 5,598.13
5,493.03 5,598. l3
5,493.28 5,598. t3
5,493.17 5,598. 13
5,493.14 5,598. 13
5,493.34 5,598. l3
5,493.24 5,598. l3
5,493.14 5,598.13
5,493.14 5,598.13
5,492.97 5,598.13
5,493.t4 5,598. I 3
5,493.19 5,598. l3
5,493.14 5,598. l3
5,493.24 5,598.13
5,493.r4 5,598. I3
5,492.94 5,598. l3
5,493.21 5,598.13
5,493.32 s,s98.13
5,493.38 5,598. l3
s,493.36 5,598. l3
5,493.3 I 5,598. l3
5,493.42 5,598.13
s,493.59 s,598.1 3
5,493.28 5,598.13
5,493.19 5,598.13
5,493.22 5,598. t 3
5,493.28 5,598. l3
5,491.35 5,598. l3
Top Of
Screened
Interval
(blw.LSD)
90
90
90
90
90
90
90
90
90
90
90
90
90
90
90
90
90
90
90
90
90
90
90
90
90
90
90
90
90
90
90
90
90
90
90
90
90
90
90
90
90
90
90
90
90
90
90
90
90
90
90
90
90
90
90
90
90
90
90
90
90
90
90
90
90
90
90
90
Bottom Of
Screened
Interval
(blw.LSD)
120
t20
120
120
120
120
120
120
120
120
120
120
120
120
120
120
120
120
120
t20
120
120
120
120
120
r20
120
120
120
120
120
120
120
120
r20
t20
t20
120
120
120
120
120
120
t20
t20
120
120
t20
120
120
120
r20
120
120
120
120
120
t20
t20
120
t20
120
t20
120
120
120
120
120
Total
Depth Of
Well
t29.1
129.1
129.l
129.1
129.1
129.1
129.1
t29.1
129.1
129.1
129.1
129.1
129.1
129.1
129.1
129.1
129.1
129.1
129.t
129.1
t29.t
129.1
t29.1
129.t
129.1
129.1
129.t
tzg.r
129.t
129.1
t29.1
129.1
129.r
129.1
129.1
129.1
129.1
t29.1
129.1
129.1
r29.r
129.1
129.1
129.1
129.1
-129.1
r29.r
r29.t
129.1
129.1
t29.1
129
t29
129
129
129.1
129.1
t29.1
129.l
129.1
129.1
129.1
t29.1
129.1
129.1
129.1
129.1
r29.r
Water Levels and Data, Over Time
White Mesa Mill Monitor Well 14
Easting
2,578,142.39
2,578,t42.39
2,578,142.39
2,578,142.39
2,578,142.39
2,578,t42.39
2,578,1,42.39
2,578,142.39
2,578,142.39
2,578,142.39
2,578,t42.39
2,578,142.39
2,578,142.39
2,578,142.39
2,578,r42.39
2,578,t42.39
2,578,142.39
2,578,t42.39
2,578,t42.39
2,578,t42.39
2,578,142.39
2,578,t42.39
2,s78,142.39
2,578,t42.39
2,578,t42.39
2,578,r42.39
2,578,142.39
2,578,142.39
2,578,t42.39
2,578,142.39
2,578,142.39
2,578,r42.39
2,578,142.39
2,578,142.39
2,578,142.39
2,578,142.39
2,578,142.39
2,578,t42.39
2,578,142.39
2,578,142.39
2,578,142.39
2,578,142.39
2,578,142.39
2,578,142.39
2,578,142.39
2,578,142.39
2,578,t42.39
2,578,142.39
2,578,142.39
2,578,142.39
2.578.142.39
2,578,142.39
2,578,142.39
2,578,142.39
2,578,r42.39
2,578,142.39
2,578,142.39
2,578,142.39
Northing
319,156.70
3 19,156.70
3 1 9,1 s6.70
3r9,156.70
319,156.70
3 1 9,1 56.70
319,156.70
319,156.70
319,156.70
3 1 9,1 56.70
3 l 9,1 s6.70
319,156.70
319,r56.70
3 19,156.70
319,r56.70
3 1 9,1 56.70
3 r9, r56.70
3 19,156.70
319,156.70
319,156.70
319,156.70
319,156.70
319,156.70
319,156.70
319,156.70
3 19,156.70
3 19,156.70
3 I 9,1 56.70
3 19,156.70
3 19, I 56.70
3 l9,l s6.70
3 1 9,1 56.70
3 I 9,156.70
3 l9,l 56.70
3 I 9,1 56.70
3 l 9,1 s6.70
3 l 9,156.70
319,156.70
319,r56.70
3t9,t56.70
3 I 9,156.70
3 l 9,156.70
319,156.70
319,156.70
3r9,156.70
319,156.70
319,156.70
3r9,1s6.70
319,156.70
319,156.70
319,156.70
3 r 9,1 56.70
319,156.70
3 1 9,1 56.70
3 I 9,156.70
3 19,156.70
319,156.70
3 1 9,1 56.70
Water
Elevation
(wL)
5,493.40
5,493.40
5,493.28
5,493.26
5,493.34
5,493.33
5,493.50
5,493.32
5,493.37
5,491.35
5,493.36
5,493.50
5,493.25
5,493.23
5,493.43
s,493.3 r
5,491. 1 6
5,493.50
5,493.72
5,493.29
5,493.23
5,493.48
5,493.41
5,493.41
5,493.22
5,493.63
5,493.30
( do1 ,1
5,493.01
5,493.74
s,491.44
5,493.60
5,493. I 9
5,493.46
5,493.54
5,493.28
5,493.53
5,493.35
5,493.60
5 4q1 56
5,493.50
5,493.48
s do1 10
5 141 d1
5,493.38
5,493.44
5,493.34
s,493.43
5,493.27
5,493.43
5,493.29
5,493.48
5,493.45
5,493.40
5,493.36
5,493.42
5,493.49
5,493.54
Monitor
Well
Number
t4
t4
t4
14
t4
14
14
l4
l4
t4
t4
t4
t4
t4
t4
t4
I4
t4
t4
t4
t4
l4
t4
l4
t4
t4
t4
t4
t4
t4
t4
t4
l4
t4
l4
t4
t4
t4
t4
t4
t4
t4
t4
t4
t4
t4
t4
t4
t4
t4
t4
14
t4
14
l4
t4
t4
t4
Date Of
Monitoring
07 t25/0t
07 t3t/01
08/09/0 r
08/t4l0t
08/20t01
08/27101
09t07 t01
09n2/01
09/ r 8/0 r
09t26t01
t0t02l0t
l 0/09/0 l
l0/15/01
t0/2510t
l1/0li0l
I l/05/01
I r/19/01
t2l03l0t
t2lt0/0t
121t8/01
12t24/01
t2l3U0t
0U09t02
0vr4t02
0U24102
0U29102
02106102
02fi3102
02t2U02
03/0v02
03106102
031 t4t02
0312U02
03127t02
04/02102
04/09t02
04/18/02
04/23102
05/02t02
05/07 t02
05/16/02
0s/20/02
0513U02
06/04t02
06t12t02
061t7102
06127102
0710s102
07108102
07 I t5102
07t25/02
08101102
08t20102
08/29t02
09/05/02
09/t0/02
09/20t02
09/26t02
Measuring
Point
Land Surface Elevation Length Of
(LSD) (MP) Riser (L)
5,598. I 3 5,598. 14 0.0 I
5,598.13 5,598.14 0.01
5,598. I 3 5,598. 14 0.0 I
5,598. I 3 5,598. 14 0.0 I
5,598.13 5,598.14 0.01
5,598.13 5,598.14 0.0r
5,598.13 s,598. 14 0.01
5,s98. 13 5,598. 14 0.01
5,598.13 5,598.14 0.01
5,598. 13 5,598. 14 0.01
5,598.13 5,598.14 0.01
5,598. 13 5,598.14 0.01
5,598. 13 5,598.14 0.01
5,598.13 5,598.14 0.01
5,598.13 5,598.14 0.0r
5,598.13 5,598.14 0.01
5,598.13 5,598.14 0.01
5,598.13 s,598.14 0.01
5,598. l 3 5,598. 14 0.0 I
5,598.13 5,598.14 0.01
5,598.13 5,598.14 0.01
5,s98. 13 5,598. 14 0.01
5,598.13 5,598. 14 0.01
5,598.13 5,598. 14 0.01
5,598.13 5,598.14 0.01
5,s98.13 5,s98.14 0.01
5,598.13 5,598.14 0.01
5,598.13 5,598.14 0.01
5,598.13 5,598.14 0.01
5,598.13 s,598.14 0.01
5,598.13 5,598.14 0.01
5,598.13 5,598.14 0.01
5,598. 13 5,598.14 0.01
5,598.13 5,598.14 0.01
5,598. I 3 5,598. 14 0.0 I
5,598.13 5,598.14 0.01
5,598.13 5,598.14 0.01
5,598. l 3 5,598. 14 0.0 l
5,598.13 5,598.14 0.01
5,598.13 5,598.14 0.01
5,598.13 5,598.14 0.01
5,598.13 5,598.14 0.01
5,598.13 5,598.14 0.01
5,598.13 5,598.14 0.01
5,598.13 5,598. 14 0.01
5,598. 13 5,598. 14 0.01
5,598.13 5,598.14 0.01
5,598.13 5.598.14 0.0r
5,598.r3 5,598.14 0.01
5,598.13 5,598.14 0.01
5,598.13 5,598.14 0.01
5,598.13 5,598.14 0.01
5,598.13 5,598.14 0.01
5,598.13 5,598.14 0.01
5,598. l 3 5,598. 14 0.0 I
5,598.13 5,598.14 0.0r
5,598.13 5,598.14 0.01
5,598. 13 5,598.14 0.01
Total or
Measured Total
Depth to Depth to
Water Water
(blw.MP) (blw.LSD)
t04.74 104.73
104.74 t04.73
104.86 104.85
104.88 104.87
104.80 t04.79
104.81 104.80
t04.64 104.63
t04.82 104.81
104.17 104.76
104.79 104.78
104.78 104.77
104.64 104.63
104.89 104.88
104.91 104.90
t04.71 104.70
104.83 104.82
104.98 104.97
t04.64 104.63
t04.42 104.4 r
104.8s 104.84
104.91 104.90
104.66 104.65
104.73 104.72
t04.73 104.72
t04.92 104.91
104.51 104.50
104.84 104.83
104.91 104.90
105.1 3 105.12
. t04.40 104.39
104.70 104.69
t04.54 104.53
104.95 104.94
104.68 t04.67
104.60 104.59
104.86 104.85
104.61 104.60
t04.79 104.78
t04.54 104.53
104.58 104.57
104.64 104.63
t04.66 104.65
t04.7 5 104.'7 4
t04.7t 104.70
104.'76 104.75
104.70 104.69
104.80 t04.79
t04.7 | 104.70
104.87 104.86
104.7t 104.70
104.85 104.84
104.66 104.65
104.69 104.68
t04.74 104.'73
104.78 104.71
104.72 104.71
104.65 t04.64
104.60 104.59
Top Of Bottom Of
Screened Screened Total
Interval Interval Depth Of
(blw.LSD)(blw.LSD) Well
90 120 t29.1
90 120 129.1
90 120 129.1
90 t20 129.1
90 120 129.1
90 r20 t29.1
90 120 129.1
90 120 129.1
90 120 129.1
90 120 129.1
90 r20 129.1
90 120 t29.r
90 t20 t29.1
90 120 t29.1
90 t20 t29.1
90 120 t29.1
90 r20 t29.1
90 120 129.1
90 120 t29.1
90 120 r29.r
90 120 129.1
90 t20 129.1
90 120 129.t
90 120 129.1
90 120 t29.1
90 120 129.1
90 120 r29.r
90 t20 129.1
90 t20 129.1
90 120 129.1
90 tzo 129.r
90 120 129.1
90 120 r29.r
90 120 1,29.1
90 120 r29.r
90 120 129.1
90 120 129.1
90 t20 t29.r
90 120 t29.1
90 120 129.1
90 120 129.1
90 r20 t29.t
90 120 r29.r
90 r20 t29.1
90 120 t29.r
90 t20 -t2g.t
90 120 t29.1
90 120 179.1
90 120 129.t
90 120 t29.t
90 120 129.1
90 t20 t29.1
90 r20 t29.1
90 t20 129.1
90 120 t29.t
90 t20 129.t
90 120 129.1
90 120 129.1
Water Levels and Data, Over Time
White Mesa Mill Monitor Well l5 o
Easting
2,577 ,451.45
2,577 ,451.45
2,517 ,451.45
2,577,451.45
2,577 ,451.45
2,577 ,451.45
2,577,4s1.45
2,577 ,451.45
2,577 ,451.45
2,57'7 ,451.45
2,577,451.45
2,577,451.45
2,577 ,451.4s
2,577 ,4s1.45
2,577,451.45
2,5^77 ,451.4s
2,577,4s1.45
2,577,451.4s
2,577,451.45
2,577 ,451.45
2,577 ,451.45
2,577,451.45
2,577,451.45
2,5'77,4s1.45
2,57't,4st.4s
2,577,451.45
2,5'77,4s1.45
2,577,451.45
2,577,4s1.45
2,577,451.4s
2,577,451.45
2,577 ,451.4s
2,577,45l.45
2,577 ,451.45
2,577,451.45
2,577 ,451.45
2,57'7 ,451.45
2,577 ,451.45
2,577 ,451.45
2,577 ,451.4s
2,577 ,451.45
2,577 ,451.4s
2,577 ,451.45
2,5'77 ,4st.4s
2,577,451.45
2,577,451.45
2,577,45t.4s
2,577,451.45
2,577,451.45
2,577,4s1.45
2,577,451.45
2,577 ,451.45
2,57'7,451.45
2,s77,451.4s
2,517,45t.4s
2,s"17,45t.45
2,s77,45t.45
2,577,4s1.45
2,577,451.45
2,577,451.4s
2,577,451.45
2,577 ,4s1.45
2,577,451.45
2,5't7 ,45t.4s
2,577 ,451.45
2,577 ,451.45
Northing
319,296.27
319,296.27
319,296.27
319,296.27
319,296.27
3t9,296.27
319,296.27
3t9,296.27
319,296.27
319,296.27
319,296.27
319,296.2'7
319,296.27
319,296.27
3t9,296.27
319,296.27
319.296.27
319,296.27
3t9,296.27
319,296.27
319,296.27
319,296.2'7
3t9,296.27
3t9,296.27
3t9,296.27
3t9,296.27
3t9,296.27
3t9,296.27
3t9,296.27
3t9,296.27
3t9,296.2'7
3t9,296.27
3t9,296.27
3t9,296.2',7
319,296.27
319,296.27
319,296.27
319,296.2'7
319,296.27
319,296.27
319,296.27
319,296.27
319,296.27
319,296.27
319,296.27
3t9,296.27
319,296.27
319,296.27
319,296.27
3tq,296.27
3t9,296.27
319,296.2'7
3t9,296.27
319,296.2"/
3t9,296.2'7
319,296.27
319,296.27
319.296.27
319.296.27
319,296.27
3t9,296.27
3t9,296.27
3t9,296.27
319,296.27
3t9,296.27
319,296.27
Measuring
Point
Elevation
(MP)
5,599.91
5,599.9 r
5,599.9 t
5,599.91
5,599.91
5,599.91
5,599.91
s,599.9t
5,599.9t
5,599.9 r
s,599.91
5,599.9 r
5,599.9 r
s,s99.91
5,599.91
5,599.91
5,599.91
5,599.91
5,599.91
s,s99.9t
5,599.91
5,599.91
5,599.91
5,599.91
5,5 99.91
s,s99.91
5,599.91
5,599.9t
5,599.91
5,599.9 l
5,599.9t
5,599.91
s,599.9t
s,s99.91
5,599.91
5,599.91
5,599.91
5,s99.91
5,599.91
5,599.91
5,s99.91
5,599.91
s,s99.91
5,599.91
5,599.9 r
5 5qq qt
s,599.91
5,599.91
5,599.9 r
5,599.91
5,599.91
5,599.91
5,599.91
5,599.91
5,599.91
5,599.91
5,599.9t
s,599.91
5 5qq qt
5,599.9 r
5,599.91
5,599.91
s,599.91
5,599.91
5,599.91
5.599.91
Monitor
Length Of Well
Riser (L) Number
0.73 15
0.'73 15
0.73 15
0.73 15
0.73 r 5
0.73 t 5
0.73 t 5
0.73 15
0.73 l s
0.73 15
0.73 15
0.'t3 l s
0.73 15
0.73 15
0.73 r 5
0.73 r 5
0.73 t 5
0.73 r 5
0.73 t 5
0.73 15
0.73 r s
0.73 t 5
0.73 15
0.73 15
0.73 15
0.73 15
0.73 l s
0.73 15
0.73 15
0.73 15
0.73 r 5
0.73 l s
0.73 t 5
0.73 r 5
0.73 15
0.73 t 5
0.73 r 5
0.73 15
o.73 15
0.73 15
0.73 l5
0.73 15
0.73 15
0.73 l s
0.73 15
0.73 r 5
0.73 r 5
0.73 r s
0.73 15
0.73 I s
0.73 l 5
0.73 15
0.73 15
0.73 15
0.73 15
0.73 15
0.73 15
0.73 r 5
0.73 I 5
0.73 r 5
0.73 15
0.'r3 15
0.'73 15
0.73 t 5
0.73 r 5
0.73 r s
Date Of
Monitoring
tUt5/89
2n6/90
st8/90
8/7190
lrlt3l90
2127l9l
st2v9t
8l27l9t
t2t3t9t
3/t7/92
6il1/92
9il3t92
t2t9t92
3/24/93
618193
9t22t93
12n4193
3t24t94
6lt5l94
8n8194
3fi6t95
6t27 t9s
9l20l9s
12fiIt95
3128/96
6l'7196
9t16/96
tv22l96
3120t97
6^t/97
9130197
3n6/98
sA2/98
9t24t98
tU3l98
2n8/99
5nv99
7t6t99
9/28t99
t2t9t99
3/17t00
6/7t00
9/4t00
l t/30/00
03t23/01
05i r 8i0 r
05124/01
0st3t/01
06t05/0t
06lt3l0l
06t22t01
06t28/0t
07102101
07fi\t0t
07n610t
07 t2510t
l'il3U01
08/09/0 I
08/ I 4/0 l
08t20101
08127101
09107101
09n2t0t
09/l 8/0 I
09t26/01
t0l02l0l
Total or
Measured Total
Depth to Depth to
Water Water
(blw.MP) (blw.LSD)
107.6'7 106.94
107.47 106.'t4
107.40 106.67
107.59 106.86
107.70 106.97
107.70 106.97
108.45 t07 .'72
107.62 106.89
107.76 107.03
t07 .7 t 106.98
107.52 106.79
107 .71 106.98
107.58 106.85
107 .61 106.88
107 .63 106.90
107 .69 r 06.96
107.43 106.70
107.58 106.85
108.23 107.50
107.44 106.71
107.35 t06.62
107.3 r 106.58
t07 .29 106.56
107.20 106.47
107. l0 r06.37
t07.45 106.72
t07.42 106.69
107. l0 106.37
107 .44 106.7 |
107 .13 106.40
107.3 I 106.58
107.00 t06.27
106.83 106.10
107.20 106.47
t 07.50 106.77
r07.00 106.27
t07.45 106.72
107.10 106.37
t07.32 106.59
107.40 106.67
107 .2s 106.s2
107.35 t06.62
t07.36 106.63
107.3 r r 06.58
t07 .24 106.5 I
r07. I 8 106.4s
tj't.2t 106.48
t07 .23 r 06.50
107.13 106.40
106.95 t06.22
tj't.27 106.54
t07 .34 106.6 I
107.29 106.56
107.25 t06.52
107.17 106.44
107.15 106.42
107 .16 106.43
107.26 106.53
107.28 106.s5
107.20 106.4'7
107 .21 106.48
107.08 106.35
t07 .23 106.50
107. I 8 106.45
107.22 106.49
t07.20 106.47
Water
Elevation Lend Surface
(wL) (LSD)
5,492.24 5,599.18
5,492.44 5,599.18
5,492.5t 5,599.18
5,492.32 5,599.18
5,492.21 5,599. l 8
5,492.21 5,599.r8
s,491.46 s,599.18
5,492.29 5,599.r8
5,492.15 s,s99. I 8
s,492.20 5,599.18
5,492.39 5,599. l 8
5,492.20 5,599.18
5,492.33 5,599.18
s,492.30 5,599.18
5,492.28 5,599.18
s,492.22 5,599.18
5,492.48 5,599.18
5,492.33 5,599. l8
5,491.68 5,599.r8
s,492.47 5,599.18
5,492.56 5,599.18
5,492.60 5,s99.18
5,492.62 5,599.18
5,492.7 | 5,599. l8
s,492.81 5,599. l8
s,492.46 5,599. l8
5,492.49 5,599. l8
5,492.81 5,599.18
5,492.47 5,599.18
5,492.78 5,599.18
s,492.60 5,599.1 8
5,492.91 5,599.18
5,493.08 5,599. l8
5,492.'71 5,599.18
5,492.4t 5,599.18
5,492.91 5,599.18
s,492.46 5,599.1 8
5,492.81 5,599. l 8
s,492.s9 5,599.18
5,492.5t 5,599.18
s,492.66 5,599.18
5,492.56 5,599.18
5,492.55 s,599.18
s,492.60 s,599.r8
s,492.6"t 5,599. t 8
5,492.73 5,599. l8
5,492.70 5,599. l8
s,492.68 5,599.r8
5,492.78 5,s99.18
5,492.96 5,599.18
5,492.64 5,599.18
5,492.57 5,599.18
5,492.62 5,599.1 8
5,492.66 5,599.18
5,492.74 5,599.18
5,492.76 5,599.l8
s,492.7s s,599.18
s,492.65 5,599.r8
5,492.63 5,599.18
5,492.71 5,599.18
s,492.70 5,599.18
s,492.83 5,599.18
s,492.68 5,s99.18
5,492.73 5,599.l8
5,492.69 5,599.18
s,492.7 | 5,599.18
Bottom Of
Screened Totel
Interval Depth Of
(blw.LSD) Well
129 138
129 138
t29 138
129 t38
129 138
129 138
129 138
129 138
129 138
129 138
t29 138
129 138
129 r38
129 138
129 138
129 138
129 138
129 138
129 138
129 138
129 138
129 138
t29 138
129 138
t29 138
129 138
t29 138
t29 138
129 138
129 138
129 138
t29 138
t29 r38
t29 t38
129 138
129 138
129 138
t29 r38
129 138
129 138
tz9 138
t29 r38
129 138
129 _ 138
129 138
t29 138
t29 138
t29 138
129 138
t29 138
t29 138
129 138
129 138
t29 138
t29 138
t29 138
t29 138
129 138
129 l 38
129 138
t29 138
129 r38
129 l 38
129 138
129 138
129 138
Top Of
Screened
Interval
(blw.LSD)
99
99
99
99
99
99
99
99
99
99
99
99
99
99
99
99
99
99
99
99
99
99
99
99
99
99
99
99
99
99
99
99
99
99
99
99
99
99
99
99
99
99
99
99
99
99
99
99
oo
99
99
99
99
99
99
99
99
99
99
99
99
99
99
99
99
99
Water Levels and Data, Over Time
White Mesa Mill Monitor Well 15
Easting
2,577,4s1.45
2,577 ,4sl.4s
2,577,451.45
2,577,4s1.45
2,577,45t.45
2,577,4s1.45
2,577,451.45
2,577,45t.4s
2,577 ,451,45
2,577,451.45
2,577,45t.45
2 ,57 7 ,4s t .4s
2,577,451.45
2,57'7,45t.45
2,57't,451.45
2,577,451.45
2,577,451.45
2,511,451.45
2,577,451.45
2 ,57 7 ,45 | .45
2,577 ,451.45
2,s77 ,451.4s
2 ,57'7 ,45 | .45
2 ,57 7 ,45 I .45
2,577,451.45
2,577 ,451.45
2,577,451.45
2,577,451.45
2,577,451.45
2,577,45r.45
2,577,451.45
2,577,45t.45
2,577,451.45
2,577,451.45
2,57'7,451.45
2,571,451.45
2,577,451.45
2,577,451.45
2,577,451.45
2,571,451.45
2,577,45t.45
2,577,451.45
2,577,451.45
2 ,s7 7 ,45 r .4s
2 ,57 7 ,45 I .45
2,s77,45t.4s
2,577,45t.45
Northing
319,296.27
3t9,296.27
3t9,296.27
3t9,296.27
319,296.27
319,296.27
319,296.27
319,296.27
319,296.27
319,296.27
110 106 r?
319,296.2'.7
3t9,296.27
3t9,296.27
319,296.27
319,296.27
319,296.27
319,296.27
319,296.27
319,296.27
319,296.27
3t9,296.2't
3t9,296.27
3t9,296.27
3t9,296.27
3t9,296.27
319,296.27
319,296.2',7
319,296.27
319,296.27
319,296.27
319,296.27
319,296.27
319,296.27
319,296.27
319,296.2'l
319,296.27
319,296.27
319,296.27
319,296.27
319,296.27
319,296.27
319,296.27
319,296.27
319,296.27
3t9,296.27
319,296.27
Measuring
Point
Elevation
(MP)
5,599.91
5 sqq qt
5,599.91
5,599.9t
5,599.9 r
5,599.91
5,599.91
s,s99.91
5,599.91
5,599.91
5,599.91
5,599.9 r
s,s99.91
5,599.9t
5,599.91
5,599.91
5,599.91
5,599.91
5,599.91
5,599.91
5,599.9t
5,599.91
s,599.91
5,599.91
5 500 ql
5,599.91
5,599.9 r
5,s99.9 r
5,599.91
s,599.91
5,599.91
s,s99.91
5,s99.91
5,599.91
5,599.91
s,s99.91
5,599.91
s,s99.91
5,599.9r
5,599.9 r
5,599.91
5,s99.91
5,599.91
5,599.91
5,s99.91
5,599.9 I
5,599.91
Date Of
Monitoring
r 0/09/0 l
l0/15/01
t0l25l0t
l l/01/01
I r/05/01
I t/l 9/0 I
t2/03/0t
t2/t0lot
t2/t8t0l
t2l24t0t
tzl3U0t
0U09t02
0Ut4t0z
0U24/02
0U29102
02/06/02
02/13/02
02/2t/02
03/01/02
03/06t02
03fi4102
03t2U02
03127t02
04102102
04109102
04t18102
04/23/02
0s102102
05/07/02
05/t6/02
0s/20/07
0513t/02
06104/02
06/12/02
06lt'7102
06/27/02
07 tlst02
07 t08102
07/15/02
07/zs/02
08/0t/02
08120/02
08t29102
09t0st02
091t0102
09t20/02
09126/02
Top Of
Screened
Interval
(blw.LSD)
99
99
99
99
99
99
99
99
99
99
99
99
99
99
99
99
99
99
99
99
99
99
99
99
99
99
99
99
99
oo
99
99
99
99
99
99
99
99
99
99
99
99
99
99
99
99
99
Water
Elevation Land Surface
(wL) (LSD)
5,492.85 s,599. l8
5,492.63 5,599.1 8
5,492.60 5,599.1 8
5,492.77 5,599. l 8
5,492.67 5,599. I 8
5,492.54 5,599.18
5,492.78 5,599. l8
s,492.87 5,599.r8
5,492.63 5,s99. r 8
5,492.59 5,599.18
5,492.78 5,599. t 8
5,492.74 5,599.18
s,492.73 5,599.18
5,492.s8 5,s99.18
s,492.9r s,s99.18
5,492.61 s,599.18
s,492.61 5,599.r8
5,492.42 5,599. 18
5,493.0 r 5,s99.1 8
5,492.78 5,599. t 8
5,492.90 5,s99.18
5,492.52 5,599.18
5,492.76 5,599.18
s,492.84 5,599.18
5,492.65 5,599. t 8
5,492.86 5,599. I 8
s,492.67 5,599. l 8
5,492.91 s,s99.l 8
5,492.88 5,s99. l 8
5,492.82 5,599.18
5,492.80 5,599.18
5,492.73 5,599. I 8
5,492.78 5,s99.18
5,492.72 5,599.18
5,492.77 5,599.18
s,492.69 s,599.18
s,492.77 5,599.18
5,492.63 5,599.18
5,492.78 5,599.18
5,492.64 5,s99.18
5,492.82 5,599.18
5,492.80 s,s99.18
5,492.70 5,599.18
s,492.70 5,599. I 8
5,492.75 5,599.18
5,492.82 5,599.18
5,492.85 5,599. I 8
Monitor
Length Of Well
Riser (L) Number
0.73 15
0.73 15
0.73 15
0.'13 r s
0.'73 t 5
0.73 l s
0.73 15
0.73 r 5
0.73 15
0.73 15
0.73 15
0.73 15
0.73 15
0.73 t 5
0.73 r 5
0,73 15
0.73 15
0.73 15
0.73 15
0.73 t 5
0.73 15
0.73 15
0.73 15
0.73 15
0.73 15
0.73 15
0.73 15
0.73 15
0.73 r 5
0.73 15
0.13 15
0.73 t 5
0.73 15
0.73 15
0.73 15
0.73 15
0.73 l s
0.73 r 5
0.73 15
0.73 15
0.73 15
0.73 t5
0.'73 15
0.73 l s
0.73 15
0.73 t 5
0.73 15
Total or
Measured Total
Depth to Depth to
W.ter Water
(blw.MP) (blw.LSD)
107.06 106.33
t07 .28 106.55
107.3 I 106.58
t07 .14 106.41
107.24 106.5 r
107.37 106.64
107.13 106.40
107 .04 106.3 I
107.28 r06.55
t07 .32 106.59
107. t 3 106.40
107.17 106.44
I 07.1 I 106.45
I 07.33 106.60
107.00 t06.21
107.30 106.57
107.30 106.57
t07.49 106.76
r06.90 106.17
I07.I ] 106.40
107.01 106.28
107.39 106.66
t07.15 106.42
t07 .07 r 06.34
t07.26 106.53
107.05 106.32
107 .24 106.5 I
107.00 t06.27
107.03 106.30
r07.09 106.36
l07.ll 106.38
107. I 8 t06.45
107.13 106.40
107. I 9 106.46
t0"7 .14 106.41
t07.22 t06.49
t07 .t4 106.41
t07.28 106.55
107. 13 106.40
107 .27 106.54
107.09 106.36
r07. I I 106.38
1,07 .21 106.48
t07.2r 106.48
107. 1 6 106.43
107.09 106.36
r 07.06 106.33
Bottom Of
Screened Total
Interval Depth Of
(blw.LSD) Well
129 138
129 I 38
129 138
tz9 138
129 r38
129 138
t29 138
t29 138
t29 138
129 138
129 138
129 138
129 138
t29 138
129 138
129 138
129 138
129 138
t29 I 38
129 138
129 138
129 138
129 138
129 138
129 138
129 t38
129 l 38
129 r38
129 138
129 138
129 138
129 138
t29 138
129 138
129 138
t29 138
t29 138
t29 138
t29 138
t29 138
129 138
t29 138
t29 I 38
t29 _ 138
129 138
129 I 38
129 I 38
Water Levels and Data, Over Time
White Mesa Mill Monitor Well 16
Easting
2,576,66t.65
2,576,661.65
2,576,661.65
2,576,661.65
2,5'76,661.65
2,576,661.65
2,s76,661.65
2,576,661.65
2,57 6,661.65
2,576,661.65
2,576,661.65
2,576,661.65
Water Land
Elevation Surfece
(blw.MP) (LSD)
5,495.80 s,s85.53
5,494.6't 5,585.53
5,494.56 5,585.53
s,494.56 5,585.53
5,493.72 5,585.53
5,494.57 5,585.53
5,494.5'.1 5,585.53
5,494.57 5,585.53
5,494.34 5,585.53
5,494.22 5,585.53
5,494.57 5,585.53
5,494.s5 5,585.53
Dete Of
Monitoring
0U0511993
03/30t1993
09t2911993
12/08il994
04/08t1999
09t0U2000
12t0st2000
03/30t2001
06t22t200r
09il812001
03fi412002
08t2912002
Total or
Meesured Totel
Depth to Depth to
Weter Wrter
(blw.MP) (btw.LSD)
90.92 89.73
92.0s 90.86
92.16 90.97
92.t6 90.97
93.00 91.81
92.t5 90.96
92.15 90.96
92.15 90.96
92.38 91.19
92.50 9l .31
92.1s 90.96
92.17 90.98
Bottom of
Screened Total
Interval Depth Of
(blw.LSD) WeIl
88.5 93
88.5 93
88.5 93
88.s 93
88.5 93
88.5 93
88.5 93
88.5 93
88.5 93
88.5 91
88.5 93
88.5 93
Northing
319,820.94
3 I 9,820.94
319,820.94
3t9,820.94
319,820.94
319,820.94
319,820.94
3t9,820.94
319,820.94
319,820.94
319,820.94
319,820.94
Measuring
Point
Elevetion
(MP)
5,586.72
s,586.'.t2
s,s86.72
s,586.72
s,s86.72
s,586.72
5,586.72
5,586;72
5,586.72
5,586.72
5,586.72
5,586.72
Length Of
Riser (L)
l.l9
l.l9
1.19
1.19
1.19
1.19
l.l9
l.l9
L19
l.l9
l.r9
l.l9
Monitor
Well
Number
l6
l6
l6
l6
t6
l6
t6
l6
t6
t6
16
t6
Top of
Screened
Interval
(blw.LSD)
78.5
78.5
78.5
78.5
78.5
78.5
78.5
78.5
78.5
78.5
'78.5
78.5
Water Levels and Data, Over Time
White Mesa Mill Monitor Well l7
Easting
2,s78,892.21
2,578,892.21
2,s78,892.21
2,578,892.21
2,578,892.21
2,578,892.21
2,578,892.21
2,578,892.21
2,578,892.21
2,578,892.21
2,s78,892.21
2,5'78,892.21
2,578,892.21
2,5'78,892.21
2,578,892.21
2,578,892.21
2,578,892.21
2,578,892.21
2,578,892.21
2,578,892.21
2,578,892.21
2,578,892.21
2,578,892.2t
2,578,892.21
2,578,892.21
2,s18,892.21
2,578,892.21
2,578,892.21
2,s78,892.21
2,5'78,892.21
2,578,892.21
2,5'.78,892.21
2,578,892.21
2,578,892.21
2,578,892.21
2,578,892.21
2,578,892.21
2,578,892.21
2.578,892.21
2,5'78,892.21
2,5'78,892.21
2,578,892.21
2,578,892.21
2,578,892.2t
2,578,892.2t
2,578,892.21
2,578,892.21
2,578,892.21
2,578,892.21
2,578,892.21
2,s78,892.21
2,s78,892,21
2,578,892.21
2,578,892.21
2,578,892.21
2,578,892.21
2,s"18,892.21
2,578,892.21
2,518,892.21
2,578,892.21
2,5'.78,892.21
2,578,892.21
2,578,892.21
2,578,892.21
2,578,892.21
2,578,892.21
Northing
318,4s3.44
318,453.44
3t8,453.44
318,453.44
318,453.44
3t8,453.44
318,453.44
318,453.44
3 t8,453.44
318,453.44
3 r 8,453.44
318,453.44
3 18,453.44
3 t8,453.44
3 t8,453.44
3 t8,453.44
3 t8,453.44
3 t8,453.44
3t8,453.44
3 18,453.44
3t8,453.44
3t8,453.44
3t8,453.44
318,453.44
318,453.44
318,453.44
318,453.44
318,453.44
318,453.44
318,453.44
318,453.44
318,453.44
318,4s3.44
3 t8,453.44
3t8,453.44
3 t8,453.44
3t8,453.44
3t8,453.44
318,453.44
318,453.44
318,4s3.44
318,453.44
3 18,453.44
318,453.44
3t8,453.44
318,453.44
3t8,453.44
318,453.44
318,4s3.44
3t8,4s3.44
3t8,453.44
318,453.44
318,453.44
3t8,453.44
318,4s3.44
3 r 8,4s3.44
318,453.44
3 I 8,453.44
318,4s3.44
3 t8,453.44
3t8,453.44
3 I 8,453.44
3 18,4s3.44
3 r 8,453.44
3t8,453.44
318.4s3.44
Measuring
Point
Elevation
(MP)
5,575.09
s,575.09
5,575.09
5,5 75.09
5,5 75.09
5,575.09
5,575.09
5,575.09
5,575.09
5,575.09
5,575.09
5,575.09
5,57 5.09
5,575.09
5,575.09
s,575.09
5,575.09
5,5 75.09
5,575.09
5,5 75.09
5,575.09
5,575.09
5,575.09
5,575.09
5,575.09
5,575.09
5,5 75.09
5 575 0q
5,57 5.09
5,57 5.09
5 575 0q
5,575.09
5,575.09
5,57s.09
s,5 75.09
5,575.09
5,575.09
s,575.09
5,575.09
5,575.09
5,575.09
5,575.09
5,575.09
5,5 75.09
5,575.09
5,5 75.09
5,5 75.09
s,5 7s.09
5,575.09
5,5 75.09
5,575.09
5,5 75.09
5,575.09
5,5 75.09
5,575.09
5,575.09
5 575 0q
5,5 75.09
5,5 75.09
5,575.09
5 575 0q
5,575.09
5,5"t5.09
s,575.09
5,5 75.09
5,575.09
Date Of
Monitoring
3t24t93
6t8t93
9122193
12fi4193
3t24194
6lt5l94
8^8/94
t2lt3l94
tU22l96
3tz0/97
6^t/97
9t3019'7
3il6198
s^2t98
9t24l98
tt3/98
2/t8/99
sfiU99
7 t6/99
9t28/99
t2t9/99
3lt'7/00
617100
9t4/00
I 1/30/00
03t23t01
05/l 8i0 l
0st24t0l
05/3 l/01
06t05101
06lt3l0l
06l22l0I
06t28t0t
0710210t
07 n1t0t
07il6101
07 t25t01
07t3v0t
08/09/0 I
08/ 1 4/0 I
08t20t0t
0812710t
09t07 t01
09nzl0l
09/ r 8/0 r
09126/01
t0t02/0r
1 0/09/0 I
l0/15/01
t0l25l0t
l l/01/01
r l /05/0 1
Itn9t0l
t2t03t0t
t2fi0l0t
t2n8l0l
t2l24l0t
t2t3v0t
0v09102
0Ut4/02
0124102
0U29l0z
02t06102
02n3/02
\zt2v02
03/0v02
Top Of
Screened
Interval
(blw.LSD)
90
90
90
90
90
90
90
90
90
90
90
90
90
90
90
90
90
90
90
90
90
90
90
90
90
90
90
90
90
90
90
90
90
90
90
90
90
90
90
90
90
90
90
90
90
90
90
90
90
90
90
90
90
90
90
90
90
90
90
90
90
90
90
90
s0
Water
Elevation Land Surface
(wL) (LSD)
5,487.'71 5,573.81
5,487.50 5,573.81
5,487.49 5,573.81
5,489.73 5,573.81
5,488.37 5,573.8 l
5,487.79 s,573.81
5,487 .7 t 5,573.81
5,487.94 5,s73.81
5,487.79 5,573.81
5,487.80 5,573.8 I
s,488.09 5,573.8 l
5,487.89 5,573.81
5,488.09 5,573.81
5,48s.49 5,573.8 l
5,488.09 5,573.81
5,487.09 5,573.8 l
5,488.09 s,573.8 I
s,487.89 5,573.8 l
5,488.09 s,s73.81
5,488.26 5,573.8 r
5,488.29 5,573.81
5,488.55 5,573.8 I
5,488.39 5,573.81
5,488.69 5,573.8 I
5,488.79 5,573.8 l
5,489.1 5 5,s73.8 1
5,515.09 5,573.81
s,489.27 5,573.81
5,489.24 5,573.81
5,489.37 5,573.81
s.489.62 5,573.81
5,489.21 5,573.81
5,489.1 6 5,573.8 1
5,489.18 5,573.81
5,489 _26 5,5 73.81
5,489.38 s,573.81
5,489.40 5,573.81
s,489.39 5,573.8 r
5,575.09 5,573.8 I
5,489.28 s,573.81
s,489.38 5,573.81
5,489.39 s,573.81
5,489.58 5,573.81
5,489.40 5,573.81
5,489.50 5,573.81
5,489.49 5,573.81
5,489.52 5,573.81
s,489.69 5,573.81
5,489.46 5,573.81
5,489.43 5,573.81
5,489.68 5,573.8 I
5,489.5 I 5,573.8 I
5,489.48 5,573.81
5,489.86 5,s73.81
5,490.10 5,573.81
5,489.12 5,573.8 r
5,489.65 5,573.8 r
5,489.92 5,s73.81
5,489.86 5,573.81
5,489.88 5,573.8 I
s,489.66 5,573.81
5,490.15 5,573.81
5,489.80 5,573.81
s,489.76 5,573.81
s,489.56 5,573.81
s,490.32 5,573.81
Mouitor
Length Of Well
Riser (L) Number
1.28 17
1.28 17
l .28 t7
1.28 t7
I .28 17
t.28 t7
1.28 t7
r.28 t7
1.28 t]
1.28 t7
1.28 t7
1.28 t7
1.28 t7
t.z8 t'7
1.28 17
t.z8 t7
L28 t'7
I .28 t'/
I .28 t7
I .28 t7
1.28 t7
1.28 t7
l .28 17
1.28 t7
1.28 t7
1.28 t7
I .28 t7
1.28 17
1.28 17
1.28 t'7
1.28 1'.7
L28 I1
I .28 1'7
1.28 17
t.28 t7
I .28 t7
I .28 t7
t.28 t7
1.28 t7
I .28 t7
1.28 t7
1.28 t7
t.28 17
1.28 t7
t.28 t7
I .28 t7
1.28 t7
1.28 t7
1.28 t7
t.28 t7
r.28 t7
t.28 t7
1.28 t7
L28 17
t.28 t7
I .28 t7
t.28 t7
l .28 t7
1.28 t7
1.28 t7
1.28 t7
t.28 t7
l.28 t7
1.28 t7
1.28 t7
1.28 t7
Total or
Measured Total
Depth to Depth to
Water Water
(blw.MP) (blw.LSD)
87.38 86. l0
87.s9 86.3 I
87.60 86.32
85.36 84.08
86.72 85.44
87.30 86.02
87.38 86. t0
87. 1 5 85.87
87.30 86.02
87 .29 86.01
87.00 85.72
87.20 85.92
87.00 8s.72
89.60 88.32
87.00 8s.72
88.00 86.72
87.00 8s.72
8'7.20 85.92
87.00 8s.72
86.83 85.55
86.80 85.s2
86.s4 85.26
86.70 85.42
86.40 8s.12
86.30 85.02
85.94 84.66
0.00 -1.28
8s.82 84.54
85.85 84.57
85.72 84.44
85.47 84. l9
85.88 84.60
85.93 84.65
85.91 84.63
8s.83 84.55
85.7 r 84.43
85.69 84.41
85.70 84.42
0.00 -1.28
85.8 I 84.53
85.71 84.43
85.70 84.42
85.51 84.23
85.69 84.41
85.59 84.3 I
85.60 84.32
85.57 84.29
85.40 84.12
85.63 84.35
85.66 84.38
85.4 t 84. 13
85.58 84.30
85.61 84.33
85.23 83.95
84.99 83.7r
85.37 84.09
85.44 84. r 6
85.r7 83.89
85.23 83.95
85.21 83.93
85.43 84. I 5
84.94 83.66
8s .29 84.01
85.33 84.05
85.53 84.2s
84.^17 83.49
Bottom Of
Screened Total
Interval Depth Of
(blw.LSD) Well
100 l l0
r00 l l0
r00 l l0
100 l l0
100 l r0
100 l r0
100 I 10
100 I l0
100 I l0
100 l l0
100 I l0
r00 I l0
100 I l0
100 I l0
100 ll0
t00 I l0
100 I l0
t00 I l0
100 l l0
100 I l0
100 I l0
100 I l0
100 I l0
100 r r0
100 I l0
r00 I l0
100 I l0
100 I l0
100 1 l0
100 l l0
100 I t0
100 I t0
100 I 10
100 I 10
100 I r0
100 I t0
100 I l0
100 I l0
r00 l l0
100 I t0
t00 r r0
t00 I t0
100 110
100 _ ll0
r00 l l0
100 I l0
100 r l0
100 r l0
100 I t0
100 110
100 I l0
100 I l0
100 r l0
100 r l0
100 110
100 I l0
100 I l0
100 I l0
100 I l0
100 1r0
100 110
100 l l0
100 I t0
r00 l l0
100 I l0
100 r t0
\Uater Levels and Data, Over Time
White Mesa Mill Monitor Well 17
Easting
2,578,892.21
2,578,892.21
2,s78,892.21
2,578,892.21
2,578,892.21
2,578,892.21
2,578,892.21
2,578,892.21
2,578,892.21
2,578,892.21
2,578,892.21
2,578,892.21
2,578,892.21
2,578,892.21
2,578,892.21
2,s78,892.21
2,578,892.21
2,s78,892.21
2,578,892.21
2,578,892.2t
2,578,892.21
2,578,892.21
2,s78,892.21
2,578,892.21
2,578,892.21
2,578,892.21
2,578,892.21
2,578,892.21
Northing
3t8,453.44
3t8,453.44
318,453.44
318,453.44
318,453.44
3t8,453.44
3t8,453.44
318,453.44
318,453.44
318,453.44
318,453.44
318,453.44
318,453.44
3t8,453.44
318,453.44
318,453.44
318,4s3.44
318,453.44
318,453.44
318,453.44
318,4s3.44
318,453.44
318,453.44
318,453.44
318,4s3.44
318,453.44
318,453.44
318,453.44
Top Of
Screened
Interval
(blw.LSD)
90
90
90
90
90
90
90
90
90
90
90
90
90
90
90
90
90
90
90
90
90
90
90
90
90
90
90
90
Wrter
Elevation Land Surface
(wL) (LsD)
5,490.01 5,573.81
5,490.18 5,573.81
s,489.6'1 5,573.8 r
5,489.9'7 5,573.81
5,490.0',7 5,573.81
5,489.86 5,573.81
5,490.1I 5,573.81
5,489.93 5,573.81
5,490.21 5,573.81
5,490.18 5,573.81
5,490.13 5,573.81
5,490.06 5,573.81
5,490.06 5,573.81
5,490.12 5,573.8 I
5,490.09 s,573.81
5,490. I 6 5,573.81
5,490.06 5,573.81
5,490.17 5,573.8 t
5,490.01 5,573.8 I
5,490.18 5,573.81
s,490.04 5,573.81
5,490.25 5,573.81
5,490.28 5,573.81
5,490.25 5,573.8 t
s,490.23 5,573.8 t
5,490.05 5,573.81
5,490.39 5,573.81
5,490.46 5,573.81
Meesuring
Point
Elevetion
(MP)
5,575.09
5,575.09
5,575.09
5,575.09
5,575.09
5,575.09
5,575.09
5,575.09
5,575.09
5,575.09
5,575.09
5,575.09
5,575.09
s,575.09
5,575.09
5,575.09
5,575.09
5,57s.09
5,575.09
5,575.09
5,575.09
5,575.09
5,575.09
5,575.09 .
5,575.09
5,575.09
5,575.09
5,575.09
Monitor
Length Of Well
Riser (L) Number
1.28 17
1.28 t7
1.28 l7
t.28 l7
1.28 t7
1.28 t'l
1.28 t7
1.28 t7
1.28 t7
1.28 t7
1.28 t7
1.28 t7
1.28 t7
1.28 t7
1.28 t7
1.28 t7
1.28 t7
1.28 t7
1.28 t7
r.28 t7
t.28 t7
1.28 t7
1.28 t7
1.28 t7
1.28 t7
1.28 t7
1.28 t7
1.28 t7
Date Of
Monitoring
03106102
03114/02
03t2U02
03/27t02
04t02/02
04t09102
04/18102
04/23/02
05102/02
0st07t02
0st t6/02
05120t02
0513U02
06104/02
061t2t02
06117102
06t27/02
07t05t02
07t08102
071t5102
07125102
0810v02
08t20/02
08t29t02
09105/02
09110102
09t20t02
09126102
Tot|l or
Measured Total
Depth to Depth to
Water Water
(blw.MP) (blw.LSD)
85.08 83.80
84.91 83.63
8s.42 84.14
85.12 83.84
85.02 83.74
85.23 83.9s
84.98 83.70
85.16 83.88
84.88 83.60
84.91 83.63
84.96 83.68
85.03 83.75
85.03 83.75
84.97 83.69
8s.00 83.72
84.93 83.65
85.03 83.75
84.92 83.64
85.08 83.80
84.91 83.63
85.05 83.77
84.84 83.56
84.8 r 83.53
84.84 83.56
84.86 83.58
85.04 83.76
84.70 83.42
84.63 83.35
Bottom Of
Screened Total
Interval Depth Of
(blw.LSD) Well
100 1 l0
100 I l0
100 r l0
100 I l0
100 110
100 I l0
100 I l0
100 I l0
100 1 10
100 I l0
100 r l0
100 I l0
100 I l0
100 I l0
100 I l0
100 I l0
100 I l0
100 I l0
100 l l0
100 I l0
100 I l0
100 I r0
100 l l0
100 I l0
100 I l0
100 I l0
100 I l0
100 I r0
Water Levels and Data, Over Time
White Mesa Mill Monitor Well 18
Easting
2,580, I 33.04
2,580, I 33.04
2,580, I 33.04
2,580, I 33.04
2,580,1 33.04
2,580, I 33.04
2,580,131.04
2,580,133.04
2,580, I 33.04
2,580,133.04
2,580,1 33.04
2,580,1 33.04
2,580, l 33.04
2,580,1 33.04
2,580, l 33.04
2,580,133.04
2,580, I 33.04
2,580,t33.04
2,580, I 33.04
2,580, I 33.04
Measuring
Point
Elevation
(MP)
5,657.5t
5,657.51
5,657.51
5,657.51
5,657 .51
5,657.51
5,657.51
5,657.51
5,657.51
5,657.51
5,657.51
5,657.51
5,657.51
5,657.51
5,6s7.sl
5,657.51
5,657.51
5,657.5t
5,657.51
5,657.51
Monitor
Length Of Well
Riser (L) Number
t.27 18
1.27 t 8
t.27 18
t.27 18
1.27 18
1.27 18
1.27 l8
1.27 18
1.27 18
1.2'7 18
1.27 18
1.27 l8
1.27 18
1.27 18
1.27 18
. 1.27 18
1.27 18
1.27 18
1.27 l8
t.27 18
Date Of
Monitoring
3/24193
6t8193
9/22/93
12114193
3124194
6n5t94
8fi8t94
12il3t94
4t7t99
stnt99
7t6/99
9lll00
l l/30/00
03/23/01
06122101
09/t 8/01
I l/05/01
03/14/02
08/29/02
09/10/02
Total or
Measured Total
Depth to Depth to
Water Water
(blw.MP) (blw.LSD)
92.26 90.99
92.00 90.73
92.12 90.85
91.82 90.55
85.06 83.79
91.65 90.38
91.49 90.22
91.32 90.05
88.00 86.73
87.7s 86.48
87.20 85.93
85.32 84.05
85.05 83.78
84.68 83.41
84.08 82.81
84.50 83.23
83.34 82.07
82.64 81.37
82.0't 80.80
82.01 80.74
Bottom Of
Screened Total
Interval Depth Of
(blw.LSD) Well
133.5 148.5
133.5 148.5
133.5 148.5
133.5 148.5
133.5 148.5
r33.s 148.5
133.5 148.5
133.5 148.5
133.5 148.5
133.5 148.5
133.5 148.5
133.5 148.5
133.5 148.5
133.5 148.5
133.5 148.5
133.5 148.5
133.s 148.5
133.5 148.5
133.5 148.5
133.5 148.5
Northing
325,121.34
325,121.34
325,t21.34
325,121.34
325,121.34
325,12t.34
325,121.34
325,121.34
325,121.34
325,12t.34
325,t21.34
325,t21.34
325,121.34
325,t21.34
32s,121.34
325,121.34
325,12t.34
325,121.34
325,t21.34
325,121.34
Water
Elevation Land Surface
(wL) (LSD)
5,565.25 5,6s6.24
5,565.51 5,656.24
5,565.39 5,656.24
5,565.69 s,656.24
5,572.45 5,656.24
5,56s.86 s,656.24
5,s66.02 5,6s6.24
5,566.19 5,656.24
5,569.51 5,656.24
5,569.76 5,656.24
5,570.31 5,656.24
5,572.t9 5,656.24
5,572.46 5,656.24
5,572.83 5,656.24
s,s73.43 s,656.24
5,573.01 5,656.24
5,574.17 s,6s6.24
5,574.87 5,656.24
s,s75.44 5,656.24
5,575.50 s,6s6.24
Top Of
Screened
Interval
(blw.LSD)
103.5
103.5
103.5
103.5
103.5
r 03.5
103.5
103.5
103.5
103.5
103.5
103.5
103.5
103.5
103.5
103.5
103.5
103.5
103.5
103.5
Water Levels and Data, Over Time
White Mesa Mill Monitor Well 19
Easting
2,581,423.33
2,581,423.33
2,581,423.33
2,581,423.33
2,58t,423.33
2,58t,423.33
2,58t,423.33
2,58t,423.33
2,58t,423.33
2,581,423.33
2,s81,423.33
2,58t,423.33
2,581,423.33
2,58t,423.33
2,581,423.33
2,s81,423.33
2,581,423.33
2,s81,423.33
2,581,423.33
2,s81,423.33
Meesuring
Point
Elevation
(MP)
s,6s4.96
5,654.96
s,6s4.96
5,6s4.96
5,654.96
5,654.96
5,654.96
5,654.96
5,6s4.96
5,654.96
5,654.96
5,654.96
5,654.96
5,654.96
5,654.96
5,654.96
5,654.96
5,654.96
5,654.96
5,654.96
Monitor
Length Of Well
Riser (L) Number
1 .48 19
1 .48 19
I .48 19
l 48 19
I .48 19
I .48 19
I .48 19
1.48 19
1.48 19
1.48 19
1.48 t 9
1.48 19
1.48 19
I .48 19
1.48 19
l .48 19
I .48 19
1 .48 19
I .48 19
1.48 19
Date Of
Monitoring
3124193
618/93
9t22t93
l2lt4193
3/24/94
6t15t94
8/t8,t94
t2n3l94
4t7t99
5nU99
716199
9^lOO
I t/30/00
03t23/01
06t22101
09/l 8/0 I
I r/05/0t
03,L4102
08t29t02
09^o/o2
Total or
Measured Total
Depth to Depth to
Water Water
(blw.MP) (blw.LSD)
85.48 84.00
85.49 84.01
8s.30 83.82
85. 15 83.67
87.42 85.94
84.84 83.36
84.70 83.22
84.40 82.92
72.17 70.69
7 t.67 70.19
70.90 69.42
6',7.68 66.20
67 .10 65.62
66.38 64.90
65.67 64.19
64.56 63.08
64.2t 62.'73
62.50 61.02
61.76 60.28
6t.'70 60.22
Northing
324,49t.',l3
324,491.73
324,491.'.l3
324,491.73
324,491.73
324,491.73
324,491.'t3
324,491.73
324,491.73
324,491.73
324,49t.73
324,491.73
324,491.73
324,491.73
324,491.73
324,491.73
324,491.73
324,491.73
324,491.73
324,491.73
Water
Elevation Land Surface
(wL) (LSD)
5,569.48 5,653.48
s,s69.47 5,653.48
s,569.66 5,653.48
5,569.81 5,653.48
5,567 .54 5,653.48
5,570.12 5,653.48
5,570.26 5,653.48
5,570.56 5,653.48
s,s82;79 5,653.48
5,583.29 5,653.48
5,584.06 s,653.48
5,587.28 5,653.48
5,587.86 5,653.48
5,588.58 5,653.48
5,589.29 5,653.48
5,590.40 5,653.48
5,590.75 5,653.48
5,592.46 5,653.48
5,593.20 5,653.48
5,593.26 5,653.48
Bottom Of
Screened Total
Interval Depth Of
(blw.LSD) Well
131.00 149.00
131.00 149.00
l3 l .00 149.00
131.00 149.00
131.00 149.00
131.00 149.00
131.00 149.00
t31.00 149.00
131.00 149.00
131.00 149.00
l3 l .00 149.00
13 l .00 149.00
l3I.00 t49.00
l3 1.00 r49.00
131.00 149.00
l3 1.00 149.00
131.00 149.00
131.00 149.00
l3 1.00 149.00
l3 I .00 149.00
Top Of
Screened
Intervel
(blw.LSD)
10 r.00
101.00
r01.00
101.00
101.00
101.00
r01.00
101.00
l0l .00
l0 r .00
10 t.00
101.00
101.00
101.00
101.00
101.00
l0l.00
101.00
101.00
t 01.00
Easting
2,576,169.80
2,576,t69.80
2,576,t69.80
2,576,169.80
2,576,169.80
2,576,169.80
2,576,169.80
2,576,169.80
2,576,169.80
2,576,169.80
2,s76,t69.80
2,576,t69.80
2,576,169.80
2,576,169.80
Northing
3 15,490.81
315,490.8 r
3 15,490.8 t
315,490.81
315,490.8r
3 15,490.8 I
315,490.81
315,490.81
315,490.81
315,490.81
315,490.81
3 15,490.81
315,490.81
3 r 5,490.81
Water
Elevation
(wL)
5,463.37
5,457.57
5,457.63
5,455.35
5,458.14
5,460.98
5,461.07
s,461.13
5,461.r2
5,461.13
5,461.07
5,461.14
5,46t.15
5,46t.17
Land Surface
(LSD)
5,539.1 I
5,539.11
5,539.1I
5,539.11
5,539.1 1
5,539.1 I
5,539.1 I
5,539.1 1
5,539.1 I
5,539.1 I
5,539.11
5,539.1 l
5,539.11
5,539.1 I
O Water Levels and Data, Over Time OWhite Mesa Mill Monitor Well20
Measuring Length Monitor
Point Elevation Of Riser WelI
(MP)
5,s40.60
5,540.60
5,540.60
5,540.60
5,540.60
5,540.60
5,540.60
5,540.60
5,540.60
5,540.60
5,540.60
5,540.60
5,540.60
5,540.60
(L) Number
1.49 20
1.49 20
1.49 20
t.49 20
t.49 20
1.49 20
1.49 20
t.49 20
1.49 20
1.49 20
1.49 20
1.49 20
1.49 20
1.49 20
Date 0f
Monitoring
8l2sl94
9/14/94
9t16194
9t19t94
t2lt3/94
9/5t00
11t29t2000
03/30/2001
06122/01
09/l 8/0 l
I 1/05/01
03114/02
08129/02
09110/02
Total or
Measured
Depth to
Water
(blw.MP)
77.23
83.03
82.97
85.25
82.46
79.62
79.53
79.47
79.48
79.47
79.53
79.46
79.45
79_43
Total
Depth to
Water
(blw.LSD)
75.74
81.54
81.48
83.76
80.97
78. l3
78.04
77.98
77.99
77.98
78.04
77.97
77.96
77.94
Total
Depth Of
Well
87
87
87
87
87
87
87
87
87
87
87
87
87
87
Water Levels and Data. Over Time ^
White Mesa Mill Monitor Well2l !
Easting
2,574,794.90
2,574,794.90
2,574,794.90
2,s74,794.90
2,574,794.90
2,s74,794.90
2,574,794.90
Northing
316,87 r.69
3t6,87 t.69
316,87 r.69
316,87 t.69
316,871.69
316,871.69
316,87 t.69
Water
Elevation
(blw.MP)
5,499.30
s,499.30
s,499.30
s,499.30
5,499.30
s,499.30
s,499.30
Land Surface
(LSD)
5,560.52
5,560.52
5,560.52
5,560.52
5,560.52
5,560.s2
5,560.s2
Measuring
Point
Elevation
(MP)
s,s62.3s
5,562.3s
5,562.3s
5,562.3s
5,562.3s
5,562.35
5,562.35
Date Of
Monitoring
08t25n994
091r4t1994
091t611994
091t911994
tzlt3lt994
0410711999
0910y2000
Total or
Measured
Depth to
Water
(blw.MP)
92.00
92.00
92.00
92.00
92.00
92.00
92.00
Total Depth
to Water
(blw.LSD)
Dry
Dry
Dry
Dry
Dry
Dry
Dry
Total Depth
Of Well
92
92
92
92
92
92
92
Length Monitor
Of Riser Well
(L) Number
1.83 2l
1.83 21
1.83 2t
1.83 2t
1.83 2t
1.83 2l
1.83 2t
Easting
2,580,981.05
2,580,981.05
2,580,981 .05
2,580,981.05
2,580,981.05
2,580,981.05
2,580,981 .05
2,580,98 r.05
2,580,981.05
2,s80,981.05
2,580,981 .05
2,580,981 .05
2,580,981 .05
2,580,981.05
2,580,981 .05
Northing
313,968.74
313,968.74
313,968.74
313,968.74
313,968.74
313,968.74
313,968.74
313,968.74
313,968.74
3t3,968.74
313,968.74
313,968.74
313,968.74
313,968.74
313,968.74
O Water Levels and Data, Over Time O- White Mesa MiIl Monitor Well22
Total or
Measuring Measured
Water Point Monitor Depth to Total Depth
Elevation Land Surface Elevation Length Of Well Date Of Water to Water Total Depth
(WL) (LSD) (MP) Riser(L) Number Monitoring (blw.MP) (blw.LSD) OfWeIl
s,445.12 5,516.08 5,517.47 1.39 22 8t25t94 72.35 70.96 n4
5,444.02 5,516.08 5,517.47 1.39 22 9t12t94 73.45 72.06 I 14
5,439.98 5,516.08 s,517.47 1.39 22 9fi4t94 77.49 76.10 n4
s,438.79 5,516.08 5,51"t.47 1.39 22 9fi6t94 78.68 77.29 114
s,439.4s 5,s16.08 5,517.47 1.39 22 9n9t94 78.02 76.63 rt4
5,444.t7 s,s16.08 5,517.47 1.39 22 12fi3t94 73.30 71.91 14
5,44s.81 s,5r6.08 5,s17.47 r.39 22 9tst00 71.66 70.27 114
5,445.97 5,516.08 s,st7.47 1.39 22 tv29t2000 7r.50 70.11 114
s,446.25 5,516.08 5,sr7.47 1.39 22 03t30t200r 71.22 69.83 tt4
5,446.44 5,516.08 5,517.47 1.39 22 06t22t01 71.03 69.64 tr4
s,446.6t 5,516.08 s,517.47 1.39 22 09/18/01 70.86 69.47 tt4
5,446.45 5,516.08 5,517.47 1.39 22 1l/05/01 71.02 69.63 tt4
5,446.12 5,516.08 5,5t7.47 1.39 22 03/t4/02 7t.35 69.96 tt4
5,447.14 5,516.08 5,5t7.47 1.39 22 08t29t02 70.33 68.94 tt4
5,447.27 5,516.08 5,5t7.47 1.39 22 09n0t02 70.20 68.81 tt4
Water Level Data
Fall 2002
Temporary Wells
TW4-I
TW4-2
TW4-3
TW4-4
TW4-5
TW4-6
TW4-7
TW4-8
TW4-9
TW4 - 10
TW4-il
TW4 - t2
TW4 - 13
TW4 - 14
TW4 - 15
TW4 - t6
TW4 - t7
TW4 - 18
TW4 - 19
TW4A
Water Levels and Datao Over Time
White Mesa Mill Temporary Well 4-1
Total or
weter lVleasuring Lensth Monitor MeasuredEasting Northing Land Surrece
-."otLt of Riser well Depth to Total Depth(x) (v) Elevation (LSD) l-teYation G) Number Date Of Water to Water Total Depth(MP) Monitoring (blw.MP) (blw.LSD) Of Well
2,580,890.59 320,862.99 5,537.23 5,617.56 5,618.58 ',t.02 TW4-l ll/08i1999 81.35 80.33 lll.04
2,580,890.59 320,862.99 5,537.38 5,617.56 5,618.58 1.02 TW4-l n/0911999 81.20 80.18 lll.04
2,580,890.59 320,862.99 5,537.48 5,617.56 5,618.58 1.02 TW4-l 0t/0212000 81.10 80.08 lll.04
2,580,890.59 320,862.99 5,5f7.48 5,617.56 5,618.58 1.02 TW4-l 0l/10/2000 81.10 80.08 111.04
2,580,890.59 320,862.99 5,537.23 5,6t7.56 5,618.58 1.02 TW4-l 0111712000 81.35 80.33 lll.04
2,580,890.59 320,862.99 5,537.28 5,6t7.56 5,618.58 1.02 TW4-l 0t/2412000 81.30 80.28 I I1.04
2,580,890.59 320,862.99 5,537.28 5,617.56 5,618.58 1.02 TW4-l 02/0112000 81.30 80.28 111.04
2,580,890.59 320,862.99 5,537.18 5,617.56 5,618.58 1.02 TW4-r 02/0712000 81.40 80.38 lll.04
2.580,890.59 320,862.99 5,537.48 5,617.56 5,618.58 1.02 TW4-l 0211412000 81.10 80.08 I I1.04
2.580,890.59 320,862.99 5,537.48 5,617.56 5,618.58 t.02 TW4-l 0212312000 81.10 80.08 lll.04
2,580,890.s9 320,862.99 5537.58 s,6t7.s6 5,618.58 t.02 TW4-l 03/01/2000 81.00 79.98 I I1.04
2,580,890.59 320,862.99 5537.68 5,617.56 5,618.58 1.02 TW4-l 03/08/2000 80.90 79.88 I I1.04
2,580,890.59 320,862.99 5537.98 5,6t7.56 5,618.58 1.02 TW4-l 0311512000 80.60 '19.s8 I I1.04
2,580,890.59 320,862.99 5537.68 5,617.56 5,618.58 t.02 TW4-l 0312012000 80.90 79.88 I I1.04
2,580,890.59 320,862.99 5537.68 5,6t7.s6 5,618.58 1.02 TW4-l 0312912000 80.90 79.88 I I1.04
2,580,890.59 320,862.99 5537.43 5,617.56 5,618.58 1.02 TW4-l 0410412000 81.15 80.13 I I1.04
2,580,890.s9 320,862.99 5537.18 5,617.56 5,618.58 1.02 TW4-l 0411312000 81.40 80.38 I I1.04
2,580,890.59 320,862.99 5537.48 5,617.56 5,618.58 1.02 TW4-l 0412112000 81.10 80.08 lll.04
2,580,890.59 320,862.99 5537.68 5,617.56 5,618.58 1.02 TW4-l 0412812000 80.90 79.88 lll.04
2,580,890.59 320,862.99 5537.58 5,617.56 5,618.58 1.02 TW4-l 05/0r/2000 81.00 79.98 lll.04
2,580,890.59 320,862.99 5537.88 5,617.56 5,618.s8 1.02 TW4-r 05/ll/2000 80.70 79.68 lll.04
2,580,890.59 320,862.99 5537.58 5,617.56 5,6r8.58 r.02 TW4-l 05/15/2000 81.00 79.98 lll.04
2,580,890.59 320,862.99 5537.88 5,617.56 5,618.58 r.02 TW4-l 05/25/2000 80.70 79.68 l 11.04
2,580,890.59 320,862.99 5537.88 5,617.56 5,618.58 1.02 TW4-l 06/0912000 80.70 79.68 lll.04
2,580,890.s9 320,862.99 5537.9 5,617.56 s,618.58 1.02 TW4-r 06/1612000 80.68 79.66 lll.04
2,580,890.59 320,862.99 5537.88 5,617.56 5,618.58 1.02 TW4-1 061261?000 80.70 79.68 lll.04
2,580,890.59 320,862.99 5538.1 5,617.56 5,618.58 1.02 TW4-t 07106/2000 80.48 79.46 lll.04
2,580,890.59 320,862.99 5538.66 5,617.56 5,618.58 1.02 TW4-1 08i 15/2000 79.92 78.90 I I1.04
2,580,890.59 320,862.99 5538.33 5,6t7.56 5,618.58 1.02 TW4-l 09/08i2000 80.25 79.23 I I1.04
2,580,890.59 320,862.99 5539.9 5,617.s6 5,618.58 r.02 TW4-l t01r912000 78.68 77.66 lll.04
2,580,890.59 320,862.99 5540.55 5,617.56 5,618.58 1.02 TW4-l ll/30i2000 78.03 77.0r 111.04
2,580,890.59 320,862.99 5540.74 5,617.56 5,618.58 1.02 TW4-l 1210612000 77.84 76.82 I l1.M
2.580,890.59 320,862.99 ss42.39 5,617.56 5,618.58 t.02 TW4-l 0Ut4l200t 76.t9 75.17 I I1.04
2,580,890.59 320,862.99 5543.99 5,61'/.56 5,618.58 1.02 TW4-t 021091200t 74.59 73.57 lll.04
2,580,890.59 320,862.99 5544.96 5,617.56 5,618.58 1.02 TW4-t 0312912001 73.62 72.60 lll.04
2,580,890.59 320,862.99 5545.45 5,617.56 5,618.58 1.02 TW4-t 04130/2001 73.13 72.11 lll.04
2,580,890.59 320,862.99 5545.89 5,6t7.56 5,618.58 1.02 TW4-l 0sl3ll200l 72.69 7t.67 I I t.04
2,580,890.59 320,862.99 5546.19 5,6t7 .56 5,618.58 l .02 TW4- r 0612212001 72.39 7 r.3'7 I I 1.04
2,580,890.59 320,862.99 5546.50 5,617.56 5,618.58 1.02 TW4-l 0711012001 7?.08 71.06 I I1.04
2,580,890.59 320,862.99 5547.18 5,6t7.56 5,618.58 1.02 TW4-l 08/10/2001 71.40 70.38 I I1.04
2,580,890.59 320,862.99 5547.59 5,617.56 s,618.58 1.02 TW4-l 0911912001 '10.99 69.97 I I1.04
2,580,890.59 320,862.99 5547.84 5,6t7.56 5,618.58 1.02 TW4-l 1010212001 70.74 69.72 I I1.04
2,580,890.59 320,862.99 5548.12 5,6t7.56 5,618.58 t.oz TW4-t lll07l200l 70.46 69.44 I I1.04
2,580,890.59 320,862.99 5548.6s 5,617.56 s,6r8.58 1.02 TW4-t 121031200t 69.93 68.91 I I1.04
2,580,890.59 320,862.99 5548.87 5,617.56 5,618.58 1.02 TW4-1 0110312002 69.71 68.69 I I1.04
2,580,890.59 320,862.99 5549.37 5,6t7.56 5,618.58 1.02 TW4-l 0210612002 69.21 68.19 lll.04
2,580,890.59 320,862.99 5s50.00 5,6t7.56 5,618.58 1.02 TW4-l 0312612002 68.58 67.56 lll.04
2,580,890.59 320,862.99 5550.22 5,617.56 5,618.58 1.02 TW4-l 0410912002 68.36 67.34 111.04
2,580,890.59 320,862.99 5550.81 5,617.56 5,618.58 1.02 TW4-l 0512312002 67.77 66.75 1l1.04
2,580,890.59 320,862.99 5550.79 5,617.56 5,618.58 1.02 TW4-1 0610512002 67.79 66.77 111.04
2,580,890.59 320,862.99 5551.08 5,617.56 5,618.58 1.02 TW4-t 07t0812002 67.50 66.48 111.04
2,580,890.59 320,862.99 5551.54 5,6t7.56 5,618.58 1.02 TW4-l 0812312002 6'7.04 66.02 lll.04
2,580,890.59 320,862.99 5551.79 5,617.56 5,618.58 1.02 TW4-l 09ilv2002 66.79 65.77 I I1.04
I
Easting
(x)
2,s80,916. l l
2,580,916. I I
2,580,916. I I
2,580,916.11
2,580,916.11
2,580,916.11
2,580,916.11
2,580,916.1 I
2,580,9r6.11
2,580,916. r I
2,580,916.1 I
2,580,916. I I
2,580,916. I I
2,580,9r6.11
2,580,9t6.11
2,580,916.11
2,580,916.11
2,580,916.1 I
2,580,916.1 r
2,580,916.1 1
2,580,916. I I
2,580,916.11
2,s80,916.11
2,580,916.1 I
2,580,916.11
2,580,916.1 I
2,580,916.1I
2,580,916. I I
2,580,916. l I
2,580,916.1 I
2,580,9r6.11
2,580,9r6.1I
2,580,916. I I
2,580,916.11
2,580,9 1 6.1 1
2,580,9r6.11
2,580,9 1 6. u
2,580,9 16. r r
2,580,9 16. I I
2,580,916.1 I
2,580,916.11
2,580,916.11
2,580,916. I I
2,580,916.1 I
2,580,916.11
2,580,916.1 I
2,580,916.11
2,580,916.1 I
2,580,916.1 I
2,580,916.11
2,580,916. I I
2,580,916.1 I
2.580.916.1 I
5,622.76 5,624.72
5,622.76 5,624.72
5,622.76 5,624.72
s,622.76 s,624.72
5,622.76 5,624.72
5,622.76 5,624.72
5,622.76 5,624.72
5,622.76 5,624.72
5,622.76 5,624.'12
5,622."16 5,624.72
5,622.76 5,624.72
5,622.76 5,624.72
5,622.76 5,624.72
5,622.76 5,624.72
5,622.76 5,624.72
5,622.76 5,624.72
s,622.76 s,624.72
5,622.76 5,624.72
5,622.16 5,624.72
s,622.76 s,624.72
5,622.76 5,624.72
5,622.76 5,624.72
5,622.76 5,624.72
5,622.76 5,624.72
5,622.76 5,624.72
5,622.76 s,624.72
5,622.76 5,624.72
5,622.76 5,624.72
5,622.76 5,624.72
5,622.76 5,624.72
5,622.76 5,624.72
s,622.76 5,624.72
5,622.'76 5,624.72
5,622.76 5,624.72
5,622.76 5,624.72
5,622.76 5,624.72
5,622.7 6 5,624.72
5,622.76 5,624.72
5,622.76 5,624.72
5,622.76 5,624.72
5,622.76 5,624.72
5,622.76 5,624.72
5,622.76 5,624.72
5,622.76 5,624.72
5,622.76 5,624.72
5,622.76 5,624.72
5,622.76 5,624.'72
5,622.'76 s,624.72
5,622.76 5,624.72
5,622.76 5,624.72
5,622.76 5,624.72
5,622.76 5,624.72
5,622.76 5,624.72
5.622.76
1.96 TW4-2
1.96 TW4-2
1.96 TW4-2
1.96 TW4-2
1.96 TW4-2
1.96 TW4-2
r.96 TW4-2
1.96 TW4-2
1.96 TW4-2
t.96 TW4-2
1.96 TW4-2
1.96 TW4-2
1.96 TW4-2
1.96 TW4-2
1.96 TW4-2
1.96 TW4-2
1.96 TW4-2
1.96 TW4-2
t.96 TW4-2
1.96 TW4-2
1.96 TW4-2
1.96 TW4-2
1.96 TW4-2
1.96 TW4-2
1.96 TW4-2
1.96 TW4-2
1.96 TW4-2
1.96 TW4-2
1.96 TW4-2
1.96 TW4-2
1.96 TW4-2
1.96 TW4-2
r.96 'tw4-2
1.96 TW4-2
1.96 TW4-2
1.96 TW4-2
1.96 TW4-2
1.96 TW4-2
1.96 TW4-2
1.96 TW4-2
1.96 TW4-2
1.96 TW4-2
1.96 TW4-2
t.96 TW4-2
1.96 TW4-2
1.96 TW4-2
1.95 TW4-2
1.96 TW4-2
1.96 TW4-2
1.96 TW4-2
1.96 TW4-2
t.96 TW4-2
1.96 TW4-2
Total or
Measured
Depth to Total Depth
Water to Water
(blw.MP) (blw.LSD)
76.t5 74.19
76.15 74.19
76.40 74.44
76.20 74.24
76.40 74.44
76.00 74.04
76.t0 74.14
76.10 74.14
7s.70 73.74
75.60 73.64
75.s0 73.54
75.40 73.44
75.50 73.54
74.80 72.84
75.00 73.04
75.30 73.34
7s.20 73.24
75.00 73.04
74.90 72.94
74.90 72.94
74.60 72.64
74.90 72.94
74.60 72.64
74.60 72.64
74.50 72.s4
74.65 72.69
74.55 72.59
74.30 72.14
73.85 71.89
73.56 71.60
73.s2 71.56
77.t5 75.19
76.19 74.23
74.59 72.63
72.06 70.10
7 1.90 69.94
7 | .72 69.7 6
71.78 69.82
7t.28 69.32
7 t.03 69.07
70.93 68.97
70.58 68.62
70.s8 68.62
69.93 67.97
69.98 68.02
69.81 67.85
69.57 6'7.61
69.33 67.37
68.99 67.03
68.91 66.97
68.8 I 66.85
68.68 66.72
68.47 66.51
Total Depth
Of Well
t2t.t25
t2t.t25
12t.125
121.125
t2t.l25
121.125
t2t.t25
t21.125
t2t.t25
t2t.t25
121.125
121.125
t2t.t25
t2t.t25
t2t.t25
t2t.t25
t2t.t25
t2t.t25
t2t.l25
t2t.t25
t2t.t25
t2r.t25
tzt.l25
t2t.t25
tzl.t25
tzt.t25
t2t.t25
t2t.t25
t2t.t25
t2t.t25
121.125
t2t.t25
t2t.t25
t2t.t25
r2t.t25
121.125
121.125
121.125
121.125
t2t.t25
t2t.125
t2t.t25
t2t.tz5
t2I.t25
t2t.t25
t2t.t25
t2t.t25
12t.t25
t2t.t25
t2t.t25
t2t.t25
tzt.t25
t2t.t25
Water Levels and Data, Over f ime
White Mesa Mill Temporary Well 4-2
"L'"lfl, ""10;;1*.. :,# ;"ff* *;lill"
(z) t*rpl (L) Number
Northing
(v)
321,115.39
321,115.39
32 1,1 1 5.39
321,1 15.39
321,1 15.39
321,1 15.39
321,1 15.39
321,1 15.39
32 t,l I 5.39
321,1 15.39
321,115.39
321,1 15.39
321,t t5.39
12l,l 15.39
321,1 15.39
321,1 15.39
32 l,l 15.39
32r,t 15.39
321,1 15.39
32 1,1 r 5.39
32 1,1 1 s.39
321,1 15.39
321,lL5.39
32 l,l 15.39
321,1 15.39
32 1, il 5.39
321,|5.39
321,1 15.39
321,1 15.39
321,1 15.39
321,1 15.39
32 1, il 5.39
321,r 1s.39
321,1 r5.39
321,1 15.19
321,1 15.39
321,1 15.39
32 1, u 5.19
321,1 15.39
321,1 1s.39
321,1 15.39
32 r,1 1 5.39
32 1,1 I 5.39
321,lL5.39
321,1 15.39
321,1 15.39
32r,r 15.39
32r,1r5.39
321,1 15.39
321,1 15.39
321,1 I 5.39
32t,lL5.39
321,1 15.39
5,548.57
5,548.57
5,548.32
5,548.52
5,548.32
5,548.72
5,548.62
5,548.62
5,549.02
5,549.12
5549.22
5549.32
5549.22
5549.92
5549.72
5549.42
ss49.5Z
5549.72
5549.82
ss49.82
5550. l2
5549.82
5550. r 2
s550. I 2
5550.22
5550.07
5550. l 7
5550.42
5550.87
555r.r6
555 1.20
554't.57
5548.53
5550. I 3
5552.66
5552.82
55 53.00
5552.94
5553.44
5553.69
5553.79
5554. l4
5554.14
5554.79
5554.74
5554.9 r
5555. l5
5555.39
5555.73
5555.79
5555.9 1
5556.04
5556.25
Date Of
Monitoring
111081t999
n/09/1999
01/02/2000
0U10t2000
0t/17 /2000
0U2412000
02/01/2000
02/07t2000
o211412000
02t23t2000
03/01/2000
03/08/2000
03/ t 5/2000
03/2012000
03/29/2000
04/04/2000
04/13/2000
04/21/2000
04t2812000
05/01/2000
0s/l 1i2000
05/ I 5/2000
05/2512000
06/09/2000
06n6t2000
06126/2000
07106t2000
08/ I 5/2000
09/08/2000
t0/19/2000
I l/30/2000
t2106/2000
0vr4/2001
02t09t200l
03t291200t
04/3012001
05/3 l/2001
06122t200r
07 I t0l200r
08/ r 0/200 r
09/t9tz00l
t0/02/2001
11t07 t2001
12t0312001
0U0312002
02/06t2002
03t26/2002
0410912002
05t2312002
06105/2002
07t08t2002
08t2312002
091rv2002
{
Water Levels and Data, Over Time
White Mesa Mill Temporary Well 4-3
Mersurins Total or
Easting Northing -:1:i Land surface ,"r", ' :::itn Monitor Measured
(z) (v) Erevetion (LsD) "'[;.;;o,
ofRiser *['*. Dateof '#"til" t:ili,::litrotarDeprh
Monitoring (blw.MP) (blw.LSD) Of Well
2,580,918.88 321,663.86 5,565.78 5,631.21 5,632.23 1.02 TW4-3 1129fi999 66.45 65.4 141.00
2,580,918.88 321,663.86 5,566.93 5,63r.21 5,632.23 1.02 Tw4-3 0U02t2000 65.30 64.28 141.00
2,s80,9r8.88 321,663.86 5,567.03 5,63t.2t s,632.23 t.02 Tw4-3 0l/10/2000 6s.20 64.18 141.00
2,580,918.88 321,663.86 5,566.83 s,63t.2t s,632.23 t.02 TW4-3 01tt7t2000 6s.40 64.38 141.00
2,580,918.88 321,663.86 5,56'1.13 5,631.21 5,632.23 1.02 Tw4-3 0v24t2000 65.10 64.08 141.00
2,580,918.88 321,663.86 5,567.33 5,611.21 5,632.23 1.02 TW4-3 02/0U2000 64.90 63.88 141.00
2,580,918.88 32'.t,663.86 5,567.13 5,631.21 5,632.23 ',1.02 TW4-3 02/07t2000 65.10 64.08 141.00
2,580,918.88 321,663.86 5,567.43 5,631.21 5,632.23 t.02 TW4-3 02,L4t2000 64.80 63.78 141.00
2,580,918.88 32t,663.86 s,s67.63 s,63t.2t s,632.23 1.02 TW4-3 02t23t2000 64.60 63.s8 141.00
2,580,918.88 321,663.86 5,567.73 5,631.21 5,632.23 1.02 Tw4-3 03/01/2000 64.50 63.48 141.00
2,580,918.88 321,663.86 5567.83 5,63r.21 5,632.23 1.02 TW4-t 03/08i2000 64.40 63.38 141,00
2,580,918.88 321,663.86 5567.70 5,631.21 5,632.21 1.02 TW4-3 03/15/2000 64.s3 63.51 141.00
2,580,918.88 321,663.86 5568.03 5,63r.2t 5,632.23 r.02 TW4-3 03t20t2000 64.20 63.18 141.00
2,580,918.88 321,663.86 5567.93 s,631.21 5,632.23 1.02 TW4-3 03t29t2000 64.30 63.28 141.00
2,580,918.88 321,663.86 5567.63 5,631.2't s,632.23 1.02 Tw4-3 04t04t2000 64.60 63.58 141.00
2,580,918.88 321,663.86 5567.83 5,631.21 5,632.23 1.02 Tw4-3 04fi1t2000 64.40 63.38 141.00
2,580,918.88 321,663.86 5568.01 5,63r.21 5,632.23 1.02 TW4-3 04t2v2000 64.20 63.18 141.00
2,580,918.88 321,663.86 5568.23 5,63r.2t 5,632.23 1.02 TW4-3 04t28t2000 64.00 62.98 141.00
2,580,918.88 321,663.86 5568.13 5,63t.21 5,632.23 1.02 TW4-3 0s/01/2000 64.10 63.08 141.00
2,580,918.88 321,663.86 5568.s3 5,631.21 s,632.23 1.O2 TW4-3 05,lt/2000 63.70 62.68 141.00
2,580,918.88 321,663.86 5568.23 5,631.21 5,632.23 t.02 Tw4-3 05/t5t2000 64.00 62.98 141.00
2,580,918.88 321,663.86 5568.51 5,631.21 5,632.23 1.02 Tw4-3 05t25/2000 61.70 62.68 141.00
2,580,918.88 321,663.86 5568.61 5,631.21 5,632.23 r.02 TW4-3 06/09t2000 63.62 62.60 141.00
2,580,918.88 321,663.86 5568.69 5,631.21 5,632.23 1.02 TW4-3 06/16t2000 63.54 62.52 141.00
2,s80,918.88 321,663.86 5568.45 s,63t.21 s,632.23 1.02 Tw4-3 06126t2000 63j8 62.76 t41.00
2,580,918.88 321,663.86 5568.61 5,631.21 5,632.23 1.02 TW4-3 01/06t2000 61.62 62.60 141.00
2,580,918.88 321,663.86 5557.68 5,631.21 5,632.23 1.02 TW4-3 0"1106t2000 74.55 73.53 141.00
2,580,918.88 32r,663.86 5568.76 s,63t.21 5,632.23 1.02 TW4-3 08i15/00 61.47 62.45 141.00
2,580,918.88 321,663.86 5568.76 5,631.21 s,632.23 t.02 TW4-3 09/08/00 63.47 62.4s 141.00
2,580,918.88 321,663.86 5569.17 5,63t.2t 5,632.23 1.02 TW4-3 l0/19i00 63.06 62.04 t41.00
2,580,918.88 32t,663.86 5569.27 5,631.21 5,632.23 1.02 TW4-3 I l/30/00 62.96 61.94 141.00
2,580,918.88 321,661.86 5568.79 5,631.21 5,632.23 1.02 TW4-3 t2t06t00 63.44 62.42 141.00
2,580,918.88 321,663.86 ss69.43 5,63t.2r 5,632.23 r.02 TW4-3 0t/t4i0l 62.80 61.78 141.00
2,580,918.88 321,663.86 5569.75 5,631.21 5,632.21 t.02 TW4-3 02/09t01 62.48 61.46 141.00
2,580,918.88 32t,663.86 5570.34 s,631.21 5,632.23 t.02 TW4-3 03t29t01 61.89 60.87 141.00
2,580,918.88 321,663.86 5570.61 5,631.21 5,632.23 1.02 TW4-3 04t30t0t 61.62 60.60 141.00
2,580,918.88 321,663.86 5570.70 5,631.21 s,632.23 1.02 TW4-3 05/3li0t 61.53 60.51 141.00
2,580,918.88 321,663.86 5570.88 5,631.21 5,632.23 t.02 TW4-l O6t22t0t 61.35 60.33 141.00
2,580,918.88 321,663.86 557t.02 5,631.21 5,632.23 1.02 TW4-3 07n0tot 61.21 60.19 141.00
2,580,918.88 321,663.86 557t.70 5,63t.2t 5,632.23 t.O2 TW4-3 08/10/01 60.53 59.51 141.00
2,580,918.88 321,663.86 5572.12 5,631.21 5,632.23 1.02 TW4-3 09,l9t0t 60.1I 59.09 141.00
2,580,918.88 321,663.86 5572.08 5,631.21 5,632.23 1.02 TW4-3 t0t02tot 60.15 59.13 141.00
2,580,918.88 321,663.86 5572.78 5,631.21 5,632.23 1.02 TW4-3 lt07t0t 59.45 58.43 141.00
2,580,918.88 321,663.86 5s73.27 5,631.21 5,632.23 1.02 TW4-3 t2/03t01 58.96 57.94 141.00
2,580,918.88 321,,663.86 5573.47 5,631.21 5,632.23 1.02 TW4-3 0I/03t02 58.76 57.74 141.00
2,580,918.88 321,663.86 5573.93 5,631.21 5,632.23 1.02 TW4-3 02/06t02 58.30 57.28 141.00
2,580,918.88 321,663.86 55'74.75 5,63 l.2l 5,632.23 t.02 TW4-3 03/26t02 57.48 56.46 141.00
2,580,918.88 321,663.86 s574.26 5,631.21 s,632.23 1.02 TW4-3 04/09t02 s7.97 s6.9s 141.00
2,580,918.88 321,663.86 5575.39 5,631.21 5,632.23 r.02 TW4-3 05/23t02 56.84 55.82 141.00
2,580,918.88 321,663.86 5574.84 5,631.21 5,632.23 t.02 TW4-3 06105102 57.39 56.37 141.00
2,580,918.88 321,661.86 5575.33 5,631.21 5,632.23 1.02 TW4-3 07t08t02 56.90 55.88 141.00
2,s80,918.88 32t,663.86 ss7s.79 5,631.21 5,632.23 1.02 Tw4-3 08t23t02 56.44 ss.42 141.00
2,580,918.88 321,663.86 5576.08 5,631.21 5,632.23 t.02 TW4-3 09/1t02 56.15 55.13 141.00
Water Levels and Data, Over Time
White Mesa Mill Temporary Well 4-4
water Measurine Total or
Easting Northing Etevation Land Surface ;;; " :"":fn Monitor Measured
(x) (y) (blw.MP) (LSD) rt.n"iio, ofRiser -,well Depth to Total Depth
(z) j_r_j (L) Number Date Of Water to water Total Depth
Monitoring (blw.MP) (blw.LSD) Of Well
2,580,936.51 320,594.77 5,514.39 5,612.30 5,613.49 l.l8 TW4-4 05/25t2000 99.10 97.92 114.50
2,580,936.51 320,594.77 5,518.99 5,612.10 5,613.49 l.l8 TW4-4 06109/2000 94.50 93.32 114.50
2,580,936.s1 320,594.77 5,512.15 5,6t2.30 5,613.49 Ll8 TW4-4 06/1612000 101.34 100.t6 114.50
2,580,936.51 320,594.77 5,517.47 5,612.30 5,613.49 l.l8 TW4-4 06t26t2000 96.02 94.84 I 14.50
2,580,936.51 320,594.77 5,520.15 5,612.30 5,613.49 t.l8 TW44 07t06t2000 93.34 92.t6 114.50
2,580,936.51 120,594.77 5,523.89 5,612.30 5,6t3.49 l.l8 TW4-4 08/15i2000 89.60 88.42 114.50
2,580,936.51 320,594.77 5,524.56 5,6t2.30 5,613.49 l.l8 TW4-4 09/08t2000 88.93 87.'15 114.50
2,580,936.51 320,594.77 5,523.62 5,612.30 5,613.49 l.l8 TW4-4 t0/19t2000 89.87 88.69 114.50
2,580,916.51 320,594.77 5,524.91 5,612.30 5,613.49 l.l8 TW4-4 fit30t2000 88.58 87.40 114.50
2,580,936.51 320,594.77 5,518.55 5,612.30 5,613.49 l.18 TW4-4 12t06t2000 94.94 93.76 I14.50
2,580,936.5 I 320,s94.77 5,528.93 5,612.30 5,613.49 1. t 8 TW4-4 0vt4t200t 84.56 83.38 I 14.50
2,580,936.51 320,594.77 5,529.09 5,612.30 s,613.49 t.t8 Tw4-4 02/09t2001 84.40 83.22 I 14.50
2,580,936.51 320,594.77 5,529.54 5,612.30 5,613.49 l.18 TW4-4 03t29t2001 83.95 82.'t7 114.50
2,580,936.51 320,594.71 5,530.24 5,612.30 5,613.49 l.l8 TW4-4 04t30t200t 83.25 82.07 I14.50
2,s80,936.51 320,s94.77 5,530.27 5,612.30 5,613.49 l.t8 Tw4-4 05t3U2001 83.22 82.04 I14.50
2,580,936.51 320,594.77 s,534.41 5,612.30 5,613.49 l.l8 TW4-4 06t22t200t 79.08 77.90 I14.50
2,580,936.51 320,594.77 5,533.15 5,612.30 5,613.49 l.l8 TW4-4 07n0t200r 80.34 79.16 I14.50
2,580,936.51 320,594.77 5,534.04 5,612.30 5,6t3.49 l.l8 TW4-4 08/10/2001 79.45 78.27 114.50
2,580,936.5r 320,594.77 s,s34.47 5,612.30 5,6t3.49 l.r8 TW4-4 09/19t200t 79.02 77.84 114.50
2,580,936.51 320,s94.77 5,533.29 s,612.30 5,613.49 1.18 TW4-4 r0t02/200r 80.20 79.02 ll4.s0
2,580,936.51 320,s94.77 5,533.87 5,6t2.30 5,613.49 l.18 'tw4-4 tU07t200t 79.62 78.44 I14.s0
2,580,936.51 320,594.77 5,534.28 5,612.30 s,6t3.49 t.t8 Tw4-4 12t03t200t 79.2t 78.03 I14.50
2,580,936.51 320,594.'7',7 5,534.72 5,612.30 5,613.49 r.18 TW4-4 0v03t2002 78.77 '17.59 I14.50
2,580,936.51 320,594.77 5,535.44 5,6t2.30 5,613.49 l.l8 TW4-4 02t06t2002 78.05 76.87 r 14.50
2,580,936.51 320,s94.77 5,s36.4s 5,6t2.30 5,6t3.49 l.l8 TW4-4 03t26t2002 77.04 75.86 114.50
2,580,936.51 320,594.77 5,536.41 5,612.30 5,6t3.49 1.18 TW4-4 04t19t2002 77.08 7s.90 114.50
2,580,936.51 320,594.77 5,537.34 5,612.30 5,613.49 1.18 TW4-4 05t23t2002 76.t5 74.97 114.50
2,580,936.51 320,594.71 5,537.31 5,612.30 s,6r3.49 l.l8 Tw4-4 06/0s/2002 76.t6 74.98 I14.50
2,580,936.51 320,594.77 5,537.98 5,612.30 5,613.49 l.18 TW4-4 07/08t2002 75.51 74.33 I14.50
2,580,936.51 320,594.77 5,538.83 5,6t2.30 5,613.49 1.r8 TW4-4 08/23t2002 74.66 73.48 u4.50
2,580,936.st 320,594.77 s,s39.28 5,6t2.30 5,6t3.49 1.18 TW4-4 09nU2002 74.2t 73.03 114.50
Easting
(x)
2,s80,859.24
2,s80,8s9.24
2,580,859.24
2,s80,859.24
2,s80,8s9.24
2,580,8s9.24
2,580,859.24
2,s80,859.24
2,580,859.24
2,580,859.24
2,580,859.24
2,580,859.24
2,580,859.24
2,580,859.24
2,580,859.24
2,580,859.24
2,580,859.24
2,580,859.24
2,580,859.24
2,580,859.24
2,580,859.24
2,580,859.24
2,580,859.24
2,580,859.24
2,580,8s9.24
2,580,859.24
2,580,859.24
2,580,859.24
2,580,859.24
2,580,859.24
2,580,859.24
2,580,859.24
2,580,859.24
2,580,859.24
2,580,859.24
2,580,859.24
2,580,859.24
2,580,859.24
2,580,859.24
2,580,859.24
2,580,859.24
2,580,859.24
2,580,859.24
2,580,859.24
2,s80,859.24
2,580,859.24
2,580,859.24
2,s80,8s9.24
2,580,859.24
2,s80,859.24
2.580,859.24
2,s80,859.24
1.95 TW4-5
1.95 TW4-5
1.95 TW4-5
1.95 TW4-5
1.95 TW4-5
1.95 TW4-5
1.95 TW4-5
1.95 TW4-5
1.95 TW4-5
1.95 TW4-5
1.95 TW4-5
1.95 TW4-5
1.95 TW4-5
1.95 TW4-5
1.95 TW4-5
1.95 TW4-5
1.95 TW4-5
1.95 TW4-5
1.95 TW4-5
1.95 TW4-5
1.95 TW4-5
1.95 TW4-5
1.95 TW4-5
1.95 TW4-5
1.95 TW4-s
1.95 TW4-5
1.95 TW4-5
1.95 TW4-5
1.95 TW4-5
1.95 TW4-5
1.95 TW4-5
1.95 TW4-5
r.95 TW4-5
1.95 TW4-5
1.95 TW4-5
1.95 TW4-5
1.95 TW4-5
1.95 TW4-5
1.95 TW4-5
1.95 TW4-5
1.95 TW4-5
1.95 TW4-5
1.95 TW4-5
1.95 TW4-5
1.95 TW4-5
1.95 TW4-5
1.95 TW4-5
1.95 TW4-5
1.95 TW4-5
1.95 TW4-5
1.95 TW4-5
1.95 TW4-5
Total or
Measured
Depth to Total Depth
Water to Water
(blw.MP) (blw.LSD)
61.40 59.45
61.10 59.15
61.35 59.40
61. l0 59. 15
61.20 59.25
61.20 59.25
60.80 s8.8s
60.80 s8.8s
60.s0 s8.55
60.70 58.7560.66 58.7160.00 s8.05
60.40 58.45
60.70 58.75
60.50 58.55
60.30 s8.35
60.20 58.25
60.20 58.25
59.80 57.85
60.20 58.25
59.95 58.00
59.90 57.95
59.78 57.83
59.90 57.95
59.80 57.8s
59.6s 57.70
59.63 57.68
59.38 57.41
s9.r9 57.24
59. l0 57 .t5
59.07 s7.12
58.66 56.71
58.50 56.55
58. 16 56.21
57.98 56.03
57.98 56.03
57.89 55.94
57.78 55.83
57.53 55.58
57 .42 55.47
5't.34 55.39
57.21 5s.26
56.86 54.9t
56.91 54.96
56.74 54.79
56.31 s4.36
s6.58 s4.63
56. t 5 54.20
56.28 54.33
57.05 55. l0
55.80 53.8s
55.68 51.73
Total Depth
Of Well
t21.7 5
121.7 5
t2t.7 5
121.7 5
12t.7 5
121.7 5
t21.75
t21.75
121.7 s
121.7 5
12t.7 5
12t.7 5
12t.75
r21.75
121.75
121.75
tzt.75
t21.75
12r.75
t2t.7 5
t2r.7 5
121.7 5
t21.7 5
121.7 5
12t.75
tzt.'75
121.7 5
121.75
tzr.75
12t.75
12t.75
121.75
t2t.7s
tzt.'75
t21.7 5
121.7 5
121.75
121.75
121.75
12t.7 5
12t.7 5
12t.7 5
tz|.7 5
12t.7 5
tzt.7 5
12t.75
tzt.7 5
t2t.7 5
t21.7 5
t2t.7 5
121.7 5
121.75
Water Levels and Data, Over Time
White Mesa Mill Temporary Well 4-5
Measuring
Land Surface Point Length Monitor
(LSD) Etevation of Riser well
(MP) G) Number
Northing
0)
322,002.88
322,002.88
322,002.88
322,002.88
322,002.88
322,002.88
322,002.88
322,002.88
322,002.88
322,002.88
322,002.88
322,002.88
322,002.88
322,002.88
322,002.88
322,002.88
322,OO2.88
322,002.88
322,002.88
322,002.88
322,002.88
322,002.88
322,002.88
322,002.88
322,002.88
322,002.88
322,002.88
322,002.88
322,002.88
322,002.88
322,002.88
322,002.88
322,002.88
322,002.88
322,002.88
322,002.88
322,002.88
322,002.88
322,002.88
322,002.88
322,002.88
322,002.88
322,002.88
322,002.88
322,002.88
322,002.88
322,002.88
322,002.88
322,OO2.88
322,002.88
322,002.88
322,002.88
Water
Elevation
(z)
5,579.30
5,579.60
5,579.35
5,579.60
5,579.50
5,579.50
5,s79.90
5,579.90
5,580.20
5580.00
5580.04
5580.70
5580.30
5580.00
5580.20
5580.40
5580.50
5580.50
5580.90
5580.50
5580.75
5580.80
5580.92
5580.80
5580.90
558 1.05
558 1.07
558 1.32
558l.s l
5581.60
5581.63
5582.04
5582.20
5582.54
5582.72
5582.72
5582.8 I
5582.92
5583. l7
5583.28
5583.36
5583.49
5583.84
5583.79
5583.96
5584.39
5584. I 2
5584.55
5584.42
5583.65
5584.90
5585.02
s,638.75
5,63 8.75
5,638.75
5,638.75
5,638.75
5,638.75
5,638.75
5,638.7s
5,638.75
5,638.75
s,638.7s
s,63 8.7s
5,63 8.75
5,638.7s
5,638.75
5,638.75
5,638.75
5,638.75
5,638.75
5,638.75
5,618.75
5,638.7s
5,63 8.75
5,638.7 5
5,638.7s
5,638.75
5,638.75
5,638.7s
5,638.75
5,638.75
5,638.75
5,638.7 s
5,638.75
5,638.75
5,638.75
5,638.7 5
5,63 8.75
5,63 8.75
5,638.75
5,638.75
5,63 8.75
5,63 8.75
5,63 8.75
5,63 8.75
s,63 8.75
s,63 8.75
5,63 8.75
5,638.7s
s,638.7s
5,638.75
s,638.75
5,638.75
5,640.70
5,640.70
5,640.70
5,640.70
5,640.70
5,640.70
5,640.70
5,640.70
5,640.70
5,640.70
5,640.70
5,640.70
s,640.70
5,640.70
5,640.70
5,640.70
5,640.70
5,640.70
5,640.70
5,6q.70
5,640.70
5,640.70
5,640.70
5,640.70
5,640.70
5,640.70
5,640.70
s,640.70
5,640.70
5,640.70
5,640.70
5,640.10
5,640.70
5,640.70
5,640.70
5,640.70
5,640.70
5,640.70
5,640.70
5,640.70
5,640.70
5,640.70
5,640.70
5,640.70
5,640.70
5,640.70
5,640.70
5,640.70
5,640.70
5,640.70
5,640.70
5,640.70
Date Of
Monitoring
01t02/2000
0Ut0/2000
0vt7t2000
0U24/2000
02/01/2000
02/07t2000
02/t412000
02t23t2000
03/0 I /2000
03/08/2000
03/l 5/2000
03120/2000
03/29/2000
04104/2000
04/13/2000
04/2U2000
04/28t2000
05/0 r /2000
05/lLt2000
05/t512000
05125t2000
0610912000
06fi6/2000
06/26/2000
07/06/2000
07/13t2000
08/ I 5/2000
09/08/2000
t0A9/2000
rU30t2000
t2/06/2000
0Ut4t200t
02/0912001
03t29/200t
04/301200r
05/3 1i200 I
06/22/200t
07 I t0/2001
08/ I 0i200 I
09ilg/200t
r0t02/200t
llt07 t200t
12t03/200r
0v03/2002
02t06t2002
03t26/2002
04109t2002
05123t2002
06105t2002
07t08t2002
08t23t2002
09/n12002
Water Levels and Data, Over Time
White Mesa Mill Temporary Well 4-6
Total or
Easting Northing -y"t:l Land Surface T;L';'* :::ilL Monitor Measured
(x) (v) Elevation --a;;;---
",.*i"
of*iser *ff*" Dareof '#"til" t:ili,TlJtrotarDepth
(MP) Monitoring (blw.MP) (blw.LSD) of well
2,580,893.58 320,343.83 5,522.28 5,607.33 5,608.78 1.4s TW4-6 0s12s12000 86.s0 8s.0s 100.00
2,580,893.58 320,343.83 s,52r.98 5,607.33 s,608.78 t.4s TW4-6 06/0912000 86.80 8s.3s 100.00
2,580,893.58 320,341.83 5,522.35 5,607.33 5,608.78 1.45 TW4-6 06/t612000 86.43 84.98 100.00
2,s80,893.s8 320,343.83 s,s22.t4 5,607.33 s,608.78 1.45 TW4-6 0612612000 86.64 8s.19 100.00
2,580,893.58 320,343.83 5,522.25 5,607.33 5,608.78 1.45 TW4-6 0710612000 86.53 85.08 100.00
2,580,893.58 320,343.83 5,522.35 5,607.33 5,608.78 1.45 TW4-6 08/15/2000 86.43 84.98 100.00
2,580,893.58 320,343.83 5,522.40 5,607.33 5,608.78 1.45 TW4-6 09/08/2000 86.38 84.93 100.00
2,580,893.58 320,343.83 s,522.40 5,607.33 5,608.78 1.4s TW4-6 t011912000 86.38 84.93 100.00
2,580,893.58 320,343.83 5,522.09 5,607.33 5,608.78 1.45 TW4-6 1113012000 86.69 85.24 100.00
2,580,893.58 320,343.83 5,522.29 5,607 .33 5,608.78 1.45 TW4-6 12t0612000 86.49 85.04 100.00
2,580,893.58 320,343.83 5,522.66 5,607.33 5,608.78 1.45 TW4-6 0Ut4l200t 86.12 84.67 100.00
2,580,893.58 320,343.83 5,522.72 5,607.33 5,608.78 1.45 TW4-6 0210912001 86.06 84.61 100.00
2,580,893.58 320,343.83 5,522.90 5,607 .33 5,608.78 t.45 TW4-6 0312912001 85.88 84.43 100.00
2,580,893.58 320,343.83 5,522.70 5,607.33 s,608.78 t.45 TW4-6 04t3012001 86.08 84.63 100.00
2,580,893.58 320,343.83 5,522.89 5,607 33 5,608.78 1.45 TW4-6 0513v200r 85.89 84.44 100.00
2,580,893.58 320,343.83 5,522.88 5,607.33 5,608.78 1.45 TW4-6 0612212001 85.90 84.45 100.00
2,580,893.58 320,343.83 5,522.96 5,607.33 5,608.78 1.45 TW4-6 0711012001 85.82 84.37 100.00
2,580,893.58 320,343.83 5,523.10 5,607.33 5,608.78 1.45 TW4-6 08i10/2001 8s.68 84.23 100.00
2,580,893.58 320,343.83 5,523.23 5,607.33 5,608.78 1.45 TW4-6 0911912001 85.55 84.10 100.00
2,580,893.58 320,343.83 5,522.9t 5,607.33 5,608.78 1.45 TW4-6 1010212001 85.87 84.42 100.00
2,580,893.58 320,343.83 5,523.25 s,607.33 5,608.78 1.45 TW4-6 rUo7l200l 85.53 84.08 100.00
2,580,893.58 320,343.83 5,523.46 5,607.33 5,608.78 1.45 TW4-6 1210312001 85.32 83.87 100.00
2,580,893.58 320,343.83 5,523.36 5,607.33 5,608.78 1.45 TW4-6 0110312002 85.42 83.97 100.00
2.580,893.58 320,343.83 s,523.50 5,607.33 5,608.78 r.45 TW4-6 0210612002 85.28 83.83 100.00
2,580,893.58 320,343.83 5,523.94 5,607.33 5,608.78 1.45 TW4-6 0312612002 84.84 83.39 100.00
2,580,893.58 320,343.83 5,523.75 5,607.33 s,608.78 1.45 TW4-6 0410912002 85.03 83.58 100.00
2,580,893.58 320,343.83 5,524.23 5,607.33 5,608.78 1.45 TW4-6 0512312002 84.55 83.10 100.00
2,580,893.58 320,343.83 5,523.98 5,607.33 5,608.78 r.45 TW4-6 0610512002 84.80 83.35 100.00
2,580,893.s8 320,343.83 5,s24.31 5,607.33 5,608.78 1.45 TW4-6 0710812002 84.47 83.02 100.00
2,580,893.58 320,343.83 5,524.36 5,607.33 s,608.78 1.45 TW4-6 0812312002 84.42 82.97 100.00
2,580,893.58 320,343.83 5,524.49 5,607 .33 5,608.78 1.45 TW4-6 0911112002 84.29 82.84 100.00
03/26t2002 56.31
04t09t2002 s6.s8
0512312002 56.15
06t05t2002 56.28
Water Levels and Data, Over Time
White Mesa Mill Temporary Well 4-7
Total or
Easting Northing -y"t:l Land Surface
Measuring Lensth Monitor Measured
(x) (v) Erevation '"",i:il,"* .,i#ji", orrier _["i:, Dateor
,#",il" ,:j"i,T:J.rotarDepth
Monitoring (blw.MP) (blw.LSD) Of Well
2,580,872.64 320,988.26 5,552.37 5,619.87 5,621.07 1.20 TW4-7 nl29ll999 68.70 67.50 121.00
2,s80,872.64 320,988.26 5,553.57 s,619.87 5,621.07 1.20 TW4-7 0v0212000 67.50 66.30 121.00
2,580,872.64 320,988.26 5,553.87 5,619.87 5,621.07 1.20 TW4-7 0l/10i2000 67.20 66.00 121.00
2,580,872.64 320,988.26 5,5s3.72 5,619.87 s,621.07 t.20 TW4-7 0v17t2000 67.3s 66.1s 12r.00
2,s80,872.64 320,988.26 s,s53.97 s,619.87 5,621.07 1.20 TW4-'7 0v2412000 67.10 6s.90 121.00
2,580,872.64 320,988.26 5,553.87 5,619.87 5,621.07 1.20 TW4-7 0210112000 67.20 66.00 121.00
2,580,872.64 320,988.26 5,553.87 5,619.87 5,62r.07 t.20 TW4-7 0210712000 67.20 66.00 121.00
2,580,8'72.64 320,988.26 5,554.17 5,619.87 5,621.07 1.20 TW4-7 0211412000 66.90 65.70 121.00
2,580,872.64 320,988.26 5,554.27 5,619.87 5,621.07 1.20 TW4-7 0212312000 66.80 65.60 121.00
2,580,872.64 320,988.26 5554.37 5,619.87 5,621.07 1.20 TW4-7 03/01/2000 66.70 65.50 121.00
2,580,8'72.64 320,988.26 5554.37 5,619.87 5,621.07 1.20 TW4-7 03/08/2000 66.70 65.50 121.00
2,580,8'72.64 320,988.26 5554.2'7 5,619.87 5,621.07 1.20 TW4-7 031t512000 66.80 65.60 121.00
2,s80,872.64 320,988.26 5554.77 5,619.8't 5,62t.07 t.20 TW4-7 0312012000 66.30 65.10 121.00
2,580,872.64 320,988.26 5554.57 5,619.87 5,621.07 1.20 TW4-7 0312912000 66.50 65.30 121.00
2,580,872.64 320,988.26 5554.27 5,619.87 5,621.07 1.20 TW4-7 0410412000 66.80 65.60 121.00
2,580,872.64 320,988.26 5554.57 5,619.87 5,621.07 t.20 TW4-7 0411312000 66.50 65.30 121.00
2,580,872.64 320,988.26 5554.77 5,619.87 5,621.01 1.20 TW4-7 04/2112000 66.30 65.10 121.00
2,580,872.64 320,988.26 5554.87 5,619.87 5,621.07 1.20 TW4-7 04/2812000 66.20 65.00 121.00
2,580,872.64 320,988.26 5554.87 5,619.87 5,621.0'7 1.20 TW4-7 05/01/2000 66.20 65.00 121.00
2,580,872.64 320,988.26 5555.27 5,619.87 5,62t.07 1.20 Tw4-'.l 05/l t/2000 65.80 64.60 121.00
2,580,872.64 320,988.26 5554.97 5,6t9.87 5,621.07 1.20 TW4-7 05/15/2000 66.10 64.90 121.00
2,580,872.64 320,988.26 5555.27 5,6t9.87 5,62t.07 t.20 TW4-7 05125/2000 65.80 64.60 121.00
2,580,872.64 320,988.26 5555.33 s,6t9.87 5,621.07 1.20 TW4-7 06109/2000 65.74 64.54 r2r.00
2,580,8'12.64 320,988.26 5555.45 5,619.87 5,621.07 1.20 TW4-7 06/16/2000 6s.62 64.42 121.00
2,580,872.64 320,988.26 5555.22 s,6t9.8',7 5,621.07 1.20 TW4-7 06126/2000 65.85 64.6s 121.00
2,580,872.64 320,988.26 5555.45 5,619.8'7 5,621.07 1.20 TW4-7 0110612000 65.62 64.42 121.00
2,580,8'12.64 320,988.26 5555.74 5,619.87 5,621.07 1.20 TW4-7 08/15/2000 65.33 64.13 121.00
2,580,872.64 320,988.26 s5ss.96 5,619.87 5,621.07 1.20 TW4-7 09/08/2000 6s.l r 63.91 121.00
2,580,872.64 320,988.26 5556.20 5,619.87 5,62t.07 1.20 TW4-7 1011912000 64.87 63.67 121.00
2,580,872.64 320,988.26 5556.45 5,619.8'7 5,62t.07 1.20 TW4-7 I l/30/2000 64.62 63.42 121.00
2,580,872.64 320,988.26 5556.15 5,619.87 s,621.07 1.20 TW4-7 1210612000 64.92 63.72 121.00
2,580,872.64 320,988.26 5556.89 5,619.87 5,621.07 t.20 TW4-7 0vt4t200t 64.18 62.98 121.00
2,580,872.64 320,988.26 5s57.07 5,6t9.87 5,621.07 1.20 TW4-7 0210912001 64.00 62.80 121.00
2,580,872.64 320,988.26 5557.62 5,619.87 5,621.0'7 1.20 TW4-7 031291200t 63.45 62.25 121.00
2,580,872.64 320,988.26 5557.51 5,619.87 5,621.07 t.20 TW4-7 04/3012001 63.56 62.36 121.00
2,580,872.64 320,988.26 s557.77 5,619.87 5,621.07 1.20 TW4-7 05/3r/2001 63.30 62.10 121.00
2,580,872.64 320,988.26 5557.84 5,619.87 5,62r.07 1.20 TW4-7 0612212001 63.23 62.03 12t.00
2,580,872.64 320,988.26 5557.98 5,619.8'7 5,62r.07 r.20 TW4-7 0711012001 63.09 61.89 121.00
2,580,872.64 320,988.26 5558.33 5,619.87 5,621.07 1.20 TW4-7 08/10/2001 62.74 61.54 121.00
2,580,872.64 320,988.26 5558.57 5,619.87 5,62r.07 r.20 TW4-7 0911912001 62.50 61.30 121.00
2,580,872.64 320,988.26 5558.53 5,6t9.87 5,62r.07 r.20 TW4-7 1010212001 62.54 6r.34 121.00
2,580,872.64 320,988.26 5558.62 5,619.87 5,62t.07 1.20 TW4-7 lll07l200l 62.45 61.25 121.00
2,580,872.64 320,988.26 5559.03 5,6t9.87 5,621.07 1.20 TW4-7 1210312001 62.04 60.84 121.00
2,580,872.64 320,988.26 5559.08 5,619.87 5,62t.O7 1.20 TW4-7 0U0312002 61.99 60.'19 121.00
2,580,872.64 320,988.26 5559.32 5,619.87 5,621.07 1.20 TW4-7 0210612002 61.75 60.55 121.00
2,580,872.64 320,988.26 5559.61 5,619.87 5,621.07 1.20 TW4-7 0312612002 61.44 60.24 121.00
2,580,872.64 320,988.26 5s59.5s 5,619.87 5,621.07 1.20 TW4-7 0410912002 6t.s2 60.32 121.00
2,580,872.64 320,988.26 5560.06 5,619.87 5,62t.07 t.Zo TW4-7 0512312002 61.01 59.81 121.00
2,580,872.64 320,988.26 5559.91 5,6t9.87 5,621.07 1.20 TW4-'l 0610512002 61.16 59.96 121.00
2,580,872.64 320,988.26 5560.09 5,619.87 5,621.07 1.20 TW4-7 0710812002 60.98 59.78 121.00
2,580,872.64 320,988.26 5560.01 5,6t9.87 5,621.07 1.20 TW4-7 0812312002 6r.06 59.86 121.00
2.580.872.64 320,988.26 5560.23 5,619.87 5,621.07 1.20 TW4-7 0911112002 60.84 59.64 121.00
Water Levels and Data, Over Time
White Mesa Mill TEMPORARY Well4-8
2,581,030.74
2,58r,030.74
2,581,030.74
2,581,030.74
2,s8 I,030.74
2,58t,030.74
2,58 1,030.74
2,58t,030.74
2,58 l,030.74
2,58t,030.74
2,58r,030.74
2,58 1,030.74
2,581,030.'.|4
2,581,030.74
2,s8 1,030.74
2,58 1,030.74
2,581,030.74
2,581,030.14
2,58t,030.74
2,58 I ,030.74
2,58t,030.74
2,58t,030.74
2,58r,030.74
2,58t,030.74
2,s81,030.74
2,581,030.74
2,58 1,030.74
2,581,030.74
2,581,030.74
2,58t,030.74
2,58 r,030.74
2,58 1,030.74
2,58 r,030.74
2,58 1,010.74
2,s8t,030.74
2,58t,030.74
2,58 1,030.74
2,581,030.74
2.58 1,030.74
2,58t,030.74
2,58 1,030.74
2,58 r,030.74
2,58 1,030.74
2,58t,O30.74
2,581,010.74
2,581,030.'74
2,581,030."t4
2,581,030.74
2,581,030.74
2,s8 1,030.74
2,581,030.74
2,581,030.74
Land Surface
(LSD)
5,619.93
5,6 19.93
5,6 19.93
5,6 19.93
s,619.93
s,619.93
5,619.93
5,6 r 9.93
5,619.93
5,619.93
5,619.93
5,619.93
5,6 l 9.93
5,619.93
s,619.93
5,619.93
5,6 19.93
5,6 r 9.93
5,6 19.93
5,6 19.93
5,6 19.93
5,6t9.93
5,6 r 9.93
5,619.93
5,6 r 9.93
5,6 19.93
5,619.93
5,6 19.93
5,619.93
5,619.93
5,619.93
5,619.93
5,619.93
5,619.93
5,619.93
s,619.93
5,619.93
5,619.93
5,619.93
5,619.93
5,6 19.93
5,6 19.93
5,6 r 9.93
5,6 19.93
5,6 r 9.93
5,6 19.93
5,619.91
5,6t9.93
s,6 r 9.93
5,6 19.93
5,6 19.93
5.61 9.93
Length Monitor
Of Riser Well
(L) Number
1.47 TW4-8
1.47 TW4-8
t.47 TW4-8
I.47 TW4-8
1.4"/ TW4-8
1.47 TW4-8
1.47 TW4-8
1.47 TW4-8
r.47 TW4-8
t.47 TW4-8
1.47 TW4-8
t.47 TW4-8
1.47 TW4-8
t.47 TW4-8
1.47 TW4-8
t.47 TW4-8
1.47 TW4-8
1.47 TW4-8
1.47 TW4-8
r.47 TW4-8
t.47 TW4-8
1.47 TW4-8
1.47 TW4-8
t.47 TW4-8
1.47 TW4-8
1.47 TW4-8
1.4',7 TW4-8
1.47 TW4-8
r.47 TW4-8
1.47 TW4-8
t.47 TW4-8
t.47 TW4-8
1.47 TW4-8
t.47 TW4-8
t.47 TW4-8
t.47 TW4-8
t.47 TW4-8
1.47 TW4-8
1.47 TW4-8
1.47 TW4-8
1.47 TW4-8
1.47 TW4-8
1.47 TW4-8
t.47 TW4-8
1.47 TW4-8
1.47 TW4-8
1.47 TW4-8
1.47 TW4-8
1.47 TW4-8
1.47 TW4-8
1.47 TW4-8
1.47 TW4-8
Total or
Measured
Depth to Total Depth
Wrter to Water
(blw.MP) (blw.LSD)
75.00 73.53
75.20 73.73
74.90 73.43
75. l0 73.63
74.80 73.33
74.90 73.43
74.90 73.43
74.s0 73.03
74.45 72.98
74.35 72.88
74.35 72.88
74.30 12.83
73.90 72.43
74.00 72.53
74.20 72.73
74.00 72.53
73.80 72.33
73.70 72.23
77.70 72.23
73.40 7 l,93
73.70 72.23
73.50 72.03
73.50 72.03'13.40 71.93
73.53 72.06
73.45 71.98
73.24 71.77
73.00 7 t.s3
72.5t 7t.04
72.46 70.99
72.55 71.08
7 t.73 70.26
7 r.51 70.04
71.03 69.56
70.90 69.43
70.72 69.25
70.67 69.20
70.38 68.91
70.08 68.61
69.9t 68.44
69.76 68.29
69.59 68. r 2
69.18 67 .7 |
69.24 67.77
69.02 67 .55
68.55 67.08
68.51 67. l0
68.20 66.73
68.24 66.77
68.08 66.61
67.91 66.44
67 .7 t 66.24
Total Depth
Of Well
r 26.00
126.00
126.00
126.00
126.00
126.00
126.00
126.00
126.00
126.00
126.00
126.00
126.00
126.00
126.00
126.00
126.00
126.00
126.00
126.00
126.00
126.00
126.00
126.00
r 26.00
126.00
r 26.00
126.00
126.00
126.00
r 26.00
r 26.00
126.00
126.00
126.00
126.00
126.00
126.00
126.00
126.00
126.00
r 26.00
r 26.00
126.00
126.00
126.00
l 26.00
126.00
126.00
126.00
126.00
126.00
Northing
0)
320,97 6.89
320,976.89
320,976.89
320,976.89
320,976.89
320,976.89
320,976.89
320,976.89
320,976.89
320,976.89
320,97 6.89
320,976.89
320,976.89
3?0,976.89
320,976.89
320,976.89
320,976.89
320,976.89
320,976.89
320,976.89
320,976.89
320,976.89
320,976.89
320,976.89
320,976.89
320,976.89
320,976.89
320,976.89
320,976.89
320,976.89
320,976.89
320,976.89
320,976.89
120,976.89
320,976.89
320,976.89
320,976.89
320,976.89
320,976.89
320,976.89
320,976.89
320,976.89
320,976.89
320,976.89
320,916.89
320,976.89
320,976.89
320,976.89
320,976.89
320,976.89
320,9'76.89
320,97 6.89
Weter
Elevation
(blw.MP)
5,546.40
5,546.20
5,546.50
s,546.30
s,s46.60
5,546.50
5,546.50
5,546.90
5,546.95
5547.05
5547.05
5547.tO
5547.50
5547.40
5547.20
5547.40
5547.60
5547.70
5547.'70
5548.00
5547.70
5547.90
5547.90
5548.00
5547.87
5541.95
5548. l6
5548.40
5s48.89
5548.94
5 548.85
5549.67
5549.89
5550.37
5550.50
5550.68
5550.73
555 1.02
555 1.32
5551.49
5551.64
5551.81
5552.22
5552.16
5552.38
5552.85
5552.83
5553.20
5553. I 6
5553.32
5553.49
555 3.69
Measuring
Point
Elevation
(MP)
5,621.40
s,62t.40
5,621.40
5,62t.40
5,62t.40
s,621.40
5,621.40
5,621.40
5,621.40
5,62t.40
5,621.40
s,62t.40
5,62t.40
s,62t.40
5,621.40
5,621.40
5,62t.40
5,62t.40
5,621.40
5,62t.40
5,621.40
5,621.40
5,621.40
s,62r.40
5,62t.40
5,621.40
5,621.40
5,621.40
5,621.40
5,621.40
5,62r.40
5,621.40
5,621.40
5,621.40
5,621.40
5,621.40
5,62t.40
5,621.40
5,621.40
5,621.40
5,62t.40
5,621.40
5,621.40
5,621.40
5,62r.40
5,621.40
5,62t.40
5,621 .40
5,62r.40
5,62t.40
5,62t.40
5,62t.40
Date Of
Monitoring
tt/2911999
0U02t2000
0 r/l 0/2000
0vt712000
0U24/2000
02lot/2000
02/07/2000
02/14t2000
02/2312000
0310v2000
03/08/2000
03115/2000
03120/2000
03/2912000
04/04t2000
04/t3t2000
04/2v2000
04/2812000
05/0 I /2000
0s/1U2000
05/ r 5/2000
0512512000
06t0912000
06/r6/2000
06126/2000
07106/2000
081 t5/2000
09/08i2000
r0/19/2000
I l/30/2000
t2/06/2000
0vt4/2001
02t09/2001
03t2912001
04t30/2001
05t31/2001
06/22/2001
0'7/t0/2001
08/ I 0/200 I
09/19/200t
t0t02/2001
tU07 /2001
t2/03/2001
0v03/2002
0210612002
03t26t2002
04/0912002
05t23t2002
06/0st2002
0t/08t2002
08t2312002
09ilU2002
Water Levels and Data, Over Time
White Mesa Mill TEMPORARY Well4-9
rl or
Eastins Northing
"X;::"
Landsurrace :!TLii- #ltJL *;;,T'
ffiil1"J rotarDepth(x) (v) ol (LSD) t'i,;;"' (") Number Date of water to water Totar Depth
Monitoring (blw.MP) (blw.LSD) Of Well
2,s80,874.19 321,83r.07 5,577.09 5,636.u s,637.s9 r.48 TW4-9 t2/20/1999 60.50 59.02 12t.33
2,580,874.19 321,83r.07 s,s77.09 s,636.1l 5,637.59 1.48 TW4-9 0v02t2000 60.s0 s9.02 12r.33
2,580,874.19 321,831.07 5,577.29 5,636.1I 5,637.59 1.48 TW4-9 0t/10/2000 60.30 58.82 121.33
2,s80,874.19 321,83r.07 5,s77.09 5,636.11 s,637.s9 1.48 TW4-9 0vt7t2000 60.50 s9.02 l2l.3l
2,580,874.t9 321,83r.07 5,577.39 5,636.1I 5,637.59 1.48 TW4-9 0U2412000 60.20 58.72 121.33
2,580,874.19 321,831.07 s,s77.29 5,636.1I 5,637.59 1.48 TW4-9 021012000 60.30 s8.82 121.33
2,580,874.19 321,831.07 5,577.19 5,636.1I 5,637.59 1.48 TW4-9 0210712000 60.40 58.92 121.33
2,580,874.19 321,831.07 5,577.69 5,636.11 5,637.59 1.48 TW4-9 02/14t2000 59.90 58.42 12t.33
2,580,874.19 321,831.07 5,s77.69 5,636.11 5,637.59 1.48 TW4-9 02t23t2000 59.90 58.42 r2r.33
2,580,874.t9 321,831.07 5577.'19 5,636.11 5,637.59 1.48 TW4-9 03/01/2000 59.80 58.32 12t.33
2,580,874.19 32 I ,83 I .07 5577 .79 5,636. I I 5,637 .59 I .48 TW4-9 03i08/2000 59.80 58.32 r2r.33
2,580,874.t9 321,83 1.07 5577.89 5,636.ll 5,637.59 1.48 TW4-9 03i15/2000 59.70 58.22 121.33
2,580,874.19 321,831.07 5568.49 5,636.[ 5,637.59 1.48 TW4-9 03t20/2000 69.10 67.62 121.33
2,580,874.19 321,831.07 5578.14 5,636.11 5,637.59 1.48 TW4-9 03t29t2000 59.45 57.97 121.33
2,580,8'74.19 321,831.07 5577.84 5,636.11 5,637.59 1.48 TW4-9 04/04t2000 59.75 58.27 121.33
2,580,874.19 321,831.07 5578.04 5,636.11 5,637.59 1.48 TW4-9 0411312000 59.55 58.07 121.33
2,s80,874.19 321,831.07 5578.24 5,636.11 5,637.s9 1.48 TW4-9 0412112000 59.35 57.87 121.33
2,580,874.19 321,831.07 5578.39 5,636.1I 5,637.59 1.48 TW4-9 0412812000 59.20 57.72 t21.33
2,580,874.19 321,831.07 5578.39 5,636.11 5,637.s9 1.48 TW4-9 051OU2000 59.20 57.72 121.33
2,580,874.19 321,831.07 5578.79 5,636.11 5,637.59 1.48 TW4-9 05^v2000 58.80 57.32 121.33
2,580,874.19 321,83r.07 5578.39 5,636.1I 5,637.59 1.48 TW4-9 05/15i2000 59.20 s7.72 121.33
2,580,874.19 321,831.07 5578.79 5,636.11 5,637.59 1.48 TW4-9 05/25/2000 58.80 57.32 121.33
2,580,874.19 321,83t.0'7 5578.81 5,636.il 5,637.59 1.48 TW4-9 061O9t2000 58.78 57.30 121.33
2,580,874.t9 321,831.07 5578.89 5,636.11 5,637.59 1.48 TW4-9 06/16t2000 s8.70 57.22 121.33
2,580,874.19 321,831.07 ss78.74 5,636.1l 5,637.59 1.48 TW4-9 06/26/2000 58.85 57.37 12r.33
2,580,874.19 321,83t.07 5578.86 s,636.1I 5,637.59 1.48 TW4-9 07/06/2000 58.73 57.2s 12r.33
2,580,874.19 321,831.07 5579.04 5,636.1I 5,637.59 1.48 TW4-9 08i 15/2000 58.55 57.07 12r.33
2,580,874.t9 32r,811.07 5579.25 5,636.11 5,637.s9 1.48 TW4-9 09/08i2000 58.34 56.86 121.33
2,580,874.t9 321,83r.07 5579.59 5,636.11 5,637.59 1.48 TW4-9 t0/19t2000 58.00 56.52 121.33
2,580,874.19 321,831.07 5579.84 s,636.11 5,637.59 1.48 TW4-9 ll/30/2000 57.75 56.27 12r.33
2,580,874.19 32r,831.07 5579.7t 5,636.11 5,637.59 1.48 TW4-9 t2/06/2000 57.86 s6.38 r2t.33
2,580,874.19 321,831.07 5580.18 5,636.11 5,637.59 1.48 TW4-9 0t/14/200t 57.41 55.93 12t.33
2,580,874.t9 321,831.07 5580.30 5,636.1 5,637.59 1.48 TW4-9 02/09t200t 57.29 55.81 121.33
2,580,874.19 321,831.07 5580.66 5,636.11 5,637.59 1.48 TW4-9 03t29t2001 56.93 55.4s 121.33
2,s80,874.t9 321,831.07 5580.75 5,636.1I 5,637.59 1.48 TW4-9 04/30t200t 56.84 55.36 t2r.33
2,580,874.t9 321,831.07 5581.04 5,636.1l 5,637.59 1.48 TW4-9 05i31/2001 56.55 55.07 12t.33
2,580,874.19 32r,831.07 5581.12 5,636.1I 5,637.s9 1.48 TW4-9 061221200t s6.47 54.99 121.33
2,580,874.19 321,831.07 558l.ls 5,636.11 5,637.59 1.48 TW4-9 07tr0t2001 56.44 54.96 12t.33
2,580,874.t9 321,831.07 5581.51 5,636.1I 5,637.59 1.48 TW4-9 08/10/2001 56.08 54.60 121.33
2,580,874.19 321,831.07 5581.70 5,636.1I 5,637.59 1.48 TW4-9 09/l.9t2001 55.89 54.4t 121.33
2,580,874.19 321,831.07 558r.61 5,636.1I 5,637.59 1.48 TW4-9 t0t02t200t 55.98 54.50 121.33
2,580,874.19 321,83r.07 5581.83 5,636.11 5,637.59 1.48 TW4-9 ll07l200t 55.76 54.28 121.33
2,580,874.19 321,831.07 5582.17 5,636.11 5,631.59 1.48 TW4-9 t2t0312001 55.42 51.94 121.33
2,580,874.19 321,831.07 5582.21 5,636.n 5,637.59 1.48 TW4-9 0v03t2002 55.38 53.90 121.33
2,s80,874.t9 321,831.07 ss82.s7 s,636.11 5,637.s9 1.48 TW4-9 02t06/2002 ss.02 s3.s4 121.33
2,580,874.19 321,831.07 5583.12 5,636.11 5,637.59 1.48 TW4-9 03t26t2002 54.47 52.99 121.33
2,580,874.19 321,831.07 5582.77 5,636.1I 5,637.59 1.48 TW4-9 04/0912002 54.82 53.34 121.33
2,580,874.19 321,831.07 5583.21 5,636.11 5,637.59 1.48 TW4-9 05t23t2002 54.38 s2.90 121.33
2,580,874.19 321,831.07 5582.94 5,636.r I 5,637.59 1.48 TW4-9 06t05t2002 54.65 53.17 121.33
2,580,874.19 321,831.07 5582.71 5,636.1I 5,631.59 1.48 TW4-9 07t08t2002 54.88 53.40 12t.33
2,580,874.19 321,831.07 5583.67 5,636.1t 5,637.59 1.48 TW4-9 08t23t2002 s3.92 52.44 121.33
2,580,874.t9 321,831.07 5583.82 5,636.1I 5,637.59 1.48 TW4-9 09nv2002 53.77 52.29 121.33
0l/00/1900 0.00
0l/00/1900 0.00
Easting
(x)
2,s80,649.2s
2,580,649.2s
2,s80,649.25
2,580,649.2s
2,580,649.25
2,s80,649.2s
2,580,649.25
2,580,649.25
2.580.649.25
Northing
(y)
321,674.47
12t,674.47
321,674.47
321,674.47
32t,674.47
32t,674.47
321,674.47
321,674.47
321,674.47
Water
Elevation
(z)
5,576.7 5
5,s76.92
5,577.43
5,577.22
5,577.80
5,577.47
5,577.55
5,578.10
5,578.24
Water Levels and Data,Over Time
White Mesa Mill Monitor Well TW4-10
Measuring
Land Surface point Length Monitor Measured
(LSD)ElevationofRiserWellDepthtoTotalDepth
(Mp) G) Number Date of Water to water Total Depth
Monitoring (blw.MP) (blw.LSD) Of Well
5,631.99 5,634.24 2.25 TW4-10 0t/03t2002 57.49 55.24
5,631.99 s,634.24 2.25 TW4-10 0y06/2002 57.32 5s.07
s,631.99 5,634.24 2.25 TW4-10 03t26/2002 56.81 54.56
5,631.99 s,634.24 2.2s TW4-10 04/09t2002 s7.02 54.77
s,631.99 5,634.24 2.25 TW4-10 05t23t2002 56.44 54.19
5,631.99 5,634.24 2.25 TW4-10 06/05/2002 s6.77 54.52
5,631.99 s,634.24 2.2s TW4-10 07/08t2002 s6.69 54.44
5,631.99 s,634.24 2.2s TW4-10 08t23t2002 56.14 53.89
5,631.99 5,634.24 2.25 TW4-10 09n1t2002 56.00 53.75
Water Levels and Data, Over Time
White Mesa Mill Monitor Well TW4-11
water Lend Surfrce "Hil;" Length Monitor
Elevation (LsD) Erevetion of Riser well
(z) .*p) (L) Number
Totel or
Measured
Depth to Total Depth
Water to Weter
(blw.MP) (blw.LSD)
75.30 73.60
74.89 73.t9
74.s9 72.89
74.78 73.08
74.32 72.62
74.61 72.91
74.40 72.70
74.t8 72.48
74.05 72.3s
Total Depth
Of Well
Easting
(x)
2,580,669. l0
2,580,669. r0
2,580,669. t0
2,580,669. l0
2,s80,669. l0
2,580,669. l0
2,580,669. l0
2,580,669. l0
2,580,669. l0
Northing
(v)
321,238.89
321,238.89
321,238.89
32t,238.89
321,238.89
321,238.89
321,238.89
32 1,238.89
321,238.89
5,623.62 1.70
5,623.62 1.70
5,623.62 1.70
5,623.62 1.70
s,623.62 1.70
5,623.62 1.70
5,623.62 t.70
5,623.62 1.70
s,623.62 1.70
Date 0f
Monitoring
0U03t2002
02t06t2002
5,548.32 5,621.92
s,s48.73 5,621.92
5,549.01 5,621.92
5,548.84 5,62t.92
5,549.30 5,621.92
5,549.01 5,621.92
5,549.22 5,621.92
5,549.M 5,621.92
5,549.57 5,621.92
TW4-ll
TW4-11
TW4-l I 03t26t2002
TW4-l I 04t09t2002
TW4-l l 0512312002
TW4-l l 06/05/2002
TW4-t I 07/08/2002
TW4-l I 08/23t2002
TW4-r r 09/lt/2002
.-
Water Levels and Data, Over Time
White Mesa Mill Monitor Well T\il4-12
Erstrng Northing ,[",fi. Lendsurrace ::ti,!- o","1*1, \Tjil' H||:] rotrrDcpth(x) (v) <rl GsD) "fi;Ji" Gt Number Date of water ro wrter Totrt Depth
Monitorlng (blw.MP) (blw.LSD) Of Well
2,581,403.10 321,694.82 5,580.91 5,622.38 5,624.23 1.85 TW4-12 08/2112002 43.32 41.47
2,581,403.10 321,694.82 5,581.54 5,622.18 s,624.23 l.8s rW4-12 09/n/2002 42.69 40.84
Water Levels and Data, Over Time
White Mesa Mill Monitor Well TW4-13
Easting Northing
(x) (y)
2,581,328.24 321,zts.86
2.581,328.24 32t.215.86
Water
Elevation
(z)
s,529.66 5,618.09
5,530.66 5,618.09
Measuring
Lrnd surfrce Point Length
(LSD) Elevation of Riser
(MP) G)
Monitor
Well
Number Date Of
Monitoring
TW4-13 08/23/2002
TW4-13 09fiU2002
Totrl or
Measured
Depth to Total Depth
Water to Weter
(blw.MP) (blw.LSD)
90.28 88.43
89.28 87.43
Total Depth
Of Well
5,619.94 t.85
5,619.94 1.85
Water Levels and Data, Over Time
White Mesa Mill Monitor Well TW4-14
Erstlng Northing
(x) (v)
2,580,231.28 320,s23.11
2,580,23r.28 320,523.t1
s,s18.90 s,6t0.92
5,s19.28 5,6t0.92
s,612.77 1.85
5,612.77 1.85
Monitor
Well
Number Date Of
Monltoring
TW4-r4 08/23t2002
TW4-14 09/1U2002
Total or
Measured
Depth to Total Depth
Water to Wrter
(blw.MP) (blw.LSD)
93.87 92.02
93.49 91.64
"r;F"
Landsurrace :## .{;i1,
Total Depth
Of Well
Water Levels and Data, Over Time
White Mesa MiIl Monitor Welt TW4-15
Eestlng Northing(x) (v)
2,s80,321.28 121,699.03
2,580,321.28 321,699.03
Meesuring
Lend Surface Point
(LSD) Elevetion
(MP)
Length Monitor
Of Rlser Well
(L) Number Dete Of
Monltoring
1.30 Tw4-15 0812312002
t.30 Tw4-15 09/ut2m2
Totrl or
Measured
Depth to Totel Depth
Water to Wrter
Olw.MP) (blw.LSD)
50.70 49.40
50.48 49. 18
Water
Elevetion
(z)Totrl Depth
Of WelI
5,574.75 5,624.15 5,625.4s
5,574.97 5,624.15 5,625.45
'r
Water Levels and Data,0ver Time
White Mesa Mill Monitor Well TW4-16
Totrl or
Erstins Northins
"*Y;T;,
Land surrace :Fi,l"t #l*I Yjil' Hffil rotar Depth(r) (v) - (;i -- GsD) "t#;i"'
- (r) Number Date or wrter ro wrrer rotrr Depth
Monitorlng (blw.MP) (blw.LSD) Of Well
2,580,186.31 121,271.06 5,562.91 5,622.t9 5,624.02 1.83 TW4-16 08t23t2002 6l.l I 59.28
2,580,186.31 32t,271.06 5,s63.45 5,622.19 5,624.02 1.83 TW+16 0911112002 60.57 58.74
Water Levels and Data, Over Time
White Mesa Mill Monitor Well TW4-17
Measurins Tot'l or
Easting Northing -y1:1_ Land surface ,"". ' :":i:n Monitor Meesured
(x) (v) Erevarion o.;t "T#.;"
.tf. ,*ffi:. Dateor
,#",jI" tlj"ri,:tj.rotarDepth
Monitoring (blw.MP) (blw.LSD) Of Well
2,580,186.31 320,826.86 5,542.t7 5,623.80 5,625.24 1.44 TW4-17 08/23t2002 83.07 81.63
2,580,186.31 320,826.86 5,542.39 s,623.80 5,625.24 1.44 TW4-t7 09ilU2002 82.85 8t.41
Water Levels and Data, Over Time
White Mesa Mill Monitor Well TW4-18
Easting Northing
(x) (v)
2,580,777.ls 322,157.43
2,580,777.ls 322,157.43
Meesuring
Land Surface Polnt Length
(LSD) Elevrtion of Riser
0\ry) G)
Monitor
Well
Number Date Of
Monitoring
TW4-18 08t21t2002
TW4-18 0911112002
Totel or
Meesured
Depth to Totel Depth
Water to Water
(blw.MP) (blw.LsD)
56.15 54.00
55.87 s1.72
Wrter
Elevetion
(z\Totel Depth
Of Well
5,585.13 5,639.13 5,641.28 2.r5
5,585.41 s,639.13 5,641.28 2.r5
Water Levels and Data, Over Time
White Mesa Mill Monitor Well TW4-19
Easting Northing
(x) (v)
2,580,327.20 322,149.3s
2.580.327.20 322,149.35
Water
Elevation
(z\
5,s81.88 5,629.53
5,s82.t4 s,629.53
Measuring
Land surfece Point Length
(LsD) Elevetion of Riser
(MP) G)
Monitor
Well
Number Date Of
Monitoring
TW4-19 08/23t2002
TW4-19 09/tU2002
Totol or
Mersured
Depth to Total Depth
Weter to Wrter
(blwMP) (blw.LSD)
49.s1 47.6s
49.25 47.19
Totel Depth
Of Well
5,63 I .39 1.86
5,63 1.39 1.86
ab
Water Levels and Data, Over Time
White Mesa Mlll Monitor Well4A
Total or
Easting Northing -y"1::- Land surface
Measuring Lenoth Monitor Measured
(x) (v) Ere'Tton '"T"llT'* ",#l:, orn-*er .ff;1. Drteor ?"'li ':iir_?ii."rotar.Dcpth
Monitorlng (blw.MP) (blw.LSD) Of Well
2,580,906.21 320,981.40 5,560,53 5,620.51 5,622.31 1.80 TW,MA 0812312002 61.78 59.98
2,580,906.21 !20,981.40 5,560.76 s,620.51 3,622.31 1.80 TW4-4A 0911112002 61.55 59.75
o
Water Level Data
Fall 2002
Piezometers
P1
P2
P3
P4
P5
Piezometer Water Level Readings
(all readings in feet below top ofcasing)
Pt - 76.91
P2 - 15.91
P3 - 35.01
P4 - 59.03
P5 - 51.06
IxrsnxATroNAL
UnnNruu (use)
ConponATroN
Independence Plaza, Suite 950 . 1050 Seventeenth Street o Denver, CO 80265 . 303 628 7798 (main) . 303 389 a125 (fax)
September 6,2002
VIA OVERNIGHT DELIVERY
Mr. William J. Sinclair
Director, Division of Radiation Control
Utah Department of Environmental Quality
P.O. Box 144850
168 North 1950 West
Salt Lake City, UT 841l4-4850
Transmittal of Brushy Basin Contour Map, White Mesa Mill Site
Utah DEQ Notice of Violation and Groundwater Corrective Action Order
UDEQ Docker No. UGQ-20-01 of August23,1999
Dear Mr. Sinclair:
Enclosed please find an updated copy of the contour map approximating the top of the
Brushy Basin contact in the area of the White Mesa Mill. This map incorporates the
information obtained from the recent drilling completed as a part of the installation of
additional chloroform investigation wells and the installation of piezometers near the
existing wildlife ponds.
If you have any questions please feel free to call me at (303) 389-4160.
Very truly yours,
*/.'"-ZW'ft.%/ Harold R. Roberts
Vice President - Corporate Development
4;\$$&F
Q.o^'tb?i ^"flQtr"rttgD
?o
L.,
Q.r"-
.. t;,.
Mr. William J. Sinclai0
September 6,2002
Page2 of2
Don Ostler, UDEQ, w/ attachments
Dianne Nielson, UDEQ
Loren Morton, DRC, w/ attachments
David Cunningham, DEQ, SE District Health Department, w/o attachments
Dave Arrioti, DEQ, SE District Health Department, w/o attachments
Fred Nelson, Utah Asst. Attorney General, ilo attachments
Terry Brown, U.S. EPA Region VIII, w/ attachments
Richard Graham, U.S. EPA Region VIII, il attachments
Dan Gillen, U.S. NRC, Washington D.C., w/ attachments
William von Till, NRC, d attachments
Charles Cain, U.S. NRC, Region IV, w/ attachments
Ron F. Hochstein, IUSA, w/ attachments
David C. Frydenlund, IUSA, w/ attachments
Michelle R. Rehmann, IUSA, w/ attachments
T. Kenneth Miyoshi, IUSA, il attachments
Ron E. Berg, IUSA, w/ attachments
\\
\\
d'\\
\\i
Ni
i\__
\_--
(<
)=/F
^)Ar l-.r-/
=,
I
Ii
['
)
\\,r l!=t'o:r-
----;F38S--___
5450
__________r
- - - - - -----.'------t 5 440i\\\___
S4JO
"-d
\1,
\
"-""
"-t"
J,----- --s--\___
S42o
.t-{ ----- 5470
_\'-\ )._-_-=._:\ ,)
ft-.- -7
\\\\_\ i\1
t"/\
,^Q\
6k,
.-'
r'
,,,
)-)Ato
7
,,r' 'o2o ..__ 28
.sr - ---.
\\\\r. -\\\.. ,.-.._]:;___ ss.o
t f--::-5s40
\\
ll
lt
t/(-
S==:-*:::
"Eoir- -sr==r S4gO
z/'
4,
li
ir
ir:l
ti
ll
tl
tl
tl
tl
tl
tl
tl
tl
tl
EXP LAN ATI ON
o MW-ll
5479
o
BASIN CONTACT IN FEET AMSL
5536 SHOWNG APPROXIMATE ELEVATION OF BRUSHY BASIN CONTACT
E PIEZOMETER5552 SHOWING APPROXIMATE ELEVATION OF BRUSHY BASIN CONTACT
'---.? CONTOUR LINE IN FEET AMSL, DASHED WHERE UNCERTAIN
PERCHED MONITORING WELL
SHOWNG APPROXIMATE ELEVATION OF BRUSHY
TEMPORARY PERCHED MONITORING WELL
FEET AMSL N
A
FEET AMSL I
If
0 3000
SCALE IN FEET
IN
IN
APPROXIMATE ELEVATION OF
TOP OF BRUSHY BASIN
Date
gt05t02
Reference:
71800068
IxrBnuerro*orO
UnaNrul,r (use)
ConponArroN
Independence Plaza, Suite 950 . 1050 Seventeenth Street o Denver, CO 80265 . 303 628 7798 (main) o 303 389 al25 (fax)
May 3,2002
Via Airmail
Mr. William Sinclair
Director
State of Utah, Department of Environmental Quality
Division of Radiation Control
168 North 1950 West
Salt Lake City, UT 84114-4850
Re: ChloroformlnvestigationSchedule
Dear Bill:
Please find enclosed a copy of the schedule for the short-term actions regarding the chloroform
investigation at the White Mesa uranium mill.
The key dates are as follows:
Event Date
Start of DNAPL Sampling
Submiual of DNAPL Report
Submittal of TW Work Plan
Start of Well Installation
Submit Drilling Results
Hydraulic Analysis Work Plan
Start of Pump Tests
Report Submittal
Tailings S o lution Char acterization Work
Plan
Start of Sampling
Submiual of RCRA Analysis for Interim
Action Plan
Start of Interim Action Plan
07.08.02
09.23.02
05.t7.02
07.0r.02
08.30.02
05.24.02
07.08.02
08.23.02
05.31.02
07.01.02
05.10.02
08.r2.02
Mr. William Sinclair
Re: Chloroform Investigation Schedule
Page2 of2
As per our discussions, the week of July 8 - 12,2002 has been set as a week where a
significant amount of field work will be done and where it is imperative that Loren Morten is
on-site for that work.
International Uranium (USA) Corporation will make every effort to maintain this schedule and
we appreciate DEQ's ability to work with us on this tight schedule in order to further the
chloroform investigation.
Sincerely,?
Ron F. Hochstein
President and Chief Executive Officer
Intemational Uranium (USA) Corporation
RFH:mlh
cc: David Frydenlund - IUSA
Ken Miyoshi - IUSA
Loren Morten - UDEQ
Michelle Rehmann - IUSA
Harold Roberts - IUSA
William von TiII - Nuclear Regulatory Commission
Encl.
Document4
INmnNerroNeLf
UneNruvr (use)
ConponATIoN
lndependence Plaza, Suite 950 . 1050 Seventeenth Street . Denver, CO 80265 o 303 628 7798 (main) o 303 389 4125 (fax)
May 9,2002
Via Express Courier
Mr. William J. Sinclair
Division of Radiation Control
State of Utah Department of Environmental Quality
168 North 1950 West
Salt Lake City, UT 84114-4850
Re: Transmittal of Temporary Well and Piezometer Installation/Completion Report
Utah DEQ Notice of Violation and Groundwater Corrective Action Order
UDEQ Docket No. UGQ-20-01 of August 23, 1999
Dear Mr. Sinclair:
In accordance with the updated Chloroform Investigation Schedule discussed with you on April
24,International Uranium (USA) Corporation ("IUSA") hereby transmits the enclosed summary
of temporary well and piezometer installation at the White Mesa Mill to date, and construction
schematics for all temporary wells and peizometers.
lf you have any questions, please contact Michelle at (303) 389-4131.
Yo
Vice President and General Counsel
ll \N\'it':ti* ' rf+,)'.]\L ',*1tr',a t'
Mr. William J. Sinclair O
May 9,2002
Page2 ofZ
cc: Don Ostler, DEQ, with attachments
Dianne Nielson, DEQ, without attachments
Loren Morton, DRC, with attachments
David Cunningham, DEQ, SE District Health Department, without attachments
Dave Arrioti, DEQ, SE District Health Department, without attachments
Fred Nelson, Utah Asst. Attorney General, without attachments
Terry Brown, U.S. EPA Region VIII, with attachments
Richard Graham, U.S. EPA Region VIII, with attachments
Dan Gillen, U.S.NRC, Washington, D.C., with attachments
Bill von Till, U.S. NRC, Washington, D.C., with attachments
Charles Cain, U.S. NRC, Region IV, with attachments
Michelle R. Rehmann, with attachments
Ron F. Hochstein, with attachments
Harold R. Roberts, with attachments
T. Kenneth Miyoshi, with attachments
Ronald E. Berg, with attachments
S:\MRR\Chloroformlnvestigation\2002\Sinclair050902wellpiezocompletionrpttransmittal.doc
HYDRO GEO CHEM, INC.
Elnlirlnmenta.l Science (* Te chno logv
May 8,2002
Michelle Rehmann
lnternational Uranium
Independen ce PLaza Suite 950
1050 17th Street
Denver, CO 80265
Dear Michelle,
This letter report provides abrief summary oftemporary well and piezometer installation at
the White Mesa Site to date, and includes construction schernatics for all temporary wells and
piezometers.
t
A detailed description of the installation of temporary wells TW4-1 through TW4-9 is
provided in IUSA and HGC, 2000'. Tunporary wells TW4-10 and TW4-11 were instatled in
December 2001, using a methodology similar to that ernployed in the installation of the previous
wells. This methodology involved air rotary drilling supplanented by water/foam when needed.
The new temporary wells were installed as part of the ongoing investigation into the occurrence of
chloroform in perched water at the site. As before, drilling and construction was performed by
Bayles Exploration, Inc., and borings logged by Lawrence Casebolt, under contract to International
Uranium (USA) corporation (IUSA). Locations of all temporary wells are provided in Figure 1,
which incorporates a new expanded base map that will be used to plot future well installations and
analytical results. Well construction schematics for all tunporary wells, generated from information
provided primarily by Mr. Casebolt, and boring logs prepared by Mr. Casebolt for ternporary wells
TW4-10 and TW4-11, are included in the attachment.
Five (5) piezometers were installed at the approximate locations shown in Figure 2 during
December, 2001. These installations were placed to evaluate whether seepage from witdlife ponds
may be influencing perched water levels at the site.
I I USA and HCC, 2000. tnvestigation of Elevated Chloroform Concentrations in Perched Groundwaer at the Wnn. ffiffiffilrD,
near Blanding. Utah.
C :\7 I 8000tCORRESP\050202 MRLETTER. DOC
5I West Wetmore, Suite l0I Tucson, Arizona 85705-1678
r.c MAY 092002
Et' 520.2e3.rs00 s2o.2s3.tsso-Fax 8oo.727.5547-ToilFree
The piezometers were constructed as pennanent installations with a borehole seal and a
gravel pack in the annular space surrounding the screened interval. As with the temporary wells,
drilling and construction was performed by Bayles Exploration, [nc. and borings logged by
Lawrence Casebolt under contract to IUSA. The drilling method, air rotary supplernented by
water/foam when needed, was also the same as for the ternporary wells. Well construction
schematics, generated prirnarily frorn information provided by Mr. Casebolt, and boring logs
provided by Mr. Casebolt, are included in the attachment.
As shown in the logs and schematics, once borings were advanced a few feet into the Brushy
Basin shale drilling was terminated except at Piezometer # 3, where the boring was advanced a little
more than 40 feet into the Brushy Basin, then backfilled with 40 feet ofbentonite. The lower 40 feet
of each boring was screened. Casing and screen were I inch diameter, schedule 40, flush-thread
PVC. Once the casing and screen were installed, a gravel pack consisting of pea gravel was added to
the annular space, up to the top of the screened interval. A seal of bentonite chips was then added,
then the annular space grouted to the surface.
Please call me in Tucson if you have any questions or comments.
Stewart J. Smith
Senior Hydrogeologist
Attachments
C:\7 I 8000\CORRESP\050202MRLETTER. DOC
EXPANATION
o tw4-2 temporary perched
monitoring well
perched monitoring
well
MW.4
o
TEMPORARY PERCHED MONITORING
WELL LOCATIONS
\\
lt
ll
il
lt
t!
. IT-I
a lll-rt
cP-taaLU
a rr-lo
\
o
['( \
r--frJ 'r\t- \
)f ;,'5^r ta \_' y.,/ \\'\
I,'' dc\r";/.1 1/1r-r /
(
I
I
T58S
FYPI ANATION
lv -\
,'^*24-J1-,2 u /*-t'
. MW-II PERCHED MONITORING VGLL
O TEMPORARY PERCHED MONITORING ITELL
c P-l
PIEZOMETER LOCATIONS
TOP OF CASING ELEVATION: 5618.58 ft omsl
4" DIA PVC CAP
covER (s GALLON
BUCKET OR 8" DIA.
PVC CAP)
GROUND ELEVATION
= 5617.56 ft omsl
,IOMINAL 11" DlA. BOREHOLE\71\l\\7\71\l\\7\7
10 8,' DIA PVC CASING
20
30 + NOMINAL 6 1/4" DlA. BOREHOLE
40
-. 50
UJ
LJ
LL
-60FL
L.Jo
4,, DIA. SCH 40
FLUSH THREAD PVC CASING
70
80
4,' DIA. .02 SLOT SCH 40
FLUSH THREAD PVC SCREEN
90
100
110
BRUSHY BASIN
4" DIA. PVC CAP
APPROXIMATE DEPTH OF
CONTACT WTH BRUSHY
BASIN (NOr ro scALE)
WELL CONSTRUCTION SCHEMATIC
TW4-1
TOP OF CASING ELEVATION
= 5624.72 ft omsl
4'' DIA PVC CAP
covER (s GALLON
BUCKET OR 8" DIA.
PVC CAP)
GROUND ELEVATION: 5522.76 ft omsl
,INAL 11" DIA. BOREHOLE:\l\\7\zz\z\\7rz
10 8" DIA PVC CASING
20
30 + NOMINAL 6 1/4" DlA. BOREHOLE
40
.. 50
ul
L.JL-
r60t-(L
L.Jo
4,' DIA. SCH 40
FLUSH THREAD PVC CASING
70
80
4" DIA. .02 SLOT SCH 40
FLUSH THREAD PVC SCREEN
90
100
110
120
BRUSHY BASIN
4'' DIA. PVC CAP
APPROXIMATE DEPTH OF
CONTACT WITH BRUSHY
BASIN
(Nor ro scALE)
WELL CONSTRUCTION SCHEMATIC
TW4-2
TOP OF CASIIigELEVATION 4" DIA PYC CAP: 5632.23 ft omsl
GROUND ELEVATION: 5631.21 ft omsl
covER (5 GALLON
BUCKET OR 8'' DIA.
PVC CAP
' /. \ \-\ \/ /-/ z \ \-\\z l;
MINAL 11" DIA. BOREHOLE/.\z\\7\71\/t\\7\7
8'' DIA PVC CASING
10
20
30 + NOMINAL 6 1/4" DlA. BOREHOLE
40
a- 50
LrJ
L.J
LL
r60F(L
Lrlo
4" DIA, SCH 40
FLUSH THREAD PVC CASING
70
80
4" DIA. .02 SLOT SCH 40
FLUSH THREAD PVC SCREEN
90
100
110
120
130
140
BRUSHY BASIN
APPROXIMATE DEPTH OF
CONTACT WTH BRUSHY
BASIN
4" DIA. PVC CAP (NOT TO SCALE)
WELL GONSTRUCTION SCHEMATIC
TW4-3
TOP OF CASING ELEVATION: 5613.49 ft omsl
4'' DIA PVC CAP
covER (s GALLON
BUCKET OR 8" DIA.
PVC CAP)
GROUND ELEVATION
= 5612.3 ft omsl
10
20
30 + NoMINAL 6 1/4" DlA. BoREHoLE
40
-50L.J
LJ
tJ-
r60f-L
LrJo
4,, DIA. SCH 40
FLUSH THREAD PVC CASING
70
80
4" DrA. .02 SLOT SCH 40
FLUSH THREAD PVC SCREEN
90
100
110
BRUSHY BASIN
APPROXIMATE DEPTH OF
CONTACT WTH BRUSHY
BASIN
PVC CAP
(Nor ro scALE)
WELL CONSTRUCTION SCHEMATIC
TW4.4
TOP OF CASING ELEVATION: 5640.70 ft omsl
4,' DIA PVC CAP
covER (5 GALLON
BUCKET OR 8'' DIA.
PVC CAP)
GROUND ELEVATION
= 5638.75 ft omsl
10 8" DIA PVC CASING
20
30 + NOMINAL 6 1/4" DlA. BOREHOLE
40
.. 50
t!l!
u_
r60F(L
UJo
4,, DIA. SCH 40
FLUSH THREAD PVC CASING
70
80
4" DtA. .02 SLOT SCH 40
FLUSH THREAD PVC SCREEN
90
100
110
120
BRUSHY BASIN
APPROXIMAIE DEPTH OF 4'' DIA. PVC CAPCONTACT WTH BRUSHY
BASIN
(NOT TO SCALE)
WELL GONSTRUCTION SCHEMATIC
TW4-5
TOP OF CASING ELEVATION
= 5608.78 ft omsl
4'' DIA PVC CAP
covER (s cALLoN
BUCKET OR 8" DIA.
PVC CAP)
GROUND ELEVATION: 5607.33 ft omsl
OMINAL 11" DIA. BOREHOLE/ t\ t\\7\7 t\ I \\7\7
8" DIA PVC CASING
10
20
30 + NOMINAL 6 1/+" DlA. BOREHOLE
40
a. 50
Lrl
UJL
-60F
o_
UJo
4" DIA. SCH 40
FLUSH THREAD PVC CASING
70
80
4" DtA. .02 SLOT SCH 40
FLUSH THREAD PVC SCREEN
90
100
BRUSHY BASIN 4,, DIA. PVC CAP
APPROXIMATE DEPTH OF
CONTACT WTH BRUSHY
BASIN
(Nor ro scALE)
WELL CONSTRUGTION SCHEMATIC
TW4.6
TOP OF CASING ELEVATION: 5621.07 ft omsl
4,, DIA PVC CAP
covER (s cALLoN
BUCKET OR 8,' DIA.
PVC CAP)
GROUND ELEVATION
= 5619.87 ft omsl
o
{rwA
10
20
30 + NOMINAL 6 1/4" DtA. BOREHOLE
40
a. 50
Lrl
Lrl
LL
r60F(L
UJo
4'' DIA. SCH 40
FLUSH THREAD PVC CASING
70
80
4" DrA. .02 SLOT SCH 40
FLUSH THREAD PVC SCREEN
90
100
110
120
BRUSHY BASIN
4'' DIA. PVC CAP
APPROXIMATE DEPTH OF
CONTACT WTH BRUSHY
BASIN
(NOT TO SCALE)
WELL CONSTRUCTION SCHEMATIC
TW4-7
TOP OF CASING ELEVAT]ON
= 5621.40 ft omsl
4'' DIA PVC CAP
covER (5 GALLON
BUCKET OR 8'' DIA.
PVC CAP)
GROUND ELEVATION: 5619.93 ft omsl
o
.1r r\\s\/ tr, \\\\7 l;
{OMINAL 11" DIA. BOREHOLE\71\l\\7t71\l\\?\7
8" DIA PVC CASING
10
20
30 + NOMINAL 6 1/4" DlA. BOREHOLE
40
a- 50
LJtil
LL
-60F.(L
Luo
4" DtA. SCH 40
FLUSH THREAD PVC CASING
70
80
90
'100
110
120
4" DtA. .02 SLOT SCH 40
FLUSH THREAD PVC SCREEN
BRUSHY BASIN
APPROXIMATE DEPTH OF
CONTACT WTH BRUSHY
BASIN
4'' DIA. PVC CAP
(Nor ro scALE)
WELL CONSTRUCTION SCHEMATIC
TW4-8
TOP OF CASING ELEVATION: 5637.59 ft omsl
4" DIA PVC CAP
covER (s GALLON
BUCKET OR 8" DIA.
PVC CAP)
GROUND ELEVATION: 5636.11 ft omsl
\)/z)//. r-vr\)/z)r/s ,IOMINAL 11" DIA, BOREHOLE\7 t\ t\\7 \7 2 \ l\\7 \Z
8" DIA PVC CASING
10
20
30 + NoMINAL 6 1/4" DlA. BoREHoLE
40
a- 50
UJ
UJ
LL
-60F(L
UJa
4" DIA, SCH 40
FLUSH THREAD PVC CASING
70
80
90
100
'110
120
4" DIA. .02 SLOT SCH 40
FLUSH THREAD PVC SCREEN
BRUSHY BASIN
APPROXIMATE DEPTH OF 4'' DIA. PVC CAPCONTACT WTH BRUSHY
BASIN
(Nor ro scALE)
WELL GONSTRUCTION SCHEMATIC
TW4.9
TOP OF CASING ELEVATION
= 5634.24 ft omsl PVC CAP)
covER (s GALLON
BUCKET OR 8,, DIA.
4'' DIA PVC CAP
GROUND ELEVATION: 5631.99 ft omsl
l/zY1Yi*/uYl-r-vr\)zu)
lttotvttNRL 11" DtA. BoREHoLE?\vl\l\\7\7/\t\\7\7
8'' DIA PVC CASING
10
20
30 + NOMINAL 6 1/4" DlA. BOREHOLE
40
a- 50
t]J
UJ
LL
-60F(L
LJo
4" DIA. SCH 40
FLUSH THREAD PVC CASING
70
80
4" DIA. .02 SLOT SCH 40
FLUSH THREAD PVC SCREEN
90
100
110
BRUSHY BASIN 4,, DIA. PVC CAP
APPROXIMAIE DEP]H OF
CONTACT WTH BRUSHY
BASIN
(NoT To scALE)
1 06'
CONSTRUGTION SCHEMATIC
TW4-10
TOP OF CASING ELEVATION: 5623.62 ft omsl 4" DIA PVC CAP
covER (s cALLoN
BUCKET OR 8" DIA.
PVC CAP)
GROUND ELEVATION
= 5621.92 ft omsl
//#IINAL 11" DIA. BOREHOLE\/\\7\ZZ\/\\7\7
10 DIA PVC CASING
20
30 + NOMINAL 6 1/4" DlA. BOREHOLE
40
Fs0IJ
UJ
LL
r60F(L
LrJa
4,, DIA, SCH 40
FLUSH THREAD PVC CASING
70
80
4" DtA. .02 SLOT SCH 40
FLUSH THREAD PVC SCREEN
4" DIA. PVC CAP
90
100
BRUSHY BASIN
APPROXIMATE DEPIH OF
CONTACT WTH BRUSHY
BASIN
(Nor ro scALE)
GONSTRUCTION SCHEMATIC
TW4-11
TOP OF CASING
ELEVATION : 5655.46 ft omsl
.I,' DIA. PVC CAP GROUND ELEVATION
= 5654.41 ft omsl
/ l\-i$)),,,{.2,r\}xi(/.}>).
<N9I,f.rX4L,7 ..b:.DrA. BoREHoLE\
6" DIA PVC CASING
10
20
30
NOMINAL 4 Y+" DIA. BOREHOLE
40
CEMENT GROUT
a- 50
LLI
UJh
r60t--(L
UJo
1'' DIA. SCH 40
FLUSH IHREAD PVC
BENTONITE SEAL
CASING
70
80
1" DtA. SCH 40
O.O2 SLOT PVC
FLUSH THREAD
SCREEN
90
100
110
GRAVEL PACK (PEA GRAVEL)
BRUSHY BASIN
APPROXIMATE DEPTH OF
CONTACT WTH BRUSHY
BASIN
(NOT TO SCALE)
GONSTRUCTION SCHEMATIC
PIEZOMETER rl
TOP OF CASING
ELEVATION : 5628.68 ft omsl
1'' DIA. PVC CAP GROUND ELEVATION: 5627.85 ft omd
\./,/;
/ /-\<\\>>\//.((\\>>)/,(/,..\)}(\gy,t)t{t,l,W",,grl. BoREH oLE
10 6" DIA PVC CASING
20
NOMINAL 4 Y+" DIA. BOREHOLE
30
CEMENT GROUT
40
-50L.JulL.
-60F(L
Lrlo
1" DIA. SCH 40
FLUSH THREAD PVC CASING
BENTONITE SEAL
70 .I" DIA. SCH 40 FLUSH THREAD
O.O2 SLOT PVC SCREEN
80
90
100
GRAVEL PACK (PEA GRAVEL)
BRUSHY BASIN
APPROXIMATE DEPIH OF
1 00'
CONTACT WITH BRUSHY
BASIN
(NOr ro scALE)
WELL CONSTRUCTION SCHEMATIC
PIEZOMETER 12
TOP OF CASING
ELEVATION : 5637.96 ft omsl
1" DIA. PVC CAP
GROUND ELEVATION
= 5635.06 ft omsl
/.+.'r7,\Zi,^#',ri)//.'.(..r:z)'tZ..f':h'Z'(S,/)).<'Y(J
10
NOMINAL 4 7+"
CEMENT GROUT
DIA. BOREHOLE
20
30
BENTONITE SEAL
40
-50hJ
u_J
LL
-60FL
lrJo
1" DtA. SCH 40
FLUSH THREAD PVC CASING
GRAVEL PACK (PEA GRAVEL)
70
1,, DIA. SCH 40
O.O2 SLOT PVC
FLUSH THREAD
SCREEN
80 BRUSHY BASIN
APPROXIMATE DEP]H OF
90
100
CONTACT WTH BRUSHY
BASIN
BENTONITE
1 00'
(NOT TO SCALE)
WELL CONSTRUCTION SCHEMATIG
PIEZOMETER 13
TOP OF CASING
ELEVATION : 5591.33 ft omsl
1'' DIA. PVC CAP
GROUND ELEVATION: 5589.65 ft omsl
t;::i.))t/,{t;}:}.r)1/.vS35
$srrygy.Ilt4l,.7,!3"....911.. BoR EH oLE
10 6'' DIA PVC CASING
20 CEMENT GROUT
NOMINAL 4 Yl" DIA. BOREHOLE
30
40
1" DIA. SCH 40
FLUSH THREAD PVC CASING
BENTONITE SEAL
-. 50
t!
LJh
r60F
o_
UJo
1" DtA. SCH 40
O.O2 SLOT PVC
FLUSH THREAD
SCREEN
70
80 GRAVEL PACK (PEA GRAVEL)
90 BRUSHY BASIN
APPROXIMATE DEPTH OF
CONTACT WTH BRUSHY
BASIN
(Nor ro scALE)
WELL CONSTRUCTION SCHEMATIC
PIEZOMETER 14
TOP OF CASING
ELEVATION : 5584.38 ft omsl
1,, DIA. PVC CAP
GROUND ELEVATION: 5582.88 ft omsl
/..,(\)7/S{\}7/,({$)).
'*l(;\gMJ) 41,7,b", DrA. BoREHoLE
10 6" DIA PVC CASING
CEMENT GROUT
NOMINAL + Y4" DIA. BOREHOLE
20
30
40 1" DIA. SCH 40
FLUSH ]HREAD PVC CASING
f. 50
UJ
UJL
-60F(L
ulo
BENTONITE SEAL
70
80
90
100
110
1" DIA. SCH 40 FLUSH THREAD
O.O2 SLOT PVC SCREEN
GRAVEL PACK (PEA GRAVEL)
BRUSHY BASIN
APPROXIMATE DEPTH OF
107.5'
CONTACT WTH BRUSHY
BASIN
(Nor ro scALE)
WELL CONSTRUGTION SCHEMATIC
PIEZOMETER 15
Et,---tl
oilc" /2'?o'2oo) Geosogi* t. ee:aloll Drilling Co,Holc
Progerty /ttl;fi ltttnttill project nh/-Y lrtatt 3 Unil No. Scc.- Trp.
Counly Jaa Iaan Snte uh,l Locolioo
No. 7/?$/o
Rgc.
-
Elev.
-..,{
err,s J-oF J-
t0. ztorE
-
t o. ot,LL ' i
FLUIO LfYJL
REUANK9o
25.
5,
,7'f
\ 10.
t25
t7,t
20,
22,t,
2r.o
2?,f.
3
37,'
42,r'
q?,f,.
,o.0
52.f
b2,'
7?,
7i.o
e,{-
9tf,
?0,0
?ts
?;.b.
?7r.
82d-
tol.f-
/ o?,r.
/ lo,
t rz.f
/ /i.
/ t7.i-
lu
/ ?-2,t-
| 2r.o
PEnCGTTAGS corPoSlrlor luAoc
QQQQ@@@@@ €B@30t .ot @tot
!.{3rl
Hotc No. f0* tl
No. Scc._ Twp. _ Rge. _
Elev.
ptoe I or I
r.o. ortll Q"i
Fluto Lsvrl 4o
nEuAnxso
2S
5.0
7i
35
37,f-
q25,
t/{.,
l7,f-
52.1.
55.0
57.f.
b2,,
bi
675
7ZS.
7i.o
77f
lrlo
81.;-
8i.
8zr
lo,
?z
q{
?vi-
h2
lo i,
/07,r-
/to,
ilz.t
)/J'
il7.r
/
tzz-f-
/7i.t
PERCEXTACC GOTPOSITIOX lll^oc
QQQQQ@@@@ffi,}@@
PNELo, l,
to. FeorE
t.o. ortll lo-2,5 fl,
FLUIO LEVEL
REUARKS
2ao
22
2,f.0
zr,f-
3do
32,5:
t5.
3?,s-
qo.o
?2d
qf,0
fl,i
5ao
5?5
ff.
5l,f
0A0
ir?.i
CS,O
67i
740
?2,i.
7i.o
77.i
8o.o
82.i.
$.it>
I7.f
{o.o
q z.;'.
1f,0
It{
r oo.O
toz.{
/0f,0
1c7,f
/ /o,0ttz,i
//i.0
r/t,i-
12o.D
/?2 t'
t Lf.b
PERCEilTACE COCPOSIfloil IUAOC, *Y,.
QQQQ@@@@@@ffi
3:li,i,r i:'ll"iJ.ffL Dri,ins' co @ta&rylea,ttin taa-Hore No. eqsuberbL
P.oE t or I
7.O. PAOOE _
r.o. oRtLL IOO.O_FLUIO LEYEL
n
2,5
tz.f
r?.f.
zz5.
2f,o
z7'5
30.
,2.'
37'
lo,o
yt.f
f$o
N€UARK5
7.f
10,0
4Vt
s0.0
d1.f
5?,{,
o0.o
o2.f
75
ns
82-f
62r
czd
7ao
72.f-
,q2,9
js,
t7,t
lm
, t025.
lt7,f
Uae
tll.f
L
lq,f
/,
I
PENCE}ITAGC COCPOSITrc}r IHAOE
QQQQQ@@@@ffi@@
PAO| I oF _
EO. PnOrE _
t.o. ottlL lno.op
FLUIO LFVCL
R€UARKS0
2.
5.o
7t
too
t2
ls,0
l7,f
2ao
22,€
25,0
27,f
y.o
t2.f
Ito
trf
10,0
12.{
4to
121.
9.0
52.{
5f,o
s7.f
(.oO
62.,
o5.O
o?.f
70.t)
72,f
75.o
7r.f
,ao
E?.f
87s
?o,o
I
ll
;
lr
II
ll
$
lr
lr
t
lr
lt
II
I
lr
lr
?2.i
7io
?tf
/oz.S
tof,,
/07.f,
ilo,o
t/2.f,
//f,.
/ t7,t-
I
tzz.Sl
/2t1o
QQQQ
PERCEXTAG€ GOIIPOSITIO}I IUAGC
@@@@@@@ I
a
I
A,bnt
h
't
{,r j.,ti.ij I
.,{
ProE I oF I
to. rnorE
r.o. ontll 9n.n
FLUIO LEYEL
R€MARKS ail la. 43/,t,o-
2.r.
6,o-
75-
,.' l?.1
; /f'O-
lZ,S
20.
n.f-
tio
27f
3ao
32.s
37f
10.0
f z.{
li,0t/vf
{o,o
52,i
SS.D
57,f
00,0
b2,5
6i.o
07f
70,0
- 72.i
7i,0
77{
0ao
82{'
85.0
svf
1o.o
?25
1i.0
,11.f
/ oaD
/oz,f.
tot0
lo7,f
/ ltl,o
//z,i
Itf.0
/tzf-
/ 20.0
,22.i-
r ZiD
PERCEI{TAGE COUPOSITIOH IMAOE
QQQQ@@@@@ffi$d#@
.,Jrt'J*g9.,
''Cesalrft Dritting'co. &{b f,?/aaili^. frrc. Hote No. przrn/e,-t,cl/ts
Unit No. Sec.- Twp.
Loco lion Elev-
etoc I or I
2.i
5,0
.. tt
/40
i' /2,i
o
22,i.
2sl,o
27,{
3o,o
32,;
tf.0' 17,{
zo.D
3fo
37.s
qo.0
q2.f
f i.o
17s
{o.o
f Z.t
5'5'.o
J 7,t
(?o,D
b2.f,
bf,t)
07,;
7O.O.
72,r-
7i.0
77,i-
8o
82.f-
iti.o
87.f' ?o:oqz.i
1i,0
17,i
100.o
tozf.
t750
t 07i.
t lo.o
tl2.f
1/5:o
// /.t'
/ zo.o
I22.
/ 2i.o
PERCEXTAGE COrlPOSTnOX rUAOEo2tott
(#
30t
ffi.ot
to- PnorE
t o. ontll lo'l.f
FLUD LEVEL
REilAnKs B;tdh.47/\l
d'crl {tr+
r, rl
rt
I
It
h
D
rl
ll
ll
tl
tt
rl
,l
rl
lr
!l
l
l
j
1l
It
It
n
I
t,
lr
Ir
t)
o
.9
Loa
CL
c.ostt,
oo
o
o
o
co
Eo
oo
Eoo
g)c,6
o
fo
T
G.cF
r Complete items 3, 4a, - - " svvr.v' ror Jcr vrues l I srsv rvror I
. F;;i'i"r;;#:'#";#lHr""" the reverse or this rorm so that we can return rhis I :"JfJJ:g,*.ices (for an
t
,",r[.tn't
form to the flont of the mailpiece, or on the back if space does not L n id^.oooo-,- nr.,pcrmit. rr'e rrrarrvreue, or on lne Dack if space does not I 1 tr AddreSSee,s AddreSS
:fl1'"rJ;#'##E;:,fl1fls,?ffii,;.9;,."#!f;#?il8i3"f,'."1""i,,,1,""Si;f,l3TliJ I ,- *..,,.","oDerivery
SENDER:
: 33fl381: ll::: 1 andtor 2 tot addirionar services. I t atso wish to receive the
r for fee.
4a. Article Number
DENVER CO 80265 fl Return Receipt for Merchandise E COD
7. Date of
::Y f::f ;,hia
r e s s 1 o n r Yl t ref, i6ii6 a
or Agent)
l{tr-??'iE9s,TJ,ii[r trw:/{?
",,,,*{,s,iillEB}fti8'|#i'Ifl'.Y."8#" ltr n"oi't"'"i (certiried
1050 sEvENfErrrrrl*s?
u I L JJL'
I
fl Exoress Mail E lnsured
xo
o '4t<.
PS Form 381 1, December .t g94 Domestic RGturnEGEr 02595-98-B-022e
E0
TTtf,
m
JI
EO
E
Ef
rf
Et
EtrE
EI
a\-
JI
rl
trl
EIE
r\-
postage
Certifred Fee
_ Beturo Recerot Fno(Endorsemcn t Req u,re-ol
festflcled Delrver, ro-{tsndorsemeot R*qirrJ
State of Utatr
Department of
Environmental Quality
Dianne R. Nielson, Ph.D.
Executive Drector
DIVISION OF RADIATION
CONTROL
Dane L Finerft,ock
Director
IoNM.|,r*,r*.
Govemor
GARYHERBERT
Licutenant Gwemor
March 9,2005
CERTIFIED MAIL
RETURNED RECEIPT REOUESTED
Mr. Harold R. Roberts
Vice President - Corporate Development
International Uranium Corporation
Independen ce Plaza, Suite 950
I 050 Seventeenth Street
Denver, CO 80265
SUBJECT:Groundwater Contamination Investigation Report and Groundwater Corrective
Action Plan White Mesa Uranium Mill Near Blanding, Utah: August 23,1999
Notice of Violation and Groundwater Corrective Action Order UDEQ Docket No.
UGQ-20-01 - Request for Additional Information
Dear Mr. Roberts:
We have reviewed the May 29,zl}4,International Uranium Corporation response letter and the
May 26,2W4,Final Report Long Term Pumping At IVM-4, fW4-t9, ana fW+-t5 White Mesa
Uranium Mill Near Blanding, Utah. After review of these reports we have determined that
additional information is required.
As you recall, the August 23,1999 DRC Notice of Violation and Groundwater Corrective Action
(GCA) Order, Docket No. UGW20-01 required IUC to:
1.Submit within thirty (30) days of receipt of the Order a plan and timetable for conducting a
Groundwater Contaminant Investigation (GCI) and submittal of a report for Executive
Secretary approval, pursuant to the provisions of UAC R317-6-6.15(D), and
Submit within thirty (30) days of receipt of the Order a plan and timetable for submittal,
implementation, and completion of a Groundwater Corrective Action Plan (CAP) for
Executive Secretary approval, pursuant to the provisions of UAC R317-6-6.15(D).
2.
168 North 1950 West . PO Box 144850 . Salr Lake City, UT 84114-4850 . phone (801) 5364250. fax (801) 533q97
T.D.D. (801) 5364414 . wttrtl.deq.unhgov
lltnh!
Where iileas connect"
Mr. Harold Roberts
March 9,2005
Page2
It's been over five years since the GCA Order was issued to IUC and the GCI and CAP are not yet
completed. It is now time to complete the GCI and CAP. Within 30 days of the receipt of this
letter please submit a schedule to complete the following:
I. Groundwater Contamination Investigation Report
We acknowledge progress since August 1999 investigating of the extent and migration of the
chloroform contamination wherein IUC has installed 20 new wells at the facility. This work has
led to better understanding of the problem. However, in order for the Executive Secretary to
approve the Contamination Investigation report the following issues, in addition to other issues
required in UAC R3l7-6-6.15(D), need to be resolved:
L Source Identification and Delineation - We acknowledge IUC's position that the former
leach fields are the only chloroform source terms at the facility. However, the DRC feels
that Tailing Cells I and? are also a possible chloroform source for the following reasons:
a) Facility history shows that the majority (approximately 70 to 8l%oby volume) of
the chloroform used at the site was discharged to Tailing Cell 1, indicating it may
be a possible chloroform source. Consequently, additional subsurface investigative
confirmation work is required thru installation of monitoring wells in strategic
locations between the former leach field and Tailing Cell 1. Chemical and
hydrogeoloic data gathered from these new wells would assist in determining if
Tailing Cell I is chloroform source.
b) Monitor wells TW4-15 and TW4-16 are immediately adjacent to the east side of
Tailing Cell2 and have had elevated chloroform concentrations 7,800 ug/l on
6123103 (Operations Report For NovemberlDecember 2003, ruC 2004) and 530
ugfl on 6122104 (2no Quarter 2A04 Monitoring Report), respectively. Both of these
concentrations are well above the 70 ug/l groundwater quality standard. The
chloroform concentrations in these wells may indicate leakage from TailingCell2
and a possible chloroform source. Additional subsurface investigative
confirmation work in this area needs to be accomplished to evaluate Cell 2 as a
chloroform source.
c) DRC split sample results from September 2002 in monitor well TV/4- 17, adjacent
to Tailing Cell2, had elevated concentrations of iron (6,600 ug/l), manganese
(4,690 ug/l), nickel (57.1 ug/l), and zinc (222 ug/l). These were the highest
concentrations of metals at the site and were well above upgradient concentrations
detected in other monitoring wells. Hence, they may be an indication of possible
leakage from Tailin g Cell 2.
As a result of the above issues IUC's claim regarding the leach fields as the sole
contaminant source is unsubstantiated. Lacking this confirmation work, the DRC must
!,
Mr. Harold Roberts
March 9,2OO5
Page 3
conservatively conclude that the tailings cells are a possible chloroform contaminant
source.
2. Need To Define Chloroform Plume Boundaries - the Chloroform plume is not bounded to
the west and north of well T\ry4-19, or west of wells TrW4-15 and TW4-16. In addition,
there is approximately 800 feet between TW4-4 and TW4-17 where the chloroform
concentrations are unknown and if present may continue to migrate downgradient
undetected. Therefore, new wells need to be installed in strategic locations to adequately
bound the plume.
3. Joint Survey - The issue ofjoint orientation, density, and average aperture width is
important because it has bearing on aquifer permeability and the potential for preferred
groundwater flow pathways. Previously pump test analysis of two (2) wells at IUC, MW-
11 and MW-14, has concluded that aquifer conditions are controlled by fractures (2/93
Umetco/Peel Report, p.5-6; and6194 Umetco Report, p.2l). Previously, the Executive
Secretary had determined it necessary to have a joint survey study of the bedrock
formations at the edge of White Mesa in order to complete an assessment of the possibility
of fracture controlled groundwater flow at the facility
In a phone conversation on January 5, 2005, Mr. Harold Roberts expressed concern about
the difficulty of interpolating joint sets at the edge of White Mesa to the area affected by
the chloroform plume under the facility. We have considered your concern and in a
follow-up phone conference of January 6, we agreed that in lieu of ajoint survey IUC
would provide core drilling during installation of new monitor wells to better examine the
possibility of fracture controlled groundwater flow at the facility. Please provide a
proposal that identifies which monitor well locations and depth intervals wifl be core
drilled and sampled. Please be prepared to properly preserve core samples for
identification, physical characteristics testing (fracturing, porosity, hardness, etc.), and
chemical analysis.
If you agree with the above issues please provide a plan and schedule to complete the GCI within
30 days of the receipt of this letter. If you disagree please explain why or propose an alternative
plan.
II. tr'inal Groundwater Comective Action Plan (CAp)
ln order for the Executive Secretary to approve the CAP, the following requirements need to be
addressed and resolved prior to a 30-day public comment period [see UAC m17-6-6.15(E)]:
l. Completeness and Accuracy of Corrective Action Plan [see UAC R317-6-6.15(E)(1U:
The Executive Secretary must affirm that the ruC CAP is complete and accurate. As a
part of this, the chloroform source(s) and plume must be identified and delineated. In
addition, the chloroform plume must be bound and controlled. The CAP should discuss
Mr. Harold Roberts
March 9,2W5
Page 4
the selection of corrective action technology and the rational for its selection. The
corrective action technology should contain site-specific design and construction details.
2. Action Protective of Public Health and the Environment [see UAC R3l7-6-6.15(EX2)l:
The CAP should discuss how the corrective action technology and remediation activities
will protect public health and the environment.
3. Action Meets Concentration Limits lsee UAC R317-6-6.15(EX3)l: The CAP should
discuss how the corrective action technology and remediation activities will achieve
corrective action limits specified in UAC R317-6-6.15(G). In addition, the CAP should
describe how the facility would come to a decision that cleanup goals are achieved and site
remediation is complete.
4. Action Produces a Permanent Effect lsee UAC R317-6-6.15(EX4)l: The CAP should
discuss how the corrective action technology and remediation activities will permanently
control or remove the pollutants to ensure the public that they are no longer a threat to the
public health and environment.
5. Action May Use Other Additional Measures tsee UAC R317-6-6.15(E)(5)l: The
Executive Secretary may consider additional measures in the CAP to better ensure that the
criteria for factors specified in UAC R317-6-6.15(G) are meet.
Please demonstrate how the CAP meets each of the above information needs.
III. Unsolved And Additional Issues
In order for the Executive Secretary to approve the CAP the following issues, in addition to other
issues required in UAC R317-6-6.15(D), need to be addressed and resolved:
l. New Observation Wells at TV/4-15 and TW4-19 - Previously the DRC asked that new
observation wells to be installed north and west of pumping well TW4-19 (4127lC/DPIC
Request, p.2). DRC reviewed the February 22,2005 Work Plan for Installation of 8 New
Groundwater Monitoring Wells and Additional Chloroform Investigation Wells White
Mesa Uranium Mill Near Blanding, Utah (Work Plan). The proposed three new well
locations shown on Figure 2 of the Work Plan appear to be in the locations that will aid in
bounding the chloroform plume and help determine drawdown and chloroform capture
efficiency at well TW4-19. Please complete these wells as permanent observation wells in
accordance to USEPA RCRA Technical Enforcement Guidance Document (TEGD)
Chapter 6.
Also, groundwater contours presented in Figure 5 of the HGC 2004 report do not indicate
a drawdown cone at pumping well TW4-15, like that seen at pumping well MW-4.
Therefore, their needs to be at least three observation wells, completed in strategic
locations around pumping well TW4-15 to demonstrate drawdown and chloroform capture
)'
Mr. Harold Roberts
March 9,2005
Page 5
efficiency. In the future, please insure that all wells selected for pumping are completed
with nearby observation wells to verify drawdown and capture efficiency.
2. Capturine Chloroform Concentrations at TW4-16 and TW4-4 - Previously the DRC asked
for a schedule to modify the pump and treat system to provide hydraulic capture of the
chloroform plume in wells TW44 and TV/4-16 (4l27lW DRC Request, p.2). Based on
the water levels presented in Figures 5 and 6 in HGC 2004, we agree that pumping from
well TW4-15 is drawing down water at well TW4-16 (3.2 feet). However, the magnitude
of this drawdown was not great enough to cause hydraulic capture. As a result, the
groundwater contours indicate that near well TV/4-16 groundwater continues to flow south
Another area lacking hydraulic capture of the plume is near well TW4-4 where
contaminated groundwater continues to flow south.
Therefore, we have concluded that the chloroform concentrations at wells TW44 and
TW4-16 are still not being captured. Therefore, as requested in DRC letter dated Apil27,
2004, please modify pumping operations to demonstrate capture of the elevated
chloroform concentrations at wells TW4-4 and TW4-16.
Complete Well TW4-4 as a Pumping Well - In the April27,2004 DRC letter we requested
that well TW4-4 be completed as a permanent well, in accordance to USEPA RCRA
TEGD Chapter 6 in order to facilitate its use as a pumping well. Please modify the well
constrgction accordingly. Please perform remedial construction of this well, and submit a
well completion diagram for Executive Secretary approval, to verify well construction.
Well Completion and Development - The Api127,2004 DRC request for well
development of MW-4, TW4-15, TW4-16, T-W4-17, TW4-18 and T'W4-19 to the 5 NTU
turbidity standard found in the USEPA RCRA TEGD Chapter 6 remains unresolved.
Please develop these and all other TW series wells so they meet the USEPA RCRA TEGD
5 NTU standard, to the extent reasonably practicable.
Recovery Test - The April 27,2004 DRC request for a schedule for a recovery test at all
the pumping wells MW4, TW4-15, and T'W4-19 also remains unresolved. The necovery
test should be performed after the installation of the observation wells around TW4-15 and
TW4-19. Please perform the recovery test as outlined in Item 11, in the DRC letter dated,
4pri127,2004.
Perched Zone Groundwater Hydraulic Testing - To better understand the preferred
groundwater flow path(s) and velocities in the perched zone exiting chloroform wells
T'w4-3, ml4-4, Tw4-6, Tw4-1l,Tw4-11 Tw4-13, and rw4-17 must be aquifer tested
to determine local hydraulic conductivity. Please provide the results of this testing with
the analysis thereof, for Executive Secretary review and approval. In addition, please
ensure that all new wells installed are also aquifer tested to determine local permeability.
3.
4.
5.
6.
Mr. Harold Roberts
March 9,2005
Page 6
7. Need for Permanent Monitor Well Completions - The TW series wells are an important
part of the chloroform contamination investigation. However, it appears that operation of
the pump and treat system will require long-term groundwater head and quality monitoring
from most of these wells. Also, wells used for compliance monitoring purposes must be
completed as pennanent installations in accordance with the USEPA RCRA TEGD, as per
UAC R317-6-6.30. Consequently the TW series wells must be completed as permanent
monitoring wells. Please propose which wells will be completed as permanent monitoring
wells.
8. Operations and Reporting Plan - Please submit a Revised Operations and Reporting Plan
that addresses and resolves previous issues stated in DRC Apil27 ,20O4 (ltem 12)
request.
9. Maintenance Plan for Pumping System - This Plan should address, among other issues,
winterizing operations, and mechanical and electrical features. Please provide a
maintenance plan and a schedule for Executive Secretary review and approval, to modify
the pumping system to operate continuously during winter conditions.
10. Ouarterly Monitorine Reports - On January 10, 2005 DRC received six quarterly
h thg 3d qurrt"r iOOl ru*pling event to tfre 4e qu"arter 200+
sampling ev_ent. The report for 2* quarter 2003 sampling event is still missing. Please
send the 2nd quarter 2003 sampling ieport within 30 days of receipt of this letter.
11. Additional Monitoring Information - In a letter dated April I1,2002, DRC requested that
IUC add dichloromethane, chloromethane, chloride, and carbon tetrachloride to the list of
quarterly monitoring parameters in all future contaminant investigation groundwater
sampling and analysis. In addition, the letter requested field redox measurements in all
groundwater sampling at the facility. Other than the 2OO23,d quarter sampling performed
in September 2002, the above parameters were not provided in any of the quarterly
groundwater monitoring Reports provided in the January 10. 2005 submittal. Please
provide this missing water quality sampling data, or explain why it was not collected.
In addition we are missing copies of the original laboratory Reports for a number of
quarterly sampling events. Please submit, within 30 days of receipt of this letter, the
laboratory reports and chain of custody forms for the above listed parameters for all
quarterly groundwater sampling events after April 2002.
12. Groundwater Monitoring Ouality Assurance Plan (OAP) - The IUC Ground Water
Discharge Permit (Permit) requires a QAP (Part I.H.6). A QAP also needs to be developed
for the CAP and could be incorporated in the QAP for the Permit. P1ease submit one QAP
for the Permit and CAP.
IvIr. Harold Roberts
March 9,2005
PageT
13. Content of Ouarterly Monitoring Reports - The quarterly groundwater monitoring reports
should include the following reporting format and content:
a) Introduction
b) Sampling and Monitoring Plan:
Description of monitor wells sampled.
Describe sampling methodology, equipment and decontamination
procedures.
Identify all quality assurance samples, e.g. trip blanks, equipment blanks,
duplicate samples etc.
c) Data Interpretation:
Interpretation of groundwater levels, gradients, and flow directions. The
interpretation would include a discussion on: l) A current site groundwater
contour map,2) hydrographs to show groundwater elevation in each
monitor well over time, 3) depth to groundwater measured and groundwater
elevation from each monitor well summarized in a data table, that includes
historic groundwater level data for each wel1, 4) an evaluation of the
effectiveness of hydraulic capture of all contaminants of concern.
Interpretation of all analytical results for each well, including a discussion
on: l) a current chloroform isoconcentration map, 2) graphs showing
chloroform concentration trends in each well thru time and, 3) analytical
results for each well summarized in a data table, that include historic
analytical results for each well.
Provide an electronic copy of all laboratory results for groundwater quality
monitoring conducted during the quarter. Please contact us so we may
discuss and agree on the most efficient electronic format necessary.
Conclusions and Recommendations
Copies of IUC field records, laboratory reports, and chain of custody forms
By way of a reminder, from this point forward we advise that all feature pumping wells, monitor
wells, observation wells, and piezometers should be drilled and installed in accordance to USEPA
RCRA TEGD Chapter 6, as permanent installations. Wells installed with no filter pack, annular
cell and protective surface completions may allow debris to fall down the open area of the boring
which may contaminate the groundwater and/or compromise well hydraulics. In addition, in the
11.
lll.
d)
e)
Mr. Harold Roberts
March 9,2405
Page 8
feature if wells that do not have permanent completions and need to be points of compliance
monitoring, will be required to have permanent completions [see UAC R317-6-6.3(D(6)].
Therefore, in order to prevent the integrity of the well and save costs in time and materials it best
seryes the facility to install wells as permanent completions during initial well installation.
Resolution of all the above open issues will allow us to proceed forward towards approval of the
GCI and CAP and a public comment period in accordance with UAC R3l7-6-6.15(E).
Thank you for your cooperation in this matter. Clearly, we need to understand your position
regarding these open issues. Please respond to this information request with in 30 days of receipt
of this letter. We would be happy to meet with you to discuss any of these open issues.
Please contact Dean Henderson at 801-536-0046 with any questions.
Utah Division of Radiation Control
DLF/DCH:dh
cc: Rob Herbert, DWQ
Bill VonTill, NRC - Washington, D.C.
F/."{UC_Cr_CAP_I-05
File: Intcmational Uranium Corporation - GW Permit
ane L. F inertr@k Directdr
INTBnNATTo*t
Uneuruu (use)
ConponerroN
Independence Plaza, Suite 950 . 1050 Seventeentl Street . Denver, CO 80265 o 303 628 77g8 (main) o 303 3gg 4p1 gu<)
May 28,2004
VIA OVERIVGIIT DELIVERY
Mr. Dane L. Finerfrock
Executive Secretary
Utah Radiation Control Board
Department of Environmental Quality
168 North 1950 West
PO Box 144850
Salt Lake City, Utah 84114-4850
)-, .il{islr1-
Re: Division of Radiation Confrol ("DRC") Review of Interim Report Long Term
Pumping at MW-4 and TW4-19,
Request for additional Information
Dear Mr. Finerfrock:
This is in response to the DRC's April 27,2}O4letter requesting additional information
following the DRC review of the July 9, 2003 krterim Report Long Term pumping at
MW-4 and TW4-19. Intemational Uranium (USA) Corporation's ("IUSA') responses to
your request correspond to the numerical sequence of the DRC comments in the April27,
2004letter.
l) The Final Report on Long Term Pump Tests at Mw-4, Tw4-19 and rw4-15,
covering the period of April 2003 to December 2013,has been prepared by Hydro
Geo Chem, Inc. ("HGC'), and is included as an attachment to this letter.
2) IUSA will work $rith HGC to determine the best location for installation of
piezometers to the north and west of well TW4-19. As a part of working with
DRC in preparation of the Groundwater Quality Discharge Permit ("GWeDp')
for the White Mesa Mill ("MilI') IUSA has proposed the installation of additional
groundwater monitoring wells for monitoring of the perched groundwater under,
and down gradient of the Mill and tailings ponds. Language in the draft GWeDp
requires submittal of a work plan for installation of the new monitoring wells
within 30 days after issuance of the permit and installation of the monitoring
wells within 60 days after work plan approval. ruSA will include the two
additional piezometers in the work plan prepared for installation of the new
monitoring wells, and install the piezometers at the time the drill rig is mobilized
for installation of the monitoring wells.
t
FinerfrockLetter to Dane L.
May 28,2004
Page 2
3)The Final Report on Long Term Pump Tests at MW-4, TW4-19 and TW4-15,
prepared by HGC, indicates that TW4-16 hydraulically responded to the pumping
of TW4-15 that was initiated on August 8, 2003. The drawdown reported in
Tw4-16 was approximately 4 feet at the time pumping was stopped in late
November. Based on this information, continued pumping of TW4-15 should
provide capture of the chloroform plume in the area of TW4-16.
well TW4-4 did not indicate drawdown from the pumping of the other wells.
TW4-4 is known to be an extremely low yield well, and the effectiveness of
pumping this well will be evaluated as a part of a long-term remediation plan.
See additional comments on well TW4-4 inparagraphs 4 and 10, below.
The necessity to gravel pack and seal well TW4-4 will be evaluated after the
action proposed in paragraph 8 is evaluated. In the event it is determined to be
advantageous to fully complete TW4-4 the work will be done in conjunction with
the monitor well installation progftrm described in paragraph 2 above.
Information on determination of confined or unconfined aquifer conditions is
presented in the Report on Long Term Pump Tests at MW-4, TW4-19 and TW4-
15, prepared by HGC. This report is included with this letter. See paragraph 1
above.
Mill maintenance personnel have been directed to devise a method to recover the
lost bailer from TW4-13. ruSA will advise DRC on the efforts and if the bailer
has been successfullyremoved from the well.
Mill maintenance personnel have been directed to install 8-inch surface casings
on all temporary wells that did not have the casing installed as a part of the
original construction. This is primarily on wells Tw4-1 through Tw4-9. once
the surface casings have been installed, an S-inch PVC cap with a 4-inch hole for
the well casing will be installed. This work should be completed within the next
30 days. ruSA will advise DRC when the work is complete.
All the wells used for pumping during the long term pump test showed high levels
of suspended solids in the pumped water. This included MW-4, TW4-19 and
TW4-15, all of which were gravel packed as a part of the initial construction.
During the long-term pump test,327,360, 1,035,516 and 305,300 gallons of water
were pumped from each of the wells respectively, at pumping rates providing for
maximum draw down of the wells. All three of these wells were drilled by air
rotary, with water and foam injection through the saturated zones. Drilling mud
was not used for completion of the holes. HGC geologists suspect that the turbid
water from the wells is inherent in the geologic formations and may be present
regardless of any additional efforts to develop the wells. It is unclear why it is
4)
s)
6)
7)
8)
I
inerfrockLetter to Dane L. F
May28,2004
Page 3
critical that the water pumped from the temporary wells be required to meet EPA
turbidity standards as a part of pumping the wells for removal of chloroform
contaminated water. The procedure for restarting the pumping from Mw-4,
TW4-15 and TW4-19, described in paragraphs 9 and 10, will hopefully eliminate
the pump failures as a result of the high turbidity.
9 and 10) ruSA has located and purchased down hole water level probes and surface
conhollers that will allow for setting of high and low pumping levels in MW4 and
the TW wells used for long term remediation efforts. The equipment will allow
ruSA to pump the wells at maximum pump capacity for short time durations, shut
the pump down at maximum drawdown, and then restart the pump when the water
level has recovered to a pre-determined level. Adjusfinents to the shut down and
startup water levels can be made from control boxes located at each well head.
Copies of the vendor information on the probe and controller are attached for you
information. This pumping cycle will hopefully eliminate the problem previously
encountered with plugging of the pumps and flow meters due to continuously
pumping at extremely low flow rates from the wells.
As soon as the control equipment is received and installed, IUSA will begin
testing of the individual wells to establish the optimum pumping levels for MW-4,
TW4-15 and TW4-19. ruSA will advise DRC when the pumping has started and
when the individual wells are operating at steady state conditions. IUSA will
continue to collect water samples for chloroform and nitrate analysis on a monthly
basis from all pumping wells, and water levels in the nearby wells will be
monitored on the schedule maintained up to the end of pumping last November.
1l) The ability to conduct the recovery test planned for the end of the long term pump
test was lost when mechanical failure of some of the pumping equipment and
freezing conditions resulted in termination of pumping from all the wells in late
November 2003. Because of the unplanned shutdown of the pumps IUSA was
unable to conduct the recovery test as initially planned. Based on the pumping
plan described in paragraph 9 and 10, above, it is uncertain if we will see the same
draw down in all the adjacent wells as we did during the Long Term Pump Test.
After the pumps have run for a reasonable time period under the proposed
operating plan (no less than 60 days under steady state conditions) IUSA and
HGC will evaluate the draw down information and consult with DRC on the
necessity to conduct a recovery test and if there is basis for correlation of the data
from a recovery test with the previous Long Term Pump Test data.
12) IUSA will continue to report pumping data and analytical data to DRC on a
monthly basis according to the format established in the work plan for the Long
Term Pump Test. IUSA will update the criteria for monthly reporting to the DRC
in the form of a revised Operations and Reporting Plan, incorporating the changes
to the pumping procedures, the additional pumping wells, and the information
l
inerfrockLetter to Dane L. F
May 28,2004
Page 4
requested in item 12 of DRC's April 27 letter. The Plan will be submitted to
DRC for review and approval by no later than June 30, 2004. Until then the
previously established reporting and sampling procedures will be followed.
l3)kt order to ensure the long term operation of the pumping system IUSA will
prepare and implement a Maintenance Plan to ensure that the pumps andpipelines
will be protected from the effects of winter time conditions, and for routine,
scheduled maintenance of the system. ruSA will submit the Maintenance Plan to
DRC not later than July 15, 2004.
These comments hopefrrlly address the requests detailed in your Apil27,2004 letter.
If you have any additional comments please feel free to contact me at 303.389.4130,
or Harold Roberts at 303.389.4160.
Da{tp C. Fr}denlund
Vice President and General Council
Attachment
cc: William Sinclair, UDEQ
Loren Morton, UDEQIDRC
Ron F. Hochstein
T. Kenneth Miyoshi
Harold R. Roberts
Click to go to www.geotechenv.com
Fluid Level Sensor
Geotech Fluid Level Sensor
Geotech's line of submersible pressure sensors are designed for ruggedness and long life to
meet the harsh environments encountered in liquid level measurement and controt.
MAXIMUM RATINGS
Supply Voltage
Supply Current
Maximum pressure
Loop resistance
lsolation, loop to earth ground
PERFORMANCE
Output
Accuracy
Non-linearity
Zero error
Span error
Compensated Temperature range
Operating Temperature range
Long Term stability
Response Time
ENVIRONMENTAL
Position Effect
Vibration
Shock
Life
PHYSICAL
Sensor Length
Sensor Diameter
Sensor Weight
Proof Pressure
Burst Pressure
Media compatiblity
STOCK ITEMS
Sealed gauge and absolute sensors
0.1 0 % of span for 90' rotation
No change after 10G RMS 20 to 2000 Hz
No change after 100Gs for 11 m
1 million pressure cycles
High accuracy and repeatability
Fully temperature compensated
AII wetted materials are 316 Stainless
Steel
Designed to be intrinsically safe
100% computer tested and calibrated
Complete range of signal outputs
Choice of absolute or sealed gauge
transducers
Optional "Probe Pal" signal booster &
noise filter for accuracy at deeper
depths.
Geotech Fluid Level Sensor
12-36
)4
0-30,50, 100
200,300,500, 1000
0-400
500
4-20
0.25
0.1 5
10.1
10.1
0 to B0'
-4O to 125'
10.3
2
VDC
mA (self limited)
PSI absolute
o
VAC peak, VDC
mA
% of Span, BFSL
% of Span, BFSL
% of Span
% of Span
C
% of Span over 6
months
milliseconds
lnches
lnches
Grams
71tB
1.0
348
3x or 1200 PSl, whichever is less
5x of 2400 PSl, whichever is less
Liquids or gasses compatible with 31655
0-200 PSI 500'cable
0-300, 0-350 PSI 1000'cable
0-500 PSI 1500'cable
All other lengths to customers order add 3 days to normal 2 day delivery
Notes
- Probe is protected from reverse polarity supply connection.
- Cable is double shielded, double jacketed polyurethane.
CALL GEOTEGH TODAY (800) 833-7958
Geotech Environmental Equipment, lnc.
8035 East 40th Avenue . Denver, Colorado 80207
(303) 320-4764 . (800) 833-7958 . FAX (303) 322_7242
email: sales@geotechenv.com website: www.geotechenv.comFluid Level Sensor.qxd Rev.1
ot
Position Descri
CU 3OO
Product No. I 96422776
The control uni t CU 300 i s devel oped for the SQE submersi bl e pumps.
The CU 300 enabl es:-control of the pump on the basi s of sensor si gnal s,
-sett.i ng of operati ng parameters, and
-moni tori ng of operati on and al arm i ndl cati on, i f any,
The CU 300 i ndi cates the fol I owi ng al arms:
-No contact,
-overvol tage,
-Undervol tage,-Dry runni ng,
-Speed reduct.i on,
-overtemperature,
-Overl oad,
-Sensor al arm.
The CU 300 recei ves al arm si gnal s from the motor for the fol I owi ngparameters:
-Dry runni ng.-lnci pi ent pump,hotor defect.-Too hi gh temperature i n motor el ectroni cs.-Supply failure.
As standard, the CU 300 i ncorporates an al arm si gnal rel ay.
The CU 300 enabl es the use of:
-Remote control R'100: Wi rel ess i nfra-red remote control by means ofthe Rl0O enabl es change of factory setti ngs
and moni tori ng of the i nstal I ati on by cal I i ng up actual operati ngdata, e. g. speed, operati ng hours and power consumpti on.-External sensors: Recepti on of data from external sensors and controlaccordi ng to the data recei ved,
e. g. fl ow rate, pressure, water I evel and conducti vi ty-External potentiometer SPP 'l: Manual speed control.
Price
Price on request
Mi ni mum ambi ent temperature: -22 'F
Maxi mum ambi ent temperature: 122 "F
Max output for rel ay: 250 VAC / 8A / AC-1
Techni cal :
Approval s on namepl ate:
Materi al s:
Materi al :
El ectri cal data:
Mai ns frequency:
Rated vol tage:
Rated current:
Encl osure cl ass ( I EC 34-5) :
Othersr
Net wei ght:
Language i n documentati on:
UL, CUL, JET, CISPR_14_TiCKmarK, CE
PPO
60 Hz1 x 100-240 V
130 A
I P55
4.41 lb
GB
GTTI'NEDF(OS ,,x Company name:
Created by:
Phone:
Fax:
Date:
1 -800-833-7958
303-322-1242
0511812004
1t7
CU 3OO
@ lnstallation and operating instructions
O No contact
O Overvoltage
O Undervoltage
O Dry running
O Speed reduction
O Overlemperature
O Overload
O Sensoralarm
CONTENTS
1. General
1.1 Expansionpossibilitiss1.2 On/Off button
2. CU 300 as an alarm unit2.1 D6scription2.2 lnstallation2.3 Location2.4 Mounting tha CU 3002.5 Electricalconnection2.5.1 Mains supply2.5.2 Pump supply2.5.3 Alarm signal relay2.5.4 Digital input2.6 Description of dry-running protectlon2.6.1 Function2.7 Settings2.7.1 Required R100 settings2.4 Description of the dewatering function2.8.1 Applications2.8.2 Function2.9 Settings2.9.1 Bsquired R100 settings2.9.2 Run/slop timss
3, CU 300 wlth constant pressure
control-0toGbar
3.1 Oescription3,2 Function3.3 Positioning the pressure sensor3.4 System sizing3.5 lnstallation3.6 Localion3.7 Mounting th6 CU 3003.8 Eloctricalconnsction3.8.1 Mains supply3.8.2 Pump supply3.8.3 Alarm signal relay3.9 Seltings3.9.1 Bequirsd R100 settings
3.10 Slart-up
4, CU 300 with constant pressure
control - 0 to 10 bar
4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.8.1
4.8.2
4.8.3
4.9
4.9.1
4.10
Description
Function
Positioning the pressure sensor
System sizing
lnstallation
Location
Mounting the CU 300
Electrical connection
Mains supply
Pump supply
Alarm signal relay
Settings
Required 8100 settings
Start-up
CU 300 with constant pressure
control - two-pump operatlon 19Page
5
5
5
6
6
6
6
b
7
7
7
7
II
8
8
8
I
9III
10
10
10
11
12
12
12
12
13
13
13
14
14
14
14
15
5.
5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.8.1
5.4.2
5.8.3
5.8.4
5.8.5
5.9
5.9.1
5.10
6.
6.1
6.2
6.2.1
6.2.2
0.2.3
6.3
6.4
6.5
6.6
6.6.1
6.6.2
6.6.3
6.6.4
6.7
6.7.1
7.
7.1
7.2
7.3
7.4
7.5
7.5.1
7.5.2
7.5.3
7.5.4
7.6
7.6.1
19
19
20
20
20
20
20
21
21
21
22
22
22
22
22
22
23
23
23
23
23
23
24
24
24
25
25
26
26
26
26
2A
Description
Function
Positioning tho pressurs sensor
System sizing
lnstallation
Location
Mounting the CU 300
Electrical connection
Auxiliary relay
Mains supply
Pump supply
Alarm signal relay
Flow switch and pressure sensor
Sattings
Bequired Rl00 seltings
Start-up
CU 300 with sensors
General
Sensor functioning
Alarm limits
Warning limits
StarVslop limits
lnstallation
Location
Mounting the CU 300
Electrical connection
Mains supply
Pump supply
Alarm signal relay
Sensors
Settings
Bequired R100 settings
CU 300 connected to
polentiometer
Doscription
lnstallation
Location
Mounting the cu 300
Electrical connection
Mains supply
Pump supply
Alarm signal r€lay
Potentiometer SPP I
Settings
Roquired R100 settings
27
27
27
27
27
28
28
29
29
29
29
29
15
15
15
16
16
16
16
17
17
18
18
18
'18
18
8. CU 300 connected to wat6r meter8.1 OescriptionA.2 lnstallation8.3 Location8.4 Mounting the CU 3008.5 Elgclricalconneclion8.5.1 Mains supply8.5.2 Pump supply8.5.3 Alarm signal relay8.5.4 Water meler (pulse flow meter)8.6 Settings8.6.1 Required R100 settings
9. Constant water level
9.1 Description9.2 Function9.3 lnstallation9.4 Location9.5 Mounting the CU 3009.6 Elsctricalconnection9.6.1 Mains supply9.6.2 Pump supply9.6.3 Alarm signal relay9.6.4 Lovel sonsor9.7 Senings9.7.1 Requirsd Rl00 settings
10. CU 300 connected to RS-232,
RS-485
10.t Description
10.2 CU 300 connectod to a PC diroctly
10.3 lnstallation
10.4 Location
10.5 Mounting the CU 300
10.6 Eloctrical connection
10.6.1 Mains supply10.6.2 Pump supply10.6.3 Alarm signal relay10.6.4 BS-485 input10.6.5 RS-232 inpul
10.6.6 Modem10.6.7 PCToolCUS00
11. Alarm lunctions
'11.1 No contact
1 l.2 Overvoltage
11.3 Undervoltage
11.4 Dry running
11.5 Speed reduction
'11.6 Overtemperature
11.7 Overload
11.8 Sensoralarm
'12. CU 300 with R100
12.1 Menu OPEBATION
12.1.1 Setpoint'12.1.2 Operating mode
12.1.3 Alarm
12.2 Menu STATUS
12.2.1 Operating mode12.2.2 Actual setpoint and external selpoint12.2.3 Temperature'12.2.4 Speed12.2.5 Power input and power consumption12.2.6 Operating hours and number of starls12.2.7 Sensor I and sensor 2'12.2.8 Digital inpul'12.2.9 Accumulated flow and energy per m3
12.3 Menu LIMITS12.3.'l Sensor 112.3.2 Stop, sensor 112.3.3 Waming, ssnso|l12.3.4 Alarm, sensor 112.3.5 Sensor 212.3.6 Slop, sensor2
'| 2.3.7 Warning, sensor 212.3.8 Alarm, sensor 212.3.9 Stop type12.3.10 Digital input
12.3.11 Accumulated llow'12.3.12 Warning, temperaturo't2.4 Menu INSTALLATION
12.4.1 Controllor
12.4.2 Externalsstpoint12.4.3 Aulomatic restart12.4.4 Start dslay
12.4.5 Bun/Stop
12.4.6 Dry-running stop12.4.7 Dryrunning protection
12.4.8 Maximum speod12.4.9 Button on CU 300'12.4.10 Number
13. Technical data
14. Disposal
30
30
30
30
30
31
3l
31
31
32
32
32
33
33
JJ
JJ
33
33
s4
s4
35
35
35
35
35
36
36
36
37
37
37
38
38
38
39
39
39eo
39
40
40
40
40
41
41
41
42
42
43
47
47
47
47
48
48
48
49
49
49
49
49
49
50
50
5o
50
50
50
51
51
51
51
51
52
52
52
52
52
53
53
54
54
54
54
55
55
56
57
Belors beginning installation procedures,
those installation and operating insiruc-
tions should be studied carefully. The in-
stallation and op6ration should also be in
accordance with local regulations and ac-
cepted codes of good practice.
1. General
The control unit CU 300 is developed for the SQE
submerslble pumps.
The CU 300 covers lhe voltago range:
'I x 100-240 V -1O%l+6%,50/60 Hz, PE.
The CU 300 enables:. control of the pump on the basis of sensor signals,. setting of operating parameters, and. monitoring of operation and alarm indication, if
any.
The CU 300 indicates the following alarms:. No contact,. Overvoltage,. Undervoltage,. Dryrunning,. Speed reduction,. Overtemperature,. Overload,. Sensor alarm.
Ths individual alarms aro described in detail in sec-lion 1 1. Alam tunctions.
The CU 300 receivas alarm signals lrom the motorfor the ,ollowing paramoters:. Dry running.. lncipient pump/motor defect.. Too high iemporature in motor electronics.. Supply failure.
As standard, the CU 300 incorporates an alarm sig-nal rslay.
1.1 Expansion possibllities
The CU 300 enables the uss of:. Remote control Rl00:
Wireless infra-red remote control by means of the
R1 00 enables change ol lactory settings and mon-
itoring of the installation by calling up actual opor-
ating data, e.g. speed, operating hours and powor
consumption.. External sensors:
Beception ol data from external ssnsors and con-trol according to the data recsivad, e.g. flow rats,pressure, water level and conductivily.. External potentiometer SPP 1:
Manual spoed control.
'1,2 On/Off button
By means of the On/Olf button on the CU 900, it ispossible to. siarvstop the pump and. reset possibls alarms.
Fis. I
The green and red indicator lights in the On/Off but-
ton indicate pump operating condition as follows:
' lf the On/Orf bunon has b6en used to stop the
pump, this button must also be used for restarting.
lf tho On/Otf button is pressed for minimum S sec-
onds, ihe pump is started, irrespsctive of any activefaulvalarm indications. When the On/Otf button is
releassd, the pump will stop.
o
=F
lndication Description
Grsen indicatorlightpermanently on.Pump is operating.
Green indicator lighl
flashing.
Pump has bson stopped by
either:. a sonsor,. an external on/otf switch
or. a stop command rrom the
R100.
Red indicator light
permanently on.
Pump has been stopped by
m6ans ot th6 on/off button."
Red indicator light
flashino.
The CU 300 is communicat-
ino with the R 100.
IxrgRNerrou,tr!
UneNrul,t (use)
ConponATroN
r.:
Independence Plaza, Suite 950 . 1050 Seventeenth Street . Denver, CO 80265 . 303 628 7798 (main) . 303 389 4125 (fax)
August 26,2004
VIA OVERNIGHT DELIVERY
Mr. Dane L. Finerfrock
Executive Secretary
Utah Radiation Control Board
Department of Environmental Quality
168 North 1950 West
PO Box 144850
Salt [^ake City, Utah 84114-4850
Division of Radiation Control ("DRC') Review of Interim Report Long Term
Pumping at MW-4 and TW4-19,
May 5, 20}4,International Uranium (USA) Corporation's ("IUSA') response
letter
Dear Mr. Finerfrock:
On May 5,2004, ruSA responded to several issues raised during the DRC review of the
July 9, 2003 Interim Report Long Term Pumping at MW4 and TW4-19. Among other
comments, DRC requested that ruSA repair the exposed surface casings on all temporary
chloroform investigation wells.
In our response, ruSA confirmed that Mill maintenance personnel had been directed to
install 8-inch surface casings on all temporary wells that did not have the casing installed
as a part of the original construction, or where the casing had been damaged or
deteriorated. This was primarily on wells TW4-l through TW4-9. In addition to the
surface casing, an 8-inch PVC cap with a 4-inch hole for the well casing was to be
installed. On June 28,2004, the wells were inspected and it was confirmed that all wells
in need of repair had been attended to, and the surface casing and well caps had been
installed as directed. The attached photographs confirm the repairs on wells TW4-l
through TW4-8. The surface casing and caps on the remaining wells are in good
condition.
Re:
Lctter to Dane L. Fir;"k
August 26,2W
Page 2
If pu have any atritional commonts please f,cel fre€ to contrct me at 303.3E9.4130, or
Harold Robcrts st 303.389.4150.
ice President and Gsneral Council
Attachment
cc: William Sinclair, UDEQ
Ioren Morton, UDEQ/DRC
Ron F. Hochstein
T. Ke'nneth Miyoshi
Harold R. Roberts
TW4-t
TW4-2
TW4-3
a
T\N4-7
Chloroform Plan
From:
To:
Date:
Subject:
May 19,2002
"Ron Hochstein" <rhochstein @ intluranium.com>
"William J. Sinclair" <bsinclai@deq.state.ut.us>
512110210:05PM
Chloroform Plan
Via e-mail
Dear Bill,
Once again we would like to thank you
for taking the time to meet with us on
April24,2002 to discuss and conf irm
the approaches to be used in furthering
the chloroform investigation. I
apologize for the delay in getting this
to you but as I mentioned last week at
Scottsdale there was one minor question
that we were wanting some clarification
on, which we received.
The following summarizes our
discussions in that meeting and the
previous meeting held on April 17,2002.
Vertical Sampling to address question of
DNAPL
Objective:
Vertical Sampling will be used to test
for DNAPL.
Methodology:
A sample will be collected at one point
at the bottom of each sampled well by
use ol passive diffusion bags.
lnterpretation:
ln any well in which the chloroform
concentration of the sample is less than
1% of the chloroform solubility, it will
be concluded that DNAPL is not present.
Conclusion:
Samples will be collected from the
bottom of the 12 existing wells. lf
chloroform concentrations less than 1%
of the solubility of chloroform are
observed, the DNAPL issue is resolved,
-fes!il
I Bill Sinelair - Chloroform Plan
and the plume is defined as a dissolved
plume. One percent of the solubility of
chloroform is assumed to be 80,000 pg/L.
Brushy Basin Contour Map
Objectives:
1. Further define surface of
Brushy Basin using appropriate existing
data and data from the new fully
penetrating wellto be installed
adjacent to MW-4.
2. Develop updated map of the
top of the Brushy Basin
1. IUC will drill a well down
gradient of and in close proximity to
MW-4.
2.IUC will
incorporate data from this well and
additionalwells and borings that have
verifiable elevation data as DEQ
requested, and will submit an updated
map.
The ultimate abandonment of the existing
MW-4 will be based on the determination
that the conditions (i.e. chloroform
concentrations and results from split
sampling) have stabilized and are
similar in MW-4A to those in MW-4.
During the drilling of MW-4A, core will
be recovered, to the extent possible,
from immediately above and below, and
throughout the saturated zone.
Hydraulic Analyses
Objective:
Reevaluate K values.
Wells to be evaluated:
Pump tests will be done on MW-16 through
MW-19, MW-1, -3, -5, -20, -22,andall
wells with K value calculated based on
data f rom historic slug or packer tests
to generate the data for calculation of
K values. K in area of the TWs will be
evaluated during a long{erm pump test
fEitt sinetiir - Chloroform Paoe 3 isrrr: -!
-r.'i:..
;:,j--:Y- J
(see below).
A set of assumptions to be applied in
the calculation of the hydraulic
conductivity for each well will be
determined. Hydro Geo Chem's WHIP
software (copies of WHIP documentation
was provided in the meeting ol April24,
2OO2) andlor AQTESOLV will be used to
interpret the field data. Loren Morton
to advise Stewart Smith if, after review
ol the WHIP documentation, use of WHIP
will be acceptable to DEQ. After the
initial analyses of the field tests have
been completed, Stewart Smith will meet
with Loren Morton to review the data and
compute a reasonable range of K values
and, if possible, an agreed-upon K value
for each welltested.
A reasonable range of K values and, if
possible, an agreed upon value will be
computed for each well.
Water Levels
Objective:
Determine cause of increasing water
levels near MW-4
Data:
IUC will present data that incorporates
the piezometers and the most recent well
level data, including temporary wells
TW-10 and -11.
DEQ and IUC agreed that the wildlife
ponds are contributing to the increasing
water levels in MW-4.
DEO asked IUC to submit the as-built
reports for the piezometers adjacent to
the wildlife ponds, survey data, and
water leveldata, with IUC's
interpretation of why there is
increasing water level in MW-4, and this
issue will be resolved.
Plume Delineationi lsoconcentration Maps
To delineate the area of chloroform
contamination in the perched groundwater
using a level of 80 mg/L as the
definition of the plume boundary.
Data:
A total of eight (8) additional
monitoring wells will be drilled. Three
are to the east of the current area of
investigation, three are to the west
(along the edge of Cell2), and one
each, on the down gradient edge of the
scale house leach field and old Mill
leach field.
lnterpretation:
DEQ indicated that if analytical results
from the three wells on the east and on
the west come back less than 80 mg/L,
allowing for recovery time in each well,
then the plume would be considered to be
bounded.
Tailings Characterization
To characterize chemical and organic
content of tailings solutions.
Data:
Three streams will be sampled by IUC:
slimes drains from Cells 2 and 3, and
the tailings solution from Cells 1 and
3. IUC willtake grab samples of the
solutions, which are pumped from the
slimes drains in Cells 2 and 3. For the
tailings solutions, samples will be
taken from the reclaim discharge in the
Mill during the upcoming Mill run.
Frequency of samples from slimes drain
water will be dependent upon how often
the slimes drains operate. The sampling
frequency for the tailings solution will
be detailed in a sampling plan to be
submitted to DEQ by the end of May.
Chlorof orm Concentration Trends
illSinelair - Chloroform Plan
Discussion:
A letter was provided to Loren Morten
detailing the data used for the
chloroform/nitrate scatter plot provided
as Figure 7 of the November 9, 2001 IUC
Report. (Addresses request on pg 13 of
April 1 1,2002letter from DEQ).
Further data will be collected to
evaluate nitrate/chlorof orm
correlations.
Additional G roundwater Monitoring
Parameters
Carbon Tetrachloride - willcontinue to
be analyzed during the split sampling
events. lf the concentration exceeds 5
mg/L then the sampling frequency will be
adjusted to quarterly sampling.
Chlorof orm Daughter Products
(dichloromethane, chloromethane, &
chloride) - continue sampling the
chloroform daughter products as part of
the annual split sampling event. ln the
event the concentrations of any of the
daughter products exceed the State
limits then the sampling frequency will
be re-evaluated. ln addition, IUC will
consider sampling for the daughter
products prior to and during the agreed
upon remediation of the plume, if
necessary (this would be partially
dependent upon the remediation path
chosen).
Groundwater Redox Measurements - this
parameter will not be considered until a
remediation plan is approved and
implemented, and may only be applicable
for certain remediation techniques.
Nitrogen Species - analysis for
additional nitrogen species is not
likely necessary given the current
environment. Nevertheless, analysis for
additional nitrogen species may be
considered once a remediation plan is
approved and implemented, and may only
be applicable for certain remediation
techniques.
Split Sampling Laboratory Validation
Procedures
Michelle Rehmann and Loren Morten to
arrange for IUC's and DEQ's labs to
exchange and discuss validation
procedures and to ensure that both labs
are following similar procedures.
lnterim Action - Long Term Pump Test
Pending approval on the classification
of the chloroform contaminated water,
the interim action plan appears to be a
positive approach to learn more about
the hydraulic properties of the perched
water zone and to provide interim
reduction of the chloroform plume.
lf there are any inconsistencies with
the foregoing please do not hesitate to
contact me. A final schedule, which
incorporates your concerns and our
discussions, has been sent to you under
separate cover.
Flon Hochstein
President and Chief Executive Officer
lnternational Uranium (USA) Corp.
Phone (303) 389 - 4153
Fax (303) 389 - 4126
"Loren B. Morton" <lmorton @deq.state.ut.us>, "Michelle Rehmann (lUC)'
<mrehmann@intluranium.com>, "Stewart Smith" <stewarts@hgcinc.com>, "Harold R. Roberts"
<hroberts@intluranium.com>, "David C. Frydenlund" <davef @intluranium.com>
ffi
tr Apnl2,2OO2
,1. Motycorp License Amendment and Hearing - t#^ W &'+Wfllry*0";
/2 MoabProjectUpdate ,iMfrWW,*'
[,(, Shrus orMa,ywoodproject; CI'11^C*?r *!' ril,1tr')""?'-i#
Htr / iwwtr f'az":,&,#ff,,e,
Jrr-/ *m,ffi* i;ffiw'q ury^'""'
r -,^"u"aq )kjt5} k l*. fr^*R'/w"tT"
,',n'n+'*"-'fl' - E /o *^fffiT M r,
ytA,I. [Yl,,a ,,,",& kzzoft&) h ryu.^ Af t*_! h-"^-0.
Internationr r'Ti:L(usA) corporation b W rulp#i *,_
j"tP"'**
with
wp a
Utah Department of Environmental Quality
* *\Y- AGENDA
,r,,.GeneralDiscussiononPublicPerceptionofWhiteMesaMillomWr:wl^ ,re:,^. -^t_!1)_?y;;,H,{".,+;,
I 8. Fernald Silos uu,ff+L:n;_W" ^"*U =
/r **ementstatestatus- y4^,* aft_r " s::L"itrh*#trh\*
[-to' na.iation control Board vacancies '"trLr"tr+,*l^- , ^ ra.t r n 0 -t^
r 1. Brienng on New project,rdffir;, P";; -*.r,-F 1f? t0'-0 ^*'
Dbr,rncr ^rd^;0 "-{ 'l+q# "r#^-,{: ^[--,
., ;-- i rn^f^^ :^A - )lrarvr-.il_*O":-m )Ar o/'dorr*
,t+". Jr, c*0,;, "1,% p'p"[!
DOA p^"Xrgcrots e h"L *e, + lb-D"/" * '^oY-ff:^o Lr,'lrr-
cs-:t U$^J" [atazz) -*fr"t1+4 fqf*4 - 'r*JL"* *a
\{
c",La o o
ryy. W :
d^".t*! e( N, rvA/'\ 6 " & luwat< tn^u^P^'A\'Wt""9^^#
I
d,o *"* "pa^? +"rt, "$^
fttnnt' ,uofr,u'fo@ w
tt/^{or',;' Wc'$ -%mwflr"ffI?f#ruo
r-,noclro *il.-+4%
EXPLANATION
temporary Perched well
showing chloroform (uG/L) in
n 7o2 initialsamplingr' 834 second samPlingNS third sampling&16 fourth sampling8116 11/00 samplingU7 0U01 sampling390 06/01 sampling300 09/01 sampling170 1201 sampling
5300rs200 perched monitoring welltt MW.4 showing chloroform
(uGA) in 9/01 and 12101
samPlings
(E 4700 new temporary Perched
monitoring well showing
chloroform (uG/l) in
i n itial samPl ing (21 2@21
NOTE: sample vialfor
tw4-1 broke in
transit to the
laboratory so
no analYsis
was Performed
on 9/01 samPle
RUAw.,t
CHLOROFORM ANALYTICAL RESULTS (uG/L)
FOR TEMPORARY PERCHED WELLS
(4th Quarter, 2001 results for allwells except new
wells tw4-1O and tw4-11 samoled 2l2OO2l
ffaorr€d Dii6 RaldHE Flelrrr
I
*J&qt$ilk'-'r'
EXPLANATION
MW-0o perched groundwater
monitoring well
temporary Perched
groundwater monitoring
well
tw4-lo
NEWTEMPORARY
PERCHED GROUNDWATER
MONITOHING WELL
tlrt; @b"'r0J* ]& aotna- lr
PERCHED ZONE CHLOROFORM IN UG/L
(4th quarter 2001 results for al! wells
except new temporary wells sampled in february,2002)
lppinod Deio Horgffi FICUB
\\
ll
ltlll
'55E0
5570
5560
55505540
5530
5520
N
t
-
o Jooo
SCALE IN FEET
EXPLANATION
. TT-11 PTRCHED ilONITORING UEIJ.- 55t3 stto*rc wATER tEvEL lN FEEr (^xsL)
" 5s2z IETP(NARY PEROIED XONIoRNC UTE.T
s{oHNG W T€R tEvEL il FEEI (AilSL)
-
5585 W tER TEYEL CXnmrrR, oA$lED *IERE UNCERTAIN
. WATEH LEVEL GONTOUR MAP
4th QUARTER,2OOI WATER LEVELS FOR AI.I WELLS EXCEPT }GTY TENPORARY WAJ-S
SAT|PIED I{ FEBRUARY, 2OO2
HYD\O GEO CHEM, INC.
En vi ron m rlt<!!i e n r e,t" Te ch n o I og.t,
April 19,2OO2
Mr. William Sinclair
Utah Department of Environmental Quali
Division of Radiation Control
168 N. 1950 West
P.O. Box 144850
Salt Lake City, Utah 84114-4850
Dear Mr. Sinclair,
This letter is a response to item #l 1A of your March 7 ,2002letter to International Uranium
(USA) Corporation regarding Figure 7 of the chloroform update report dated November 9,2001.
The data provided on this figure included the 4fr Quarter 2000 and 1't Quarter 2001 chloroform and
nitrate analytical results for MW-4 and the associated temporary wells at the White Mesa Uranium
Mill site. The 2nd Quarter 2001 data that appeared in Table 1 of the report were not included in
Figure 7. The scatter plot shown in Figure 7 was generated for interpretive purposes prior to my
receipt of the 2nd Quarter, 2001 data but was inadvertently not updated at the time of report
preparation.
Anached is an updated plot showing data from the 4fr Quarter, 2000 through the 4m Quarter,
2001. Neither the previous nor the updated plots contain data for TW4-6, because this well has
generally been non-detect for both chloroform and nitrate. These data would therefore plot at or very
near the origin, and would not be distinguishable from other data plotting near the origin. They also
would not be suitable for computing correlation coefficients because their inclusion would result in
a falsely high correlation coefficient. As you can see, however, inclusion of additional data on the
scatterplot does not significantly change the pattern nor does it change HGC and IUSAs
interpretation of the results.
Stewart J. Smith
Senior Hydrogeologist
G:V I 8000EORRESFO204 I 9WS.wpd
,C
ffiit""\l$^ ^d
il)U,,"S
EL" r,,rrop
Sincerely,
5I West Wetmorc, Suite I0I Tucson, Arizona 85705-1678 $520.293.1500 520.293.1550-Fax 80O.727 .5547 -Toll .r-rec
ooo!tA
o
=
E
r-r oP9d60
o
tttttltltl_____t______t_ttttlltlltttllttIIlltltltt-t------t---llttlttltttltltlllttlltttlttttttttttttlttttttttttttt_t______l_____lltttlllllttlttllllltttttt
-l------l-----ttttttllttlltttltt
iooi-l---li{ttorfr!
i i ioi ittrll| | f -o-I itrllltttllrttlltrllriiriiI loor i
ttllli i.iiittlllrttllrrttltrttltttlli i l or ii i ol l lttttliit iitrrlltttlltttrriiioitlrrl?rtl r r i)iiiii
lllll
tllllttlll
ttttl
trtlli i i io iOl r,tttllrrttl
--t- r-----r- F-----l-ttrlltttllrrtlltttllrttllrrttlttrllrrttltttrltttllrtttrtttllttrll--l-- | -----r - t------t-tttrltttttttttrttttrtttttrtttrtltttltrli i i ioirtttl
(yeu) olerllu
tuF
=Eae2u><srrU)t
Egeroo!JtlJoIIOogRhfro-o- -5>=
E8ErgH
HF=