HomeMy WebLinkAboutDRC-2001-001062 - 0901a068809be203INrrnNnuoNAL
UneNrutr,r (use)
ConponATroN
Ilrleperrclence Plaza, Suite 950 . 1050 Seventeenth Street . Denver, CO 80265 o 303 628 7798 (main) . 303 389 al25 (fax)
September 8, 2000
VIA OYERNIGIIT EXPRESS
Mr. William J. Sinclair
Director, Division of Radiation Control
Utah Department of Environmental Quality
P.O. Box 144850
168 North 1950 West
Salt Lake city, uT 84114-4850
Submittal of Groundwater Information Report Revision Package for the Groundwater
Discharge Permit for the White Mesa Mill
Dear Mr. Sinclair:
The enclosed are responses by International Uranium (USA) Corporation ('IUSrr"') to the Utah
Division of Radiation Control ("DRC") Request for Information Related to Site Hydrogeology
dated February 7,2000. These responses constitute the revision package to the Groundwater
Information Report (the "GIR") submitted by IUSA to DRC in May of 1999. This package shall
be referred to as the Groundwater Information Report Revision Package (the "GIRRP").
These responses reflect refinements to the defined questions based on discussions between IUSA
and DRC at a meeting at DRC offrces on April 7,2000, and a subsequent meeting on August 14,
2000. As always, I can be reached at (303) 389-4130.
Vice President and General Counsel
DCF:smc
Enclosure
Re:
{'::\
I rBilg- s
dvid O. Frydenlund
Mr. William J. Sinclair
September 8, 2000
Page2 of2
cclatti Larry Mize, UDEQ Division of Water Quality
Loren Morton, UDEQ Division of Radiation Control
Bill von Till, NRC
cc dout att: Dianne Nielson, UDEQ
Dave Arrioti, S.E. Utah Health Department
t
I
t
I
t
t
I
I
T
t
t
I
I
T
t
I
I
T
I
INrrnNeuoNAL
LineNtul,t (usn)
ConponATIoN
Independence Plaza, Suite 950 . 1050 Seventeenth Street . Denver, CO 80265 . 303 628 7798 (main) . 303 389 4125 (fax)
November 9,2001
VIA OVERNIGHT MAIL
Mr. William J. Sinclair
Director, Division of Radiation Control
Utah Department of Environmental Quality
P.O. Box 144850
168 North 1950 West
salt Lake city, uT 84114-4850
Re: Update report regarding IUSA's October 4, 200 report on investigation of
elevated Chloroform Concentrations in Perched Groundwater at the White Mesa
Uranium Mill. Utah Division of Water Quality Notice of Violation and
Groundwater Corrective Action Order; Docket No. UGW20-01.
Dear Mr. Sinclair:
This transmits International Uranium (USA) Corporation's ("IUSA's") Contaminant
Investigation report entitled Update to Report -"Investigation of Elevated Chloroform
Concentrations in Perched Groundwater at the White Mesa Uranium Mill near Blanding.
Utah". This report is an update to the Contaminant Investigation Report (the "CIR") that
IUSA submiued to the Utah Department of Environmental Quality ("UDEQ") on
October 4,2000 (IUSA and HGC, 2000), and addresses questions raised by UDEQ's
letter to IUSA in response to the CIR dated June 7, 2001. Items addressed in this report
are also pursuant to a meeting between IUSA and UDEQ on October 5,2001.
Please note that this report includes a recorrmendation for installing two additional
temporary wells, for the purpose of additional delineation of the areas of the perched
zone containing chloroform, and in the locations discussed during the meeting with
UDEQ. IUSA would like to install these two additional wells during the week of
I
I
I
I
I
I
I
I
T
t
I
I
I
I
I
t
I
t
I
Mr. William J. Sinclair
November 9,2001
Page2 of2
December 3, 2001, so that the wells can be sampled during the first qtarter 2002
sampling event. Should you have any questions or contments concerning this or any
other part of this report, please contact me at 303.389.4131.
Sincerely,
Michelle R. Rehmann
Environmental Manager
cclatt: Larry Mize, UDEQ Division of Water Quality
,rLorenMorton, UDEQ Division of Radiation Control
Ron F. Hochstein, IUSA
David C. Frydenlund, IUSA
Harold R. Roberts,IUSA
Richard E. Bartlett, IUSA
Ron E. Berg, IUSA
Stewart J. Smith, Hydro Geo Chem
S:\STAFFWRR\Chloroformlnvestigation\commentsonGClRreport\transmittalLtrUpdateChloroformlnvestigationReport
UPDATE TO REPORT(INVESTIGATION OF' ELEVATED CHLOROFORM CONCENTRATIONS IN
PERCHED GROUNDWATER AT THE WHITE MESA URANIUM MILL NEAR
BLANDING, UTAH"
Prepared By:
INTERNATIONAL URANIUM (USA) CORPORATION
Independen ce Plaza, Suite 950
I 050 Seventeenth Street
Denver, CO 80265
and
HYDRO GEO CHEM, INCORPORATED
5l West Wetmore Street, Suite 101
Tucson, A285705
November 9,2001
I
I
I
I
I
I
T
I
I
I
I
I
t
I
I
1.
2.
TABLE OF CONTENTS
TNTRODUCTION AND SUMMARY.............. ..............3
DNAPL ISSUES ........52.1 Vertical Profiling of Existing Perched We11s........ .................... 52.2 Potential for DNAPL to Exist in the Vadose Z,one......... ..........62.3 Evaluation of the Potential for DNAPL to Exist in the Saturated Zone.......................72.3.1 Detected Concentrations with Respect to Chloroform Solubility............. ..............72.3.2 Comparison of MW-4 to Nearby Temporary Wells ......... 102.3.3 Vertical Profiling of MW-4 .......... ll2.4 Brushy Basin Contact .......123. ADDITIONAL PLUME DELINEATION .................... 153.1 Analytical Results from Temporary Wells................ ............. 153.2 Hydraulic Gradient in the Vicinity of MW-4 ....... 163.3 Need for Additional Wells to Delineate Chloroform in the Perched 2one.................173.4 Temporal Trends in Chloroform Concentrations and Relationship to Nitrate ........... l84. COORDINATES REQUESTED By UDEQ ................205. PERCHED ZONE PERMEABILITY .......,.275.1 Permeability Distribution of the Perched Zone ......... .............215.2 Conglomeratic Zone Near MW-4............... ..........216.. ONGOING GROUNDWATER MONITORING AND REPORTING........................,...,,.237. ADDITIONAL GROUNDWATER MONITORING PARAMETERS ............257.1 Dichloromethane Analytical Results From Split Sampling........... ...........257.2 Direct Measurement of Redox Conditions in the FieId......... ...................267.3 Feasibility of Enhancing Reductive Dechlorination In-Situ...... ...............26
8. REFERENCES ............28
I
2
J
4
5
6
7
8
9
FIGURES
Chloroform Analytical Results (pg\L) for Temporary Perched Wells
Contour Map of Top of Brushy Basin, White Mesa Uranium Mill Site
Water Level Contour Map December,2000, White Mesa Uranium Mill Site
Water Level Contour Map September - October, 2001 White Mesa Uranium Mill Site
Proposed Locations ofNew Temporary Perched Wells
Nitrate Analytical Results (mg\L) for Temporary Perched Wells
Scatterplot of Chloroforn vs. Nitrate, Temporary Perched Wells and MW-4
Perched Zone Permeability Based on Pump and Slug Tests, and Constant Head Packer
Tests, White Mesa Uranium Mill
Approximate Intervals of Conglomeratic Sandstone Logged in Temporary Well Borings
A
B
C
D
E
APPENDICES
Vertical Profile Sampling Bailer
Use of Soil Gas to Detect DNAPL
Coordinates Requested by UDEQ
Analytical Results
U.S.G.S Manual Chapter 6.5 and Hydrolab Parameter Specifications
I
I
I
I
I
I
I
I
I
I
t
I
I
I
I
I
I
I
T
1. INTRODUCTION AND SUMMARY
International Uranium (USA) Corporation ("IUSA") submitted a Contaminant
Investigation Report entitled "Investigation of Elevated Chloroform Concentrations in Perched
Groundwater at the White Mesa Uranium Mill near Blanding, Utah" (the "CIR") to the Utah
Departrnent of Environmental Quality ("UDEQ") on October 4,2000 (IUSA and HGC, 2000).
This report has been prepared as an update to the CIR,
IJene*rr.to IUSA Clffrm.in response to the CIR. Items addressed in this report
are also pursuant to a mseting between IUSA and UDEQ on October 5,2001.
This report discusses analytical results to date, trends in chloroform concentrations in the
vadose or perched water zones at the site, and additional delineation of the areas of the perched
zone containing chloroform. This report also discusses the potential for degradation of
chloroform in the perched water and the feasibility of enhancing in-situ reductive dechlorination
of chloroform.
2
Important results of the investigation to date are that:
V&1*' z /oaii
- >o:l etrA 5r419e7 t r^'I
,""r1*l*J t<,'1V.5
'( ltrlql tu,c Ee,pn
Arr'A, ?le lh hF'
1. The data do not indicate that chloroform DNAPL exists at the site either in thi?adose
zone or the perched water zone.
2) The data do not indicate that a continuing chloroform source exists. - I
4 3) Data are consistent with the abandoned scale house leach field as the source for thet. MW-4 chloroform, and for the chloroform to have entered the perched water as a
"slug" over a relatively short period of time (l-2 years).
4) Additional wells are needed to delineate the chloroform plume to the west and O/c
northwest of MW-4.
S:\STAFF\MRR\Chloroformlnvestigation\UpdateChloroformlnvestigationReport I l_9_01
I
I
I
I
T
I
I
t
I
I
I
I
I
I
I
I
I
I
t
5) Rapid degradation of chloroform in the perched water is unlikely without +--
enhancement. ':* pr'rrr^ q 4 lloz r-- G to gtllya+a priJ;z nJ eyv,t.,-,n**| - b e '- tt I e*nlo f/.,t2-,
Additional delineation of the chloroform in the perched water is proposed to be
accomplished by adding two new temporary wells to the west and northwest of MW-4, and by
vertical profile sampling in selected wells, to define the chloroform concentrations in three
dimensions. Additional characterization of groundwater gradients in the northeast portion of the
site, which have been changing and may affect chloroform migration in the perched water, will
beaccomplishedbyphasedinstallationofpiezometers.Inaddition,ffi
ffig of chloroform and will transmit such data to the UDEQ in
accordance with a schedule provided herein.
4SfsTAFF\MRR\Chloroformlnvestigation\UpdateChloroformlnvestigationReport I l_9_01
T
t
I
I
I
I
I
t
I
I
I
t
I
I
t
I
I
I
I
\
\-i.tr-lI
r;s
"\
E'
3
-.-$
ql
{
-s\
s,\\<
3 -7-
< jr..,
-"+ s\
6 )'
:!:--{
6i-H{.) V\
*$
./ --+'-a{,/
2.DNAPL ISSUES
UDEQ has expressed concern that dense, non-aqueous phase liquid (DNAPL)
chloroform may exist in the vadose and perched water zones in the vicinity of MW-4 and the
abandoned scale house leach field. This section uses existing soil gas and groundwater data
from the site to demonstrate that DNAPL does not exist in either the vadose or perched water
zones at the site, and that no evidence for continuing chloroform source exists.
2.1 Vertical Profiling of Existing Perched Wells Vr l
^h"jInitial sampling to evaluate the potential for stratification of chloroform concentrations p- pl,
was conducted in the fall of l999,and reported in the CIR. As indicated in the CIR, multi-depth Xy
sampling of MW-4 was conducted dwing the week of Septernber 27, lggg. Two samples were f;!!:
collected, one from the top of the water column (approximat ely 70-73 feet bls) and one from the T,:*
base of the water column (approximat ely ll7-120 feet bls). The shallow sample was collected 4- )J ,
,L*,_
first. Both samples were collected using disposable teflon bailers. Samples were collected r,+,o-J,rL
6dg\5
without purging the well, to prevent disturbance of the water column. (,'l t t" lo 1 ,
ll.op,-o*"'
F.B)
Samples were collected in 40 ml VOA vials, with no headspace, capped, labeled, and
stored in a cooler with blue ice at 4oC for shipment to the offsite analytical laboratory (Energy
Laboratories, Casper, Wyoming). Ghlorofoun was detected in the shallow sample at a
concentration of'6#00 pB/Lrand in the deep sample at a concentration of 5,820 pg/L. Becur.. 7 r,*^
Y
concentrations did not increase with depth, the presence of DNAPL (i.e., free chloroform )J
product) was not indicated in MW-4.
S:\STAFRMRR\Chloroformlnvestigation\UpdateChloroformlnvestigationReport I l_9_01
l,&'
I
I
I
t
T
I
I
I
t
t
T
T
I
t
I
I
I
I
As UDEQ has requested further evaluation of the vertical distribution of chloroform
concentrations, a Sampling Plan, with the Data Quality Objective of evaluating the potential for
stratification of chloroform concentrations in the Chloroform Investigation wells, will be - D).\
developed. This Sampling Plan will include the following key features:
-7bmi,g
Procedure to collect samples from discrete depths using disposable bailers with
double check values
Requirements for field records
Methodology for evaluation of results
***n of the feasibility of testing experimental USGS procedure using passive
diffirsionbags#,toprovidecomparisontoconventionalmethod
results
a
-
at';
This sampling will take place in th($fst quarter of 2002
Appendix A contains manufacturer specifications for disposable bailer designed to collect
samples from discrete intervals in groundwater.
2.2 Potential for DNAPL to Exist in the Vadose Zone
Soil gas sampling is a useful means to detect the presence of pure phase volatile organic
compounds (VOC) that reside in the vadose zone. This applies to chloroform, which has a vapor
pressure of 160 mm Hg. As discussed in Appendix B, soil gas concentrations in excess of l0%o
of a VOC pure phase saturated vapor pressure are indicative of the presence of the pure phase.
For chloroform, soil gas concentrations in excess of 100,000 pgll, would be indicative of pure
phase. - )a+ L* ,,I, ,,* [*1,*,,{ ** cAA pfbF;l{, fi {lw s,-l;7 po',-l
- LL il4 tcql s,rtu1 - y^+l;1 pn',.t J"ofk,'4,5 t"tt;s Ff$s r1lfl1t Vt f"t "
The possibility that residual p*. br,uli cntorJrorm exists as a DNAPL*iriJX\l{g\,f#tp'
vit ,n.,lTt,f 4 .^.r;du $,- il< s,,l T" srnl[u a,if,iileJ ,.11 lonl l, ril
?oo ( ,lir Ly Ap p+ {ix B , 4hllqq f Rc e"+inf , p, p\ t
S:\STAFAMRR\Chloroformlnvestigaiion\UpdateChloioformlnvbstigationReport il_l_6t \ 6
d',1 Jroit,,.ltl l,;,t<
Yl'* ay"" a,hr^^ J tL 5r,li
Srnplil fa,\-t.
, Ayh'
I
I
I
I
I
t
I
t
I
I
I
I
I
I
I
T
I
T
I
zone beneath the abandoned scale house leach field is not supported by the trace level *"ri^{' r
soil gas chloroform concentrations measured in the vicinity in 1999 (<1 pgll). The measur"O #,,:r'i
concentrations are indicative of low concentrations of chloroform dissolved in vadose pore
waters. Furthermore, the possibility that DNAPL exists within the perched zone is not supported /"ro,
by the relatively low chloroform concentrations detected at wells TW4-5 and TW4-9, which *" mL
8 '1,= ?qrh''- 7 **
the temporary wells located closest to the leach field (Figure l). t ",*";
2.3 Evaluation of the Potential for DNAPL to Exist in the Saturated Zone
r, r\ ^1.,,^,,n1< u*plnrt;- r**,,b^ {Lu* lou' co-c's ot* J'* +'ll:ry:.i)'Ii*l;* vaJrs<
hrryi''1 tr'''"''" ;-
",
..^.. f 6 'psid*l cr fia-pLs* Dl*pL ") dr Lf;-- r.* .l;r4r,
lr^rrg*- ?4'.1,0'i 7 ''o';t t- ps'l^"1 t' 11'*-pL
ac/rla t4'q+ lan'f dntn^q
*, +" pl,
p"#*'*
za>e
The possibility that chloroform DNAPL may exist in the perched zone beneath the
abandoned scale house leach field and/or may traveled downgradient along the Brushy Basin
contact toward MW-4 is remote. This possibility is not supported by data collected from the
Jl -!t/\A= temporaryperchedwellsatthesiteorfromMw-4. - 5bffr,..hL, ':!,Yi:! T,/ltr+u\tt
/111,-4 -, ^-f ,1",*S dole*.,1L 5r 'i hbn/trQ
2.3.1 Detected Concentrations with Resoect to Chloroform Solubility I , , , i
-lrolNh""I4
Perched water chloroform concentrations exceed ing trYaof the solubility of chloroform
(8,000-101000 mg{) would have to exist to indicate the presence of DNAPL (Cohen and
Mercer, 1993). The highest groundwater concentrations detected at the site (<7 mgtL) are more
than 3 orders of magnitude lower than the solubility of chloroform. While the solubility of
chloroform in the perched water may be slightly depressed by the presence of trace
concentrations of carbon tetrachloride (500 mglL dissolved in the pure chloroform used in the
ore assay lab as suggested in UDEQ's June 7, 2001 letter to IUSA) and by the presence of
inorganic solutes in the perched water, as detailed below, it can be demonstrated that this
depression is not significant.
SlsTAFRMRR\Chloroformlnvestigation\UpdateChloroformlnvestigationReport 1 l_9_01
T
t
I
I
I
I
I
I
T
I
I
I
I
I
I
I
T
t
T
The effoet of 500 nrg/l corbon tetrachloride contaminant or'd$ solt$ility of chlorcfornr
used at the site \uouffi.,bs"fiq!*igibb, potentially h*,sering the 'soltrbitrty bV less than 0,05.0*, ry
because the mole fraction of carbon tetrachloride in the mixture would be less than 0.05Yo. The
presence of significant concentrations of other solvents in perched groundwater near MW-4,
which could potentially lower the solubility of chloroform, is not supported by past analytical
results. Furthermore, as detailed below, the impact of salinity on chloroform solubility, which
will depend on the concentrations of salts in the water, is also not significant.
The solubility of a neutral organic compound such as chloroform in water containing
dissolved inorganic salts is generally lowered as the concentration of the inorganic salts increases
(Schwarzenbach, 1993; Garrels and Chdst, 1965; and Harned and Owen, 1950). The depression
of solubility is generally not significant, unless the concentration of the salts is greater than about
0.1 molar (M). At MW-4, the dominant anion is sulfate, which averages approximately 2,000
tu,1
mg/I, or 0.021M, based on data presented in TITAN, 1994. The average concentrations of
chloride, sodium, calcium, and potassium ions average approximatrfy O.f,O7r: M, O.(trM,
Cqk
0.010M, and 0.0003M, respectively, at MW-4. These concentrations are too low to have a
significant effect on the solubility of chloroform in the perched water, t*g-*f:arqrlg_plgpllry
by a few p-,elqant. Even in seawater, where salt concentrations are orders of magnitude higher
than in the perched water, the depression of solubility of neutral organic compounds is typically 4-
less than a factor of 2 (Schwarzenbach,1993).
Schwarzenbach, 1993, provides a methodology for estimating the impact of salinity on
the solubility of neutral organic compounds. Salting constants (Kr) for various types of salts are
provided, with the highest that of sodium sulfate (K, : 0.55). Using the formula provided in
Schwarzenbach,
S:\STAFF\MRR\Chloroformlnvestigation\UpdateChloroformlnvestigationReport I l_9_01
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
CIl,,,, - 19-K*lmttl, gsat
where CIi*r: solubility of neutral organic compound in salty water,
K. : salting constant,
C';' : solubility of neutral organic compound in pure water,
and assuming that
Kr:0.55, and
[salt] : 1SO+J :0.021M,
the solubility of chloroform in perched water is calculated as 0.975 Cf' or 97.5Yo of the
solubility in pure water, a reduction in solubility of less than3%o.
The actual reduction in solubility is likely to be lower for chloroform, however, because
the salting-out effect is lower for polar organic compounds (Schwarzenbach, 1993). ,Besrso
dooef.orm is wlccilhsf polr, wing to it's.asymmetry, which accounts for it's high solubility
(10 times that of carbon tetrachloride, which is non-polar), &pffi*,@eoion ofphlorsfum*.
Wlr&iliry in Bff.sbed wdq,io likely, &'be less thffi 2,5Vo. Because the estimated reduction in " /'
chloroform solubility is so small, and is nearly an order of magnitude lower than typical
laboratory analytical error of + 20Yo, the effect of perched water salinity on the solubility of
chloroform can be ignored.
Furthermore, the assumption that DNAPL is not indicated unless dissolved groundwater
concentrations greater than l%o of the solubility of the pure product are detected (Cohen and
Mercer, 1993) is considered reliable because the lowering of solubility by other factors such as
the presence of other solvents, is taken into account in this assumption. 7
S:\STAFAMRR\Chloroformlnvestigation\UpdateChloroformlnvestigationReport I l_9_01
I
I
t
I
I
T
I
t
I
I
I
T
I
I
I
T
I
I
I
2.3.2 Comparison of MW-4 to Nearb), Tempora{v Wells
Chloroform concentrations in the past have been higher at MW-4 in comparison with
nearby temporary wells, although these differences have been slight in recent sampling events.
The differences do not indicate DNAPL that may be present at MW-4 or that these differences
result from well construction factors, possibilities suggested in UDEQ's Jtrne 7, 2001 letter.
Recently measured chloroform concentrations at MW-4 are not significantly higher than
at nearby temporary wells. Concentrations at TW4-l and TW4-2, located immediately
downgradient and upgradient, respectively, of MW-4, are within approximate ry {N ana tfro,
respectively, of concentrations at MW-4 as of the June 2001 sampling (Figure l).
Concentrations at MW4 are within (* orconcentrations at TW4-2 in the September ,2001 'CLGn,l*r
sampling. (Concentrations betWeen MW4 and ltlf;fi* cannot be compared fu*a{uptcrfule
SeOl sampling because the TW4-t is #"{**
rnrp*mn$. Th^ese results guggest that differences in concentrations are more likely the
r/r, ^ r"tr\ r"/-/Lf-* ?
result of recover! than well construction factors or the potential presence of DNAPL at MW-4 as
suggested by UDEQ. Differences in concentration between MW-4 and nearby temporary wells - Ya,i
htb -4
would be expected to be much larger if DNAPL were present near MW-4. The slightly lower ,rilvce
concentrations at the nearby temporary wells, and the reduction in the differences in nearby ry
temporary wells relative to MW-4 over time are consistent with recovery of temporary wells
I
from the air rotary drilling process (as discussed in Section 3). In other words, the reason that a*\ l
1r2', i\ {'
MW-4 has had the highest concentrations is more likely due to its age rather than construction.
Furthermore, it is highly unlikely that chloroform DNAPL could have migrated more
than 1,200 feet from the source area (the abandoned scale house leach field) to the vicinity of
MW-4. The Buno Canyon/Brushy Basin contact is an erosional surface with numerous small-
S:\STAFF\MRR\Chloroformlnvestigation\UpdateChloroformlnvestigationReport I l_9_01 l0
I
I
I
I
T
t
I
I
I
t
I
I
I
I
I
I
I
I
t
Assuming the following conditions,
1l'b\ I , q|s at
*{o;#1{*0"*o reach nerd: 20 reet I -- L'' A
{- , Average saturated thickness : 30 feet (conservative) -- I !: . o,0l(, t , fu4
--521,sn4 y', i;:[E:iffi1ff:;Xff:;io: ?iJf#-l d"7 h -52t ruoa,
?\rfi =
=o r',{'^';,1.'Y
Approximately 520,000 gallons of perched water have passed beneaih the leach field ovefitd- '
past 20 years. (The average hydraulic conductivit, *:*trj_"*."*rrXf,t}lril,fyl,rt1rl.*^"g,*,
Mw-4 in 1999, which yielded a transmissivity of 38'A ft' laay. oiviailrg this Av tn"o"kfi#a( v' t"'!
scale irregularities that would prevent movement of any DNAPL very far from the source area.
Even if small scale inegularities did not prevent the movement, the farther the DNAPL moved
from the source area, the more spread out it would become, exposing more surface area to the
groundwater and making it easier to dissolve. Also, it can be demonstrated that more than
sufficient volume of water has passed beneath the abandoned leach field source area to have
dissolved all of the chloroform potentially disposed there.
thickness of the perched zone at that time, approximately 4,0 feet based on a depth to the Brushy
-ak,Prr,Jctg o yir,l*'rntr, rL,rl , *yler3r 4r I k-a
Basin o!08 f.gll} depicted in the geophydical log of MW-4, yields an average hydraulic b
conductivity of I fooVday.) Assuming a solubility of chloroform of 8,000 mg/I, or S '>< tOi )
^Ao-t
gallon chloroform/gallon water, sufficient perched water has flowed beneath the source area to 1 trU4l
)@''
have dissolved more than 10 times the amount potentially used in the ore assay laboratory. t u>"' i m
' -*';
2.3.3 Vertical Profilins of MW-4
As stated above under 2.1, previous vertical profile sampling of MW4 in 1999 did not ) a A
f:
indicate that concentrations increased with depth, as would be expected if DNAPL existed ,"* \ P,{o
r".-,] (
Mw-4. qle- p^Llu^ bf tttL-l ucti d- 1 ,
k*'t lQho,^ fp-+"l p*ft;f ,u\ " t,^,',0
S:\STAFRMRR\Chloroformlnvestigation\UpdateChloroformlnvebtigationR"po.tii_l_Ol I 'vt\ ) ll
I
I
I
I
I
I
I
I
I
I
I
t
I
I
I
I
I
I
I
Samples were collected from depths of approximately 7l feet bls (approximately 2 feet
below the top of the water column) and from near the base of the well (approximately 118 feet
bls) using a disposable bailer. The shallow sample was collected first, then the deep sample. If
chloroform DNAPL were present at the base of the well, concentrations would be expected to be
significantly higher there than at the top of the water column. Instead, sampling results showed
no significant difference in concentration between the deep and shallow samples. Chloroform
was detected at a concentration of 6,200 pglL in the shallow sample and a concentration of 5820
5,280 pgll, in the deep sample.
More rigorous vertical profile sampling of MW-4 is proposed to characterize the vertical O/t
distribution of chloroform concentrations at the site as discussed above in Section 2.1.
Brushy Basin Contact
ry'*'*t.(
UDEQ has expressed concern that the Brushy Basin contact at MW4 may be depressed
and may harbor a pool of chloroform DNAPL. This concern is based on a reported contact depth
of 125 ft below land surface (bls) at MW-4. However, the Brushy Basin contact at MW4 is
considered to be at a depth of 108 ft bls based on lithologic logs of nearby temporary wells TW4-
U
-+ n +*.*'.--'t-l<4\ ,r'o'I*+"'+ 'L J'-t-
''- t-t l. . t,,^,itro :a?tLta- O^l"L1 a^' "--
PPI)'k"#
fze "
lr{k
|,TW4-2,TW4-7 and TW4-8, and on the,geophysical log for MW4 provided in TITAN, 1994.
{-, p^*L/,,,.+ L* b} hrl- \e-op}"vs* I 4 d l/lLlr7v
The geophysical log for Mw-4 ffirWo'?-rrro* , tgg4, depicts the Burro
CanyonlBrushy Basin contact at 108 ft bls. This depth is consistent with the lithologic logs of
nearby temporary perched monitoring wells TW4-l,TW4-2,TW4-7, and TW-4-8, which depict
the contact at approximately 103 ft, 105 ft, 98 ft, and 105 ft bls, respectively. This would place
the base of the screened interval of MW-4, which extends to Il2 ft bls, approximately 4 feet
below the contact.
S:\STAFF\MRR\Chloroformlnvestigation\UpdateChloroformlnvestigationReport I l_9_01 t2
t
I
t
I
I
t
I
t
I
I
t
I
I
I
I
I
I
I
t
The 125 foot depth that has been previously reported for the Brushy Basin at MW-4 is fo-..'
apparently based on the well completion diagram provided in TITAN, 1994, which depicts a
contact between "sandstone" and "claystone" at 125 ft bls. However, no additional lithologic
information is provided to indicate whether the "sandstone" is continuous from the surface to
125 ft bls, or whether the "sandstone" is a lens or layer encountered within the Brushy Basin.
The formation names are also not designated on the diagram. -+ - ** \"1 So^ bn
5 r'^)"^ "-1Vn1*('j/ ' a^i?;*"v* 'T1-') { -5 '
During drilling of temporary wells TW4-3 and TW4-7, the borings were extended into
the Brushy Basin to characterize the lithology of the uppermost portion of the formation. Thin
layers or lenses of sandstone and/or conglomeratic sandstone were found at a depth of
approximately 108-l 12 ft bls in TW4-7, 10 feet below the Brushy Basin contact, and depths of
approximately 125-132 ft bls in TW4-3, 25 feet below the contact. These lenses or layers in the
Brushy Basin were separated from the base of the Burro Canyon by shales, siltstones and
claystones. These low permeability materials would hydraulically isolate the lenses or layers of
sandy/conglomeratic material within the Brushy Basin from the Burro Canyon.
Therefore, any DNAPL potentially present near MW-4 would be expected to enter the
well screen, and to raise the measured chloroform concentrations at MW4 nearer the solubility
With regard to the geophysical log of MW-4, there is a clear response in the natural /1qq
P" I'n{
garnma at 108 ft bls. This response is also consistent with the natural garnma response at the b^{1.,
Brushy Basin contact as depicted in other geophysical logs at the site and is consistent with the d'l fL
lithology logged at nearby temporary wells. Because the geophysical log depicts the Brushy
r'" \rf t
Basin contact at 108 ft bls in MW-4 and because this is consistent with lithologic logs of nearby
temporary wells, the 108 foot depth is considered reliable.
c{ry'
ua-a
b*fL
&{"
WI
hrsL
lr- il
*-,\
5-t , ti
S1sTAFF\MRR\Chloroformlnvestigation\UpdateChloroformlnvestigationReport I l_9_01 13
q,t,
I
T
t
I
t
T
I
I
I
I
T
t
I
I
t
I
I
t
I
eluJl'*
t .].:, tI t
of chloroform (8,000-10,000 mg/l). Because the measured concentrations of chloroform at MW- h'l NIL
uxl\o:t
4 are more than 3 orders of magnitude lower than the solubility, no DNAPL is indicated.
Furthermore, if DNAPL were present near MW-4, concentrations should be at least one to two -r-/i;
orders of magnitude higher that at TW4-1, T&4-zand TW4-4, rather that only 5o/o, l9%o,-and, g,::
€{!2 F<
!-I
P,*rY+ i
I F.
po+a111a-
,1p
f*.
*,,'
AryL
P u*,
4SYohigher as of the June, 2001 sampling.
Installation of an exploratory boring near MW-4 as suggested by UDEQ to characterize
the contact is not considered necessary based on the geophysical log of MW-4 provided in
TITAN, 1994, the lithologic logs of nearby temporary wells, and the lack of evidence for
DNAPL in the analytical data. The depth to Brushy Basin of 108 feet bls depicted on the
geophysical log of MW-4 is consistent with the depths provided in the nearby lithologic logs and
is considered reliable.
A contour map of the top of the Brushy Basin, using the 108 ft depth at MW-4, is
provided in Figure 2.
S:\STAFF\MRR\Chloroformlnvestigation\UpdateChloroformlnvestigationReport I l_9_01 t4
I
I
I
I
I
I
I
I
I
I
t
I
I
I
I
I
I
I
I
3.1
3. ADDITIONAL PLUME DELINEATION
UDEQ has expressed concern that more temporary perched wells are needed to define the
extent of chloroform in the perched water, and that piezometers are needed in the northeast
portion of the site to better define changing water level gradients and to identifr sources of
recharge. This section discussed the distribution of chloroform in the perched water both
spatially and temporally, the need for new temporary wells to the west and northwest of MW-4
based on observed trends in the chloroform data, and the relationship of chloroform to nitrate
which is consistent with a leach field origin.
Analytical Results from Temporary Wells
The increases in concentratioa"detected in most of the temporary we*tuafter installation
are most likely related to recovery of concentratione.,that were lowered as a result of the air
rotary drilling method, and the generally long recovery times expected when wells are installed
in low permeability formations. Temporary wells located downgradient (south) of MW4 are
affected by both the recovery process and by continued southerly migration of the chloroform
Chloroform analytical results for MW-4 and temporary wells are shown in Figure l. The
chloroform plume is bgunped to the south (downgradient) by non-detect results at TW4-6, O/<
although the rece6. [k':i"of 3.p pglt, chloroform, at TW4-6 may indicate arrival of
G1 , 4o_ t,it/ot arzc g*yk t a,5 ^-rl<chloroform at that well. The upgradient weil (TW4-5) and lateral *6tts gW4-7 'and TY.4-g
C$. q*,
show chloroform concentrations in excess of 100 pgll,, although concentrations at tt.r" *.f, y =
Iov.+ 4
are much lower than at MW-4, TW4-l and TW4-2 )w'< 4
'
,[*
A)9. ?)
fh,'. t'<
€.ilp"--
laR
t/. rn r,
SIsTAFAMRR\Chloroformlnvestigation\UpdateChloroformlnvestigationReport I l_9_01 l5
I
I
I
I
t
I
I
t
I
I
t
t
I
I
I
I
I
I
I
plume. These and other temporal trends will be discussed further in Section 3.5. IUSA will
continue to monitor and report results to the UDEQ.
3.2 Hydraulic Gradient in the Vicinity of MW4
The hydraulic gradient in the vicinity of MW-4 has historically been to the south (IUSA
and HGC, 2000). Recent water level contour maps are provided in Figures 3 and 4.
The change in water levels and change in hydraulic gradient to a more westerly direction oL
in the vicinity of the abandoned leach field are recent, and the direction of the hydraulic gradient
during most of the period of migration of the plume was southerly. A southerly gradient still
exists near MW-4 md at the downgradient edge of the plume. The recently detected more
westerly hydraulic gradient near the scale house leach field is of no concern unless a residual a:ll:o+
chloroform source is present, but the assumption of a residual source is not supported by any $ :X'ff,
"-J"pithe soil gas or groundwater data collected to date. IUSA plans to install piezometers, in a phased r._t+ &
J-l
fashion, in the northeast portion of the site to further investigate the increase in water levels *rO t;ild
change in hydraulic gradient. This work will be described in a report to UDEQ due on y
November 16,2001.
The water level map provided by UDEQ in their June 7, 2001 letter to IUSA indicates a
concern as to whether or not there may be a possible groundwater mound near MW-4. . t +
,-v l,c"'.',J*,{ /rao1 5, (r.- f,> I.*-n.r,+ ;* r'u ) ??'t /"16C hryl- u' e I
This feature is likely n{umound but the result of locally semi-confined conditions G'l n
related to the stratigraphy of the perched zone. This type of feature is common in water table ff;ll'
,-!l4('e 2r\
aquifers even where the hosting lithology consists of unconsolidated layered sands and gravel. i 'f i
4 raa 1a,,,
S:\STAFRMRR\Chloroformlnvestigation\UpdateChloroformlnvestigationReport I l_9_01 16
I
T
I
I
I
I
I
I
I
I
I
I
I
I
T
I
I
I
I
3.3
with local interbeds of silt and clay. These small-scale fluctuations in the regional flow field can
be ignored when considering the large scale flow of groundwater and transport of solutes.
Need for Additional Wells to Delineate Chloroform in the PerchedZone
The vertical dimension of the chloroform in perched water will be addressed by vertical
profile sampling as discussed in Section2.l. The lateral dimension of the plume is defined in
large part by the existing temporary well network but further delineation is likely needed to the
west and northwest of MW-4. Additional downgradient delineation may be needed in the future
as the plume continues to move to the south.
UDEQ provided a chloroform isoconcentration map in its June 7, 2001 letter to IUSA.
While this map indicates that further lateral delineation of the plume is needed, to the west and
northwest of MW-4, the chloroform isoconcentration map prepared by UDEQ displays anumber
of, features that are not hydrogeologically reasonable. These features are related to:
I e/l
l) Non-uniform distribution of input data leading to unavoidable errors in computer aJz
gridding and contouring unless specific measures are taken to counteract them,
2) The impossibility of providing hydrogeologic input to the computer gridding and q-L
contouring algorithm such &S, for example, hislo{cal groundwater gradient
information, and
3) The assignment of detectable chloroform concentrations to downgradient wells that g'
have always been non-detect for chloroform
Someofthe@displayedinthemapincludethefollowing:
1) The depicted plume extends farther cross-gradient and up-gradient than down- OL
gradient which is not hydrogeologically reasonable.
SISTAFRMRR\ChIoroformlnvestigation\UpdateChloroformlnvestigationReport I l_9_01 t7
I
I
I
I
I
I
I
I
I
I
t
I
I
t
I
T
T
I
I
The detectable chloroform isoconcentration contours extend up to and beyond wells d.
that have always been non-detect for chloroform, which is not hydrogeologically
reasonable.
"Bulls eye" features occur that are related to the non-uniform distribution of data, - t
choice oi gridding parameters, and unavoidable limitations of the gridding and o k
contouring package. There is no hydrogeologic mechanism that can result in such
features. ?
Unless chloroform is actually detected at the do@adient wells, the downgradient
edge of the plume will always be at or just Ey1ind these same wells that are non-
detect for chloroform, resulting in a plume whose extent is time independent. This is
not hydrogeologically reasonable unless a steady-state condition has been reached.
the map, and the assignment of detectable chloroform concentrations to wells that have been
L uu ar*tJ L*-e art)f,<d u*c\ o.A tlz n[L.
non-detect for chloroform.
IUSA proposes to install ti'r rrrrnts-trrrfrrutftnur*rr rr.rtffi+-afihlyrltLdi-N0i*r'4r
as shown in Figure 5, t to the west and northwest where
control is poor. Additional wells to the east and south may be considered at alater time based on
the results of continued monitoring at the site.
3.4 Temporal Trends in Chloroform Concentrations and Relationship to Nitrate
Figure I shows the chloroform concentrations over time measured in MW-4 and
temporary wells near MW-4. As discussed in section 3.1, initial increases in most of the
temporary wells are likely related to recovery from the drilling process which used primarily air
as a drilling fluid, and small amounts of water as needed to maintain circulation. Increases at
wells upgradient (noth) of MW4 are most likely due to recovery alone, while downgradient
2)
3)
4)
The apparent northwest trend in the isoconcentration contours in the map produced by
uDEe is an artifact resulting partly from the weil dffi'*":{ #";fthwest of MW-4, and
partly from the non-uniform airtriUUti#illutu, the lack of hydrogeologic input in producing'a!
q'4
y'-or
S:\STAFRMRR\Chloroformlnvestigation\UpdateChloroformlnvestigationReport I l_9_01 l8
I
I
T
I
I
T
I
I
I
I
T
I
I
I
I
I
I
T
I
ffi:("
hqr,
bf \'
wells (south of MW-4) are expected to respond to both recovery and continued downgradient
(southerly) plume movement. For example, the rapid increase in concentration at TW4-l after
installation could not likely have resulted from recovery alone, but must also have resulted from
movement of the leading edge of the plume past that well. Increases in concentration from non-
detect to 3,200 VglL at TW4-4 are also likely to have resulted primari[y from continued plume
movement to the south. cr:{ffii, i"yu*'lnrF*\
'7r^ r',o / J
Concentrations at upgradient *.U,
-rwt+
, t*#-g, *ra r#q-s have stabilized o) ir, *,
decreased after the initial increase related ,";o. concentrations at lateral wefls r,[f;'i1or n
-_ry._. .":':-
":"--'"
:,-
- -"
_-'. .:'.:-,1'_:': ,,-: "::..'#T
and TW+-9 are stabilizing. These trends are consistent with the initial interpretation of a "sluq"
\_
of chloroform entering the perched water over a relatively short period of time (l-2 years) and L,+"
migrating downgradient toward MW-4, TW4-1, and TW4-4. The width of the plume near MW- :fl:
4 will be addressed by the installation of trvo new temporary wells to the west and northwest of a* I I u
MW4.
./ " J.l s*cei-"'a-* ar Tb1-5 pLvS L^ b CFd- '4Figure 6F u plot of nitrate'concentrations over time at MW-4 and the 16"fr
./
4 ,.1r4*cF_cntc' +!i;
'-"J'.1 s*rnpl-..* ,+?iq:g ,l'nS L^ by
1 ,t; \- Nozrn
l*],
{";;ff weils.
t)
*floz-
co-pl.*
6* r-J t
"1 "o ll
There is a cledr correlation between chloroform and nitrate concentrations which is consistent
with a leach field origin. *igup+ is acmrfiq*eto of chloroform vs. nitrate through the
June, 2001 sampling, which nhrr*o,efour#km. 4
4,-,, cortttro*r^.,t p- ffith',fro6 s'*pl( J4* *'/ 1p"on'&i
-- D llc p}h ;L",*,
4- y< ./(';,8 T-78
SlsTAFRMRR\Chloroformlnvestigation\UpdateChloroformlnvestigationReport I l_9_01 19
t
I
I
I
I
T
I
I
I
I
t
I
I
I
T
I
I
I
T
4. COORDINATES REQUESTED BY UDEQ
A copy of estimated coordinates for the following locations was previously transmitted to UDEQ
on September 7,2001, and was provided during the meeting on October 5. They are also
provided in this report irSpp.ndE!.
,/. Former mill office building sanitary leach field,
t ,/. Former mill office building laboratory wastewater holding tank and pipeline to
Evaporation Cell l.
4 Former office trash disposal area
20S:\STAFF\MRR\Chloroformlnvestigation\UpdateChloroformlnvestigationReport I l_9_01
T
I
T
I
I
T
I
T
I
I
t
T
I
I
I
I
I
I
t
PERCHED ZONE PERMEABILITY
UDEQ has expressed concern about the permeabilities derived from the hydraulic tests at
MW-4, and whether chloroform could have migrated from the abandoned scale house leach field
to MW-4, and whether chloroform could have migrated from the abandoned scale house leach
field to MW-4 via conglomeratic materials logged in temporary wells at the site, as suggested in
the CIR. This section discussed the results of hydraulic testing at MW-4, the probable
coincidence of a high permeability zone evident in the MW-4 test data with conglomeratic
materials logged in nearby temporary wells, and the likelihood that these conglomeratic
materials influence the flow of perched water and transport of chloroform near MW-4.
5.1 Permeability Distribution of the Perched Zone
An updated perched zone penneability map is provided in Figure 8. The permeabilities
plotted on the map are based on the results of pump and slug tests where available, or on
constantheadpackertestswithintheperchedzone.W1wereusedwher",;"-j.;
available, except the value plotted for MW4 (3.5 x lOa cm/s), which was based s1 u'lu1o"5''
^ /- L- Ek pu^ f +e^r ('o,s ,1,1 ,2,Dip^> *-) |
transmissivity of ng/tll*measured during a 1999 pump test by HGC. The sanrated thiskness - i
b-/
at that time was calculated as 39 feat assuming a Brushy Basin contact at 108 ft bls. A detailed
discussion of tests at MW-4 will be provided in a report to UDEQ due on November 16.
5.2 ConglomeraticZone Near MW4
Varying thicknesses of conglomeratic material are present below the water table in all
temporary wells north of TW4-l (Figure 9). The base of this zone is approximately 95 feet bls in
TW4-1, and TW4-2, and approximately 88 ft bls in TW4-7. A higher permeability zone with a
base at a depth of approximately 95 feet below top of casing (btoc) is evident in the drawdown
data collected during a pump test by Peel at MW-4 in 1992 (UMETCO, 1994). During the first
tLrr^ p"^ptal ". ik
S:\STAFRMRR\Chloroformlnvestigation\UpdateChloroformlnvestigationReport ll-9-01 ol ?!q) pwt F,fr*rT' 2l
rq\Et, N\l-rl"\{:
tal
,l{
3t,F \,;..(-t-t) +.j'
'$ *5
$.-!
\- t\'
t
T
T
I
T
I
t
t
I
t
I
T
t
I
I
I
I
t
T
7,,l /. ?c lt*OZ1 <f" J+bno
- | J, J v I ql,b 2- tl- b^ P
I\.-r, 3 hours of pumping at a constant rate of 0.46 gpm, only about 2 % ffet of drawdown was
^$
rii l
N \lmeasureo. Then, as water levels dropped below approximat"ly eS4."t btoc, the rate of
tl- it\ i \a'u*down ]ffiffi :rit"x' f #'iHl fl ',:-'l;'fr '#H; ffi Hli'J-" ;";:'nducted
at
0.g2dm, except that the break in slope occurred in about half the time. This behavior is F"a l
consistent with dewatering of a higher permeabili ty zonehaving a base at 95 feet btoc near MW-I
4 at about 3 hours into the test. This sone most likely coincides .rvith the conglomeratis zonq, - /'o I
6"ft'
Iog€Bd.at nearby temporary wells. Because this conglomeratic zone is present below the water Hil
table at all wells north (upgradient) of TW4-1, and has a relatively high permeability based on x -12'
the pump tests at MW-4, it likely influences the flow of the perched water, and therefore the
transport of chloroform, in the vicinity. Furthermore, the least productive temporary wells at the
site, TW4-4 and TW4-6, have very thin conglomeratic zones that are located above the water
table where they cannot at present affect the movement of perched water at the site.
A detailed discussion of tests at MW-4 and interpretation of results will be provided in a
report to UDEQ due November 16.
I rJ \t JoL^6^1 l'^t*/rr. , (x ,.E/ _ bar r,r^*^,r:;,r, , ,/ ,. ^ /^_*I..tLT**t'\{ ar''< v'*1"'"
-cu^i [& q +\a,fi-"1 orL k{l;,
10M(,
S:\STAFAMRR\Chloroformlnvestigation\UpdateChloroformlnvestigationReport I l_9_01 22
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
T
6. ONGOING GROT]NDWATER MONITORING AND REPORTING
)
As stated in Section 5.1 of the CIR, the sampling results to date indicate that elevated ulLy'
chloroform concentrations are confined to a relatively narrow zone. Elevated chloroform
concentrations have not moved significantly downgradient of TW4 -4. - 9lL-
To ensure that samples collected from the temporary wells are representative of the
perched groundwater, continued monitoring has been performed on a quarterly basis in the
temporary wells (TWs) and in MW-4. Measurements have included depth to water, elgctrical
conductiv$r, terngerature,!I1, and chloroQry_c_g4gertLgg[ion.Nigetg-has also been me4_sured_in
temporary wells TW{_-I, T-W4-3? and TW4-4.
Continued potential movement of the elevated chloroform concentrations is being
monitored using the new temporary wells, TW 4-4 and TW 4-6 located downgradient of TW 4-1.
Also, based on hydraulic conductivity estimates at MW-4, and the magnitude of the groundwater
gradient, the travel times can be used to estimate the effective porosity of the perched zone in
thisvicinity t lrlJ * +r S*r k lil +
IUSA will continue to collect chloroform data for all of the wells involved in the
chloroform investigation, including well MW-4, all the existing TW-4 series wells, ad all funuo
monitoring wells that are installed to delineate the arm of,ohlorof,ornr contamination.
Table 1 is a summary of data collected to date from the TW-4 series wells. Qla$erly.
ml5ruioal'rcwtte which were not preciously transmitted to UDEQ in split sampling data
'L
S:\STAFRMRR\Chloroformlnvestigation\UpdateChloroformlnvestigationReport I l_9_01 Z)
I
I
I
I
I
t
I
T
I
I
I
I
t
I
t
I
I
I
I
packages for data collected since the transmittal of the CIR to the present
Aff.ndhFD"
To ensure adequate time for sample analysis, laboratory data validation, IUSA data
validation, and reporting, IUSA proposes to submit the data, together with the quarterly summary
report, to UDEQ in accordance with the following schedule:
Ouarter Submittal Due Date
January - March May 30 t5 Jt s l,Jnn,t|^* *1'*"*");* {l'*- t l+l'
-D lLC /e {</-
-> f br,J-z 6 o &7, Ao lo'^^n**^'J
[lL.v//
April - June August 30
July - September November 30
October - December February 30
SlsTAFRMRR\Chloroformlnvestigation\UpdateChloroformlnvestigationReport I l_9_01 24
t
I
T
t
I
I
l,
l*
I
I
I
I
t
I
I
I
I
I
t
7. ADDITIONALGROT]NDWATERMONITORINGPARAMETERS
The primary purpose for measuring additional groundwater parameters within and near
the chloroform plume should be to establish the likelihood that chloroform is degrading naturally
(either chemically or biologically) within the perched water.
The is for chlorine atoms to be successively
replaced by hydrogen under tL
'f,hffiwill degrade to its ffi, ffi under these
conditions, and may ultimately degrade to methane. The presence or absence of DCM would - 7 u'
tt'+-
help establish whether or not this process is occurring at a significant rate. -o t'nrJ to "o^;E^ A& i
The presence of nitrate concentrations in the perched water near MW-4 that are generally Noz
,*1*
higher than the chloroform concentrations, however, indicates that groundwater conditions are or!,j;.
not presently favorable for this process. Under conditions favorable for reductive dechlorination, WJ;A
ofu P,
nitrate will also be expected to degrade, and at a higher rate than chloroform. For this reason,
existing analytical data provides an indirect estimate of redox conditions, which do not appear
favorable for reductive chlorination.
7.1 Dichloromethane Analytical Results From Split Sampling n
Previous split sampling analytical results indicate that DCM is not present in perched 2onn
water near MW-4 at detectable concentrations (l pgfD.This is consistent with conditions that Y
bEaare not favorable for reductive dechlorination of chloroform.
to */'
SlsTAFRMRR\Chloroformlnvestigation\UpdateChloroformlnvestigationReport I l_9_01 25
I
I
I
I
I
t
I
I
I
I
I
I
I
I
I
I
I
I
I
7.2
+ /- /'rl*'4'
Direct Measurement of Redox conditions in the*ietd / '^*'ff
hW
At UDEQ's request, IUSA had evaluated the feasibility of obtaining relatively reliable
measurements of reduction-oxidation potential (redox, or ORP) for groundwater, using field
instruments. As described in the U.S.G.S. Field Manual, Chapter 6.5, in contrast to other field
mesaurements, the determination of redox "should not be considered a routine measurement"
and is "not recommended in general because of the difficulties inherent in its theoretical concept
and its practical measurement" (see Appendix D). The U.S.G.S. notes that "Eh measurement
may show qualitative trends, but generally cannot be interpreted as equilibrium values".
Hydrolab Corporation, the supplier of the Hydrolab Surveyor 4a Instrument currently being used
at the Mill for field measurement of pH, temperature, and electrical conductivity in groundwater,
has indicated that the instrument's available redox electrode, which can be retrofitted to the
Mill's instrument, has somewhat improved capability of measuring redox, as compared with
earlier models. Hydrolab's Tech Note 204 listing parameter specifications is included in
Appendix D. Response time is not specified on Tech Note 204, and IUSA will need to establish -*l--
7v^
a procedure to determine at what point the redox value would be selected. Also, to avoid Pr*v
potential exposure to quinhydrone, the Mill would use Zobell solution to calibrate the new redox
electrode, after it has been added to the instrument . -->pf""^ w" )\ 7't ( ;"^ / e'r%lf fh ' '
*;'
7.3 Feasibility of Enhancing Reductive Dechlorination In-Situ
Reductive dechlorination can be enhanced in-situ by adding substances such as hydrogen
release compound, or substances that accomplish the same purpose such as molasses or ethyl
alcohol, which release hydrogen during fermentation (Odom, Martin J et al, 1995), and mixing
STsTAFRMRR\Chloroformlnvestigation\UpdateChloroformlnvestigationReport I l_9_01 26
I
I
I
I
I
I
I
T
I
I
I
I
I
I
t
T
t
I
I
them with the perched water. The mixing process will be facilitated at the site because
temporary wells currently exist along almost the entire extent of the chloroform plume, with a
number of wells completed in that portion of the plume with the highest chloroform
concentrations. Existing data indicate that this process will be feasible, however additional data
will be collected prior to making a final determination of the feasibilrty and developing a work
plan for implementation.
(
N*J * *n,,f, tJr{; '*'i"1 Pl"^ d JT|-'A''7 fl*
co'-F,-".J**- ,t^4eQ* /{
S:\STAFRMRR\Chloroformlnvestigation\UpdateChloroformlnvestigationReport I l_9_01 27
.9x
o
-oG
E
o
o
-9
ooo@
F-
t
>bXq)<Ng5tra(Uqao
oo
ilil(/) <t2=
s
*
=
N
INo)
az U)z az (r)z U)z
ot-it_
@
o(o
(o-
tt
oo
(f)
(o
oo
(f)-
rr)
t-
(f,
oi
I-t-d
No
oi
I
E
oC!
Io@
c!s
@@ az az Ns !{.
o)
(f)
q
(f)\t
o)lr)o)o o lr)
o
I
=F
l.()N
Ilr)
@
oq
6l
U)z az No t-o (o-o@ o@ ci o o
*
oN
Io@
(oloN
(o
(o
az az @o)(o
riF
@(o
t-sF-
oo ooN-
o)q (oq
N
loq
N
toI\f
i-
ro
f-o)Ilo
F-lo
az @z U)z
rr,o (o
(Y'o (a
o o
I$
E
oN
Io@
u?
o)(\l
o)s az.az tN loroN
(o
(f)
N
o\tN
os
C\I
(o
(f)
@@
c.j
F-a(o
Y
*F
Nr
Ic{t-
ct)z az U)z
lr)o ro
@
cr)
o(o
N
N
oo
c)
ooc!
(o
Nq lf)
$
o
$
T
E
Fo)It-(o
Not-
\l
(f,
@
@z az @(a
6
(o
(f)
6
t\$(o
oo)(o
oo(o
t-ol lr)
oq (o
N
q
=
o(\l
Io@
o
ro-
c\l
oNro-
rr)
U)z U)z
oNot
rr)
oN6ls
oo)@
(a
oolo
lo
oo
or-s
F*o c!o Fq
o)
Irt
=
o
IoN
@
1r)
ooa
oo)\r-az
o
(f)
ryN
oss-
(f)
o\r
(f)
c.i
ooo
(o z o)t-
l'-
lo
l'-
o
@
o
ao
,Eoo
L^aoEE86o,E
o
ExoL
CLo-
J
u) o)3.s
aO-EEoob(/)bi;
cv
O
ts9
=-.=YE.ttr
EE9ooc
=No
{^E, o)aC:E-IELLoo:rnYrco:
!vo
o)
Eac
hE
E=cF3p cJo
>t{F
:r- <'
;=TF
Eboc)
o)c
o-
EErg
-c cD>
=.cP:tr[JEEDS o
9o Y
e Clil
E S9E
Io
E
C)
{oicDc-i o-cEt(Uoo60ba
5=
{o:o)ccEcEtooo959;6e
{ocD(:
=o.cEtooutts9E9Ebe
=iotEc
Co-cEtco .r,
9=95be
^o)JE
o) o-EEv(Eao(E0Eqz=
^o)JC\=o) o-EEvoo(,
Gl rtsaE8
^6JC\:o, o.EEvo
ao(Er
z8
o
o
o
EG
oG
.E
.9
.>
(E
tr
!,trr!
o
g
-lLurEJOoo(=
l-O
=!,o
o
oo.
o
o
CL
=oF
!,tr
IE
Y
==
I
T
I
I
I
I
I
I
I
I
I
t
I
I
I
I
I
I
I
I
t
I
I
I
T
t
T
I
I
I
T
I
I
I
I
I
I
I
8.REFERENCES
Cohen, Robert M and James Mercer. 1993. DNAPL Site Evaluation. Library of Congress
Harned, Herbert S and Benton B Owen. 1950. The Physical Chemistr.v of Electrolvtic
Solutions. American Chemical Society Monograph Series. Reinhold Publishing Corp.
International Uranium (USA) Corporation, and Hydro Geo Chem (HGC), 2000. Investigation of
Elevated Chloroform Concentrations in Perched Groundwater at the White Mesa
Uranium Mill Near Blanding. Utah. Submitted to UDEQ.
Odom, J Martin, Jo Arur Tabinowski, Michael D. Lee, and Babu Z. Fathepure, 1995. Anaerobic
Biodeeradation of Chlorinated Solvents: Comparative Laboratory Study of Aquifer
Microcosms. In Bioremediation of Chlorinated Solvents. Battelle Press.
Schwarzenbach, Renee P; Phillip M Gschwend, and Dieter M Imboden. 1993. Environmental
Organic Chemistry. John Wiley and Sons.
Titan, 1994. Hydrogeoloeic Evaluation of White Mesa Uranium Mill. Submitted to Energy
Fuels Nuclear.
Umetco, 1994. Groundwater Study. 1994 Update. White Mesa Facility, Blanding, Utah
Submitted to United States Nuclear Regulatory Commission.
U.S. Geological Survey,1998. Reduction-Oxication Potential (Electrode Method). Chapter 6.5,
Field Manual. Available on-line at
http:i/water.uses. gov/owq/FieldManual/Chapter6/6.5 contents.html
S:\STAFflMRR\Chloroformlnvestigation\UpdateChloroformlnvestigationReport I l-9-01 28
t
I
I
T
I
I
T
I
I
I
t
I
I
I
I
I
I
I
I
EXPLANATION
temporary perched well
showing chloroform (uG/L) in
" liji s::L:T*';,?.,NS third sampling
!19 fourth sampting
lqq 11/00 samptins
111 o3/01 samptins
999 o6/01 sampting300 09/01 sampting
6300j 5300
[,"fi".-"$ffi llf :ilP",:iii,
(uc/L) in 6/01 and g/01
samplings
NOTE: sample vialfor
tw4-1 broke in
transit to the
laboratory so
no analysis
was pedormed
on g/01 sample
CHLOROFORM ANALYTICAL RESULTS (uG/L)
FOR TEMPORARY PERCHED WELLS
(through septernber, 2001 )
Approved Date Reference Fiqure
1
I
t
I
I
I
I
t
I
t
t
t
I
I
I
I
I
I
I
I
ll
UB,
553r
a\
\28
\
\\\
q
o
a\**,,
5i1 1
ttI
\\
\\
"€tt ,ro.
PROPERTY
BOUNDARY
\\
\\
}\
L\
"\l )
)---t\ '\
1--.r--p-'
nY-22 4
5396
a Mw-1l
551 J
PERCHED MONITORING WELL SHOWNG TOP OF
BRUSHY BASIN IN FEET (AMSL)
.IEMPORARY PERCHEO MONITORING WELL
SHOWNG TOP OF BRUSHY BASIN IN FEET (AMSL)
-5400
---- coNTouR L|NE lN FEET (AMSL), DASHEo IT,HERE UNCERTATN :K ASSUMED TO BE AT ELEVATION OF
BASE OF SCREENED INTERVAL
CONTOUR MAP OF
TOP OF BRUSHY BASIN
WHITE MESA URANIUM MILL SITE
Approved
SS
Date
10/80/01
Revised Date Reference:
71800022 2
FIG.
I
I
I
t
t
I
I
I
I
I
t
t
I
I
t
I
I
t
I
PROPERTY
BOUNDARY
(
\\
i==rF
.J' A,
=r,
.t
\
r \.t./' 5>l
r'
1
SCALE IN FEET
EXPLANATION
. MW-ll PERCHED MONITORING I,IELL
551 3 SHOWNG WATER LEVEL IN FEET (AMSL)
TEMPORARY PERCHED MONITORING WELL
SHoWNG WATER LEVEL IN FEET (AMSL)
----5595 WAIER LE\EL CONToUR, DASHED WHERE UNCERTATN
I
--- 5590
a Is-tg
556E
oEizi I T7-7\ I t')/
5560
5570
5560
5550
5540
5530
5520
\
1r
a xFzr
li
\1
\l
\l
$
NN\.i \* 'Eh?'
l\I \*___-f '.Y..:
-
0 5000
WATER LEVEL CONTOUR MAP
DECEMBER, 2OOO
WHITE MESA URANIUM MILL SITE
Approved
SS
Date
10/30/01
Revised Date Reference:
71800020
FIG.
3
I
I
I
I
I
I
I
I
t
I
I
I
T
I
I
t
I
I
I
lt
s570
5560
5550
5540
5550
5520
5500
5495
ItT-51471 I lJ/5
PROPERW
BOUNDARY
\\
\\
)\
isrt^)a, >r,
.t
\
Ni Vit'r ).z- {(^ c'\
./ '\\.
l"
I
It
[\o=:I
a
il
xlt-2r
tl
tl
1\
t\
N
I
.uE?'
\ti u\ (.
J'-1 )
---\')\\\\\\\a_'---=5','-1-,2 " ,r-
-
0 5000
SCALE IN FEET
EXPLANATION
llrt-zta
5445
a Mw-l1
551 3
PERCHED MONITORING IIELL
SHOWTNG WA'IER LEVEL IN FEET (AMSL)
TEMPORARY PERCHED MONITORINC WELL
SHOWNG WAIER LEVEL IN FEET (AMSL)
,y''
---
5595 WATER LE\EL CONTOUR, DASHED \rihrERE UNCERTAIN
WATER LEVEL CONTOUR MAP
SEPTEMBER . OCTOBER, 2OO1
WHITE MESA URANIUM MILL SITE
Approved
SS
Date
10/30/0r
Revised Date Reference:
71800032 4
FIG.
EXPLANATION
MW-4O perched groundwater
monitoring well
tw4-16' ' temporary perched
groundwater monitoring
well
A PROPOSED\I/ TEMPoRARY WELL
PROPOSED LOCATIONS OF NEW
TEMPORARY PERCHED WELLS
EXPLANATION
temporary perched well
showing nitrate (mg/L) in
1 .02 1 1/00 sampling
14.5 03/01 sampling
14.0 06/01 sampling
9.02
perched monitoring well
MW-4 showing nitrate
(mg/L) in 6/01 sampling
ND = not detected at 0.1mg/L
NITRATE ANALYTICAL RESULTS (ms/L)
FOR TEMPORARY PERCHED WELLS
\pproved Dale Relerence Figure
6
LUF#vF=z>aa>z
5{t@oi
LL trt
P=ooJLU
=IOOx-EALUlo-q;
d<rrt
ll* OFO-
3Ea'
(,
J
E
oob
6o
-CO
[)\-\Ij
ll
I
lt
lt
I
tt
lt
tt-I-- ---f -- ---
I
I
lt
tt
tl
I
tl
tt
I
it
tl
tt
I
tl
I
t1
_-, ___1
li
I
I
l
tl
tl
lt
lt
tl
II
lt
lt
tt
-----f -- --------
tt
lt
I
I
1l
I
I
ll
i
I
I
w trWPi*slqF
tl
-^ffies&- I
I
I
I
I
I
l-*---
I
I
I
I
l
I
i
I
I
I
I
I
Ir-----
ie
Iie
I
I
I
l
io
I
I
I
I
I
-T-----
I
I
I
l
I
I
Il&Al
I
_|_-____s
I
I
I
I
I
I
I
l
I
I
_L_____
I
I
l
I
i
I
I
I
I
I
I
i
I
-f------
I
I
I
I
I
I
I
I
I
I
I
I
I
t------
I
I
I
I
I
I
I
I
I
I
I
I
rl
I
li
lt
I
-l------l-lt
lt
I
l
ll
lt
I
I
ll
I
lt
I
ll
-------t-
l
I
tl
ll
I
ll
li
lt
I
l
i
i
lt
I
I
l
l
I
I
I
i
I
I
l
t_
I
I
I
l
I
I
i
t-
I
I
l
I
I
I
i
t-
l
i
I
I
I
I
l
I
I
I
I
I
I
I
I
I
I
I
I
l
&_t-_____
I
l
l
I
I
I
I
I
lr'I
I
I
-l------
l
I
I
I
I
I
I
l
I
I
I
I
-i----*-
I
I
I
I
I
I
I
I
I
I
I
l
o
\Atl\ .,1\i'I sl I, url-+-
--i -i
J-J
(yeu) elellru
I
I
T
I
I
I
I
I
I
t
I
I
I
I
I
I
I
I
I
It
ffi
lt
tt
lt
tt
tt
tt
lt
ll
tt
lt
tt
tt
tt
tt
tt
tt
tt
lt
i\\\s
S*..1--S:-\
i:\ili
fiffir$
[6....t..sffi
iriiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
ii i i i iiiiiiri iiiiiili ii i iii i i i ii i
il iiii iiiiiir!!!li
,zit'IfroE:\
.1.-1-lt!\!tNS\
il::\\:i.'.-----i-Si\
S:\\:i{i&"i
$\:1:-:-S
}S\SNiN'*\\\-\^\
iiiilifiiimRiilllllr,lXi i i i i i i i ii i i I ii itii iii iii i i i i i iiiiiiiiiii
d^
Yr"l
PROPERTY
BOUNDARY
\\
\\
}\(
(
-i==
JAlLl
=,
,l
\
l"
)
N
t
-
o 301
a Mw-11
1xl0-J
@s
PERCHED MONITORING WELL SHOWING PERCHED
PERMEABILIW lN cm/s
pERCHED zoNE pERMEABlLtry 2 1o-1cm/s
PERCHED ZONE PERMEABILITY
BETT/EEN 1o-a cm/s AND Io-5cm/s
ZONE
/r(mA pERcHED zoNE pERMEABtLtry < 1o's cm,/sqliiijjv
NOTE: PUMP TEST (DRAWDOW{ OR RECO\ERY) RESULTS
ARE PLOTTED WHERE AVAILABLE. WHERE NOT AVAILABLE, SLUG
OR CONSTANT HEAD PACKER IEST RESULTS ARE PLOTTED
PERCHED ZONE PERMEABILITY
BASED ON PUMP AND SLUG TESTS, AND
CONSTANT HEAD PACKER TESTS
WHITE MESA URANIUM MILL SITE
Approved
ss
Date
10/ll0/0r
Revised Date Reference:
71800024
FIG.
8
a(,z
,r tU EF,z o;Pi
=8ilfrl=
=e*.,,,FI
H#RJLll=
=EEt aaC-Zar8E
(,oJ
OO(o
oo\+
(I)5eovr-
:foa
ooCXcu
CDao
o.lJ
Cs
E'=
=ol-, L(o o_
o_(s
ti
G)Co
aEC
(Ua
o.E
(6
Lo
Eo
O)Co()
ffi
&oai
2l891NFI
<lzl<IJIoloxl
IUI
--
OO
Lo
LO
LO
LO
LO
O(o
rr)
v-vMl.
l-vM
L.VM\
z-v
e-7Ml
6-V
o
-o(U
P
t-
C).P
(U
=rO
O
(teel) uorle^olo
I
T
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
t
I
APPENDIX A
Vertical Profile Sampting Methods
t
I
t
I
T
I
I
I
I
I
I
I
T
I
I
I
I
I
I
.-4,,
I
I
I
il
i
it
it
il
I
:l
,l
I
I
rl
l
il
t
it
il
I
I
I
edech
Environmental Equipment, lnc.
^rr'"ffi
K$
1,rtg*[u
.loP
Leaders in manufacturing and distributing
ground and surface water sampling, analytical,
filtration, and remediation equipment.
;I
I Bailers
I
I
I
il
t
I
I
:
il
:l
I
I
I
I
I
I
I
t
Geotech Disposable and Reusable Bailers
Geotech disposable and reusabte bailers are available in many
configurations and materials to meet your specific sampling needs.
lmproved bailer design
- Geotech's 'Orbit Flux" design fills 33% faster than other bailers
- V-notch design for trouble free cord attachment, and accurate pouring
Weighted disposable bailer as heavy as mosl double-weighted without the extra
cost
Manufactured under strict clean-room conditions
- Made of virgin, FDA approved high-density poly resin
- The polyethylene contains no plasticizers or additives, and no regrinds are accepted
Optional double check valve bailers isolate the sample, sealing as the bailer is
removed from the well at specific depths
special clean upon request
Product sampler for floating hydrocarbons
VOC sampler uses a unique design that allows sample transfer to VOA vials
with minimal loss of VOCs
PVC white and clear
- Diameters from .675" to 3.5" in lengths '12'to 60"
- Recessed check and double check available
Stainless Steel Geobailers
- 1' and 1.75" diameters are 36" long
- Rugged and durable for well development
Teflon@ Geobailers
- 1.25" and 1.625" diameters are 36" long
- Most inert material available
Geotech Disposable Bailers are available in the following configurations:
Material Lenoth Confiourations Units/case
Accessories
Poly VOC tips for 1.5" diameter bailers ............ ..........24 per case
Poly VOC tips for 3" diameter bailers..........................9 per case
Teflon@ VOC tips for 1.5" diameter bai|ers..................12 per case
Poly free product samplers......... .........24 per case
Geotech Pressurized Disposable Bailers
This special disposable bailer provides the convenience of using in-line dispos-a-filtersrM in the field even when
pumps are not available. By using a pneumatic hand pump you can filter your samples directly from the bailer,
saving time while maintaining sample integrity.
Each bailer comes complete with a barbed hose adapter for attaching the hand pump to the top of the bailer,
and a special adapter with a notched thread to be used with a dispos-a-filteril at the bottom. ln order to dis-
place the check ball and establish a smooth flow, an additional large barbed removal device is included for bot-
tom emptying without filtering.
Disposable Accessories
oRDER TODAY (800) 833-7958
T
I
t
I
I
I
I
I
I
I
I
I
t
I
I
I
I
I
I
Use of Soil Gas to Detect DNAPL
I
I
I
I
t
I
I
I
I
I
I
I
I
I
t
I
I
I
I
t
l-
.1I
l'.-
I-'
It,
i
I
t
J--
!l
I
I
T
t
I
T
/
"i
-.. (.
. -\
McClellan Air furce Base, Sacrameinto) Californii/ dnc
:, , Thursday, Sepiqmb,er 25, lggi
--WyldharqCarden Hotel; Cos( Mesa, Californi;
THE USE OF SOIL GAS DATA TO OBTAIN SOIL VOC CONCENTRATIONS
AND
TO IDENTIFY THE PRESENCE OF NAPL
by
Harold W. Bentley
Hydro Geo Chem, lnc.
6905 E. Ocean Blvd
Long Beach, California 90803
Gary R. Walter
Hydro Geo Chem, lnc.
1430 N. 6th Avenue
Tucson Arizona, 85705
(2)
100
cs
Ko"
foc
T
I
I
I
I
I
I
I
I
I
t
I
I
I
I
I
I
T
t
THE USE OF SOIL GAS DATA TO OBTAIN SOIL VOC CONCENTRATIONS
AND TO IDENTIFY THE PRESENCE OF NAPL
1. Conversion of Soil Gas Concentrations to Soil Concentrations
The concentration of a VoC in soil gas can be converted to its total concentration in the soil
by considering the equilibrium laws governing the partitioning of the Voc between the gas, liquid,
ano sotio phases. The reasoning and methodology are as follows:
Unless a separate liquid phase of VOC, i.e., a NAPL, is present, the soil gas concentration
is controlled by the distribution of the VOC between the soil, water and soil organic matter. lf the
moisture content in the soil is greater than 5%, normally the case, the vapor phase contaminant
concentration will be controlled by its Qas-water distribution coefficient, the Henry's Law coefficient
(H). The Henry's Law coefficient can be written in its dimensionless form, Ho. The dimensionless
Henry,s Law coefficient relates the concentration of a compound in the vapor phase to its
concentration in the aqueous phase
Hs = Cs/Cn = ll/RT - p/S (1)
where H is the Henry's Law coefficient
R is the ideal gas constant
T is degrees Kelvin
g" is thl VOC's vapor density (the vapor pressure of the pure liquid expressed
as mass/unit volume)'
and S is the water solubilitY
The aqueous-phase concentration will in turn be controlled by the distribution of
contaminants between water and the solid soil matrix. This distribution is govemed by l$' the
water-solid distribution coefficient. Rarely is the direct distribution of contaminants between the gas
and solids imPortant.
lf the warer-solid distribution is controlled by adsorption onto organic carbon, which occurs
above organic carbon concentrations of approximately 0.001 (fraction), (Chiou and Shoup, 1985)
the water-solid distribution coefficienl is
(-^
K^ . o
U^vw
Koc ' o/oOC
where is the concentration in the solid [mass VOC/mass solids]
is the concentration in the water [mass VOC/volume water]
is the water-organic carbon distribution coefficient
is the fraction, by weight, of organic carbon in the soil
c:\i nfo.doc\sgs-soil.cnv
I
I
I
I
I
I
I
I
t
I
I
I
t
I
I
I
I
I
t
where
C, = C"Pr + C*0,, + Cs(gr'gJ
is the concentration in the gas [M/V air]
is the @ [M/V (bulk volume soil)]
is the bulk dry soil density [M/V solid]
is the total porosity
is the water filled porosity
The ratio of a VOC's total concentration in the soil gas to its concentration in the soil is given by
substituting (1) and (2) in (3) and dividing by bulk density (pJ to convert soil concentration units
from mass/volume to mass/mass:
-Ko
Ho
(er - e*)
where {pN,is the@te*,,fl&0
Table 1 presents an example of the results of using (4) to relate soil gas and soil concentrations.
For each of the compounds listed, a soil gas concentration of 100 ;tg/L was converted to the
equivalent soil VOG concentration in pg/kg. The soil parameters utilized in the calcutation were
fo" (fraction) = 0.005; total porosity (fraction) = 0.40; volumetric moisture content (fraction) = 0.2i
and dry soit bulk density (gm/cm3) = 2.00.
(3)
cr
C,H o2o ob
(4)
The total soil VOC concentration (M/L3; is the sum of the mass/unit volume in each of the three
phases: n:rt-{'tl<l f 5 f'e- ':
*
9o
er
e*
c:Unfo.doc\sgs_soil.cnv
I
I
I
I
t
I
T
I
t
I
I
t
I
I
I
I
I
I
I
8; Q"/o wl iv'l
O^= O'7o \'allv'o\
-lo. -- O,oo 5
-l'7.?h -- 7,ro lnlcn"
'Roy.,3 Griffin, 1989. - 1,1,1 TCA
* Montgomery & Welkom, 1990 - all others'
It can be shown by sensitivity analysis of (4) that for all but the most water-soluble
compounds, the ratio of soil gas to total soil concentration is rnost sensitive to lG, nexl to HD,
and that the other parameters have relatively little effect. Thus, for all but the most quantitative
applications, the soil parameter important in calculating the conversion of soil gas concentration
to total soil concentration is total oiganic carbon. Reasonable estimates of moisture content,
porosity, and bulk density, the additional soil parameters, will be sufficient for most PurPoses'
TABLE 1. CONVERSION OF SOIL GAS TO TOTAL SOIL CONCENTMTION
COMPOUND ]G" (ml/g)Henry's
Coeff. (H)
Ho*
(H/Rr)
Ko.
(mus)
SGas-Soil
Conversion
Factor
Soil Gas
Conc.
(rrg/L)
Soil
Cont
(pg/K
1.0 0.55 0.75 100 75ccl41102.41E'2
W&roform 31 2.87E'3 0,1 19 0.1 55 2.24 100 224
1,1 DCA 30 4.31E-3 0.179 0.15 1.50 100 150
1,2 DCA 14 9.78E-4 o.0407 0.07 10.2 100 102
1,1 DCE 65 3.40E'2 1.41 0.325 0.401 100 40.
cis 1,2 DCE 49 7.58E-3 0.315 0.245 1.2 100 120
trans 1,2 DCE 59 6.56E's o.273 0.295 1.55 100 155
1,1,1 TCA 155 1.708-2 0.707 0.775 1.33 100 134
TCE 126 9.10E'3 0.379 0.63 2.03 100 203
PCE 364 2.59E'2 1.08 1.82 1.88 100 18
Vinyl Chloride 57 8.19E-2 3.41 0.285 0.212 100 21
Benzene 83 5.59E-3 0.233 0.415 2.31 100 232
Ethyl Benzene 1100 6.43E'3 o.267 5.5 19.4 100 194
Toluene 300 6.37E'3 0.265 1.5 5.86 100 586
Xylene 240 7.O4E-3 0.293 1.2 4.53 100 453
c:\inf o.doc\sgs-soil.cnv
o
.9lr
,>{r
.8
ot-o
o-
E
-G)
II
IOo
EC
(U
t-
c
(u
tro
Ec
(Ua
I
I
I
I
I
I
I
I
I
t
I
I
I
I
I
I
t
t
I
N
0)
f.9
LL
I
I
I
I
I
T
I
t
I
t
I
t
I
I
I
I
I
I
t
cf)
o
J
.P
LL
I
I
I
I
I
I
I
I
I
I
I
t
I
I
I
I
I
I
t
t(l.
o
f
.9,
LL
rr)
o
J
.9tr
(o
ol-)
.P
LL
I
I
I
I
I
I
I
I
I
I
I
t
I
I
t
I
I
t
I
I
I
I
I
I
I
I
I
t
I
I
I
I
I
I
t
I
I
I
o)
.9t!
t
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
t
I
t
I
I
I
I
t
I
I
I
I
I
T
I
I
I
I
o)
o)t-)
.9lr
o
)
.9
LL
t
I
T
I
I
I
I
I
I
I
I
t
I
I
I
I
I
I
I
I
t
I
I
T
I
I
I
I
T
I
I
I
t
I
I
I
I
I
0)
.g)
LL
Dx, ' l'o
it
t
I
I
I
I
I
I
t
t
I
I
t
2. Predicting the Presence of NAPL from Soil Gas Concentrations
.
Equation 4 is valid in most soil gas appllcations, but.can under predict a total
soil concentration in cases where a separate non-aqueous liquid phase is present. The total
Voc soir concentration is then a function of the Voc concentration in the NAPL and the amount
of NAPL in the soil. ln such a case, although Equation 4 continues to account for the Voc's
partitioned into soil, water, and soil gas, it does not account for the VOCs dissolved in the
NAPL. Where NAPL is present,lhJprediction of VOC soil concentrations from soil gas
concentrations is not possible because the vapor pressure of a VOC in the NAPL iS a function
"t iir r"r".ntration in the NAPL and the amount of NAPL is generally unknown'
When a VOC concentration in the NAPL is high, its distribution between the
NAPL and the gas phase can be estimated by Raoult's Law
coG) - P"X,(s)
where
and
liquid) is equal to 1:
p" is the vapor density (pure-compound vapor pressure) of the ith VOC
X, is the mole fraction of the ith VOC
The sum of the mble fractions of compounds making up a NAPL (or ariy
Where n is the number of compounds in the NAPL'
Assuming the NAPL is composed of VOCs, that is, each of the dissolved
cornpounds has a reasonable vapor pressure, the substitution of (5) into (6) yields
(6)
(7)t nt
i.1
T
I
I
I
I
I
Thus, in a soil NAPL zone where the NAPL is composed entirely of VOCs,
the sum of the quotients of soil gas concentrations divided by their respective pure-compound
vapor pressure should "ppror"h
1. However, a lower than the theoretical value of 1'0 for the
surnmation in (7) shoulO.be useO to indicate the presence of a NAPL in unsaturated soils' ln
whter saturated soils, because of attenuation by advective and diffusive Processes, only 1o/o of
the saturated solubility of a groundwater contaminant is the criterion used to determine the
pr"r"n"" of NApL in grouni*ater (Feenslf" "Ll others,-1991), Soil gas is less likely to be
attenuated by advective Processes, and the diffusive transport of a gas borne compound is
much more effective than that of a compound dissolved in water, both processes leading to a
larger zone of oeteciion for soil gas sources. Thus a larger criterion than the 1% of the
c:\jnfo.doctsgs-soil.c4v
I
I
I
I
I
I
I
I
PCE
TCE
theoretical value is appropriate. We suggest, based on observations al a number of soil gas
sites, that 1Ao/o of the theoretical value be used to determine that a NAPL as present at a soil
gas sampling location. The appropriate criterion, therefore, is rl
i cs(i) > 0,1
i.1 P5 (r)
(8) 1,
As an example of the use of this criterion, suppose that the soil gas data obtained at a point
location are
= 2,500 pg/L
= 4,200 ttglL
Cis 1,2-DCE = 10,000 pg/L
The calculations utilizing Equation 8 are summarized in Table 2.
TABLE 2. EXAMPLE OF USING SOIL GAS TO DETERMINE NAPL PRESENCE'
SoilGas
.ralyte
Vapor Pressure
(mm)
(@20 "c)
Molecular
Weisht (g)
Conversion Factor
[ps/(mm.L.s)]
Vapor
Density p"
(pg/L )
Observed
Concentration
C" (pg/L )
cs/Ps
PCE 14 165.8 54.7 127,000 2,500 0.02
TCE 19 131.4 54.7 137,000 4,200 0.03
1,2 cis DCE 180 97 54.7 955,000 10,000 0.01
SUM of Co/ps 0.06
According to this calculation, the soil gas concentrations divided by their respective
]ure-solvent vapor pressures sum to less than 0.1 . Thus NAPL is not present where this soil gas probe
Iras located, and the con-centrations of PCE, TCE, and 1,2 cis DCE at this location can be calculated by
the methods summarized in Table 1.
["r"r"n""=
I
I
t
I
Chiou, C.T. and T.D. Shoup, Environ. Sci. Technol. 1985, 19, 1196.
Feenstra, S., D.M. McKay, and J.A.Cherry, 1991. A method forassissing residual NAPL
based on organic concentrations in soil samples
c :\info. doc\sgs_soil.cnv
N
o
f
.9)lr
:eY -o-c G).r-, l-
la- iF,O .r-
>., o
.PFq.o
bEO(U
8.boo
9o.Hl-u.o 'a
,.-.-o.X
'1Oc$
Eo
-C
=
X
Va
a-
il
.ll
roU
:o-t- a(r) tu'F -c;o-'-AJOo- o,
7-C
qE
l--
=6t-
-cO-
6z=.=oql.--te*-ar,-, l_ 3-.P,\:f Urt -Goo=o=Ho6rr
ru.9jo
C, E Po-o+=b-I- l- ,\
=
gY,
lJE
9a
ogE
'=Oa-L--
b.=
E#s1
Ogr
83
=O8fr
EE
oO-
,,.3 t.i'r. F
t
I
I
I
T
t
I
t
I
I
I
I
I
I
I
I
T
I
I
ca
o
J
.9,
LL
sf
o
).9
LL
I
I
I
I
I
I
I
I
t
I
I
I
I
I
I
I
I
I
I
q
I
cla\-/ I \-/
-*l %ulo-
o.gEP 6E- -cO.E *,_ E g_
E 8op
E bE 2E E o.9E EEE-o 83 *r- E, o- (I/,E E Eg
= :a- o; dgE:, *EE; eE= afr EEEfi
=# =:3E= o (J O-tra, a. o(Uo
c,E;
=Oo .F'96E=8r
b.aeat.-.ea*t\/(J:=
r+- L-o(I,oA og ..= -.;
Ed
bz x-
.["f,r-(Ul-I.:F
-
LaEoo
Fo
U)
,9,io
"[,{ a
ro
o
).9tL
o.cr E :Eb =E6Eq.e
=fi
3E
f;#BE.e=
'E tU o-S '=.=
OP O.:-E rh (u =ESI 6-
EEFsE=
EEi EE gU
Es gE F qq
iqE$Ees
E#!ESE#
u.l-O-=o.cl=
(o
0)
J
.9)
TL
"h]=
\a
!o
ooEE
th
-J0-
=o
oo
ou,
ao-
o
F
agaEE
bHEoE E
O)v'=Cr-O
E 8 E E O o, A
AB6;ET:g
>Hs sPHs -a
F;.goqRbo
EE*E;eI;
SErEsrEg:
HE;E$: P,3E
EEgfifiEgtn
E d EE T::aE s[3!,eEgFEep,ts6(Ug-96.=o
rE *fi's EE E #!=nur=rf,=o
EIggga*i*
EEEgEEfiiE
E 8B8E€ E E
APPENDIX C
Coordinates Requested by UDEQ
T
I
I
I
I
I
I
I
I
I
I
I
t
I
I
I
I
I
I
Approximate Coordinates
Misc. Features - White Mesa MillSite
Revised using 2001 Topographic Map
( all coordinales are approximate )
Fealure ECllLnj_Ngrthins E !_
Waler Well #1 2580084 323314
Test Well 2580945 322687
Jones Well 2581252 318910
Jet Pump 2581250 329460
Ruin Spring 2574294 310375
Cottonwood SPring 2570024 317880
Westwater Spring 2574166 321692
Former Leach Field (near otfice)
NW 25ffi274 322228
NE 2s80369 322228
sE 2580369 322128
sw 25ef,274 322128
Old Leach Field (scale house)
NW 2580765 322279
NE 2580786 322279
sE 2s80786 322223
sw 2580765 322223
Current Leach Field (east ol Mill yard)
NW 2581224 322530
NE 2581324 322530
sE 2581324 322370
sw 2581224 322370
Land Fill
NW 2581040 322915
NE 2581115 32291s
sE 2581',115 322745
sw 2581040 322785
Sedimentation Pond
NW 2579420 32264,s
NE 2s79465 322445
A 257946s 322400
B 25795s5 322355
sE 2579555 322175
sw 2579420 322175
Lab waste Holding Tank
258008s 322408
5391
5238
5493
Dimensions (ll. x tt')
95 100
Area (sq.lt.) 9500
Dimensions (tt. x tt.)
21 56
Ares (sq.tl.) 1 176
Dimensions (tt. x ft.)
100 160
Area (6q.tt.) 16000
Dimensions (tt. x tt.)
75 130
Area (sq.tt.) 9750
Tailinos Cells - Appproximate Boundaries
Cell No. Eastino Northing
1-l--ffi2s774ffi s23i9o
NE 2579365 323145
sE 2579355 322078
sw 2s76795 322150
A 2576880 322415
2-ffi2s7g7ss 922150
NE 2580210 322040
sE 2580210 320745
sw 2576845 321680
3-.-. 2s7ffi4s g21680
NE 2s80210 320745
sE 2579s93 320100
sw 2s7601s 32082s
4A
257783 92cA11
NE 2579593 320100
sE 2578860 319021
sw 2577469 319266
Abandoned Monitor Wells, Bore Holes, and Angle Holes
Feaiure Easting Norlhing Elevation ( all coordinates are approximate )
MW-13 2577590 319547
MW-6-1 2578895 320s30
MW-6-2 2578895 320530
MW-7-1 2578125 320886
MW-7-2 2578125 320886
MW-8-1 2577265 320925
MW-8-2 2577265 320925
D&M 3 2fionpz322720
D&M 9 2581380 327365
GH-94-1 2576459 320549
GH.94-21 2577257 320385
GH.94-3 2577245 32W46
GH-944 2577365 319598
D&M122578314 326932
D & M 28 25773E,0 317340
5570
5588
5588
5588
5588
5590
5590
5634.3
5679.3
5597
558s
s579
5572
s648.1
5547.6 1 1/09/2001 9:25 AM
I
I
I
I
I
I
I
I
I
I
I
t
I
I
t
I
I
I
I
APPENDIX D
Analytical Results
I
I
I
I
I
I
I
I
I
I
I
T
T
I
I
I
t
I
I
Balllngr . C..P.t. Glll.ttc
H.l.nt. R.pld Clty
Client:
Project:
Contact:
Sample Matrix:
Date Received:
Report Date:
A)iluTtn1-tt is 4{icl
ooaiutU4-15 iS < r'rnse.|e
"( C,,c st*1les'
,;,l,y-wrTttJ4- lE- ie a D rc
I ol-'l- (orel*)r
*., erile'iioS r^m {st' 7rr
. oJru^T}{ -,L'-*o[*7','.
NOTES:
( I ) These values are an assessment of analytical precision. The acceptance range is 0'20o/o fbr sample results above l0 times
the reporting limit. This range is not applicable to samples with results belorv l0 tinres the reporting Iirnit.
(2) These values are an assessment ofanalytical accuracy. They are a percent recoven: of'the spike addition' ELI perlbnns
a matrix spike on l0 percent of atl samples tbr cach analytical method.
msh: r:\reports\clients2001\international_uranium_corp\liquid\31914-l4.xls -l 'r' ''":';::" -" "
SERVICES :l , -:
l
'.j
.!
)^r.r %tkal {tbs Cqy '
ENERGY LABORATOBIES, INC.
SHIPPING:2393 SALT CREEK HIGHWAY ' CASPER, WY 82601
MAILING: P.O. EOX 3258 ' CASPER' wY 82602
E-rnail: casper@energylab.com ' FAX: (307) 234'1639
PHONE: (307) 23s-0515 ' TOLL FREE: (888) 235-051s
LABORATORY ANALYSIS REPORT
INTERNATIONAL URANII.JM (USA) CORPORATION
White Mesa Mill
Wally Brice
Liquid, Water
0+0241
April9,2ffi1
Laboratory ID Sample Date / Time Sample ID Nitrate + Nitrite as N,
0l-31914-l 03-26-2001 t4:02 WMMTW4-11 < 0.10
0t-31914-2 03-26-2001 15:49 WMMTW4-15 < 0.10
0t-319t4-3 03-29-200111:08 WMMTW4-12 10.0
0t-319144 03-29-2001 12:38 WMMIffi 8.77
-il;s4 Df gl,<k
rr'n }q.l-r,t)4- lD_ ;g
Quality Assurance Data
A L
Method BPA353.2
Reporting Limit ;0.t0
RPD'1.0
Spike2 96
Analyst rwk
Date/Time Analyzed 04-M-2O01 17:13
GOTPLETE ANALYTICAL
'!)E>-NL \
=(J,':C' \-'
C-i?u).oi\-./ \,
!l .\
'qi
'-f
.J9
thq
=q xi il s
3'as.
a. ta. \CY--l!,n*
ir oi ai;rt
=t\F\
p u.c.€.-= \
s\cNAcc
r<R-.
fr.l ..i
- ^t>=Ei6S sF-Pqti
B.Er\Ol.2=
\$rE *='v r'i .=vba?E<-i.tZT\U
ViB *Hg,;
5sH<.C€r.
!.. I
i$E
G)
a()
q)
o
o
o
t-
("rzru) oqr.6)
nt1t6- auufi uouota1afi sp11oys11oi ntfi tr-y
O n A S 6 y:adilaldwog
vaulutuoc {o raqunN
$
*
d
5
,rf
$*
:)
!
!t
.'\a\ .J
=\!i :J\N:-r \!lE:! \)
= 3t'! i
=2'\
.= r'.i
rlti.-- ..j
i\. ri
r C-r
=-v.=rtU
{-Jv,\,
= +-{x \\:
--o
.J
O
al
o
.-o
u
t)
q
I
:o
1)
0UU&
L
-J
U
!
z\)=a
o
F
uO
l,l
o
i
I
=
.]idq
i€1: sJIi --l
:o*
r.}
;H
I
i,
I
I
t
I
I
T
I
I
I
I
T
I
I
I
T
I
I
l,Energy lraboratories, Inc -
SAMPLE COIIDITION REPORT
I
I
I
I
I
Chi" t.porE provides informaEion about
sample cusEody informaEion on receipt
Client,: InternaEional Uraniun (USA) Corporat,ion
t ab ID (s) : 01-31914-1 Tbru
Delivered bY: uPs Date&Time
Received bY: Sara llawken
the condiEion of Lhe sample(s), and assocated
aE Ehe laboraEorY.
Descript.ion: WATER
YeE CommenEs:
No CommenEs:
N/A CommenEs:
01-31914-4 Mat,rix: Liquid
Rec'd: 02-APR-01 1OOO Dat.e&Time CoI 'd: 25-}[AR-0L L402
Logged In bY: Sara Hawken
Chain of custodY
Chain of custodY
Chain of cusEodY
SignaEure match,
Sample received
Samples received
Samples received
Samples ProPerlY
TemperaEure:
, within holding Eime:
in proper conEainers:
Preserved:
5C CommenEs:
Yee CommenEs:
Yea Comments:
Yee Comments:
form comPleted & signed:
seal:
seal inEact,:
chain of cust,ody vs. seal: N/A Comments:
Bottsle llpee Raceived:I ColrBenEa:
i;0.
t.
t
I
I
I
I
I
t
I
I
I
I
I
Ft r ^t?rr.r,1 |.a
I iii.i'..,r,,,.,: ; '.,.
r''t I .^
-r .Ar.J i ..' r .: l_f
Energ'y Laboratories, Inc.
FINAL PAGE
ELI-B Energy Laborat.ories, Inc.
ELI-G Energy LaboraEories, Inc.
ELI-H Energy Laborat.ories, Inc.
ELI-R Energy Laboratories, Inc.
co
ip
N/A -
NA
ND
NR
NST -
NSD -
REPORT PACKAGE SUMMARY
Acronlzts and Definitions
- Bi11ings, Mont,ana
- Gil1etEe, WYoming
- Helena, Montana
- Rapid CIEY, SouE,h Dakota
Carry over from Previous samPle
Insuf f icient. parameEers
Not Applicable
Not. Analyzed
Analyt,e Not, Detected aE, SEat,ed Limit of DetecEion
Analyte Not Reguested
No Sample Time Given
No Sample DaEe Given
f.rr.,,.
client,
ftll:l:
I
I
I onnrored By:
ID: ITIMMMW4 is associat.ed t.o Lab ID: 0l'3L9L4'4
ID: SIMMIW-11 is associated to Lab ID: 01-31914-1
ID: WMMrw-12 is associated Eo Lab ID: 01-31914-3
ID: IrlMtr[fW-ls is associated Eo Lab rD: 0L-3L9L4'2
I
I
I
I
I
I
dlqd.es.r,.) : .-'
I
t
This is t,he 1asE, page of Ehe Laborat,ory
AddiE.ional QC is available upon requesE.
The report conEains the.number of pages
Reviewed By:
Analysis Report.
indicat,ed by the lasE 4 ..;l-!
iii:: ilna ._ruL t a9.
' : I I r..
,
T*V* (s^*rc'\ *t1t CeJl:
rjI
ENEHGY LABORATORIES, INC.
SHIPPING:2393 SALT CREEK HIGHWAY ' CASPER, WY 82601
MAILING: P.O. EOX 3258 ' CASPER' WY 82602
E-mail: casper@energylab.com ' FAX: (307) 234'1639
PHONE: (307) 235-0515 ' TOLL FREE: (888) 235'051sBillingt. C..P.r' Glll.n.
Hctcna. Rtpld CltY
t
I
t
I
I
I
I
I
I
I
I
I
t
I
T
T
I
LABORATORY ANALYSIS REPORT
ctient: INTERNATIONAL URANITIM (USA) CORPORATION
Project: White Mesa lVIi[
Contact: WallY Brice
Sample Matrix: Liquid, Water
Date Received: 04-02-01
Report Date: APril9' 2001
Laboratory ID i$ample Date / Time Sample ID Nitrate * Nitrite as N'
01-31913-1 03-29-200109:32 wMMTW4-1 7.t5
0t-3t9r3-2 03-29-2001 11:08 wMMTW4-2 t0.2
01-31913-3 03-28-2001 17:35 wMMTW4-3 1.85
0t-31913-4 03-27-200109:02 wMMTW4-4 t4.5
01-31913-5 03-28-2001 l1:04 wMMTW4-5 3.88
01-31913-6 03-26-2001 16:20 wMMTW4-6 0.13
ot-31913-7 03-27-2001 14:56 wMMTW4-7 2.46
01-31913-8 03-27-2001 16:54 wMMTW4-8 < 0.10
ot-31913-9 03-27-2001 lL:20 wMMTW4-9 < 0.10
01-31913-10 03-26-2001 14:01 WMMTW4-10 < O.l0-{etpbl^
4- Ta-\P Btak- (l,J,I{l,,l.Lwrl/nru'^Tut1-10 i's
NOTES:
(l) Thesevaluesareanassessmentofanalytical precision. Theacceptancerangeis0-20%lbrsarnpleresultsabovel0tirnes
thereportinglimit.Thisrangeisnotapplicabletosampleswithresultsbe|owl0timesthereportinglimit.
(2) These values are an assessment ofanalytical accuracy. They are a percent recovery ofthe spike addition ELl perlbrms
amatrixspikeonl0percentofallsamplestbreachanalyticalmethod.
msh: r:\repurrs\clienrs200l\international-uranium-corp\liquitl\3 l9l3-l-10'xls
., . ., 1r
Quatity Assurance Data
Reporting Limit
RPD'
rKe
GOMPLETE ANALYTIGAL SERVIGE$ :
!
a
2
I
a\
!t \'\
- -\ .!:0 \-u
-i+\qt
=
!
'&.---t-'\E-l-\,
r '-;
. .:J
!;^.2tji'
e\.
!
{
o
o
(\l
!'
O
u
tf,
9
ao
1)
!)o!|
L
{)
a
t
eoF€
oOx --rIJ .l!
o
!
ao
!
'4
-J)
I
-+
;
,
3
(Ji
'n n-
\v^
'{i
--,z
U
.
'J)
e
z
x
q
\
qo
vU
e14
I
c
ta
G
.A
rt
4)
I
1)F
a)
z
,*t.-.G
.J
.J
I0
d{)
!1
tn
ro
,-
I
a
'3 ,a c.t;€Y=\!,A+tt^i d
=F.t\
isE
\o(\r
qR-.Yi-til (\t
. 6il>.iS>.
Oad *t-Pqtt
8.€
11.9i.
\$1F +s'vr\'tyOO
iaEu.tZP\U
?iE rlr)!!d
Bss
<.oqa,
ia .s
dsitss,:i
==!lrl \.A{
arc!
=i=+
E
a.)
C)
(,)&
()
q.)
F
ntltj auuff uouotaS4 spltoVtt,os nnfi tr-y
O n A S ln y:ad,(1a1dutog
sJaulquoc lo raqunN
+
x.(q
IL
rt
q)
a
C)
z
b.Fa
b
GJ.E$,xi!d (\^s
H.\..
g
c)
.9
;
c)(/)
s
NL
U.,,$/s-t
+
s*
'^
c)q
rt
o
o
oo
6l
IL
p.
tro
6g)
ot
6z
c)
c)
E.
.
'r,
I
I
t
I
I
I
I
I
I
I
I
I
I
T
I
t,'Energrl; taboratories, Inc -
SAMPLE COIIDITION REPORT
f tnr" repore provides informaEion about, Ehe condit,ion of E,he sample(s) , and assocaced
Isa*pte LusEody information on receipE at Ehe laboratory.
IClient: International Uranir:m (USA) Corporation Description: WATER
Ii; ID(s): 01-31913-1 Thru 01-31913-10 Matrix: LiquidrDellvereo Dy: upa DaEe&Time Rec,d: 02-APR-01 looo Date&Time co1'd: 29-!tAR-01 0932
Received bv: Saia Hawken Logged In by: Sara Hawken
lan"t. or.r=aouy form compleEed & signed: Yes commenEs:
Chain of cust,odY seal: No CommenEs:
-Chain of cusCody seal inEacE: N/A Comments:
ISion"trre match; chain of custody vs. seal: N,/A Comments:
I s"ipr" received TemperaEure: 5c commenEs:
^---. " --,-' ' "' l'tult ll! Comment,s:
r sam;les received in proper containers:
t s"*nf"" ProperlY Prelerved:
Yel CommenEs:
Yeil CommenEs:
Bottle Tlpee Received:
! co*.ot',
I
I
I
I
I
I
I
I
I
t
I
I 1aa.'1'l!' t'
Energry Laboratories, Inc.
REPORT PACKAGE SI]MII{ARY FTNAL PAGE
EI,I
Et,I
ELI
ELI
co
ip
N/A
NA
ND
NR
NST
NSD
I
I
t
I
-B
-G
-H
-R
Energy Laboratories, Inc.
Energy Laboratories, Inc.
Energy Laborat.ories, Inc .
Energy Laboratories, Inc.
Acronlms and Defj.nj.r
- Bi11ings, Mont.ana
- GilLeE,te, Wyoming
- Helena, Montana
- Rapid Cit,y, sout,h Dakota
Carry over from previous samPle
Insuf f icient, parameE,ers
Not Applicable
Not Analyzed
Analyte Not DeEecEed at St,at,ed Limit of DeEect,ion
Analyte Not, ReguesEed
No Sample Time Given
No Sample Dat,e Given
Definitions
I
"rr.,,.Client
l:ii:l:
Client
l:ll:l:Client
,
crient
I
I
I
I
I
I
I onn'or"u
This Package ContaLns tlle tollowangf clLenE lu(s, ancl LaD IU(SJ
ID: lrtMtr(M4-1 is associated to Lab ID: 01-31913-1
ID: SlMMrW4-10 is associat,ed to Lab ID: 01-31913-10
ID: $tMMrW4-2 is associaEed to Lab ID: 01-31913-2
ID: 9iMMM4-3 is associated to Lab ID: 01-31913-3
ID: WMMrW4-4 is associated Eo Lab ID: 01-31913-4
rD: wM![rw4-5 is associated to Lab ID: 01-31913-5
ID: I{MM["$I4-5 is associaEed Eo Lab ID: 01-31913-5
ID: lrtMMtW4-7 is associaEed Eo Lab ID: 01-31913-7
ID: WMMIW4-8 is associated to Lab ID: 01-31913-8
ID: IIM!4rw4-9 is associaEed to Lab rD: 01-31913-9
1! 4? ,, "--*F_. ..-BY : -.:-::. ; -.-. :'. ;:. -- r)';--' ''''-''i_- r.a: -' - -:'
iia'.- ---r-".-:aaI
t
This j.s the lasE page of the LaboraE,ory
Addit,ional Qc i.s available upon reguest.
The reporE conEains Ehe -number of pages
Analysis ReporE.
indicaced by the last
I
I
I
I
I
I
I
I
4[-fur
I
0l-31913-1 03-29-2001, 09:32 WMMTW4-1 7.r5
ot-31913-2 03-29-200111:08 wMMTW4-2 10.2
01-31913-3 03-28-200l t7:35 wMMTW4-3 1.85
0t-319134 03-27-200109:02 WMMTW44 14.5
01-31913-5 03-28-2001 11:04 wMMTW4-5 3.88
01-31913-6 03-26-2001, 16:20 wMMTW4-6 0. t3
0t-31913-7 03-27-2001 74:56 wMMTW4-7 2.46
0r-31913-8 03-27-2001 16:54 WMMTV/4-8 < 0.10
01-31913-9 03-27-2001 1,1:20 wMMTW4-9 < 0.10
0l-3r9r3-10 03-26-2001 14:01 WMMTW4-10 < 0.10
NOTES:
( I ) These values are an assessment of analytical precision. The acceptance range is 0-20% for sample results above I 0 times
the reporting limit. This range is not applicable to samples with results below l0 times the reporting limit.
(2) These values are an assessment ofanalytical accuracy. They are a percent recovery ofthe spike addition. ELI performs
a matrix spike on l0 percent of all samples for each analytical method.
msh: r:\reports\clients200l\international-uranium-corp\liquid\31913-l-l0.xls
I
I
I
I
I
I
I
I
I
I
Quality Assurance Data
Method EPA 353.2
Reportins Limit 0.10
RPD'0.8
^.,2SDIKE 94
Analyst rwk
Date/Time Analyzed 04-04-2001 15:30
t
t
I
I
I
I
I
I
I
I
I
I
t
I
t
I
I
I
I
(l) These values are an assessment ofanalytical precision. The acceptance range is 0-207o for sample results above l0 times
the reporting limit. This range is not applicable to samples with results below t 0 times the reporting limit.
(2) These values are an assessm€nl of analytical accuracy. They are a percent recovery ofthe spike addition. ELI performs
a matrix spike on t0 percent of all samples for each analytical method.
msh : r:\reports\clients2001 \international-uranium-corp\liquid\3 1 914-1-4.xls
01-3t914-l 03-26-20/.l.l 14:02 WMMTW4-11 < 0.10
0t-31914-2 03-26-2001 L5:49 WMMTW4-15 < 0.10
01-31914-3 03-29-2001 11:08 WMMTW4-12 r0.0
0t-319144 03-29-2001 12:38 WMMMW4 8.77
Quality Assurance Data
Method EPA 353.2
Reporting Limit 0.10
RPD'1.0
Spike2 96
Analyst rwk
Date/Time AnalYzed 0444-2001 17:13
I
I
I
I
I
t
I
I
I
I
I
Client:
Project:
Sample ID:
laboratory iD:
Mauix:
Dilution Factor:
International Uranium (USl1 Corporation
WHITE MESA MILL
WMMTW4-l
01-31916-l
Liquid - WATER
2N
Date Sampled:
Time Sampled:
Date/Time Received:
Date Analyzed:
Date Reported:
Lb7
03-2941
09:50
0442{1 10:00
044441
April 12,2001
Ctrloroforur (Tlichlorom ethane)
ND - Anolyte not dctected ot statcd limil ol iletectbn
Volatile Organic ComPounds
T{TT'.RN AI STANTIARNS
Penufluorobenzene
Fluorobenzene
1,4 - Difluorobenzene
Chlorobenzene - d5
1,4 - Dichloroberucne - d4
AREA
1 166070
2433645
1769t22
I 189063
47374
ICAL / CCAL
AREA
r 150521
2388861
1775533
tl634/}6
458787
PERCENT
RECOVF'RY
10t%
lO2Vo
99.67o
102%
lOtVo
PERCENT
RRCOVERV
94.SVo
to3%
99.lVo
99.0%
ACCEPTAI{CE
RANGF
5O -20o Vo
50 -20o %
50 -2OO Vo
50 - 2O0 Vo
50 -200 %
ACCEPTANCE
RANGE
86 - ll8 Vo
88-110%
86-rts%
ffi-r20%
I
I
I
T
t
t
I
I
Dibromofluoromethane
Toluene - d8
4 - Bromofluorobenzcne
1,2 - Dichlorobenzene - d4
CONCFNTRATION
9.45
10.3
g.g1
9.90
MFTHONS USF'II IN TIIIS ANAI VSIS:
BPA 50308, EPA Eiz60B
scc: r:\rcpors\clicnt900l\iruenudonal uranium-corpkaspcr-org\3l9l6l-19-8260b-chloroform-l'w'rls Amlyst:rlo
t
I
t
I
T
t
I
T
T
I.ABORATORY ANALYSIS REPORTI f,'PA MNTHOD 8It6O
Volatile Organic Compounds
Client:
Project:
Sample ID:
Laboratory ID:
Matrix:
Dilution Factor:
International Uranium (USA) Corporation
WHITE MESA MILL
wMMTW4-2
0t-3t9r6-2
Liquid - WATER
200
Date Sampled:
Time Sampled:
Date/Time Received:
Date Anallzed:
Date Reported:
03-2941
ll:12
04{241 10:00
0444{t
April 14,2001
ND - Analytc not dctectcd d statcil limit of detectbn
t
!
I
I
I
I
I
I
I
I
rNTF'RNAI. STANDARNS
Pentafluorobew.erre
Fluorobenzene
1,4 - Difluorobenzene
Chlorobenzene - d5
1,4 - Dichlorobenz.ete' d4
ICAL / CCAL
ARNA
1150521
2388861
17?5533
1163446
45878'7
pERCEI.IT
RF',COVERV
lO07o
tot%
98.77o
101%
lO3Vo
PERCENT
RECOVFRY
93.6%
t03%
99.3%
98.87o
ACCEPTANCE
RANGN
50 -20o %
5O -2Co Vo
5O -20o Vo
50 -20o Vo
50 -20o %
ACCEPTANCE
RANGN
86-rt9%
88-110%
86-tts%
80-120%
ARRA
1t54034
2407856
17529ffi
l 171985
47t262
qYCTF'M MONITORING COMPOI INN.S
Dibromofluoromethane
Toluene - d8
4 - Bromofluorobenzene
1,2 - Dichlorobenzene - d4
CONCENTRATION
9.36
10.3
9.93
9.88
MF'TTTODS USEIT IN TIIIS ANAI YSIS:
EPA 5(BOB, EPA E26OB
scc: r:\rcporsklicnts2O0t\incrmdonel uranium-corpbaspcr-orgBt9l&t-t9-E260b-chloroform-l-w.xls Analyst:rlo
I
I
I
I
T
I
t
t
I
Client:
Project:
Sample ID:
Laboratory ID:
Matrix:
Dilution Factor:
International Uranium OSA) Corporation
WHITE MESA MILL
wMMTW4-3
01-31916-3
Liquid - WATER
100
Date Sampled:
Time Sampled:
Date/Time Received:
Date Analyzed:
Date Reported:
03-28-01
17:56
04{241 10:00
04{441
April 14,2001
,:,j,,.,:,,,,,'i:i':',:,'::'i:::,,:i:i:,:,i i'::::i:i iii,t::
:.:::: ::::: :l: :::::: :::::::'::-:-:.: :::.:.:,:.. : :.i: ::
...::ii i,:::: e;#i$l:l:#l:llii'.::
67{6-3
ND - Analytc not dctccteil al stalcd limit of detectbn
Volatile Organic Compounds
I
t
I
I
t
I
I
I
N{TT'RNAI STANNARTIS
Pentafluoroben:Iane
Fluorobenzene
1,4 - Difluorobenzene
Chlorobenzene - d5
1,4 - Dichlorobenzcne - d4
ARE^
I 158619
240/;030
t745382
l 175904
472736
tct'J- lccal,
AREA
l 150521
2388861
t775533
1t63446
458787
PERCENT
RrCO\IF'RY
70lVo
lOlVo
98.37o
10t%
r03%
PBRCET{T
RECOVRRY
94.EVo
703Vo
lolVo
98.5Vo
ACCEPTANCE
R^NGT'-
50 -2OO 7o
50 -2@ %
50 -2@ %
50 -2W %
s0 -20o %
ACCEPTAI\CE
RANGIT
86 - llE Vo
88-ll0%
86-tt'%
80-r20%
SYSTT'M MOMTORING COMPOUNNS
Dibromofluoromethane
Toluerrc - d8
4 - Bromofluorobenzene
1,2 - Dichlorobenzene - d4
CONCENTRATION
9.48
r0.3
10.1
9.85
MF'THONS UStr.D IN TI{IS ANAIYSIS:
EPA 50308, EPA 82608
t scc: r:\rcpors\clicns200t\incrnadonrl uranium-corp\caspcr-org\3l9l6t'19-826(h-chloroform-l-w.xls
T
Analyst:rlo
I
T
I
I
I
I
t
t
I
Client:
Project:
Sample ID:
Laboratory ID:
Matrix:
Dilution Factor:
International Uranium OSAI Corporation
WHITE MESA MILL
WMMTW44
ol-319164
Liquid - WATER
2N
Date Sampled:
Time Sampled:
Date/Time Received:
Date Analyzed:
Date Reported:
03-274t
09:00
O442{l 10:00
044ffi1
April 14, 2001
Chloroform (Irichloromethane)
ND - Analyte not dcrectcd at statcd limit of iletcction
Volatile Organic Compounds
t
t
t
I
I
I
I
I
I
t
INTtr'RNAI. STANNARNS
Penufluorobenzene
Fluorobenzene
1,4 - Difluorobenzene
Chlorobenzene - d5
1,4 - Dichlorobenzene -d4
lcAL tccAL
ART'.A
1 150521
2388861
r775533
t163446
45878't
CONCEI.{TRATION
9.83
10.6
10.6
9.92
PERCENT
RF'COVT'RY
85.ZVo
93.3%
88.s%
89.8%
89.s%
PERCENT
Rr'COVF'R\r
98.3%
1067o
106Vo
99.2%
ACCEPTANCE
RANGIT
s0 -2w %
fi-zfi%
50 -20o %
fi-2W%
fi-2W%
ACCEPTAI{CE
RANGE'
86-rr8%
88-ll0%
86-trs%
80-t20%
ART'.A
980t62
2227683
15722t0
1044788
410680
SYSTTM MOMTORING COMPOIININS
Dibromofluoromethane
Toluene - d8
4 - Bromofluorobenzene
1,2 - Dichlorobenzene - d4
Mf,'THOtIS USI'TI IN TTIIS ANAI YSIS:
EPA 50308, EP')A E2608
scc: r:\rcpons\clieils2q)l\itilctnarioBl uraniun-corp\caspcr-orgBI9t6l-19-E26(h-chlomform-l-w'rls Amlyst:rlo
I
t
I
t
I
I
T
I
I
I
r ABORATORY ANAr YSIS REPORT, EPA METHOn 8260
Volatile Organic Compounds
Client:
Project:
Sample ID:
Laboratory ID:
Matrix:
Dilution Factor:
International Uranium (USA) Corporation
WHITE MESA MILL
wMMTW4-5
0l-31916-5
Liquid - WATER
l0
Date Sampled:
Time Sampled:
Date/Time Received:
Date Analyzed:
Date Reported:
03-28{l
ll:22
0442{1 10:00
04-0441
April 14, 2001
ND - Anolyte not dctectcd al statcd limil of dcuctbn
I
I
I
t
I
t
t
INITT'RN AI . STATINARDS
Pentafluorobenzene
Fluorobenzene
1,4 - Difluorobenzene
Chlorobenzene - d5
1,4 - Dichlorobenzene - d4
ART'A
t107374
2345208
16988r0
l 159686
466834
ICAL ICCAL
AREA
l 150521
2388861
1775533
1163446
458787
CONCtr'NTRATION
9.46
r0.4
10.1
9.76
g
PERCEI{T
RPCOVtr'RY
96.2Vo
98.ZVo
95;7%
99.77o
102%
PERCENT
RECOVNRY
94.6Vo
tu%
lolVo
97.67o
ACCEPTANCE
RANGE
50 -200 vo
50-2W%
50 -20o %
so-2@%
50 -2@ %
ACCEPTANCE
RANGN
86-ttB%
88-110%
86-trs%
80-r20%
SYSTT'M MOIYITORING COMPOI INNS
Dibromofluoromethane
Toluene - d8
4 - Bromofluorobenzene
1,2 - Dichlorobenzene - d4
MI'TIIOIIS USE'D IN TTIIS ANAI YSIS:
EPA 5O3OB, EPA E26OB
I scc: r:\rcpons\clicns200t\inrcrnrdonal uranium-corp\cesper-org\3t9t6t-r9-E26(b-chloroform-l-w.rls
I
Analyst:
I
I
I
t
I
I
I
I
I
I
I
I
Client:
Project:
Sample ID:
Laboratory ID:
Matrix:.
Dilution Factor:
International Uranium (USE1 Corporation
WHITE MESA MILL
wMMTW4-6
01-31915-6
Liquid - WATER
2
Date Sampled:
Time Sampled:
Date/Time Received:
Date Analyzed:
Date Reported:
03-26{1
l6:30
04{241 10:00
044141
April 14,2001
r::,', ,ti:iI ::i. : ::':::,:,,i ,i::,:1,i :,;,:itli:::i::,1tii:i iiii
.,..:,,,,,,":,,,:.ii, ,,.:,:,. :::,:,:::,.:.::,,:i .::i::::.:i::::::::
,,,,.:.i,:,,:i.:€r'a,:si::!#i:,ii:.i :,:,:::
67-65-3 Chloroform (Trichloromethane)
ND - Analyte not delcctcd a, sutcd limit of detcctbn
Volatile Organic Compounds
NTTF'RNAI STANDARDS
Pentafluorobenzene
Fluorobenzene
1,4 - Difluoroberzene
Chlorobenzene - d5
1,4 - Dichlorobenzene' d4
ICAL ICCAL
AREA
I 150521
2388861
t775533
tt63M6
458787
CONCT'NTRATION
9.58
10.4
10.0
9.84
PERCENT
RECO\IERY
98;7%
99:770
96.2Vo
99.67o
102Vo
PERCENT
RFCOVERY
95.8%
lMVo
too%
98.4%
ACCEPTANCE
RANGN
50 -20o Vo
50 -Z0o 7o
50 -20o Vo
50 -2OO 7o
s0-2@%
ACCEPTANCE
RANGN
86-llE%
88-1r0%
86 - ll5 Vo
w-120%
ABEA
1135759
23821X)
1708345
I 159355
46't805
SVSTT'M MOMTORING COMPOIINNS
Dibromofluoromethane
Toluene - d8
4 - Bromofluorobenzcne
1,2 - Dichlorobenzene - d4
MI'TTIODS USEN IN TIIIS ANAI YSIS:
EPA 50308, EPA &2608
scc: r:\rcpors\clients2fl)t\itltcttulional uranium-corpbaspcr-orgBt916t-19-826(h-clrloroform-l-w'rls Analyst:rlo
I
I
I
I
t
I
I
T
t
I
I
I
t
t
I
I
I
I
I
I ABORATORY ANALYSIS RT'PORT, T'P^ I\,fETHOD 8260
Volatile Organic Compounds
Client:
Project:
Sample ID:
I-aboratory ID:
Mauix:
Dilution Factor:
International Uranium (USA) Corporation
WHITE MESA MILL
wMMTW4-7
0t-31916-7
Liquid - WATER
100
Date Sampled:
Time Sampled:
Date/Time Received:
Date Analyzed:
Date Reported:
03-2841
15:09
044241 10:00
o1{4{1
April 14,2001
ND - Analyte ,rot detcctcd ot staled limit of detection
INTF'RNAI.STANNARNS AREA
Pentafluorobenzene 1105485
Fluorobenzene 2323615
1,4, Difluorobenzene 1678345
Chlorobenzene - d5 1136308
1,4 - Dichlorobenzene - d4 448761
*a,*ror rn*ta,*rNc con'rpol NT|S
Dibromofluoromethane
Toluene - d8
4 - Bromofluorohnzene
1,2 - Dichlorobenzsne - d4
458787 97.8%
ARRA
I 15052r
2388861
1775533
tt63u6
CONCFNTRAflON
9.38
10.5
r0.0
9.83
RITCO\IERY
96.t%
97.3Vo
94.57o
97.7%
PF,RCENT
RECOVFRY
93.8%
105Vo
lNTo
98.3%
RANGF'-
50 -?,fiO 70
50 -2Co Vo
50 -20o 7o
s0 -20o %
50-2W%
ACCEPTANCE
RANG.r
86-ttB%
88-ll0%
86-tts%
80 - t20 vo
MT'TTIOIIS IISF.II IN TIIIS ANAI YSIS:
EPA 50308, EPA 82608
scc: r:\rcporrs\clientoo0l\inrcnndonrl uranium-corp\caspcr-org\3l9l6l'19-8260b-chloroform-l'w.xls Analyst:rlo
T
I
I
I
I
I
I
I
I
I
r ABoRATORY ANALYSTS REPORT, EPA MF'THOD 8260
Volatile Organic Compounds
Client:
Project:
Sample ID:
Laboratory ID:
Matrix:
Dilution Factor:
International Uranium (USA) Corporation
WHITE MESA MILL
wMMTW4-8
0l-31916-8
Liquid - WATER
l0
Date Sampled:
Time Sampled:
Date/Time Received:
Date Analyzed:
Date Reported:
03-2641
l7:00
04{2{1 10:00
04-04-01
April 14,2001
ND - Analyte not dctcclcd a! statcd limit ol detection
I
t
I
I
I
t
t
I
I
nt[Ttr'RNAI STAI{nARDS
Pentafluorobenzene
Fluorobenzene
1,4 - Difluorobenzene
Chlorobenzene - d5
1,4 - Dichlorobenzene - d4
ARE'.A
1090084
2309't6p
166/.765
I 1 r9681
442367
ICAL I CCAL
ARF'A
l 150521
238886r
t?75533
1163446
458787
PERCENT
RT'.CO\IF'RY
94.77o
96;tVo
93.8%
96.2%
96.4%
PERCEI{T
ITECO\IRRY
95.7Vo
lO47o
lolTo
99.47o
ACCEPTAI!CE
RANGE'.
s0 -2w %
50 -20o %
50 -20o %
s0-20o%
50 -Zffi 7o
ACCEPTANCE
RANGF
E6-ll8%
88-ll0%
86 - ll5 Vo
80-t20%
SYSTF.M M OMTORING COMPOI]T.MS
Dibromofluoromethane
Toluene - d8
4 - Bromofluorobenzcne
1,2 - Dichlorobenzene - d4
CONCENTRAflON
9.57
10.4
r0.1
9.94
VTTTHOTTS IISFTI IN TTIIS ANAI YSIS:
EPA 5(B08, EPA 82608
scc: r:\rcporsklients200t\incrmtiolul urrnium-corP\caspcr-org\3l9l6l-19-&16(h-cbloroform-l-w.rls Amlyst:rlo
r ROR TORY 'N LVSIS RFPORT, r'P^ I\'{FTHOn 8260
Volatile 0rganic ComPounds
Client:
Project:
Sample ID:
I-aboratory ID:
Mauix:
Dilution Factor:
International Uranium (USA) Corporation
WHITE MESA MILL
wMMTW4-9
01-31916-9
Liquid - WATER
2
Date Sampled:
Time Sampled:
Date/Time Received:
Date Analyzed:
Date Reported:
' 03-Tl4t
11:35
O4{241 10:00
04{5{r
April 14,2O0l
ND - Analyte not delcctcd ot stued limit ol iletectbn
t
I
I
I
I
I
I
I
I
I
I
t
I
t
I
I
I
I
I
II\TTF'RN AI STANT}ARNS
Pentafluorobenzene
Fluorobenzene
1,4 - Difluorobenzene
Chlorobenzene - d5
1,4 - Dichlorobenzene - d4
ABEA
1067998
23063t3
r658294
l I 15898
447091
ICAL / CCAL
ARFA
I 150521
2388861
1775533
1t63446
458787
CONCT'NTR.ATION
9.50
10.5
to.l
9.80
9r.,valr't..:...i:\ r
PERCET{T
RECOVT'RY
92.8%
96.5Vo
93.4%
9sJ%
97'.5%
PERCEI.IT
RECOVERY
95.O7o
lO57o
10t%
98.0%
ACCEPTANCE
RANGN
50 -20o %
so -2@ %
50 -2W %
50 -2W %
50 -2@ %
ACCEPTAI\CE
RANGtr'
86-Lt8%
88-110%
86-ll5 Vo
w-t20%
Dibromofluoromethane
Toluene - d8
4 - Bromofluorobenzene
1,2 - Dichlorobenzene - d4
Mtr'THOtTS UST'.D IN TIIIS ANAI YSIS:
EPA 50308, EPA E2608
scc: r:\rc?orrsklicnts200l\inarnrdonal unnium-corp\caspcr-org\3l9lGl-19-8260b-chlotoform-l-w'xls Amlyst:rlo
I
I
I ABORATORV ANAI YSIS REPORT, EPA METIION 8250
Volatile Organic Compounds
Client:
Project:
Sample ID:
I-aboratory ID:
Matrix:
Dilution Factor:
International Uranium (USA) Corporation
WHITE MESA MILL - q*,u*L r
wMMrw4-ro q4 '\ +'P:
+ilozor-3rer6-10 q.2 fo"' '" -
Liquid - WATER d.4-r' '
2
Date Sampled:
Time Sampled:
Date/Time Received:
Date Analyzcd:
Date Reported:
03-23{1
12:45
044241 10:00
04{5{1
April 14,20Ol
ND - Analyte not dctccted a! stated limit ol dctcction
I
I
T
t
I
I
I
I
I
t
I
I
I
I
I
I
I
rNTF'RNAI.STANNARNS ARNA
Pentafluorobenzeire 1081645
Fluorobenzene 2280451
1,4 - Difluorobewr;ne 1630418
Chlorobenzene - d5 1103332
1,4 - Dichlorobenzere'd4 437754
SYSTFI,I MOMTORTNG COMPOITNNS
Dibromofluoromethane
Toluene - d8
4 - Bromofluorobenzene
1,2 - Dichlorobenzene - d4
ICAL I CCAL
ARIIA
r 150521
2388861
t7?5533
116346
458787
CONCT"NTRAflON
9.55
10.6
to.2
9.91
PERCENT
RF'COVF'RY
94.O%
95.SVo
91.87o
94.8Vo
95.4%
PERCM{T
Rr.COVr.RY
95.57o
tM%
lO2Vo
99.t%
ACCEPTANCE
RANGE'.
s0 -20o %
50 -20o %
50-?' oVo
50 -200 vo
50 -2W %
ACCEPTAI{CE
RANGE
86-ttB%
88-u070
86-tts%
80 - l2O Vo
MF'TIIOTIS USFIT IN TTIIS ANAI YSIS:
EPA 50308, EPA E2608
scc: r:\rcponsblicnu2fl)l\intcrnerional unnium-corp\caspcr-orgBl9lGl-19-E260b-chloroform-l-w.rls Analyst:rlo
r ABORATORY ANALYSIS REPORT, F'PA METHON 8260
Volatile Organic Compounds
International Uranium OSal CorporationClient:
Project:
Sample ID:
kboratory ID:
Matrix:
Dilution Factor:
WHITE MESA MILL
wMMrw4-ll a4
0l-31916-ll
Liquid - WATER
2
c,rtbh[t' -r* lloo*Noz
tw\\a
Date Sampled:
Time Sampled:
Date/Time Received:
Date Analyzed:
Date Reported:
03-2341
12:4'l
044241 10:00
04{5{r
April 14,2001
ND - Analytc not detected at sloted limit of dctcction
I
I
I
I
t
I
I
I
I
I
I
t
t
I
I
t
I
I
I
IIVTERNAI STANTIARNS
Pentafluorobenzene
Fluorobenzene
1,4 - Difluorobenzene
Chlorobenzene - d5
1,4 - Dichlorobenzene - d4
ICAL ICCAL
ART'.A
l 150521
2388861
1775533
tt63446
458787
PERCENT
RE'.COVERY
94.5%
96.8Vo
93.6%
93.9Vo
93.1%
PERCEI{T
RECO\IFRY
95.3Vo
tM%
102%
99.lVo
ACCEPTAI\CE
RANGE
s0-zffi%
50 -Zfi Vo
50 -20o 7o
s0 -2w %
so -2@ %
ACCEPTANCE
RANGE'
86 - ll8 Vo
88-ll0%
86-tts%
80 - t?.0 vo
ART"A
r087398
23t2t6t
t661249
1093054
427271
SYSTT'M MOMTORING COMPOIINTIS
Dibromofluoromethane
Toluene - d8
4 - Bromofluorobenzene
1,2 - Dichlorobenzene - d4
CONCT'NTRAT'ION
9.s3
10.4
to.2
9.9r
\TRTTTODS IISF'II IN TIIIS ANAI VSIS:
EPA 50308, EPa E2608
scc: r:\rcporsklienrgfi)t\imcrmrioml iiranium-corp\caspcr-orgBl9tGl-t9-E260b-chlorofotm-l-w.Ils Analysr:rlo
I
t
I
t
I
I
Client:
Project:
Sample ID:
Laboratory ID:
Mauix:
Dilution Factor:
International Uranium (USA) Corporation
WHITE MESA MILL
WMMTW4-12 DtaP. oF Tw Ll- 2-
ot-319t6-t2
Liquid - WATER
2N
Date Sampled:
Time Sampled:
Date/Time Received:
Date Analyzed:
Date Repo.rted:
03-29{l
ll:24
O4{2{1 10:00
044ffi1
April 14, 2001
I
I
T
I
I
I
I
I
I
I
t
ND - Analytc not detectcd al starcd limit ol detcction
INTT'RNAI.STANT}ARNS ARNA
Pentafluorobenzene 954374
Fluorobenzene 2199976
1,4 - Difluorobenzene 1545815
Chlorobenzene - d5 1054565
1,4 - Dichlorobenzene - d4 411716
SYSTT,'M MOIVITORING COMPOT'NTIS
Dibromofluoromethane
Toluene - d8
4 - Bromofluorobenzene
1,2 - Dichlorobenzene - d4
AREA
r 150521
2388861
1775533
1t634/,6
458787
CONCENTRATION
10.0
10.8
10.4
9.83
RECOVF'RV
83.0%
92.17o
87.r%
m.6%
89.7%
PERCENT
RlrCOVF'RY
rco%
toB%
lMVo
98.3Vo
BANGE
5O -2AO Vo
fi -20o Vo
50 -2W %
50 -2W %
50 -20o %
ACCEPTANCE
RANGN
E6-ttB%
88-110%
86 - ll5 Vo
80 - t?o vo
\{['TTIODS USF'N IN TTIIS ANAI YSIS:
EPA 50308, EPA 82608
I scc: r:\rcporrs\clicrrg00t\idcrnlionaluranium-corpbaspcr-org\3l9lGt-!9-E260b-chloroform-l-w.xls
I
Volatile Organic Compounds
Analyst:
-Lui pff4 r
I ABORATORY ANALYSIS REPORT, EPA MFTHON 8260
Volatile Organic Compounds
Client:
Project:
Sample ID:
l,aboratory ID:
Matrix:
Dilution Factor:
International Uranium (USl1 Corporation
WHITE MESA MILL
wMMTw4-13 (Lnial| Pn o7 1o
0l-31916-13 Pwra'niO ?ncl
Liouid - wArER SaHP r,}* P aC v"@lb'
2 (au*ahe-q:tc
s
Chbroform (Thichlorom ethane)
ND - Analytc not ilctected at stalu, limit of detection
?ilo^L
---
Date Sampled:
Time Sampled:
Date/Time Received:
Date Analyzed:
Date Reported:
03-2341
14:24
04{241 10:00
04{541
April 14,2001
T
t
T
t
T
I
I
I
I
I
I
I
I
t
I
I
T
t
I
:itii:ii:i::i::iiirf i
II\TT'RNAI STANTTARNS
Pentafluorobenzene
Fluorobenzene
1,4 - Difluorobenzene
Chlorobenzene - d5
1,4-Dichlorobewere-M
lcAL tccAL
ARIIA
r 150521
238886r
1775533
1163446
458'.187
CONCITNTRATTON
9.56
10.5
10.1
9.85
ARFA
1056010
2291350
1639990
1102979
429163
PERCEf.fT
RFCOVtr'RY
9l.$Vo
95.9%
92.47o
94.8Vo
93.5%
PERCEI{T
RlrCOVERY
95.6Vo
lO5Vo
lOlVo
98.5%
ACCEPTAI{CE
RANGE
50 -20o Vo
fi -20o Vo
s0 -20o %
s0 -20o %
50 -20O Vo
ACCEPTANCE
RANGE
86- r18 %
88-ll0%
86-tts%
80-r20%
SVSTT'M MONITORING COMPOIINDS
Dibromofluoromethane
Toluene - d8
4 - Bromofluoroberzene
1,2 - Dichlorobenzene - d4
MF'TTIODS IIStr'TI IN TIIIS ANAI YSIS:
EPA 50308, EPA E2608
scc: r:\rcponsklientefi)l\iilcrnedotll-uranium-corp\caspcr-org\3l9l6l'19-8260b-chloroform-l-w.xls Analyst:rlo
I ABORATORY ANALVSIS REPORT, F'PA ME'THON 8260
Volatile Organic Compounds
Client:
Project:
Sample ID:
Laboratory ID:
Matrix:
Dilution Factor:
International Uranium (USl1 Corporation
WHITE MESA MILL
WMMTW4-14 A n *,fr- P+12 (^ tT,
0l-31916-14 (,D-l+
Liquid - WATER
2
Date Sampled:
Time Sampled:
Date/Time Received:
. Date Analped:
Date Reported:
03-25{l
12:33
0442{1 10:00
04-05-01
April 14, 2001
ND - Analytc not detccted al statcd limil of dctection
I
I
I
T
I
I
I
I
I
I
I
t
I
I
T
I
I
I
I
TIITT'RNAI.STANT}ARNS ARNA
Pentafluorobenzene 1053851
Fluorobenzene 2258371
1,4 - Difluorobenzene 1ffi3542
Chlorobenzene - d5 1090824
1,4 - Dichlorobenzene - d4 42ffi3
SYSTF'M MONTTORING COMPOTINTIS
Dibromofluoromethane
Toluene - d8
4 - Bromofluorobenzene
1,2 - Dichlorobenzene - d4
CONCENTRArlON
9.62
r0.6
r0.1
9.78
ICAL ICCAL
AREA
l 150521
2388861
1775533
t163446
458't87
PERCEITIT
RITCOVT'RY
9l.6Vo
94.5%
w.3%
93.8Vo
92.97o
PERCENT
RNCO\IRRY
96.2%
106Vo
lOlVo
97.8%
ACCEPTANCE
RANGN
50 -2o0 Vo
5O - 2OO Vo
50-20o 70
50-20o%
50 -200 Vo
ACCE?TAT{CE
RANGE
E6 - ltB Vo
88-110%
86 - ll5 Vo
80 - 120 7o
Mf,'TTIOfiS UStr'II IN TIIIS ANAI YSIS:
EPA 50308, EPA E2608
ccc: r:\rcporrs\cliants2fi)t\intcrmtiorul-unnium-corp\caspcr-org\3l9lGI'19-&16(h-chloroform-l-w.xls Analyst:rlo
Client:
Project:
Sample ID:
Laboratory ID:
Mauix:
Dilution Factor:
International Uranium (USA) CorPoration
WHITE MESA MILL
wMMTw4-15 (Lt nsaL pnDrr +O
0l-3191G15 C}'tlooQ;a,-r>ru,l-lLS.
Liquid - WATER
2
Date Sampled:
Time Sampled:
Date/Time Received:
Date Analyzed:
Date Reported:
03-25{1
13:35
O4{2{1 10:00
04{541
April 14,2001
ND - Analyte not ilctcctcd st staled limit of detectbn
t
I
I
I
T
T
I
t
I
t
I
t
I
T
I
I
T
I
I
N{Ttr'ITNAI STANNARTIS
Pentafluorobenzene
Fluorobenzene
1,4 - Difluorobenzene
Chlorobenzene - d5
1,4 - Dichlorobenzene' d4
ICAL ICCAL
ARNA
I 150521
2388861
t77s533
1163446
458?87
PERCEI{T
RE'.CO\IF'RY
92.67o
94.67o
91.57o
93.5Vo
9l.SVo
PERCEIYT
RECOVF'RY
94.7%
l05Vo
tot%
99.87o
ACCEPTANCE
RANGT'-
50 -2ffi %
50 -20o %
50 -zfn %'
s0 -2@ %
50 -20o %
ACCEPTANCE
RANGII
86 - ll8 Vo
EE-110%
86 - ll5 Vo
8A-,2O%
AREA
1064856
225893s
t624960
108808r
419852
SYSTTM MOMTORING COMPOI INNS
Dibromofluoromelhane
Toluene - d8
4 - Bromofluorobenzene
1,2 - Dichlorobenzene - d4
CONCENTRATION
9.47
r0.5
10.1
9.98
MEflIODS USF T IN TTIIS ANAI YSIS:
EPA 50308, EPA E26llB
scc: r:Vcpons\clicnts200l\inrcnudonal uranium-corp\caspcr-org\3l9l6l-19-E260b-chloroform-l-w'xls Analyst:rlo
I
t
I
I
t
I
I
I
Client:
Project:
Sample ID:
LaboratorY ID:
Matrix:
Dilution Factor:
International Uranium (USA) Corporation
VSHITE MESA MILL
WMMMW4
0l-31916-16
Liquid - WATER
400
Date Sampled:
Time Sampled:
Date/Time Received:
Date Analyzed:
Date Reported:
03-29{1
l2:50
044241 10:00
044541
April 14,2001
::l:iAlllr|r-*:::ll?Ir.JI.:|!+:::Y:Yi:iiie::::::::::::::::.::::::::i::i
Chloroform (Trichloromethane)
ND - Analyte not dctectcd at slotctl limit of dctedbn
Volatile Organic Compounds
T
T
I
I
I
I
t
I
INTF'RNAI. STANNARNS
Pentafluorobenzene
Fluorobenzene
1,4 - Difluorobenzene
Chlorobenzene - d5
1,4 - Dichlorobenzene - d4
ICAL ICCAL
ABEA
1150521
2388861
t775533
11634/i6
458787
PERCENT
RTTCOVF'RY
90.6Vo
93.7%
9O.$Vo
92.SVo
91.67o
PERCENT
RNCO\rF'RY
%.6%
tu%
lO27o
. 99.8%
ACCEPTANCE
RANG.r.
s0-20o%
50 -?fi %
50 -?-@ vo
50 -20o %
50 -2OO Vo
ACCEPTANCE
RANGR
86 - ll8 Vo
88-ll0%
86-tls%
80-120%
AR['.A
1042084
223N95
t6t2893
to't5862
42M45
SYCTT'M MOMTORTNG COMPOTNDS
Dibromofluoromethane
Toluene - d8
4 - Bromofluorobenzene
1,2 - Dichlorobenzene - d4
CONCIINTRAflON
9.46
10.4
to.2
9.98
METHOTTS USf,'D IN TIIIS ANAI YSIS:
EPA 5o3oB, EPA 82608
I scc: r:vcpors\clicnrs200l\inrcrnadonaluranium-corp\caspcr-org\3l9l6l'19-&160b-chlorofom-l'w.xls
I
Analys:rlo
r ABORATORY ANALYSIS REPORT, EPA MF'THOD 8T6)
Volatile Organic Compounds
Client:
Project:
Sample ID:
l:boratory ID:
Matrix:
Dilution Factor:
International Uranium @SA1 Corporation
WHITE MESA MILL
WMMMWIT
0t-31916-17
Liquid - WATER
2
Date Sampled:
Time Sampled:
Date/Time Received:
Date Analyzed:
Date Reported:
03-25{1
l4:48
O4{2-01 10:00
044541
April 14,2001
ND - Analytc not dctcctcd at stated limil of detcction
I
T
t
t
T
!
I
I
I
I
I
I
I
I
I
I
t
I
t
TI{TT'RNAI STANTIARDS ARF'-A
Pentafluorobenzene 1055347
Fluorobenzene 2270030
1,4 - Difluorobenzene 1618320
Chlorobenzene - d5 1091563
1,4 - Dichlorobenzene - d4 432256
SYSTF'M MOI{ITORING COMPOUNNS
Dibromofluoromethane
Toluene - d8
4 - Bromofluorobenzene
1,2 - Dichlorobenzene - d4
CONCENTRA'IION
9.61
10.6
to.2
9.88
ICAL / CCAL
AREA
1150521
2388861
t775533
rt63M6
458787
PERCENT
RF"COVITRY
91.7%
95.0%
9l.lVo
93.8%
94.2Vo
PERCENIT
RIICO\rF'RY
96.1%
lMVo
102%
98.8%
ACCEPTANCE
RANGR
50 .2@ %
50-2@%
so-2ffi%
50-200 %
s0-20o%
ACCEPTANCE
RANGE
86- 118 %
88-lr0%
86- rr5 %
w-t20%
MT'THOITS TISF'II IN TIIIS ANAI YSIS:
EPA 50308, EPA E2608
scc: r:\rcpons\clicns2g0l\inernadonal-uranium-corpbaspcr-org\3l9l6l-19-8260b-chloroform-l-w.xls Analyst:rl,o
Volatile Organic Compounds
Client:
Project:
Sample ID:
Laboratory ID:
Mauix:
Diludon Faclor:
WHITE MESA MILL
WMMTW4 COMP -
0l-31916,18
Liquid - WATER
100
A- f
crL^+ i,, {!''',. (
,
-9"
-"---
Date Sampled:
Time Sampled:
Date/Time Received:
Date Analyzed:
Date Reported:
03-3041
07:36
04{2{1 10:00
04{5{1
April 14,2001
International Uranium (USA) Corporation
ND - Analyte not dctectcd at statcil limit oJ dclcction
PERCEIYT ACCEPTANCE
Chloroform (Thichloromeihane)
rNTf,'RNAI STANNARNS AREA
Pentafluorobenzene 1036677
Fluorobenzene 2249534
1,4 - Difluorobenzene 1598837
Chlorobenzene - d5 1072il9
1,4 - Dichlorobenzene - d4 416945
SYSTTIM MOMTORTNG COMPOIINDS
Dibromofluoromethane
Toluene - d8
4 - Bromofluorobenzene
1,2 - Dichlorobetzete - M
ART'.A RECOVERY
r 150521
238886r
t7'75533
11634/,6
458787
CONCNNTRATION
9.4
10.6
to.2
9.92
fi.lVo
94.ZVo
90.OVo
92.ZVo
90.9%
PERCENT
RNCOVERY
94.4Vo
lMVo
t02%
99.27o
RANGT'.
so -2fi %
50-200%
50 -zffi %
so -zfi %
50 -200 Vo
ACCEPTANCE
RANGN
86- 1r8 %
88-110%
86-tts%
80 - 120 Vo
ME'TTTONS TISF'II IN TIIIS ANAI YSIS:
EPA 50308, EPA 82608
scc: r:Vc?orsklicntg00l\imernrdonal uranium-corp\cespcr-orgBl9l6l-19-E260b-chloroform-l-w'rls Analyst:
I BORATORY NAI YSIS REPORT, F'PA MI'THON 8260
Volatile Organic Compounds
Client:
Project:
Sample ID:
Laboratory ID:
Matrix:
Dilution Factor:
International Uranium ruSA) Corporation
U/HITE MESA MILL
TRIP BLANK
01-31916-19
Liquid - WATER
I
Date Sampled:
Time Sampled:
Date/Time Received:
Date Analyzed:
Date Reponed:
03-16{1
16:10
O4{2{1 10:00
0444{1
April 14,2001
Chloroform (Trichloromethane)
ND - Analyte not detcctcd ot stated limit of dcbctbn
I
T
t
I
I
I
I
t
I
t
I
I
I
T
INTtr'RNAI STANNARNS
Pentafluorobenzgne
Fluoroberzene
1,4 - Difluorobenzene
Chlorobenzene - d5
1,4 - Dichlorobenzene - d4
ICAL ICCAL
ARF'A
I 150521
2388861
1775533
116346
458787
CONCENITRATION
9.59
t0.2
9.89
9.79
PERCENT
RRCOVT'RY
lO4Vo
lO3Vo
tor%
105%
r07%
PERCEI.IT
RFCOVEBY
95.97o
1027o
98.9Vo
97.9%
ACCEPTANCE
RANGf,'.
50 - 200 vo
5O -20o Vo
50 -2010. Vo
50 -20o 70
50-zfi%
ACCEPTANCE
RANGR
86 - ll8 Vo
88-110%
86-tts%
80 - l2O Vo
ARF'A
l 191328
2452721
1788376
121801',7
49t94?
SVSTT'M MONITORING COMPOI fl\MS
Dibromofluoromethane
Toluene - d8
4 - Bromofluorobenzene
1,2 - Dichlorobeozete - d4
IMT''THONS USf,'tT IN TTIIS ANAI YSIS:
EPA s03oB, EPA E2608
scc: r:Vcpors\clicntg00l\incrnational uranium-corp\iaspcr-oig\3l9l6t'19-E260b-chloroform-l-w.xls Analyst:rlo
Volatile Organic Compounds
Client:
Project:
Sample ID:
Laboratory ID:
Matrix:
Dilution Factor:
International Uranium (USA) Corporation
WHITE MESA MILL
Method Blank
MB040t
Water
I
Date Sampled:
Time Sampled:
Date/Time Received:
Date Analyzed:
Date Reported:
N/A
N/A
N/A
04{441
April 12,2001
Chloroform (Trichloromethane)
ND - Analyte not detcctcil ot stated limit of depabn
iffi.gtilwit$
rNTT'RNAI STANTIARNS
Pentafluoroberulgtte
Fluorobenzene
1,4 - Difluorobenzcne
Chlorobenzene - d5
1,4 - Dichlorobenzene - d4
AREA
r r84558
2435440
t782379
t183537
464888
ICAL / CCAL
AREA
l 150521
2388861
t775533
t163446
458'.787
PERCEIYT
RT'.CO\rF'RY
to3%
toz%
IOOVo- |U%
lOlTo
PERCENT
RF'COVFRY
95.3%
tozv;
98.8Vo
98.5%
ACCEPTANCE
RANGN
50 -2ffi Vo
so-2@%
50 -2fi Vo
50 -20o %
50 -Zfi Vo
ACCEPTANCE
RANGIT
86 - ll8 Vo
88-110%
86-tts%
80 - l2O Vo
SYSTT'M M OMTORIT{G COMPOTINTIS
Dibromofluoromelhane
Toluene - d8
4 - Bromofluorobenzene
1,2 - Dichlorobenzene - d4
CONCF'NTRATION
9.s3
10.2
9.88
9.85
MI'TTTODS UStr'D IN TI{IS ANAI YSIS:
EPA 50308, EPA E2608
scc: r:\rcporrs\cliens200l\intcrmtio'El unnium-corpkasper-org\3l9t6t-19-8260b-chlomform-l'w'xls Analyst:rlo
I
I
I
[n.n,
Sample Set:
ffiIr:""'''
I.ABORATORY ANAI YSIS REPORT, F'PA \,TT'THON 8260
QC RnSUr TS - MATRIX SPIKF OiIS). MATRI\/ SPIKT'. nUPI ICATE (MSn)
Inlernational Uranium (US.l1 Corporation
0l-3l9lGl through 0l-31916.19
0l-3l9lGl7 s
Liquid - WATER
ICAL / CCAL SPIKED SAMPLE
Date Samplcd: 03-29{l
Date/Time Received: 044241 10:00
Date Analyzed: O445{1
Date Reported: April 12, 2001
I
I
t
I
I
I
Pentafluorobenzene
Fluorobenzene
1,4 - Difluorobenzene
Chlorobenzene - d5
1,4 - Dichlorobenzene{4
ARE,A
r 150521
23EE86l
t775533
r1634r',6
458787
AR.r'A %
tc25937 89.270
22t3,43t 92.7%
1595730 89.9%
1065324 91.6%
42s0[6 92.6%
SPIKE DIIPLICAIE
ABEA
r0349s8
t137292
l@m08
9.57
10.6
10.4
9.n
%
n.0%
93.7%
90.t%
95.7%
t06%
tu%
99.7%
ACCEPTAI\
RANGE
50-200 9
50-2m9
50 -zfi i
50-200 I
50-200 9
ACCBPTAII
R.ANGN
86-ll8'
88-110,
86- u5
'80- 120,
Ciixrnsanrpm PERcENT
CONCF'NTRA TI ON Rtr'COVF'RY
lo60rEt 9l.l%
424/88 y2.3%
SPIKEDI'PLICATE PERCENT
CONCF'NTRATTON RT.-COVER.Y
i:lii::iliiiixiii:ir.iiiii:iiil1::i:i:iiiiil:iiiii:::i:ii::ixii;;Xili:riiiitiiiiilifi;i;iii,ii i i,iiirtii.i;:iri,',r.,,,r,,',
Dibromofluoromethane
Toluene - d8
4 - Bromofluorobenzene
1,2 - Dichlorobe nz.ene44
9.62
10.6
r0.3
9.95
SPIKED SAMPLE
CONCENTRAflON
9.E5
96.2%
t6%
t03%
99-5%
Chloroform (Trichloromettrane)
;::::.;::: :: :::.::;::::.:. .r: i :r;:::::: ::::;::r:::.:::iiir::iitiirt::ii:.:::::.:::::.:.::t::j:::::: :::::::::.:::r
: ::: : ::::r::.: :j::'::..:.:1 :: ::::j::: :::':::::'::::::::: ::::::::::::::l::::.:::i.:::rir:i.'ii::' i:lii:iiii '
-:.:.:.::::..:.:::.: :::j::::.:::,::i:,:::::i:::::: :::i::::::::: :.:':':':::::::::.::: :t:::::: :::':.: : : ::: i: :'. i::::::::::::: :
ORIG. CONC. SPIKE AMOI.JNT
(pgll.,r * (,.gl.,
ND 10.0
ini:i::;:;iii;:::i::l:jiiiii:i:i:::i::ii:iii:':i:::ii:rii'ii:iiiiii::i:ii:ii:i:ii:::::i:::i:r:i:::i::,:rr:::'::',":,::::::
PERCENT . .ACCEPTAI\
RECOVERY RANGE
%.s% 70 - 130 ,
I
I SPIKE DI.IP
CONCF'NTRATION
:ii:::r::r::.:.::.1:.::::::::
[i3o.rPg
RPD
IJMTS
?n%
BP.D
2.E%
i.::: :. r :".jr::.--.:..:r.:::::t::.:":
SPII(E
(pgn ]
10.0
ORIG. CONC.
blefiL
ND
f,'
I
! ,o, ,fr"noroklicnrs200t \inrermrioml-unniun-corp\casper-org\3t9tGl't9-&l60b-chlomfotm-l-w.xls
I
PERCEIYT
RF'.COVT'RY
rLt%
lChloroform(Trichloromethane)
l0'1
IIAIBIXJSIIXE 0 ol2 Matrix Spike resuls are ousidc of csablished QC Limits
Marnrv Spmp nlrpt t0trr.t 0 of I Matrix Spike Duplicare resul* are ouSidc of established QC LimiS
Amlyst:rlo
I,
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
fu /o:rulQ
OrderNo: C01060297
July 10,2001
Wally Brice
Intemational Uranium CorP' (ruC)
PO Box 809
Blanding, Utah 8451I
RE: White Mesa Mill
projects.
s?ae E. CrsEror*at 3u4.a*'
Approved BY:
ENEBGY LABORATORTES, INC.
SHIPPING:2393 SALT CREEK HIGHWAY ' CASPER' WY 82601
iiailiNe' p.o. Box s258 ' cASPER, wY 82602
E-rnaii,
"""prr@energvlab.com ' FA)( (307) 2i1'16-3s
iior.rliirizl zgs'os-r-s ' roLL FREE: (s88) 23il51s
Mr. Brice:
The following cover letter is a summary of the attached analyical results for the above
referenced Project.
This packet contains one invoice, thirteen pages-of analytical results, one page of quality
assurance data, the p.:r.i.rr"in of custodi, -a the sample receipt condition report. This packet
contains 20 pages including this cover letter'
There were no problems with the analyses and all data for the batch QC met USEPA or
laboratory sPecifications;:
.
:stions regarding these test results, please feel free to call' Energy
Laboratories, Inc. appreciates the opportunity to proviie you with analytical se'lvices for your
qaqC - Data Validation:
ffisr . CmPot'Gll!.n.
xelcnl'RlPld CIU
GO]SPLETE ANALYTIGAL SERVIGES
I
I
I
I
T
I
I
I
I
T
I
I
I
T
I
I
T
I
T
CLIENT:
Lab Order:
Project:
Lab ID:kp-#l L-"+
I rrrcu
@{r
VOLATILE ORGANTC COMPOUNDS
Chloroform
Sun: 1,2-Dichlorobenzene44
Sun: Dibromofl uoromethane
Sun: p-Bromofluorobenzene
Sun: Toluene'd8
International Uranium (USA) Corp-Blandin
c01060297
White Mesa Mill
C01060297-001 Matrix: AQUEOUS
Report Date: 07/05/01
Collection Date: 06121101 l0:34
Client SamPle ID: WMMTW4-I
sw82608
SW8260B
SW82608
sw82608
sw8260B
6000
99.8
111
102
102
u/L
o/oREC
%REC
%REC
%REC
80-120
80-120
80-120
80-120
OBl2UOl 17:03 / rlo
Ofl2UO1 17:03 / rlo
06/28101 17:03 / rlo
0tr28101 17:03 / rlo
0612E101 17:03 / rlo
Report
Delinitions:
ND - Not detccted at the reporting limit
J - Analye dctected below quantiotion limits
B - Analye detccted in the associated method blank
MCL - Maximum contaminant level
QCL - Qualitycontrol limit
S - Spike recovery outside accepted recovery limits
R - RPD outside acccpted rccovery limits
* - Value exceeds maximum conlaminant lcvel
RL - AnalYe rcPorting lcvel
Page I of 13
I
I
I
I
CLIENT:
Lab Order:
Project:
Lab ID:
Intemational Uranium (USA) Corp-Blandin
c01060297
White Mesa Mill
CO1O6O297-OO2 Matrix: AQUEOUS
Report Date: 07/05/01
Collection Date: 06122101 10:42
Client SamPle ID: WMMTW '?
5500 ug/L
101 %REC
114 %REC
102 %REC
100 o/6REC
I
t
I
I
I
I
I
T
I
I
I
t
I
t
VOLATILE ORGANIC COMPOUNDS
Chloroform
Sun: 1,2-Dichlorobenzene{4
Sun: Dibromofl uoromethane
Surr: p-Bromofr uorobenzene
Sun: Toluene-d8
SW82608
80-120 sw8260B
8o-120 sw8260B
80-120 sw8260B
80-120 sw8260B
06/28/01 17:46 I tto
06f2U01 17:46 I tlo
@128101 17:46 lrlo
062U01 17:46lr1o
06/28/01 '17;46 1tlo
Report
Definitions:
ND - Not detcctcd at the rcporting limit
J - Anslyte dctected belowquantitation limits
B - Analytc dctected in thc associated rnethod blank
MCL - Maximum contaminant level
QCL - Qualitycontrol limit
S - Spike rccovcry outside acceptcd rccovcry limits
R - RPD outside accepted recovery limis
i - Valuc exceeds maximum contaminant levcl
RL - AnalYe rcPorting lwel
Page 2 of l3
T
I
I
I
I
@D
CLIENT:
Lab Order:
Project:
Lab ID:
International Uranium (USA) Corp-Blandin
c01060297
White Mesa Mill
C01060297-003 Matrix: AQIJEOUS
Report Date: 07/05/01
Collection Datez 0612110l 09:04
Client Sample ID: WMMTW4-3
MCU
I
I
I
I
I
I
I
I
t
I
I
I
VOLATILE ORGANIC COMPOUNDS
Chloroform
Sun: 1,2-Dichlorobenzened4
Sun: Dibromoff uorometlane
Sun: p-Bromoff uorobenzene
Sun: Toluen+d8
390 udL
98.8 %REC
113 %REC
102 %REC
101 %REC
50 sw8260B
80-120 SW8260B
80-120 sw8260B
80-120 SW8260B
80-120 SW8260B
06/28/01 '18:,28lr1o
0d28/01 18:2E t rlo
06t28/01 18:28 I r1o
06/28/01 18:28 / rlo
OOl2U0n 18:28 /rlo
I
I
I
ND - Nor dctccted at the reporting limil
J - Analyc detectcd bclow quantiution limits
B - Analye dctected in the associated method blank
MCL - Maximum contaminant levcl
QCL - Quality control limit
S - Spike recovery outside accepted rccovery limits
R - RPD outside accepted rccovery limits
t - Value excecds nraximum conlaminant lcvcl
RL - AnalYe rcporting level
Page 3 of 13
I
I
t
I
I
I
I
I
t
I
I
I
I
t
T
I
CLIENT:
Lab Order:
Project:
Lab ID:
@T
Anatyses Result Units Qu4 RL QCL Method Analysis Date / By
VOLATILE ORGANIC COMPOUNDS
Chlorolorm
Sun: 1,2-Dichlorobenzene-d4
Sun: Dibromofluoromethane
Sun: P-Bromofl uorobenzene
Sun: Toluene-d8
Intemational Uranium (USA) Corp-Blandin
c01060297
White Mesa Mill
C01060297-004 Matrix: AQUEOUS
3100
100
113
103
101
Report Date: 07/05/01
Coltection Date: 06/20/01 09:36
Client SamPle ID: WMMTW4-4
ug/L
%REC
ToREC
%REC
%REC
MCL/
200 sw8260B
60-120 sw8260B
80-120 sw8260B
80-120 sw8260B
8o-120 sw8260B
06/2U01 19:11 / rlo
06/28/01 19:11 / rlo
06l2UO1 19:11 / do
06/28/01 19:11 / rlo
O6n8,rc1 19:11 / rlo
I
I
I
Report
Definitions:
ND - Not detected at the rcporting limit
J - Analye derected below quantitation limits
B - Analye detected in the associatcd mcthod blank
MCL - Maximum contaminanl levcl
QCL - Qualirycontrol limit
S - Spike rccovery outside acceptcd recovery limits
R - RPD outside accepted recovcry limits
| - Value exceeds maximum contaminanl level
RL - Analyre rcPorting lwel
Page 4 of l3
I
I
I
t
@s
CLIENT:
Lab Order:
Project:
Lab ID:
Intemational Uranium (USA) Corp-Blandin
c0r060297
White Mesa Mill
COl060297-005 Matrix: AQUEOUS
Report Date: 07/05/01
Coltection Date: 06/20101 14:14
Client SamPle ID: WMMTW4-5
I
I
I
t
I
I
I
t
I
I
t
I
VOLATILE ORGANIC COMPOUNDS
Chloroform
Sun: 1.2-Dichlorobenzened4
Surr: Dibromofluoromethane
Surr: P-Bromofluorobenzene
Sun: Toluene'd8
240 ug/L
99.3 %REC
't17 %REC
102 o/oREC
102 o/oREC
10 sw8260B
s0-120 sw8260B
80-120 sw8260B
80-120 sw8260B
8o-120 sw8260B
06/2&01 19:53 / rlo
06128/01 19:53 / rlo
062€l/01 19:53 / rlo
06r2U01 '19:53 / rlo
06t28/01 19:53 / rlo
T
I
I
Report
Definitions:
ND - Not detccted at the rcporring limit
J - Analye detected bclow quantitation limits
B - Analye dclected in the associatcd mcthod blank
MCL - Maximum contaminant levcl
QCL - QualitYcontrol limit
S - Spike recovery outside acccpted recovery limis '
R - RPD outside accepted recovcry limits
r - Value exceeds maximum contaminant level
RL - AnalYe rcPorling level
Page 5 of 13
t @sI
I
I
CLIENT:
Lab Order:
Project:
Lab ID:
Intemational Uranium (USA) Corp-Blandin
c0t06029'7
White Mesa Mill
CO|O6O21'1-OO6 Mairix: AQUEOUS
Report Date: 07/05/01
Collection Datez 06120101 09:58
Client SamPle ID: WMMTW4-6
SW8260B
SW8260B
sw8260B
sw8260B
sw82608
2.0ug/L
o/oREC
o/oREC
%REC
o/oREC
I
I
I
t
I
t
I
I
T
I
I
I
I
I
I
VOLATILE ORGANTC COMPOUNDS
Chloroform
Surr: 1,2-Dichlorobenzene{4
Sun: Dibromofl uoromethane
Sun: p-Bromofl uorobenzene
Sun: Toluene-d8
ND
100
114
102
102
80-120
80-120
80-120
80-120
06128/01 20:36 / do
06X28/01 20:36 / do
0012810120:36 / do
06/2eY01 20:36 / rlo
06/28/01 20:36 / rlo
Report
Definitions:
ND - Not delected at the Eporting limit
J - Analye detected below quantitation limits
B - Analyre dctectcd in the associatcd method blank
MCL - Maximumcontaminanl level
QCL - Qualitycontrol limit
S - Spike rccovery outside acceptcd recovery limits
R - RPD outside acccpled recovery limils
| - Value cxcccds nraximum contaminant levcl
RL - Analyte rePorting level
Page 6 of I3
t
ETT
CLIENT:
Lab Order:
Project:
Lab ID:
Intemational Uranium (USA) Corp-Blandin
c01060297
White Mesa Mill
C01060297-007 Matrix: AQUEOUS
Report Date:
Collection Date:
Client Sample ID:
07toslot
0612010112:55
wMMTW4-8
NICLI
I
T
I
t
I
I
I
I
I
I
I
I
I
I
I
T
I
t
VOLATILE ORGANIC COMPOUNDS
Chloroform
Sun: 1,2-Dichlorobenzene-d4
Sun: Dibromofl uoromethane
Sun: p-Bromofl uorobenzene
Sun: Toluene.dS
180 udL
101 o/6REC
112 %REC
103 o/6REC
't02 %REC
sw8260B
sw8260B
SW826OB
sw8260B
sw82608
't0
60-120
80-1 20
80-120
80-120
06/2El01 2l:19 lrlo
0612U01 21:19 lrlo
06/28/01 21:19 lrlo
0612U0121:'19 I rlo
06/2&01 21:19 lrlo
Rcport
Dcfinitions:
ND - Nol dclccred at the reporting limit
J - Analyle detecled below quantitation limits
B - Analye dctected in the associated method blank
MCL - Maximum contaminant level
QCL - Quality control limit
S - Spike recovery outside accepted rccovery limits
R - RPD outside accepted recovery limits
* - Value exceeds maximum contaminanl lcvel
RL - AnalYe rePorting level
Page 7 of 13
@T
CLIENT:
Lab Order:
Project:
Lab ID:
International Uranium (USA) Corp-Blandin
c01060297
White Mesa Mill
C01060297-008 Matrix: AQUEOUS
Report Date: 07/05/01
Collection Date: 06/20101 I l:09
Client SamPle ID: WMMTW4-9
I
I
I
I
I
I
I
T
I
I
I
I
I
I
t
t
I
I
I
ORGANIC GOMPOUNDS
Chloroform
Surr: 1,2-Dichlorobemene{4
Sun: Dibromofl uoromethane
Surr: P-Bromofl uorobenzene
Sun: Toluene-d8
59
98.3
112
't03
102
udL
%REC
o/oREC
o/oREC
o/oREC
2.0 sw8260B
8o-120 sw8260B
EO-120 sw8260B
80-120 sw8260B
80-120 sw8260B
062e}/01 22:01 lrlo
06t2U01 22:01 lrlo
06128101 2:01 lrlo
06f28/01 2:01 lslo
06/2U01 22:01 lrlo
Rcport
Definitions:
ND - Not detected at the rcporting limit
J - Analye dctected below quantitation limits
B - Analye detected in the associated method blank
MCL - Maximum contaminant levcl
QCL - Quality control limit
S - Spike recovery ouride accepted recovery limits
R - RPD outside accepted rccovery limits
* - Value exceeds maximum contaminant level
RL - AnalYe rePorting lwel
Page 8 of 13
t
I
I
I
trE{T
Analyses
CLIENT:
Lab Order:
Project:
Lab ID:
International Uranium (USA) Corp-Blandin
c01060297
White Mesa Mill
CO1O6O297-009 Matrix: AQUEOUS
Report Date: 07/05/01
Collection Datez 0612110l 09:50
Client Sample ID: WMMTW4-7
Result Units Qual
MCLI
RL QCL' Method Analysis Date./ By
SW826OB
SW8260B
SW8260B
SW82608
sw82608
udL
%REC
%REC
o/oREC
o/oREC
t
I
I
I
I
I
I
I
I
I
I
I
ORGANTC COMPOUNDS
Chloroform
Sun: 1,2-Dichlorobenzene{4
Sun: Dibromofl uoromethane
Sun: pBromofluorobenzene
Sun: Toluene-d8
1100
98.5
113
103
101
80-120
80-120
80-120
80-120
06/2&01 2.:44 lrlo
0612E101 22:44 I r1o
06/2U01 22:44 lrlo
06/28/01 22:44 lrlo
OGl28lO1 22:44 lrlo
I
I
I
Report
Definitions:
ND - Not detected at the rcporting limit
J - Analyc dctected below quantitation limits
B - Analfe detccted in the associated method blsnk
MCL - Maximum contaminanl level
QCL - Qualityconhol limil
S - Spike necovery outside acccpted recovery limis
R - RPD oulsidc accepted rccovcry limis
t - Value excceds maximum contaminant levcl
RL - Analyte rcporting lwel
Page 9 of l3
I
I
I
@{I
CLIENT:
Lab Order:
Project:
Lab ID:
International Uranium (USA) Corp-Blandin
c01060297
White Mesa Mill
C01060297-010 Matrix: AQUEOUS
Report Date: 07/05/01
Coltection Datez 06122101 ll:25
Client SamPle ID: WMMMW-4
SW826OB
SW8260B
SW826OB
sw82608
sw82608
6300
99.0
117
105
101
I
I
I
t
I
I
I
I
I
I
I
I
t
VOLATILE ORGANTC COMPOUNDS
Chloroform
Sun: 1,2-Dichlorobenzene{4
Sun: Dibromofl uoromethane
Sun: p-Bromofl uorobenzene
Sun: Toluene-d8
ug/L
o/oREC
%REC
ToREC
%REC
400
80-120
80.120
80-120
80-120
06/28/01 23i26lr1o
06/2&01 23:26 lrlo
OGl28lO123:26lrlo
06128101 23:26lr1o
06/281101 23:26 lrlo
t
RePort
Definitions:
I
ND - Not detected at the rcporting limit
J - Analye detected below quantitation limits
B - Anallc detccted in the associatcd rnethod blank
MCL - Maximum conlaminant level
QCL - Quality control limit
S - Spike recovery outside accepted recovery limits
R - RPD outside acccpted recovcry limis
t - Value exceeds maximum contaminant lcvel
RL - AnalYe rePorting levcl
Page l0 ofl3I
I
t
I
I
@T ry
CLIENT:
Lab Order:
Project:
Lab ID:
International Uranium (USA) Corp-Blandin
c01060297
White Mesa Mill
C01060297-0l l Matrix: AQUEOUS
Report Date: 07/05/01
Collection Datez 06121101 09:04
Client SamPle ID: WMMTW4-10
320 ug/L
97.9 o/oREC
116 o/6REC
'lO2 o/oREC
'lO2 o/oREC
I
I
I
T
I
I
I
I
t
I
I
I
VOLATTLE ORGANIC COMPOUNDS
Chloroform
Sun: 1,2-Dichlorobenzened4
Sun: Dibromofl uoromethane
Sun: P-Bromoff uorobenzene
Sun: Toluene-d8
SW82608
8o-120 sw8260B
80-120 sw8260B
8o-120 sw8260B
8o-120 sw8260B
0012910100:09 / tlo
Oilzgl0'l00:09 / rlo
O6ngn1 fi):09 / rlo
06/29/01 (X):09 / rlo
06/29/01 00:09 / rlo
I
I
I
Report
Definitions:
ND - Not dctected at the reporting limit
J - Analye detectcd below quantitation limits
B - Analye detccted in the associatcd method blank
MCL - Maximum contaminant level
QCL - QualitY control limit
S - Spike recovery outside acccpted recovery limits
R - RPD outside acccpted rccovery limis
i - Value cxcceds maximum contaminant level
RL - AnalYe reporting level
Page ll of13
I
I
I
t
I
I
I
T
@T &[?
z/'
CLIENT:
Lab Order:
Project:
Lab ID:
Intemational Uranium (USA) Corp-Blandin
c0t060297
White Mesa Mill
CO1O6O2I7'OL2 Matrix: AQUEOUS
RePort Date:
Collection Date:
Client SamPle ID:
0710510t
0612110l l2:ll
wMMTW4-l I
VOLATILE ORGANTC COMPOUNDS
Chloroform
Sun: 1,2-Dichlorobemene'd4
Sun: Dibromofl uoromethane
Sun: PBromof uorobenzene
Sun: Toluene'd8
Report
Dcfinitions:
ND - Not dctccted at thc rcporting limil
J - Analye dctectcd bclow quantitation limits
B - Analye detected in the associatcd method blank
MCL - Maximum contaminant lcwl
QCL . QualitYcontrol limit
S - Spike recovcry outside acceptcd rccovery limits
R - RPD outside accepted recovcry limis
* - Value exceeds maximum contaminant lcvel
RL - AnalYc rePorting level
Page 12 of I3
sw8260B
sw82608
sw8260B
sw8260B
sw8260B
3.0 uS/L
102 %REC
'118 o/oREC
103 %REC
102 %REC
80-120
80-120
80-120
80-120
06/29/01 00:51 / rlo
06/29/01 00:51 / rlo
06/29/01 00:51 / rlo
06ngn1fl):51 / rlo
06t29/01 00:5't / rlo
I
I
I
I
I
I
I
t
T
I
I
I
I
I
I
@s
CLIENT:
Lab Order:
Project:
Lab ID:
Intemational Uranium (USA) Corp-Blandin
c01060297
White Mesa Mill
C01060297-013 Matrix: AQUEOUS
Report Date:
Collection Date:
Client Sample ID:
07105101
06122/01 13:50
WMMTW4-Comp ?
MCL/
sw82608
sw82608
sw8260B
sw8260B
sw8260B
100960 ug/L
101 06REC
118 %REC
103 %REC
103 %REC
I
I
I
I
I
I
I
I
I
t
t
I
VOLATILE ORGANIC COMPOUNDS
Chloroform
Sun: 1,2-Dichlorobenzene{4
Sun: Dibromofl uoromethane
Sun: p-Bromofluorobenzene
Sun: Toluene-d8
80-120
80-120
80-120
80-120
0612910101:34 / rlo
06129/01 01:34 / rlo
0d29l01 01:34 / rlo
06129/01 01:34 / do
06/29/01 01:34 / rlo
I
t
T
Report
Delinitions:
ND - Nol dctected at the rcporting limit
J - Analyle detcctcd below quantiution limits
B - Analye detcctcd in thc associated mcthod blank
MCL - Maximum conuminant loel
QCL - Qualitycontrol limit
S - Spike recovery outsidc accepled recovery limits
R - RPD outside acceptcd recovery limits
r - Value excceds rnaximum contaminant level
RL - Analyte rcponing level
Page 13 ofl3
tsdN
@o?=OEl'-qd
-(Lt,t
=BUE Rd2$trcr5(D&u)
G
o
G
o(L
Etos46rEN-rl, 3
-9tiidrEF =cB# 5
CJ
ouies
{
CD,..6
'=!o)t
.Ytr(Lfro*B eEE ECP= YH?. h
ro-oBe d9othot-
A H E
=GEaiAo=F-E
c(oktD
U)
.i) EE6
gEt=
E=
ci
-qog
EB636 €
ESENroo
OEl-96
ILotr-
=!8H Iii 2$co5o)tth
6
oE
ooEtosn6)EN':
roE .9iiii r
aEooo=03 Eo.€ aCJ
oul
G,s
{
CD
..6
:5!o)E
.Ytr(L6o*8 eRE E?= Ygi h
idi;Bg -aoo-
-o
0)F
O R E
=Erso
FN
EG
ECDq
.r)EE6
EEt=
E=
cis? s.EE E
\
I.
v
Q.t,
o
o
!o
F
o
6
o
c
o
Iq
o
o
Ec
o
E
o
oo.a€:o
o.oIoGo
o
o
o.uodo,JI
ql
ahI
u)l
ooooo
EEEEE
--f?-
ooooo
EEEEE
-F-FF
ooooNSlol(\l
Fil
Fr
rc&
>ltll<,
EIra,a1)a
Uo
F1
U-FIEI
z
E
:j
DOE.:
ag
Id
o
6
0
Io
o
oz
cz
U)
oooooN?-Fr
=s
c0r
U
cn
.E
>)z
6x.GlEb.B.E8>
Et.eg5<
iQ>
0)
zw 6E!.*
QU'
i
|,
I
t
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I |Nl
ooooo
ooooo
oooo
oooo
t'r
tr(n
I
=I
\o6r
co
IUo
G)
o
Q
U'q)F
{
q)
G!
ooooo(7'(o(,
8888
fi=pE
ooooo(rNNO,l (\l
R8888
+(o0to,SSSPE
60000(')6t(\tNGl
---FF
oooooF66@G0
(OF-atNcro6loo
F-FF-
oooo
oooo
FrF-
qoooo
crooooL-I\OlC,af,-Oc)-(V)ooloo
--Ff-
88888gEPSE^(Dfi)o)(t=6)tot--oiJoo
E
o
xeE
€EE-5€<T
.HEEEts;OoFE;;;;
5
ocoNgo!o
9co
9d,ktr6o,6;
c!F
ov)
ogr!c.
o
Eo
ot
o
EI€o
o
tE
ocoNtr,o
-oo
-9
llo
EN.
o
96
.c,o
$eeqr60E<N
H E€
E:Ee
EEEEe9egE:3'dP€uuuu
E==f=y6Aoq
o
6saAI(9e
f.=OEl'i96F(Lct, t
=o-6UE Ro2$co
=oEU)
6
o
E,
o(L
EGoN=
@E6.-i
art Eo,
idi, =AA=Eag).Es'0 d[ -
?J
{o
..6
!o))E
.Ytr(Liq)*B E;ao=Fs s?= Ygi b
a;6EP d9oooF
Y=dHi fi
=Er6AcL=
Fia-YtroEroo
:*
Jtr
G6
!o
o
=cise s
Eb E36 &
Gt_ot..o9
ao
b9
Fb
8s
:::ti
xi+€a-fii.\4:E
:;.i!:\
a:
.FF
i i:,
-..t iv-a='-,rcj3i=
==
laR.
=:
s
a
=-a9?:<
2*-it
<r.;
Ei@:
Edi!di.r
\$€r
HS
i!i
F
='tadJz
cii
E9
==
\i9
Ejsr!
iEnnii*!s
!.:,r
.
Eg
a*'t
=et2g@-'2a!'Us-i.i
arrilq!
N.;6rdi+i;i
!'i.i
;:
r: =
.:: '':: -'=zaa
=E?
=c-
o-9 o
s9r
g.:s! ..E *E
-> 5dz
€cEP(J -! (' 1=
id :tt ;= ..: ={ x{?*
3 E##-s
-) a ut1 e u ! n u o ! tela 6 an s p ! I os ts il og r aPM r lV
O n A S 1yi Y:edt1 aQwes
I{
's
?
t--f5
5
g
d{j
RR
ii
o()I
o6
o
E(E
=o(B
coo
\c
€I
ns QoGq
: --'t E
e
E
.p'
lD
boc.E
tt
0)E
(j
e
(!c
Or
{g
s.
Eo
oootr
o
uJE
zo
CI'
';.J
UJr
1-
Eo
z
trr
ulo
lrJJ
o-
a
n<cU
EA
E"xjQ
.9''-titq>\LJ
U
E\o
e\
'frr(\U
I
t
I
I
I
I
II:
=Eolrz
o
N
.9
{g
I
I
I
I
t
t
I
T
I
I
I
I
I
I
t
T
t
aE.'69
o()
U)o
b9
tsL
Co
U
0
0
C)
o
(E
oo
(h
V2z
Q-
F(
v')z
z
v)
a
*
Eo
Eori
t-
o
5
ra
!.1
rI]
V)
e)
tg()
E
.n
6l
aa
ft
c)
o
€JF
GI
o
6z
g,
G'
(J
c)
o
c)v)ct
e)
0
6J0or
o!
(.,6
F
6)q
v)
L
ii;e-ls\
'4,A +
1,R R
ESS
q)$!.
SiE
E
S\o(\r
6
n<R-.
lrJ .iETxs=
Ooo ft-Pt4 C'8.8
l\Qts.2=(S-
5 .q':v60?Et-i.t
rrtfr Elasd;
Eii x
<.Qed
!a .. .E
t s$
tl]sLl
ESSE{v)
5
gsE 3
()
0q)
(l)&
q
c)
(q
a
oo.
F
ro ,/zH 2) A eZfS
n1tj a4ulf uolonEafi sp11os1q1ol nmft t1-y
O n A S il Y:ad.(1 alduog
staupluoc {o nguflN
itj
d
il3JrsIFiGJ(4
:l-
J.
0"
l
gr.
r,b
5'r I'
:td -l
iisg
t
ta
*$xrrfiJ
bS;\osE\a ,s\I-no.r i
Ee
o\
EJz\+riEs'a i1ic{
>r
>\
*r-c\
t,
1)o!l
o
:0
t)
(,
a)t)
C)E
t!
Do
3
o
()&
6l
I
6
a0
>r
't,i)
cr
.E
6)&
+
o
6cct)
D
()
C)o
C)*
q)
L
6
ao
x
()
.z
c)(,o&
ru
L
€
olta
D
ru
o&
I Energy I'aboratories, Ittc.
SA}!PI,E COIIDITION REPORT
Irnr" report provides informaEion about the condiEion of Ehe sample(s), and assocated
f="*pfe Lr"t,oay information on receipt at the laboraEory.
IC1ient: InEernationaf Uranium (USA) Corporation Description: WATER
lil-i; i=l '
-or-t3939-1 rhru 01-33939-1'4 Matrix: r'iquid,Misc
Delivered by: uPS DaEe&Time Recrd: 25-,JIIN-01 I'ooo Dat,e&Time cof 'd: 21-\'LN-01 1034
ae"-.i".d by: Sara rlawken Logged In by: Tabitha Fasset't
l"n"rn of custody form complet'ed & signed: Yes comments:
Chain of custodY seat: No CommenEs:
rChain of custody seal intacE: N/A Comments:
lJi"".t"re match; chain of cusEody vs. seal: N/A ConumenEs:
riiipr. received TemperaEure: 5c commenEs:
i".ii"" received wiltrin holding time: I"t comments:
Is"*ii"" received in proper containers: Yes commenEs:
ls"*ii." Properly Preierved: Yes comments:
-Bottfe tlpes Received: 39-40!& VOA NP ECL(ABC)
I "o^.o." i
I
I
I
I
I
I
t
I
I
I
t
T
t
I
I
I
I
I
t
t
t
t
T
t
I
I
I
I
I
I
l
rg^lgiitd-/
Billlngr . CerPor Glllrtlo
Helene. RlPld CltY
ENERGY LABORATORIES, INC.
SHIPPING:2393 SALT CREEK HIGHWAY . CASPER' WY 82601
MAILING: P.O. BOX 3258 ' CASPER, WY 82602
E-mail: casper@energylab.com ' FAX: (307) 234'1639
PHONE: (307) 2sil515 ' TOLL FREE: (888) 235-0515
LABORATORY ANALYSIS REPORT
Client: INTERNATIONAL URANILTM (USA) CORPORATION
Contact: WaIIY Brice
Sample Matrix: Liquid, Water
Date/Time Received: 0612612001 10t00
Report Date: JuIY 11, 2001
NOTES:
( I ) These values are an assessment of analytical precision. The acceptance range is 0-2002 for sample results above l0 times
the rcporting limit. This range is not applicable to samples with results below l0 times the reporting limit.
(2) These values are an assessment of analytical accuracy. They are a percent recovery of the spike addition. ELI performs
amatrixspikeonl0percentofallsamplesforeachanalyticalmethod.
msh: r:\reports\clients200l\international_uranium-corp\liquid\33936-1-l3.xls
r-i t: -j
Laboratory ID Sample Date / Time Sample ID Nitrate * Nitrite as N, mglL
0t-33936-r 0612112001 10:31 WMMTW4-I 8.8r
0t-33936-2 06/22/2001 10:38 wMMTW4-2 9.67
0l-33936-3 061211200108:58 wMMTW4-3 2.61
0r-33936-4 061221200109:34 WMMTW44 14.00
0t-33936-5 061201200t 14:09 wMMTW4-5 6.47
0L-33936-6 061201200109:45 wMMTW4-6 < 0.10
01-33936-7 O6l2tl2}0l09:50 wMMTW4-7 2.65
01-33936-8 0612012001 1,2:51 wMMTW4-8 < 0.10
0t-33936-9 0612012001 11:00 wMMTW4-9 0.15
01-33936-10 0612212001 1l:20 WMMMW4 9.02
0l -33936-1 1 0612ll200l08:58 WMMTW4-10 2.96 -
0t-33936-12 0612112001 12:15 WMMTW4-I1 3.19 r t9i\Et..tyl
01-33936-13 0612112001 12:17 WMMTW4-12 0.66 )
Quality Assurance Data
Method EPA 3s3.2
Reporting Limit f&S,,, I
RPDI 0.0
Srik.'97
Analyst rwk
Date / Time AnalYzed 0612712001t4:18
GO]UIPLETE ANALYTTGAL SERVICES
Es9q)(,to-tr*8;s
FE
8s
iq+<l-:i n.?4:<
=:--:'i.!!:*
=Rai-i-'12'.
t?-r
-;t ir-1F;i-<c ?
=
ae
24 itjfi.=za=qE:
lc-ci
=cir
!d
N:€i.st
ES
i'i
:
?
ta
sf ii
LAr{t
EIti:*
E!$
i ':- ,i
E3
>a'c
i.. t=
-.ia?
iJdai
axr E+€9
a.g e:
=s$E.:.:
.t..:
2-.=zra-
Bd-
&
3HE82eE;o)c'th =t€
Fld'llfllr
I Pg-
-EE I
#EA
oz
z
TJ
teUA iupn uottereiefi sp11ogp11og )aP-A tlv
O n A S lA 7:edt1 eldweg
.R
l+.
\)lf)
I
t^
$L
5;t4
TJ
nl
GlNIct
lalrlt
d
oco
o-
06
o
E
Gz
o(E
5
{q,<s
QoGq
oll_
e
Gc.9b
bos.a
e
(l)t
ct
E
Gtr
Or
{g\s!q)
o()ot
e
Gc.9o
a
IJJ
G
=kzoa
t-Guloxlrlzo
E
=Eo]L
=
atrcUFIlJtrdxHatP5?)2RhJEFr OvuJ
r-l/)
A. IlJ\)Jeo'\
EU
I
I
I
I
I
I
I
I
I
I
I
I
t
T
g
(Ec.9
{g!o
se€ot
N
g
$c.9
UI
s.6Eo
o()otr
la
lS t,
!*HEE
tftB fiEr : $E
r$
o
$
Ot
{g
I
T
I
T
E*
H. .-
g)ra
|ao
i9
=-si
o-9-c7ZZ-<' \- \-9rs
i.;
tt ..r Sfi6 EB
-. 2d'X!oEU-Aq_e aEOEiA:=
... -. t
rl'-,i< d,:.
,?*;
ai--
a:
==ci-i-.at:Z
i==
-;t iv,i
=;.
RSaa
.e
=
?. .t
>ri
e7.E
ol 6=trii
isEE€<}(i
=.9
=a
't
>a,,z
E,
3=tsssi:i:*!!
i.:.!
=
=
=
.t a
l=a*'r-;ii2
2c3uci.i
*rriJs-!:.I Di{.i'riii>15
< i-
='i.i,:<
E3
. t!
-:iil={-
jaqtd euy|l uolepbart spltos/slloS rc$il 4V
OnASl4y:edtlatdwes
rJ
I
rl
a
d{t
!A
ii
oa-otr
G-.€rFo;/<
it$i
\c
:TJQoGq
,p
I EnerqY lraboratories, Inc '
SAI-{FLE COIIDITION REPORT
I :ffi,:'::::"ff"Iii:n#i:fl::'::.:ilI'.:T":"Hi:i:l"l:.the
sample (s) ' and assocated
I:H'i;i"i?';ffi!};?:i "ilfol5ll,::f1"-:"f]il.=r.: -rieui!
DescripEion: wArER
Deliveredby:IIPSDate&TimeRecld:25-.]I,N.ollooooatectimeColtd:21-iIIIN.011031r Received by: Sara Hawken Logged In by: KerrL Schroeder
I
"n"rn
of custody form compLeted c signed: I"" commenEs:
Chain of cust'od| seal: - No Comments:
I ikttii="=*rli,!mil":i=;::'*'
vs sear' If i*iiiii
I liffii:= ,i*i,i$ f.[h::'::H":;:::' i:: ::ffi:l:::
Bottle TlPea Received:I C@eBEa:
I
t
I
t
T
I
I
I
I
I
I
I .- ,- i^ -. r-, ^ t^, f
.-, : :'i iJ ij '. U ;'
t Energy taboratories, IDc.
REPORT PACKAGE SI]MMARY FINAI, PAGEI
lo--,
ELI-G
FI:l
co
Ji":
NA
ffi,-
NSD -
Energy Laborat.ories, Inc.
Energy Iraboratories, Inc.
Energy Laboratories, Inc.
Energry Laborat,ories, Inc.
Carry over from Previous
Insuf f icienE Parameters
Not Applicable
Not AnalYzed
Analyue Not Detected at StaEed l,imit
Analyte NoE RequesEed
No SamPle Time Given
No Sample Date Given
Acronyars and DefinitionE
- Billings, Montana
- GilletEe, wYoming
- Helena, Mont,ana
- Rapid city,South DakoEa
sample
of DetecEion
Client
fll:l:clientclient
[ll:l:
Client.
Gii:r:
Client
tcrient
ID: l{M}lMW4 is associated to Lab ID: 0L-33935-10
ID: }IMMITI4-I is associated to Lab ID: 01-33935-1
ID: WMM[W4-10 is associated Eo Lab fD: 01-33936-11
ID: lilMt{tW4-l1 is associated t,o Lab ID: 01-33936-12
ip, wr,omwf-l2 is associated to Lab ID: 01-33935-13
ID: Wt{MrW{-2'is associated to Lab ID: 0L'33936-2
ip, rvlomca-3 is associaued Eo Lab rD: 01-33935-3
ID: l{Mlr!TW4-4 is associated to Lab ID: 01-33935-4
ID: WII!f;['tv{-S is associaEed to Lab ID: 01-33935-5
io, waaarwf -5 is associat,ed to Lab ID: 01-33935-5
io, waomm-7 is associated to Lab ID: 01-33935-7
ID: WlrltrlTW4-8 is associated to Lab fD: 01-33935-8
rD: WMMIII{-9 is associaEed to Lab ID: 01-33935-9
I
I
I
I
I
t
I
I
Approved BY:
This is the last page of the LaboraEory
Additional QC is available upon reguest '
The reporE contains ghe nudcer of pages
Reviewed BY:
Analysis RePort.
indicated by the last 4
Ti?.nCiiii!l i:t.r. PAGE liO.
\.!
digiEs,^ .^
-i -t :ibI0iicI
Nov-09-01 l0:10am From-lUC BLAttDlt{G 8Bl 678 2224 T-555 P.092/gl? F-725
T
lnternational Uranirun (USA) Corp
JrJ O" CIW Sanpling - white Mcsa Mill
Lab Order:
Report D8te:
c01090685
10/I6/01
4 tn'l -\ s'^
= l/s'19\'*l
I
t
Llb ID:c01090685'001
Collection Dste:
pajgf,sssived:
Matrix:
Method
09/20/01 10;52
ogtz',lor
AQUEousClient SamPle ID: WMMTW4'2
AnalYsis D:!lc ilBY
Result Units
AnalYses
t
I
voGs
Cnloroform
Surr: 1,2-Dlchloroberrzene'd4
Surr- Dibromo0uoromethane
Sun: P-Bromotluorobenzene
Sun: Toluene'd8
4900
101
93.5
83-0
e5.6
ug/L
%REC
%REC
%REG
%REC
400
80-120
B0-120
80-120
80-120
sw8260B
sw8260B
SW82608
SW826OB
sw82608
1O/M,01 00:56 / rh
1OrO4/01 00:58 / rh
1O/M/01 00:56 I rh
1O/04r01 00:56 / rh
10/04/01 oO:56
'
rh
I
t
Lab ID:co10906E5-002
Collection I)ate:
DateReccived:
Metrix:
Method
09/20/01 10:25
ognstol
AQUEOUSClient SemPle ID: W}IIMTW4-3
Mct/
RL QCL Analysis Date I BY
Result Units Qusl
Analyscs
100I
t
vocs
Chloroform
300
102
109
88.8
96.S
ugrL
0/"REC
%REC
%REC
%REC
B0-120
B0-120
B0-120
80-120
SW826OB
SWE26OB
sw8260B
SW8260B
SWsZ6OB
10/0201 ?2z3O I th
1o/O2IO1 22:30 I (h
10/0201 ESOlrh
1WOaO1 z:3Olth
10/0201 22:.30 lrh
Surfi 1,2'Dichlorobenzenel4
Sun: Dibromofluoomelhane
Sun: p.Bromofl uotobenzene
Sun: Toluene'dB
I
I
Lab ID:c01090685-003
Collection Date:
DsteReceived:
Matrix:
09/20/01 10:50
a9n5l0r
AQUEOUSClient SamPleID: WMMTW4'4
MCIJ
ArralYsis Date / BY
Result Units Qusl RL QCL Method
AnelYsesI
I
I
vocs
Chloroform
ggs; 1,!'Pichlorobenzened4
Sun: Dibromofl uoromethane
Sun: P'Bromofluorobenzene
Sun: Toluene'd8
3200 ug/L
101 %REC
107 %REC
88.9 %REC
S6.5 ./6REC
200 swB260B
8G'r20 sw8260B
EG120 SW8250B
8&120 sw8260B
Eu120 sw8250B
10r0Zo1 23:11 / rh
1OrOz01 23:11 , rh
10/02/01 23'-11 I th
rc(,zt}1 23:-11 t rh
1O,O?01 23:11 I rlt
t
I
I
RsFort
De[inilionr:
ND - Nor dct*red at thc rePoninE lirnir
g1 . 5plY6 rcPgrring lcvcl
QCL - Qualiry eonlrol limir
MCL . Ma:timum contaminrnt tcvcl
I :';....
T-555 P.003/012 t-7?5
'8 - CasPec WY8260z
wwnercryybb,com
LABORATORY AI{ALYTICAL REP ORT
I Clicnt:
Proiect:
International Uraniurrr (USA) Corp
3rdQu CIW Sampling - White Mesa Mill
Lab Order: C01090685
Report Date: t0/16i0i
I
I
Lab ID: C01090585-0M
ClientSamPlclD: WMMTW -S
Collection Datc:
DateReceivcd:
Mrtrix:
Method
0980/01 10:05
09125/01
AQUEOUS
Analysis Date / EY
MCIJ
RL QCLResult Uoits QualAnalyses
20ug/L
%REC
%REC
%REC
%REC
240
100
92.5
82.8
s4.3
I
I
voGs
Chlorotorm
Sun: 1,2-Dichlorobereene{4
Surr, Oibromolluorcm otltane
Sun: PBromofl uorobenzene
Sun: Toluene'd8
8G120
80-120
80-120
8G120
sw8250B
sw8260B
sw8260B
SW825OB
sw8260B
10/04ro1 0'l;37 , rh
10/04/01 01;37 / rh
'10r04/t1 01:37 / rh
1OrU4r01 0t;3i, rh
1o/04/0'l 01:37, rh
I
I
I
I
Lab ID: C01090685-005
Client SsmPle ID: WMMTW4-6
CoUection Date:
DateReceived:
Matrix:
0920/0109:16
a9D5l0r
AQUEOUS
vocs
Chlorobrln
Sun: 1,z-Dictrloroberzened4
Sun: Oioromofluoromehane
Srln: PBromolluorobenzene
Sun: Toluened8
?-o3.6 udl
gs.o %REC
100 %REC
86.S %REC
98,1 %REC
80-120
8G120
sG120
80-120
sw8260B
sw82608
SWE26OB
sw8260B
sw8260B
Anatysis Date / BY
1Or0U01 13:21 J rh
1UOU01 13121 /rh
10/03101 13:21 t ?h
10103101 13:21 , rh
'lO/03/01 '13:21 / rh
t
I
Lab ID: C0i090685-006
Client SemPle ID: WIVIN{TW4-7
MCL/
RL QCL
Collectiou Date:
DatcReceived:
Metrir:
Method
09/20/01 10:43
09nsl0r
AQUEOUS
Anelysis Date / BY
Rcsult Units Qual
AnalYses
12W
s8.9
98.6
88.7
96.2
I
I
I
vocs
Chlootorm
Sun: 1,2-Dlchlorobenzen+d4
Surn Dibromofl uoromethane
Sutr: PBromofl uorobenzene
sur: Toh:ene-d8
UdL
%REC
%REC
%REC
%REC
sw8260B
8O-120 sw8260B
8S.120 sw8260B
8$120 sw8?608
80-120 sw8250B
1O/03O1 14-.02 t th
1O/08/Ot 14202 lrh
10rcU01 $:A2 lrh
1o/oEol 14:02
'
rh
1O/OEot 14$2lth
I
t
I
ND - Not dctcocd cr thc rcponing limir
MCL - Mlximuro contaminant lcwl
RL - AnalYtc rcponing lwel
QCL ' QualitY conuol limitReport
Dcfinitionr:
't
Lab Order: C01090685
Report Date: 10/1tr01I ;::",::'.,
International Uranium (USA) CorP
3rd Qu CIW Sampliug - White Mesa Mill
I
I
Lab ID: C01090685-007
ClientSamPleID: WMIVITW4-8
Collection Date:
DateReceived:
Matrir:
09/20/0t 09:a6
09125t0r
AQUEOUS
Anslysis Date / BY
MCL/
ru- QCL MethodResult Units Qual
AnalYses
I
I
vocs
Chloroform
Su rc 1,2-Dictrlorobenzenq'd4
Surr: Dlbromofl uorc)mehane
Sun: p-Eromofl uorobenzene
Surn Toruened8
180 ug/L
99.4 %REC
102 %REC
87.8 %REC
95.9 %REC
8G120
B&120
80.120
80-120
sw8260B
SW82608
sw8260B
sw82608
sw8260B
1003101 14:43 / rh
rU0V01 14:43 / rh
10,03ru1 14:43 / fi
't0r03ro1 '14:43 , th
1or030l '14:4!l / rh
t Lab ID: C01090685-008
Client SsmPle ID: WMIvfnV+g
Collection Date:
DateReceivcd:
Matrix:
09/20/0109:31
0912510r
AQUEOUS
I
I
T
vocs
Chloroform
Su n: 1,2-Dichlorobenzene'd4
S urr: Dibromofl uorgmothane
surr: rBromonuorob€nzene
Surn Toluene'd8
19 ug/L
89.2 %REC
t2.t %REC
84.8 %REC
97_3 %REc
2.4 sw8260B
sw8260B
sw8260B
sw8260B
sw8260B
10/04/01 9227 I rh
10104/01 0227 I rh
1U04/01 o2t27 I rh
10104/01 02:.27 I th
10104101 02227 t rn
80-120
8t -120
8G120
80-120
I
I
I
Lab ID: C01090685-009
CllentSamPIeID: WMMMW4
Collection Date:
DateReceived:
Matrix:
09/20/01 II:20
09nslor
AQIJEOUS
Arrl!,sis Date / BY
MCI-/
RL QCL MethodResult Uuits QualArralYses
vocs
Chloroform
Sure 1,2-DichtoroberEened4
Surt: Dibronlofl uoromethane
Sun: PBromofl uotoberuene
Srrn: TolueneJ8
5300
142
102
87.2
96.7
ue/L
%REC
%REC
%REC
%REC
400 sw8260B
8&120 sw8260B
80-120 sw826oB
8e120 sw8260B
80-120 sw8260B
t0/03/01 16:04/rh
10/03/01 18:04/rh
'l0ro3ro1 16:04 / rh
1tv0u01 16:04
'
rh
1U0U01 16:04/fiI
I
I
I
I
Rcporr
Dcfinitioos:
ND - Not derctcd ar drc rcportinS limit
MCL - Me:(imum conurninant levcl
RL - ArtolYc rcPoning lcvcl
QCL - QurlitYcontrol limir
.'l-:, t i^i., tl- a:;
l.:r.!., . r! t .. , rl\-L
i-:,:1.:" .'.rC
,ra;utr;;,sfrri'#;r;;,,#'
.EEE@W
I LABORATORYAIIALYTICALREPORT
t-725
I Clicnt:
Project:
Interaational Urarrium (USA) Corp
3rd Qtr CIW Sampling - White McsaMill
Lrb Order: C01090685
Report Date l0/16/01
I
I
Lab ID: C01090685-010
Client SamPle ID: TriP Blarik
Collection Date:
DateReceived:
08i22/01 1020
09t25tol
Result Units Qoul
Matrir: AQUEOUS
Method a-ualysis Date / BY
MCI,/
BL QCLArrlyses
ND uE/L
101 %REC
'toz %REC
86.7 %REC
95-7 %REc
I
I
I
I
T
I
I
I
I
t
I
I
vocs
Chlorobrm
Surc 1,2-DichlorobenzenB'd4
Sure Dibromofl uoromelhane
Surc p-Bromofi uorobenzene
Sun: Toluene'd8
1.0 sw8260B
B0-120 Sr/v8260B
80-120 sw8260B
80-120 sw8260B
E0-120 sw8260B
l0/02101 15:59 /rh
10/0?01 16:59 / rh
10/02,01 16:59rft
1U0?,O1 16:59 / rh
10lo2to1 16i59 / rh
Rcport
Delioitio4t:
ND -Not dercctcd ar rhe reporting limit
MCL - Maximufi conteminant levcl
RL - AnalYtc rePorting lcvcl
QcL - QudiEY sontrol limit
.'.:. i,iiE
,l0il'i0
I
I
Tr r 1t'1t11r ttr !r,.rt .
t-'',r ir
v
6
E
o
t
d't-
ae
uE
c
r0
u
a)!
o
6
EE
!.E
t
o2UC
E=osaba>90qo
oL9EEs*d3z.HPo6P
U=
o.go'*H
cAE
.E
c-5.EooE,=E
ri9E
o5
=-tctEEE
uOjJ-dO E2eoizE,<oz
0Ec
,-dll: !!.'=,lL Jrg
(!HEoq
?
OEl.-q6
o-l/)NtEE!DEE e42s5sto
E
o
E.o
o_F[rcCt.rl =oE
GJt'E g
-es r
Glgdt]=.o-qEg'E tE-og
eJ
V=ds E
=tE
8.H
Fo.!
e(Dh6U'
lt
.vc
lE
EE0t
.,
trt,ea,
Eb E3E E
{o=_.. .98>5p
.YF.n
6a)+B EEH EqB Yulu, bYPUfiBP d(J o-
-ooF
T-555 P.006/012 F-725
crooo
6000
80r 578 2224
creeo
oooo
l0:4lam From-lUC BLAllDlllc
oooo
oo()o
q
!)o
oo
EF
H\E,
GIE
Ba
oo
fl
o
B
E
Irt
0_
m
u
4
II
I
v
rd
ld
E,
U
J
u
Bg
p1 tD
NT
.q
'(r,
NNoa
HEcg);B<
tr
h:
{6uo
oUl
dt
.oN()-$lFoox9
8,=
ig0.I
o
=alu
Eol-
Eoo
5
(5
Eutzlg
Z
t,c,F
tst4F(c
Br
rdd
il
EIaIz,)a
Uq
J
U
t'r>\t-
z
o(fcO(\t(\l(\N
a3000cocrap€
@FO6(r(,o*tri
-b(D
oo(roN(\t(\t(I
FF-F
6CloQrb(rrEQ
?o(Dd,oOuiotrfao
oQo(,
eooo
-cFr
ooCOo
oOOQc! q{ ol F{
EBBB
a6?(DaD",=bg
oOOO
oooc
€r6OC'
oooor-Fr
ooOeo Cr6O(rO
2B:EH
=E
do^[)5EUg
?A rr
3rYuoFC
3;.EH
p(A
GotrrE6hq \o L,,
E8&9EEr= (J r"t
Hoo6EEc-EPE Etr l--oOAo€EE.
EEEEal 699
E:8:rE
-LLUL_i =1b
r:,trJtr,^ r.,-l9 lD,Ci-UL,A: ' : .- -r.6
Tns
EE H
EEEIEEE
=-oodt()FF.CFEEgcc.t44EE --E BF
Et=E=E.n a cD u,
o
;odYCCo(EoF€trEEE0,Ho
EEEeUEEVE-aod,()FI-EOEEgtror€qEE--OEFEEus=i=r==y66U)A'
Eo
;:q,
HE.B
UF9.
A6(\I(f,'G'z-EiEno(rrO)ao7-cls?6i-oo@
-6gE
6o
t':6EQ. Efo_AE
= r(,E$ Be2H5sd- U)
EJ
0,rac?E-ctcR=
NE
oJ
FB
Igg6.urio eoeEEE tsr6D
FJ
EH =E
HciIr'aljESbF(t)
It
-vtrB
E
!toE
oE
ci;e oE-ri E-EB E6-E
6
..E:5fl
EE6 t')
EB cEE E?B Yt? b>zidt;EP d(JE-
doF
-ga
66
f
c)E| ..:e6FO-11, € t-!'0;(OEs gEz S5gt, (t)
6
q,tro
o-?Ee,es!+?E
oJ Ea
=@6'EE eao!o6JE+ E
ED5__Eo>-:rDJE.
\zFnfr .r,
*g eAaO=ES sGPE X82 B
i66EP d9o-ooF
EE E
e=F-E
EtEEE
CD
{tv
Eg
E
!c
0,1
ci;e c,
a=*Eb-rom=E
;uw-oe-ot
I
t
t
I
I
I
t
t
I
I
I
I
t
t
I
t
t
l
J'E
d
Eo
2
E
.T
B
E
0
Eu
o
EEo
dc
E
I
E
=
E.
o9U.:UCE.:
o\AUtsaoxdE
!E'ayEB
bHEs
&E
-9oa=
uC
2
-ts'E=
E.E
EE
Odr=OF
qo*6
o€
196
-c5d:aF
o+2
u
E. ^--o
;'', 'r n:" ' il
rOHA6c:OEl-96?(Lgfl G
NFus Rn22 Fco
=q,tu)
6
oleoo
-0f-eatN=hE
atJ
--t -gli{s r
8A ==a-9 +(DO-tE+! 6
GJ4
gE -E
8.8
BgE.Dhco
ct
<t
C'Ia,
ecn<,
co
tri6(1 oa=;EtsEE6 E
cE!3_
..(E:!q,JE.
-:<
=o-aatsg s.iG=Fs s?= YHi a
=96qEg -aOL
6
@F
slt 6t8 2221
crooo
ogoo
oo6ONNN$'Fr--
B8B8
ooOo
T-555 P.00ll0l? F-l?s
ooooo
ooooo
l0:4lam From-IUCBLAllDItIG
C'E'OQ
o(roo
oooON(\IC\C{
EBBB
Nrd)eoo.idF-a6o)
sOoO
oooO
ecooo
6J(Jo
oo
gtr
/\.o
ca@fi(n
60000c, t! $r $l (\l
?F!-FF
ooOCOh€e6@
<-@ortOoOO.r;ll.jGrr6O
oq F- s? .!
CD ,\ It (Dc)ocos)
6-zFl 'iUFoFA
trlil
t{FLI
IJar-a
t)a
UoI
U-E-
-FI{z
3
Gt6dD5EUgEFqlt
Yo!ts.E
=-l-1 trLU@EhEl
=v)EgE.9tru
EB&1!i'u.su5
i
@
z"-6qET
Q7t
ocroOO
ooooc,to u) r, lf rf,
oooood
ogcQBBIS6000
rFFF
oooo
osrO.I:rO--:dF:a|\tOtONclt-r')$q
e9B*6- 6'd cd oi
oc
CI
r.lEolEc,
9.oEo96bE6A'qE
o- t-
ii i:i-4, a,.'r.'a
A Al .t''," '
r' -r 'l '] li';:,!..,,)
oc.gf
oFo
o
to
E
P_oo
at)
?
a,
Loilco-ao
E
do
=ctbF
o.6
Ea
o,c
0)nlc
o,Eo
!o
sdttscoo)+lqE
NF
c-l.:
o) <t
0,troE
oF
Eo
feoF
P
.Eo
,ll,
E'
@
@NEd,-oPo!o
N
-.
f
at)
iep
HEEtrPE
.E E-EPEBeUEBgEOqdrOFhEaEge
-EiEE-E-a .. ., ., -.:LsbL6AAAA
-co
os6eo
AEI-qd
6 o "*FSEs Re2 *ee
EET
=OE (t)
tg
dl
E.
o
o_Esr,gs4 E
€lJ
gqs
6.Eoo EES i6-f BcJ
{
ED5..8
bll,)
v
IoEB oER #r{!O},9B yH? U
2a; iiEe d(JrL
6oF
2,E:l t42 S e
iiA
EEEa!kd
ch
o,aI6?EBE =or=E'1+.EEE
o6Ei o,
=?4E6l!E6 E
EsdC'c)
C'Ee'e 4U, 6Ir E-!E6g$
RaEseo
=oE at)
E:r
(l,Eoo-?tr()or{=slE
OJ E
-g-oc88.E
auj.=6'EJF:i)ftcEJ
J(,:,
-- ad
-Jg,
vFfr ..t
ts8 c;G=F$ so=:(o -vt -qO,.ul
&@E,g d()o
n(D
F
!!=
=!P dg$ n
iri A
Er'a JJEacEog,
itt
.*q
E
d
o-c
oE
ciEo o,
EbE6-F
,
tlov-oe-ot
I
I
t
I
I
I
I
I
I
I
I
I
t
I
I
I
I
t
iraE
TD
o
o
!
cI
d
r)E
E
EU
I
o'o
0E
E
(D
3
E
b
>6rdo--CE
E=!BbEU
33
oFrCE'-.9
=d=UtsHUo6P!E&d
'= a-Bd
IA E,
I
.= :E
J.OUE
'=LEoor=odCsqa
dO
!B
d;EU9=
g6d:65
,Ea;z
u
E.ci I
o,-, i-r {-ln
oSEc)C)
v=G'El-96?o-ootr
= f.,8$ Eo2 Hcdfd,t al)
(o
0E
Eo-Etot\.!=:E
EJrE ,qT00
iDoaio=-0oE
''EJE+ 6
a=aS d2 d I
IE
h!EGktP
<t)
tne?lorf
ao>
E=E=C,t
ci;8 .gq=hEg E
r3
.. cl
Ed,)tr.:ctro-il ui)
*E o'eE EO'B YH?, b59
iloEP -o
()L
--o
6HA
EC'
OE.t' e6e &EtiEs aEE$
e(7fe,EA)
6
dttroIEto.\l=
rtt E
AJ EIT6d!
E(!(]0=tl-ots9-aJEB 6EJd
Ei:
.. E
-E
dJrt
r-Xfr.n
*E !r
A@.1EE E2 E y3? h
il;Ee doa_i
dl
3E E
E!FoE
E'Ek@o
R
I!oo(0e6o
o(,
ct
;a o6.=5.EB 66=tr
T-555 P.008/012 F-725
oeO9oNFF-F
cro00ctco aY $l $l (\l
oOQOoEe(oqr4,
croooo
o6rEloo
oooooe:'(\(\lN(\l
oC,OQQF.@e€E
901 6lg 2221
CTCIOCtO
€roooc,
o600c,({ra\(\lNoa
?FF-!-
ooooQF-qr@€q
ooooO
oo6€O|f,
;nw-oe-ot
I
I
I
T
I
I
I
I
I
I
I
I
I
I
I
I
I
I
F*o
trr
f:ElH
irfrilItqri
Z,
U)
Qa
Fl4
U
h
rl
z
ooocC(f,ooEeeeeQrfeeeo9
cooo(,Ec
l0:4lam From-lUC BLAllDltlc
a{
qJo
OO
E ,tt
H\{?FIo
F
U)oooooc,
t9
z
0
0)t-
rfi aC! N l,, t-c;dilo)
-ato)60
crocrogctcto(rec)oetr,e
?F-r-
BB88Bi:66ts40it o6raD(D
E@NIOOsEEBB
OdtF-(rtysBhEg
EHEEfi.DOrOtOOl
=I
dt@BgC)gEFu)j
=rYooEEbi='FB
EEL€pu)
q!/tP
.EEEE5e
=E,H
i:6'
z-'EHE.}
UFE
'.. : t..-
Ees
EEE3gs
E€ETEESEE*8'.PEuuuc
= u) or.u).arr-
5 r.l "l i-,- ri
tss
E6Htrbn
EE:*
EEEE
E*"=-aEEcuuc
Equtttru,
C'
?peol(E0IEENqr{c
EE€P9HoE€E:rrEI-c6Egs
E:3EE
EEEEE
Ea a a a
o
6HAoc
r=rtElq(?6
ILOMt
=!oBs Eci ii g
Etst&E
r0\
5d.o
TL
G.etoor=EEC'J9E
-gEE I
EB EfrE 5d-F 6
a
JE!
..8
-E rLt)G.
.!(Do-hu)+g EA@EH$ s"PE X3-t b
id6Eo4OF(J(J(L6dlt-
E@:lg$ I
e.oF*E
E(Eh6
ooI6aE}H=cr-
E=
d;e eG=\E.E Ed;o i
Jc
Eo
E_
o
EI.I
N
D
Ea
o!tos
U
Gtr
d
6gE
(f,e
?=cttl"]q6
IL2 E &'
iiF6e B4gs
eg
=O)t tt)
E
[,tr6o-
Et€)s=EtsCJ E
-9,.UE E
AA =s.g E
eJ
J
CD
=__ 6sp
-!lFAilu,+E q;.o=
=d.!
"FB SH? *q,
fiF doo-60,
=6=u,o il .9Edu
d.
6aq
rrl
@rll
o
ar,6
c,()
6
fr=oe=tEE Ecrr()4
801 678 22e4
eooaoC'{fFrF
oooqQo$t$a$ls\
PSEEB
T-555 P.009/012 F'125
ooo6Q
NFFFf
oEO(ro(9 $t cl{ c{ $l
octooolL d, c, dt dl
ocrooo
ooCoos
l0:4lam From-lUC BLAllDlt{G
lnov-oe-ot
I
I
I
I
I
I
I
I
I
I
I
T
I
I
I
I
t
I
ooooo
$IFFFF
60000!O (\l Al 6t (Y
Ft'fFF
ooctooE606lq,
ooooc,
66606lOlor(,UlU,
qoooQ
u?
6
tro.i
!i ,er
-\tr,Fl6va
.Z
E
F>8.9OE
E !'=gb
BUD7
HEUEE E'A '{Eg'RH{uo.=.)=E5
-Caa=
u1 il
60(]00a6000ooooor+FHr
.E
.EE;J.9
bot
ECoftaf9Er4=
Pi3
+9;Rsts
96
/(E
6E
Italz
d-d)()r!.:6rrFaOoooqrol
+E
q,
Eo
Nq
o.ao
o
=(,6
E sl-
!F
3?5E
C)
(p
trq,
tro.Ao
!coE99drECEE4;o.F
,f@u)
@Cde
o
Eo
B
=EoE
EoE
u
a
U)
rtTocoNco
12
eo
EIJ6p tr-
.e ;.otrodit(J
Hoo,;EC|D.[o
EEH
€EE-
EEEE
EIE'dF-v __ -- .- ..EIEEEEaaaa()
rf} e, u) cr, rI.EPEbE
6Era4FcF
Fr
rd
F(
T
F{
ETaETe;la
Uoj
U
F
J
Z
t
=:
fi,
@o-lL)bEu"g?Ea*
=l=c,E.E'=s
(Ehp (r)
(raF
HEO
E5&
EEE
o..p
zv 6rd .ia QJii k'Fld;CJ>P.
oooce
EEEEE
Is O CO U: ll2d;r.it6itf) lO ttt !r- trl_
Gsaao
=orEqdE= &*EEs EiE Segfog, .n
.o
E
E,o
0-EtC'N=e5EJ t
E'}Fuit588
=6. ., .=$-* E
?=ogira9 E &
8.0B-e'o- 9tr(lEIE
U)
oo?Ul ttai
8ECA
EE
6Ee -e6.-_\EE E
q
..8
goJE
.!t
hu)
*B E6=6(\lO
N629B v.Jl/,+eH "
dl 4Eg d9o-o
o)
a9ga
oo
?
OEl-e6
TLtl, d, d.E rf,3E Be2F
Eq
=dE <r)
t
rll
E,o(LFE(3
E)N=HE
6J eP
o tt,
6(Edo Edl,/y0}EJ
EEA
CJ{
o,)
..6ta>
EioJd.:<FA
6U)BP oA;6=E$ EoZ\a66 q
O.:v'
z'd6E[ldol-(')(J(L
ooF
EE E
B?tsoI
EOhdo
eI(*,
ootc
oo
ciEo s
EE 6Ei5 E
80r 678 2224 T-555 P.010/012 F-7?5
l{ov-00-01 l0:42am From-lUC BLAllDlllG
ENERGYLABoRAToRtEg tVc'-Hs!Se!/r:et(Hlg!!ilavgn'9!:I!,tu'frfi ' c'a&er wrazaaz
Toil Hee EEL.B|.{E|| ' i?";i.'iits :-iu sTzzil.i'a1i ""i"peroeneryytat'
t'www'en*gylab'mn
LAB ORATORY AI{ALYTICAL REP ORT
CIient:
Project:
Intcroational Uranium (USA) CorP
3rd Quarter 2001 Sanpliug Event White Mcsa Mill
Lrb Order:
Report Date:
c01090647
l0/04/01
;r'l
fl'ro \l/ ^,"
\t
Qual RL
,'tt
I
Collection Date:
DateReceived:
Matrix:
09/20/01 11:02
09n5m
AQUEOUS
Analysis Date / BY
Lsb ID: C01090e17'001
Client SemPle ID: WlvIIvITl0tI4-l
MCIJ
QCL Method
Analyses
NON.METALS
Result Units
09/26/01 19:27 lwtk
NitroEen, NitraElNirlte as N mgIL
Lab ID: C01090647-002
Clieut SamPle ID: WlvIMTW4'z
Collection Date:
DateReceived:
Matril:
09/20/0I l0:55
09/25/01
AQUEOUS
analysis Dste / BYMCU
RL QCL MethodRcsult Untts Qud
AnalYses
0912610r tgr2g / rvvko.50
T
I
I
T
I
I
t
I
I
I
I
I
I
I
I
T
t
I
I
NON-TIETALS
Nitrogen, Nitrate+NiBlte as N 1r-4 rngrL
Lab ID: C01090647{03
Client SamPle ID: WMIVITIIV+3
MCIJ
RL QCL
Collectiou Dstel
DateReceived:
Meuir:
Method
09/20/01 10:30
092.5lol
AQIJEOUS
Analysis Date /BY
Result Units Quel
AnalYses
NONJUIETALS E353.2 09/26/01 19:33 I ruk
0,10mE/L
Nitrogen. Natt?te+Nibite es N
Lab ID; C01090647404
Client SamPle ID: WIleffW44
Collcction Dste:
DsteReceived:
Mrfiir:
Method
09120/01 10:50
09l25lol
AQUEOUS
MCL/
RL QCL Analysis Date / BY
Result Units QualAnalyses
NON-UETALS
Niirogen, NitraE+Nitdte as N
E3s3.2 09126/01 19:39 I rwlt
14-8 ME,L 1_00
Rcport
Dcflnitiont:
ND - Nor delectcd st thc rcpoBing limit
MCL - Ma,rimum conrutinant lctcl
RL - Anslytcr@6ing lwcl
QCL - QualirY eontol limir
'itli,l.,i!..-1 l.;r. L'rif ll
:l "l ,i I .; iir:'. I l]:
801 678 22?4 T-555 P.0l l/012 F-725
l-*-:ENEBilY tAE-oBAloRtE€, twc- ' 23s! salt q'qrw:ay#e;ffitri'1?y #Hbw.ffi'iliFiisss.iss-osri ' 30 -''r.05t5 ' Fa( 3022s
l0:42arn Fron-lUC BLAllDItIG
LABOR.ATORY ANALYTICAL REPORT
Client:
Project:
International Uranir:m (USA) CorP
3rd Quarter 2001 Samplrng Event Whire Mesa Mill
Lab Order: C01090647
ReportDate: l0/0al01
Lab ID: C01090647'005
Client SamPle ID: WMIVITW4-5
Collection Dste: 09/20/01 10:10
DateReceived: 09/25101
Matrir: AQUEOUS
MCIJ
RL QCL Method AnalYsis Date / BY
Result Units Qual
owzttol 19:4r I rwk0.50NON.IJIETALS
xiuogen, NiHB+NiUitc as N 2.10 mgrL
Lab ID: COt090647-006
Clierrt SemPleID: mtfi\dfW4-5
Collection Date:
DateReceived:
Matrir:
09/20/01 09:17
a9D5lOl
AQUEOUS
Analysis Datc /BYMCI-/
RL QCL MethodResult Units QualAnalYses
E353.2 03/26/01 19:43 / rwk
0.10
I
T
I
I
I
I
I
I
I
I
I
I
I
T
I
I
I
I
NONI'/IETALS
NitDgen. Nitsab+Nitrite as N mgrL
Lab ID: C01090647-007
Clieut SamPle ID; WMIVITW+7
MCU
RL QCL
Collection I)ste:
DsteRcceived:
Matrir:
Method
09/20/01 10:43
oglz'lor
AQUEOUS
Anetysis Date / BY
Result Units Qu.tAnalyses
E353.2 mf25i01 1S:45 / ruk
o.20NON.I/IETALS
Nibogen. Nitrate+t'libite as N 3.38 mg/L
Lab ID: C0r090647-008
Client SarnPleID: WIIIvITWII-8
MCIJ
RL QCL
Collection Dste:
DateReceivcd:
Mslrir:
Mcthod
09/20/01 09:48
0gDslor
AQUEOUS
Anrlyris Date /BYRBult Units QnrlAnelyses
NON.METALS
Nirogen, NitEte+Nii'tto as N
0.10 E353:09/26/01 18=[t t t1,JR
o-35 mdL
ND - Not dctcstcd at the ,eponin8 limit
MCL - Msrimum contlminent lcr'cl
RL- AnalYrc rePoning lcvcl
QCL - QuulirYcontrol Iimir
-n n A./1"^
! ir..tl_.:.1.-:.:
.r,\.-l-a'-:r. ,1. ;
-- 1.: -.. 'r i
:','l- l,'',GE i,!C
il ii;'irii
slt 679 2?24 T-555 P.012/012 F-l?5
l-.,H trFEf {,i!!,?Ei{?%q""'{8,;f i"fl [95i!ffi l"r',lIffi &;:;:*,?i"'r,##[ffi 'ffi 'l0:12am From-lUC BLAtlDlllG
Client:
Proiect:
LABORATORY ANALYfl CAL REPORT
lnternational Uradum (USA) CorP
3rd Quarter 2001 SarryIiug Event Whire Mesa Mill
Lab Order: C01090647
ReportDatez L0lMl0l
Lab ID: C01090et7'009
Ctient SamPle ID: WMMTV[+9
Collectiou Daie:
DateReceived:
Matrir:
Method
0912010109:33
09n5101
AQUEOUS
Analysis Date / ByResult Uuits
MCL/
Qual RL QCLAndpes
NON{tNETAI.S
Nibogen, Nltrale+Nibite as N 0.10 E353-2 09/26/01 19:53, rwk
Lab ID: C01090647{10
Client SamPleID: WMli'flvITW4 f|l^, -'11
Collection Date:
DateRcceived:
Matrir:
Method
O9l}Alil \:22
09/2slor
AQUEOUS
Aralysis Date / BYResult Unis
MCIJ
Quel RL QCLanalyses
NON.METALS
Nlrrogen. Nitrab+NMte as N rngrL 09/26101 19:55/rwt
t
t
I
I
t
t
I
I
I
I
I
I
I
t
T
I
I
I
Lab ID; C0i090647-011
Client SamPleID: WMMTW+I0
Collcetion Date:
DateReceived:
Matrir:
0920/01 l0:10
09lzstor
AQUEOUS
n/--LXI
),^ pl'
Result Uni$Qual Method AnalYsisDate/BY
MCIJ
RL QCLAnalyses
NON.METALS
Nitrooon, Nit€E+Nitritg as N
E353.2 o$l25/01 20;01 / rrk
2,32
Report
Dcfididoas!
ND -Not detecrcd st ttrc rcponing limit
MCL - Maxirnum contaminant lcvel
RL - AnalYc repoling lcvel
QCL - Qualiry consol limit
-;i i-'F tl0. -.isL rrs.
I
I
I
t
t
I
T
I
I
I
I
I
T
I
I
I
I
I
I
t
I
I
I
I
I
I
I
I
I
I
I
t
I
I
I
I
I
I
APPENDIX E
U.S.G.S Manual Chapter 6.5 and Hydrolab Parameter Specifications
I
t
I
I
t
I
t
I
I
I
I
I
I
I
I
t
I
REDUCTION-OXIDATION POTENTIAL (ELECTRODE
METHOD)
mcfion-olrTAaTion potential (as Elr): a Ineasure of tlte
ilibrirrrn potential, rclafive to thc standard h.vdrogen
In contrast to other field measurements, the determination of the reduction-oxidation potential of water
?i.iro.a to as redox) should not be considered a routine determination. Measurement_of redox potential,
);-;;6d t.i. ur E(measurement, is not recommended in general because ofthe difficulties inherent in
it, Goi"ti.al concept and its pracfical measurement (see "Interferences and Limitations," sectiotl
6.5.3.A).
equilibrium values.
> Determinations of redox using the platinum.(or other noble me@) electrode method7
tpt l *" valid only when redo-x species are (1) electroactive, and (b) present in the
solution at concentrations of about t0* molal and higher. Redox species in natural
waters generally do not reach equilibrium with metal electrodes.
procedures for equipment calibration (test procedures) and Eh measurement are described in this section
i;;tdpt;iinum etettrode only. Althoirgh fhe general guidance given here applies to other^types of redox
.i."tio,i6 (such as gold and giassy carb-on electrodes), it isnecessary to consult the manufacturer's
i"riro.iio"i for "ooi"t use ofthe ipecific electrode selected. Concentrations of redox species c3, b"
a;t;;ild by direct chemical anafysis instead of using the electrode method (Baedecker andCozzarelli,
t9e2).
*Section 6.5.1
*Return to Contents for 6.5--Reduction Oxidation Potential (Electrode Method)
f Return to Chapter A6 Contents Paee
tReturn to Field Manual Complete Contents
tReturn to Water Ouality Information Pases
Maintainer: Office of Water QualitY
Webversion by: Genevieve Comfort
Last Modified: 16JUNE98 ghc
eqtllllDl'ltlIfi p{}{entl?tI. rt:t?llIYc t(, l.lls }titIlt.aI tt tr.vtrl r"riiri:rr
electrode, tlcvcloped at the interface betu'een a nnble metal
electrotle nnd rn aqireous solution contaitring electroactivc redor
l*,
]ction
6.s http ://water.usgs. gov/owqff ieldManuaVChapter6i6. 5.ht
*rffi
Water Resources--Office of Water Quality
This document is also available in pdfformat:
@Chaoter 6.5.Pdf
6.5
!jpecIes.
ll/08120014:24
T
t
I
t
I
I
I
I
I
I
t
I
I
I
I
I
EQUIPMENT AND SUPPLIES
The equipment and supplies needed for making Eh rygasgrements ysiqg the platinum electrode method
are lisied in table 6.5-1. Eh equipment must be tested before each field trip and cleaned soon after use.
Every instrument system usetl for Eh measurement must have a log book in which all the equipment
repairs and calibrations or equipment tests are recorded, along with the manufacturer make and model
numbers and serial or property number.
Electrodes. Select either a redox-sensing combination electrode or an electrode pair (a platinum and
reference electrode). Use of the correct electrolyte lilling solution is essential to proper
measurement andis specified by the electrode manufacturer. Orion Com-pany, forexample,
recommends selection of a fillingsolution to best match the ionic strength of the sample solution, in
order to minimize junction potentials.
I
I ",,
]ction
6.s.1 http :/iwater.usgs. gov/owqiFieldManuaUChapter6/6. 5. I .ht
=rxsGsrhtor*#x'lf
Water Resources--Office of Water Quality
This document is also available in pdfformat:
@Chapter 6.5.1.odf
abh 6.5-1. fuuiprrent and sr.lpplies used for Eh measurernentsl
[rnV, mllltrrcl[ t plus or minug p5fcm, micmsierrcnr per centinuhr at 25 degrces (ekiur]
rr Mllllrrrclt msts r or pH met€r wlth mllllvolt madlng capablllty, preferably urlth automatic
tsmperaturo compEnsEbri 0.l-mV sBntltivity; acals to at leastt1,400 rnvj BNC connestor
(ses lnsirumentspeclficatons forpH mstgrc,6'4'1 ln NFM 6'41
y' Redox slsctrodss, etther (al platinum and rBference electrods (calomel or silvsr:sllvsr-
ch loridsl or tbl combinatlon slgctrods
I Electrode ftlling solutlons ( rsfer to manuFacturor's speclficatlonsl
I Thermnmetsr (ltquid-tn-glass or thermlstor typel, cnllbratsd lsee NFM 6.1 for
selqctlon and callbratlen crlterlal-for use uvith mllllnolt metg rE uulthout temperatu rs
compsnsEtor
/ Flowthrough csllwith mlves, tublng, and eeessories [mpermeabls to air (for uss
ruith pump systsml
/ Sampltng systaml {'t) ]n situ (dournholal measurament instrum0nt, or
(ll submersibls pump lusad rrvith closed-sptrm flouvthrough celll. Pump tubing
must be "impermeable" to mypen.
/ ZoBe ll's sslution
I Aqua rsgia or manufacturer'B rscommsndBd electrode-claaning solution
/ Liqu Id no nph os p hate I a boratory-grad e dete rgen t
/ Mnd abraslvsr creus cloth or 40O to 600-grlt weUdry Carborundumrt paper
y' Deionlzsd uvatsr (max{mum conductlvity of 1.0 pSdcml
/ Botls, squeeze dlspenssr for dslonlzsd watsr
l Safsty equlpment gloves, glassss, apron, chemlcal splll klt
1 Paper tissues, dispoaablo, llnt fms
/ WasE-dlsposal contalne r
tf$odifu thia list b meei ep*ilic na€de ol rha fi*ld afforl,
ll/08120014:25
]ction
6.s.1 http://water.usgs. gov/owq/FieldManuavChapter6/6. 5. I .ht
Silver:silver-chloride or calomel reference electrodes are the redox electrodes in
cofilmon use.
The OrionrM combination electrodes are platinum redox and silver: silver-chloride
reference electrodes in one body (the OrionrM brand is used for purposes of illustration
only).
ZoBell's solution. ZoBell's is the standard solution for testing redox instruments. ZoBell's solution can
be obtained from the QWSU in Ocala, Fla., or it can be prepared fresh (see below). Quinhydrong
solution is sometimes used but is not recommended because it is significantly less stable above 30'C and
its temperature dependence is not as well defined as that of ZoBell's.
ZoBell's solution consists of a 0.1 molal KCI solution containing equimolal amounts of KoFe(CN)u *d
KrFe(CN)u. ZoBell's is reported stable for at least 90 days if kept chilled at 4oC. To prepare ZoBell's
solution:
1. Weigh the chemicals (dry chemicals should be stored overnight in a desiccator before use).
1.4080 g K.Fe(CN)6'3H20 (Potassium fenocyanide)
f .0975 g KrFe(CN)o (Potassium fenicyanide)
7.4557 g KCI (Potassium chloride)
Dissolve these chemicals in deionized water and dilute solution to 1,000 mL.
Store the solution in a dark bottle, clearly labeled with its chemical contents, preparation date, and
expiration date. Keep the solution chilled.
2.
I
I
I
I
I
I
I
I
I
I
I
I Aqua regia. Aqua regia can be used for cleaning the E! electrode (check theclectrode manufacturer's
reiommelrdatioirs). Piepare the aqua regia at thotime of use--do not store it. To prepare_the aqua regia,
mix 1 volume concentrited nitric;cid ri,ittr: volumes of concentrated hydrochloriCacid.
I
I
t
I 6.s.1.A
I
1,,
MAINTENANCE, CLEANING, AND STORAGE
Refer to 6.4.1of NFM 6.4 on pH for general guidelines on meter and electrode maintenance, cleaning,
and storageJollow the manufacturer's guidelines on th9 operation and maintenance of the meters and
electrodel, and keep a copy of the instruction manual with each instrument system. Keep the meters and
electrodes clean of dust and chemical spills, and handle them with care.
Maintenance
Keep the surface of noble electrodes clean of coating or mineral d.eposits. A brightly polishedmetal
surfice prevents deterioration of electrode response. The billet tip is more easily cleaned than the wire
tip on tlie platinum electrode. Condition and maintain the Eh electrodes as recortmended by the
manufacturer.
tll08l200l4:251
Jction
6.s.1 http://water.usgs.gov/owq/FieldManuaVChapter6/6.5. I .hl
Cleaning
Keep the O-ring on electrodes moist during cleaning procedures.
> To remove precipitate that forms on the outside wall or tip of the reference or
combination electrode, rinse the outside of the electrode with deionized water.
inner cone of sleeve-type electrode junctions, clean the chamber by flushing out the
filling solution (the precise procedure to be followed must come from the electrode
manufacturer).
surface with mild abrasive such as coarse cloth, a hard eraser, or 400- to 600-grit
wet/dry CarborundumrM paper (Bricker, 1982).
about I minute. Do not immerse the electrode for longer than L minute because aqua
regia dissolves the noble metal as well as foreign matter and leads to an erratic electrode
response (Bricker, 1982). Soak the electrode several hours in tap water before use.
TECHNICAL NOTE: Disassembly of the electrode is not recommended for routine cleaning and should
only be used when absolutely needed. Additional cleaning and reconditioning procedures are discussed in
NIM Oll and in American Public Health Association and others (1992), American Society for Testing and
Mm;ffii (1990), Edmunds (1973),Adams (1969), and Callame (tq0g).
Storage
For short-term storage, immerse the electrode in deionized water to above the electrode junction and
keep the fill hole plugged to reduce evaporation of the filling solution. The recommended procedures for
long-term storage of electrodes vary with the type of electrode and by manufacturer. The OrionrM
combination electrodes are stored dry after rinsing precipitates from outside of the electrode, draining
the filling solution from the chamber, and flushing it with water (consult the manufacturer's cleaning
instructions). The electrode connector ends must be kept clean. Clean them with alcohol, if necessary.
Store the connector ends in a plastic bag when not in use.
I
t
I
t
I
1
I
!
I
I
t
t
I
I
I
I
I
*Section 6.5.2
SReturn to Section 6.5
SReturn to Contents for 6.5--Reduction Oxidation Potential (Electrode Method)
OReturn to Chapter 4,6 Contents Page
f Return to Field Manual Complete Contents
SReturn to Water Ouality Information Pages
Maintainer: Office of Water Quality
Webversion by: Genevieve Comfort
Last Modified: I6JUNE98 ghc
l*,ll/O8/2001 4:25 Pl
*tffiri$rfukrrffirrrf
lection
6.s.2
I
I
I
I
I
t
I
T
I
I
I
I
t
I
t
I
t
1,,
http ://water.usgs. gov/owq/FieldManuaUChapteri I 6.5.2.hl
Water Resources--Office of Water Quality
This document is also available in pdfformat:
ffiChapter 6.5.2Jd[
6.5.2
EQUIPMENT TEST PROCEDURE
Eh measuring systems can be tested for accuracy but they cannot be adjusted. Eh equipment must be
tested, either in the laboratory or in the field, against a ZoBell's standard solution before making field
measurements. In general, field testing with ZoBell's is not required, but the protocol used will depend
on study needs.
> Before using, check that the ZoBell's solution has not exceeded its shelf life.
ZoBell's is toxic and needs to be handled with care.
ZoBell's reacts readily with minute particles of iron, dust, and other substances,
making field use potentially difficult and messy.
The Eh measurements are made by inserting a platinum electrode coupled with a reference electrode into
the solution to be measured. The resulting potential, read directly in millivolts from a potentiometer
(such as a pH meter), is corrected for the difference between the standard potential of the reference
electrode being used at the solution temperature and the potential of the standard hydrogen electrode
table 6.5-2).
TECHNICAL NOTE: Er.1is the whole-cell potential of the reference electrode in ZoBell's solution.
Er.;= 238 mV (saturated KCl, immersed with the platinum electrode in ZoBell's at25"C) is the measured
potential of the silver:silver-chloride (Ag:AgCl) elechode;
Er.1: 185.5 mV (saturated KCl, immersed with the platinum electrode in ZoBell's at25"C) is the measured
potential of the calomel (Hg:HgCl) electrode;
Eo :430 mV is the standard electrode potential of ZoBell's solution measured against the hydrogen electrode
at25"C.
Half-cell potentials for the calomel, silver:silver chloride, and combination electrodes are shown in table
6.5-2. Table 6.5-3 provides the theoretical Eh of ZoBell's solution as a function of temperature. For
those temperatures not shown on tables 6.5-2 md 6.5-3, interpolate the values. Add the value
colresponding to the solution temperature to the measured potential electromotive force (emf
measurement).
I l/08/2001 4:26P
fction
6.s.2 http ://water.usgs. gov/owq/FieldManual/Chapter6 I 6.5 .2.ht.
I
I
I
T
I
I
t
I
I
I
I
I
t
I
I
t
T
1,,
To test Eh equipment, complete thefollowing 7 steps and record results on the Eh data recordform
for the eqaipment test procedure (fig. 6.5-l):
l. Follow the manufacturers' recommendations for instrument warm up and operation.
o Set the scale to the desired millivolt range.
. Record the type of reference electrode being used.
2. Unplug the fill hole. Shake the electrode gently to remove air bubbles from the sensing tip of the
electrode. Check the level of the filling solution and replenish to the bottom of the fill hole.
. The filling solution level must be at least 1 in. above the level of solution being measured.
. Use only the filling solution specified by the manufacturer.
3. Rinse the electrode, thermometer, and measurement beaker with deionized water. Blot (do not
lll08l200l4:268
Jction
6.s.2 http:i/water.usgs.gov/owqff ieldManuaUChapter6 I 6.5.2.ht
wipe) excess moisture from the electrode.
Pour ZoBell's solution into a measurement beaker containing the electrode and temperature
sensor.
. The Eh electrode must not touch the bottom or side of the container.
. Add enough solution to cover the reference junction.
. Allow 15 to 30 minutes for the solution and sensors to equilibrate to ambient temperature.
Stir slowly with a magnetic stirrer (or swirl manually) to establish equilibrium between the
electrode(s) and solution. Switch the meter to the millivolt function, allow the reading to stabilize
(+5 mV), and record the temperature and millivolt value.
Look up the half-cell reference potential for the electrode being used (table 6.5-2). Add this value
to the measured potential to obtain the Eh of ZoBell's at ambient temperature.
. If the value is within 5 mV of the ZoBell Eh given on table 6.5-3, the equipment is ready for
field use. (See the example below.)
. Refer to section 6.5.4 if the value is not within 5 mV of the ZoBell Eh.
Rinse off the electrodes and the thermometer thoroughly with deionized water. Store the test
solution temporarily for possible verification.
EXAMPLE:
Example of the equipment test procedure using a silver:silver chloride-saturated KCI (Ag:AgCl)
electrode.
Eh: emf + E,",
where:
Ehisthe potential (in millivolts) of the sample solution relative to the standard hydrogen
electrode,
emf or Erroru,"dis the electromotive force or potential (in millivolts) of the water measured
at the sample temperature,
En is the reference electrode potential of the ZoBell's solution corrected for the sample
temperature (table 6.5-2).
a. Follow steps l-5 (above). For this example,
. Measured temperature : 22"C
o emf= 238 mV.
b. Check table 6.5-2. The interpolated reference potential :202 mV for Ag:AgCl-saturated
KCI at 22"C.
c. From Eh: emf+ E*
Eh (ZoBell's) : 2 j8 mV + 202 mV: 440 mV.
4.
5.
7.
I
I
I
I
I
I
I
I
I
I
I
t'
I
I
I
I
I
t,,I l/08/2001 4:26P
Jction
6.s.2 http ://water.usgs. gov/owq/FieldManuauchapter6 I 6. 5 .2.h
d. Checktable6.5-3.Thetestvalue of 440 mViswithin+5mVof438mVfromtable6.5-3.
Thus, the equipment is functioning well and ready for field use.t
I
I
t
I
I
t
I
I
I
I
t
I
I
I
t
t
1",,
Eh Data Record
Equiprrxnt Tert Frocrdurr
Equipm ent deecriptian snd identification (model end garigl pndor W num ber):
Me.tq
Eh elactrode Refurenca sleclrsde
ZoBEll'e solutionr Lst #
---
Dater prepargd ___ erpirad
Belore aem ple Eh: After sam pls Eh:
I. Temparature of ZoBall'ssollrtioru T *
(efter equilib retion to am bienttem perafu re)
2. Obsaryed putential (in millivoltal sf ZoEell's
reletive to m eesuring electroda, at
gm bient tBm porsturE (E."""urnd or eynfll emf =
3. Raferanca elaetrode potential lin millivolta)
at ambient trmparahrrs frsm tablE 6.5-2
{Ergl: Eruf=
{. Calculate Eh of ZoEoll'sr Eh = em7*p,r, Eh=
5. Thsoretiusl potantial (in millivolts)
of ZoBall's at am bient tEm Ftsrstur6
from tabla 0.5-3r Eh (theoraticell=
G. Subhast calculat;d Eh from Eh theorgtical
lZobell's)(stnp 4 m inua rtep 5l AEh=
7. Chsck: ig AEh *ithin * 5 mV? Obsprvgtion.sr
F[rrc 6.ll.t. Eh datl recsrd: equtpment test procedure.
4section 6.5.3
0Return to Section 6.5.1
*Return to Contents for 6.5--Reduction Oxidation Potential (Electrode Method.)
frReturn to Chapter A6 Contents Page
SRetum to Field Manual Complete Contents
*Return to Water Ouality Information Pages
Maintainer: Office of Water Quality
11108120014:26P
lection
6.s.3 http ://water.usgs. gov/owq/FieldManuaUChapter6/6. 5. 3.1
*tffisrchpfor**tndil
Water Resources--Office of Water Quality
This document is also available in pdfformat:
fr\Chapter 6.5.3.pd[
6.5.3
MEASUREMENT
To obtain accurate results, it is necessary to prevent losses and gains of dissolved gases in solution.
Consult NI'M 6.0 for information on precautions and general procedures used in sample collection and
NFM 6.2 for a description of the flowthrough cell used in dissolved-oxygen determination (the
spectrophotometric method).
Chemical, physical, and biological reactions can cause the Eh of water to change
significantly within minutes or even seconds after the collection of a sample.
Water samples cannot be preserved and stored for the Eh measurement.
Use equipment that eliminates sample aeration and operate the equipment to meet this
goal. If using a flowthrough chamber or cell:
Use tubing that is impermeable (relatively) to oxygen.
Channel the sample flow through an airtight cell (closed system) constructed
specifically to accommodate redox or ion-specific electrodes, temperature, and
other sensors.
Connections and fiuings must be airtight.
Purge atmospheric oxygen from the sample tubing and associated flow channels
before measuring Eh.
I Measure Eh in situ with a submersible instrument or use an airtight flowthrough system.
First:l,
l2
aJ.I
l*,
I
I
I
T
I
I
I
I
I
I
t
T
t
Record the type of reference-electrode system being used (fig-fl:D.
Check for the correct-electrode filling solution. If working in very hot or boiling waters, change
the reference electrode filling solution daily.
Keep the electrode surface brightly polished.
TECHNICAL NOTE: Te,mperature determines the Eh reference potential for a particular solution and
electrode pair, and may affect the reversibility of the redox reactions, the magnitude of the exchange current,
ll/08/20014.,281
lction
6.s.3
T
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
l*,
http://water.usgs. gov/owq/FieldManuaVChapter6/6.5.3.ht
and the stability of the apparent redox potential reading. The observed potential of the system will drift until
thermal equilibrium is eitablished. Thermal equilibrium can take longer than 30 minutes but it is essential
before beginning the measurements.
Next, measure the Eh and complete thelieldform (frs.6..52):
l. Select an in situ or closed-system sampling method. Immerse the electrodes and temperature
sensors in the sample water.
. In situ (or downhole)--Lower the sensors to the depth desired and follow the
manufacturer's recommendations.
. Closed-system flow cell--Check that the connections and sensor grommets do not leak, and
that the water being pumped fills the flowthrough cell.
2. Allow the sensors to reach thermal equilibrium with the aqueous system being measured and
record the time lapsed.
. It is essential that platinum electrodes be flushed with large volumes of sample water to
obtain reproducible values.
. Record the pH and temperature of the sample water.
3. Switch the meter to the millivolt function.
. Allow the reading to stabilize (+5 mV).
. Record the value and temperature (see the technical note that follows step 7. below).
. Stabilization should occur within 30 minutes.
4. Take readings of the sample temperature and potential (in millivolts) every few minutes for the
first 15 to 20 minutes.
. It is best to stop the flow of the sample while the reading is being taken to prevent
streaming-potential effects.
. After 15 to 20 minutes, begin to record the time, temperature, and potential in plus or minus
millivolts about every 10 minutes. Continue until 30 minutes have passed from the initial
measurement and until the measurements indicate a constant potential.
5. After the measurements have been completed for the day, rinse the electrode(s) thoroughly with
deionized water.
If field calibration is required for a study,
a. Place the electrode(s) and otler sensors in ZoBell's solution that has been equilibrated to the
temperature of the aqueous system to be measured. The electrode(s) must not touch the
container, and the solution must cover the reference junction.
b. Allow the electrode to reach thermal equilibrium (15 to 30 minutes).
c. Record the potential reading.
d. Follow steps 5-7 of the equipment test procedure in section 6.5.2.
6. Record all data and calculate Eh (see EXAMPLE, (section 6.5.2).
ll/08/2001 4:281
I
I
t
I
I
I
I
T
I
I
I
I
I
t
I
t
I
T
lection 6.5.3 http ://water.usgs.gov/owq/FieldManual/Chapter6/6. 5. 3.h
Fill out the Eh data record form for field measurements fig.6.5-2).
Eh Data Eecord
Field Mearursmentr
't. Temporatu re and pH of system measuredr , =
t't'o " Fisld Eh1
FH=
X. Time to thermal equllibrationr
Maasurement begen et
Moasurement endsd et
3. Mgasured potgntial of wetsr systgm (mVlr snf =
d Befnrancs electrode potnntial mV of ZoBell's
at semple temperatlrel
5. Calculate sempls Ehl *rrf + E o1
(add step 3 + step 4ll
E6g=
-
Eh =_
6. Field mossurem€ntr should agme within about 10 mV,
QbEsruations:
tTtr socord nrarurcrrrf iE rEcaEBry fur qrnlity mrrml,
Flgure 6.5-2. Etr data r€f,ord: field rneasurcments.
7. Quality control--Repeat the measurement.
TECHNICAL NOTE: The response of the Eh measurement system may be considerably slower than that of
the pH system and that response also may be asymmetrical: the time required for stabilization may be longer
when moving from an oxidizing to reducing environment or vice versa. If the readings do not stabilize within
about 30 minutes, record the potential and its drift; assume a single quantitative value is not possible. If an
estimate of an asymptotic final (hypothetical) potential in such a drifting measurement is desired, refer to the
method used by Whitfield (1974) and Thorstenson and others (1979).
6.5.3.A
INTERFERENCES AND LIMITATIONS
Measurements should not be carried out without an awareness of the interferences and limitations
inherent in the method.
ll/08120014:281
http ://water.usgs. gov/owqlFieldManuaVChapter6/6. 5.3.ht
I
I
t
I
I
I
I
t
I
t
I
I
t
I
I
I
' brif,ge, or internal electrolyte, wtrictr can cause drift or erratic.performpcg when
refertnce electrodes are used (American Public Health Association and others, 1992).
- tG meisurement if the electrode is left in sulfide-rich water for several hours
(Whitfield, 1974; Sato, 1960).
-
solutions containi-ng chromium, uranium, vanadium, or titanium ions and other ions that
are stronger reduciig agents than hydrogen or platinum (Orion Research Instruction
Manual, written commun., 1991).
with ZoBell's. An insoluble blue precipitate coats the electrode surface because of an
immediate reaction between ferro- and- fenicyanide ions in ZoBell's with ferrous and
ferric ions in the sample water, causing erratic readings.
Many elements with more than one oxidation state do not exhibit reversible behavior at the o^latinum
electiode surface and some systems will give mixed potentials, depending on the pres_ence ofs-everal
different couples (Barcelona and others, IgSq; Bricker, 1982,p.59-65;Stumm.ar-rd Morgan, 1981, p.
490-495;Britker,'1965,p.65). Methane, bicarbonate, nitrogen gas, -sulfate, and dissolved oxygen
generally are not in equilibrium with platinum electrodes (Bemer, 1981).
TECHNICAL NOTE: Misconceptions regarding the analogy between Eh (pe) agd pH- as master variables
and limitations on the interpretati6n of Eh ireasuiements are explained in Hostettler (1984), Lindberg and
Runnells (1984), Thorstenson (1984), and Berner (1981). To summarize:
(1) Hydrated electrons do not exist in meaningful concentrations in most aqueous systems-in contrast, pH
ieireients real activities of hydrated protons. Eh may be expressed a-s. pe, 1119 negative logarithm.of the
elictron activity, but conversjon to pi offers no advantage when dealing with measured potentials.
(2) Do not assume that redox species coexist in equilibrium. Maly situations have been documented in which
diisolved oxygen coexists with hydrogen sulfide, methane, and ferrous iron.
. The practicality of Eh measurements is limited to iron in acidic mine waters and sulfide in waters
under- going sulfate reduction.
. Other redox species are not sufficiently electroactive to establish an equilibrium potential at the surface
of the conducting electrode.
(3) A single redox potential cannot be assigned to a disequilibrium system, nor can it be assigned to a water
iainpte w'ithout spetirying the particular re-dox species towhich it refers. Different redox elements (iron,
murgarer", sulfrir, selenilm, arsenic) tend not to reach overall eq_uilibrium in most natural water systems;
therJfore, a single Eh measurement generally does not represent the system.
6.5.3.B
INTERPRETATION
A rigorous quantitative interpretation of a measurement of Eh legyireq interactive access to an aqueous
speclation code. Exercise caution when interpreting-a measured Eh using the Nernst equation. The
Nernst equation for the simple half-cell reaction (M r"nt: MI (on) + e-) is
I
l*,11108120014:28
I
I
I
I
I
I
I
where:
http ://water.usgs. gov/owq/FieldManuaUChapter6/6. 5. 3.ht
ffr - fi" + 2.303&VnF IoS (c'rr,nr/ ('*,rrl
n : gat csnstant;
T = temperaturen in degrees hetrvin;
n : number of etreetrons ln thp half-cell rerction;
F : Faradry constant; rnd
ar*u, and nX*,= thermodynamic rctivitier of the free ions Mi *
and M'r,,,and not rimplythe anrlytlerl concen-
xffi*ltotal M in oxidation stlt,es I and II,
Measurements of Eh are used to test and evaluate geochemical speciation models, particularly fgr
suboxic and anoxic ground-water systems. Eh data can be usefuffor.gaining insights o14" evolution of
*ut., chemistry and-for estimating the equilibrium behavior of multivalent elements-relative 1o pll f-o.
* uqr"o.5 syrle*. Eh can delineite qualitatively strong redox gradients; for exam-ple, those found in
siratified lak6s and rivers with an anaerobic zone, in anbxidized surface flow that becomes anaerobic
after passing through stagnant organic-rich systems, and in mine-drainage discharges.
4Section 6.5.4
SRetum to Section 6.5.2
+I
I
I
I
I
I
I
t
I
SReturn to Chapter ,4.6 Contents Page
SReturn to Field Manual Complete Contents
f Retum to Water Ouality Information Pages
Maintainer: Office of Water QualitY
Webversion by: Genevieve Comfort
Last Modified: 15AUG00 imc
I
1,,11108120014.'28
Jction
6.s.a http ://water.usgs. gov/owqlFieldManuaUChapter6/6. 5.4.ht
t
I
I
I
I
I
I
I
I
I
I
I
I
I
I
t
*Ltsss#nrldr#trf
Water Resources--Office of Water Quality
This document is also available in pdfformat:
fr\ChaPter 6J=4.P4[
l4:!
--6.5.4
TROUBLESHOOTING
Contact the instrument manufacturer if the suggestions in table 6.5-4 fail to resolve the problem.
Check the voltage of the batteries.
Always start with good batteries in the instruments and carry spares.
Tablc 65-4. Tmublerhooting guide for En rner:urement
[*; plus or minur; mY, millirolt+ czlI, elertrrornotive furce]
Check m atar oPErationl
' Usa shorting lead to ssteblish metEr reading ai zEro mtr,
' CheekJieplBce batteriBe.
' ChEEk sgB inst beckup m eter.
Cheuk alsctrode oPergtionl
. ChEckthat ElrtrodE rgfernnce solution level ig to the
fill hola.
'Flug qusstionahle refsrgncE alectrode into refsrencE
alrtroda jack and enother rehrence electrade in qood
working order of the ssm E tyPe into the indicgtor
alx-trode jack of thn m:tnr; imm srse elect'rodes in s
potaseium chloride Eolution, racord mY, rinsa oft end
imm ErEB alaetrodae in ZoBall'a aslution. Tha trro mV
readinge ghould be 0 *,5 mV. lf ueing different al*
trodes (Agr4gCl and HgrHgCl2), rggding ahould hs 44 *
5 mV for a good referencs al*trude.
. Pglish platinum tip wfrh mild gbraeivp {croeus cloth,
herd Erassr, or a 40GB 00grit wat1Hry Carborundumw
pspart. rinee thoroughly with daionhed wetEr. UgE e
Kimwipe!il if thage abresiveE err ngt evaileble'
' Drain and refill rofErenee el*trolytechember.
. Oimonnect rgiErencs ElactrsdE" Drain end reffll slgctre-
lyta cham ber rrfth corrmt filling Eolution. Wipe off
connestarg on elstrods Bnd m EtBr. Uae baekup
elstrods to chge kthe s{nf
' Reed arrfrxith freeh aliquot of ZoEell'aeolution;
prepere lrnsh ZoBell's eolution if poaaihle'
'Hrcondilion alectrods byclaaning with BquE ragla and
ranawing filling solution---ltir ls e lad lEffit.
Eh of ZoEell'e golulion
ercasda thsoretical by
tE mV
Ercasgive drift
Errstic performance
Poor rasponaa when
uainp pairad electodas
I
l*,ll/08120014..28
I *ffis*,,o.,u.r,
f Return to Contents for 6.5--Reduction Oxidation Potential (Electrode Method)
I tReturn to Chapter 4.6 Contents Page
I f Rerurn to Field Manual Complete Contents
SReturn to Water Ouality Information Pages
I #:'#3ltiJ;?flttr#Y#:'"3Hlt?
Last Modified: I6JUNE98 ghcI
I
I
I
I
I
I
I
I
t
I
I
T
I
l*,
http ://water.usgs. gov/owq/FieldManuaVChapter6/6. 5.4.h1
ll/08/20014:281
Jction
6.s.s http://water.usgs.gov/owq/FieldManuaUChapter6/6.5.5.ht
I
I
I
I
I
I
I
I
I
I
t
t
I
I
I
I
I
=t sGsr#torsSlrll
Water Resources--Office of Water Quality
This document is also available in pdfformat:
@Chapter 6.5.5.Pdf
0.5.5
REPORTING
Report the calculated Eh in mV to two significant figures.
potentials are reported to the nearest 10 mH alo_n_g with the temperature at which the measurement was
made, the electr6de system employed, and the pH at time of measurement'
*Chapter 6.6 Contents
f Return to Section 6.5.4
f Return to Chapter A6 Contents Page
SReturn to Field Manual Complete Contents
f Return to Water Ouality Information Paees
Maintainer: Office of Water Quality
Webversion by: Genevieve Comfort
Last Modified: l6JLINE98 ghc
l*,ll/08120014:28
t
I
I
I
I
I
I
t
I
I
I
t
t
T
I
I
I
I
5 of 5
Webversion by: Genevieve Comfort
Last Modified: l6JUNE98 ghc
http://water.usgs. gov/owq/FieldManuaVChapter6/ 6.5.2.ht
11108/20014:2(
I
ooood
q
0
J
B
aa1EJO
EE
6
LJ L,
Ee; cr-
E
oEO
E
c
r€o
9cGC
++otz,
co
E
-h
oo
b
e3e
EE
-c
I
e6
Eo
EoDoC
*
3Id
E
ri
x
Be
d
3E
=,i
6
E
N+
6
dG
xg
E'-€
o;
id
'fi8,.<IE
r 26
, qI'r=6i Ee;EEtr!
; gB
i QEi 6=E fED 5E
o -.B 4crsta Eo1 aBb rtr
I -G- o__
EE8
=3Eo G62 zzI :rtsx .oo3 {.8PE€ti€
AEE€aEg E5
}EE, -st:P CF:= a- t
s€ttsEE[;
c=EE
EE:* qiE:l5 EiEfr:6 ditt!f, ai5 !ts I
:E IeP iia :qo itrllEi
=3 ltg)
|DXEgqE
$-oCD
Efl
CB
=ao?r
EE
=DPoEE
"- H-E4
cLoooEE.CdgE
E5
E;a5
-oAE
E+>p-€,t
E}
-!F
EE6sFb[t*eof,
D)
EdgE
g!
D.;c
FTg€
x€
o-EEe!eeE
EEatOG
aPEog-
o!DEE
FA
I
3E
E ---sE
ogo5
E8oct*
EE
bT
Ea
EEE5o6EO
Ee
QEhg
E+IE
'E,e
EEfl3
|DX5g!E8-odD
Efl
CB
=ao?r
EE
=DPo
1[E4
cLoooEE.CdgE
E5E:60
a5
-oAE
>t>g-€,t
'E,
: ;ti*fi EaI E\i c'ir Eli ,l.liEl! Or2 6lI o12 oi
tt
-o[8,Se*EF3ExLOb n:e
2flEE
E.Fe
co
!ot5EE({F
d
d
6EoE
.aEl!I.sle:6
iE,c,
iEiatg
i6-
=8l6igIA
I=iEitEtO-aqoEH>E!
TEbb?aFbDD<_s
8!Eitetol
D!E!3;oo
E
EI5
-s
d
6p
Ea-e
Eo
T!
d
i
c
E;
dE
E
EIoo
ebc
,l
g
1
+g
Eo
og
=ol:E
-so
at
{I
do56.E
'Lot. EdEr16iaE:EE: Lo
;ET:HE!r.9.,Et
? €:! €E! oEI PC2SEi E-
! 3=
= if ui aEt Be.! EiE 6E> =Ic Et3 sr;. 61ts o!
s PlU d-O r!Et -61:o Ll
= olE E'JOI 5,
@BiEIorO1
o
g:
.9'B.u :to:!iriE
t5,plu:EiE
:Q.
'JIaiE
IEix5-e
EEO-
1^PP
eE
6.a
qdddoC
aE
EE-]
O-gt
nc
4EOEQo.9()E.q
s3
8fr.taoo
adszo-
us
-g >!IE>-.d:Esfo
H**9OHEbeg
ET
?
3
atoo
Eo.E
r)
ElIo
Eo:6oeE
&
@
Ed
-b
caa
,E
6
EcE
B4*b@
la
oOG6
ooie
TB
-o!€
E€
E*
ErECro
E5{p
BuEE5d
-o(,J
6a€b'eE
E*Et
E€7i.
1ae-f
oE
6u:
4adc
oa
at
6.c:
EiO.5 c-I :II l!r
l{1Itlls(lEilo
IE,tt
I -'IEIo
l-u
IOlatql.rliTOIDleIE
idE
f,E
2b8go9E6883oaggr4
oo
EEo.+96-sI
Esr€!IolEr
.6A?
Iod6E6
E $EEBEEi @c
OqrP,roE:EEE3ElEuE eAeEsL=5Its6E5EFe.9:EEoq E--FE*
EEES;p
EE'E
EEEEoq.EE+OGs f;eFeiEir.E cBR,=P+FeEE8
=D€E.E
o?EgesC q 9E
E E E.[IE9gE; . E!E ?;E
E T Eg3 3 '8b 3 8EP 5=EE E -:;
ts;1E E E;ot'61 X! 5tE E 5.SE : EH.jEEg5g E F EeE 5 fl FE
a=q
j
26-dL
tn-
?E
EE-o
TH
!, e:ft:d
E=
lq
.Eri-oE5
3EcE8:
bgEN1Es$E
EE;
E gE
:zEn oot @--N E;, E E,E.r € U+9Z€E6 3 -EgeE E EH
EEEiE*-siEE 9 ; EE
EE ITEEiffE+EEHEE
+E E E EE
E E E gH
9 o* B;t, b P XilsEEEEEEE:agEEes
AAE'e3€E:E=
;EgIEgEEE"€
E E: TEE * E EflE E -o1E a E E5
'/D-ipr=:EE€g
E E + rEQ o o ?c!a D ?@E il _g::$EE:;T E 5 HE
E AE EEftr4'Fc)
B .IEa i E?
q1
1E E EE
EE Ht HI E*r g EEE EsE E 5-a
IEEEEEatg
IEffiE 1*I E E?EE
EfiIE E EEEE ,EE
rs*uiiEE ;EE
,EE$ EaH
EEHEIIE?EEE
:EEE ffiE- aEH
IEE;gEaffiEiEE
.J
I
o e s o c@
Fa
EoEI
6'rqgrL
(a
Eg
Et
ts
clel
s5l =BtsI ..
EEI
,l
Ef;I
-
It
xvJ ZO:II llHI I00z/I0l
G* E E A
F
d
Ecte,
{ooo&
qu9
EEEEiAE EEEEE
EeE Et ErE
E gEE
E gT Eg E;Ee eE €E Es:'* EF ;E EEE3 EgEE EE EE EI EF ,EE
E:: ETE6 (:II 6-E 4e=
= g;5
-: E 0 5d Et ob 89 Ei =-E i6E FEEE
?E AEEE
eg ElIEE 5 b; EgEE E*3.8E; EE EEa ti =-' 6-I e Ep H:qE EF-;E
IEEeEA
2 '; EE i€
f; E eE gE
5: EtaEP o. Bo :R-4
S s- gi tAE E EEE.E
E E EE -Ei
5 s g€ dForPEB;
EHi;EEE
fri:E;EE
E Eg "=3 Et
ce-
EoG
JE+
5ESQ.: E
60r
rE
EE
u
EEE
*aE@go
3E
'n*
Eo,o
a.sEile
dE
E
@E
?oC
E
@EE,tEo
c.o=e.Ig
o.E
E
Eo
d
E
E
=€E'
J=lJCa -oEEEEE
E83E
xXXE
;qSBE
E:
6E
@-EE Z-*-E
t
E
Eco
E
!
E
o
o
ECb4
Ec
d
eo
EIEoo4
.J
E
ltE
5oa
jo
Er
tt
o
o
6€
j
P
N
.H
o
acEoe
Ei.
Ei
Ee
EEEO
dEEOEZ
2a;59o6aodbg
.lt c
a=
EE63
=Q
-cJIF:
s=E
d;
o=.i+c-
EI8:
tci*E6ng:5ei
a-oo
a.F!d94oAE
!lr
R8
6
6d
t-6
*EE'
-.&
+- J Jr-r
eEcEFH$s$
I
oE
E!S=b''9Pflsa
EEi.
EE- E9r EEe !€E E$E fi
EB E
EEEtsE.r!d T+E*EE Hte :i5 qtE tpE dtrE li
E€*' i,€E Ez--3 P
EgE "E
I€i E
fE€ IE"q s
$HE Eaal C O
EEi E
$EE ;;Ee s
EEE E
Eq; Eca Eg ziE
EtE Eg
iEE EE@J -.a
EE!Gi ZEr{t- i o
;.ig E E
€ei EEZES TE
E:E €E
Ef;E Ig
i-EE =-Eli
--=
lt -E"-, E P3et aoHsE tP
EEE EE
I
IoI
rUIoa
T1'I
I
I
I
I
IEo
To(,t
rgtoo
Et
a
Go
G
I
6$
l-
z^^ ,^^^ a w.,r cr : rr l]H,T, r00zlr0ll
I{d
I
I
Ea
E
fl)
(,
o@Eo-
.c,.o
(leI
Fd
Et,
=d
E
Eo
!t
eEB5
EI
6EIdoEl
s4
I
rEo5
o
Eop
od
Ep
T
JECG
=s
b
P
oEdf
E
6
gtsHFn1 P-qEgEa8
HE€Ed=
=lG
E1Lo
=3E E
aEE4B r';685rS "o
oi I'-e c3o Pg5E--5 .Etssr
EEElr;eFB A$6?@c Ij-DEg E,a-|I -:!cb2E
6ad PQ- AEi dEE
=EH 5
EE E
[* -EEE E
gEE E5 9C 2ODE ET EP Eg igEg E': t-E E
EEi BE 53 R
5, Ei 'd
E.r: fi
E EE Eo^F:gEr hli 3s I:5- .gTzE :pq \!,B A9 tsaEi aE9s 2E 20 ;E El iE; 6E EE-g! l€ o 0AH4E50t iE "af;
; od e1!h6ADO :E6 =- EoE qg E€
E:g As $3+=5?BBE EE SE SE E-s E'
rEee *
$*gBB
to
Ge
Fs(!
E
5
I
t
I
I
t
6gg
lE
lg
tE
C.llftrBtE
Ito
lE
rU
=ts xv,{ gr: rr lrH.L r00zlr0lla^^ /*^^ llir
odoc.
E
a
f
2
f,
2 E
o!)6ER
11+diEE;Z
rl,,\2E()
ab
F
c
E
ci
6.oEFE rlaEEE
EEE
o
ano-
858
"E.+ E
EEE"
fL.
f
=A
5
E
oco
E
G
EoEc
€toEo
Et
Eto
E
a{
cn
e-
ts
p
E
It
Ex6
E
E
EIo
E
tr
Z
o
o
E
d
E
tOco
2,
.F
E
EE
B
a
.g
=E
E 6
.9
d
-fc
E
ultt
6so-=O'Pulca
o
E_G
Edoo
o
Eoo
@
6
H
E
;
b
*1EE+-<-.oIE\;enc
='o €aNE
oeE
cocI
E-*
iEsae
-oErE
EEE
€ o-R
? 6r
EEE
JOEq
u-d.e'a
iT
?r
+c,trl €
= E-f
EEE
EE-'
.t
L.
HE
EE:FeeE9_bEE8.
a[+
IEle€I --eI oEI E --I o OEI $EHI 5?.EI Eo*-
I
ag
J
rJ
€o.,
qo-se
5
EPu€
gE EEEae o_lE E eal
BgiEcEfl
a,zIF
<tzl|tGEot
q
E
3I
L'
!6
g
2o
E6€a
Eo
56a
6E
E
L.Eel-EtE$e
I EEE
oo
lt3
EEEE
E
-o
Eo
EECo
E-9
9A;E
='*OAEstgEl
iigsE
E.EE€
EucEA
-eo
t.EEeTEEE+N?*-o aEI
A EEEEi
8
$EFEE{
8s
*
Ea
E
Ht
'fEEO.e!-
6g,zula
Ib?Eoc
eooc=
CA>ooB-'- =3xEttt
R€8oro
c
Oo
EEEgg
'EEo5E-fl #E
EE::Ic9fr E
-€ H.-E
EAE E
:)h:rz.>
-zct-
p
Et
Etq
N
+{
?.?
?zd-
E
z
oE
Eo
I
EJ6U'lrlc,
(,
q
6
so6*
fr.
q
6
)
!,
o-o
?
f
qo
-. IEIElrlr I0tL-l
=
E
arl
E
rOt
fl-,tbfhePo€F
6 ddEP.t
(,
sf(J
C'
(-)
o
@fr
s
E_
E=z
;Ets
{rl#
oL6iEa]tscrE
s{
8FiIJ4dcdoEE6tQocl{{
I
b
G.o#
Eoo(no
Id
2
JrEod
o
o
4s,EI
rS
6
L
El
o
o
Iefits2.16Za9838
.ee I
ood
:)F_2.-isE9- =
3sE
ulo
e obEsI
e
#E=e
Et=Er
EB$Eg
6t)o-o
-9c,
6'+ooo+Qlll) o E
frEEE,86 *=2=c,=*OT5X Ezaah=qt
xoclttlc.
?s2-oo
=z-=14
d.
ur
u,
=1
no-
utc.3
E,ulr
Eut
llt(,2
9brLf
EEur(,
L
=,)4ro
Etur>2
EE -a
E,*
frEE
5E Eeatrsb
I
I
atr
.9
-lG,o
a-l+r'6
o
CLa
Lo*to
E(It
L-
(U
o.
t
trl
To
>a
G
oU
Fo)T,
G
E
G
@6t
G
.EJI8Is
o
tfr
T
t
I
I
I
I
I
I
so(\
o+roz,
.E
TJ
@F
G
6
ftd
Eca
R
=
xv.{ z0:9r (IJ/.looz/vz/lenn /7nn lrh
(\l
d6dd-
attIL
oL
E
cEd<
sE
gE-a
t<aEgb
:l6
o
J
d1
EEoE
ot
IAG
o
d
E.
U'o-
6
e
d
d,
d-
o
.J
E.
,^9
E?50.oo
o
1
E
E
o
Ir
E
6o-
b
E6E
EE
.E
E1
EE
E
ddo
AIE
o
b
L'a
EI
o
cE
E
aco
E
z.o
EoGo
6sccE
.ii
EJ0
t-o
E
Eo
Eoco
5ti-sE-
ho -;H?
t=b
G
$
1Gal
2
@Eco
$
Q
ocI*
o
Y
EIoo
o
a6o)c
Ert
E
6
fic
aLo
s0
c)
nEoooo6
J
E
o
B
o
u,,)zo
S'Eul 4dt-
I,
GE
_aI
g
6
e.
eo
3
silc
eoE
a
F
.Eo
ir
D
tc
z
=o
h
#g
J4.J
5sts
I+iai
J-
E+E
{+rsi
T.iEEi
!d
c
d
oDt
E
g
E
6'Es?i-.PeE-E
cE-g= EE
EE gEE E
E
o
E
o
a[tosa
LE
s
o
o
EI)a
EEItoE
g$e
€e*
€sEcBtOIE
EEE
a
@
5ro
o
E
-
C
g
o
6
d
Eo
fd
E
-o
b
o
I
o56
a,-I
{,
aDzqtc5oc,
eoo
E.o-ztE
EEE
BEE
+E€
600aoo
=
rETE
-06E€q8Eh
eE€.uEE
Eo
Bo6
Ig
g
6
Eo
3
gEIEE
gEo6g$
1E
ECtE
f,u
EE
SEiE
EE5F
t
Bz,uttl,
*et
EE.96
E-€
85"
goI4;HEq.+ aEEPiEe=
il
Et
6
E
)e1
E
ooo
E
6_6
E
ct
E
d
Pe
E
o
-It-J
du,lIld,
z)a
E
66
:@U
o-
E
E
EE
=.
E6cE
d
E.lot{
nEq
o{t
f
E
o
,H
c
8.
E
d
fl
dFEBEoe
3E@*4
flo{
ot
.IOJ:Baa*r60d{
teoq
d
d
(J1E2(,.JI
t
.B
*rE*EEgEt
Es
+r --zECJbEBTEE
- rNB9s
oE'6
E
E
Io
E
6dge
E
8
6
o
e6Io
6
r
E
oIo
fiuroz{u
z
*eo?
P6
J
6
Eooa
o
o
qa
B
Eq3fEce
E.9:e
HE
a;5
gE.E
E
6
E1
6
Bo
a6
crf
6
ll)
o
oci
Ec-1,6a
?EoE
rllto
E-i6aehdEa-
Lllllo
(,
Eru
EE
6BduI4E
!O O-
Tct
Jt-
lll^a4
=E
J
-roEo
t(,
R
:EEoEc,
=o-
ETa
E
EE1fiE
o
Fo-trt6
ulr,
h2
s
o
ut
EE2
UIo7o
dt)
v,q
C
cu
)2fE
Ei
I
Irl
G
il
.J
ffit-lt
fq
.L
I
I
I
hl-elcLlo, Iol
Eltlle. IOIhto
B
J
en
!t
dlt
@oEco
ah
=Eq
d+
B1'Cou,soo
G'?oo,
o6
I
tDo-ttolrHEo-o-otsELO
.T, E
LE'go
.DJ
tEc
sg
I
I
I
I
t
I
t
I
I
t
I
BIcl-el
EITI
E-6 |8El
EEIoc IEEIg;l
EE
E#E3
ao,
'sg
FE6E
8ElEeIEUl;ot9Et!rlsrI O_Itt
leE
lEsI -g-sIrElbe
lEsI oo-
IE€lE=lse
l€EI o6lEe
leE
IEElooI Oe
I e-E
IEEI oelea
I a-oI Ec
lEn
l9$
Ec,
E
E.
=
rv,{ to:0r asa To0z/?z
cnn /f oo lrr