Loading...
HomeMy WebLinkAboutDRC-2001-001062 - 0901a068809be203INrrnNnuoNAL UneNrutr,r (use) ConponATroN Ilrleperrclence Plaza, Suite 950 . 1050 Seventeenth Street . Denver, CO 80265 o 303 628 7798 (main) . 303 389 al25 (fax) September 8, 2000 VIA OYERNIGIIT EXPRESS Mr. William J. Sinclair Director, Division of Radiation Control Utah Department of Environmental Quality P.O. Box 144850 168 North 1950 West Salt Lake city, uT 84114-4850 Submittal of Groundwater Information Report Revision Package for the Groundwater Discharge Permit for the White Mesa Mill Dear Mr. Sinclair: The enclosed are responses by International Uranium (USA) Corporation ('IUSrr"') to the Utah Division of Radiation Control ("DRC") Request for Information Related to Site Hydrogeology dated February 7,2000. These responses constitute the revision package to the Groundwater Information Report (the "GIR") submitted by IUSA to DRC in May of 1999. This package shall be referred to as the Groundwater Information Report Revision Package (the "GIRRP"). These responses reflect refinements to the defined questions based on discussions between IUSA and DRC at a meeting at DRC offrces on April 7,2000, and a subsequent meeting on August 14, 2000. As always, I can be reached at (303) 389-4130. Vice President and General Counsel DCF:smc Enclosure Re: {'::\ I rBilg- s dvid O. Frydenlund Mr. William J. Sinclair September 8, 2000 Page2 of2 cclatti Larry Mize, UDEQ Division of Water Quality Loren Morton, UDEQ Division of Radiation Control Bill von Till, NRC cc dout att: Dianne Nielson, UDEQ Dave Arrioti, S.E. Utah Health Department t I t I t t I I T t t I I T t I I T I INrrnNeuoNAL LineNtul,t (usn) ConponATIoN Independence Plaza, Suite 950 . 1050 Seventeenth Street . Denver, CO 80265 . 303 628 7798 (main) . 303 389 4125 (fax) November 9,2001 VIA OVERNIGHT MAIL Mr. William J. Sinclair Director, Division of Radiation Control Utah Department of Environmental Quality P.O. Box 144850 168 North 1950 West salt Lake city, uT 84114-4850 Re: Update report regarding IUSA's October 4, 200 report on investigation of elevated Chloroform Concentrations in Perched Groundwater at the White Mesa Uranium Mill. Utah Division of Water Quality Notice of Violation and Groundwater Corrective Action Order; Docket No. UGW20-01. Dear Mr. Sinclair: This transmits International Uranium (USA) Corporation's ("IUSA's") Contaminant Investigation report entitled Update to Report -"Investigation of Elevated Chloroform Concentrations in Perched Groundwater at the White Mesa Uranium Mill near Blanding. Utah". This report is an update to the Contaminant Investigation Report (the "CIR") that IUSA submiued to the Utah Department of Environmental Quality ("UDEQ") on October 4,2000 (IUSA and HGC, 2000), and addresses questions raised by UDEQ's letter to IUSA in response to the CIR dated June 7, 2001. Items addressed in this report are also pursuant to a meeting between IUSA and UDEQ on October 5,2001. Please note that this report includes a recorrmendation for installing two additional temporary wells, for the purpose of additional delineation of the areas of the perched zone containing chloroform, and in the locations discussed during the meeting with UDEQ. IUSA would like to install these two additional wells during the week of I I I I I I I I T t I I I I I t I t I Mr. William J. Sinclair November 9,2001 Page2 of2 December 3, 2001, so that the wells can be sampled during the first qtarter 2002 sampling event. Should you have any questions or contments concerning this or any other part of this report, please contact me at 303.389.4131. Sincerely, Michelle R. Rehmann Environmental Manager cclatt: Larry Mize, UDEQ Division of Water Quality ,rLorenMorton, UDEQ Division of Radiation Control Ron F. Hochstein, IUSA David C. Frydenlund, IUSA Harold R. Roberts,IUSA Richard E. Bartlett, IUSA Ron E. Berg, IUSA Stewart J. Smith, Hydro Geo Chem S:\STAFFWRR\Chloroformlnvestigation\commentsonGClRreport\transmittalLtrUpdateChloroformlnvestigationReport UPDATE TO REPORT(INVESTIGATION OF' ELEVATED CHLOROFORM CONCENTRATIONS IN PERCHED GROUNDWATER AT THE WHITE MESA URANIUM MILL NEAR BLANDING, UTAH" Prepared By: INTERNATIONAL URANIUM (USA) CORPORATION Independen ce Plaza, Suite 950 I 050 Seventeenth Street Denver, CO 80265 and HYDRO GEO CHEM, INCORPORATED 5l West Wetmore Street, Suite 101 Tucson, A285705 November 9,2001 I I I I I I T I I I I I t I I 1. 2. TABLE OF CONTENTS TNTRODUCTION AND SUMMARY.............. ..............3 DNAPL ISSUES ........52.1 Vertical Profiling of Existing Perched We11s........ .................... 52.2 Potential for DNAPL to Exist in the Vadose Z,one......... ..........62.3 Evaluation of the Potential for DNAPL to Exist in the Saturated Zone.......................72.3.1 Detected Concentrations with Respect to Chloroform Solubility............. ..............72.3.2 Comparison of MW-4 to Nearby Temporary Wells ......... 102.3.3 Vertical Profiling of MW-4 .......... ll2.4 Brushy Basin Contact .......123. ADDITIONAL PLUME DELINEATION .................... 153.1 Analytical Results from Temporary Wells................ ............. 153.2 Hydraulic Gradient in the Vicinity of MW-4 ....... 163.3 Need for Additional Wells to Delineate Chloroform in the Perched 2one.................173.4 Temporal Trends in Chloroform Concentrations and Relationship to Nitrate ........... l84. COORDINATES REQUESTED By UDEQ ................205. PERCHED ZONE PERMEABILITY .......,.275.1 Permeability Distribution of the Perched Zone ......... .............215.2 Conglomeratic Zone Near MW-4............... ..........216.. ONGOING GROUNDWATER MONITORING AND REPORTING........................,...,,.237. ADDITIONAL GROUNDWATER MONITORING PARAMETERS ............257.1 Dichloromethane Analytical Results From Split Sampling........... ...........257.2 Direct Measurement of Redox Conditions in the FieId......... ...................267.3 Feasibility of Enhancing Reductive Dechlorination In-Situ...... ...............26 8. REFERENCES ............28 I 2 J 4 5 6 7 8 9 FIGURES Chloroform Analytical Results (pg\L) for Temporary Perched Wells Contour Map of Top of Brushy Basin, White Mesa Uranium Mill Site Water Level Contour Map December,2000, White Mesa Uranium Mill Site Water Level Contour Map September - October, 2001 White Mesa Uranium Mill Site Proposed Locations ofNew Temporary Perched Wells Nitrate Analytical Results (mg\L) for Temporary Perched Wells Scatterplot of Chloroforn vs. Nitrate, Temporary Perched Wells and MW-4 Perched Zone Permeability Based on Pump and Slug Tests, and Constant Head Packer Tests, White Mesa Uranium Mill Approximate Intervals of Conglomeratic Sandstone Logged in Temporary Well Borings A B C D E APPENDICES Vertical Profile Sampling Bailer Use of Soil Gas to Detect DNAPL Coordinates Requested by UDEQ Analytical Results U.S.G.S Manual Chapter 6.5 and Hydrolab Parameter Specifications I I I I I I I I I I t I I I I I I I T 1. INTRODUCTION AND SUMMARY International Uranium (USA) Corporation ("IUSA") submitted a Contaminant Investigation Report entitled "Investigation of Elevated Chloroform Concentrations in Perched Groundwater at the White Mesa Uranium Mill near Blanding, Utah" (the "CIR") to the Utah Departrnent of Environmental Quality ("UDEQ") on October 4,2000 (IUSA and HGC, 2000). This report has been prepared as an update to the CIR, IJene*rr.to IUSA Clffrm.in response to the CIR. Items addressed in this report are also pursuant to a mseting between IUSA and UDEQ on October 5,2001. This report discusses analytical results to date, trends in chloroform concentrations in the vadose or perched water zones at the site, and additional delineation of the areas of the perched zone containing chloroform. This report also discusses the potential for degradation of chloroform in the perched water and the feasibility of enhancing in-situ reductive dechlorination of chloroform. 2 Important results of the investigation to date are that: V&1*' z /oaii - >o:l etrA 5r419e7 t r^'I ,""r1*l*J t<,'1V.5 '( ltrlql tu,c Ee,pn Arr'A, ?le lh hF' 1. The data do not indicate that chloroform DNAPL exists at the site either in thi?adose zone or the perched water zone. 2) The data do not indicate that a continuing chloroform source exists. - I 4 3) Data are consistent with the abandoned scale house leach field as the source for thet. MW-4 chloroform, and for the chloroform to have entered the perched water as a "slug" over a relatively short period of time (l-2 years). 4) Additional wells are needed to delineate the chloroform plume to the west and O/c northwest of MW-4. S:\STAFF\MRR\Chloroformlnvestigation\UpdateChloroformlnvestigationReport I l_9_01 I I I I T I I t I I I I I I I I I I t 5) Rapid degradation of chloroform in the perched water is unlikely without +-- enhancement. ':* pr'rrr^ q 4 lloz r-- G to gtllya+a priJ;z nJ eyv,t.,-,n**| - b e '- tt I e*nlo f/.,t2-, Additional delineation of the chloroform in the perched water is proposed to be accomplished by adding two new temporary wells to the west and northwest of MW-4, and by vertical profile sampling in selected wells, to define the chloroform concentrations in three dimensions. Additional characterization of groundwater gradients in the northeast portion of the site, which have been changing and may affect chloroform migration in the perched water, will beaccomplishedbyphasedinstallationofpiezometers.Inaddition,ffi ffig of chloroform and will transmit such data to the UDEQ in accordance with a schedule provided herein. 4SfsTAFF\MRR\Chloroformlnvestigation\UpdateChloroformlnvestigationReport I l_9_01 T t I I I I I t I I I t I I t I I I I \ \-i.tr-lI r;s "\ E' 3 -.-$ ql { -s\ s,\\< 3 -7- < jr.., -"+ s\ 6 )' :!:--{ 6i-H{.) V\ *$ ./ --+'-a{,/ 2.DNAPL ISSUES UDEQ has expressed concern that dense, non-aqueous phase liquid (DNAPL) chloroform may exist in the vadose and perched water zones in the vicinity of MW-4 and the abandoned scale house leach field. This section uses existing soil gas and groundwater data from the site to demonstrate that DNAPL does not exist in either the vadose or perched water zones at the site, and that no evidence for continuing chloroform source exists. 2.1 Vertical Profiling of Existing Perched Wells Vr l ^h"jInitial sampling to evaluate the potential for stratification of chloroform concentrations p- pl, was conducted in the fall of l999,and reported in the CIR. As indicated in the CIR, multi-depth Xy sampling of MW-4 was conducted dwing the week of Septernber 27, lggg. Two samples were f;!!: collected, one from the top of the water column (approximat ely 70-73 feet bls) and one from the T,:* base of the water column (approximat ely ll7-120 feet bls). The shallow sample was collected 4- )J , ,L*,_ first. Both samples were collected using disposable teflon bailers. Samples were collected r,+,o-J,rL 6dg\5 without purging the well, to prevent disturbance of the water column. (,'l t t" lo 1 , ll.op,-o*"' F.B) Samples were collected in 40 ml VOA vials, with no headspace, capped, labeled, and stored in a cooler with blue ice at 4oC for shipment to the offsite analytical laboratory (Energy Laboratories, Casper, Wyoming). Ghlorofoun was detected in the shallow sample at a concentration of'6#00 pB/Lrand in the deep sample at a concentration of 5,820 pg/L. Becur.. 7 r,*^ Y concentrations did not increase with depth, the presence of DNAPL (i.e., free chloroform )J product) was not indicated in MW-4. S:\STAFRMRR\Chloroformlnvestigation\UpdateChloroformlnvestigationReport I l_9_01 l,&' I I I t T I I I t t T T I t I I I I As UDEQ has requested further evaluation of the vertical distribution of chloroform concentrations, a Sampling Plan, with the Data Quality Objective of evaluating the potential for stratification of chloroform concentrations in the Chloroform Investigation wells, will be - D).\ developed. This Sampling Plan will include the following key features: -7bmi,g Procedure to collect samples from discrete depths using disposable bailers with double check values Requirements for field records Methodology for evaluation of results ***n of the feasibility of testing experimental USGS procedure using passive diffirsionbags#,toprovidecomparisontoconventionalmethod results a - at'; This sampling will take place in th($fst quarter of 2002 Appendix A contains manufacturer specifications for disposable bailer designed to collect samples from discrete intervals in groundwater. 2.2 Potential for DNAPL to Exist in the Vadose Zone Soil gas sampling is a useful means to detect the presence of pure phase volatile organic compounds (VOC) that reside in the vadose zone. This applies to chloroform, which has a vapor pressure of 160 mm Hg. As discussed in Appendix B, soil gas concentrations in excess of l0%o of a VOC pure phase saturated vapor pressure are indicative of the presence of the pure phase. For chloroform, soil gas concentrations in excess of 100,000 pgll, would be indicative of pure phase. - )a+ L* ,,I, ,,* [*1,*,,{ ** cAA pfbF;l{, fi {lw s,-l;7 po',-l - LL il4 tcql s,rtu1 - y^+l;1 pn',.t J"ofk,'4,5 t"tt;s Ff$s r1lfl1t Vt f"t " The possibility that residual p*. br,uli cntorJrorm exists as a DNAPL*iriJX\l{g\,f#tp' vit ,n.,lTt,f 4 .^.r;du $,- il< s,,l T" srnl[u a,if,iileJ ,.11 lonl l, ril ?oo ( ,lir Ly Ap p+ {ix B , 4hllqq f Rc e"+inf , p, p\ t S:\STAFAMRR\Chloroformlnvestigaiion\UpdateChloioformlnvbstigationReport il_l_6t \ 6 d',1 Jroit,,.ltl l,;,t< Yl'* ay"" a,hr^^ J tL 5r,li Srnplil fa,\-t. , Ayh' I I I I I t I t I I I I I I I T I T I zone beneath the abandoned scale house leach field is not supported by the trace level *"ri^{' r soil gas chloroform concentrations measured in the vicinity in 1999 (<1 pgll). The measur"O #,,:r'i concentrations are indicative of low concentrations of chloroform dissolved in vadose pore waters. Furthermore, the possibility that DNAPL exists within the perched zone is not supported /"ro, by the relatively low chloroform concentrations detected at wells TW4-5 and TW4-9, which *" mL 8 '1,= ?qrh''- 7 ** the temporary wells located closest to the leach field (Figure l). t ",*"; 2.3 Evaluation of the Potential for DNAPL to Exist in the Saturated Zone r, r\ ^1.,,^,,n1< u*plnrt;- r**,,b^ {Lu* lou' co-c's ot* J'* +'ll:ry:.i)'Ii*l;* vaJrs< hrryi''1 tr'''"''" ;- ", ..^.. f 6 'psid*l cr fia-pLs* Dl*pL ") dr Lf;-- r.* .l;r4r, lr^rrg*- ?4'.1,0'i 7 ''o';t t- ps'l^"1 t' 11'*-pL ac/rla t4'q+ lan'f dntn^q *, +" pl, p"#*'* za>e The possibility that chloroform DNAPL may exist in the perched zone beneath the abandoned scale house leach field and/or may traveled downgradient along the Brushy Basin contact toward MW-4 is remote. This possibility is not supported by data collected from the Jl -!t/\A= temporaryperchedwellsatthesiteorfromMw-4. - 5bffr,..hL, ':!,Yi:! T,/ltr+u\tt /111,-4 -, ^-f ,1",*S dole*.,1L 5r 'i hbn/trQ 2.3.1 Detected Concentrations with Resoect to Chloroform Solubility I , , , i -lrolNh""I4 Perched water chloroform concentrations exceed ing trYaof the solubility of chloroform (8,000-101000 mg{) would have to exist to indicate the presence of DNAPL (Cohen and Mercer, 1993). The highest groundwater concentrations detected at the site (<7 mgtL) are more than 3 orders of magnitude lower than the solubility of chloroform. While the solubility of chloroform in the perched water may be slightly depressed by the presence of trace concentrations of carbon tetrachloride (500 mglL dissolved in the pure chloroform used in the ore assay lab as suggested in UDEQ's June 7, 2001 letter to IUSA) and by the presence of inorganic solutes in the perched water, as detailed below, it can be demonstrated that this depression is not significant. SlsTAFRMRR\Chloroformlnvestigation\UpdateChloroformlnvestigationReport 1 l_9_01 T t I I I I I I T I I I I I I I T t T The effoet of 500 nrg/l corbon tetrachloride contaminant or'd$ solt$ility of chlorcfornr used at the site \uouffi.,bs"fiq!*igibb, potentially h*,sering the 'soltrbitrty bV less than 0,05.0*, ry because the mole fraction of carbon tetrachloride in the mixture would be less than 0.05Yo. The presence of significant concentrations of other solvents in perched groundwater near MW-4, which could potentially lower the solubility of chloroform, is not supported by past analytical results. Furthermore, as detailed below, the impact of salinity on chloroform solubility, which will depend on the concentrations of salts in the water, is also not significant. The solubility of a neutral organic compound such as chloroform in water containing dissolved inorganic salts is generally lowered as the concentration of the inorganic salts increases (Schwarzenbach, 1993; Garrels and Chdst, 1965; and Harned and Owen, 1950). The depression of solubility is generally not significant, unless the concentration of the salts is greater than about 0.1 molar (M). At MW-4, the dominant anion is sulfate, which averages approximately 2,000 tu,1 mg/I, or 0.021M, based on data presented in TITAN, 1994. The average concentrations of chloride, sodium, calcium, and potassium ions average approximatrfy O.f,O7r: M, O.(trM, Cqk 0.010M, and 0.0003M, respectively, at MW-4. These concentrations are too low to have a significant effect on the solubility of chloroform in the perched water, t*g-*f:arqrlg_plgpllry by a few p-,elqant. Even in seawater, where salt concentrations are orders of magnitude higher than in the perched water, the depression of solubility of neutral organic compounds is typically 4- less than a factor of 2 (Schwarzenbach,1993). Schwarzenbach, 1993, provides a methodology for estimating the impact of salinity on the solubility of neutral organic compounds. Salting constants (Kr) for various types of salts are provided, with the highest that of sodium sulfate (K, : 0.55). Using the formula provided in Schwarzenbach, S:\STAFF\MRR\Chloroformlnvestigation\UpdateChloroformlnvestigationReport I l_9_01 I I I I I I I I I I I I I I I I I I I CIl,,,, - 19-K*lmttl, gsat where CIi*r: solubility of neutral organic compound in salty water, K. : salting constant, C';' : solubility of neutral organic compound in pure water, and assuming that Kr:0.55, and [salt] : 1SO+J :0.021M, the solubility of chloroform in perched water is calculated as 0.975 Cf' or 97.5Yo of the solubility in pure water, a reduction in solubility of less than3%o. The actual reduction in solubility is likely to be lower for chloroform, however, because the salting-out effect is lower for polar organic compounds (Schwarzenbach, 1993). ,Besrso dooef.orm is wlccilhsf polr, wing to it's.asymmetry, which accounts for it's high solubility (10 times that of carbon tetrachloride, which is non-polar), &pffi*,@eoion ofphlorsfum*. Wlr&iliry in Bff.sbed wdq,io likely, &'be less thffi 2,5Vo. Because the estimated reduction in " /' chloroform solubility is so small, and is nearly an order of magnitude lower than typical laboratory analytical error of + 20Yo, the effect of perched water salinity on the solubility of chloroform can be ignored. Furthermore, the assumption that DNAPL is not indicated unless dissolved groundwater concentrations greater than l%o of the solubility of the pure product are detected (Cohen and Mercer, 1993) is considered reliable because the lowering of solubility by other factors such as the presence of other solvents, is taken into account in this assumption. 7 S:\STAFAMRR\Chloroformlnvestigation\UpdateChloroformlnvestigationReport I l_9_01 I I t I I T I t I I I T I I I T I I I 2.3.2 Comparison of MW-4 to Nearb), Tempora{v Wells Chloroform concentrations in the past have been higher at MW-4 in comparison with nearby temporary wells, although these differences have been slight in recent sampling events. The differences do not indicate DNAPL that may be present at MW-4 or that these differences result from well construction factors, possibilities suggested in UDEQ's Jtrne 7, 2001 letter. Recently measured chloroform concentrations at MW-4 are not significantly higher than at nearby temporary wells. Concentrations at TW4-l and TW4-2, located immediately downgradient and upgradient, respectively, of MW-4, are within approximate ry {N ana tfro, respectively, of concentrations at MW-4 as of the June 2001 sampling (Figure l). Concentrations at MW4 are within (* orconcentrations at TW4-2 in the September ,2001 'CLGn,l*r sampling. (Concentrations betWeen MW4 and ltlf;fi* cannot be compared fu*a{uptcrfule SeOl sampling because the TW4-t is #"{** rnrp*mn$. Th^ese results guggest that differences in concentrations are more likely the r/r, ^ r"tr\ r"/-/Lf-* ? result of recover! than well construction factors or the potential presence of DNAPL at MW-4 as suggested by UDEQ. Differences in concentration between MW-4 and nearby temporary wells - Ya,i htb -4 would be expected to be much larger if DNAPL were present near MW-4. The slightly lower ,rilvce concentrations at the nearby temporary wells, and the reduction in the differences in nearby ry temporary wells relative to MW-4 over time are consistent with recovery of temporary wells I from the air rotary drilling process (as discussed in Section 3). In other words, the reason that a*\ l 1r2', i\ {' MW-4 has had the highest concentrations is more likely due to its age rather than construction. Furthermore, it is highly unlikely that chloroform DNAPL could have migrated more than 1,200 feet from the source area (the abandoned scale house leach field) to the vicinity of MW-4. The Buno Canyon/Brushy Basin contact is an erosional surface with numerous small- S:\STAFF\MRR\Chloroformlnvestigation\UpdateChloroformlnvestigationReport I l_9_01 l0 I I I I T t I I I t I I I I I I I I t Assuming the following conditions, 1l'b\ I , q|s at *{o;#1{*0"*o reach nerd: 20 reet I -- L'' A {- , Average saturated thickness : 30 feet (conservative) -- I !: . o,0l(, t , fu4 --521,sn4 y', i;:[E:iffi1ff:;Xff:;io: ?iJf#-l d"7 h -52t ruoa, ?\rfi = =o r',{'^';,1.'Y Approximately 520,000 gallons of perched water have passed beneaih the leach field ovefitd- ' past 20 years. (The average hydraulic conductivit, *:*trj_"*."*rrXf,t}lril,fyl,rt1rl.*^"g,*, Mw-4 in 1999, which yielded a transmissivity of 38'A ft' laay. oiviailrg this Av tn"o"kfi#a( v' t"'! scale irregularities that would prevent movement of any DNAPL very far from the source area. Even if small scale inegularities did not prevent the movement, the farther the DNAPL moved from the source area, the more spread out it would become, exposing more surface area to the groundwater and making it easier to dissolve. Also, it can be demonstrated that more than sufficient volume of water has passed beneath the abandoned leach field source area to have dissolved all of the chloroform potentially disposed there. thickness of the perched zone at that time, approximately 4,0 feet based on a depth to the Brushy -ak,Prr,Jctg o yir,l*'rntr, rL,rl , *yler3r 4r I k-a Basin o!08 f.gll} depicted in the geophydical log of MW-4, yields an average hydraulic b conductivity of I fooVday.) Assuming a solubility of chloroform of 8,000 mg/I, or S '>< tOi ) ^Ao-t gallon chloroform/gallon water, sufficient perched water has flowed beneath the source area to 1 trU4l )@'' have dissolved more than 10 times the amount potentially used in the ore assay laboratory. t u>"' i m ' -*'; 2.3.3 Vertical Profilins of MW-4 As stated above under 2.1, previous vertical profile sampling of MW4 in 1999 did not ) a A f: indicate that concentrations increased with depth, as would be expected if DNAPL existed ,"* \ P,{o r".-,] ( Mw-4. qle- p^Llu^ bf tttL-l ucti d- 1 , k*'t lQho,^ fp-+"l p*ft;f ,u\ " t,^,',0 S:\STAFRMRR\Chloroformlnvestigation\UpdateChloroformlnvebtigationR"po.tii_l_Ol I 'vt\ ) ll I I I I I I I I I I I t I I I I I I I Samples were collected from depths of approximately 7l feet bls (approximately 2 feet below the top of the water column) and from near the base of the well (approximately 118 feet bls) using a disposable bailer. The shallow sample was collected first, then the deep sample. If chloroform DNAPL were present at the base of the well, concentrations would be expected to be significantly higher there than at the top of the water column. Instead, sampling results showed no significant difference in concentration between the deep and shallow samples. Chloroform was detected at a concentration of 6,200 pglL in the shallow sample and a concentration of 5820 5,280 pgll, in the deep sample. More rigorous vertical profile sampling of MW-4 is proposed to characterize the vertical O/t distribution of chloroform concentrations at the site as discussed above in Section 2.1. Brushy Basin Contact ry'*'*t.( UDEQ has expressed concern that the Brushy Basin contact at MW4 may be depressed and may harbor a pool of chloroform DNAPL. This concern is based on a reported contact depth of 125 ft below land surface (bls) at MW-4. However, the Brushy Basin contact at MW4 is considered to be at a depth of 108 ft bls based on lithologic logs of nearby temporary wells TW4- U -+ n +*.*'.--'t-l<4\ ,r'o'I*+"'+ 'L J'-t- ''- t-t l. . t,,^,itro :a?tLta- O^l"L1 a^' "-- PPI)'k"# fze " lr{k |,TW4-2,TW4-7 and TW4-8, and on the,geophysical log for MW4 provided in TITAN, 1994. {-, p^*L/,,,.+ L* b} hrl- \e-op}"vs* I 4 d l/lLlr7v The geophysical log for Mw-4 ffirWo'?-rrro* , tgg4, depicts the Burro CanyonlBrushy Basin contact at 108 ft bls. This depth is consistent with the lithologic logs of nearby temporary perched monitoring wells TW4-l,TW4-2,TW4-7, and TW-4-8, which depict the contact at approximately 103 ft, 105 ft, 98 ft, and 105 ft bls, respectively. This would place the base of the screened interval of MW-4, which extends to Il2 ft bls, approximately 4 feet below the contact. S:\STAFF\MRR\Chloroformlnvestigation\UpdateChloroformlnvestigationReport I l_9_01 t2 t I t I I t I t I I t I I I I I I I t The 125 foot depth that has been previously reported for the Brushy Basin at MW-4 is fo-..' apparently based on the well completion diagram provided in TITAN, 1994, which depicts a contact between "sandstone" and "claystone" at 125 ft bls. However, no additional lithologic information is provided to indicate whether the "sandstone" is continuous from the surface to 125 ft bls, or whether the "sandstone" is a lens or layer encountered within the Brushy Basin. The formation names are also not designated on the diagram. -+ - ** \"1 So^ bn 5 r'^)"^ "-1Vn1*('j/ ' a^i?;*"v* 'T1-') { -5 ' During drilling of temporary wells TW4-3 and TW4-7, the borings were extended into the Brushy Basin to characterize the lithology of the uppermost portion of the formation. Thin layers or lenses of sandstone and/or conglomeratic sandstone were found at a depth of approximately 108-l 12 ft bls in TW4-7, 10 feet below the Brushy Basin contact, and depths of approximately 125-132 ft bls in TW4-3, 25 feet below the contact. These lenses or layers in the Brushy Basin were separated from the base of the Burro Canyon by shales, siltstones and claystones. These low permeability materials would hydraulically isolate the lenses or layers of sandy/conglomeratic material within the Brushy Basin from the Burro Canyon. Therefore, any DNAPL potentially present near MW-4 would be expected to enter the well screen, and to raise the measured chloroform concentrations at MW4 nearer the solubility With regard to the geophysical log of MW-4, there is a clear response in the natural /1qq P" I'n{ garnma at 108 ft bls. This response is also consistent with the natural garnma response at the b^{1., Brushy Basin contact as depicted in other geophysical logs at the site and is consistent with the d'l fL lithology logged at nearby temporary wells. Because the geophysical log depicts the Brushy r'" \rf t Basin contact at 108 ft bls in MW-4 and because this is consistent with lithologic logs of nearby temporary wells, the 108 foot depth is considered reliable. c{ry' ua-a b*fL &{" WI hrsL lr- il *-,\ 5-t , ti S1sTAFF\MRR\Chloroformlnvestigation\UpdateChloroformlnvestigationReport I l_9_01 13 q,t, I T t I t T I I I I T t I I t I I t I eluJl'* t .].:, tI t of chloroform (8,000-10,000 mg/l). Because the measured concentrations of chloroform at MW- h'l NIL uxl\o:t 4 are more than 3 orders of magnitude lower than the solubility, no DNAPL is indicated. Furthermore, if DNAPL were present near MW-4, concentrations should be at least one to two -r-/i; orders of magnitude higher that at TW4-1, T&4-zand TW4-4, rather that only 5o/o, l9%o,-and, g,:: €{!2 F< !-I P,*rY+ i I F. po+a111a- ,1p f*. *,,' AryL P u*, 4SYohigher as of the June, 2001 sampling. Installation of an exploratory boring near MW-4 as suggested by UDEQ to characterize the contact is not considered necessary based on the geophysical log of MW-4 provided in TITAN, 1994, the lithologic logs of nearby temporary wells, and the lack of evidence for DNAPL in the analytical data. The depth to Brushy Basin of 108 feet bls depicted on the geophysical log of MW-4 is consistent with the depths provided in the nearby lithologic logs and is considered reliable. A contour map of the top of the Brushy Basin, using the 108 ft depth at MW-4, is provided in Figure 2. S:\STAFF\MRR\Chloroformlnvestigation\UpdateChloroformlnvestigationReport I l_9_01 t4 I I I I I I I I I I t I I I I I I I I 3.1 3. ADDITIONAL PLUME DELINEATION UDEQ has expressed concern that more temporary perched wells are needed to define the extent of chloroform in the perched water, and that piezometers are needed in the northeast portion of the site to better define changing water level gradients and to identifr sources of recharge. This section discussed the distribution of chloroform in the perched water both spatially and temporally, the need for new temporary wells to the west and northwest of MW-4 based on observed trends in the chloroform data, and the relationship of chloroform to nitrate which is consistent with a leach field origin. Analytical Results from Temporary Wells The increases in concentratioa"detected in most of the temporary we*tuafter installation are most likely related to recovery of concentratione.,that were lowered as a result of the air rotary drilling method, and the generally long recovery times expected when wells are installed in low permeability formations. Temporary wells located downgradient (south) of MW4 are affected by both the recovery process and by continued southerly migration of the chloroform Chloroform analytical results for MW-4 and temporary wells are shown in Figure l. The chloroform plume is bgunped to the south (downgradient) by non-detect results at TW4-6, O/< although the rece6. [k':i"of 3.p pglt, chloroform, at TW4-6 may indicate arrival of G1 , 4o_ t,it/ot arzc g*yk t a,5 ^-rl<chloroform at that well. The upgradient weil (TW4-5) and lateral *6tts gW4-7 'and TY.4-g C$. q*, show chloroform concentrations in excess of 100 pgll,, although concentrations at tt.r" *.f, y = Iov.+ 4 are much lower than at MW-4, TW4-l and TW4-2 )w'< 4 ' ,[* A)9. ?) fh,'. t'< €.ilp"-- laR t/. rn r, SIsTAFAMRR\Chloroformlnvestigation\UpdateChloroformlnvestigationReport I l_9_01 l5 I I I I t I I t I I t t I I I I I I I plume. These and other temporal trends will be discussed further in Section 3.5. IUSA will continue to monitor and report results to the UDEQ. 3.2 Hydraulic Gradient in the Vicinity of MW4 The hydraulic gradient in the vicinity of MW-4 has historically been to the south (IUSA and HGC, 2000). Recent water level contour maps are provided in Figures 3 and 4. The change in water levels and change in hydraulic gradient to a more westerly direction oL in the vicinity of the abandoned leach field are recent, and the direction of the hydraulic gradient during most of the period of migration of the plume was southerly. A southerly gradient still exists near MW-4 md at the downgradient edge of the plume. The recently detected more westerly hydraulic gradient near the scale house leach field is of no concern unless a residual a:ll:o+ chloroform source is present, but the assumption of a residual source is not supported by any $ :X'ff, "-J"pithe soil gas or groundwater data collected to date. IUSA plans to install piezometers, in a phased r._t+ & J-l fashion, in the northeast portion of the site to further investigate the increase in water levels *rO t;ild change in hydraulic gradient. This work will be described in a report to UDEQ due on y November 16,2001. The water level map provided by UDEQ in their June 7, 2001 letter to IUSA indicates a concern as to whether or not there may be a possible groundwater mound near MW-4. . t + ,-v l,c"'.',J*,{ /rao1 5, (r.- f,> I.*-n.r,+ ;* r'u ) ??'t /"16C hryl- u' e I This feature is likely n{umound but the result of locally semi-confined conditions G'l n related to the stratigraphy of the perched zone. This type of feature is common in water table ff;ll' ,-!l4('e 2r\ aquifers even where the hosting lithology consists of unconsolidated layered sands and gravel. i 'f i 4 raa 1a,,, S:\STAFRMRR\Chloroformlnvestigation\UpdateChloroformlnvestigationReport I l_9_01 16 I T I I I I I I I I I I I I T I I I I 3.3 with local interbeds of silt and clay. These small-scale fluctuations in the regional flow field can be ignored when considering the large scale flow of groundwater and transport of solutes. Need for Additional Wells to Delineate Chloroform in the PerchedZone The vertical dimension of the chloroform in perched water will be addressed by vertical profile sampling as discussed in Section2.l. The lateral dimension of the plume is defined in large part by the existing temporary well network but further delineation is likely needed to the west and northwest of MW-4. Additional downgradient delineation may be needed in the future as the plume continues to move to the south. UDEQ provided a chloroform isoconcentration map in its June 7, 2001 letter to IUSA. While this map indicates that further lateral delineation of the plume is needed, to the west and northwest of MW-4, the chloroform isoconcentration map prepared by UDEQ displays anumber of, features that are not hydrogeologically reasonable. These features are related to: I e/l l) Non-uniform distribution of input data leading to unavoidable errors in computer aJz gridding and contouring unless specific measures are taken to counteract them, 2) The impossibility of providing hydrogeologic input to the computer gridding and q-L contouring algorithm such &S, for example, hislo{cal groundwater gradient information, and 3) The assignment of detectable chloroform concentrations to downgradient wells that g' have always been non-detect for chloroform Someofthe@displayedinthemapincludethefollowing: 1) The depicted plume extends farther cross-gradient and up-gradient than down- OL gradient which is not hydrogeologically reasonable. SISTAFRMRR\ChIoroformlnvestigation\UpdateChloroformlnvestigationReport I l_9_01 t7 I I I I I I I I I I t I I t I T T I I The detectable chloroform isoconcentration contours extend up to and beyond wells d. that have always been non-detect for chloroform, which is not hydrogeologically reasonable. "Bulls eye" features occur that are related to the non-uniform distribution of data, - t choice oi gridding parameters, and unavoidable limitations of the gridding and o k contouring package. There is no hydrogeologic mechanism that can result in such features. ? Unless chloroform is actually detected at the do@adient wells, the downgradient edge of the plume will always be at or just Ey1ind these same wells that are non- detect for chloroform, resulting in a plume whose extent is time independent. This is not hydrogeologically reasonable unless a steady-state condition has been reached. the map, and the assignment of detectable chloroform concentrations to wells that have been L uu ar*tJ L*-e art)f,<d u*c\ o.A tlz n[L. non-detect for chloroform. IUSA proposes to install ti'r rrrrnts-trrrfrrutftnur*rr rr.rtffi+-afihlyrltLdi-N0i*r'4r as shown in Figure 5, t to the west and northwest where control is poor. Additional wells to the east and south may be considered at alater time based on the results of continued monitoring at the site. 3.4 Temporal Trends in Chloroform Concentrations and Relationship to Nitrate Figure I shows the chloroform concentrations over time measured in MW-4 and temporary wells near MW-4. As discussed in section 3.1, initial increases in most of the temporary wells are likely related to recovery from the drilling process which used primarily air as a drilling fluid, and small amounts of water as needed to maintain circulation. Increases at wells upgradient (noth) of MW4 are most likely due to recovery alone, while downgradient 2) 3) 4) The apparent northwest trend in the isoconcentration contours in the map produced by uDEe is an artifact resulting partly from the weil dffi'*":{ #";fthwest of MW-4, and partly from the non-uniform airtriUUti#illutu, the lack of hydrogeologic input in producing'a! q'4 y'-or S:\STAFRMRR\Chloroformlnvestigation\UpdateChloroformlnvestigationReport I l_9_01 l8 I I T I I T I I I I T I I I I I I T I ffi:(" hqr, bf \' wells (south of MW-4) are expected to respond to both recovery and continued downgradient (southerly) plume movement. For example, the rapid increase in concentration at TW4-l after installation could not likely have resulted from recovery alone, but must also have resulted from movement of the leading edge of the plume past that well. Increases in concentration from non- detect to 3,200 VglL at TW4-4 are also likely to have resulted primari[y from continued plume movement to the south. cr:{ffii, i"yu*'lnrF*\ '7r^ r',o / J Concentrations at upgradient *.U, -rwt+ , t*#-g, *ra r#q-s have stabilized o) ir, *, decreased after the initial increase related ,";o. concentrations at lateral wefls r,[f;'i1or n -_ry._. .":':- ":"--'" :,- - -" _-'. .:'.:-,1'_:': ,,-: "::..'#T and TW+-9 are stabilizing. These trends are consistent with the initial interpretation of a "sluq" \_ of chloroform entering the perched water over a relatively short period of time (l-2 years) and L,+" migrating downgradient toward MW-4, TW4-1, and TW4-4. The width of the plume near MW- :fl: 4 will be addressed by the installation of trvo new temporary wells to the west and northwest of a* I I u MW4. ./ " J.l s*cei-"'a-* ar Tb1-5 pLvS L^ b CFd- '4Figure 6F u plot of nitrate'concentrations over time at MW-4 and the 16"fr ./ 4 ,.1r4*cF_cntc' +!i; '-"J'.1 s*rnpl-..* ,+?iq:g ,l'nS L^ by 1 ,t; \- Nozrn l*], {";;ff weils. t) *floz- co-pl.* 6* r-J t "1 "o ll There is a cledr correlation between chloroform and nitrate concentrations which is consistent with a leach field origin. *igup+ is acmrfiq*eto of chloroform vs. nitrate through the June, 2001 sampling, which nhrr*o,efour#km. 4 4,-,, cortttro*r^.,t p- ffith',fro6 s'*pl( J4* *'/ 1p"on'&i -- D llc p}h ;L",*, 4- y< ./(';,8 T-78 SlsTAFRMRR\Chloroformlnvestigation\UpdateChloroformlnvestigationReport I l_9_01 19 t I I I I T I I I I t I I I T I I I T 4. COORDINATES REQUESTED BY UDEQ A copy of estimated coordinates for the following locations was previously transmitted to UDEQ on September 7,2001, and was provided during the meeting on October 5. They are also provided in this report irSpp.ndE!. ,/. Former mill office building sanitary leach field, t ,/. Former mill office building laboratory wastewater holding tank and pipeline to Evaporation Cell l. 4 Former office trash disposal area 20S:\STAFF\MRR\Chloroformlnvestigation\UpdateChloroformlnvestigationReport I l_9_01 T I T I I T I T I I t T I I I I I I t PERCHED ZONE PERMEABILITY UDEQ has expressed concern about the permeabilities derived from the hydraulic tests at MW-4, and whether chloroform could have migrated from the abandoned scale house leach field to MW-4, and whether chloroform could have migrated from the abandoned scale house leach field to MW-4 via conglomeratic materials logged in temporary wells at the site, as suggested in the CIR. This section discussed the results of hydraulic testing at MW-4, the probable coincidence of a high permeability zone evident in the MW-4 test data with conglomeratic materials logged in nearby temporary wells, and the likelihood that these conglomeratic materials influence the flow of perched water and transport of chloroform near MW-4. 5.1 Permeability Distribution of the Perched Zone An updated perched zone penneability map is provided in Figure 8. The permeabilities plotted on the map are based on the results of pump and slug tests where available, or on constantheadpackertestswithintheperchedzone.W1wereusedwher",;"-j.; available, except the value plotted for MW4 (3.5 x lOa cm/s), which was based s1 u'lu1o"5'' ^ /- L- Ek pu^ f +e^r ('o,s ,1,1 ,2,Dip^> *-) | transmissivity of ng/tll*measured during a 1999 pump test by HGC. The sanrated thiskness - i b-/ at that time was calculated as 39 feat assuming a Brushy Basin contact at 108 ft bls. A detailed discussion of tests at MW-4 will be provided in a report to UDEQ due on November 16. 5.2 ConglomeraticZone Near MW4 Varying thicknesses of conglomeratic material are present below the water table in all temporary wells north of TW4-l (Figure 9). The base of this zone is approximately 95 feet bls in TW4-1, and TW4-2, and approximately 88 ft bls in TW4-7. A higher permeability zone with a base at a depth of approximately 95 feet below top of casing (btoc) is evident in the drawdown data collected during a pump test by Peel at MW-4 in 1992 (UMETCO, 1994). During the first tLrr^ p"^ptal ". ik S:\STAFRMRR\Chloroformlnvestigation\UpdateChloroformlnvestigationReport ll-9-01 ol ?!q) pwt F,fr*rT' 2l rq\Et, N\l-rl"\{: tal ,l{ 3t,F \,;..(-t-t) +.j' '$ *5 $.-! \- t\' t T T I T I t t I t I T t I I I I t T 7,,l /. ?c lt*OZ1 <f" J+bno - | J, J v I ql,b 2- tl- b^ P I\.-r, 3 hours of pumping at a constant rate of 0.46 gpm, only about 2 % ffet of drawdown was ^$ rii l N \lmeasureo. Then, as water levels dropped below approximat"ly eS4."t btoc, the rate of tl- it\ i \a'u*down ]ffiffi :rit"x' f #'iHl fl ',:-'l;'fr '#H; ffi Hli'J-" ;";:'nducted at 0.g2dm, except that the break in slope occurred in about half the time. This behavior is F"a l consistent with dewatering of a higher permeabili ty zonehaving a base at 95 feet btoc near MW-I 4 at about 3 hours into the test. This sone most likely coincides .rvith the conglomeratis zonq, - /'o I 6"ft' Iog€Bd.at nearby temporary wells. Because this conglomeratic zone is present below the water Hil table at all wells north (upgradient) of TW4-1, and has a relatively high permeability based on x -12' the pump tests at MW-4, it likely influences the flow of the perched water, and therefore the transport of chloroform, in the vicinity. Furthermore, the least productive temporary wells at the site, TW4-4 and TW4-6, have very thin conglomeratic zones that are located above the water table where they cannot at present affect the movement of perched water at the site. A detailed discussion of tests at MW-4 and interpretation of results will be provided in a report to UDEQ due November 16. I rJ \t JoL^6^1 l'^t*/rr. , (x ,.E/ _ bar r,r^*^,r:;,r, , ,/ ,. ^ /^_*I..tLT**t'\{ ar''< v'*1"'" -cu^i [& q +\a,fi-"1 orL k{l;, 10M(, S:\STAFAMRR\Chloroformlnvestigation\UpdateChloroformlnvestigationReport I l_9_01 22 I I I I I I I I I I I I I I I I I I T 6. ONGOING GROT]NDWATER MONITORING AND REPORTING ) As stated in Section 5.1 of the CIR, the sampling results to date indicate that elevated ulLy' chloroform concentrations are confined to a relatively narrow zone. Elevated chloroform concentrations have not moved significantly downgradient of TW4 -4. - 9lL- To ensure that samples collected from the temporary wells are representative of the perched groundwater, continued monitoring has been performed on a quarterly basis in the temporary wells (TWs) and in MW-4. Measurements have included depth to water, elgctrical conductiv$r, terngerature,!I1, and chloroQry_c_g4gertLgg[ion.Nigetg-has also been me4_sured_in temporary wells TW{_-I, T-W4-3? and TW4-4. Continued potential movement of the elevated chloroform concentrations is being monitored using the new temporary wells, TW 4-4 and TW 4-6 located downgradient of TW 4-1. Also, based on hydraulic conductivity estimates at MW-4, and the magnitude of the groundwater gradient, the travel times can be used to estimate the effective porosity of the perched zone in thisvicinity t lrlJ * +r S*r k lil + IUSA will continue to collect chloroform data for all of the wells involved in the chloroform investigation, including well MW-4, all the existing TW-4 series wells, ad all funuo monitoring wells that are installed to delineate the arm of,ohlorof,ornr contamination. Table 1 is a summary of data collected to date from the TW-4 series wells. Qla$erly. ml5ruioal'rcwtte which were not preciously transmitted to UDEQ in split sampling data 'L S:\STAFRMRR\Chloroformlnvestigation\UpdateChloroformlnvestigationReport I l_9_01 Z) I I I I I t I T I I I I t I t I I I I packages for data collected since the transmittal of the CIR to the present Aff.ndhFD" To ensure adequate time for sample analysis, laboratory data validation, IUSA data validation, and reporting, IUSA proposes to submit the data, together with the quarterly summary report, to UDEQ in accordance with the following schedule: Ouarter Submittal Due Date January - March May 30 t5 Jt s l,Jnn,t|^* *1'*"*");* {l'*- t l+l' -D lLC /e {</- -> f br,J-z 6 o &7, Ao lo'^^n**^'J [lL.v// April - June August 30 July - September November 30 October - December February 30 SlsTAFRMRR\Chloroformlnvestigation\UpdateChloroformlnvestigationReport I l_9_01 24 t I T t I I l, l* I I I I t I I I I I t 7. ADDITIONALGROT]NDWATERMONITORINGPARAMETERS The primary purpose for measuring additional groundwater parameters within and near the chloroform plume should be to establish the likelihood that chloroform is degrading naturally (either chemically or biologically) within the perched water. The is for chlorine atoms to be successively replaced by hydrogen under tL 'f,hffiwill degrade to its ffi, ffi under these conditions, and may ultimately degrade to methane. The presence or absence of DCM would - 7 u' tt'+- help establish whether or not this process is occurring at a significant rate. -o t'nrJ to "o^;E^ A& i The presence of nitrate concentrations in the perched water near MW-4 that are generally Noz ,*1* higher than the chloroform concentrations, however, indicates that groundwater conditions are or!,j;. not presently favorable for this process. Under conditions favorable for reductive dechlorination, WJ;A ofu P, nitrate will also be expected to degrade, and at a higher rate than chloroform. For this reason, existing analytical data provides an indirect estimate of redox conditions, which do not appear favorable for reductive chlorination. 7.1 Dichloromethane Analytical Results From Split Sampling n Previous split sampling analytical results indicate that DCM is not present in perched 2onn water near MW-4 at detectable concentrations (l pgfD.This is consistent with conditions that Y bEaare not favorable for reductive dechlorination of chloroform. to */' SlsTAFRMRR\Chloroformlnvestigation\UpdateChloroformlnvestigationReport I l_9_01 25 I I I I I t I I I I I I I I I I I I I 7.2 + /- /'rl*'4' Direct Measurement of Redox conditions in the*ietd / '^*'ff hW At UDEQ's request, IUSA had evaluated the feasibility of obtaining relatively reliable measurements of reduction-oxidation potential (redox, or ORP) for groundwater, using field instruments. As described in the U.S.G.S. Field Manual, Chapter 6.5, in contrast to other field mesaurements, the determination of redox "should not be considered a routine measurement" and is "not recommended in general because of the difficulties inherent in its theoretical concept and its practical measurement" (see Appendix D). The U.S.G.S. notes that "Eh measurement may show qualitative trends, but generally cannot be interpreted as equilibrium values". Hydrolab Corporation, the supplier of the Hydrolab Surveyor 4a Instrument currently being used at the Mill for field measurement of pH, temperature, and electrical conductivity in groundwater, has indicated that the instrument's available redox electrode, which can be retrofitted to the Mill's instrument, has somewhat improved capability of measuring redox, as compared with earlier models. Hydrolab's Tech Note 204 listing parameter specifications is included in Appendix D. Response time is not specified on Tech Note 204, and IUSA will need to establish -*l-- 7v^ a procedure to determine at what point the redox value would be selected. Also, to avoid Pr*v potential exposure to quinhydrone, the Mill would use Zobell solution to calibrate the new redox electrode, after it has been added to the instrument . -->pf""^ w" )\ 7't ( ;"^ / e'r%lf fh ' ' *;' 7.3 Feasibility of Enhancing Reductive Dechlorination In-Situ Reductive dechlorination can be enhanced in-situ by adding substances such as hydrogen release compound, or substances that accomplish the same purpose such as molasses or ethyl alcohol, which release hydrogen during fermentation (Odom, Martin J et al, 1995), and mixing STsTAFRMRR\Chloroformlnvestigation\UpdateChloroformlnvestigationReport I l_9_01 26 I I I I I I I T I I I I I I t T t I I them with the perched water. The mixing process will be facilitated at the site because temporary wells currently exist along almost the entire extent of the chloroform plume, with a number of wells completed in that portion of the plume with the highest chloroform concentrations. Existing data indicate that this process will be feasible, however additional data will be collected prior to making a final determination of the feasibilrty and developing a work plan for implementation. ( N*J * *n,,f, tJr{; '*'i"1 Pl"^ d JT|-'A''7 fl* co'-F,-".J**- ,t^4eQ* /{ S:\STAFRMRR\Chloroformlnvestigation\UpdateChloroformlnvestigationReport I l_9_01 27 .9x o -oG E o o -9 ooo@ F- t >bXq)<Ng5tra(Uqao oo ilil(/) <t2= s * = N INo) az U)z az (r)z U)z ot-it_ @ o(o (o- tt oo (f) (o oo (f)- rr) t- (f, oi I-t-d No oi I E oC! Io@ c!s @@ az az Ns !{. o) (f) q (f)\t o)lr)o)o o lr) o I =F l.()N Ilr) @ oq 6l U)z az No t-o (o-o@ o@ ci o o * oN Io@ (oloN (o (o az az @o)(o riF @(o t-sF- oo ooN- o)q (oq N loq N toI\f i- ro f-o)Ilo F-lo az @z U)z rr,o (o (Y'o (a o o I$ E oN Io@ u? o)(\l o)s az.az tN loroN (o (f) N o\tN os C\I (o (f) @@ c.j F-a(o Y *F Nr Ic{t- ct)z az U)z lr)o ro @ cr) o(o N N oo c) ooc! (o Nq lf) $ o $ T E Fo)It-(o Not- \l (f, @ @z az @(a 6 (o (f) 6 t\$(o oo)(o oo(o t-ol lr) oq (o N q = o(\l Io@ o ro- c\l oNro- rr) U)z U)z oNot rr) oN6ls oo)@ (a oolo lo oo or-s F*o c!o Fq o) Irt = o IoN @ 1r) ooa oo)\r-az o (f) ryN oss- (f) o\r (f) c.i ooo (o z o)t- l'- lo l'- o @ o ao ,Eoo L^aoEE86o,E o ExoL CLo- J u) o)3.s aO-EEoob(/)bi; cv O ts9 =-.=YE.ttr EE9ooc =No {^E, o)aC:E-IELLoo:rnYrco: !vo o) Eac hE E=cF3p cJo >t{F :r- <' ;=TF Eboc) o)c o- EErg -c cD> =.cP:tr[JEEDS o 9o Y e Clil E S9E Io E C) {oicDc-i o-cEt(Uoo60ba 5= {o:o)ccEcEtooo959;6e {ocD(: =o.cEtooutts9E9Ebe =iotEc Co-cEtco .r, 9=95be ^o)JE o) o-EEv(Eao(E0Eqz= ^o)JC\=o) o-EEvoo(, Gl rtsaE8 ^6JC\:o, o.EEvo ao(Er z8 o o o EG oG .E .9 .> (E tr !,trr! o g -lLurEJOoo(= l-O =!,o o oo. o o CL =oF !,tr IE Y == I T I I I I I I I I I t I I I I I I I I t I I I T t T I I I T I I I I I I I 8.REFERENCES Cohen, Robert M and James Mercer. 1993. DNAPL Site Evaluation. Library of Congress Harned, Herbert S and Benton B Owen. 1950. The Physical Chemistr.v of Electrolvtic Solutions. American Chemical Society Monograph Series. Reinhold Publishing Corp. International Uranium (USA) Corporation, and Hydro Geo Chem (HGC), 2000. Investigation of Elevated Chloroform Concentrations in Perched Groundwater at the White Mesa Uranium Mill Near Blanding. Utah. Submitted to UDEQ. Odom, J Martin, Jo Arur Tabinowski, Michael D. Lee, and Babu Z. Fathepure, 1995. Anaerobic Biodeeradation of Chlorinated Solvents: Comparative Laboratory Study of Aquifer Microcosms. In Bioremediation of Chlorinated Solvents. Battelle Press. Schwarzenbach, Renee P; Phillip M Gschwend, and Dieter M Imboden. 1993. Environmental Organic Chemistry. John Wiley and Sons. Titan, 1994. Hydrogeoloeic Evaluation of White Mesa Uranium Mill. Submitted to Energy Fuels Nuclear. Umetco, 1994. Groundwater Study. 1994 Update. White Mesa Facility, Blanding, Utah Submitted to United States Nuclear Regulatory Commission. U.S. Geological Survey,1998. Reduction-Oxication Potential (Electrode Method). Chapter 6.5, Field Manual. Available on-line at http:i/water.uses. gov/owq/FieldManual/Chapter6/6.5 contents.html S:\STAFflMRR\Chloroformlnvestigation\UpdateChloroformlnvestigationReport I l-9-01 28 t I I T I I T I I I t I I I I I I I I EXPLANATION temporary perched well showing chloroform (uG/L) in " liji s::L:T*';,?.,NS third sampling !19 fourth sampting lqq 11/00 samptins 111 o3/01 samptins 999 o6/01 sampting300 09/01 sampting 6300j 5300 [,"fi".-"$ffi llf :ilP",:iii, (uc/L) in 6/01 and g/01 samplings NOTE: sample vialfor tw4-1 broke in transit to the laboratory so no analysis was pedormed on g/01 sample CHLOROFORM ANALYTICAL RESULTS (uG/L) FOR TEMPORARY PERCHED WELLS (through septernber, 2001 ) Approved Date Reference Fiqure 1 I t I I I I t I t t t I I I I I I I I ll UB, 553r a\ \28 \ \\\ q o a\**,, 5i1 1 ttI \\ \\ "€tt ,ro. PROPERTY BOUNDARY \\ \\ }\ L\ "\l ) )---t\ '\ 1--.r--p-' nY-22 4 5396 a Mw-1l 551 J PERCHED MONITORING WELL SHOWNG TOP OF BRUSHY BASIN IN FEET (AMSL) .IEMPORARY PERCHEO MONITORING WELL SHOWNG TOP OF BRUSHY BASIN IN FEET (AMSL) -5400 ---- coNTouR L|NE lN FEET (AMSL), DASHEo IT,HERE UNCERTATN :K ASSUMED TO BE AT ELEVATION OF BASE OF SCREENED INTERVAL CONTOUR MAP OF TOP OF BRUSHY BASIN WHITE MESA URANIUM MILL SITE Approved SS Date 10/80/01 Revised Date Reference: 71800022 2 FIG. I I I t t I I I I I t t I I t I I t I PROPERTY BOUNDARY ( \\ i==rF .J' A, =r, .t \ r \.t./' 5>l r' 1 SCALE IN FEET EXPLANATION . MW-ll PERCHED MONITORING I,IELL 551 3 SHOWNG WATER LEVEL IN FEET (AMSL) TEMPORARY PERCHED MONITORING WELL SHoWNG WATER LEVEL IN FEET (AMSL) ----5595 WAIER LE\EL CONToUR, DASHED WHERE UNCERTATN I --- 5590 a Is-tg 556E oEizi I T7-7\ I t')/ 5560 5570 5560 5550 5540 5530 5520 \ 1r a xFzr li \1 \l \l $ NN\.i \* 'Eh?' l\I \*___-f '.Y..: - 0 5000 WATER LEVEL CONTOUR MAP DECEMBER, 2OOO WHITE MESA URANIUM MILL SITE Approved SS Date 10/30/01 Revised Date Reference: 71800020 FIG. 3 I I I I I I I I t I I I T I I t I I I lt s570 5560 5550 5540 5550 5520 5500 5495 ItT-51471 I lJ/5 PROPERW BOUNDARY \\ \\ )\ isrt^)a, >r, .t \ Ni Vit'r ).z- {(^ c'\ ./ '\\. l" I It [\o=:I a il xlt-2r tl tl 1\ t\ N I .uE?' \ti u\ (. J'-1 ) ---\')\\\\\\\a_'---=5','-1-,2 " ,r- - 0 5000 SCALE IN FEET EXPLANATION llrt-zta 5445 a Mw-l1 551 3 PERCHED MONITORING IIELL SHOWTNG WA'IER LEVEL IN FEET (AMSL) TEMPORARY PERCHED MONITORINC WELL SHOWNG WAIER LEVEL IN FEET (AMSL) ,y'' --- 5595 WATER LE\EL CONTOUR, DASHED \rihrERE UNCERTAIN WATER LEVEL CONTOUR MAP SEPTEMBER . OCTOBER, 2OO1 WHITE MESA URANIUM MILL SITE Approved SS Date 10/30/0r Revised Date Reference: 71800032 4 FIG. EXPLANATION MW-4O perched groundwater monitoring well tw4-16' ' temporary perched groundwater monitoring well A PROPOSED\I/ TEMPoRARY WELL PROPOSED LOCATIONS OF NEW TEMPORARY PERCHED WELLS EXPLANATION temporary perched well showing nitrate (mg/L) in 1 .02 1 1/00 sampling 14.5 03/01 sampling 14.0 06/01 sampling 9.02 perched monitoring well MW-4 showing nitrate (mg/L) in 6/01 sampling ND = not detected at 0.1mg/L NITRATE ANALYTICAL RESULTS (ms/L) FOR TEMPORARY PERCHED WELLS \pproved Dale Relerence Figure 6 LUF#vF=z>aa>z 5{t@oi LL trt P=ooJLU =IOOx-EALUlo-q; d<rrt ll* OFO- 3Ea' (, J E oob 6o -CO [)\-\Ij ll I lt lt I tt lt tt-I-- ---f -- --- I I lt tt tl I tl tt I it tl tt I tl I t1 _-, ___1 li I I l tl tl lt lt tl II lt lt tt -----f -- -------- tt lt I I 1l I I ll i I I w trWPi*slqF tl -^ffies&- I I I I I I l-*--- I I I I l I i I I I I I Ir----- ie Iie I I I l io I I I I I -T----- I I I l I I Il&Al I _|_-____s I I I I I I I l I I _L_____ I I l I i I I I I I I i I -f------ I I I I I I I I I I I I I t------ I I I I I I I I I I I I rl I li lt I -l------l-lt lt I l ll lt I I ll I lt I ll -------t- l I tl ll I ll li lt I l i i lt I I l l I I I i I I l t_ I I I l I I i t- I I l I I I i t- l i I I I I l I I I I I I I I I I I I l &_t-_____ I l l I I I I I lr'I I I -l------ l I I I I I I l I I I I -i----*- I I I I I I I I I I I l o \Atl\ .,1\i'I sl I, url-+- --i -i J-J (yeu) elellru I I T I I I I I I t I I I I I I I I I It ffi lt tt lt tt tt tt lt ll tt lt tt tt tt tt tt tt tt lt i\\\s S*..1--S:-\ i:\ili fiffir$ [6....t..sffi iriiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii ii i i i iiiiiiri iiiiiili ii i iii i i i ii i il iiii iiiiiir!!!li ,zit'IfroE:\ .1.-1-lt!\!tNS\ il::\\:i.'.-----i-Si\ S:\\:i{i&"i $\:1:-:-S }S\SNiN'*\\\-\^\ iiiilifiiimRiilllllr,lXi i i i i i i i ii i i I ii itii iii iii i i i i i iiiiiiiiiii d^ Yr"l PROPERTY BOUNDARY \\ \\ }\( ( -i== JAlLl =, ,l \ l" ) N t - o 301 a Mw-11 1xl0-J @s PERCHED MONITORING WELL SHOWING PERCHED PERMEABILIW lN cm/s pERCHED zoNE pERMEABlLtry 2 1o-1cm/s PERCHED ZONE PERMEABILITY BETT/EEN 1o-a cm/s AND Io-5cm/s ZONE /r(mA pERcHED zoNE pERMEABtLtry < 1o's cm,/sqliiijjv NOTE: PUMP TEST (DRAWDOW{ OR RECO\ERY) RESULTS ARE PLOTTED WHERE AVAILABLE. WHERE NOT AVAILABLE, SLUG OR CONSTANT HEAD PACKER IEST RESULTS ARE PLOTTED PERCHED ZONE PERMEABILITY BASED ON PUMP AND SLUG TESTS, AND CONSTANT HEAD PACKER TESTS WHITE MESA URANIUM MILL SITE Approved ss Date 10/ll0/0r Revised Date Reference: 71800024 FIG. 8 a(,z ,r tU EF,z o;Pi =8ilfrl= =e*.,,,FI H#RJLll= =EEt aaC-Zar8E (,oJ OO(o oo\+ (I)5eovr- :foa ooCXcu CDao o.lJ Cs E'= =ol-, L(o o_ o_(s ti G)Co aEC (Ua o.E (6 Lo Eo O)Co() ffi &oai 2l891NFI <lzl<IJIoloxl IUI -- OO Lo LO LO LO LO O(o rr) v-vMl. l-vM L.VM\ z-v e-7Ml 6-V o -o(U P t- C).P (U =rO O (teel) uorle^olo I T I I I I I I I I I I I I I I I t I APPENDIX A Vertical Profile Sampting Methods t I t I T I I I I I I I T I I I I I I .-4,, I I I il i it it il I :l ,l I I rl l il t it il I I I edech Environmental Equipment, lnc. ^rr'"ffi K$ 1,rtg*[u .loP Leaders in manufacturing and distributing ground and surface water sampling, analytical, filtration, and remediation equipment. ;I I Bailers I I I il t I I : il :l I I I I I I I t Geotech Disposable and Reusable Bailers Geotech disposable and reusabte bailers are available in many configurations and materials to meet your specific sampling needs. lmproved bailer design - Geotech's 'Orbit Flux" design fills 33% faster than other bailers - V-notch design for trouble free cord attachment, and accurate pouring Weighted disposable bailer as heavy as mosl double-weighted without the extra cost Manufactured under strict clean-room conditions - Made of virgin, FDA approved high-density poly resin - The polyethylene contains no plasticizers or additives, and no regrinds are accepted Optional double check valve bailers isolate the sample, sealing as the bailer is removed from the well at specific depths special clean upon request Product sampler for floating hydrocarbons VOC sampler uses a unique design that allows sample transfer to VOA vials with minimal loss of VOCs PVC white and clear - Diameters from .675" to 3.5" in lengths '12'to 60" - Recessed check and double check available Stainless Steel Geobailers - 1' and 1.75" diameters are 36" long - Rugged and durable for well development Teflon@ Geobailers - 1.25" and 1.625" diameters are 36" long - Most inert material available Geotech Disposable Bailers are available in the following configurations: Material Lenoth Confiourations Units/case Accessories Poly VOC tips for 1.5" diameter bailers ............ ..........24 per case Poly VOC tips for 3" diameter bailers..........................9 per case Teflon@ VOC tips for 1.5" diameter bai|ers..................12 per case Poly free product samplers......... .........24 per case Geotech Pressurized Disposable Bailers This special disposable bailer provides the convenience of using in-line dispos-a-filtersrM in the field even when pumps are not available. By using a pneumatic hand pump you can filter your samples directly from the bailer, saving time while maintaining sample integrity. Each bailer comes complete with a barbed hose adapter for attaching the hand pump to the top of the bailer, and a special adapter with a notched thread to be used with a dispos-a-filteril at the bottom. ln order to dis- place the check ball and establish a smooth flow, an additional large barbed removal device is included for bot- tom emptying without filtering. Disposable Accessories oRDER TODAY (800) 833-7958 T I t I I I I I I I I I t I I I I I I Use of Soil Gas to Detect DNAPL I I I I t I I I I I I I I I t I I I I t l- .1I l'.- I-' It, i I t J-- !l I I T t I T / "i -.. (. . -\ McClellan Air furce Base, Sacrameinto) Californii/ dnc :, , Thursday, Sepiqmb,er 25, lggi --WyldharqCarden Hotel; Cos( Mesa, Californi; THE USE OF SOIL GAS DATA TO OBTAIN SOIL VOC CONCENTRATIONS AND TO IDENTIFY THE PRESENCE OF NAPL by Harold W. Bentley Hydro Geo Chem, lnc. 6905 E. Ocean Blvd Long Beach, California 90803 Gary R. Walter Hydro Geo Chem, lnc. 1430 N. 6th Avenue Tucson Arizona, 85705 (2) 100 cs Ko" foc T I I I I I I I I I t I I I I I I T t THE USE OF SOIL GAS DATA TO OBTAIN SOIL VOC CONCENTRATIONS AND TO IDENTIFY THE PRESENCE OF NAPL 1. Conversion of Soil Gas Concentrations to Soil Concentrations The concentration of a VoC in soil gas can be converted to its total concentration in the soil by considering the equilibrium laws governing the partitioning of the Voc between the gas, liquid, ano sotio phases. The reasoning and methodology are as follows: Unless a separate liquid phase of VOC, i.e., a NAPL, is present, the soil gas concentration is controlled by the distribution of the VOC between the soil, water and soil organic matter. lf the moisture content in the soil is greater than 5%, normally the case, the vapor phase contaminant concentration will be controlled by its Qas-water distribution coefficient, the Henry's Law coefficient (H). The Henry's Law coefficient can be written in its dimensionless form, Ho. The dimensionless Henry,s Law coefficient relates the concentration of a compound in the vapor phase to its concentration in the aqueous phase Hs = Cs/Cn = ll/RT - p/S (1) where H is the Henry's Law coefficient R is the ideal gas constant T is degrees Kelvin g" is thl VOC's vapor density (the vapor pressure of the pure liquid expressed as mass/unit volume)' and S is the water solubilitY The aqueous-phase concentration will in turn be controlled by the distribution of contaminants between water and the solid soil matrix. This distribution is govemed by l$' the water-solid distribution coefficient. Rarely is the direct distribution of contaminants between the gas and solids imPortant. lf the warer-solid distribution is controlled by adsorption onto organic carbon, which occurs above organic carbon concentrations of approximately 0.001 (fraction), (Chiou and Shoup, 1985) the water-solid distribution coefficienl is (-^ K^ . o U^vw Koc ' o/oOC where is the concentration in the solid [mass VOC/mass solids] is the concentration in the water [mass VOC/volume water] is the water-organic carbon distribution coefficient is the fraction, by weight, of organic carbon in the soil c:\i nfo.doc\sgs-soil.cnv I I I I I I I I t I I I t I I I I I t where C, = C"Pr + C*0,, + Cs(gr'gJ is the concentration in the gas [M/V air] is the @ [M/V (bulk volume soil)] is the bulk dry soil density [M/V solid] is the total porosity is the water filled porosity The ratio of a VOC's total concentration in the soil gas to its concentration in the soil is given by substituting (1) and (2) in (3) and dividing by bulk density (pJ to convert soil concentration units from mass/volume to mass/mass: -Ko Ho (er - e*) where {pN,is the@te*,,fl&0 Table 1 presents an example of the results of using (4) to relate soil gas and soil concentrations. For each of the compounds listed, a soil gas concentration of 100 ;tg/L was converted to the equivalent soil VOG concentration in pg/kg. The soil parameters utilized in the calcutation were fo" (fraction) = 0.005; total porosity (fraction) = 0.40; volumetric moisture content (fraction) = 0.2i and dry soit bulk density (gm/cm3) = 2.00. (3) cr C,H o2o ob (4) The total soil VOC concentration (M/L3; is the sum of the mass/unit volume in each of the three phases: n:rt-{'tl<l f 5 f'e- ': * 9o er e* c:Unfo.doc\sgs_soil.cnv I I I I t I T I t I I t I I I I I I I 8; Q"/o wl iv'l O^= O'7o \'allv'o\ -lo. -- O,oo 5 -l'7.?h -- 7,ro lnlcn" 'Roy.,3 Griffin, 1989. - 1,1,1 TCA * Montgomery & Welkom, 1990 - all others' It can be shown by sensitivity analysis of (4) that for all but the most water-soluble compounds, the ratio of soil gas to total soil concentration is rnost sensitive to lG, nexl to HD, and that the other parameters have relatively little effect. Thus, for all but the most quantitative applications, the soil parameter important in calculating the conversion of soil gas concentration to total soil concentration is total oiganic carbon. Reasonable estimates of moisture content, porosity, and bulk density, the additional soil parameters, will be sufficient for most PurPoses' TABLE 1. CONVERSION OF SOIL GAS TO TOTAL SOIL CONCENTMTION COMPOUND ]G" (ml/g)Henry's Coeff. (H) Ho* (H/Rr) Ko. (mus) SGas-Soil Conversion Factor Soil Gas Conc. (rrg/L) Soil Cont (pg/K 1.0 0.55 0.75 100 75ccl41102.41E'2 W&roform 31 2.87E'3 0,1 19 0.1 55 2.24 100 224 1,1 DCA 30 4.31E-3 0.179 0.15 1.50 100 150 1,2 DCA 14 9.78E-4 o.0407 0.07 10.2 100 102 1,1 DCE 65 3.40E'2 1.41 0.325 0.401 100 40. cis 1,2 DCE 49 7.58E-3 0.315 0.245 1.2 100 120 trans 1,2 DCE 59 6.56E's o.273 0.295 1.55 100 155 1,1,1 TCA 155 1.708-2 0.707 0.775 1.33 100 134 TCE 126 9.10E'3 0.379 0.63 2.03 100 203 PCE 364 2.59E'2 1.08 1.82 1.88 100 18 Vinyl Chloride 57 8.19E-2 3.41 0.285 0.212 100 21 Benzene 83 5.59E-3 0.233 0.415 2.31 100 232 Ethyl Benzene 1100 6.43E'3 o.267 5.5 19.4 100 194 Toluene 300 6.37E'3 0.265 1.5 5.86 100 586 Xylene 240 7.O4E-3 0.293 1.2 4.53 100 453 c:\inf o.doc\sgs-soil.cnv o .9lr ,>{r .8 ot-o o- E -G) II IOo EC (U t- c (u tro Ec (Ua I I I I I I I I I t I I I I I I t t I N 0) f.9 LL I I I I I T I t I t I t I I I I I I t cf) o J .P LL I I I I I I I I I I I t I I I I I I t t(l. o f .9, LL rr) o J .9tr (o ol-) .P LL I I I I I I I I I I I t I I t I I t I I I I I I I I I t I I I I I I t I I I o) .9t! t I I I I I I I I I I I I I I I I I I I t I t I I I I t I I I I I T I I I I o) o)t-) .9lr o ) .9 LL t I T I I I I I I I I t I I I I I I I I t I I T I I I I T I I I t I I I I I 0) .g) LL Dx, ' l'o it t I I I I I I t t I I t 2. Predicting the Presence of NAPL from Soil Gas Concentrations . Equation 4 is valid in most soil gas appllcations, but.can under predict a total soil concentration in cases where a separate non-aqueous liquid phase is present. The total Voc soir concentration is then a function of the Voc concentration in the NAPL and the amount of NAPL in the soil. ln such a case, although Equation 4 continues to account for the Voc's partitioned into soil, water, and soil gas, it does not account for the VOCs dissolved in the NAPL. Where NAPL is present,lhJprediction of VOC soil concentrations from soil gas concentrations is not possible because the vapor pressure of a VOC in the NAPL iS a function "t iir r"r".ntration in the NAPL and the amount of NAPL is generally unknown' When a VOC concentration in the NAPL is high, its distribution between the NAPL and the gas phase can be estimated by Raoult's Law coG) - P"X,(s) where and liquid) is equal to 1: p" is the vapor density (pure-compound vapor pressure) of the ith VOC X, is the mole fraction of the ith VOC The sum of the mble fractions of compounds making up a NAPL (or ariy Where n is the number of compounds in the NAPL' Assuming the NAPL is composed of VOCs, that is, each of the dissolved cornpounds has a reasonable vapor pressure, the substitution of (5) into (6) yields (6) (7)t nt i.1 T I I I I I Thus, in a soil NAPL zone where the NAPL is composed entirely of VOCs, the sum of the quotients of soil gas concentrations divided by their respective pure-compound vapor pressure should "ppror"h 1. However, a lower than the theoretical value of 1'0 for the surnmation in (7) shoulO.be useO to indicate the presence of a NAPL in unsaturated soils' ln whter saturated soils, because of attenuation by advective and diffusive Processes, only 1o/o of the saturated solubility of a groundwater contaminant is the criterion used to determine the pr"r"n"" of NApL in grouni*ater (Feenslf" "Ll others,-1991), Soil gas is less likely to be attenuated by advective Processes, and the diffusive transport of a gas borne compound is much more effective than that of a compound dissolved in water, both processes leading to a larger zone of oeteciion for soil gas sources. Thus a larger criterion than the 1% of the c:\jnfo.doctsgs-soil.c4v I I I I I I I I PCE TCE theoretical value is appropriate. We suggest, based on observations al a number of soil gas sites, that 1Ao/o of the theoretical value be used to determine that a NAPL as present at a soil gas sampling location. The appropriate criterion, therefore, is rl i cs(i) > 0,1 i.1 P5 (r) (8) 1, As an example of the use of this criterion, suppose that the soil gas data obtained at a point location are = 2,500 pg/L = 4,200 ttglL Cis 1,2-DCE = 10,000 pg/L The calculations utilizing Equation 8 are summarized in Table 2. TABLE 2. EXAMPLE OF USING SOIL GAS TO DETERMINE NAPL PRESENCE' SoilGas .ralyte Vapor Pressure (mm) (@20 "c) Molecular Weisht (g) Conversion Factor [ps/(mm.L.s)] Vapor Density p" (pg/L ) Observed Concentration C" (pg/L ) cs/Ps PCE 14 165.8 54.7 127,000 2,500 0.02 TCE 19 131.4 54.7 137,000 4,200 0.03 1,2 cis DCE 180 97 54.7 955,000 10,000 0.01 SUM of Co/ps 0.06 According to this calculation, the soil gas concentrations divided by their respective ]ure-solvent vapor pressures sum to less than 0.1 . Thus NAPL is not present where this soil gas probe Iras located, and the con-centrations of PCE, TCE, and 1,2 cis DCE at this location can be calculated by the methods summarized in Table 1. ["r"r"n""= I I t I Chiou, C.T. and T.D. Shoup, Environ. Sci. Technol. 1985, 19, 1196. Feenstra, S., D.M. McKay, and J.A.Cherry, 1991. A method forassissing residual NAPL based on organic concentrations in soil samples c :\info. doc\sgs_soil.cnv N o f .9)lr :eY -o-c G).r-, l- la- iF,O .r- >., o .PFq.o bEO(U 8.boo 9o.Hl-u.o 'a ,.-.-o.X '1Oc$ Eo -C = X Va a- il .ll roU :o-t- a(r) tu'F -c;o-'-AJOo- o, 7-C qE l-- =6t- -cO- 6z=.=oql.--te*-ar,-, l_ 3-.P,\:f Urt -Goo=o=Ho6rr ru.9jo C, E Po-o+=b-I- l- ,\ = gY, lJE 9a ogE '=Oa-L-- b.= E#s1 Ogr 83 =O8fr EE oO- ,,.3 t.i'r. F t I I I T t I t I I I I I I I I T I I ca o J .9, LL sf o ).9 LL I I I I I I I I t I I I I I I I I I I q I cla\-/ I \-/ -*l %ulo- o.gEP 6E- -cO.E *,_ E g_ E 8op E bE 2E E o.9E EEE-o 83 *r- E, o- (I/,E E Eg = :a- o; dgE:, *EE; eE= afr EEEfi =# =:3E= o (J O-tra, a. o(Uo c,E; =Oo .F'96E=8r b.aeat.-.ea*t\/(J:= r+- L-o(I,oA og ..= -.; Ed bz x- .["f,r-(Ul-I.:F - LaEoo Fo U) ,9,io "[,{ a ro o ).9tL o.cr E :Eb =E6Eq.e =fi 3E f;#BE.e= 'E tU o-S '=.= OP O.:-E rh (u =ESI 6- EEFsE= EEi EE gU Es gE F qq iqE$Ees E#!ESE# u.l-O-=o.cl= (o 0) J .9) TL "h]= \a !o ooEE th -J0- =o oo ou, ao- o F agaEE bHEoE E O)v'=Cr-O E 8 E E O o, A AB6;ET:g >Hs sPHs -a F;.goqRbo EE*E;eI; SErEsrEg: HE;E$: P,3E EEgfifiEgtn E d EE T::aE s[3!,eEgFEep,ts6(Ug-96.=o rE *fi's EE E #!=nur=rf,=o EIggga*i* EEEgEEfiiE E 8B8E€ E E APPENDIX C Coordinates Requested by UDEQ T I I I I I I I I I I I t I I I I I I Approximate Coordinates Misc. Features - White Mesa MillSite Revised using 2001 Topographic Map ( all coordinales are approximate ) Fealure ECllLnj_Ngrthins E !_ Waler Well #1 2580084 323314 Test Well 2580945 322687 Jones Well 2581252 318910 Jet Pump 2581250 329460 Ruin Spring 2574294 310375 Cottonwood SPring 2570024 317880 Westwater Spring 2574166 321692 Former Leach Field (near otfice) NW 25ffi274 322228 NE 2s80369 322228 sE 2580369 322128 sw 25ef,274 322128 Old Leach Field (scale house) NW 2580765 322279 NE 2580786 322279 sE 2s80786 322223 sw 2580765 322223 Current Leach Field (east ol Mill yard) NW 2581224 322530 NE 2581324 322530 sE 2581324 322370 sw 2581224 322370 Land Fill NW 2581040 322915 NE 2581115 32291s sE 2581',115 322745 sw 2581040 322785 Sedimentation Pond NW 2579420 32264,s NE 2s79465 322445 A 257946s 322400 B 25795s5 322355 sE 2579555 322175 sw 2579420 322175 Lab waste Holding Tank 258008s 322408 5391 5238 5493 Dimensions (ll. x tt') 95 100 Area (sq.lt.) 9500 Dimensions (tt. x tt.) 21 56 Ares (sq.tl.) 1 176 Dimensions (tt. x ft.) 100 160 Area (6q.tt.) 16000 Dimensions (tt. x tt.) 75 130 Area (sq.tt.) 9750 Tailinos Cells - Appproximate Boundaries Cell No. Eastino Northing 1-l--ffi2s774ffi s23i9o NE 2579365 323145 sE 2579355 322078 sw 2s76795 322150 A 2576880 322415 2-ffi2s7g7ss 922150 NE 2580210 322040 sE 2580210 320745 sw 2576845 321680 3-.-. 2s7ffi4s g21680 NE 2s80210 320745 sE 2579s93 320100 sw 2s7601s 32082s 4A 257783 92cA11 NE 2579593 320100 sE 2578860 319021 sw 2577469 319266 Abandoned Monitor Wells, Bore Holes, and Angle Holes Feaiure Easting Norlhing Elevation ( all coordinates are approximate ) MW-13 2577590 319547 MW-6-1 2578895 320s30 MW-6-2 2578895 320530 MW-7-1 2578125 320886 MW-7-2 2578125 320886 MW-8-1 2577265 320925 MW-8-2 2577265 320925 D&M 3 2fionpz322720 D&M 9 2581380 327365 GH-94-1 2576459 320549 GH.94-21 2577257 320385 GH.94-3 2577245 32W46 GH-944 2577365 319598 D&M122578314 326932 D & M 28 25773E,0 317340 5570 5588 5588 5588 5588 5590 5590 5634.3 5679.3 5597 558s s579 5572 s648.1 5547.6 1 1/09/2001 9:25 AM I I I I I I I I I I I t I I t I I I I APPENDIX D Analytical Results I I I I I I I I I I I T T I I I t I I Balllngr . C..P.t. Glll.ttc H.l.nt. R.pld Clty Client: Project: Contact: Sample Matrix: Date Received: Report Date: A)iluTtn1-tt is 4{icl ooaiutU4-15 iS < r'rnse.|e "( C,,c st*1les' ,;,l,y-wrTttJ4- lE- ie a D rc I ol-'l- (orel*)r *., erile'iioS r^m {st' 7rr . oJru^T}{ -,L'-*o[*7','. NOTES: ( I ) These values are an assessment of analytical precision. The acceptance range is 0'20o/o fbr sample results above l0 times the reporting limit. This range is not applicable to samples with results belorv l0 tinres the reporting Iirnit. (2) These values are an assessment ofanalytical accuracy. They are a percent recoven: of'the spike addition' ELI perlbnns a matrix spike on l0 percent of atl samples tbr cach analytical method. msh: r:\reports\clients2001\international_uranium_corp\liquid\31914-l4.xls -l 'r' ''":';::" -" " SERVICES :l , -: l '.j .! )^r.r %tkal {tbs Cqy ' ENERGY LABORATOBIES, INC. SHIPPING:2393 SALT CREEK HIGHWAY ' CASPER, WY 82601 MAILING: P.O. EOX 3258 ' CASPER' wY 82602 E-rnail: casper@energylab.com ' FAX: (307) 234'1639 PHONE: (307) 23s-0515 ' TOLL FREE: (888) 235-051s LABORATORY ANALYSIS REPORT INTERNATIONAL URANII.JM (USA) CORPORATION White Mesa Mill Wally Brice Liquid, Water 0+0241 April9,2ffi1 Laboratory ID Sample Date / Time Sample ID Nitrate + Nitrite as N, 0l-31914-l 03-26-2001 t4:02 WMMTW4-11 < 0.10 0t-31914-2 03-26-2001 15:49 WMMTW4-15 < 0.10 0t-319t4-3 03-29-200111:08 WMMTW4-12 10.0 0t-319144 03-29-2001 12:38 WMMIffi 8.77 -il;s4 Df gl,<k rr'n }q.l-r,t)4- lD_ ;g Quality Assurance Data A L Method BPA353.2 Reporting Limit ;0.t0 RPD'1.0 Spike2 96 Analyst rwk Date/Time Analyzed 04-M-2O01 17:13 GOTPLETE ANALYTICAL '!)E>-NL \ =(J,':C' \-' C-i?u).oi\-./ \, !l .\ 'qi '-f .J9 thq =q xi il s 3'as. a. ta. \CY--l!,n* ir oi ai;rt =t\F\ p u.c.€.-= \ s\cNAcc r<R-. fr.l ..i - ^t>=Ei6S sF-Pqti B.Er\Ol.2= \$rE *='v r'i .=vba?E<-i.tZT\U ViB *Hg,; 5sH<.C€r. !.. I i$E G) a() q) o o o t- ("rzru) oqr.6) nt1t6- auufi uouota1afi sp11oys11oi ntfi tr-y O n A S 6 y:adilaldwog vaulutuoc {o raqunN $ * d 5 ,rf $* :) ! !t .'\a\ .J =\!i :J\N:-r \!lE:! \) = 3t'! i =2'\ .= r'.i rlti.-- ..j i\. ri r C-r =-v.=rtU {-Jv,\, = +-{x \\: --o .J O al o .-o u t) q I :o 1) 0UU& L -J U ! z\)=a o F uO l,l o i I = .]idq i€1: sJIi --l :o* r.} ;H I i, I I t I I T I I I I T I I I T I I l,Energy lraboratories, Inc - SAMPLE COIIDITION REPORT I I I I I Chi" t.porE provides informaEion about sample cusEody informaEion on receipt Client,: InternaEional Uraniun (USA) Corporat,ion t ab ID (s) : 01-31914-1 Tbru Delivered bY: uPs Date&Time Received bY: Sara llawken the condiEion of Lhe sample(s), and assocated aE Ehe laboraEorY. Descript.ion: WATER YeE CommenEs: No CommenEs: N/A CommenEs: 01-31914-4 Mat,rix: Liquid Rec'd: 02-APR-01 1OOO Dat.e&Time CoI 'd: 25-}[AR-0L L402 Logged In bY: Sara Hawken Chain of custodY Chain of custodY Chain of cusEodY SignaEure match, Sample received Samples received Samples received Samples ProPerlY TemperaEure: , within holding Eime: in proper conEainers: Preserved: 5C CommenEs: Yee CommenEs: Yea Comments: Yee Comments: form comPleted & signed: seal: seal inEact,: chain of cust,ody vs. seal: N/A Comments: Bottsle llpee Raceived:I ColrBenEa: i;0. t. t I I I I I t I I I I I Ft r ^t?rr.r,1 |.a I iii.i'..,r,,,.,: ; '.,. r''t I .^ -r .Ar.J i ..' r .: l_f Energ'y Laboratories, Inc. FINAL PAGE ELI-B Energy Laborat.ories, Inc. ELI-G Energy LaboraEories, Inc. ELI-H Energy Laborat.ories, Inc. ELI-R Energy Laboratories, Inc. co ip N/A - NA ND NR NST - NSD - REPORT PACKAGE SUMMARY Acronlzts and Definitions - Bi11ings, Mont,ana - Gil1etEe, WYoming - Helena, Montana - Rapid CIEY, SouE,h Dakota Carry over from Previous samPle Insuf f icient. parameEers Not Applicable Not. Analyzed Analyt,e Not, Detected aE, SEat,ed Limit of DetecEion Analyte Not Reguested No Sample Time Given No Sample DaEe Given f.rr.,,. client, ftll:l: I I I onnrored By: ID: ITIMMMW4 is associat.ed t.o Lab ID: 0l'3L9L4'4 ID: SIMMIW-11 is associated to Lab ID: 01-31914-1 ID: WMMrw-12 is associated Eo Lab ID: 01-31914-3 ID: IrlMtr[fW-ls is associated Eo Lab rD: 0L-3L9L4'2 I I I I I I dlqd.es.r,.) : .-' I t This is t,he 1asE, page of Ehe Laborat,ory AddiE.ional QC is available upon requesE. The report conEains the.number of pages Reviewed By: Analysis Report. indicat,ed by the lasE 4 ..;l-! iii:: ilna ._ruL t a9. ' : I I r.. , T*V* (s^*rc'\ *t1t CeJl: rjI ENEHGY LABORATORIES, INC. SHIPPING:2393 SALT CREEK HIGHWAY ' CASPER, WY 82601 MAILING: P.O. EOX 3258 ' CASPER' WY 82602 E-mail: casper@energylab.com ' FAX: (307) 234'1639 PHONE: (307) 235-0515 ' TOLL FREE: (888) 235'051sBillingt. C..P.r' Glll.n. Hctcna. Rtpld CltY t I t I I I I I I I I I t I T T I LABORATORY ANALYSIS REPORT ctient: INTERNATIONAL URANITIM (USA) CORPORATION Project: White Mesa lVIi[ Contact: WallY Brice Sample Matrix: Liquid, Water Date Received: 04-02-01 Report Date: APril9' 2001 Laboratory ID i$ample Date / Time Sample ID Nitrate * Nitrite as N' 01-31913-1 03-29-200109:32 wMMTW4-1 7.t5 0t-3t9r3-2 03-29-2001 11:08 wMMTW4-2 t0.2 01-31913-3 03-28-2001 17:35 wMMTW4-3 1.85 0t-31913-4 03-27-200109:02 wMMTW4-4 t4.5 01-31913-5 03-28-2001 l1:04 wMMTW4-5 3.88 01-31913-6 03-26-2001 16:20 wMMTW4-6 0.13 ot-31913-7 03-27-2001 14:56 wMMTW4-7 2.46 01-31913-8 03-27-2001 16:54 wMMTW4-8 < 0.10 ot-31913-9 03-27-2001 lL:20 wMMTW4-9 < 0.10 01-31913-10 03-26-2001 14:01 WMMTW4-10 < O.l0-{etpbl^ 4- Ta-\P Btak- (l,J,I{l,,l.Lwrl/nru'^Tut1-10 i's NOTES: (l) Thesevaluesareanassessmentofanalytical precision. Theacceptancerangeis0-20%lbrsarnpleresultsabovel0tirnes thereportinglimit.Thisrangeisnotapplicabletosampleswithresultsbe|owl0timesthereportinglimit. (2) These values are an assessment ofanalytical accuracy. They are a percent recovery ofthe spike addition ELl perlbrms amatrixspikeonl0percentofallsamplestbreachanalyticalmethod. msh: r:\repurrs\clienrs200l\international-uranium-corp\liquitl\3 l9l3-l-10'xls ., . ., 1r Quatity Assurance Data Reporting Limit RPD' rKe GOMPLETE ANALYTIGAL SERVIGE$ : ! a 2 I a\ !t \'\ - -\ .!:0 \-u -i+\qt = ! '&.---t-'\E-l-\, r '-; . .:J !;^.2tji' e\. ! { o o (\l !' O u tf, 9 ao 1) !)o!| L {) a t eoF€ oOx --rIJ .l! o ! ao ! '4 -J) I -+ ; , 3 (Ji 'n n- \v^ '{i --,z U . 'J) e z x q \ qo vU e14 I c ta G .A rt 4) I 1)F a) z ,*t.-.G .J .J I0 d{) !1 tn ro ,- I a '3 ,a c.t;€Y=\!,A+tt^i d =F.t\ isE \o(\r qR-.Yi-til (\t . 6il>.iS>. Oad *t-Pqtt 8.€ 11.9i. \$1F +s'vr\'tyOO iaEu.tZP\U ?iE rlr)!!d Bss <.oqa, ia .s dsitss,:i ==!lrl \.A{ arc! =i=+ E a.) C) (,)& () q.) F ntltj auuff uouotaS4 spltoVtt,os nnfi tr-y O n A S ln y:ad,(1a1dutog sJaulquoc lo raqunN + x.(q IL rt q) a C) z b.Fa b GJ.E$,xi!d (\^s H.\.. g c) .9 ; c)(/) s NL U.,,$/s-t + s* '^ c)q rt o o oo 6l IL p. tro 6g) ot 6z c) c) E. . 'r, I I t I I I I I I I I I I T I t,'Energrl; taboratories, Inc - SAMPLE COIIDITION REPORT f tnr" repore provides informaEion about, Ehe condit,ion of E,he sample(s) , and assocaced Isa*pte LusEody information on receipE at Ehe laboratory. IClient: International Uranir:m (USA) Corporation Description: WATER Ii; ID(s): 01-31913-1 Thru 01-31913-10 Matrix: LiquidrDellvereo Dy: upa DaEe&Time Rec,d: 02-APR-01 looo Date&Time co1'd: 29-!tAR-01 0932 Received bv: Saia Hawken Logged In by: Sara Hawken lan"t. or.r=aouy form compleEed & signed: Yes commenEs: Chain of cust,odY seal: No CommenEs: -Chain of cusCody seal inEacE: N/A Comments: ISion"trre match; chain of custody vs. seal: N,/A Comments: I s"ipr" received TemperaEure: 5c commenEs: ^---. " --,-' ' "' l'tult ll! Comment,s: r sam;les received in proper containers: t s"*nf"" ProperlY Prelerved: Yel CommenEs: Yeil CommenEs: Bottle Tlpee Received: ! co*.ot', I I I I I I I I I t I I 1aa.'1'l!' t' Energry Laboratories, Inc. REPORT PACKAGE SI]MII{ARY FTNAL PAGE EI,I Et,I ELI ELI co ip N/A NA ND NR NST NSD I I t I -B -G -H -R Energy Laboratories, Inc. Energy Laboratories, Inc. Energy Laborat.ories, Inc . Energy Laboratories, Inc. Acronlms and Defj.nj.r - Bi11ings, Mont.ana - GilLeE,te, Wyoming - Helena, Montana - Rapid Cit,y, sout,h Dakota Carry over from previous samPle Insuf f icient, parameE,ers Not Applicable Not Analyzed Analyte Not DeEecEed at St,at,ed Limit of DeEect,ion Analyte Not, ReguesEed No Sample Time Given No Sample Dat,e Given Definitions I "rr.,,.Client l:ii:l: Client l:ll:l:Client , crient I I I I I I I onn'or"u This Package ContaLns tlle tollowangf clLenE lu(s, ancl LaD IU(SJ ID: lrtMtr(M4-1 is associated to Lab ID: 01-31913-1 ID: SlMMrW4-10 is associat,ed to Lab ID: 01-31913-10 ID: $tMMrW4-2 is associaEed to Lab ID: 01-31913-2 ID: 9iMMM4-3 is associated to Lab ID: 01-31913-3 ID: WMMrW4-4 is associated Eo Lab ID: 01-31913-4 rD: wM![rw4-5 is associated to Lab ID: 01-31913-5 ID: I{MM["$I4-5 is associaEed Eo Lab ID: 01-31913-5 ID: lrtMMtW4-7 is associaEed Eo Lab ID: 01-31913-7 ID: WMMIW4-8 is associated to Lab ID: 01-31913-8 ID: IIM!4rw4-9 is associaEed to Lab rD: 01-31913-9 1! 4? ,, "--*F_. ..-BY : -.:-::. ; -.-. :'. ;:. -- r)';--' ''''-''i_- r.a: -' - -:' iia'.- ---r-".-:aaI t This j.s the lasE page of the LaboraE,ory Addit,ional Qc i.s available upon reguest. The reporE conEains Ehe -number of pages Analysis ReporE. indicaced by the last I I I I I I I I 4[-fur I 0l-31913-1 03-29-2001, 09:32 WMMTW4-1 7.r5 ot-31913-2 03-29-200111:08 wMMTW4-2 10.2 01-31913-3 03-28-200l t7:35 wMMTW4-3 1.85 0t-319134 03-27-200109:02 WMMTW44 14.5 01-31913-5 03-28-2001 11:04 wMMTW4-5 3.88 01-31913-6 03-26-2001, 16:20 wMMTW4-6 0. t3 0t-31913-7 03-27-2001 74:56 wMMTW4-7 2.46 0r-31913-8 03-27-2001 16:54 WMMTV/4-8 < 0.10 01-31913-9 03-27-2001 1,1:20 wMMTW4-9 < 0.10 0l-3r9r3-10 03-26-2001 14:01 WMMTW4-10 < 0.10 NOTES: ( I ) These values are an assessment of analytical precision. The acceptance range is 0-20% for sample results above I 0 times the reporting limit. This range is not applicable to samples with results below l0 times the reporting limit. (2) These values are an assessment ofanalytical accuracy. They are a percent recovery ofthe spike addition. ELI performs a matrix spike on l0 percent of all samples for each analytical method. msh: r:\reports\clients200l\international-uranium-corp\liquid\31913-l-l0.xls I I I I I I I I I I Quality Assurance Data Method EPA 353.2 Reportins Limit 0.10 RPD'0.8 ^.,2SDIKE 94 Analyst rwk Date/Time Analyzed 04-04-2001 15:30 t t I I I I I I I I I I t I t I I I I (l) These values are an assessment ofanalytical precision. The acceptance range is 0-207o for sample results above l0 times the reporting limit. This range is not applicable to samples with results below t 0 times the reporting limit. (2) These values are an assessm€nl of analytical accuracy. They are a percent recovery ofthe spike addition. ELI performs a matrix spike on t0 percent of all samples for each analytical method. msh : r:\reports\clients2001 \international-uranium-corp\liquid\3 1 914-1-4.xls 01-3t914-l 03-26-20/.l.l 14:02 WMMTW4-11 < 0.10 0t-31914-2 03-26-2001 L5:49 WMMTW4-15 < 0.10 01-31914-3 03-29-2001 11:08 WMMTW4-12 r0.0 0t-319144 03-29-2001 12:38 WMMMW4 8.77 Quality Assurance Data Method EPA 353.2 Reporting Limit 0.10 RPD'1.0 Spike2 96 Analyst rwk Date/Time AnalYzed 0444-2001 17:13 I I I I I t I I I I I Client: Project: Sample ID: laboratory iD: Mauix: Dilution Factor: International Uranium (USl1 Corporation WHITE MESA MILL WMMTW4-l 01-31916-l Liquid - WATER 2N Date Sampled: Time Sampled: Date/Time Received: Date Analyzed: Date Reported: Lb7 03-2941 09:50 0442{1 10:00 044441 April 12,2001 Ctrloroforur (Tlichlorom ethane) ND - Anolyte not dctected ot statcd limil ol iletectbn Volatile Organic ComPounds T{TT'.RN AI STANTIARNS Penufluorobenzene Fluorobenzene 1,4 - Difluorobenzene Chlorobenzene - d5 1,4 - Dichloroberucne - d4 AREA 1 166070 2433645 1769t22 I 189063 47374 ICAL / CCAL AREA r 150521 2388861 1775533 tl634/}6 458787 PERCENT RECOVF'RY 10t% lO2Vo 99.67o 102% lOtVo PERCENT RRCOVERV 94.SVo to3% 99.lVo 99.0% ACCEPTAI{CE RANGF 5O -20o Vo 50 -20o % 50 -2OO Vo 50 - 2O0 Vo 50 -200 % ACCEPTANCE RANGE 86 - ll8 Vo 88-110% 86-rts% ffi-r20% I I I T t t I I Dibromofluoromethane Toluene - d8 4 - Bromofluorobenzcne 1,2 - Dichlorobenzene - d4 CONCFNTRATION 9.45 10.3 g.g1 9.90 MFTHONS USF'II IN TIIIS ANAI VSIS: BPA 50308, EPA Eiz60B scc: r:\rcpors\clicnt900l\iruenudonal uranium-corpkaspcr-org\3l9l6l-19-8260b-chloroform-l'w'rls Amlyst:rlo t I t I T t I T T I.ABORATORY ANALYSIS REPORTI f,'PA MNTHOD 8It6O Volatile Organic Compounds Client: Project: Sample ID: Laboratory ID: Matrix: Dilution Factor: International Uranium (USA) Corporation WHITE MESA MILL wMMTW4-2 0t-3t9r6-2 Liquid - WATER 200 Date Sampled: Time Sampled: Date/Time Received: Date Anallzed: Date Reported: 03-2941 ll:12 04{241 10:00 0444{t April 14,2001 ND - Analytc not dctectcd d statcil limit of detectbn t ! I I I I I I I I rNTF'RNAI. STANDARNS Pentafluorobew.erre Fluorobenzene 1,4 - Difluorobenzene Chlorobenzene - d5 1,4 - Dichlorobenz.ete' d4 ICAL / CCAL ARNA 1150521 2388861 17?5533 1163446 45878'7 pERCEI.IT RF',COVERV lO07o tot% 98.77o 101% lO3Vo PERCENT RECOVFRY 93.6% t03% 99.3% 98.87o ACCEPTANCE RANGN 50 -20o % 5O -2Co Vo 5O -20o Vo 50 -20o Vo 50 -20o % ACCEPTANCE RANGN 86-rt9% 88-110% 86-tts% 80-120% ARRA 1t54034 2407856 17529ffi l 171985 47t262 qYCTF'M MONITORING COMPOI INN.S Dibromofluoromethane Toluene - d8 4 - Bromofluorobenzene 1,2 - Dichlorobenzene - d4 CONCENTRATION 9.36 10.3 9.93 9.88 MF'TTTODS USEIT IN TIIIS ANAI YSIS: EPA 5(BOB, EPA E26OB scc: r:\rcporsklicnts2O0t\incrmdonel uranium-corpbaspcr-orgBt9l&t-t9-E260b-chloroform-l-w.xls Analyst:rlo I I I I T I t t I Client: Project: Sample ID: Laboratory ID: Matrix: Dilution Factor: International Uranium OSA) Corporation WHITE MESA MILL wMMTW4-3 01-31916-3 Liquid - WATER 100 Date Sampled: Time Sampled: Date/Time Received: Date Analyzed: Date Reported: 03-28-01 17:56 04{241 10:00 04{441 April 14,2001 ,:,j,,.,:,,,,,'i:i':',:,'::'i:::,,:i:i:,:,i i'::::i:i iii,t:: :.:::: ::::: :l: :::::: :::::::'::-:-:.: :::.:.:,:.. : :.i: :: ...::ii i,:::: e;#i$l:l:#l:llii'.:: 67{6-3 ND - Analytc not dctccteil al stalcd limit of detectbn Volatile Organic Compounds I t I I t I I I N{TT'RNAI STANNARTIS Pentafluoroben:Iane Fluorobenzene 1,4 - Difluorobenzene Chlorobenzene - d5 1,4 - Dichlorobenzcne - d4 ARE^ I 158619 240/;030 t745382 l 175904 472736 tct'J- lccal, AREA l 150521 2388861 t775533 1t63446 458787 PERCENT RrCO\IF'RY 70lVo lOlVo 98.37o 10t% r03% PBRCET{T RECOVRRY 94.EVo 703Vo lolVo 98.5Vo ACCEPTANCE R^NGT'- 50 -2OO 7o 50 -2@ % 50 -2@ % 50 -2W % s0 -20o % ACCEPTAI\CE RANGIT 86 - llE Vo 88-ll0% 86-tt'% 80-r20% SYSTT'M MOMTORING COMPOUNNS Dibromofluoromethane Toluerrc - d8 4 - Bromofluorobenzene 1,2 - Dichlorobenzene - d4 CONCENTRATION 9.48 r0.3 10.1 9.85 MF'THONS UStr.D IN TI{IS ANAIYSIS: EPA 50308, EPA 82608 t scc: r:\rcpors\clicns200t\incrnadonrl uranium-corp\caspcr-org\3l9l6t'19-826(h-chloroform-l-w.xls T Analyst:rlo I T I I I I t t I Client: Project: Sample ID: Laboratory ID: Matrix: Dilution Factor: International Uranium OSAI Corporation WHITE MESA MILL WMMTW44 ol-319164 Liquid - WATER 2N Date Sampled: Time Sampled: Date/Time Received: Date Analyzed: Date Reported: 03-274t 09:00 O442{l 10:00 044ffi1 April 14, 2001 Chloroform (Irichloromethane) ND - Analyte not dcrectcd at statcd limit of iletcction Volatile Organic Compounds t t t I I I I I I t INTtr'RNAI. STANNARNS Penufluorobenzene Fluorobenzene 1,4 - Difluorobenzene Chlorobenzene - d5 1,4 - Dichlorobenzene -d4 lcAL tccAL ART'.A 1 150521 2388861 r775533 t163446 45878't CONCEI.{TRATION 9.83 10.6 10.6 9.92 PERCENT RF'COVT'RY 85.ZVo 93.3% 88.s% 89.8% 89.s% PERCENT Rr'COVF'R\r 98.3% 1067o 106Vo 99.2% ACCEPTANCE RANGIT s0 -2w % fi-zfi% 50 -20o % fi-2W% fi-2W% ACCEPTAI{CE RANGE' 86-rr8% 88-ll0% 86-trs% 80-t20% ART'.A 980t62 2227683 15722t0 1044788 410680 SYSTTM MOMTORING COMPOIININS Dibromofluoromethane Toluene - d8 4 - Bromofluorobenzene 1,2 - Dichlorobenzene - d4 Mf,'THOtIS USI'TI IN TTIIS ANAI YSIS: EPA 50308, EP')A E2608 scc: r:\rcpons\clieils2q)l\itilctnarioBl uraniun-corp\caspcr-orgBI9t6l-19-E26(h-chlomform-l-w'rls Amlyst:rlo I t I t I I T I I I r ABORATORY ANAr YSIS REPORT, EPA METHOn 8260 Volatile Organic Compounds Client: Project: Sample ID: Laboratory ID: Matrix: Dilution Factor: International Uranium (USA) Corporation WHITE MESA MILL wMMTW4-5 0l-31916-5 Liquid - WATER l0 Date Sampled: Time Sampled: Date/Time Received: Date Analyzed: Date Reported: 03-28{l ll:22 0442{1 10:00 04-0441 April 14, 2001 ND - Anolyte not dctectcd al statcd limil of dcuctbn I I I t I t t INITT'RN AI . STATINARDS Pentafluorobenzene Fluorobenzene 1,4 - Difluorobenzene Chlorobenzene - d5 1,4 - Dichlorobenzene - d4 ART'A t107374 2345208 16988r0 l 159686 466834 ICAL ICCAL AREA l 150521 2388861 1775533 1163446 458787 CONCtr'NTRATION 9.46 r0.4 10.1 9.76 g PERCEI{T RPCOVtr'RY 96.2Vo 98.ZVo 95;7% 99.77o 102% PERCENT RECOVNRY 94.6Vo tu% lolVo 97.67o ACCEPTANCE RANGE 50 -200 vo 50-2W% 50 -20o % so-2@% 50 -2@ % ACCEPTANCE RANGN 86-ttB% 88-110% 86-trs% 80-r20% SYSTT'M MOIYITORING COMPOI INNS Dibromofluoromethane Toluene - d8 4 - Bromofluorobenzene 1,2 - Dichlorobenzene - d4 MI'TIIOIIS USE'D IN TTIIS ANAI YSIS: EPA 5O3OB, EPA E26OB I scc: r:\rcpons\clicns200t\inrcrnrdonal uranium-corp\cesper-org\3t9t6t-r9-E26(b-chloroform-l-w.rls I Analyst: I I I t I I I I I I I I Client: Project: Sample ID: Laboratory ID: Matrix:. Dilution Factor: International Uranium (USE1 Corporation WHITE MESA MILL wMMTW4-6 01-31915-6 Liquid - WATER 2 Date Sampled: Time Sampled: Date/Time Received: Date Analyzed: Date Reported: 03-26{1 l6:30 04{241 10:00 044141 April 14,2001 r::,', ,ti:iI ::i. : ::':::,:,,i ,i::,:1,i :,;,:itli:::i::,1tii:i iiii .,..:,,,,,,":,,,:.ii, ,,.:,:,. :::,:,:::,.:.::,,:i .::i::::.:i:::::::: ,,,,.:.i,:,,:i.:€r'a,:si::!#i:,ii:.i :,:,::: 67-65-3 Chloroform (Trichloromethane) ND - Analyte not delcctcd a, sutcd limit of detcctbn Volatile Organic Compounds NTTF'RNAI STANDARDS Pentafluorobenzene Fluorobenzene 1,4 - Difluoroberzene Chlorobenzene - d5 1,4 - Dichlorobenzene' d4 ICAL ICCAL AREA I 150521 2388861 t775533 tt63M6 458787 CONCT'NTRATION 9.58 10.4 10.0 9.84 PERCENT RECO\IERY 98;7% 99:770 96.2Vo 99.67o 102Vo PERCENT RFCOVERY 95.8% lMVo too% 98.4% ACCEPTANCE RANGN 50 -20o Vo 50 -Z0o 7o 50 -20o Vo 50 -2OO 7o s0-2@% ACCEPTANCE RANGN 86-llE% 88-1r0% 86 - ll5 Vo w-120% ABEA 1135759 23821X) 1708345 I 159355 46't805 SVSTT'M MOMTORING COMPOIINNS Dibromofluoromethane Toluene - d8 4 - Bromofluorobenzcne 1,2 - Dichlorobenzene - d4 MI'TTIODS USEN IN TIIIS ANAI YSIS: EPA 50308, EPA &2608 scc: r:\rcpors\clients2fl)t\itltcttulional uranium-corpbaspcr-orgBt916t-19-826(h-clrloroform-l-w'rls Analyst:rlo I I I I t I I T t I I I t t I I I I I I ABORATORY ANALYSIS RT'PORT, T'P^ I\,fETHOD 8260 Volatile Organic Compounds Client: Project: Sample ID: I-aboratory ID: Mauix: Dilution Factor: International Uranium (USA) Corporation WHITE MESA MILL wMMTW4-7 0t-31916-7 Liquid - WATER 100 Date Sampled: Time Sampled: Date/Time Received: Date Analyzed: Date Reported: 03-2841 15:09 044241 10:00 o1{4{1 April 14,2001 ND - Analyte ,rot detcctcd ot staled limit of detection INTF'RNAI.STANNARNS AREA Pentafluorobenzene 1105485 Fluorobenzene 2323615 1,4, Difluorobenzene 1678345 Chlorobenzene - d5 1136308 1,4 - Dichlorobenzene - d4 448761 *a,*ror rn*ta,*rNc con'rpol NT|S Dibromofluoromethane Toluene - d8 4 - Bromofluorohnzene 1,2 - Dichlorobenzsne - d4 458787 97.8% ARRA I 15052r 2388861 1775533 tt63u6 CONCFNTRAflON 9.38 10.5 r0.0 9.83 RITCO\IERY 96.t% 97.3Vo 94.57o 97.7% PF,RCENT RECOVFRY 93.8% 105Vo lNTo 98.3% RANGF'- 50 -?,fiO 70 50 -2Co Vo 50 -20o 7o s0 -20o % 50-2W% ACCEPTANCE RANG.r 86-ttB% 88-ll0% 86-tts% 80 - t20 vo MT'TTIOIIS IISF.II IN TIIIS ANAI YSIS: EPA 50308, EPA 82608 scc: r:\rcporrs\clientoo0l\inrcnndonrl uranium-corp\caspcr-org\3l9l6l'19-8260b-chloroform-l'w.xls Analyst:rlo T I I I I I I I I I r ABoRATORY ANALYSTS REPORT, EPA MF'THOD 8260 Volatile Organic Compounds Client: Project: Sample ID: Laboratory ID: Matrix: Dilution Factor: International Uranium (USA) Corporation WHITE MESA MILL wMMTW4-8 0l-31916-8 Liquid - WATER l0 Date Sampled: Time Sampled: Date/Time Received: Date Analyzed: Date Reported: 03-2641 l7:00 04{2{1 10:00 04-04-01 April 14,2001 ND - Analyte not dctcclcd a! statcd limit ol detection I t I I I t t I I nt[Ttr'RNAI STAI{nARDS Pentafluorobenzene Fluorobenzene 1,4 - Difluorobenzene Chlorobenzene - d5 1,4 - Dichlorobenzene - d4 ARE'.A 1090084 2309't6p 166/.765 I 1 r9681 442367 ICAL I CCAL ARF'A l 150521 238886r t?75533 1163446 458787 PERCENT RT'.CO\IF'RY 94.77o 96;tVo 93.8% 96.2% 96.4% PERCEI{T ITECO\IRRY 95.7Vo lO47o lolTo 99.47o ACCEPTAI!CE RANGE'. s0 -2w % 50 -20o % 50 -20o % s0-20o% 50 -Zffi 7o ACCEPTANCE RANGF E6-ll8% 88-ll0% 86 - ll5 Vo 80-t20% SYSTF.M M OMTORING COMPOI]T.MS Dibromofluoromethane Toluene - d8 4 - Bromofluorobenzcne 1,2 - Dichlorobenzene - d4 CONCENTRAflON 9.57 10.4 r0.1 9.94 VTTTHOTTS IISFTI IN TTIIS ANAI YSIS: EPA 5(B08, EPA 82608 scc: r:\rcporsklients200t\incrmtiolul urrnium-corP\caspcr-org\3l9l6l-19-&16(h-cbloroform-l-w.rls Amlyst:rlo r ROR TORY 'N LVSIS RFPORT, r'P^ I\'{FTHOn 8260 Volatile 0rganic ComPounds Client: Project: Sample ID: I-aboratory ID: Mauix: Dilution Factor: International Uranium (USA) Corporation WHITE MESA MILL wMMTW4-9 01-31916-9 Liquid - WATER 2 Date Sampled: Time Sampled: Date/Time Received: Date Analyzed: Date Reported: ' 03-Tl4t 11:35 O4{241 10:00 04{5{r April 14,2O0l ND - Analyte not delcctcd ot stued limit ol iletectbn t I I I I I I I I I I t I t I I I I I II\TTF'RN AI STANT}ARNS Pentafluorobenzene Fluorobenzene 1,4 - Difluorobenzene Chlorobenzene - d5 1,4 - Dichlorobenzene - d4 ABEA 1067998 23063t3 r658294 l I 15898 447091 ICAL / CCAL ARFA I 150521 2388861 1775533 1t63446 458787 CONCT'NTR.ATION 9.50 10.5 to.l 9.80 9r.,valr't..:...i:\ r PERCET{T RECOVT'RY 92.8% 96.5Vo 93.4% 9sJ% 97'.5% PERCEI.IT RECOVERY 95.O7o lO57o 10t% 98.0% ACCEPTANCE RANGN 50 -20o % so -2@ % 50 -2W % 50 -2W % 50 -2@ % ACCEPTAI\CE RANGtr' 86-Lt8% 88-110% 86-ll5 Vo w-t20% Dibromofluoromethane Toluene - d8 4 - Bromofluorobenzene 1,2 - Dichlorobenzene - d4 Mtr'THOtTS UST'.D IN TIIIS ANAI YSIS: EPA 50308, EPA E2608 scc: r:\rc?orrsklicnts200l\inarnrdonal unnium-corp\caspcr-org\3l9lGl-19-8260b-chlotoform-l-w'xls Amlyst:rlo I I I ABORATORV ANAI YSIS REPORT, EPA METIION 8250 Volatile Organic Compounds Client: Project: Sample ID: I-aboratory ID: Matrix: Dilution Factor: International Uranium (USA) Corporation WHITE MESA MILL - q*,u*L r wMMrw4-ro q4 '\ +'P: +ilozor-3rer6-10 q.2 fo"' '" - Liquid - WATER d.4-r' ' 2 Date Sampled: Time Sampled: Date/Time Received: Date Analyzcd: Date Reported: 03-23{1 12:45 044241 10:00 04{5{1 April 14,20Ol ND - Analyte not dctccted a! stated limit ol dctcction I I T t I I I I I t I I I I I I I rNTF'RNAI.STANNARNS ARNA Pentafluorobenzeire 1081645 Fluorobenzene 2280451 1,4 - Difluorobewr;ne 1630418 Chlorobenzene - d5 1103332 1,4 - Dichlorobenzere'd4 437754 SYSTFI,I MOMTORTNG COMPOITNNS Dibromofluoromethane Toluene - d8 4 - Bromofluorobenzene 1,2 - Dichlorobenzene - d4 ICAL I CCAL ARIIA r 150521 2388861 t7?5533 116346 458787 CONCT"NTRAflON 9.55 10.6 to.2 9.91 PERCENT RF'COVF'RY 94.O% 95.SVo 91.87o 94.8Vo 95.4% PERCM{T Rr.COVr.RY 95.57o tM% lO2Vo 99.t% ACCEPTANCE RANGE'. s0 -20o % 50 -20o % 50-?' oVo 50 -200 vo 50 -2W % ACCEPTAI{CE RANGE 86-ttB% 88-u070 86-tts% 80 - l2O Vo MF'TIIOTIS USFIT IN TTIIS ANAI YSIS: EPA 50308, EPA E2608 scc: r:\rcponsblicnu2fl)l\intcrnerional unnium-corp\caspcr-orgBl9lGl-19-E260b-chloroform-l-w.rls Analyst:rlo r ABORATORY ANALYSIS REPORT, F'PA METHON 8260 Volatile Organic Compounds International Uranium OSal CorporationClient: Project: Sample ID: kboratory ID: Matrix: Dilution Factor: WHITE MESA MILL wMMrw4-ll a4 0l-31916-ll Liquid - WATER 2 c,rtbh[t' -r* lloo*Noz tw\\a Date Sampled: Time Sampled: Date/Time Received: Date Analyzed: Date Reported: 03-2341 12:4'l 044241 10:00 04{5{r April 14,2001 ND - Analytc not detected at sloted limit of dctcction I I I I t I I I I I I t t I I t I I I IIVTERNAI STANTIARNS Pentafluorobenzene Fluorobenzene 1,4 - Difluorobenzene Chlorobenzene - d5 1,4 - Dichlorobenzene - d4 ICAL ICCAL ART'.A l 150521 2388861 1775533 tt63446 458787 PERCENT RE'.COVERY 94.5% 96.8Vo 93.6% 93.9Vo 93.1% PERCEI{T RECO\IFRY 95.3Vo tM% 102% 99.lVo ACCEPTAI\CE RANGE s0-zffi% 50 -Zfi Vo 50 -20o 7o s0 -2w % so -2@ % ACCEPTANCE RANGE' 86 - ll8 Vo 88-ll0% 86-tts% 80 - t?.0 vo ART"A r087398 23t2t6t t661249 1093054 427271 SYSTT'M MOMTORING COMPOIINTIS Dibromofluoromethane Toluene - d8 4 - Bromofluorobenzene 1,2 - Dichlorobenzene - d4 CONCT'NTRAT'ION 9.s3 10.4 to.2 9.9r \TRTTTODS IISF'II IN TIIIS ANAI VSIS: EPA 50308, EPa E2608 scc: r:\rcporsklienrgfi)t\imcrmrioml iiranium-corp\caspcr-orgBl9tGl-t9-E260b-chlorofotm-l-w.Ils Analysr:rlo I t I t I I Client: Project: Sample ID: Laboratory ID: Mauix: Dilution Factor: International Uranium (USA) Corporation WHITE MESA MILL WMMTW4-12 DtaP. oF Tw Ll- 2- ot-319t6-t2 Liquid - WATER 2N Date Sampled: Time Sampled: Date/Time Received: Date Analyzed: Date Repo.rted: 03-29{l ll:24 O4{2{1 10:00 044ffi1 April 14, 2001 I I T I I I I I I I t ND - Analytc not detectcd al starcd limit ol detcction INTT'RNAI.STANT}ARNS ARNA Pentafluorobenzene 954374 Fluorobenzene 2199976 1,4 - Difluorobenzene 1545815 Chlorobenzene - d5 1054565 1,4 - Dichlorobenzene - d4 411716 SYSTT,'M MOIVITORING COMPOT'NTIS Dibromofluoromethane Toluene - d8 4 - Bromofluorobenzene 1,2 - Dichlorobenzene - d4 AREA r 150521 2388861 1775533 1t634/,6 458787 CONCENTRATION 10.0 10.8 10.4 9.83 RECOVF'RV 83.0% 92.17o 87.r% m.6% 89.7% PERCENT RlrCOVF'RY rco% toB% lMVo 98.3Vo BANGE 5O -2AO Vo fi -20o Vo 50 -2W % 50 -2W % 50 -20o % ACCEPTANCE RANGN E6-ttB% 88-110% 86 - ll5 Vo 80 - t?o vo \{['TTIODS USF'N IN TTIIS ANAI YSIS: EPA 50308, EPA 82608 I scc: r:\rcporrs\clicrrg00t\idcrnlionaluranium-corpbaspcr-org\3l9lGt-!9-E260b-chloroform-l-w.xls I Volatile Organic Compounds Analyst: -Lui pff4 r I ABORATORY ANALYSIS REPORT, EPA MFTHON 8260 Volatile Organic Compounds Client: Project: Sample ID: l,aboratory ID: Matrix: Dilution Factor: International Uranium (USl1 Corporation WHITE MESA MILL wMMTw4-13 (Lnial| Pn o7 1o 0l-31916-13 Pwra'niO ?ncl Liouid - wArER SaHP r,}* P aC v"@lb' 2 (au*ahe-q:tc s Chbroform (Thichlorom ethane) ND - Analytc not ilctected at stalu, limit of detection ?ilo^L --- Date Sampled: Time Sampled: Date/Time Received: Date Analyzed: Date Reported: 03-2341 14:24 04{241 10:00 04{541 April 14,2001 T t T t T I I I I I I I I t I I T t I :itii:ii:i::i::iiirf i II\TT'RNAI STANTTARNS Pentafluorobenzene Fluorobenzene 1,4 - Difluorobenzene Chlorobenzene - d5 1,4-Dichlorobewere-M lcAL tccAL ARIIA r 150521 238886r 1775533 1163446 458'.187 CONCITNTRATTON 9.56 10.5 10.1 9.85 ARFA 1056010 2291350 1639990 1102979 429163 PERCEf.fT RFCOVtr'RY 9l.$Vo 95.9% 92.47o 94.8Vo 93.5% PERCEI{T RlrCOVERY 95.6Vo lO5Vo lOlVo 98.5% ACCEPTAI{CE RANGE 50 -20o Vo fi -20o Vo s0 -20o % s0 -20o % 50 -20O Vo ACCEPTANCE RANGE 86- r18 % 88-ll0% 86-tts% 80-r20% SVSTT'M MONITORING COMPOIINDS Dibromofluoromethane Toluene - d8 4 - Bromofluoroberzene 1,2 - Dichlorobenzene - d4 MF'TTIODS IIStr'TI IN TIIIS ANAI YSIS: EPA 50308, EPA E2608 scc: r:\rcponsklientefi)l\iilcrnedotll-uranium-corp\caspcr-org\3l9l6l'19-8260b-chloroform-l-w.xls Analyst:rlo I ABORATORY ANALVSIS REPORT, F'PA ME'THON 8260 Volatile Organic Compounds Client: Project: Sample ID: Laboratory ID: Matrix: Dilution Factor: International Uranium (USl1 Corporation WHITE MESA MILL WMMTW4-14 A n *,fr- P+12 (^ tT, 0l-31916-14 (,D-l+ Liquid - WATER 2 Date Sampled: Time Sampled: Date/Time Received: . Date Analped: Date Reported: 03-25{l 12:33 0442{1 10:00 04-05-01 April 14, 2001 ND - Analytc not detccted al statcd limil of dctection I I I T I I I I I I I t I I T I I I I TIITT'RNAI.STANT}ARNS ARNA Pentafluorobenzene 1053851 Fluorobenzene 2258371 1,4 - Difluorobenzene 1ffi3542 Chlorobenzene - d5 1090824 1,4 - Dichlorobenzene - d4 42ffi3 SYSTF'M MONTTORING COMPOTINTIS Dibromofluoromethane Toluene - d8 4 - Bromofluorobenzene 1,2 - Dichlorobenzene - d4 CONCENTRArlON 9.62 r0.6 r0.1 9.78 ICAL ICCAL AREA l 150521 2388861 1775533 t163446 458't87 PERCEITIT RITCOVT'RY 9l.6Vo 94.5% w.3% 93.8Vo 92.97o PERCENT RNCO\IRRY 96.2% 106Vo lOlVo 97.8% ACCEPTANCE RANGN 50 -2o0 Vo 5O - 2OO Vo 50-20o 70 50-20o% 50 -200 Vo ACCE?TAT{CE RANGE E6 - ltB Vo 88-110% 86 - ll5 Vo 80 - 120 7o Mf,'TTIOfiS UStr'II IN TIIIS ANAI YSIS: EPA 50308, EPA E2608 ccc: r:\rcporrs\cliants2fi)t\intcrmtiorul-unnium-corp\caspcr-org\3l9lGI'19-&16(h-chloroform-l-w.xls Analyst:rlo Client: Project: Sample ID: Laboratory ID: Mauix: Dilution Factor: International Uranium (USA) CorPoration WHITE MESA MILL wMMTw4-15 (Lt nsaL pnDrr +O 0l-3191G15 C}'tlooQ;a,-r>ru,l-lLS. Liquid - WATER 2 Date Sampled: Time Sampled: Date/Time Received: Date Analyzed: Date Reported: 03-25{1 13:35 O4{2{1 10:00 04{541 April 14,2001 ND - Analyte not ilctcctcd st staled limit of detectbn t I I I T T I t I t I t I T I I T I I N{Ttr'ITNAI STANNARTIS Pentafluorobenzene Fluorobenzene 1,4 - Difluorobenzene Chlorobenzene - d5 1,4 - Dichlorobenzene' d4 ICAL ICCAL ARNA I 150521 2388861 t77s533 1163446 458?87 PERCEI{T RE'.CO\IF'RY 92.67o 94.67o 91.57o 93.5Vo 9l.SVo PERCEIYT RECOVF'RY 94.7% l05Vo tot% 99.87o ACCEPTANCE RANGT'- 50 -2ffi % 50 -20o % 50 -zfn %' s0 -2@ % 50 -20o % ACCEPTANCE RANGII 86 - ll8 Vo EE-110% 86 - ll5 Vo 8A-,2O% AREA 1064856 225893s t624960 108808r 419852 SYSTTM MOMTORING COMPOI INNS Dibromofluoromelhane Toluene - d8 4 - Bromofluorobenzene 1,2 - Dichlorobenzene - d4 CONCENTRATION 9.47 r0.5 10.1 9.98 MEflIODS USF T IN TTIIS ANAI YSIS: EPA 50308, EPA E26llB scc: r:Vcpons\clicnts200l\inrcnudonal uranium-corp\caspcr-org\3l9l6l-19-E260b-chloroform-l-w'xls Analyst:rlo I t I I t I I I Client: Project: Sample ID: LaboratorY ID: Matrix: Dilution Factor: International Uranium (USA) Corporation VSHITE MESA MILL WMMMW4 0l-31916-16 Liquid - WATER 400 Date Sampled: Time Sampled: Date/Time Received: Date Analyzed: Date Reported: 03-29{1 l2:50 044241 10:00 044541 April 14,2001 ::l:iAlllr|r-*:::ll?Ir.JI.:|!+:::Y:Yi:iiie::::::::::::::::.::::::::i::i Chloroform (Trichloromethane) ND - Analyte not dctectcd at slotctl limit of dctedbn Volatile Organic Compounds T T I I I I t I INTF'RNAI. STANNARNS Pentafluorobenzene Fluorobenzene 1,4 - Difluorobenzene Chlorobenzene - d5 1,4 - Dichlorobenzene - d4 ICAL ICCAL ABEA 1150521 2388861 t775533 11634/i6 458787 PERCENT RTTCOVF'RY 90.6Vo 93.7% 9O.$Vo 92.SVo 91.67o PERCENT RNCO\rF'RY %.6% tu% lO27o . 99.8% ACCEPTANCE RANG.r. s0-20o% 50 -?fi % 50 -?-@ vo 50 -20o % 50 -2OO Vo ACCEPTANCE RANGR 86 - ll8 Vo 88-ll0% 86-tls% 80-120% AR['.A 1042084 223N95 t6t2893 to't5862 42M45 SYCTT'M MOMTORTNG COMPOTNDS Dibromofluoromethane Toluene - d8 4 - Bromofluorobenzene 1,2 - Dichlorobenzene - d4 CONCIINTRAflON 9.46 10.4 to.2 9.98 METHOTTS USf,'D IN TIIIS ANAI YSIS: EPA 5o3oB, EPA 82608 I scc: r:vcpors\clicnrs200l\inrcrnadonaluranium-corp\caspcr-org\3l9l6l'19-&160b-chlorofom-l'w.xls I Analys:rlo r ABORATORY ANALYSIS REPORT, EPA MF'THOD 8T6) Volatile Organic Compounds Client: Project: Sample ID: l:boratory ID: Matrix: Dilution Factor: International Uranium @SA1 Corporation WHITE MESA MILL WMMMWIT 0t-31916-17 Liquid - WATER 2 Date Sampled: Time Sampled: Date/Time Received: Date Analyzed: Date Reported: 03-25{1 l4:48 O4{2-01 10:00 044541 April 14,2001 ND - Analytc not dctcctcd at stated limil of detcction I T t t T ! I I I I I I I I I I t I t TI{TT'RNAI STANTIARDS ARF'-A Pentafluorobenzene 1055347 Fluorobenzene 2270030 1,4 - Difluorobenzene 1618320 Chlorobenzene - d5 1091563 1,4 - Dichlorobenzene - d4 432256 SYSTF'M MOI{ITORING COMPOUNNS Dibromofluoromethane Toluene - d8 4 - Bromofluorobenzene 1,2 - Dichlorobenzene - d4 CONCENTRA'IION 9.61 10.6 to.2 9.88 ICAL / CCAL AREA 1150521 2388861 t775533 rt63M6 458787 PERCENT RF"COVITRY 91.7% 95.0% 9l.lVo 93.8% 94.2Vo PERCENIT RIICO\rF'RY 96.1% lMVo 102% 98.8% ACCEPTANCE RANGR 50 .2@ % 50-2@% so-2ffi% 50-200 % s0-20o% ACCEPTANCE RANGE 86- 118 % 88-lr0% 86- rr5 % w-t20% MT'THOITS TISF'II IN TIIIS ANAI YSIS: EPA 50308, EPA E2608 scc: r:\rcpons\clicns2g0l\inernadonal-uranium-corpbaspcr-org\3l9l6l-19-8260b-chloroform-l-w.xls Analyst:rl,o Volatile Organic Compounds Client: Project: Sample ID: Laboratory ID: Mauix: Diludon Faclor: WHITE MESA MILL WMMTW4 COMP - 0l-31916,18 Liquid - WATER 100 A- f crL^+ i,, {!''',. ( , -9" -"--- Date Sampled: Time Sampled: Date/Time Received: Date Analyzed: Date Reported: 03-3041 07:36 04{2{1 10:00 04{5{1 April 14,2001 International Uranium (USA) Corporation ND - Analyte not dctectcd at statcil limit oJ dclcction PERCEIYT ACCEPTANCE Chloroform (Thichloromeihane) rNTf,'RNAI STANNARNS AREA Pentafluorobenzene 1036677 Fluorobenzene 2249534 1,4 - Difluorobenzene 1598837 Chlorobenzene - d5 1072il9 1,4 - Dichlorobenzene - d4 416945 SYSTTIM MOMTORTNG COMPOIINDS Dibromofluoromethane Toluene - d8 4 - Bromofluorobenzene 1,2 - Dichlorobetzete - M ART'.A RECOVERY r 150521 238886r t7'75533 11634/,6 458787 CONCNNTRATION 9.4 10.6 to.2 9.92 fi.lVo 94.ZVo 90.OVo 92.ZVo 90.9% PERCENT RNCOVERY 94.4Vo lMVo t02% 99.27o RANGT'. so -2fi % 50-200% 50 -zffi % so -zfi % 50 -200 Vo ACCEPTANCE RANGN 86- 1r8 % 88-110% 86-tts% 80 - 120 Vo ME'TTTONS TISF'II IN TIIIS ANAI YSIS: EPA 50308, EPA 82608 scc: r:Vc?orsklicntg00l\imernrdonal uranium-corp\cespcr-orgBl9l6l-19-E260b-chloroform-l-w'rls Analyst: I BORATORY NAI YSIS REPORT, F'PA MI'THON 8260 Volatile Organic Compounds Client: Project: Sample ID: Laboratory ID: Matrix: Dilution Factor: International Uranium ruSA) Corporation U/HITE MESA MILL TRIP BLANK 01-31916-19 Liquid - WATER I Date Sampled: Time Sampled: Date/Time Received: Date Analyzed: Date Reponed: 03-16{1 16:10 O4{2{1 10:00 0444{1 April 14,2001 Chloroform (Trichloromethane) ND - Analyte not detcctcd ot stated limit of dcbctbn I T t I I I I t I t I I I T INTtr'RNAI STANNARNS Pentafluorobenzgne Fluoroberzene 1,4 - Difluorobenzene Chlorobenzene - d5 1,4 - Dichlorobenzene - d4 ICAL ICCAL ARF'A I 150521 2388861 1775533 116346 458787 CONCENITRATION 9.59 t0.2 9.89 9.79 PERCENT RRCOVT'RY lO4Vo lO3Vo tor% 105% r07% PERCEI.IT RFCOVEBY 95.97o 1027o 98.9Vo 97.9% ACCEPTANCE RANGf,'. 50 - 200 vo 5O -20o Vo 50 -2010. Vo 50 -20o 70 50-zfi% ACCEPTANCE RANGR 86 - ll8 Vo 88-110% 86-tts% 80 - l2O Vo ARF'A l 191328 2452721 1788376 121801',7 49t94? SVSTT'M MONITORING COMPOI fl\MS Dibromofluoromethane Toluene - d8 4 - Bromofluorobenzene 1,2 - Dichlorobeozete - d4 IMT''THONS USf,'tT IN TTIIS ANAI YSIS: EPA s03oB, EPA E2608 scc: r:Vcpors\clicntg00l\incrnational uranium-corp\iaspcr-oig\3l9l6t'19-E260b-chloroform-l-w.xls Analyst:rlo Volatile Organic Compounds Client: Project: Sample ID: Laboratory ID: Matrix: Dilution Factor: International Uranium (USA) Corporation WHITE MESA MILL Method Blank MB040t Water I Date Sampled: Time Sampled: Date/Time Received: Date Analyzed: Date Reported: N/A N/A N/A 04{441 April 12,2001 Chloroform (Trichloromethane) ND - Analyte not detcctcil ot stated limit of depabn iffi.gtilwit$ rNTT'RNAI STANTIARNS Pentafluoroberulgtte Fluorobenzene 1,4 - Difluorobenzcne Chlorobenzene - d5 1,4 - Dichlorobenzene - d4 AREA r r84558 2435440 t782379 t183537 464888 ICAL / CCAL AREA l 150521 2388861 t775533 t163446 458'.787 PERCEIYT RT'.CO\rF'RY to3% toz% IOOVo- |U% lOlTo PERCENT RF'COVFRY 95.3% tozv; 98.8Vo 98.5% ACCEPTANCE RANGN 50 -2ffi Vo so-2@% 50 -2fi Vo 50 -20o % 50 -Zfi Vo ACCEPTANCE RANGIT 86 - ll8 Vo 88-110% 86-tts% 80 - l2O Vo SYSTT'M M OMTORIT{G COMPOTINTIS Dibromofluoromelhane Toluene - d8 4 - Bromofluorobenzene 1,2 - Dichlorobenzene - d4 CONCF'NTRATION 9.s3 10.2 9.88 9.85 MI'TTTODS UStr'D IN TI{IS ANAI YSIS: EPA 50308, EPA E2608 scc: r:\rcporrs\cliens200l\intcrmtio'El unnium-corpkasper-org\3l9t6t-19-8260b-chlomform-l'w'xls Analyst:rlo I I I [n.n, Sample Set: ffiIr:""''' I.ABORATORY ANAI YSIS REPORT, F'PA \,TT'THON 8260 QC RnSUr TS - MATRIX SPIKF OiIS). MATRI\/ SPIKT'. nUPI ICATE (MSn) Inlernational Uranium (US.l1 Corporation 0l-3l9lGl through 0l-31916.19 0l-3l9lGl7 s Liquid - WATER ICAL / CCAL SPIKED SAMPLE Date Samplcd: 03-29{l Date/Time Received: 044241 10:00 Date Analyzed: O445{1 Date Reported: April 12, 2001 I I t I I I Pentafluorobenzene Fluorobenzene 1,4 - Difluorobenzene Chlorobenzene - d5 1,4 - Dichlorobenzene{4 ARE,A r 150521 23EE86l t775533 r1634r',6 458787 AR.r'A % tc25937 89.270 22t3,43t 92.7% 1595730 89.9% 1065324 91.6% 42s0[6 92.6% SPIKE DIIPLICAIE ABEA r0349s8 t137292 l@m08 9.57 10.6 10.4 9.n % n.0% 93.7% 90.t% 95.7% t06% tu% 99.7% ACCEPTAI\ RANGE 50-200 9 50-2m9 50 -zfi i 50-200 I 50-200 9 ACCBPTAII R.ANGN 86-ll8' 88-110, 86- u5 '80- 120, Ciixrnsanrpm PERcENT CONCF'NTRA TI ON Rtr'COVF'RY lo60rEt 9l.l% 424/88 y2.3% SPIKEDI'PLICATE PERCENT CONCF'NTRATTON RT.-COVER.Y i:lii::iliiiixiii:ir.iiiii:iiil1::i:i:iiiiil:iiiii:::i:ii::ixii;;Xili:riiiitiiiiilifi;i;iii,ii i i,iiirtii.i;:iri,',r.,,,r,,', Dibromofluoromethane Toluene - d8 4 - Bromofluorobenzene 1,2 - Dichlorobe nz.ene44 9.62 10.6 r0.3 9.95 SPIKED SAMPLE CONCENTRAflON 9.E5 96.2% t6% t03% 99-5% Chloroform (Trichloromettrane) ;::::.;::: :: :::.::;::::.:. .r: i :r;:::::: ::::;::r:::.:::iiir::iitiirt::ii:.:::::.:::::.:.::t::j:::::: :::::::::.:::r : ::: : ::::r::.: :j::'::..:.:1 :: ::::j::: :::':::::'::::::::: ::::::::::::::l::::.:::i.:::rir:i.'ii::' i:lii:iiii ' -:.:.:.::::..:.:::.: :::j::::.:::,::i:,:::::i:::::: :::i::::::::: :.:':':':::::::::.::: :t:::::: :::':.: : : ::: i: :'. i::::::::::::: : ORIG. CONC. SPIKE AMOI.JNT (pgll.,r * (,.gl., ND 10.0 ini:i::;:;iii;:::i::l:jiiiii:i:i:::i::ii:iii:':i:::ii:rii'ii:iiiiii::i:ii:ii:i:ii:::::i:::i:r:i:::i::,:rr:::'::',":,:::::: PERCENT . .ACCEPTAI\ RECOVERY RANGE %.s% 70 - 130 , I I SPIKE DI.IP CONCF'NTRATION :ii:::r::r::.:.::.1:.:::::::: [i3o.rPg RPD IJMTS ?n% BP.D 2.E% i.::: :. r :".jr::.--.:..:r.:::::t::.:": SPII(E (pgn ] 10.0 ORIG. CONC. blefiL ND f,' I ! ,o, ,fr"noroklicnrs200t \inrermrioml-unniun-corp\casper-org\3t9tGl't9-&l60b-chlomfotm-l-w.xls I PERCEIYT RF'.COVT'RY rLt% lChloroform(Trichloromethane) l0'1 IIAIBIXJSIIXE 0 ol2 Matrix Spike resuls are ousidc of csablished QC Limits Marnrv Spmp nlrpt t0trr.t 0 of I Matrix Spike Duplicare resul* are ouSidc of established QC LimiS Amlyst:rlo I, I I I I I I I I I I I I I I I I I I fu /o:rulQ OrderNo: C01060297 July 10,2001 Wally Brice Intemational Uranium CorP' (ruC) PO Box 809 Blanding, Utah 8451I RE: White Mesa Mill projects. s?ae E. CrsEror*at 3u4.a*' Approved BY: ENEBGY LABORATORTES, INC. SHIPPING:2393 SALT CREEK HIGHWAY ' CASPER' WY 82601 iiailiNe' p.o. Box s258 ' cASPER, wY 82602 E-rnaii, """prr@energvlab.com ' FA)( (307) 2i1'16-3s iior.rliirizl zgs'os-r-s ' roLL FREE: (s88) 23il51s Mr. Brice: The following cover letter is a summary of the attached analyical results for the above referenced Project. This packet contains one invoice, thirteen pages-of analytical results, one page of quality assurance data, the p.:r.i.rr"in of custodi, -a the sample receipt condition report. This packet contains 20 pages including this cover letter' There were no problems with the analyses and all data for the batch QC met USEPA or laboratory sPecifications;: . :stions regarding these test results, please feel free to call' Energy Laboratories, Inc. appreciates the opportunity to proviie you with analytical se'lvices for your qaqC - Data Validation: ffisr . CmPot'Gll!.n. xelcnl'RlPld CIU GO]SPLETE ANALYTIGAL SERVIGES I I I I T I I I I T I I I T I I T I T CLIENT: Lab Order: Project: Lab ID:kp-#l L-"+ I rrrcu @{r VOLATILE ORGANTC COMPOUNDS Chloroform Sun: 1,2-Dichlorobenzene44 Sun: Dibromofl uoromethane Sun: p-Bromofluorobenzene Sun: Toluene'd8 International Uranium (USA) Corp-Blandin c01060297 White Mesa Mill C01060297-001 Matrix: AQUEOUS Report Date: 07/05/01 Collection Date: 06121101 l0:34 Client SamPle ID: WMMTW4-I sw82608 SW8260B SW82608 sw82608 sw8260B 6000 99.8 111 102 102 u/L o/oREC %REC %REC %REC 80-120 80-120 80-120 80-120 OBl2UOl 17:03 / rlo Ofl2UO1 17:03 / rlo 06/28101 17:03 / rlo 0tr28101 17:03 / rlo 0612E101 17:03 / rlo Report Delinitions: ND - Not detccted at the reporting limit J - Analye dctected below quantiotion limits B - Analye detccted in the associated method blank MCL - Maximum contaminant level QCL - Qualitycontrol limit S - Spike recovery outside accepted recovery limits R - RPD outside acccpted rccovery limits * - Value exceeds maximum conlaminant lcvel RL - AnalYe rcPorting lcvel Page I of 13 I I I I CLIENT: Lab Order: Project: Lab ID: Intemational Uranium (USA) Corp-Blandin c01060297 White Mesa Mill CO1O6O297-OO2 Matrix: AQUEOUS Report Date: 07/05/01 Collection Date: 06122101 10:42 Client SamPle ID: WMMTW '? 5500 ug/L 101 %REC 114 %REC 102 %REC 100 o/6REC I t I I I I I T I I I t I t VOLATILE ORGANIC COMPOUNDS Chloroform Sun: 1,2-Dichlorobenzene{4 Sun: Dibromofl uoromethane Surr: p-Bromofr uorobenzene Sun: Toluene-d8 SW82608 80-120 sw8260B 8o-120 sw8260B 80-120 sw8260B 80-120 sw8260B 06/28/01 17:46 I tto 06f2U01 17:46 I tlo @128101 17:46 lrlo 062U01 17:46lr1o 06/28/01 '17;46 1tlo Report Definitions: ND - Not detcctcd at the rcporting limit J - Anslyte dctected belowquantitation limits B - Analytc dctected in thc associated rnethod blank MCL - Maximum contaminant level QCL - Qualitycontrol limit S - Spike rccovcry outside acceptcd rccovcry limits R - RPD outside accepted recovery limis i - Valuc exceeds maximum contaminant levcl RL - AnalYe rcPorting lwel Page 2 of l3 T I I I I @D CLIENT: Lab Order: Project: Lab ID: International Uranium (USA) Corp-Blandin c01060297 White Mesa Mill C01060297-003 Matrix: AQIJEOUS Report Date: 07/05/01 Collection Datez 0612110l 09:04 Client Sample ID: WMMTW4-3 MCU I I I I I I I I t I I I VOLATILE ORGANIC COMPOUNDS Chloroform Sun: 1,2-Dichlorobenzened4 Sun: Dibromoff uorometlane Sun: p-Bromoff uorobenzene Sun: Toluen+d8 390 udL 98.8 %REC 113 %REC 102 %REC 101 %REC 50 sw8260B 80-120 SW8260B 80-120 sw8260B 80-120 SW8260B 80-120 SW8260B 06/28/01 '18:,28lr1o 0d28/01 18:2E t rlo 06t28/01 18:28 I r1o 06/28/01 18:28 / rlo OOl2U0n 18:28 /rlo I I I ND - Nor dctccted at the reporting limil J - Analyc detectcd bclow quantiution limits B - Analye dctected in the associated method blank MCL - Maximum contaminant levcl QCL - Quality control limit S - Spike recovery outside accepted rccovery limits R - RPD outside accepted rccovery limits t - Value excecds nraximum conlaminant lcvcl RL - AnalYe rcporting level Page 3 of 13 I I t I I I I I t I I I I t T I CLIENT: Lab Order: Project: Lab ID: @T Anatyses Result Units Qu4 RL QCL Method Analysis Date / By VOLATILE ORGANIC COMPOUNDS Chlorolorm Sun: 1,2-Dichlorobenzene-d4 Sun: Dibromofluoromethane Sun: P-Bromofl uorobenzene Sun: Toluene-d8 Intemational Uranium (USA) Corp-Blandin c01060297 White Mesa Mill C01060297-004 Matrix: AQUEOUS 3100 100 113 103 101 Report Date: 07/05/01 Coltection Date: 06/20/01 09:36 Client SamPle ID: WMMTW4-4 ug/L %REC ToREC %REC %REC MCL/ 200 sw8260B 60-120 sw8260B 80-120 sw8260B 80-120 sw8260B 8o-120 sw8260B 06/2U01 19:11 / rlo 06/28/01 19:11 / rlo 06l2UO1 19:11 / do 06/28/01 19:11 / rlo O6n8,rc1 19:11 / rlo I I I Report Definitions: ND - Not detected at the rcporting limit J - Analye derected below quantitation limits B - Analye detected in the associatcd mcthod blank MCL - Maximum contaminanl levcl QCL - Qualirycontrol limit S - Spike rccovery outside acceptcd recovery limits R - RPD outside accepted recovcry limits | - Value exceeds maximum contaminanl level RL - Analyre rcPorting lwel Page 4 of l3 I I I t @s CLIENT: Lab Order: Project: Lab ID: Intemational Uranium (USA) Corp-Blandin c0r060297 White Mesa Mill COl060297-005 Matrix: AQUEOUS Report Date: 07/05/01 Coltection Date: 06/20101 14:14 Client SamPle ID: WMMTW4-5 I I I t I I I t I I t I VOLATILE ORGANIC COMPOUNDS Chloroform Sun: 1.2-Dichlorobenzened4 Surr: Dibromofluoromethane Surr: P-Bromofluorobenzene Sun: Toluene'd8 240 ug/L 99.3 %REC 't17 %REC 102 o/oREC 102 o/oREC 10 sw8260B s0-120 sw8260B 80-120 sw8260B 80-120 sw8260B 8o-120 sw8260B 06/2&01 19:53 / rlo 06128/01 19:53 / rlo 062€l/01 19:53 / rlo 06r2U01 '19:53 / rlo 06t28/01 19:53 / rlo T I I Report Definitions: ND - Not detccted at the rcporring limit J - Analye detected bclow quantitation limits B - Analye dclected in the associatcd mcthod blank MCL - Maximum contaminant levcl QCL - QualitYcontrol limit S - Spike recovery outside acccpted recovery limis ' R - RPD outside accepted recovcry limits r - Value exceeds maximum contaminant level RL - AnalYe rcPorling level Page 5 of 13 t @sI I I CLIENT: Lab Order: Project: Lab ID: Intemational Uranium (USA) Corp-Blandin c0t06029'7 White Mesa Mill CO|O6O21'1-OO6 Mairix: AQUEOUS Report Date: 07/05/01 Collection Datez 06120101 09:58 Client SamPle ID: WMMTW4-6 SW8260B SW8260B sw8260B sw8260B sw82608 2.0ug/L o/oREC o/oREC %REC o/oREC I I I t I t I I T I I I I I I VOLATILE ORGANTC COMPOUNDS Chloroform Surr: 1,2-Dichlorobenzene{4 Sun: Dibromofl uoromethane Sun: p-Bromofl uorobenzene Sun: Toluene-d8 ND 100 114 102 102 80-120 80-120 80-120 80-120 06128/01 20:36 / do 06X28/01 20:36 / do 0012810120:36 / do 06/2eY01 20:36 / rlo 06/28/01 20:36 / rlo Report Definitions: ND - Not delected at the Eporting limit J - Analye detected below quantitation limits B - Analyre dctectcd in the associatcd method blank MCL - Maximumcontaminanl level QCL - Qualitycontrol limit S - Spike rccovery outside acceptcd recovery limits R - RPD outside acccpled recovery limils | - Value cxcccds nraximum contaminant levcl RL - Analyte rePorting level Page 6 of I3 t ETT CLIENT: Lab Order: Project: Lab ID: Intemational Uranium (USA) Corp-Blandin c01060297 White Mesa Mill C01060297-007 Matrix: AQUEOUS Report Date: Collection Date: Client Sample ID: 07toslot 0612010112:55 wMMTW4-8 NICLI I T I t I I I I I I I I I I I T I t VOLATILE ORGANIC COMPOUNDS Chloroform Sun: 1,2-Dichlorobenzene-d4 Sun: Dibromofl uoromethane Sun: p-Bromofl uorobenzene Sun: Toluene.dS 180 udL 101 o/6REC 112 %REC 103 o/6REC 't02 %REC sw8260B sw8260B SW826OB sw8260B sw82608 't0 60-120 80-1 20 80-120 80-120 06/2El01 2l:19 lrlo 0612U01 21:19 lrlo 06/28/01 21:19 lrlo 0612U0121:'19 I rlo 06/2&01 21:19 lrlo Rcport Dcfinitions: ND - Nol dclccred at the reporting limit J - Analyle detecled below quantitation limits B - Analye dctected in the associated method blank MCL - Maximum contaminant level QCL - Quality control limit S - Spike recovery outside accepted rccovery limits R - RPD outside accepted recovery limits * - Value exceeds maximum contaminanl lcvel RL - AnalYe rePorting level Page 7 of 13 @T CLIENT: Lab Order: Project: Lab ID: International Uranium (USA) Corp-Blandin c01060297 White Mesa Mill C01060297-008 Matrix: AQUEOUS Report Date: 07/05/01 Collection Date: 06/20101 I l:09 Client SamPle ID: WMMTW4-9 I I I I I I I T I I I I I I t t I I I ORGANIC GOMPOUNDS Chloroform Surr: 1,2-Dichlorobemene{4 Sun: Dibromofl uoromethane Surr: P-Bromofl uorobenzene Sun: Toluene-d8 59 98.3 112 't03 102 udL %REC o/oREC o/oREC o/oREC 2.0 sw8260B 8o-120 sw8260B EO-120 sw8260B 80-120 sw8260B 80-120 sw8260B 062e}/01 22:01 lrlo 06t2U01 22:01 lrlo 06128101 2:01 lrlo 06f28/01 2:01 lslo 06/2U01 22:01 lrlo Rcport Definitions: ND - Not detected at the rcporting limit J - Analye dctected below quantitation limits B - Analye detected in the associated method blank MCL - Maximum contaminant levcl QCL - Quality control limit S - Spike recovery ouride accepted recovery limits R - RPD outside accepted rccovery limits * - Value exceeds maximum contaminant level RL - AnalYe rePorting lwel Page 8 of 13 t I I I trE{T Analyses CLIENT: Lab Order: Project: Lab ID: International Uranium (USA) Corp-Blandin c01060297 White Mesa Mill CO1O6O297-009 Matrix: AQUEOUS Report Date: 07/05/01 Collection Datez 0612110l 09:50 Client Sample ID: WMMTW4-7 Result Units Qual MCLI RL QCL' Method Analysis Date./ By SW826OB SW8260B SW8260B SW82608 sw82608 udL %REC %REC o/oREC o/oREC t I I I I I I I I I I I ORGANTC COMPOUNDS Chloroform Sun: 1,2-Dichlorobenzene{4 Sun: Dibromofl uoromethane Sun: pBromofluorobenzene Sun: Toluene-d8 1100 98.5 113 103 101 80-120 80-120 80-120 80-120 06/2&01 2.:44 lrlo 0612E101 22:44 I r1o 06/2U01 22:44 lrlo 06/28/01 22:44 lrlo OGl28lO1 22:44 lrlo I I I Report Definitions: ND - Not detected at the rcporting limit J - Analyc dctected below quantitation limits B - Analfe detccted in the associated method blsnk MCL - Maximum contaminanl level QCL - Qualityconhol limil S - Spike necovery outside acccpted recovery limis R - RPD oulsidc accepted rccovcry limis t - Value excceds maximum contaminant levcl RL - Analyte rcporting lwel Page 9 of l3 I I I @{I CLIENT: Lab Order: Project: Lab ID: International Uranium (USA) Corp-Blandin c01060297 White Mesa Mill C01060297-010 Matrix: AQUEOUS Report Date: 07/05/01 Coltection Datez 06122101 ll:25 Client SamPle ID: WMMMW-4 SW826OB SW8260B SW826OB sw82608 sw82608 6300 99.0 117 105 101 I I I t I I I I I I I I t VOLATILE ORGANTC COMPOUNDS Chloroform Sun: 1,2-Dichlorobenzene{4 Sun: Dibromofl uoromethane Sun: p-Bromofl uorobenzene Sun: Toluene-d8 ug/L o/oREC %REC ToREC %REC 400 80-120 80.120 80-120 80-120 06/28/01 23i26lr1o 06/2&01 23:26 lrlo OGl28lO123:26lrlo 06128101 23:26lr1o 06/281101 23:26 lrlo t RePort Definitions: I ND - Not detected at the rcporting limit J - Analye detected below quantitation limits B - Anallc detccted in the associatcd rnethod blank MCL - Maximum conlaminant level QCL - Quality control limit S - Spike recovery outside accepted recovery limits R - RPD outside acccpted recovcry limis t - Value exceeds maximum contaminant lcvel RL - AnalYe rePorting levcl Page l0 ofl3I I t I I @T ry CLIENT: Lab Order: Project: Lab ID: International Uranium (USA) Corp-Blandin c01060297 White Mesa Mill C01060297-0l l Matrix: AQUEOUS Report Date: 07/05/01 Collection Datez 06121101 09:04 Client SamPle ID: WMMTW4-10 320 ug/L 97.9 o/oREC 116 o/6REC 'lO2 o/oREC 'lO2 o/oREC I I I T I I I I t I I I VOLATTLE ORGANIC COMPOUNDS Chloroform Sun: 1,2-Dichlorobenzened4 Sun: Dibromofl uoromethane Sun: P-Bromoff uorobenzene Sun: Toluene-d8 SW82608 8o-120 sw8260B 80-120 sw8260B 8o-120 sw8260B 8o-120 sw8260B 0012910100:09 / tlo Oilzgl0'l00:09 / rlo O6ngn1 fi):09 / rlo 06/29/01 (X):09 / rlo 06/29/01 00:09 / rlo I I I Report Definitions: ND - Not dctected at the reporting limit J - Analye detectcd below quantitation limits B - Analye detccted in the associatcd method blank MCL - Maximum contaminant level QCL - QualitY control limit S - Spike recovery outside acccpted recovery limits R - RPD outside acccpted rccovery limis i - Value cxcceds maximum contaminant level RL - AnalYe reporting level Page ll of13 I I I t I I I T @T &[? z/' CLIENT: Lab Order: Project: Lab ID: Intemational Uranium (USA) Corp-Blandin c0t060297 White Mesa Mill CO1O6O2I7'OL2 Matrix: AQUEOUS RePort Date: Collection Date: Client SamPle ID: 0710510t 0612110l l2:ll wMMTW4-l I VOLATILE ORGANTC COMPOUNDS Chloroform Sun: 1,2-Dichlorobemene'd4 Sun: Dibromofl uoromethane Sun: PBromof uorobenzene Sun: Toluene'd8 Report Dcfinitions: ND - Not dctccted at thc rcporting limil J - Analye dctectcd bclow quantitation limits B - Analye detected in the associatcd method blank MCL - Maximum contaminant lcwl QCL . QualitYcontrol limit S - Spike recovcry outside acceptcd rccovery limits R - RPD outside accepted recovcry limis * - Value exceeds maximum contaminant lcvel RL - AnalYc rePorting level Page 12 of I3 sw8260B sw82608 sw8260B sw8260B sw8260B 3.0 uS/L 102 %REC '118 o/oREC 103 %REC 102 %REC 80-120 80-120 80-120 80-120 06/29/01 00:51 / rlo 06/29/01 00:51 / rlo 06/29/01 00:51 / rlo 06ngn1fl):51 / rlo 06t29/01 00:5't / rlo I I I I I I I t T I I I I I I @s CLIENT: Lab Order: Project: Lab ID: Intemational Uranium (USA) Corp-Blandin c01060297 White Mesa Mill C01060297-013 Matrix: AQUEOUS Report Date: Collection Date: Client Sample ID: 07105101 06122/01 13:50 WMMTW4-Comp ? MCL/ sw82608 sw82608 sw8260B sw8260B sw8260B 100960 ug/L 101 06REC 118 %REC 103 %REC 103 %REC I I I I I I I I I t t I VOLATILE ORGANIC COMPOUNDS Chloroform Sun: 1,2-Dichlorobenzene{4 Sun: Dibromofl uoromethane Sun: p-Bromofluorobenzene Sun: Toluene-d8 80-120 80-120 80-120 80-120 0612910101:34 / rlo 06129/01 01:34 / rlo 0d29l01 01:34 / rlo 06129/01 01:34 / do 06/29/01 01:34 / rlo I t T Report Delinitions: ND - Nol dctected at the rcporting limit J - Analyle detcctcd below quantiution limits B - Analye detcctcd in thc associated mcthod blank MCL - Maximum conuminant loel QCL - Qualitycontrol limit S - Spike recovery outsidc accepled recovery limits R - RPD outside acceptcd recovery limits r - Value excceds rnaximum contaminant level RL - Analyte rcponing level Page 13 ofl3 tsdN @o?=OEl'-qd -(Lt,t =BUE Rd2$trcr5(D&u) G o G o(L Etos46rEN-rl, 3 -9tiidrEF =cB# 5 CJ ouies { CD,..6 '=!o)t .Ytr(Lfro*B eEE ECP= YH?. h ro-oBe d9othot- A H E =GEaiAo=F-E c(oktD U) .i) EE6 gEt= E= ci -qog EB636 € ESENroo OEl-96 ILotr- =!8H Iii 2$co5o)tth 6 oE ooEtosn6)EN': roE .9iiii r aEooo=03 Eo.€ aCJ oul G,s { CD ..6 :5!o)E .Ytr(L6o*8 eRE E?= Ygi h idi;Bg -aoo- -o 0)F O R E =Erso FN EG ECDq .r)EE6 EEt= E= cis? s.EE E \ I. v Q.t, o o !o F o 6 o c o Iq o o Ec o E o oo.a€:o o.oIoGo o o o.uodo,JI ql ahI u)l ooooo EEEEE --f?- ooooo EEEEE -F-FF ooooNSlol(\l Fil Fr rc& >ltll<, EIra,a1)a Uo F1 U-FIEI z E :j DOE.: ag Id o 6 0 Io o oz cz U) oooooN?-Fr =s c0r U cn .E >)z 6x.GlEb.B.E8> Et.eg5< iQ> 0) zw 6E!.* QU' i |, I t I I I I I I I I I I I I I I I I I |Nl ooooo ooooo oooo oooo t'r tr(n I =I \o6r co IUo G) o Q U'q)F { q) G! ooooo(7'(o(, 8888 fi=pE ooooo(rNNO,l (\l R8888 +(o0to,SSSPE 60000(')6t(\tNGl ---FF oooooF66@G0 (OF-atNcro6loo F-FF- oooo oooo FrF- qoooo crooooL-I\OlC,af,-Oc)-(V)ooloo --Ff- 88888gEPSE^(Dfi)o)(t=6)tot--oiJoo E o xeE €EE-5€<T .HEEEts;OoFE;;;; 5 ocoNgo!o 9co 9d,ktr6o,6; c!F ov) ogr!c. o Eo ot o EI€o o tE ocoNtr,o -oo -9 llo EN. o 96 .c,o $eeqr60E<N H E€ E:Ee EEEEe9egE:3'dP€uuuu E==f=y6Aoq o 6saAI(9e f.=OEl'i96F(Lct, t =o-6UE Ro2$co =oEU) 6 o E, o(L EGoN= @E6.-i art Eo, idi, =AA=Eag).Es'0 d[ - ?J {o ..6 !o))E .Ytr(Liq)*B E;ao=Fs s?= Ygi b a;6EP d9oooF Y=dHi fi =Er6AcL= Fia-YtroEroo :* Jtr G6 !o o =cise s Eb E36 & Gt_ot..o9 ao b9 Fb 8s :::ti xi+€a-fii.\4:E :;.i!:\ a: .FF i i:, -..t iv-a='-,rcj3i= == laR. =: s a =-a9?:< 2*-it <r.; Ei@: Edi!di.r \$€r HS i!i F ='tadJz cii E9 == \i9 Ejsr! iEnnii*!s !.:,r . Eg a*'t =et2g@-'2a!'Us-i.i arrilq! N.;6rdi+i;i !'i.i ;: r: = .:: '':: -'=zaa =E? =c- o-9 o s9r g.:s! ..E *E -> 5dz €cEP(J -! (' 1= id :tt ;= ..: ={ x{?* 3 E##-s -) a ut1 e u ! n u o ! tela 6 an s p ! I os ts il og r aPM r lV O n A S 1yi Y:edt1 aQwes I{ 's ? t--f5 5 g d{j RR ii o()I o6 o E(E =o(B coo \c €I ns QoGq : --'t E e E .p' lD boc.E tt 0)E (j e (!c Or {g s. Eo oootr o uJE zo CI' ';.J UJr 1- Eo z trr ulo lrJJ o- a n<cU EA E"xjQ .9''-titq>\LJ U E\o e\ 'frr(\U I t I I I I II: =Eolrz o N .9 {g I I I I t t I T I I I I I I t T t aE.'69 o() U)o b9 tsL Co U 0 0 C) o (E oo (h V2z Q- F( v')z z v) a * Eo Eori t- o 5 ra !.1 rI] V) e) tg() E .n 6l aa ft c) o €JF GI o 6z g, G' (J c) o c)v)ct e) 0 6J0or o! (.,6 F 6)q v) L ii;e-ls\ '4,A + 1,R R ESS q)$!. SiE E S\o(\r 6 n<R-. lrJ .iETxs= Ooo ft-Pt4 C'8.8 l\Qts.2=(S- 5 .q':v60?Et-i.t rrtfr Elasd; Eii x <.Qed !a .. .E t s$ tl]sLl ESSE{v) 5 gsE 3 () 0q) (l)& q c) (q a oo. F ro ,/zH 2) A eZfS n1tj a4ulf uolonEafi sp11os1q1ol nmft t1-y O n A S il Y:ad.(1 alduog staupluoc {o nguflN itj d il3JrsIFiGJ(4 :l- J. 0" l gr. r,b 5'r I' :td -l iisg t ta *$xrrfiJ bS;\osE\a ,s\I-no.r i Ee o\ EJz\+riEs'a i1ic{ >r >\ *r-c\ t, 1)o!l o :0 t) (, a)t) C)E t! Do 3 o ()& 6l I 6 a0 >r 't,i) cr .E 6)& + o 6cct) D () C)o C)* q) L 6 ao x () .z c)(,o& ru L € olta D ru o& I Energy I'aboratories, Ittc. SA}!PI,E COIIDITION REPORT Irnr" report provides informaEion about the condiEion of Ehe sample(s), and assocated f="*pfe Lr"t,oay information on receipt at the laboraEory. IC1ient: InEernationaf Uranium (USA) Corporation Description: WATER lil-i; i=l ' -or-t3939-1 rhru 01-33939-1'4 Matrix: r'iquid,Misc Delivered by: uPS DaEe&Time Recrd: 25-,JIIN-01 I'ooo Dat,e&Time cof 'd: 21-\'LN-01 1034 ae"-.i".d by: Sara rlawken Logged In by: Tabitha Fasset't l"n"rn of custody form complet'ed & signed: Yes comments: Chain of custodY seat: No CommenEs: rChain of custody seal intacE: N/A Comments: lJi"".t"re match; chain of cusEody vs. seal: N/A ConumenEs: riiipr. received TemperaEure: 5c commenEs: i".ii"" received wiltrin holding time: I"t comments: Is"*ii"" received in proper containers: Yes commenEs: ls"*ii." Properly Preierved: Yes comments: -Bottfe tlpes Received: 39-40!& VOA NP ECL(ABC) I "o^.o." i I I I I I I t I I I t T t I I I I I t t t t T t I I I I I I l rg^lgiitd-/ Billlngr . CerPor Glllrtlo Helene. RlPld CltY ENERGY LABORATORIES, INC. SHIPPING:2393 SALT CREEK HIGHWAY . CASPER' WY 82601 MAILING: P.O. BOX 3258 ' CASPER, WY 82602 E-mail: casper@energylab.com ' FAX: (307) 234'1639 PHONE: (307) 2sil515 ' TOLL FREE: (888) 235-0515 LABORATORY ANALYSIS REPORT Client: INTERNATIONAL URANILTM (USA) CORPORATION Contact: WaIIY Brice Sample Matrix: Liquid, Water Date/Time Received: 0612612001 10t00 Report Date: JuIY 11, 2001 NOTES: ( I ) These values are an assessment of analytical precision. The acceptance range is 0-2002 for sample results above l0 times the rcporting limit. This range is not applicable to samples with results below l0 times the reporting limit. (2) These values are an assessment of analytical accuracy. They are a percent recovery of the spike addition. ELI performs amatrixspikeonl0percentofallsamplesforeachanalyticalmethod. msh: r:\reports\clients200l\international_uranium-corp\liquid\33936-1-l3.xls r-i t: -j Laboratory ID Sample Date / Time Sample ID Nitrate * Nitrite as N, mglL 0t-33936-r 0612112001 10:31 WMMTW4-I 8.8r 0t-33936-2 06/22/2001 10:38 wMMTW4-2 9.67 0l-33936-3 061211200108:58 wMMTW4-3 2.61 0r-33936-4 061221200109:34 WMMTW44 14.00 0t-33936-5 061201200t 14:09 wMMTW4-5 6.47 0L-33936-6 061201200109:45 wMMTW4-6 < 0.10 01-33936-7 O6l2tl2}0l09:50 wMMTW4-7 2.65 01-33936-8 0612012001 1,2:51 wMMTW4-8 < 0.10 0t-33936-9 0612012001 11:00 wMMTW4-9 0.15 01-33936-10 0612212001 1l:20 WMMMW4 9.02 0l -33936-1 1 0612ll200l08:58 WMMTW4-10 2.96 - 0t-33936-12 0612112001 12:15 WMMTW4-I1 3.19 r t9i\Et..tyl 01-33936-13 0612112001 12:17 WMMTW4-12 0.66 ) Quality Assurance Data Method EPA 3s3.2 Reporting Limit f&S,,, I RPDI 0.0 Srik.'97 Analyst rwk Date / Time AnalYzed 0612712001t4:18 GO]UIPLETE ANALYTTGAL SERVICES Es9q)(,to-tr*8;s FE 8s iq+<l-:i n.?4:< =:--:'i.!!:* =Rai-i-'12'. t?-r -;t ir-1F;i-<c ? = ae 24 itjfi.=za=qE: lc-ci =cir !d N:€i.st ES i'i : ? ta sf ii LAr{t EIti:* E!$ i ':- ,i E3 >a'c i.. t= -.ia? iJdai axr E+€9 a.g e: =s$E.:.: .t..: 2-.=zra- Bd- & 3HE82eE;o)c'th =t€ Fld'llfllr I Pg- -EE I #EA oz z TJ teUA iupn uottereiefi sp11ogp11og )aP-A tlv O n A S lA 7:edt1 eldweg .R l+. \)lf) I t^ $L 5;t4 TJ nl GlNIct lalrlt d oco o- 06 o E Gz o(E 5 {q,<s QoGq oll_ e Gc.9b bos.a e (l)t ct E Gtr Or {g\s!q) o()ot e Gc.9o a IJJ G =kzoa t-Guloxlrlzo E =Eo]L = atrcUFIlJtrdxHatP5?)2RhJEFr OvuJ r-l/) A. IlJ\)Jeo'\ EU I I I I I I I I I I I I t T g (Ec.9 {g!o se€ot N g $c.9 UI s.6Eo o()otr la lS t, !*HEE tftB fiEr : $E r$ o $ Ot {g I T I T E* H. .- g)ra |ao i9 =-si o-9-c7ZZ-<' \- \-9rs i.; tt ..r Sfi6 EB -. 2d'X!oEU-Aq_e aEOEiA:= ... -. t rl'-,i< d,:. ,?*; ai-- a: ==ci-i-.at:Z i== -;t iv,i =;. RSaa .e = ?. .t >ri e7.E ol 6=trii isEE€<}(i =.9 =a 't >a,,z E, 3=tsssi:i:*!! i.:.! = = = .t a l=a*'r-;ii2 2c3uci.i *rriJs-!:.I Di{.i'riii>15 < i- ='i.i,:< E3 . t! -:iil={- jaqtd euy|l uolepbart spltos/slloS rc$il 4V OnASl4y:edtlatdwes rJ I rl a d{t !A ii oa-otr G-.€rFo;/< it$i \c :TJQoGq ,p I EnerqY lraboratories, Inc ' SAI-{FLE COIIDITION REPORT I :ffi,:'::::"ff"Iii:n#i:fl::'::.:ilI'.:T":"Hi:i:l"l:.the sample (s) ' and assocated I:H'i;i"i?';ffi!};?:i "ilfol5ll,::f1"-:"f]il.=r.: -rieui! DescripEion: wArER Deliveredby:IIPSDate&TimeRecld:25-.]I,N.ollooooatectimeColtd:21-iIIIN.011031r Received by: Sara Hawken Logged In by: KerrL Schroeder I "n"rn of custody form compLeted c signed: I"" commenEs: Chain of cust'od| seal: - No Comments: I ikttii="=*rli,!mil":i=;::'*' vs sear' If i*iiiii I liffii:= ,i*i,i$ f.[h::'::H":;:::' i:: ::ffi:l::: Bottle TlPea Received:I C@eBEa: I t I t T I I I I I I I .- ,- i^ -. r-, ^ t^, f .-, : :'i iJ ij '. U ;' t Energy taboratories, IDc. REPORT PACKAGE SI]MMARY FINAI, PAGEI lo--, ELI-G FI:l co Ji": NA ffi,- NSD - Energy Laborat.ories, Inc. Energy Iraboratories, Inc. Energy Laboratories, Inc. Energry Laborat,ories, Inc. Carry over from Previous Insuf f icienE Parameters Not Applicable Not AnalYzed Analyue Not Detected at StaEed l,imit Analyte NoE RequesEed No SamPle Time Given No Sample Date Given Acronyars and DefinitionE - Billings, Montana - GilletEe, wYoming - Helena, Mont,ana - Rapid city,South DakoEa sample of DetecEion Client fll:l:clientclient [ll:l: Client. Gii:r: Client tcrient ID: l{M}lMW4 is associated to Lab ID: 0L-33935-10 ID: }IMMITI4-I is associated to Lab ID: 01-33935-1 ID: WMM[W4-10 is associated Eo Lab fD: 01-33936-11 ID: lilMt{tW4-l1 is associated t,o Lab ID: 01-33936-12 ip, wr,omwf-l2 is associated to Lab ID: 01-33935-13 ID: Wt{MrW{-2'is associated to Lab ID: 0L'33936-2 ip, rvlomca-3 is associaued Eo Lab rD: 01-33935-3 ID: l{Mlr!TW4-4 is associated to Lab ID: 01-33935-4 ID: WII!f;['tv{-S is associaEed to Lab ID: 01-33935-5 io, waaarwf -5 is associat,ed to Lab ID: 01-33935-5 io, waomm-7 is associated to Lab ID: 01-33935-7 ID: WlrltrlTW4-8 is associated to Lab fD: 01-33935-8 rD: WMMIII{-9 is associaEed to Lab ID: 01-33935-9 I I I I I t I I Approved BY: This is the last page of the LaboraEory Additional QC is available upon reguest ' The reporE contains ghe nudcer of pages Reviewed BY: Analysis RePort. indicated by the last 4 Ti?.nCiiii!l i:t.r. PAGE liO. \.! digiEs,^ .^ -i -t :ibI0iicI Nov-09-01 l0:10am From-lUC BLAttDlt{G 8Bl 678 2224 T-555 P.092/gl? F-725 T lnternational Uranirun (USA) Corp JrJ O" CIW Sanpling - white Mcsa Mill Lab Order: Report D8te: c01090685 10/I6/01 4 tn'l -\ s'^ = l/s'19\'*l I t Llb ID:c01090685'001 Collection Dste: pajgf,sssived: Matrix: Method 09/20/01 10;52 ogtz',lor AQUEousClient SamPle ID: WMMTW4'2 AnalYsis D:!lc ilBY Result Units AnalYses t I voGs Cnloroform Surr: 1,2-Dlchloroberrzene'd4 Surr- Dibromo0uoromethane Sun: P-Bromotluorobenzene Sun: Toluene'd8 4900 101 93.5 83-0 e5.6 ug/L %REC %REC %REG %REC 400 80-120 B0-120 80-120 80-120 sw8260B sw8260B SW82608 SW826OB sw82608 1O/M,01 00:56 / rh 1OrO4/01 00:58 / rh 1O/M/01 00:56 I rh 1O/04r01 00:56 / rh 10/04/01 oO:56 ' rh I t Lab ID:co10906E5-002 Collection I)ate: DateReccived: Metrix: Method 09/20/01 10:25 ognstol AQUEOUSClient SemPle ID: W}IIMTW4-3 Mct/ RL QCL Analysis Date I BY Result Units Qusl Analyscs 100I t vocs Chloroform 300 102 109 88.8 96.S ugrL 0/"REC %REC %REC %REC B0-120 B0-120 B0-120 80-120 SW826OB SWE26OB sw8260B SW8260B SWsZ6OB 10/0201 ?2z3O I th 1o/O2IO1 22:30 I (h 10/0201 ESOlrh 1WOaO1 z:3Olth 10/0201 22:.30 lrh Surfi 1,2'Dichlorobenzenel4 Sun: Dibromofluoomelhane Sun: p.Bromofl uotobenzene Sun: Toluene'dB I I Lab ID:c01090685-003 Collection Date: DsteReceived: Matrix: 09/20/01 10:50 a9n5l0r AQUEOUSClient SamPleID: WMMTW4'4 MCIJ ArralYsis Date / BY Result Units Qusl RL QCL Method AnelYsesI I I vocs Chloroform ggs; 1,!'Pichlorobenzened4 Sun: Dibromofl uoromethane Sun: P'Bromofluorobenzene Sun: Toluene'd8 3200 ug/L 101 %REC 107 %REC 88.9 %REC S6.5 ./6REC 200 swB260B 8G'r20 sw8260B EG120 SW8250B 8&120 sw8260B Eu120 sw8250B 10r0Zo1 23:11 / rh 1OrOz01 23:11 , rh 10/02/01 23'-11 I th rc(,zt}1 23:-11 t rh 1O,O?01 23:11 I rlt t I I RsFort De[inilionr: ND - Nor dct*red at thc rePoninE lirnir g1 . 5plY6 rcPgrring lcvcl QCL - Qualiry eonlrol limir MCL . Ma:timum contaminrnt tcvcl I :';.... T-555 P.003/012 t-7?5 '8 - CasPec WY8260z wwnercryybb,com LABORATORY AI{ALYTICAL REP ORT I Clicnt: Proiect: International Uraniurrr (USA) Corp 3rdQu CIW Sampling - White Mesa Mill Lab Order: C01090685 Report Date: t0/16i0i I I Lab ID: C01090585-0M ClientSamPlclD: WMMTW -S Collection Datc: DateReceivcd: Mrtrix: Method 0980/01 10:05 09125/01 AQUEOUS Analysis Date / EY MCIJ RL QCLResult Uoits QualAnalyses 20ug/L %REC %REC %REC %REC 240 100 92.5 82.8 s4.3 I I voGs Chlorotorm Sun: 1,2-Dichlorobereene{4 Surr, Oibromolluorcm otltane Sun: PBromofl uorobenzene Sun: Toluene'd8 8G120 80-120 80-120 8G120 sw8250B sw8260B sw8260B SW825OB sw8260B 10/04ro1 0'l;37 , rh 10/04/01 01;37 / rh '10r04/t1 01:37 / rh 1OrU4r01 0t;3i, rh 1o/04/0'l 01:37, rh I I I I Lab ID: C01090685-005 Client SsmPle ID: WMMTW4-6 CoUection Date: DateReceived: Matrix: 0920/0109:16 a9D5l0r AQUEOUS vocs Chlorobrln Sun: 1,z-Dictrloroberzened4 Sun: Oioromofluoromehane Srln: PBromolluorobenzene Sun: Toluened8 ?-o3.6 udl gs.o %REC 100 %REC 86.S %REC 98,1 %REC 80-120 8G120 sG120 80-120 sw8260B sw82608 SWE26OB sw8260B sw8260B Anatysis Date / BY 1Or0U01 13:21 J rh 1UOU01 13121 /rh 10/03101 13:21 t ?h 10103101 13:21 , rh 'lO/03/01 '13:21 / rh t I Lab ID: C0i090685-006 Client SemPle ID: WIVIN{TW4-7 MCL/ RL QCL Collectiou Date: DatcReceived: Metrir: Method 09/20/01 10:43 09nsl0r AQUEOUS Anelysis Date / BY Rcsult Units Qual AnalYses 12W s8.9 98.6 88.7 96.2 I I I vocs Chlootorm Sun: 1,2-Dlchlorobenzen+d4 Surn Dibromofl uoromethane Sutr: PBromofl uorobenzene sur: Toh:ene-d8 UdL %REC %REC %REC %REC sw8260B 8O-120 sw8260B 8S.120 sw8260B 8$120 sw8?608 80-120 sw8250B 1O/03O1 14-.02 t th 1O/08/Ot 14202 lrh 10rcU01 $:A2 lrh 1o/oEol 14:02 ' rh 1O/OEot 14$2lth I t I ND - Not dctcocd cr thc rcponing limir MCL - Mlximuro contaminant lcwl RL - AnalYtc rcponing lwel QCL ' QualitY conuol limitReport Dcfinitionr: 't Lab Order: C01090685 Report Date: 10/1tr01I ;::",::'., International Uranium (USA) CorP 3rd Qu CIW Sampliug - White Mesa Mill I I Lab ID: C01090685-007 ClientSamPleID: WMIVITW4-8 Collection Date: DateReceived: Matrir: 09/20/0t 09:a6 09125t0r AQUEOUS Anslysis Date / BY MCL/ ru- QCL MethodResult Units Qual AnalYses I I vocs Chloroform Su rc 1,2-Dictrlorobenzenq'd4 Surr: Dlbromofl uorc)mehane Sun: p-Eromofl uorobenzene Surn Toruened8 180 ug/L 99.4 %REC 102 %REC 87.8 %REC 95.9 %REC 8G120 B&120 80.120 80-120 sw8260B SW82608 sw8260B sw82608 sw8260B 1003101 14:43 / rh rU0V01 14:43 / rh 10,03ru1 14:43 / fi 't0r03ro1 '14:43 , th 1or030l '14:4!l / rh t Lab ID: C01090685-008 Client SsmPle ID: WMIvfnV+g Collection Date: DateReceivcd: Matrix: 09/20/0109:31 0912510r AQUEOUS I I T vocs Chloroform Su n: 1,2-Dichlorobenzene'd4 S urr: Dibromofl uorgmothane surr: rBromonuorob€nzene Surn Toluene'd8 19 ug/L 89.2 %REC t2.t %REC 84.8 %REC 97_3 %REc 2.4 sw8260B sw8260B sw8260B sw8260B sw8260B 10/04/01 9227 I rh 10104/01 0227 I rh 1U04/01 o2t27 I rh 10104/01 02:.27 I th 10104101 02227 t rn 80-120 8t -120 8G120 80-120 I I I Lab ID: C01090685-009 CllentSamPIeID: WMMMW4 Collection Date: DateReceived: Matrix: 09/20/01 II:20 09nslor AQIJEOUS Arrl!,sis Date / BY MCI-/ RL QCL MethodResult Uuits QualArralYses vocs Chloroform Sure 1,2-DichtoroberEened4 Surt: Dibronlofl uoromethane Sun: PBromofl uotoberuene Srrn: TolueneJ8 5300 142 102 87.2 96.7 ue/L %REC %REC %REC %REC 400 sw8260B 8&120 sw8260B 80-120 sw826oB 8e120 sw8260B 80-120 sw8260B t0/03/01 16:04/rh 10/03/01 18:04/rh 'l0ro3ro1 16:04 / rh 1tv0u01 16:04 ' rh 1U0U01 16:04/fiI I I I I Rcporr Dcfinitioos: ND - Not derctcd ar drc rcportinS limit MCL - Me:(imum conurninant levcl RL - ArtolYc rcPoning lcvcl QCL - QurlitYcontrol limir .'l-:, t i^i., tl- a:; l.:r.!., . r! t .. , rl\-L i-:,:1.:" .'.rC ,ra;utr;;,sfrri'#;r;;,,#' .EEE@W I LABORATORYAIIALYTICALREPORT t-725 I Clicnt: Project: Interaational Urarrium (USA) Corp 3rd Qtr CIW Sampling - White McsaMill Lrb Order: C01090685 Report Date l0/16/01 I I Lab ID: C01090685-010 Client SamPle ID: TriP Blarik Collection Date: DateReceived: 08i22/01 1020 09t25tol Result Units Qoul Matrir: AQUEOUS Method a-ualysis Date / BY MCI,/ BL QCLArrlyses ND uE/L 101 %REC 'toz %REC 86.7 %REC 95-7 %REc I I I I T I I I I t I I vocs Chlorobrm Surc 1,2-DichlorobenzenB'd4 Sure Dibromofl uoromelhane Surc p-Bromofi uorobenzene Sun: Toluene'd8 1.0 sw8260B B0-120 Sr/v8260B 80-120 sw8260B 80-120 sw8260B E0-120 sw8260B l0/02101 15:59 /rh 10/0?01 16:59 / rh 10/02,01 16:59rft 1U0?,O1 16:59 / rh 10lo2to1 16i59 / rh Rcport Delioitio4t: ND -Not dercctcd ar rhe reporting limit MCL - Maximufi conteminant levcl RL - AnalYtc rePorting lcvcl QcL - QudiEY sontrol limit .'.:. i,iiE ,l0il'i0 I I Tr r 1t'1t11r ttr !r,.rt . t-'',r ir v 6 E o t d't- ae uE c r0 u a)! o 6 EE !.E t o2UC E=osaba>90qo oL9EEs*d3z.HPo6P U= o.go'*H cAE .E c-5.EooE,=E ri9E o5 =-tctEEE uOjJ-dO E2eoizE,<oz 0Ec ,-dll: !!.'=,lL Jrg (!HEoq ? OEl.-q6 o-l/)NtEE!DEE e42s5sto E o E.o o_F[rcCt.rl =oE GJt'E g -es r Glgdt]=.o-qEg'E tE-og eJ V=ds E =tE 8.H Fo.! e(Dh6U' lt .vc lE EE0t ., trt,ea, Eb E3E E {o=_.. .98>5p .YF.n 6a)+B EEH EqB Yulu, bYPUfiBP d(J o- -ooF T-555 P.006/012 F-725 crooo 6000 80r 578 2224 creeo oooo l0:4lam From-lUC BLAllDlllc oooo oo()o q !)o oo EF H\E, GIE Ba oo fl o B E Irt 0_ m u 4 II I v rd ld E, U J u Bg p1 tD NT .q '(r, NNoa HEcg);B< tr h: {6uo oUl dt .oN()-$lFoox9 8,= ig0.I o =alu Eol- Eoo 5 (5 Eutzlg Z t,c,F tst4F(c Br rdd il EIaIz,)a Uq J U t'r>\t- z o(fcO(\t(\l(\N a3000cocrap€ @FO6(r(,o*tri -b(D oo(roN(\t(\t(I FF-F 6CloQrb(rrEQ ?o(Dd,oOuiotrfao oQo(, eooo -cFr ooCOo oOOQc! q{ ol F{ EBBB a6?(DaD",=bg oOOO oooc €r6OC' oooor-Fr ooOeo Cr6O(rO 2B:EH =E do^[)5EUg ?A rr 3rYuoFC 3;.EH p(A GotrrE6hq \o L,, E8&9EEr= (J r"t Hoo6EEc-EPE Etr l--oOAo€EE. EEEEal 699 E:8:rE -LLUL_i =1b r:,trJtr,^ r.,-l9 lD,Ci-UL,A: ' : .- -r.6 Tns EE H EEEIEEE =-oodt()FF.CFEEgcc.t44EE --E BF Et=E=E.n a cD u, o ;odYCCo(EoF€trEEE0,Ho EEEeUEEVE-aod,()FI-EOEEgtror€qEE--OEFEEus=i=r==y66U)A' Eo ;:q, HE.B UF9. A6(\I(f,'G'z-EiEno(rrO)ao7-cls?6i-oo@ -6gE 6o t':6EQ. Efo_AE = r(,E$ Be2H5sd- U) EJ 0,rac?E-ctcR= NE oJ FB Igg6.urio eoeEEE tsr6D FJ EH =E HciIr'aljESbF(t) It -vtrB E !toE oE ci;e oE-ri E-EB E6-E 6 ..E:5fl EE6 t') EB cEE E?B Yt? b>zidt;EP d(JE- doF -ga 66 f c)E| ..:e6FO-11, € t-!'0;(OEs gEz S5gt, (t) 6 q,tro o-?Ee,es!+?E oJ Ea =@6'EE eao!o6JE+ E ED5__Eo>-:rDJE. \zFnfr .r, *g eAaO=ES sGPE X82 B i66EP d9o-ooF EE E e=F-E EtEEE CD {tv Eg E !c 0,1 ci;e c, a=*Eb-rom=E ;uw-oe-ot I t t I I I t t I I I I t t I t t l J'E d Eo 2 E .T B E 0 Eu o EEo dc E I E = E. o9U.:UCE.: o\AUtsaoxdE !E'ayEB bHEs &E -9oa= uC 2 -ts'E= E.E EE Odr=OF qo*6 o€ 196 -c5d:aF o+2 u E. ^--o ;'', 'r n:" ' il rOHA6c:OEl-96?(Lgfl G NFus Rn22 Fco =q,tu) 6 oleoo -0f-eatN=hE atJ --t -gli{s r 8A ==a-9 +(DO-tE+! 6 GJ4 gE -E 8.8 BgE.Dhco ct <t C'Ia, ecn<, co tri6(1 oa=;EtsEE6 E cE!3_ ..(E:!q,JE. -:< =o-aatsg s.iG=Fs s?= YHi a =96qEg -aOL 6 @F slt 6t8 2221 crooo ogoo oo6ONNN$'Fr-- B8B8 ooOo T-555 P.00ll0l? F-l?s ooooo ooooo l0:4lam From-IUCBLAllDItIG C'E'OQ o(roo oooON(\IC\C{ EBBB Nrd)eoo.idF-a6o) sOoO oooO ecooo 6J(Jo oo gtr /\.o ca@fi(n 60000c, t! $r $l (\l ?F!-FF ooOCOh€e6@ <-@ortOoOO.r;ll.jGrr6O oq F- s? .! CD ,\ It (Dc)ocos) 6-zFl 'iUFoFA trlil t{FLI IJar-a t)a UoI U-E- -FI{z 3 Gt6dD5EUgEFqlt Yo!ts.E =-l-1 trLU@EhEl =v)EgE.9tru EB&1!i'u.su5 i @ z"-6qET Q7t ocroOO ooooc,to u) r, lf rf, oooood ogcQBBIS6000 rFFF oooo osrO.I:rO--:dF:a|\tOtONclt-r')$q e9B*6- 6'd cd oi oc CI r.lEolEc, 9.oEo96bE6A'qE o- t- ii i:i-4, a,.'r.'a A Al .t''," ' r' -r 'l '] li';:,!..,,) oc.gf oFo o to E P_oo at) ? a, Loilco-ao E do =ctbF o.6 Ea o,c 0)nlc o,Eo !o sdttscoo)+lqE NF c-l.: o) <t 0,troE oF Eo feoF P .Eo ,ll, E' @ @NEd,-oPo!o N -. f at) iep HEEtrPE .E E-EPEBeUEBgEOqdrOFhEaEge -EiEE-E-a .. ., ., -.:LsbL6AAAA -co os6eo AEI-qd 6 o "*FSEs Re2 *ee EET =OE (t) tg dl E. o o_Esr,gs4 E €lJ gqs 6.Eoo EES i6-f BcJ { ED5..8 bll,) v IoEB oER #r{!O},9B yH? U 2a; iiEe d(JrL 6oF 2,E:l t42 S e iiA EEEa!kd ch o,aI6?EBE =or=E'1+.EEE o6Ei o, =?4E6l!E6 E EsdC'c) C'Ee'e 4U, 6Ir E-!E6g$ RaEseo =oE at) E:r (l,Eoo-?tr()or{=slE OJ E -g-oc88.E auj.=6'EJF:i)ftcEJ J(,:, -- ad -Jg, vFfr ..t ts8 c;G=F$ so=:(o -vt -qO,.ul &@E,g d()o n(D F !!= =!P dg$ n iri A Er'a JJEacEog, itt .*q E d o-c oE ciEo o, EbE6-F , tlov-oe-ot I I t I I I I I I I I I t I I I I t iraE TD o o ! cI d r)E E EU I o'o 0E E (D 3 E b >6rdo--CE E=!BbEU 33 oFrCE'-.9 =d=UtsHUo6P!E&d '= a-Bd IA E, I .= :E J.OUE '=LEoor=odCsqa dO !B d;EU9= g6d:65 ,Ea;z u E.ci I o,-, i-r {-ln oSEc)C) v=G'El-96?o-ootr = f.,8$ Eo2 Hcdfd,t al) (o 0E Eo-Etot\.!=:E EJrE ,qT00 iDoaio=-0oE ''EJE+ 6 a=aS d2 d I IE h!EGktP <t) tne?lorf ao> E=E=C,t ci;8 .gq=hEg E r3 .. cl Ed,)tr.:ctro-il ui) *E o'eE EO'B YH?, b59 iloEP -o ()L --o 6HA EC' OE.t' e6e &EtiEs aEE$ e(7fe,EA) 6 dttroIEto.\l= rtt E AJ EIT6d! E(!(]0=tl-ots9-aJEB 6EJd Ei: .. E -E dJrt r-Xfr.n *E !r A@.1EE E2 E y3? h il;Ee doa_i dl 3E E E!FoE E'Ek@o R I!oo(0e6o o(, ct ;a o6.=5.EB 66=tr T-555 P.008/012 F-725 oeO9oNFF-F cro00ctco aY $l $l (\l oOQOoEe(oqr4, croooo o6rEloo oooooe:'(\(\lN(\l oC,OQQF.@e€E 901 6lg 2221 CTCIOCtO €roooc, o600c,({ra\(\lNoa ?FF-!- ooooQF-qr@€q ooooO oo6€O|f, ;nw-oe-ot I I I T I I I I I I I I I I I I I I F*o trr f:ElH irfrilItqri Z, U) Qa Fl4 U h rl z ooocC(f,ooEeeeeQrfeeeo9 cooo(,Ec l0:4lam From-lUC BLAllDltlc a{ qJo OO E ,tt H\{?FIo F U)oooooc, t9 z 0 0)t- rfi aC! N l,, t-c;dilo) -ato)60 crocrogctcto(rec)oetr,e ?F-r- BB88Bi:66ts40it o6raD(D E@NIOOsEEBB OdtF-(rtysBhEg EHEEfi.DOrOtOOl =I dt@BgC)gEFu)j =rYooEEbi='FB EEL€pu) q!/tP .EEEE5e =E,H i:6' z-'EHE.} UFE '.. : t..- Ees EEE3gs E€ETEESEE*8'.PEuuuc = u) or.u).arr- 5 r.l "l i-,- ri tss E6Htrbn EE:* EEEE E*"=-aEEcuuc Equtttru, C' ?peol(E0IEENqr{c EE€P9HoE€E:rrEI-c6Egs E:3EE EEEEE Ea a a a o 6HAoc r=rtElq(?6 ILOMt =!oBs Eci ii g Etst&E r0\ 5d.o TL G.etoor=EEC'J9E -gEE I EB EfrE 5d-F 6 a JE! ..8 -E rLt)G. .!(Do-hu)+g EA@EH$ s"PE X3-t b id6Eo4OF(J(J(L6dlt- E@:lg$ I e.oF*E E(Eh6 ooI6aE}H=cr- E= d;e eG=\E.E Ed;o i Jc Eo E_ o EI.I N D Ea o!tos U Gtr d 6gE (f,e ?=cttl"]q6 IL2 E &' iiF6e B4gs eg =O)t tt) E [,tr6o- Et€)s=EtsCJ E -9,.UE E AA =s.g E eJ J CD =__ 6sp -!lFAilu,+E q;.o= =d.! "FB SH? *q, fiF doo-60, =6=u,o il .9Edu d. 6aq rrl @rll o ar,6 c,() 6 fr=oe=tEE Ecrr()4 801 678 22e4 eooaoC'{fFrF oooqQo$t$a$ls\ PSEEB T-555 P.009/012 F'125 ooo6Q NFFFf oEO(ro(9 $t cl{ c{ $l octooolL d, c, dt dl ocrooo ooCoos l0:4lam From-lUC BLAllDlt{G lnov-oe-ot I I I I I I I I I I I T I I I I t I ooooo $IFFFF 60000!O (\l Al 6t (Y Ft'fFF ooctooE606lq, ooooc, 66606lOlor(,UlU, qoooQ u? 6 tro.i !i ,er -\tr,Fl6va .Z E F>8.9OE E !'=gb BUD7 HEUEE E'A '{Eg'RH{uo.=.)=E5 -Caa= u1 il 60(]00a6000ooooor+FHr .E .EE;J.9 bot ECoftaf9Er4= Pi3 +9;Rsts 96 /(E 6E Italz d-d)()r!.:6rrFaOoooqrol +E q, Eo Nq o.ao o =(,6 E sl- !F 3?5E C) (p trq, tro.Ao !coE99drECEE4;o.F ,f@u) @Cde o Eo B =EoE EoE u a U) rtTocoNco 12 eo EIJ6p tr- .e ;.otrodit(J Hoo,;EC|D.[o EEH €EE- EEEE EIE'dF-v __ -- .- ..EIEEEEaaaa() rf} e, u) cr, rI.EPEbE 6Era4FcF Fr rd F( T F{ ETaETe;la Uoj U F J Z t =: fi, @o-lL)bEu"g?Ea* =l=c,E.E'=s (Ehp (r) (raF HEO E5& EEE o..p zv 6rd .ia QJii k'Fld;CJ>P. oooce EEEEE Is O CO U: ll2d;r.it6itf) lO ttt !r- trl_ Gsaao =orEqdE= &*EEs EiE Segfog, .n .o E E,o 0-EtC'N=e5EJ t E'}Fuit588 =6. ., .=$-* E ?=ogira9 E & 8.0B-e'o- 9tr(lEIE U) oo?Ul ttai 8ECA EE 6Ee -e6.-_\EE E q ..8 goJE .!t hu) *B E6=6(\lO N629B v.Jl/,+eH " dl 4Eg d9o-o o) a9ga oo ? OEl-e6 TLtl, d, d.E rf,3E Be2F Eq =dE <r) t rll E,o(LFE(3 E)N=HE 6J eP o tt, 6(Edo Edl,/y0}EJ EEA CJ{ o,) ..6ta> EioJd.:<FA 6U)BP oA;6=E$ EoZ\a66 q O.:v' z'd6E[ldol-(')(J(L ooF EE E B?tsoI EOhdo eI(*, ootc oo ciEo s EE 6Ei5 E 80r 678 2224 T-555 P.010/012 F-7?5 l{ov-00-01 l0:42am From-lUC BLAllDlllG ENERGYLABoRAToRtEg tVc'-Hs!Se!/r:et(Hlg!!ilavgn'9!:I!,tu'frfi ' c'a&er wrazaaz Toil Hee EEL.B|.{E|| ' i?";i.'iits :-iu sTzzil.i'a1i ""i"peroeneryytat' t'www'en*gylab'mn LAB ORATORY AI{ALYTICAL REP ORT CIient: Project: Intcroational Uranium (USA) CorP 3rd Quarter 2001 Sanpliug Event White Mcsa Mill Lrb Order: Report Date: c01090647 l0/04/01 ;r'l fl'ro \l/ ^," \t Qual RL ,'tt I Collection Date: DateReceived: Matrix: 09/20/01 11:02 09n5m AQUEOUS Analysis Date / BY Lsb ID: C01090e17'001 Client SemPle ID: WlvIIvITl0tI4-l MCIJ QCL Method Analyses NON.METALS Result Units 09/26/01 19:27 lwtk NitroEen, NitraElNirlte as N mgIL Lab ID: C01090647-002 Clieut SamPle ID: WlvIMTW4'z Collection Date: DateReceived: Matril: 09/20/0I l0:55 09/25/01 AQUEOUS analysis Dste / BYMCU RL QCL MethodRcsult Untts Qud AnalYses 0912610r tgr2g / rvvko.50 T I I T I I t I I I I I I I I T t I I NON-TIETALS Nitrogen, Nitrate+NiBlte as N 1r-4 rngrL Lab ID: C01090647{03 Client SamPle ID: WMIVITIIV+3 MCIJ RL QCL Collectiou Dstel DateReceived: Meuir: Method 09/20/01 10:30 092.5lol AQIJEOUS Analysis Date /BY Result Units Quel AnalYses NONJUIETALS E353.2 09/26/01 19:33 I ruk 0,10mE/L Nitrogen. Natt?te+Nibite es N Lab ID; C01090647404 Client SamPle ID: WIleffW44 Collcction Dste: DsteReceived: Mrfiir: Method 09120/01 10:50 09l25lol AQUEOUS MCL/ RL QCL Analysis Date / BY Result Units QualAnalyses NON-UETALS Niirogen, NitraE+Nitdte as N E3s3.2 09126/01 19:39 I rwlt 14-8 ME,L 1_00 Rcport Dcflnitiont: ND - Nor delectcd st thc rcpoBing limit MCL - Ma,rimum conrutinant lctcl RL - Anslytcr@6ing lwcl QCL - QualirY eontol limir 'itli,l.,i!..-1 l.;r. L'rif ll :l "l ,i I .; iir:'. I l]: 801 678 22?4 T-555 P.0l l/012 F-725 l-*-:ENEBilY tAE-oBAloRtE€, twc- ' 23s! salt q'qrw:ay#e;ffitri'1?y #Hbw.ffi'iliFiisss.iss-osri ' 30 -''r.05t5 ' Fa( 3022s l0:42arn Fron-lUC BLAllDItIG LABOR.ATORY ANALYTICAL REPORT Client: Project: International Uranir:m (USA) CorP 3rd Quarter 2001 Samplrng Event Whire Mesa Mill Lab Order: C01090647 ReportDate: l0/0al01 Lab ID: C01090647'005 Client SamPle ID: WMIVITW4-5 Collection Dste: 09/20/01 10:10 DateReceived: 09/25101 Matrir: AQUEOUS MCIJ RL QCL Method AnalYsis Date / BY Result Units Qual owzttol 19:4r I rwk0.50NON.IJIETALS xiuogen, NiHB+NiUitc as N 2.10 mgrL Lab ID: COt090647-006 Clierrt SemPleID: mtfi\dfW4-5 Collection Date: DateReceived: Matrir: 09/20/01 09:17 a9D5lOl AQUEOUS Analysis Datc /BYMCI-/ RL QCL MethodResult Units QualAnalYses E353.2 03/26/01 19:43 / rwk 0.10 I T I I I I I I I I I I I T I I I I NONI'/IETALS NitDgen. Nitsab+Nitrite as N mgrL Lab ID: C01090647-007 Clieut SamPle ID; WMIVITW+7 MCU RL QCL Collection I)ste: DsteRcceived: Matrir: Method 09/20/01 10:43 oglz'lor AQUEOUS Anetysis Date / BY Result Units Qu.tAnalyses E353.2 mf25i01 1S:45 / ruk o.20NON.I/IETALS Nibogen. Nitrate+t'libite as N 3.38 mg/L Lab ID: C0r090647-008 Client SarnPleID: WIIIvITWII-8 MCIJ RL QCL Collection Dste: DateReceivcd: Mslrir: Mcthod 09/20/01 09:48 0gDslor AQUEOUS Anrlyris Date /BYRBult Units QnrlAnelyses NON.METALS Nirogen, NitEte+Nii'tto as N 0.10 E353:09/26/01 18=[t t t1,JR o-35 mdL ND - Not dctcstcd at the ,eponin8 limit MCL - Msrimum contlminent lcr'cl RL- AnalYrc rePoning lcvcl QCL - QuulirYcontrol Iimir -n n A./1"^ ! ir..tl_.:.1.-:.: .r,\.-l-a'-:r. ,1. ; -- 1.: -.. 'r i :','l- l,'',GE i,!C il ii;'irii slt 679 2?24 T-555 P.012/012 F-l?5 l-.,H trFEf {,i!!,?Ei{?%q""'{8,;f i"fl [95i!ffi l"r',lIffi &;:;:*,?i"'r,##[ffi 'ffi 'l0:12am From-lUC BLAtlDlllG Client: Proiect: LABORATORY ANALYfl CAL REPORT lnternational Uradum (USA) CorP 3rd Quarter 2001 SarryIiug Event Whire Mesa Mill Lab Order: C01090647 ReportDatez L0lMl0l Lab ID: C01090et7'009 Ctient SamPle ID: WMMTV[+9 Collectiou Daie: DateReceived: Matrir: Method 0912010109:33 09n5101 AQUEOUS Analysis Date / ByResult Uuits MCL/ Qual RL QCLAndpes NON{tNETAI.S Nibogen, Nltrale+Nibite as N 0.10 E353-2 09/26/01 19:53, rwk Lab ID: C01090647{10 Client SamPleID: WMli'flvITW4 f|l^, -'11 Collection Date: DateRcceived: Matrir: Method O9l}Alil \:22 09/2slor AQUEOUS Aralysis Date / BYResult Unis MCIJ Quel RL QCLanalyses NON.METALS Nlrrogen. Nitrab+NMte as N rngrL 09/26101 19:55/rwt t t I I t t I I I I I I I t T I I I Lab ID; C0i090647-011 Client SamPleID: WMMTW+I0 Collcetion Date: DateReceived: Matrir: 0920/01 l0:10 09lzstor AQUEOUS n/--LXI ),^ pl' Result Uni$Qual Method AnalYsisDate/BY MCIJ RL QCLAnalyses NON.METALS Nitrooon, Nit€E+Nitritg as N E353.2 o$l25/01 20;01 / rrk 2,32 Report Dcfididoas! ND -Not detecrcd st ttrc rcponing limit MCL - Maxirnum contaminant lcvel RL - AnalYc repoling lcvel QCL - Qualiry consol limit -;i i-'F tl0. -.isL rrs. I I I t t I T I I I I I T I I I I I I t I I I I I I I I I I I t I I I I I I APPENDIX E U.S.G.S Manual Chapter 6.5 and Hydrolab Parameter Specifications I t I I t I t I I I I I I I I t I REDUCTION-OXIDATION POTENTIAL (ELECTRODE METHOD) mcfion-olrTAaTion potential (as Elr): a Ineasure of tlte ilibrirrrn potential, rclafive to thc standard h.vdrogen In contrast to other field measurements, the determination of the reduction-oxidation potential of water ?i.iro.a to as redox) should not be considered a routine determination. Measurement_of redox potential, );-;;6d t.i. ur E(measurement, is not recommended in general because ofthe difficulties inherent in it, Goi"ti.al concept and its pracfical measurement (see "Interferences and Limitations," sectiotl 6.5.3.A). equilibrium values. > Determinations of redox using the platinum.(or other noble me@) electrode method7 tpt l *" valid only when redo-x species are (1) electroactive, and (b) present in the solution at concentrations of about t0* molal and higher. Redox species in natural waters generally do not reach equilibrium with metal electrodes. procedures for equipment calibration (test procedures) and Eh measurement are described in this section i;;tdpt;iinum etettrode only. Althoirgh fhe general guidance given here applies to other^types of redox .i."tio,i6 (such as gold and giassy carb-on electrodes), it isnecessary to consult the manufacturer's i"riro.iio"i for "ooi"t use ofthe ipecific electrode selected. Concentrations of redox species c3, b" a;t;;ild by direct chemical anafysis instead of using the electrode method (Baedecker andCozzarelli, t9e2). *Section 6.5.1 *Return to Contents for 6.5--Reduction Oxidation Potential (Electrode Method) f Return to Chapter A6 Contents Paee tReturn to Field Manual Complete Contents tReturn to Water Ouality Information Pases Maintainer: Office of Water QualitY Webversion by: Genevieve Comfort Last Modified: 16JUNE98 ghc eqtllllDl'ltlIfi p{}{entl?tI. rt:t?llIYc t(, l.lls }titIlt.aI tt tr.vtrl r"riiri:rr electrode, tlcvcloped at the interface betu'een a nnble metal electrotle nnd rn aqireous solution contaitring electroactivc redor l*, ]ction 6.s http ://water.usgs. gov/owqff ieldManuaVChapter6i6. 5.ht *rffi Water Resources--Office of Water Quality This document is also available in pdfformat: @Chaoter 6.5.Pdf 6.5 !jpecIes. ll/08120014:24 T t I t I I I I I I t I I I I I EQUIPMENT AND SUPPLIES The equipment and supplies needed for making Eh rygasgrements ysiqg the platinum electrode method are lisied in table 6.5-1. Eh equipment must be tested before each field trip and cleaned soon after use. Every instrument system usetl for Eh measurement must have a log book in which all the equipment repairs and calibrations or equipment tests are recorded, along with the manufacturer make and model numbers and serial or property number. Electrodes. Select either a redox-sensing combination electrode or an electrode pair (a platinum and reference electrode). Use of the correct electrolyte lilling solution is essential to proper measurement andis specified by the electrode manufacturer. Orion Com-pany, forexample, recommends selection of a fillingsolution to best match the ionic strength of the sample solution, in order to minimize junction potentials. I I ",, ]ction 6.s.1 http :/iwater.usgs. gov/owqiFieldManuaUChapter6/6. 5. I .ht =rxsGsrhtor*#x'lf Water Resources--Office of Water Quality This document is also available in pdfformat: @Chapter 6.5.1.odf abh 6.5-1. fuuiprrent and sr.lpplies used for Eh measurernentsl [rnV, mllltrrcl[ t plus or minug p5fcm, micmsierrcnr per centinuhr at 25 degrces (ekiur] rr Mllllrrrclt msts r or pH met€r wlth mllllvolt madlng capablllty, preferably urlth automatic tsmperaturo compEnsEbri 0.l-mV sBntltivity; acals to at leastt1,400 rnvj BNC connestor (ses lnsirumentspeclficatons forpH mstgrc,6'4'1 ln NFM 6'41 y' Redox slsctrodss, etther (al platinum and rBference electrods (calomel or silvsr:sllvsr- ch loridsl or tbl combinatlon slgctrods I Electrode ftlling solutlons ( rsfer to manuFacturor's speclficatlonsl I Thermnmetsr (ltquid-tn-glass or thermlstor typel, cnllbratsd lsee NFM 6.1 for selqctlon and callbratlen crlterlal-for use uvith mllllnolt metg rE uulthout temperatu rs compsnsEtor / Flowthrough csllwith mlves, tublng, and eeessories [mpermeabls to air (for uss ruith pump systsml / Sampltng systaml {'t) ]n situ (dournholal measurament instrum0nt, or (ll submersibls pump lusad rrvith closed-sptrm flouvthrough celll. Pump tubing must be "impermeable" to mypen. / ZoBe ll's sslution I Aqua rsgia or manufacturer'B rscommsndBd electrode-claaning solution / Liqu Id no nph os p hate I a boratory-grad e dete rgen t / Mnd abraslvsr creus cloth or 40O to 600-grlt weUdry Carborundumrt paper y' Deionlzsd uvatsr (max{mum conductlvity of 1.0 pSdcml / Botls, squeeze dlspenssr for dslonlzsd watsr l Safsty equlpment gloves, glassss, apron, chemlcal splll klt 1 Paper tissues, dispoaablo, llnt fms / WasE-dlsposal contalne r tf$odifu thia list b meei ep*ilic na€de ol rha fi*ld afforl, ll/08120014:25 ]ction 6.s.1 http://water.usgs. gov/owq/FieldManuavChapter6/6. 5. I .ht Silver:silver-chloride or calomel reference electrodes are the redox electrodes in cofilmon use. The OrionrM combination electrodes are platinum redox and silver: silver-chloride reference electrodes in one body (the OrionrM brand is used for purposes of illustration only). ZoBell's solution. ZoBell's is the standard solution for testing redox instruments. ZoBell's solution can be obtained from the QWSU in Ocala, Fla., or it can be prepared fresh (see below). Quinhydrong solution is sometimes used but is not recommended because it is significantly less stable above 30'C and its temperature dependence is not as well defined as that of ZoBell's. ZoBell's solution consists of a 0.1 molal KCI solution containing equimolal amounts of KoFe(CN)u *d KrFe(CN)u. ZoBell's is reported stable for at least 90 days if kept chilled at 4oC. To prepare ZoBell's solution: 1. Weigh the chemicals (dry chemicals should be stored overnight in a desiccator before use). 1.4080 g K.Fe(CN)6'3H20 (Potassium fenocyanide) f .0975 g KrFe(CN)o (Potassium fenicyanide) 7.4557 g KCI (Potassium chloride) Dissolve these chemicals in deionized water and dilute solution to 1,000 mL. Store the solution in a dark bottle, clearly labeled with its chemical contents, preparation date, and expiration date. Keep the solution chilled. 2. I I I I I I I I I I I I Aqua regia. Aqua regia can be used for cleaning the E! electrode (check theclectrode manufacturer's reiommelrdatioirs). Piepare the aqua regia at thotime of use--do not store it. To prepare_the aqua regia, mix 1 volume concentrited nitric;cid ri,ittr: volumes of concentrated hydrochloriCacid. I I t I 6.s.1.A I 1,, MAINTENANCE, CLEANING, AND STORAGE Refer to 6.4.1of NFM 6.4 on pH for general guidelines on meter and electrode maintenance, cleaning, and storageJollow the manufacturer's guidelines on th9 operation and maintenance of the meters and electrodel, and keep a copy of the instruction manual with each instrument system. Keep the meters and electrodes clean of dust and chemical spills, and handle them with care. Maintenance Keep the surface of noble electrodes clean of coating or mineral d.eposits. A brightly polishedmetal surfice prevents deterioration of electrode response. The billet tip is more easily cleaned than the wire tip on tlie platinum electrode. Condition and maintain the Eh electrodes as recortmended by the manufacturer. tll08l200l4:251 Jction 6.s.1 http://water.usgs.gov/owq/FieldManuaVChapter6/6.5. I .hl Cleaning Keep the O-ring on electrodes moist during cleaning procedures. > To remove precipitate that forms on the outside wall or tip of the reference or combination electrode, rinse the outside of the electrode with deionized water. inner cone of sleeve-type electrode junctions, clean the chamber by flushing out the filling solution (the precise procedure to be followed must come from the electrode manufacturer). surface with mild abrasive such as coarse cloth, a hard eraser, or 400- to 600-grit wet/dry CarborundumrM paper (Bricker, 1982). about I minute. Do not immerse the electrode for longer than L minute because aqua regia dissolves the noble metal as well as foreign matter and leads to an erratic electrode response (Bricker, 1982). Soak the electrode several hours in tap water before use. TECHNICAL NOTE: Disassembly of the electrode is not recommended for routine cleaning and should only be used when absolutely needed. Additional cleaning and reconditioning procedures are discussed in NIM Oll and in American Public Health Association and others (1992), American Society for Testing and Mm;ffii (1990), Edmunds (1973),Adams (1969), and Callame (tq0g). Storage For short-term storage, immerse the electrode in deionized water to above the electrode junction and keep the fill hole plugged to reduce evaporation of the filling solution. The recommended procedures for long-term storage of electrodes vary with the type of electrode and by manufacturer. The OrionrM combination electrodes are stored dry after rinsing precipitates from outside of the electrode, draining the filling solution from the chamber, and flushing it with water (consult the manufacturer's cleaning instructions). The electrode connector ends must be kept clean. Clean them with alcohol, if necessary. Store the connector ends in a plastic bag when not in use. I t I t I 1 I ! I I t t I I I I I *Section 6.5.2 SReturn to Section 6.5 SReturn to Contents for 6.5--Reduction Oxidation Potential (Electrode Method) OReturn to Chapter 4,6 Contents Page f Return to Field Manual Complete Contents SReturn to Water Ouality Information Pages Maintainer: Office of Water Quality Webversion by: Genevieve Comfort Last Modified: I6JUNE98 ghc l*,ll/O8/2001 4:25 Pl *tffiri$rfukrrffirrrf lection 6.s.2 I I I I I t I T I I I I t I t I t 1,, http ://water.usgs. gov/owq/FieldManuaUChapteri I 6.5.2.hl Water Resources--Office of Water Quality This document is also available in pdfformat: ffiChapter 6.5.2Jd[ 6.5.2 EQUIPMENT TEST PROCEDURE Eh measuring systems can be tested for accuracy but they cannot be adjusted. Eh equipment must be tested, either in the laboratory or in the field, against a ZoBell's standard solution before making field measurements. In general, field testing with ZoBell's is not required, but the protocol used will depend on study needs. > Before using, check that the ZoBell's solution has not exceeded its shelf life. ZoBell's is toxic and needs to be handled with care. ZoBell's reacts readily with minute particles of iron, dust, and other substances, making field use potentially difficult and messy. The Eh measurements are made by inserting a platinum electrode coupled with a reference electrode into the solution to be measured. The resulting potential, read directly in millivolts from a potentiometer (such as a pH meter), is corrected for the difference between the standard potential of the reference electrode being used at the solution temperature and the potential of the standard hydrogen electrode table 6.5-2). TECHNICAL NOTE: Er.1is the whole-cell potential of the reference electrode in ZoBell's solution. Er.;= 238 mV (saturated KCl, immersed with the platinum electrode in ZoBell's at25"C) is the measured potential of the silver:silver-chloride (Ag:AgCl) elechode; Er.1: 185.5 mV (saturated KCl, immersed with the platinum electrode in ZoBell's at25"C) is the measured potential of the calomel (Hg:HgCl) electrode; Eo :430 mV is the standard electrode potential of ZoBell's solution measured against the hydrogen electrode at25"C. Half-cell potentials for the calomel, silver:silver chloride, and combination electrodes are shown in table 6.5-2. Table 6.5-3 provides the theoretical Eh of ZoBell's solution as a function of temperature. For those temperatures not shown on tables 6.5-2 md 6.5-3, interpolate the values. Add the value colresponding to the solution temperature to the measured potential electromotive force (emf measurement). I l/08/2001 4:26P fction 6.s.2 http ://water.usgs. gov/owq/FieldManual/Chapter6 I 6.5 .2.ht. I I I T I I t I I I I I t I I t T 1,, To test Eh equipment, complete thefollowing 7 steps and record results on the Eh data recordform for the eqaipment test procedure (fig. 6.5-l): l. Follow the manufacturers' recommendations for instrument warm up and operation. o Set the scale to the desired millivolt range. . Record the type of reference electrode being used. 2. Unplug the fill hole. Shake the electrode gently to remove air bubbles from the sensing tip of the electrode. Check the level of the filling solution and replenish to the bottom of the fill hole. . The filling solution level must be at least 1 in. above the level of solution being measured. . Use only the filling solution specified by the manufacturer. 3. Rinse the electrode, thermometer, and measurement beaker with deionized water. Blot (do not lll08l200l4:268 Jction 6.s.2 http:i/water.usgs.gov/owqff ieldManuaUChapter6 I 6.5.2.ht wipe) excess moisture from the electrode. Pour ZoBell's solution into a measurement beaker containing the electrode and temperature sensor. . The Eh electrode must not touch the bottom or side of the container. . Add enough solution to cover the reference junction. . Allow 15 to 30 minutes for the solution and sensors to equilibrate to ambient temperature. Stir slowly with a magnetic stirrer (or swirl manually) to establish equilibrium between the electrode(s) and solution. Switch the meter to the millivolt function, allow the reading to stabilize (+5 mV), and record the temperature and millivolt value. Look up the half-cell reference potential for the electrode being used (table 6.5-2). Add this value to the measured potential to obtain the Eh of ZoBell's at ambient temperature. . If the value is within 5 mV of the ZoBell Eh given on table 6.5-3, the equipment is ready for field use. (See the example below.) . Refer to section 6.5.4 if the value is not within 5 mV of the ZoBell Eh. Rinse off the electrodes and the thermometer thoroughly with deionized water. Store the test solution temporarily for possible verification. EXAMPLE: Example of the equipment test procedure using a silver:silver chloride-saturated KCI (Ag:AgCl) electrode. Eh: emf + E,", where: Ehisthe potential (in millivolts) of the sample solution relative to the standard hydrogen electrode, emf or Erroru,"dis the electromotive force or potential (in millivolts) of the water measured at the sample temperature, En is the reference electrode potential of the ZoBell's solution corrected for the sample temperature (table 6.5-2). a. Follow steps l-5 (above). For this example, . Measured temperature : 22"C o emf= 238 mV. b. Check table 6.5-2. The interpolated reference potential :202 mV for Ag:AgCl-saturated KCI at 22"C. c. From Eh: emf+ E* Eh (ZoBell's) : 2 j8 mV + 202 mV: 440 mV. 4. 5. 7. I I I I I I I I I I I t' I I I I I t,,I l/08/2001 4:26P Jction 6.s.2 http ://water.usgs. gov/owq/FieldManuauchapter6 I 6. 5 .2.h d. Checktable6.5-3.Thetestvalue of 440 mViswithin+5mVof438mVfromtable6.5-3. Thus, the equipment is functioning well and ready for field use.t I I t I I t I I I I t I I I t t 1",, Eh Data Record Equiprrxnt Tert Frocrdurr Equipm ent deecriptian snd identification (model end garigl pndor W num ber): Me.tq Eh elactrode Refurenca sleclrsde ZoBEll'e solutionr Lst # --- Dater prepargd ___ erpirad Belore aem ple Eh: After sam pls Eh: I. Temparature of ZoBall'ssollrtioru T * (efter equilib retion to am bienttem perafu re) 2. Obsaryed putential (in millivoltal sf ZoEell's reletive to m eesuring electroda, at gm bient tBm porsturE (E."""urnd or eynfll emf = 3. Raferanca elaetrode potential lin millivolta) at ambient trmparahrrs frsm tablE 6.5-2 {Ergl: Eruf= {. Calculate Eh of ZoEoll'sr Eh = em7*p,r, Eh= 5. Thsoretiusl potantial (in millivolts) of ZoBall's at am bient tEm Ftsrstur6 from tabla 0.5-3r Eh (theoraticell= G. Subhast calculat;d Eh from Eh theorgtical lZobell's)(stnp 4 m inua rtep 5l AEh= 7. Chsck: ig AEh *ithin * 5 mV? Obsprvgtion.sr F[rrc 6.ll.t. Eh datl recsrd: equtpment test procedure. 4section 6.5.3 0Return to Section 6.5.1 *Return to Contents for 6.5--Reduction Oxidation Potential (Electrode Method.) frReturn to Chapter A6 Contents Page SRetum to Field Manual Complete Contents *Return to Water Ouality Information Pages Maintainer: Office of Water Quality 11108120014:26P lection 6.s.3 http ://water.usgs. gov/owq/FieldManuaUChapter6/6. 5. 3.1 *tffisrchpfor**tndil Water Resources--Office of Water Quality This document is also available in pdfformat: fr\Chapter 6.5.3.pd[ 6.5.3 MEASUREMENT To obtain accurate results, it is necessary to prevent losses and gains of dissolved gases in solution. Consult NI'M 6.0 for information on precautions and general procedures used in sample collection and NFM 6.2 for a description of the flowthrough cell used in dissolved-oxygen determination (the spectrophotometric method). Chemical, physical, and biological reactions can cause the Eh of water to change significantly within minutes or even seconds after the collection of a sample. Water samples cannot be preserved and stored for the Eh measurement. Use equipment that eliminates sample aeration and operate the equipment to meet this goal. If using a flowthrough chamber or cell: Use tubing that is impermeable (relatively) to oxygen. Channel the sample flow through an airtight cell (closed system) constructed specifically to accommodate redox or ion-specific electrodes, temperature, and other sensors. Connections and fiuings must be airtight. Purge atmospheric oxygen from the sample tubing and associated flow channels before measuring Eh. I Measure Eh in situ with a submersible instrument or use an airtight flowthrough system. First:l, l2 aJ.I l*, I I I T I I I I I I t T t Record the type of reference-electrode system being used (fig-fl:D. Check for the correct-electrode filling solution. If working in very hot or boiling waters, change the reference electrode filling solution daily. Keep the electrode surface brightly polished. TECHNICAL NOTE: Te,mperature determines the Eh reference potential for a particular solution and electrode pair, and may affect the reversibility of the redox reactions, the magnitude of the exchange current, ll/08/20014.,281 lction 6.s.3 T I I I I I I I I I I I I I I I I l*, http://water.usgs. gov/owq/FieldManuaVChapter6/6.5.3.ht and the stability of the apparent redox potential reading. The observed potential of the system will drift until thermal equilibrium is eitablished. Thermal equilibrium can take longer than 30 minutes but it is essential before beginning the measurements. Next, measure the Eh and complete thelieldform (frs.6..52): l. Select an in situ or closed-system sampling method. Immerse the electrodes and temperature sensors in the sample water. . In situ (or downhole)--Lower the sensors to the depth desired and follow the manufacturer's recommendations. . Closed-system flow cell--Check that the connections and sensor grommets do not leak, and that the water being pumped fills the flowthrough cell. 2. Allow the sensors to reach thermal equilibrium with the aqueous system being measured and record the time lapsed. . It is essential that platinum electrodes be flushed with large volumes of sample water to obtain reproducible values. . Record the pH and temperature of the sample water. 3. Switch the meter to the millivolt function. . Allow the reading to stabilize (+5 mV). . Record the value and temperature (see the technical note that follows step 7. below). . Stabilization should occur within 30 minutes. 4. Take readings of the sample temperature and potential (in millivolts) every few minutes for the first 15 to 20 minutes. . It is best to stop the flow of the sample while the reading is being taken to prevent streaming-potential effects. . After 15 to 20 minutes, begin to record the time, temperature, and potential in plus or minus millivolts about every 10 minutes. Continue until 30 minutes have passed from the initial measurement and until the measurements indicate a constant potential. 5. After the measurements have been completed for the day, rinse the electrode(s) thoroughly with deionized water. If field calibration is required for a study, a. Place the electrode(s) and otler sensors in ZoBell's solution that has been equilibrated to the temperature of the aqueous system to be measured. The electrode(s) must not touch the container, and the solution must cover the reference junction. b. Allow the electrode to reach thermal equilibrium (15 to 30 minutes). c. Record the potential reading. d. Follow steps 5-7 of the equipment test procedure in section 6.5.2. 6. Record all data and calculate Eh (see EXAMPLE, (section 6.5.2). ll/08/2001 4:281 I I t I I I I T I I I I I t I t I T lection 6.5.3 http ://water.usgs.gov/owq/FieldManual/Chapter6/6. 5. 3.h Fill out the Eh data record form for field measurements fig.6.5-2). Eh Data Eecord Field Mearursmentr 't. Temporatu re and pH of system measuredr , = t't'o " Fisld Eh1 FH= X. Time to thermal equllibrationr Maasurement begen et Moasurement endsd et 3. Mgasured potgntial of wetsr systgm (mVlr snf = d Befnrancs electrode potnntial mV of ZoBell's at semple temperatlrel 5. Calculate sempls Ehl *rrf + E o1 (add step 3 + step 4ll E6g= - Eh =_ 6. Field mossurem€ntr should agme within about 10 mV, QbEsruations: tTtr socord nrarurcrrrf iE rEcaEBry fur qrnlity mrrml, Flgure 6.5-2. Etr data r€f,ord: field rneasurcments. 7. Quality control--Repeat the measurement. TECHNICAL NOTE: The response of the Eh measurement system may be considerably slower than that of the pH system and that response also may be asymmetrical: the time required for stabilization may be longer when moving from an oxidizing to reducing environment or vice versa. If the readings do not stabilize within about 30 minutes, record the potential and its drift; assume a single quantitative value is not possible. If an estimate of an asymptotic final (hypothetical) potential in such a drifting measurement is desired, refer to the method used by Whitfield (1974) and Thorstenson and others (1979). 6.5.3.A INTERFERENCES AND LIMITATIONS Measurements should not be carried out without an awareness of the interferences and limitations inherent in the method. ll/08120014:281 http ://water.usgs. gov/owqlFieldManuaVChapter6/6. 5.3.ht I I t I I I I t I t I I t I I I ' brif,ge, or internal electrolyte, wtrictr can cause drift or erratic.performpcg when refertnce electrodes are used (American Public Health Association and others, 1992). - tG meisurement if the electrode is left in sulfide-rich water for several hours (Whitfield, 1974; Sato, 1960). - solutions containi-ng chromium, uranium, vanadium, or titanium ions and other ions that are stronger reduciig agents than hydrogen or platinum (Orion Research Instruction Manual, written commun., 1991). with ZoBell's. An insoluble blue precipitate coats the electrode surface because of an immediate reaction between ferro- and- fenicyanide ions in ZoBell's with ferrous and ferric ions in the sample water, causing erratic readings. Many elements with more than one oxidation state do not exhibit reversible behavior at the o^latinum electiode surface and some systems will give mixed potentials, depending on the pres_ence ofs-everal different couples (Barcelona and others, IgSq; Bricker, 1982,p.59-65;Stumm.ar-rd Morgan, 1981, p. 490-495;Britker,'1965,p.65). Methane, bicarbonate, nitrogen gas, -sulfate, and dissolved oxygen generally are not in equilibrium with platinum electrodes (Bemer, 1981). TECHNICAL NOTE: Misconceptions regarding the analogy between Eh (pe) agd pH- as master variables and limitations on the interpretati6n of Eh ireasuiements are explained in Hostettler (1984), Lindberg and Runnells (1984), Thorstenson (1984), and Berner (1981). To summarize: (1) Hydrated electrons do not exist in meaningful concentrations in most aqueous systems-in contrast, pH ieireients real activities of hydrated protons. Eh may be expressed a-s. pe, 1119 negative logarithm.of the elictron activity, but conversjon to pi offers no advantage when dealing with measured potentials. (2) Do not assume that redox species coexist in equilibrium. Maly situations have been documented in which diisolved oxygen coexists with hydrogen sulfide, methane, and ferrous iron. . The practicality of Eh measurements is limited to iron in acidic mine waters and sulfide in waters under- going sulfate reduction. . Other redox species are not sufficiently electroactive to establish an equilibrium potential at the surface of the conducting electrode. (3) A single redox potential cannot be assigned to a disequilibrium system, nor can it be assigned to a water iainpte w'ithout spetirying the particular re-dox species towhich it refers. Different redox elements (iron, murgarer", sulfrir, selenilm, arsenic) tend not to reach overall eq_uilibrium in most natural water systems; therJfore, a single Eh measurement generally does not represent the system. 6.5.3.B INTERPRETATION A rigorous quantitative interpretation of a measurement of Eh legyireq interactive access to an aqueous speclation code. Exercise caution when interpreting-a measured Eh using the Nernst equation. The Nernst equation for the simple half-cell reaction (M r"nt: MI (on) + e-) is I l*,11108120014:28 I I I I I I I where: http ://water.usgs. gov/owq/FieldManuaUChapter6/6. 5. 3.ht ffr - fi" + 2.303&VnF IoS (c'rr,nr/ ('*,rrl n : gat csnstant; T = temperaturen in degrees hetrvin; n : number of etreetrons ln thp half-cell rerction; F : Faradry constant; rnd ar*u, and nX*,= thermodynamic rctivitier of the free ions Mi * and M'r,,,and not rimplythe anrlytlerl concen- xffi*ltotal M in oxidation stlt,es I and II, Measurements of Eh are used to test and evaluate geochemical speciation models, particularly fgr suboxic and anoxic ground-water systems. Eh data can be usefuffor.gaining insights o14" evolution of *ut., chemistry and-for estimating the equilibrium behavior of multivalent elements-relative 1o pll f-o. * uqr"o.5 syrle*. Eh can delineite qualitatively strong redox gradients; for exam-ple, those found in siratified lak6s and rivers with an anaerobic zone, in anbxidized surface flow that becomes anaerobic after passing through stagnant organic-rich systems, and in mine-drainage discharges. 4Section 6.5.4 SRetum to Section 6.5.2 +I I I I I I I t I SReturn to Chapter ,4.6 Contents Page SReturn to Field Manual Complete Contents f Retum to Water Ouality Information Pages Maintainer: Office of Water QualitY Webversion by: Genevieve Comfort Last Modified: 15AUG00 imc I 1,,11108120014.'28 Jction 6.s.a http ://water.usgs. gov/owqlFieldManuaUChapter6/6. 5.4.ht t I I I I I I I I I I I I I I t *Ltsss#nrldr#trf Water Resources--Office of Water Quality This document is also available in pdfformat: fr\ChaPter 6J=4.P4[ l4:! --6.5.4 TROUBLESHOOTING Contact the instrument manufacturer if the suggestions in table 6.5-4 fail to resolve the problem. Check the voltage of the batteries. Always start with good batteries in the instruments and carry spares. Tablc 65-4. Tmublerhooting guide for En rner:urement [*; plus or minur; mY, millirolt+ czlI, elertrrornotive furce] Check m atar oPErationl ' Usa shorting lead to ssteblish metEr reading ai zEro mtr, ' CheekJieplBce batteriBe. ' ChEEk sgB inst beckup m eter. Cheuk alsctrode oPergtionl . ChEckthat ElrtrodE rgfernnce solution level ig to the fill hola. 'Flug qusstionahle refsrgncE alectrode into refsrencE alrtroda jack and enother rehrence electrade in qood working order of the ssm E tyPe into the indicgtor alx-trode jack of thn m:tnr; imm srse elect'rodes in s potaseium chloride Eolution, racord mY, rinsa oft end imm ErEB alaetrodae in ZoBall'a aslution. Tha trro mV readinge ghould be 0 *,5 mV. lf ueing different al* trodes (Agr4gCl and HgrHgCl2), rggding ahould hs 44 * 5 mV for a good referencs al*trude. . Pglish platinum tip wfrh mild gbraeivp {croeus cloth, herd Erassr, or a 40GB 00grit wat1Hry Carborundumw pspart. rinee thoroughly with daionhed wetEr. UgE e Kimwipe!il if thage abresiveE err ngt evaileble' ' Drain and refill rofErenee el*trolytechember. . Oimonnect rgiErencs ElactrsdE" Drain end reffll slgctre- lyta cham ber rrfth corrmt filling Eolution. Wipe off connestarg on elstrods Bnd m EtBr. Uae baekup elstrods to chge kthe s{nf ' Reed arrfrxith freeh aliquot of ZoEell'aeolution; prepere lrnsh ZoBell's eolution if poaaihle' 'Hrcondilion alectrods byclaaning with BquE ragla and ranawing filling solution---ltir ls e lad lEffit. Eh of ZoEell'e golulion ercasda thsoretical by tE mV Ercasgive drift Errstic performance Poor rasponaa when uainp pairad electodas I l*,ll/08120014..28 I *ffis*,,o.,u.r, f Return to Contents for 6.5--Reduction Oxidation Potential (Electrode Method) I tReturn to Chapter 4.6 Contents Page I f Rerurn to Field Manual Complete Contents SReturn to Water Ouality Information Pages I #:'#3ltiJ;?flttr#Y#:'"3Hlt? Last Modified: I6JUNE98 ghcI I I I I I I I I t I I T I l*, http ://water.usgs. gov/owq/FieldManuaVChapter6/6. 5.4.h1 ll/08/20014:281 Jction 6.s.s http://water.usgs.gov/owq/FieldManuaUChapter6/6.5.5.ht I I I I I I I I I I t t I I I I I =t sGsr#torsSlrll Water Resources--Office of Water Quality This document is also available in pdfformat: @Chapter 6.5.5.Pdf 0.5.5 REPORTING Report the calculated Eh in mV to two significant figures. potentials are reported to the nearest 10 mH alo_n_g with the temperature at which the measurement was made, the electr6de system employed, and the pH at time of measurement' *Chapter 6.6 Contents f Return to Section 6.5.4 f Return to Chapter A6 Contents Page SReturn to Field Manual Complete Contents f Return to Water Ouality Information Paees Maintainer: Office of Water Quality Webversion by: Genevieve Comfort Last Modified: l6JLINE98 ghc l*,ll/08120014:28 t I I I I I I t I I I t t T I I I I 5 of 5 Webversion by: Genevieve Comfort Last Modified: l6JUNE98 ghc http://water.usgs. gov/owq/FieldManuaVChapter6/ 6.5.2.ht 11108/20014:2( I ooood q 0 J B aa1EJO EE 6 LJ L, Ee; cr- E oEO E c r€o 9cGC ++otz, co E -h oo b e3e EE -c I e6 Eo EoDoC * 3Id E ri x Be d 3E =,i 6 E N+ 6 dG xg E'-€ o; id 'fi8,.<IE r 26 , qI'r=6i Ee;EEtr! ; gB i QEi 6=E fED 5E o -.B 4crsta Eo1 aBb rtr I -G- o__ EE8 =3Eo G62 zzI :rtsx .oo3 {.8PE€ti€ AEE€aEg E5 }EE, -st:P CF:= a- t s€ttsEE[; c=EE EE:* qiE:l5 EiEfr:6 ditt!f, ai5 !ts I :E IeP iia :qo itrllEi =3 ltg) |DXEgqE $-oCD Efl CB =ao?r EE =DPoEE "- H-E4 cLoooEE.CdgE E5 E;a5 -oAE E+>p-€,t E} -!F EE6sFb[t*eof, D) EdgE g! D.;c FTg€ x€ o-EEe!eeE EEatOG aPEog- o!DEE FA I 3E E ---sE ogo5 E8oct* EE bT Ea EEE5o6EO Ee QEhg E+IE 'E,e EEfl3 |DX5g!E8-odD Efl CB =ao?r EE =DPo 1[E4 cLoooEE.CdgE E5E:60 a5 -oAE >t>g-€,t 'E, : ;ti*fi EaI E\i c'ir Eli ,l.liEl! Or2 6lI o12 oi tt -o[8,Se*EF3ExLOb n:e 2flEE E.Fe co !ot5EE({F d d 6EoE .aEl!I.sle:6 iE,c, iEiatg i6- =8l6igIA I=iEitEtO-aqoEH>E! TEbb?aFbDD<_s 8!Eitetol D!E!3;oo E EI5 -s d 6p Ea-e Eo T! d i c E; dE E EIoo ebc ,l g 1 +g Eo og =ol:E -so at {I do56.E 'Lot. EdEr16iaE:EE: Lo ;ET:HE!r.9.,Et ? €:! €E! oEI PC2SEi E- ! 3= = if ui aEt Be.! EiE 6E> =Ic Et3 sr;. 61ts o! s PlU d-O r!Et -61:o Ll = olE E'JOI 5, @BiEIorO1 o g: .9'B.u :to:!iriE t5,plu:EiE :Q. 'JIaiE IEix5-e EEO- 1^PP eE 6.a qdddoC aE EE-] O-gt nc 4EOEQo.9()E.q s3 8fr.taoo adszo- us -g >!IE>-.d:Esfo H**9OHEbeg ET ? 3 atoo Eo.E r) ElIo Eo:6oeE & @ Ed -b caa ,E 6 EcE B4*b@ la oOG6 ooie TB -o!€ E€ E* ErECro E5{p BuEE5d -o(,J 6a€b'eE E*Et E€7i. 1ae-f oE 6u: 4adc oa at 6.c: EiO.5 c-I :II l!r l{1Itlls(lEilo IE,tt I -'IEIo l-u IOlatql.rliTOIDleIE idE f,E 2b8go9E6883oaggr4 oo EEo.+96-sI Esr€!IolEr .6A? Iod6E6 E $EEBEEi @c OqrP,roE:EEE3ElEuE eAeEsL=5Its6E5EFe.9:EEoq E--FE* EEES;p EE'E EEEEoq.EE+OGs f;eFeiEir.E cBR,=P+FeEE8 =D€E.E o?EgesC q 9E E E E.[IE9gE; . E!E ?;E E T Eg3 3 '8b 3 8EP 5=EE E -:; ts;1E E E;ot'61 X! 5tE E 5.SE : EH.jEEg5g E F EeE 5 fl FE a=q j 26-dL tn- ?E EE-o TH !, e:ft:d E= lq .Eri-oE5 3EcE8: bgEN1Es$E EE; E gE :zEn oot @--N E;, E E,E.r € U+9Z€E6 3 -EgeE E EH EEEiE*-siEE 9 ; EE EE ITEEiffE+EEHEE +E E E EE E E E gH 9 o* B;t, b P XilsEEEEEEE:agEEes AAE'e3€E:E= ;EgIEgEEE"€ E E: TEE * E EflE E -o1E a E E5 '/D-ipr=:EE€g E E + rEQ o o ?c!a D ?@E il _g::$EE:;T E 5 HE E AE EEftr4'Fc) B .IEa i E? q1 1E E EE EE Ht HI E*r g EEE EsE E 5-a IEEEEEatg IEffiE 1*I E E?EE EfiIE E EEEE ,EE rs*uiiEE ;EE ,EE$ EaH EEHEIIE?EEE :EEE ffiE- aEH IEE;gEaffiEiEE .J I o e s o c@ Fa EoEI 6'rqgrL (a Eg Et ts clel s5l =BtsI .. EEI ,l Ef;I - It xvJ ZO:II llHI I00z/I0l G* E E A F d Ecte, {ooo& qu9 EEEEiAE EEEEE EeE Et ErE E gEE E gT Eg E;Ee eE €E Es:'* EF ;E EEE3 EgEE EE EE EI EF ,EE E:: ETE6 (:II 6-E 4e= = g;5 -: E 0 5d Et ob 89 Ei =-E i6E FEEE ?E AEEE eg ElIEE 5 b; EgEE E*3.8E; EE EEa ti =-' 6-I e Ep H:qE EF-;E IEEeEA 2 '; EE i€ f; E eE gE 5: EtaEP o. Bo :R-4 S s- gi tAE E EEE.E E E EE -Ei 5 s g€ dForPEB; EHi;EEE fri:E;EE E Eg "=3 Et ce- EoG JE+ 5ESQ.: E 60r rE EE u EEE *aE@go 3E 'n* Eo,o a.sEile dE E @E ?oC E @EE,tEo c.o=e.Ig o.E E Eo d E E =€E' J=lJCa -oEEEEE E83E xXXE ;qSBE E: 6E @-EE Z-*-E t E Eco E ! E o o ECb4 Ec d eo EIEoo4 .J E ltE 5oa jo Er tt o o 6€ j P N .H o acEoe Ei. Ei Ee EEEO dEEOEZ 2a;59o6aodbg .lt c a= EE63 =Q -cJIF: s=E d; o=.i+c- EI8: tci*E6ng:5ei a-oo a.F!d94oAE !lr R8 6 6d t-6 *EE' -.& +- J Jr-r eEcEFH$s$ I oE E!S=b''9Pflsa EEi. EE- E9r EEe !€E E$E fi EB E EEEtsE.r!d T+E*EE Hte :i5 qtE tpE dtrE li E€*' i,€E Ez--3 P EgE "E I€i E fE€ IE"q s $HE Eaal C O EEi E $EE ;;Ee s EEE E Eq; Eca Eg ziE EtE Eg iEE EE@J -.a EE!Gi ZEr{t- i o ;.ig E E €ei EEZES TE E:E €E Ef;E Ig i-EE =-Eli --= lt -E"-, E P3et aoHsE tP EEE EE I IoI rUIoa T1'I I I I I IEo To(,t rgtoo Et a Go G I 6$ l- z^^ ,^^^ a w.,r cr : rr l]H,T, r00zlr0ll I{d I I Ea E fl) (, o@Eo- .c,.o (leI Fd Et, =d E Eo !t eEB5 EI 6EIdoEl s4 I rEo5 o Eop od Ep T JECG =s b P oEdf E 6 gtsHFn1 P-qEgEa8 HE€Ed= =lG E1Lo =3E E aEE4B r';685rS "o oi I'-e c3o Pg5E--5 .Etssr EEElr;eFB A$6?@c Ij-DEg E,a-|I -:!cb2E 6ad PQ- AEi dEE =EH 5 EE E [* -EEE E gEE E5 9C 2ODE ET EP Eg igEg E': t-E E EEi BE 53 R 5, Ei 'd E.r: fi E EE Eo^F:gEr hli 3s I:5- .gTzE :pq \!,B A9 tsaEi aE9s 2E 20 ;E El iE; 6E EE-g! l€ o 0AH4E50t iE "af; ; od e1!h6ADO :E6 =- EoE qg E€ E:g As $3+=5?BBE EE SE SE E-s E' rEee * $*gBB to Ge Fs(! E 5 I t I I t 6gg lE lg tE C.llftrBtE Ito lE rU =ts xv,{ gr: rr lrH.L r00zlr0lla^^ /*^^ llir odoc. E a f 2 f, 2 E o!)6ER 11+diEE;Z rl,,\2E() ab F c E ci 6.oEFE rlaEEE EEE o ano- 858 "E.+ E EEE" fL. f =A 5 E oco E G EoEc €toEo Et Eto E a{ cn e- ts p E It Ex6 E E EIo E tr Z o o E d E tOco 2, .F E EE B a .g =E E 6 .9 d -fc E ultt 6so-=O'Pulca o E_G Edoo o Eoo @ 6 H E ; b *1EE+-<-.oIE\;enc ='o €aNE oeE cocI E-* iEsae -oErE EEE € o-R ? 6r EEE JOEq u-d.e'a iT ?r +c,trl € = E-f EEE EE-' .t L. HE EE:FeeE9_bEE8. a[+ IEle€I --eI oEI E --I o OEI $EHI 5?.EI Eo*- I ag J rJ €o., qo-se 5 EPu€ gE EEEae o_lE E eal BgiEcEfl a,zIF <tzl|tGEot q E 3I L' !6 g 2o E6€a Eo 56a 6E E L.Eel-EtE$e I EEE oo lt3 EEEE E -o Eo EECo E-9 9A;E ='*OAEstgEl iigsE E.EE€ EucEA -eo t.EEeTEEE+N?*-o aEI A EEEEi 8 $EFEE{ 8s * Ea E Ht 'fEEO.e!- 6g,zula Ib?Eoc eooc= CA>ooB-'- =3xEttt R€8oro c Oo EEEgg 'EEo5E-fl #E EE::Ic9fr E -€ H.-E EAE E :)h:rz.> -zct- p Et Etq N +{ ?.? ?zd- E z oE Eo I EJ6U'lrlc, (, q 6 so6* fr. q 6 ) !, o-o ? f qo -. IEIElrlr I0tL-l = E arl E rOt fl-,tbfhePo€F 6 ddEP.t (, sf(J C' (-) o @fr s E_ E=z ;Ets {rl# oL6iEa]tscrE s{ 8FiIJ4dcdoEE6tQocl{{ I b G.o# Eoo(no Id 2 JrEod o o 4s,EI rS 6 L El o o Iefits2.16Za9838 .ee I ood :)F_2.-isE9- = 3sE ulo e obEsI e #E=e Et=Er EB$Eg 6t)o-o -9c, 6'+ooo+Qlll) o E frEEE,86 *=2=c,=*OT5X Ezaah=qt xoclttlc. ?s2-oo =z-=14 d. ur u, =1 no- utc.3 E,ulr Eut llt(,2 9brLf EEur(, L =,)4ro Etur>2 EE -a E,* frEE 5E Eeatrsb I I atr .9 -lG,o a-l+r'6 o CLa Lo*to E(It L- (U o. t trl To >a G oU Fo)T, G E G @6t G .EJI8Is o tfr T t I I I I I I so(\ o+roz, .E TJ @F G 6 ftd Eca R = xv.{ z0:9r (IJ/.looz/vz/lenn /7nn lrh (\l d6dd- attIL oL E cEd< sE gE-a t<aEgb :l6 o J d1 EEoE ot IAG o d E. U'o- 6 e d d, d- o .J E. ,^9 E?50.oo o 1 E E o Ir E 6o- b E6E EE .E E1 EE E ddo AIE o b L'a EI o cE E aco E z.o EoGo 6sccE .ii EJ0 t-o E Eo Eoco 5ti-sE- ho -;H? t=b G $ 1Gal 2 @Eco $ Q ocI* o Y EIoo o a6o)c Ert E 6 fic aLo s0 c) nEoooo6 J E o B o u,,)zo S'Eul 4dt- I, GE _aI g 6 e. eo 3 silc eoE a F .Eo ir D tc z =o h #g J4.J 5sts I+iai J- E+E {+rsi T.iEEi !d c d oDt E g E 6'Es?i-.PeE-E cE-g= EE EE gEE E E o E o a[tosa LE s o o EI)a EEItoE g$e €e* €sEcBtOIE EEE a @ 5ro o E - C g o 6 d Eo fd E -o b o I o56 a,-I {, aDzqtc5oc, eoo E.o-ztE EEE BEE +E€ 600aoo = rETE -06E€q8Eh eE€.uEE Eo Bo6 Ig g 6 Eo 3 gEIEE gEo6g$ 1E ECtE f,u EE SEiE EE5F t Bz,uttl, *et EE.96 E-€ 85" goI4;HEq.+ aEEPiEe= il Et 6 E )e1 E ooo E 6_6 E ct E d Pe E o -It-J du,lIld, z)a E 66 :@U o- E E EE =. E6cE d E.lot{ nEq o{t f E o ,H c 8. E d fl dFEBEoe 3E@*4 flo{ ot .IOJ:Baa*r60d{ teoq d d (J1E2(,.JI t .B *rE*EEgEt Es +r --zECJbEBTEE - rNB9s oE'6 E E Io E 6dge E 8 6 o e6Io 6 r E oIo fiuroz{u z *eo? P6 J 6 Eooa o o qa B Eq3fEce E.9:e HE a;5 gE.E E 6 E1 6 Bo a6 crf 6 ll) o oci Ec-1,6a ?EoE rllto E-i6aehdEa- Lllllo (, Eru EE 6BduI4E !O O- Tct Jt- lll^a4 =E J -roEo t(, R :EEoEc, =o- ETa E EE1fiE o Fo-trt6 ulr, h2 s o ut EE2 UIo7o dt) v,q C cu )2fE Ei I Irl G il .J ffit-lt fq .L I I I hl-elcLlo, Iol Eltlle. IOIhto B J en !t dlt @oEco ah =Eq d+ B1'Cou,soo G'?oo, o6 I tDo-ttolrHEo-o-otsELO .T, E LE'go .DJ tEc sg I I I I t I t I I t I BIcl-el EITI E-6 |8El EEIoc IEEIg;l EE E#E3 ao, 'sg FE6E 8ElEeIEUl;ot9Et!rlsrI O_Itt leE lEsI -g-sIrElbe lEsI oo- IE€lE=lse l€EI o6lEe leE IEElooI Oe I e-E IEEI oelea I a-oI Ec lEn l9$ Ec, E E. = rv,{ to:0r asa To0z/?z cnn /f oo lrr