HomeMy WebLinkAboutDAQ-2025-0002071
DAQC-017-25
Site ID 10742 (B4)
MEMORANDUM
TO: STACK TEST FILE – INTREPID POTASH WENDOVER, LLC – Wendover
Potash Plant
THROUGH: Rik Ombach, Minor Source Oil and Gas Compliance Section Manager
FROM: Paul Bushman, Environmental Scientist
DATE: January 8, 2025
SUBJECT: Source: Venturi Wet Scrubber
Contact: Todd Stubbs: 435-259-1282
Location: Exit 4, Interstate 80 (the Blair exit) and the Frontage Road,
Tooele County, UT
Test Contractor: TETCO
Permit/AO#: Approval Order (AO) DAQE-AN107420014-19, dated
July 22, 2019
Action Code: TR
Subject: Review of stack test report dated December 11, 2024
On January 3, 2025, DAQ received a test report for a Venturi Wet Scrubber at Intrepid Potash Wendover,
LLC – Wendover Potash Plant in Tooele County, UT. Testing was performed on November 11, 2024, to
demonstrate compliance with the emission limits found in condition II.B.4.a of DAQE-AN107420014-19.
The calculated test results are:
Source Test Date Pollutants Test
Methods Tester Results DAQ Results Limits
Venturi Wet
Scrubber
November
11, 2024 PM 5/202
3.69 lb/hr 3.6947 lb/hr 6.0 lb/hr
0.054 gr/dscf 0.0540 gr/dscf 0.05 gr/dscf
DEVIATIONS: None.
CONCLUSION: The Venturi Wet Scrubber is out of compliance with its emission
limits.
RECOMMENDATION: The emissions from the above listed unit should be considered to
have been out of compliance with the emission limits of
condition II.B.4.a of DAQE-AN107420014-17 during the time
of testing. It is recommended to send a Compliance Advisory.
ATTACHMENTS: DAQ stack test review excel spreadsheets; Intrepid Potash stack
test report.
Source Information
Division of Air Quality
Compliance Demonstration
Source Information
Company Name Intrepid Potash - Wendover - Venturi Wet Scrubber
Company Contact:Todd Stubbs
Contact Phone No.435-259-1282
Source Designation:Venturi Wet Scrubber
Test & Review Dates
Test Date: 11/11/2024
Review Date: 1/7/2025 Tabs Are Shown
Observer:None
Reviewer:Paul Bushman
Particulate Emission Limits
lbs/MMBtu lbs/hr gr/dscf
6.000 0.050
Emission Rates - "Front Half"
lbs/MMBtu lbs/hr gr/dscf
3.6947 0.0540
Test Information
Stack_I.D._inches As ft^2 Y Dl H @ Cp Pbar Pq (static)Dn
24.75 3.34 0.9940 1.607 0.84 25.7 -0.32 0.2535
Contractor Information
Contracting Company: TETCO
Contact: Dean Kitchen
Phone No.: 801-492-9106
Project No.:
Circular
10100
9780
9860
9190
8710
8710
8710
10540
10640
11950
320
10610
10200
10390
1970
1800
1910
1420
1040
1190
1250
F factor usedF factors for Coal, Oil, and Gas
Anthrocite 2
Lignite
Natural
Propane
Butane
COAL
OIL
GAS
Bituminous 2
Fd Fw Fc
scf/MMBtu scf/MMBtu scf/MMBtu
O2
CO2
lbs/MMBtu
Page 1
Summary
Division of Air Quality
Reference Methods 5 - TSP
Compliance Demonstration of
Intrepid Potash - Wendover - Venturi Wet Scrubber
Testing Results Lab Data - grams collected
Test Date 11/11/2024 11/11/2024 11/11/2024 11/11/2024 Lab Data Probe Filter Back
Circular Run 1 Run 2 Run 3 Run 4 Run 1 0.0098 0.1378 0.0081
As ft^2 3.34 3.34 3.34 Run 2 0.0061 0.1482 0.0085
Pbar 25.70 25.70 25.70 Run 3 0.0044 0.1971 0.0098
Pq (static)-0.32 -0.32 -0.32 Run 4
Ps 25.68 25.68 25.68
Avg. Ts F 102.67 105.08 107.17 Front Half Emissions Summary
CO2 - FCO2 2.50 1.50 1.50 Run 1 Run 2 Run 3 Run 4 Avg.
O2 18.00 19.00 18.50 gr./dscf 0.0481 0.0477 0.0661 0.0540
N2+C 79.50 79.50 80.00 lbs/hr 3.3048 3.3077 4.4716 3.6947
Md 29.12 29.00 28.98 lbs/MMBtu
Ms 28.76 28.66 28.48
Y 0.99 0.99 0.99
Cp 0.84 0.84 0.84 Total Emissions Summary w/back half condensable
Vm cf 57.53 62.16 58.58 Run 1 Run 2 Run 3 Run 4 Avg.
Vlc 33.50 33.40 47.50 gr./dscf 0.0508 0.0503 0.0693 0.0568
AVG. Tm F 91.71 104.71 104.42 lbs/hr 3.4862 3.4899 4.6891 3.8884
Vm std 47.31 49.97 47.08 lbs/MMBtu
Vw std 1.58 1.57 2.24
Bws 0.03 0.03 0.05
S Bws 0.08 0.09 0.09
Avg. Sqrt Dlp 0.82 0.83 0.82
Vs 51.25 51.95 51.65 F factor used
scfm wet 8273.88 8350.96 8272.01
acfm 10274.29 10414.55 10354.12
Qsd dscfh 480421.11 485773.82 473818.68
# Sample
Points 12.00 12.00 12.00
Dn 0.254 0.254 0.254
An 3.50E-04 3.50E-04 3.50E-04
Start Time 10:36 12:13 14:08
End Time 11:39 13:16 15:10
Total Test
time 60.00 60.00 60.00
Time @ point 5.00 5.00 5.00
O2
CO2
lbs/MMBtu
Page 2
Summary
80.00
90.00
100.00
110.00
120.00
1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47
% I
s
o
k
i
n
e
t
i
c
Points
Run 1 PxP Isokinetic
80.00
90.00
100.00
110.00
120.00
1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47
%
I
s
o
k
i
n
e
t
i
c
Sample Points
Run 2 PxP Isokinetic
80.00
90.00
100.00
110.00
120.00
1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47
% I
s
o
k
i
n
e
t
i
c
Sample Points
Run 3 PxP Isokinetic
80.00
90.00
100.00
110.00
120.00
1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47
Sample Points
Run 4 PxP Isokinetic
Page 3
Run 1
Intrepid Potash - Wendover - Venturi Wet Scrubber Flow & Moisture Test Date 11/11/2024
As ft^2 Pbar Pq (static) Ps Avg. Ts F CO2 - FCO2 O2 N2+C Md Ms
3.34 25.70 -0.32 25.68 103 2.50 18.00 79.50 29.12 28.76
Y Cp Vm cf Vlc Avg. Tm F Vm std Vw std Bws S Bws 0.0818
0.9940 0.84 57.534 33.50 91.71 47.312 1.577 0.0323 0.0818 0.999
Avg. Sqrt
Dlp Vs scfm wet acfm Qsd dscfh
# Sample
Points Dn
Total Test
time (minutes)
Time @ point
(minutes)Avg. Dlh
0.818 51.25 8,274 10,274 4.80E+05 12 0.2535 60 5.00 2.370833
TRUE
Point No.Meter (cf)dl "p"dl "h"ts F tm F (in)tm F (out)Imp. Liquid Collected
1 21.264 0.60 2.10 103 68 59 Wt. (Final)Wt. (Initial)lc
2 25.700 0.68 2.38 102 73 60 381.0 360.9 20.1
3 30.400 0.68 2.38 105 87 63 723.4 720.4 3.0
4 35.130 0.78 2.72 104 99 68 685.1 681.1 4.0
5 40.050 0.65 2.27 100 108 73 850.5 844.1 6.4
6 44.650 0.60 2.13 98 113 75 0.0
7 49.225 0.65 2.29 98 109 82
8 54.011 0.70 2.50 103 115 84 Isokinetics 93.9
9 59.055 0.75 2.70 104 121 87 Test Date 11/11/2024
10 64.300 0.75 2.70 104 125 90 Start Time 10:36 enter
11 69.450 0.60 2.14 105 127 92 End Time 11:39
12 74.150 0.60 2.14 106 128 95
13 78.798
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
Page 4
Run 2
Intrepid Potash - Wendover - Venturi Wet Scrubber Flow & Moisture Test Date 5/13/2009
As ft^2 Pbar Pq (static) Ps Avg. Ts F CO2 - FCO2 O2 N2+C Md Ms
3.34 25.70 -0.32 25.68 105 1.50 19.00 79.50 29.00 28.66
Y Cp Vm cf Vlc Avg. Tm F Vm std Vw std Bws S Bws 0.0879
0.9940 0.84 62.155 33.40 105 49.967 1.572 0.0305 0.0879 0.999
Avg. Sqrt
Dlp Vs scfm wet acfm Qsd dscfh
# Sample
Points Dn
Total Test
time (minutes)
Time @ point
(minutes)Avg. Dlh
0.826 51.95 8,351 10,415 4.86E+05 12 0.2535 60 5.00 2.60
TRUE
Point No.Meter (cf)dl "p"dl "h"ts F tm F (in)tm F (out)Imp. Liquid Collected
1 80.206 0.65 2.46 103 90 90 Wt. (Final)Wt. (Initial)lc
2 85.340 0.75 2.83 104 99 88 370.50 352.60 17.9
3 90.250 0.80 3.02 105 101 88 720.80 718.30 2.5
4 96.290 0.60 2.27 105 119 90 722.90 718.50 4.4
5 101.111 0.55 2.10 105 121 92 923.60 915.00 8.6
6 105.800 0.50 1.90 105 123 94 0.0
7 110.217 0.65 2.50 105 109 95
8 115.360 0.75 2.83 105 119 95 Isokinetics 98.1
9 120.775 0.75 2.83 107 124 95 Test Date 11/11/2024
10 126.100 0.80 3.05 106 127 96 Start Time 12:13
11 131.700 0.72 2.75 105 130 97 End Time 13:16
12 137.100 0.70 2.65 106 132 99
13 142.361
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
Page 5
Run 3
Intrepid Potash - Wendover - Venturi Wet Scrubber Flow & Moisture Test Date 5/13/2009
As ft^2 Pbar Pq (static) Ps Avg. Ts F CO2 - FCO2 O2 N2+C Md Ms
3.34 25.70 -0.32 25.68 107 1.50 18.50 80.00 28.98 28.48
Y Cp Vm cf Vlc Avg. Tm F Vm std Vw std Bws S Bws 0.0934
0.9940 0.84 58.581 47.50 104 47.079 2.236 0.0453 0.0934 0.999
Avg. Sqrt
Dlp Vs scfm wet acfm Qsd dscfh
# Sample
Points Dn
Total Test
time (minutes)
Time @ point
(minutes)Avg. Dlh
0.817 51.65 8,272 10,354 4.74E+05 12 0.2535 60 5.00 2.31
TRUE
Point No.Meter (cf)dl "p"dl "h"ts F tm F (in)tm F (out)Imp. Liquid Collected
1 43.107 0.65 2.25 106.0 86.0 86.0 Wt. (Final)Wt. (Initial)lc
2 47.985 0.75 2.57 107.0 95.0 86.0 383.4 357.6 25.8
3 53.085 0.80 2.74 110.0 103.0 86.0 711.6 702.2 9.4
4 58.400 0.55 1.90 109.0 112.0 88.0 728.0 722.5 5.5
5 62.775 0.55 1.90 108.0 115.0 89.0 942.7 935.9 6.8
6 67.300 0.50 1.71 108.0 118.0 91.0 0.0
7 71.506 0.60 2.06 107.0 110.0 94.0
8 76.105 0.75 2.57 106.0 121.0 95.0 Isokinetics 94.8
9 81.200 0.75 2.57 106.0 127.0 98.0 Test Date 11/11/2024
10 86.350 0.80 2.74 106.0 131.0 100.0 Start Time 14:08
11 91.640 0.70 2.40 107.0 135.0 102.0 End Time 15:10
12 96.750 0.65 2.25 106.0 136.0 102.0
13 101.688
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
Page 6
PARTICULATE MATTER COMPLIANCE TESTS
CONDUCTED FOR
INTREPID POTASH, WENDOVER, LLC
WENDOVER, UTAH
SOURCE TESTED:
VENTURI WET SCRUBBER
November 11, 2024
by:
TETCO
391 East 620 South
American Fork, UT 84003
Prepared for:
Intrepid Potash - Wendover, LLC
P.O. Box 580
Wendover UT, 84083
Date of Report:
December 11, 2024
CERTIFICATION OF REPORT INTEGRITY
Technical Emissions Testing Company (TETCO) certifies that this report represents the
truth as well as can be derived by the methods employed. Every effort was made to obtain
accurate and representative data and to comply with procedures set forth in the Federal Register.
Dean Kitchen
Reviewer: __ --,,c..,/t-----'1.,.a~"---=---~-----
Xuan Dang
Reviewer: ~.,........-:::---------~'---------==c...-----
Date: ______ -/Z-~1,,_/,_,,k......,/ ....... 2;...,,,.~-----
11
iii
TABLE OF CONTENTS
PAGE
Introduction
Test Purpose, Location and Type of Process .......................................................................1
Test Dates.............................................................................................................................1
Pollutants Tested and Methods Applied ............................................................................. 1
Test Participants .................................................................................................................. 2
Deviations from EPA Methods ............................................................................................2
Errors or Irregularities..........................................................................................................2
Quality Assurance ................................................................................................................2
Summary of Results
Emission Results ..................................................................................................................3
Allowable Emissions ...........................................................................................................3
Process Data .........................................................................................................................3
Description of Collected Samples ........................................................................................3
Percent Isokinetic Sampling ................................................................................................4
Source Operation
Process Control Devices Operation .....................................................................................5
Process Representativeness ..................................................................................................5
Sampling and Analytical Procedures
Sampling Port Location .......................................................................................................6
Sampling Point Location......................................................................................................6
Sampling Train Description .................................................................................................6
Sampling and Analytical Procedures ...................................................................................7
Quality Assurance ................................................................................................................7
Appendices
A: Complete Results and Sample Calculations
B: Raw Field Data
C: Laboratory Data and Chain of Custody
D: Facility Schematics
E: Calibration Procedures and Results
F: Related Correspondence
iv
LIST OF TABLES
Table PAGE
I Measured Particulate Matter Emissions ...............................................................................3
II Percent Isokinetic Sampling ................................................................................................4
III Sampling Point Location......................................................................................................6
IV Complete Results, Venturi Wet Scrubber ......................................................... Appendix A
LIST OF FIGURES
Figure
1 Facility Schematic Representation Venturi Wet Scrubber ................................ Appendix D
2 Schematic of Method 5/202 Sampling Train ..................................................... Appendix E
1
INTRODUCTION
Test Purpose, Location and Type of Process
This test was conducted to fulfill the testing requirements of Intrepid Potash- Wendover, LLC’s
Approval Order Number DAQE-AN107420014-19 dated July 22, 2019. Those requirements
include testing the Venturi Wet Scrubber exhaust for PM10 emissions. The Venturi Wet
Scrubber exhaust serves the dryer heated by a 21 MMBtu/hr burner. The burner is fired with
propane.
The Intrepid Potash, Wendover LLC facility is located on the frontage road approximately 4
(four) miles east of Wendover, Utah.
Emissions are expressed in terms of grains per dry standard cubic foot (gr/dscf) and pounds per
hour (lb/hr).
A schematic of process representation is given in Figure 1, located in Appendix D.
Test Dates
All testing was completed \November 11, 2024. Individual run times are on the Particulate Field
Data sheets and the complete results table in Appendix A.
Pollutants Tested and Methods Applied
EPA Methods 201 and 201A are the acceptable methods for determining filterable PM10
particulate. However, Methods 201 and 201A are not appropriate for stacks that contain
entrained water droplets. For this reason, 40 CFR 60, Appendix A, Reference Methods 1-5 were
used to measure total particulate matter (PM) emissions from the Venturi Wet Scrubber exhaust.
The Method 5 test is a gravimetric determination of PM particulate. Particulate matter is
withdrawn isokinetically from the source and collected on a glass fiber filter. The particulate mass
is determined gravimetrically after removal of uncombined moisture. This method is applicable
for the determination of the particulate emissions from stationary sources. Condensable particulate
matter (CPM) emissions were sampled in accordance with EPA Method 202. Method 202 is not
for compliance purposes but for information only. A schematic of the sampling train is given in
Figure 2.
2
Test Participants
Intrepid Potash Todd Stubbs
State None
TETCO Dean Kitchen Xuan Dang
Deviations From EPA Methods
There were none.
Errors or Irregularities
There were no irregularities during the test project.
Quality Assurance
Testing Procedures and sample recovery techniques were according to those outlined in the
Federal Register and the Quality Assurance Handbook for Air Pollution Measurement Systems.
3
SUMMARY OF RESULTS
Emission Results
Table I presents the PM test results. Table IV in Appendix A has more detailed testing data.
Table I. Measured PM and Emissions
Run
PM
Concentration
(gr/dscf)
Emission Rate
(lb/hr)
1 0.048 3.30
2 0.048 3.30
3 0.066 4.47
Avg. 0.054 3.69
Allowable Emissions
The allowable PM10 emissions for this source are 0.05 grains per dry standard cubic foot (gr/dscf)
and 6.0 pounds per hour (lb/hr), as listed in the Facility Approval Order AO DAQE-AN107420014-
19.
Process Data
The facility was operated according to standard procedures. All pertinent process data was available
for recording by agency personnel.
Scrubber water flow rate and pressure drop readings across the Venturi Scrubber were recorded on
the individual run sheets.
Description of Collected Samples
The filters for all three 3 test runs were covered with a moderate amount of particulate that was pink
in color. The CPM filters were slightly gray in color. Impingers and water from the front-half catch
of each run appeared slightly cloudy.
4
Percent Isokinetic Sampling
Each test run was isokinetic within the ±10% of 100% criterion specified in the Federal Register.
The isokinetic value for each EPA Method 5 test run is presented in Table II.
Table II. Testing Isokinetics
Run # Percent Isokinetic
1 94
2 98
3 100
5
SOURCE OPERATION
Process Control Devices Operation
All control devices were operated normally during the tests. The facility was operated according to
standard procedures.
The Venturi Wet Scrubber water flow rate and pressure drop readings across the scrubber were
recorded and included in Appendix D.
Process Representativeness
The facility operated normally during the tests. Production rates were maintained by Intrepid
Potash personnel.
6
SAMPLING AND ANALYTICAL PROCEDURES
Sampling Port Location
The stack inside diameter was 24.75 inches. Port location is depicted in Figure 1. The ports were
located 7.3 diameters (15 feet) downstream from the last disturbance and 7.3 diameters (15 feet)
upstream from the next disturbance.
Sampling Point Location
Table III shows the distance of each sampling point from the inside wall. Each point is marked with
a glass tape wrapping and numbered. These points are determined by measuring the distance from
the inside wall and adding the reference (port) measurement.
Table III Sampling Point Location
Point # Distance (inches)
from Inside Wall
1 1.09
2 3.61
3 7.33
4 17.42
5 21.14
6 23.66
.Sampling Train Description
All sampling trains were made of inert materials, (i.e., stainless steel and glass, etc.) to prevent
sampled gas and particulate interference. The stack analyzer used to conduct these tests is
constructed to meet the specifications outlined in 40 CFR 60, Appendix A, Method 5. The
temperature sensors are K-type thermocouples. Heater, vacuum and pitot line connections have
been designed to be interchangeable with all units used by the tester. The probe liners are of 316
grade stainless steel. Figure 2 in Appendix F is a sketch of the Method 5/202 sampling train.
Sample boxes were prepared for testing by following the prescribed procedures outlined in 40 CFR
60, Appendix A, Methods 5.
7
Sampling and Analytical Procedures
All test and analytical procedures employed were as specified in 40 CFR 60 Appendix A,
Reference Method 5 and 40 CFR 51, Appendix M, Method 202.
Quality Assurance
All equipment set-up, sampling procedures, sample recovery and equipment calibrations were
carried out according to the procedures specified in 40 CFR 60, Appendix A, Method 5, 40 CFR
51, Appendix M, Method 202 and the Quality Assurance Handbook for Air Pollution
Measurement Systems.
8
APPENDICES
A: Complete Results and Sample Calculations B: Raw Field Data
C: Laboratory Data and Chain of Custody
D: Facility Schematics E: Calibration Procedures and Results
F: Related Correspondence
A
APPENDIX A
Table IV Complete Results, Venturi Wet Scrubber Nomenclature
Sample Equations
Complete Results ScrubberTABLE IV
COMPLETE RESULTS
INTREPID WENDOVER, WENDOVER, UTAH
DRYER VENTURI SCRUBBER EXHAUST
Symbol Description Dimensions Run #1 Run #2 Run #3
Date Date 11/11/24 11/11/24 11/11/24
Filter #7787 7788 7789
Begin Time Test Began 10:36 12:13 14:08
End Time Test Ended 11:39 13:16 15:10
Pbm Meter Barometric Pressure In. Hg. Abs 25.70 25.70 25.70
DH Orifice Pressure Drop In. H2O 2.371 2.599 2.305
Y Meter Calibration Y Factor dimensionless 0.994 0.994 0.994
Vm Volume Gas Sampled--Meter Conditions cf 57.534 62.155 58.581
Tm Avg Meter Temperature oF 91.7 104.7 104.8
DP Sq Root Velocity Head Root In. H2O 0.8177 0.8257 0.8167
Wtwc Weight Water Collected Grams 33.5 35.4 47.0
Tt Duration of Test Minutes 60 60 60
Cp Pitot Tube Coefficient Dimensionless 0.84 0.84 0.84
Dn Nozzle Diameter Inches 0.2535 0.2535 0.2465
CO2 Volume % Carbon Dioxide Percent 2.50 1.50 1.50
O2 Volume % Oxygen Percent 18.00 19.00 18.50
N2 & CO Volume % Nitrogen and Carbon Monoxide Percent 79.50 79.50 80.00
Vmstd Volume Gas Sampled (Standard)dscf 47.332 49.988 47.066
Vw Volume Water Vapor scf 1.580 1.669 2.216
Bws (measured)Fraction H2O in Stack Gas (Measured)Fraction 0.032 0.032 0.045
Bws (calculated)Fraction H2O in Stack Gas (Calculated)Fraction 0.082 0.086 0.093
Bws Fraction H2O in Stack Gas Fraction 0.032 0.032 0.045
Xd Fraction of Dry Gas Fraction 0.968 0.968 0.955
Md Molecular Wt. Dry Gas lb/lbmol 29.12 29.00 28.98
Ms Molecular Wt. Stack Gas lb/lbmol 28.76 28.64 28.49
%I Percent Isokinetic Percent 94.0 98.2 100.2 AVG
Ts Avg Stack Temperature oF 102.7 104.6 107.2 104.8
As Stack Cross Sectional Area Sq. Ft.3.341 3.341 3.341
PG Stack Static Pressure In. H2O -0.32 -0.32 -0.32
Pbp Sample Port Barometric Pressure In. Hg. Abs 25.67 25.67 25.67
Ps Stack Pressure In. Hg. Abs 25.646 25.646 25.646
Qs Stack Gas Volumetric Flow Rate (Std)dscfm 8.00E+03 8.08E+03 7.89E+03 7.99E+03
Qa Stack Gas Volumetric Flow Rate (Actual)cfm 1.03E+04 1.04E+04 1.04E+04 1.04E+04
Vs Velocity of Stack Gas fpm 3.08E+03 3.12E+03 3.10E+03 3.10E+03
Mfilter Mass of Particulate on Filter milligrams 137.8 148.2 197.1
Mp Mass of Particulate in Wash milligrams 9.8 6.1 4.4
MF Mass of Front Half milligrams 147.6 154.3 201.5
MB Mass of Back Half milligrams 8.1 8.5 9.8
CF Concentration of Front Half gr / dscf 0.0481 0.0476 0.0661 0.0539
Ccond Concentration of Condensibles gr / dscf 0.0026 0.0026 0.0032 0.0028
ERF Emission Rate of Front Half lb / hr 3.30 3.30 4.47 3.69
ERcond Emission Rate of Condensibles lb / hr 0.18 0.18 0.22 0.19
%I =percent isokinetic
As =stack cross-sectional area (ft3)
AS∆P =see √∆P
Btu =unit heat value (British thermal unit)
Bws =fraction of water in stack gas
Ccpm =concentration of condensibles (grain/dscf)
Cf =concentration of particulate matter, front half (gr/dscf,lb/dscf, etc.)
Cmetal =concentration of metals (ppm, µg/ft3, etc.) atomic symbol replaces "metal"
CO2 =percent carbon dioxide in the stack gas
Cp =pitot tube coefficient (0.84)
CX (avg)=species symbol replaces x .
CX (corr)=actual gas concentration corrected to required percent O2
∆H =orifice pressure drop (inches H2O)
∆H@ =orifice pressure (inches H2O)
Dn =nozzle diameter (inches)
Dn des =calculated desired nozzle size (inches)
∆P =stack flow pressure differential (inches H2O)
Ds =diameter of the stack (feet)
EA =percent excess air
ERcpm =emission rate of condensibles (lb/hr)
ERF =emission rate of front half particulate (lb/hr)
ERmmBtu =emission rate per mmBtu or ton of fuel etc.
ERX =emission rate of compound which replaces x
K-fact =multiplier of test point ∆P to determine test point ∆H
L =length of rectangular stack (inches)
mBtu =thousand Btu
Mcpm =mass of condensibles (milligrams)
Md =molecular weight of stack gas, dry basis (lb/lb-mol)
MF =mass of particulate on filter (mg)
MFP =mass of particulate matter on filter and probe (mg)
mmBtu =million Btu
MP =mass of particulate matter in probe (mg)
Ms =molecular weight of stack gas, wet basis (g/gmol)
N2 =percent nitrogen in the stack gas
O2 =percent oxygen in the stack gas
√∆P =average of the square roots of ∆P (may also be referred to as AS∆P)
Pbm =absolute barometric pressure at the dry gas meter (inches Hg)
Pbp =absolute barometric pressure at the sample location (inches Hg)
PG =stack static pressure (inches H2O)
Ps =absolute stack pressure (inches Hg)
Pstd =absolute pressure at standard conditions (29.92 inches Hg.)
θ =time of test (minutes)
Qa =stack gas volumetric flow rate (acfm)
Method 5 / 202 Nomenclature
Method 5 / 202 Nomenclature
Qs =stack gas volumetric flow rate (dscfm)
Qw =wet stack gas std. volumetric flow (ft3/min, wscfm)
Tm =meter temperature (oF)
Ts =stack temperature (oF)
Tstd =absolute temperature at standard conditions (528oR)
Tt =see θ
Vm =sample volume (ft3) at meter conditions
Vmstd =volume standard (dscf), sample volume adjusted to 68oF and 29.92 inches Hg.
Vs =velocity of stack gas (fpm)
Vw =volume water vapor (scf) at 68oF and 29.92 inches Hg.
W =width of rectangular stack (inches)
Wtwc =weight of the condensed water collected (grams)
Xd =fraction of dry gas
Y =meter calibration Y-factor (dimensionless)
%I =Vmstd • (Ts + 460) • 1039 / (θ • Vs • Ps • Xd • Dn2)
As =(Ds2 / 4) • π
Bws =Vw / (Vmstd +Vw)
Ccpm =Mcpm • 0.01543 / Vmstd
Ccors =Mcors • 0.01543 / Vmstd
Cf =Mfp • 0.01543 / Vmstd
CX (corr)=CX (avg) • (20.9 - desired %O2) / (20.9 - actual %O2)
Deq =2 • L • W / (L + W)
Dn des =√{0.0269 • (Pbm + 0.0735) / [(Tm + 460) • Cp • Xd • √[(Ts + 460) • Ms) / (Ps • ∆P)]]}
EA =(%O2 - 0.5 %CO) / [0.264 %N2 - (%O2 - 0.5 %CO)]
ERcpm =Ccpm • Qs • 0.00857
ERF =Cf • Qs • 0.00857
ERmmBtu =ERX / (mmBtu / hr)
K-fact =846.72 • Dn4 • ∆H@ • Cp2 • Xd2 • Md • Ps • (Tm + 460) / [Ms • (Ts + 460) • (Pbm + ∆H / 13.6)]
Md =CO2 • 0.44 + O2 • 0.32 + N2 •0.28
Ms =(Md • Xd) + (18 • Bws)
Ps =Pbp + (PG / 13.6)
Qa =Vs • As
Qs =Qa • Xd • Ps • Tstd / [(Ts + 460) • Pstd]
Qw =Qs / Xd
Vmstd =Vm • Y • Tstd • (Pbm + ∆H / 13.6) / [Pstd • (Tm + 460)]
Vs =85.49 • 60 • Cp • √∆P • √ [(Ts + 460) / (Ps • Ms)]
Vw =Wtwc • 0.04715
Xd =1 - Bws
Method 5 / 202 Sample Equations
B
APPENDIX B
Preliminary Velocity Traverse and Sampling Point Location Data Particulate Field Data
Prelim 6 pts blank
Facility Intrepid, Moab
Stack Identification Venturi Scrubber
Date LI ,-)t-1. cl ir-,,_.,
Barometric Pressure
N Pbm ):_J, 7 CJ'i Hg PbP >J-;6_~g
Static Pressure (Po) .-..,, z "). inH2O
Estimated Moisture (Bw,) ~ %
Sample Height from Ground ri) feet
Comments: --------------------Stack Dia. 24.75 Reference: 6.25
Ports are ___ 1_5 __ Upstream from next disturbance
Ports are 15 Downstream from last disturbance -----
Traverse Percent Distance From:
Point Diameter ID Reference
1 4.4 1.09 7.34
2 14.6 3.61 9.86
3 29.6 7.33 13.58
4 70.4 17.42 23.67
5 85.4 21.14 27.39
6 95.6 23.66 29.91
Averages:
A
I)
If ,~
t1
I)
l"I
Ts ___ _
~p ----
B
I'",
v. ,~~
76,IJ J-'i
,p~t rl1
~60/;i-
I).,
L.Flow
✓~P
Ports
C
----
KEY=> l~T_s ___ ~_P __ L._F_lo_w~I
D E F
------
[/}:@Field Data Sheet
Plant: Intrepid Potash, Wendover
Date: / z-11-he./ • ii
Traverse II Ti1;1e It DGM .1.H (in Hp)
TETCO
Filter_ZW;;, Sample Box~
Location: Venturi Scrubber '--
Operator /2, )(t 1/;;t; ~
Vacumn II Temperatures (F)~ "-A II DGM Temp_ (T.,,)
Page_(_ of_~l Run# _j
N ,-'/ 6 B
Stack Diameter 24. 75" Port Reference ~5"
Ports are 15' Upstream from next disturbance ~ 1r }Ji l) Oii 71J1.~ ?.h IJt~ 7li 2 12,~'t IJ:T ~ :&116 Z l ;J_;f II Ct.'81 Cf t_ Ports are 15' Downstream from last disturbance
't 5
6
/J 1 11•t:v 1 1 vv 11-,, / er:✓ l'•ru"' '1/Z''_j,,Jn·r, I b I ,, u K" f ~~,..,.,,,,I" J. I "'.......l II..,,,,,,,,,,~ L -r----i v > _,... ~ ., ~ _ r..--. _ ~ ... • :., __ _ _ . ......v_ , , 1 2
3
4
5
6
Total
Average
Comments:
d-7,FJ 1/ ✓_-~
✓ ~
Time Water flow gpm ·"Wr!7 Scrubber ~p
_i---
-------
f/:;,,Ct>rd-cd .J et1(?ra-l-c.fy
--
ll_2J,,,.
{ Ob, "'J..
2:2:01
C/IZ
.,__
Assumed Moisture
Probe ,J_.i:...t;_ Cp 0.84
Nozzle Calibration .;n ..H2_ , J--f/ --L)d_---/
AvgDn ,)-~tiiches
Gas Bag /2 -t/ 7
Console_.../tz
Y-Factor~{
i'>.H@ ~ in H20
Barometric Pressures
Pbm J-r[', 7 0 in Hg
Pbp )i-. /p 7 in Hg
P0 ._,>) inH20
Leak Check: Pre Post
fl'Jmin , t? ltl '?i'v')..
vac in Hg ·);:). "; a 6 .. o
PitotRate t?,0 a,_,O
lnH20 ~tLJ 9:-z:;
Water Collected YJ.J·-
Time Sampled c,o
Flow Rate
g
min
dH@
cc/min
K-"} ~-@Tmtpo
K-@Tm
1,J-
1 qi;()
~/p O kid Data Sheet
Plant: Intrepid Potash, Wendover
Date: / /-../ /-=-Jy
•:tr
Total £), f.))-✓ f, yo77 )£! 7'
Average ✓ , F) 1:.r z 1, 1-r r
Comments:
Time Water flow gpm Scrubber ~p
--
Cf' 'I
FilterZZ~Bs~m~leBox4
Location: Venturi Scrubber .
Operator )I, fu fvl, ~ ~
1-Ll-" 7
l(IY r_ r;. (.
/oe,.c
X1>
~rJ)
lt!_!b.:Z
Page J __ of___J_ Run#_;}-
-
N 6 B
/
24.75" Port Reference ____g,25" ~ Upstream from next disturbance
15' Downstream from last disturbance
Assumed Moisture tJ A.
Probe 3'$6 Cp 0.84
Nozzle Calibration ~ ~ ~ __,_h_-r
Avg D0 _!.,,2!!1:2:::!m'a.es
Gas Bag ,,fl-CJ 7
Console {i:
Y-Factor , q f Y
t.H@ ), LPo/' H,O
Barometric Pressures
Pbm )-_J'"'; J C1' in Hg
Pbp ?-,,.[)C, 7 in Hg
P0 -. ,);z_ in H20
Leak Check: Pre Post
ft
3
/min 'or l C2,/cJ
vac in Hg );} : /0,, 0
PitotRate C?" 0 (J.0
InH,0 !!1_,t:7 a" e
Water Collected .}Jr';/_
Time Sampled t;(J
Flow Rate
K-).7& @Tm
K-@Tm
g
min
AH@
cc/min
J '1 ?Ct,
$eld Data Sheet
Plant: Intrepid Potash, Wendover
Date //~~ /2 i
Total
Avera~e
Comments:
Time
v"-9, >-YI ✓ i9010
✓ .ff/6"7
Water flow gpm
---
--------_ i---
-----f'~ i/
;>7.c,c
2:-10
Scrubber L'lP
i.---
i
A-µ:TCO
Filter-2Z.-'J?'J Sample Box C,,,
Location Venturi Scrubber
Operator &', K/Gl, t< q ~,
!lib
l<ZZ.h
J f-p,~ ,Ji!,,, z;, -
Page_)_of__j Run#__/
N B
/ 6
-;,,Db ,
I C'<f~ ti_
Jyt:19
24.75" Port Reference ~5" ~ Upstream from next disturbance
15' Downstream from last disturbance
Assumed Moisture • P_::2
Probe 7 ff Q Cp 0.84 ,
Nozzle Calibration ,4 l.,
!2:z) JL.} 2Lj' d£:'Y V/f
AvgD,, ,nf7f'.fucnes / C?-j~~.,,
Gas Bag ,d:-c-'7
Console • b
Y-Factor , ff'(
LlH@ /, ~R,z,n H2O
' Barometric Pressures
Pbm )'J77t:J inHg
Pbµ ~V7 inHg
P0 ........ , ] ?-inH20 ,,,
Leak Check: Pre Post
ft
3/min-j[j5f ,,t7t7Jh
vac in Hg J-.. 6.C)
PitotRate~.
InH20 _,
Water Collected
Time Sampled
';-.1/ {, ,;({~
Flow Rate
·). r.,f 7
~: r'-f Z
,;--'-f6J
CJ?.t? tJ.o
L11tf
K~,). 'f_:t @Tm
@Tm K~
g
min
AH@
cc/min
C
APPENDIX C
Sample Recovery Particulate Analysis Sheets
Condensable Particulate Analysis Sheets
Gas Analysis Data (Fyrite)
Chain of Custody
Facility: lntrc~id Wendover
Slack ldentilfoation:J/,e.p .. ~ 1'
c:;>
MS 202 lmpingcr Field Sheet
.!MELl'iGJUlS.
Run:_...,,/ __ _ Sample Box:
Filter Number: lmpmger Number
Dry
2 I Cold 3 I 4 5
Initial Volume of liquid (H20) in irnpingers, (ml)
weigh & analyze we1g 1 an 1scar "1// Total (g) ===_3=· ==J=====,, "==J=-= ·Acetone.
IMl'l:X[;ERS
Run: ~ Sample Box:
Filter Number: Tmpmger~um6er
Drv
2
Initial Volume of liquid (H20) in impingcrs, (ml)
Date: J/ ~ //1 /" c/
Method: 5/202 --------
A-=
Initials
Hexane
/4
b
Initials
.JL
Initial (g) _.,__,._,,::,,:,__,,,,__p:::;.u,L:.::1,_µc£,1~..i,,._-J--,'-//;,.µJL.L4-___ 4-__ _
Net (gJ '-' f
pm{Iltcr description wcig 1 & analyze
(hJL..lt-n-£-_#ft"PL_ -uf vV/4/, //-c.. Total (gl 35": c.f
'I. !f{f#W'i/' ~ ~SES 1120 Acetone Hexane
, ,, ,tart / )) ')....
i 'r:1p•,:c·11d / 1/) )-,
inl 11,0 added <j t)
iiVll'INW~RS
Run: _-2_ Sample Box: -~C..__-_
Filler Number: Tm pinger Num6ei'·
Dry I Cold 6
Hexane
Facility: Intrepid Wendover
Stack Identification: Venturi Scrbber
Filter Number: 7887
Blanks &
Rinses
Filter
Blanks
Acetone (CH3COCH3) 0.0000 g/lO0ml
Final 1: 0.8292 g --------Fin al 2: 0.8297 g
FinalAvo: 0.8295 g
FiltefPreweight: 0.6917 g
Net 0.1378 g
Net 137.8 mg
Front Half Final1: 59.5534 g
Final2: 59.5529 g
FinalAvo: 59.5532 g
Initial,: 59.5435 g
Initial 2: 59.5432 g
Initial A vo: 59.5434 g
Gross: 0.0098 g
Beaker Number: 88 Blank: 0.0000 g
Net 0.0098 g
Net 9.8 mg
RESULTS Front Half
Filter 137.8 mg
Wash 9.8 mg
Total 147.6 mg
Date: 11/11/24
Run: ----
Sample Box: A
Rinses
ml
Date: 11/20/24
Date: 11/20/24
Time: 9:00 ----Time: 15:00
Date:
Date:
Date:
Date:
Process
Final
11/20/24
11/20/24
8/28/24
8/28/24
Process
Final
Initial
CRITERIA
Weight Time
Pass Pass
Time: 9:00
Time: 15:00
Time: 8:00
Time: 14:00
CRITERIA
Weight Time
Pass Pass
Pass Pass
Comments: Criteria: I) Weights are± 0.5 mg of each other, or within I% of the net weight. 2) There shall be at least 6 hrs between weighings.
Lab Technician: D Kitchen Date: 11/20/24
Lab Technician: M McNamara Date: 11/12/24
Facility: Intrepid Wendover
Stack Identification: Venturi Scrbber
FilterNumber: 7888
Blanks &
Rinses
Filter
Blanks
Acetone (CH3COCH3) 0.0000 g/lO0ml
Final 1: 0.8399 g --------Final2: 0.8404 g
FinalAva: 0.8402 g
Filter Preweight: 0.6920 g
Net 0.1482 g
Net 148.2 mg
Front Half Final1: 57.5140 g
Final2: 57.5136 g
FinalAva: 57.5138 g
Initial,: 57.5079 g
Initial 2: 57.5075 g
Initial Ava: 57.5077 g
Gross: 0.0061 g
Beaker Number: 89 Blank: 0.0000 g
Net 0.0061 g
Net 6.1 mg
RESULTS Front Half
Filter 148.2 mg
Wash 6.1 mg
Total 154.3 mg
Date: 11/11/24
Run: 2
Sample Box: B
Rinses
Date: 11/20/24
Date: 11/20/24
Process
Final
Date: 11/20/24
Date: 11/20/24
. Date: 8/28/24
Date: 8/28/24
Process
Final
Initial
ml
Time: 9:00 -----Time: 15:00
CRITERIA
Weight Time
Pass Pass
Time: 9:00
Time: 15:00
Time: 8:00
Time: 14:00
CRITERIA
Weight Time
Pass Pass
Pass Pass
Comments: Criteria: I) Weights are± 0.5 mg of each other, or within 1 % of the net weight 2) There shall be at least 6 hrs between weighings.
Lab Technician: D Kitchen Date: 11/20/24
Lab Technician: M McNamara Date: 11/12/24
Facility: Intrepid Wendover --~-------------------Date: 11/11/24
St a ck Identification: Venturi Scrbber Run: 3 ----------------------Filter Number: 7889 Sample Box: C
Blanks Rinses Blanks &
Rinses Acetone (CH3COCH3) 0.0000 g/l00ml Acetone (CH3COCH3) 50 ml
Filter
Front Half
Final 1: 0.8746 g -------Final2: 0.8750 g
FinalAva: 0.8748 g
Filter Preweight: 0.6777 g
Final 1:
Final2:
Initial1:
Initial 2:
47.9888
47.9884 -----"------g _______ g
47.9843
47.9840
________ g
________ g
Net 0.1971 g
Net 197.1 mg
FinalAva: 47.9886 g
InitialAva: 47.9842 g
Gross: 0.0044 g
Beaker Number: 90 Blank: 0.0000 g
Net 0.0044 g
Net 4.4 mg
RESULTS Front Half
Filter 197 .1 mg ----Wash 4.4 mg
Total 201.5 mg
Date: 11/20/24 Time: 9:00
Date: 11/20/24 Time: 15:00
CRITERIA
Process Weight Time
Final Pass Pass
Date: 11/20/24 Time: 9:00
Date: 11/20/24 Time: 15:00
Date: 8/28/24 Time: 8:00
Date: 8/28/24 Time: 14:00
CRITERIA
Process Weight Time
Final Pass Pass
Initial Pass Pass
Comments: Criteria: I) Weights are ± 0 .5 mg of each other, or within I% of the net weight. 2) There shall be at least 6 hrs between weighings.
Lab Technician: D Kitchen Date: 11/20/24
Lab Technician: M McNamara Date: 11/12/24
Facilty: Intrepid Potash, Wendover
Stack Identification: Venturi Scrubber
Method 202 Laboratory Form
------------------------
Sample Description/ID # Run 1 Run2
Inorganic CPM
Rel. Hum Rel. Hum
Beaker/Tin # 991 Date Time % 992 Date Time %
Final Weight (1), g 2.1343 111201241 8:oo I <l 2.1592 111201241 8:oo I <l
Final Weight (2), g 2.1342 111201241 14:oo I <l 2.1591 111201241 14:oo I <l
Ave. Final Wei!!ht, g 2.1343 2.1592
Initial Weight (1), g 2.1292 914124 I 10:00 I <l 2.1557 914124 I 10:00 I <l
Initial Weight (2), g 2.1294 915124 I 9:oo I <l 2.1557 915124 I 9:oo I <l
Ave. Initial Weight, g 2.1293 2.1557
mr: Initial Inorganic Wt, mg 4.95 3.45
H2O added in Extractions, ml 60 pH pH 60 pH pH
Reconstituted H2O Volume, ml Start End Start End
N: Normality ofNH4OH I I I I
Vt: Volume ofNH4OH, ml
m0: Mass ofNH4 Added, mg
mi (or mib): Final Inorganic Wt, mg 4.95 3.45
Organic CPM
Rel. Hum Rel. Hum
Beaker/Tin # 994 Date Time % 995 Date Time %
Final Weight (1), g 2.1619 111201241 8:oo I <l 2.1708 111201241 8:oo I <1
Final Weight (2), g 2.1619 111201241 14:oo I <l 2.1709 111201241 14:oo I <l
Ave. Final Weight, g 2.1619 2.1709
Initial Weight (1), g 2:1567 914124 I 10:00 I <l 2.1636 914124 I 10:00 I <1
Initial Weight (2), g 2.1568 915124 I 9:oo I <l 2.1639 915124 I 9:oo I <1
Ave. Initial Weight, g 2.1568 2.1638
m0 (or m0b): Net Organic Wt, mg 5.15 7.10
mcom : Gross CPM, mg 10.1 10.5
mcpm : Blank CPM, mg 2.0 2.0
mcpm : Net CPM, mg 8.1 8.5
pH Meter: Oakton pHTestr BNC, Electrode Model: 35801-00
Fisher pH Buffer 4.00r======pH=====·=l==D=a=te=:I:=
Fisher pH Buffer 7.00 ~-----~
t=j Lab Technician:
Lab Technician:
Test Date(s): 11/11/24 ----------
Run3
Rel. Hum
993 Date Time %
2.1764 111201241 8:oo I <1
2.1765 111201241 14:oo I < 1
2.1765
2.1729 914124 I 10:00 I <1
2.1730 915124 I 9:oo I < 1
2.1730
3.50
60 pH pH
Start End
I I
3.50
Rel. Hum
996 Date Time %
2.1527 111201241 8:oo I <1
2.1529 111201241 14:oo I <1
2.1528
2.1444 914124 I 10:00 I <1
2.1446 915124 I 9:oo I <1
2.1445
8.30
11.8
2.0
9.8
Mike McNamara Date: 11/15/24
Dean Kitchen Date: 11/20/24
Form Date: 10/21/15
Facilty: Intrepid Potash, Wendover
Stack Identification: Venturi Scrubber
Method 202 Laboratory Form
Test Date(s): 11/11/24
Sample Description/ID # Recovery Blank ProofBiank
Inorganic CPM
Rel. Hum Rel.Hum% Beaker/tin # 997 Date Time % 998 Date Time
Final Weight (1), g 2.1730 11/20/24 8:00 <l 2.1111 11/20/24 8:00 <1
Final Weight (2), g 2.1727 11/20/24 14:00 <l 2.1111 11/20/24 14:00 <1
Ave. Final Weight, g 2.1729 2.1111
Initial Weight (1 ), g 2.1716 9/4/24 10:00 <l 2.1102 9/4/24 10:00 <1
Initial Weight (2), g 2.1718 9/5/24 9:00 <l 2.1102 9/5/24 9:00 <1
Ave. Initial Weight, g 2.1717 2.1102
mr: Initial Inorganic Wt, mg 1.15 0.90
H20 added in Extractions, ml 60 pH pH 60 pH pH
Reconstituted H20 Volume, ml Start End Start End
N: Normality ofNJiiOH
V1: Volume ofNH40H, ml
me: Mass ofNHi Added, mg
mi (or mib): Final Inorganic Wt, mg 1.15 0.90
OrganicCPM
Rel. Hum Rel.Hum% Beaker/tin # 999 Date Time % 1 Date Time
Final Weight (1), g 2.1469 11/20/24 8:00 <l 2.1727 11/20/24 8:00 <l
Final Weight (2), g 2.1471 11/20/24 14:00 <l 2.1728 11/20/24 14:00 <l
Ave. Final Weight, g 2.1470 2.1728
Initial Weight (1 ), g 2.1460 9/4/24 10:00 <l 2.1717 9/4/24 10:00 <l
Initial Weight (2), g 2.1459 9/5/24 9:00 <l 2.1720 9/5/24 9:00 <l
Ave. Initial W ei2:ht, g 2.1460 2.1719
m0 (or m0b): Net Organic Wt, mg 1.05 0.90
mcpm ( or mfb): Total CPM, mg 2.2 1.8
pH Meter: Oakton pHTestr BNC, Electrode Model: 35801-00
Fisher pH Buffer 4.00:1 =====p=H======I Date
Fisher pH Buffer 7 .00 ..._ _____ _.
I Time I Lab Tech.: Mike McNamara
Lab Tech.:
Date:
Dean Kitchen Date:
11/15/24
11/20/24
Fonn Date: I 0/21/15
Facilty: Intrepid Potash, Wendover
Stack Identification: Venturi Scrubber
Method 202 Field Reagent Blank Form
Test Date(s): 11/11/24 ----------
Blank Description/ID# Water RICCA Reagent Acetone Fisher ACS Hexane Sigma-Aldrich
Lot# 2307F47 185673 MKCR-5028
Rel.Hum Rel.Hum Rel. Hum
Beaker/tin # 985 Date Time % 986 Date Time % 987 Date Time %
Final Weight (1), g 2.1467 11120124 I 8:oo I <1 2.1571 11/20/24 8:oo I <1 2.1581 11/20/24 8:oo I <1
·-11120124 l 14:oo I 14:oo I 11120124 14:oo I Final Weight (2), g 2.1467 <l 2.1574 11/20/24 <1 2.1579 <l
Ave. Final Weight, g 2.1467 2.1573 2.1580
Initial Weight (1), g 2.1466 914124 I 10:00 I <l 2.1574 9/4/24 10:00 I <1 2.1579 9/4/24 10:00 I <l
Initial Weight (2), g 2.1467 915124 I 9:oo I <l 2.1571 915124 I 9:oo I <1 2.1580 9/5/24 9:oo I <1
Ave. Initial Weight, g 2.1467 2.1573 2.1580
Blank Residual Mass, mg 0.05 Water 0.00 Acetone 0.05 Hexane
Blank Mass, g 218 138 149
Blank Volume, ml 218 176 223
Max Blank Residulal Mass, mg 0.22 0.18 0.22
Lab Technician: Mike McNamara Date: 11/15/24
Lab Technician: Dean Kitchen Date: 11/20/24
Form Date: 10/21/15
Method 202 Laboratory Reagent Blank Form
Blank Description/ID# Water RICCA Reagent Acetone Fisher ACS Hexane Sigma-Aldrich
Lot# 230F47 220983 MKCR-5028
Rel. Hum Rel. Hum Rel. Hum
Beaker/tin # 988 Date Time % 989 Date Time % 990 Date Time %
Final Weight (I), g 2.1207 11120124 I 8:oo I < 1 2.1573 11120124 I 8:oo I <1 2.1516 11120124 I 8:oo I <1
Final Weight (2), g 2.1207 11120124 I 14:oo I <1 2.1573 11120124 I 14 :oo I <l 2.1516 11120124 I 14:oo I <I
Ave. Final Weight, g 2.1207 2.1573 2.1516
Initial Weight (1), g 2.1206 914124 I 10:00 I <1 2.1570 914124 I 10:00 I <l 2.1515 914124 I 10:00 I <l
Initial Weight (2), g 2.1208 9;5;24 I 9:oo I <l 2.1574 915124 I 9:oo I <l 2.1517 915124 I 9:oo I <l
Ave. Initial Weight, g 2.1207 2.1572 2.1516
Blank Residual Mass, mg 0.00 Water 0.10 Acetone 0.00 Hexane
Blank Mass, g 139 162 179
Blank Volume, ml 139 206 268
Max Blank Residulal Mass, mg 0.14 0.21 0.27
Lab Technician: Mike McNamara Date: 11/15/24
Lab Technician: Dean Kitchen Date: 11/20/24
Form Date: 10/21/15
Analytical Method: _O_rs_at_/F~y'-r_it_e __________ _
Date//-/ /--J,y
Gas~:~~~:~p
Ambient Temp '
Operator ~
Date 1/--//7/y
T~No~ Gas Bag No. -
Ambient Temp
. Operator ,_
Date 1[_-ll--r/
Test No. ')
Gas Bag No. ,q:p_
Ambient Temp
Operator Ml;
Date -----Test No. ____ _
Gas Bag No. ____ _
Ambient Temp ____ _
Operator. _____ _
Gas
02 (Net is Actual 0 2
Reading Minus Actual
CO2 Reading).
N2 (Net is 100 Minus
Actual 0 2 Reading).
Gas
CO2
0 2 (Net is Actual 0 2
Reading Minus Actual
CO2 Reading).
N2 (Net is 100 Minus
Actual 0 2 Reading).
I Gas
CO2
0 2 (Net is Actual 0 2
Reading Minus Actual
CO2 Reading).
N2 (Net is 100 Minus
Actual 0 2 Reading).
Gas
CO2
0 2 (Net is Actual 0 2
Reading Minus Actual
CO2 Reading).
N2 (Net is 100 Minus
Actual 0 2 Reading).
Actual
Reading
Actual
Reading
),J-
If; CJ
Actual
Reading
/1J'-
J?,J'
Actual
Reading
RUN
2
Net Actual Net
Reading
RUN
2
Net Actual Net
Reading
--},J --;to -
RUN
2
Net Actual Net
Reading
J,r
-11,J·
RUN
2
Net Actual Net
Reading
CO is not measured as it has the same molecular weight as N2
3
Actual Net
Reading
3
Actual Net
Reading
/,)-
I 'f,CJ -
3
Actual Net
Reading
/)--
ly'. J. --
3
Actual Net
Reading
Average
Net
Volume
Average
Net
Volume
/..J"
£,CO
Average
Net
Volume
dv
1#,f
Average
Net
Volume
TETCO
Facility ( & Source):
'/4,/e,r7 el Ov~ trlriy/cl
.2 '9/"?/) J ~J/ Yt,~/v,,./
Sample ID Date
1:/,../ 1/-1/-.J..cl
I, '/ . 'I ' V',n 2.
ifu.,.., 7 '(
rr,;,uf-i,J//,;,,,; k II-Jl-;.1
/(y~ IJ//:,,, k 1/
A'-e Id ,r ,.,,"', fl/c,.L • I/
,,,
Sampled By:
Recovered Br: / t I(
Analyzed By: /11
Relinquished By:
Relinquished By:
Stack Emission Analysis
Accurate • Reliable • Qualified
Chain of Custodr
0 ~ "' i::: i::: i:2 i:2 (I)
<><l ..c: "' "' : C: 0
-5 ..c:
i52 § : ~
ti! E cld u ..c: 2 I-< -§ 0 : E i M dd 2 µ.. ~ § ~ 0 (I) u i::: 0.. Method(s) of E µ.. "' ~
~ ~ [ ~ ta
~
0
Analysis 2 0 £ ~ 0 µ.. ~ u u ,!l
,,1-/un_ IA IX /-It A
I/ .. }\ vt Ji.-~ ,t
(/ ./\. l)( /t.. [}'-J.
,;,. P2=. J y.._ ;(_
II ?-v<--j.
ti
I f • f
A,--
Received By:
Received By:
All samples remained in the custody of TETCO unless otherwise indicated.
Comments:
*
(I) (I)
"' "' C: C:
i52 i52
"O cld
~ -§ -§ ~ ~ u i u ....
0 0 r/J
£ "O <:.) u <
/'-
"' I 55 ~
:s: :I:
IA f..
391 E 620 S, American Fork, UT 84003
801-492-9106 • 801-492-9107
Notes
Date: //-//-,). 'I
Date: //-/)..-> cf
Date: t l /z_o lz..:-t
Date:
Date:
I
D
APPENDIX D
Figure 1. Facility Schematic Representation Venturi Wet Scrubber
Raw production data was retained by Intrepid personnel
Facility:
Stack Identification:
33'g: Distance of Sample Level to Ground, feet
Intrepid Potach, Wendover
4-5
Venturi Scrubber
15'
15'
a: Distance upstream from next disturbance, feet
b: Distance downstream from last disturbance, feet
Salt DryerType:
Number of Ports
Process
Type:
Control Unit
2
Estimated Temperature, oF
Figure 1. Facilty Schematice Representation
Estimated Velocity, fpm
24.75"
Venturi Scrubber
Stack Inside Diameter, inches
Estimated Moisture, percent
120
2,600
a
g
b
E
APPENDIX E
Calibration of the console dry gas meter(s), pitot tubes, nozzles diameters, and temperature sensors were carried out in accordance with the procedures outlined in the Quality Assurance Handbook.
The appropriate calibration data are presented in the following pages. The nozzle calibrations are
recorded on the first page of the field data sheets.
Figure 2. Schematic of Method 5/202 Sampling Train
Meter Box Calibration Data and Calculations Forms
Meter Box Post-test Calibration Sheet Type-S Pitot Tube Inspection Data
Sample Box Temperature Sensor Calibration
Filter Balance Calibration
Figure 2. Schematic of Method 5/202 Sampling Train
Temperature Sensor
t
t
Type S Pitot
Tube
Probe
Temperature
Sensortl
Gooseneck ! . . Nozzle
""
/
Type S Pitot
Tube Stack
Wall
Orifice
HecatTracecl
Probe
Temperature
Sensor
Glass Filter
Holder
Heated Area
Manometer
Temperature
Sensors
I Dry Gas \ ! Meter l \_)
Thermocouple
Recirculation
Pump Empty
Impinge rs
Valve
METHOD 5 DRY GAS METER CALIBRATION USING CRITICAL ORIFICES
1) Select three crftical orifices to calibrate the dry gas meter which bracket the expected operating range.
2) Record barometric pressure before and after calibration procedure.
3) Run at tested vacuum (from Orifice Calibration Report), for a period of time
necessary to achieve a minimum total volume of 5 cubic feet.
4) Record data and information in the GREEN cells, YELLOW cells are calculated.
TECHNICIAN:j. Reed Kitchen J INITIAL
DATE: 1217/2023 METER SERIAL#: 68092
METER PART#: Console 6 CRITICAL ORIFICE SET SERIAL#: 1453S
BAROMETRIC PRESSURE in Hg : 25.65
Eou1PMENT 1D #: Console #6
ORIFICE# I RUN #
G
G
G
2
3
2
2
3
K' I TESTED
FACTOR VACUUM
(AVG) (in Hg)
0.8137 10
0.8137 10
0.8137 10
0.5317 11
0.5317 11
0.5317 11
0.3307 13
0.3307 13
0.3307 13
DGM READINGS (Fi'}
INITIAL
204.981
213.255
221.823
184.867
190.097
196.569
227.035
233.113
240.071
FINAL
213.255
221.823
226.926
190.097
196.569
204.797
233.113
240.071
245.134
NET !Vm)
8.274
8.568
5.103
5.230
6.472
8.228
6.078
6.958
5.063
USING THE CRITICAL ORIFICES AS CALIBRATION STANDARDS:
TEMPERATURES"F
AMBIENT I DGM INLET I DGM OUTLET
INITIAL FINAL INITIAL ANAL
71 71 84 69 71
71 82 88 70 72
71 86 88 72 72
69 72 80 69 71
65 78 82 70 71
65 79 84 70 72
72 83 80 72 72
72 78 79 71 71
72 78 89 71 71
DGM
AVG
73.8
78.0
79.5
73.0
75.3
76.3
76.8
74.8
77:J
FINAL
25.65
ELAPSED
TIME(MIN)
e
7.75
8.00
4.75
7.50
9.25
11.75
13.75
15.75
11.50
AVG(P,,,)
25.65
2.90
~
2.90
1.20
1.20
1.20
§ 43
3
(1)
Vm(STD)
~
7.2699
4.3178
4.4576
Mru!
6.9704
5.1329
5.8980
4.2717
!W!f
2024 Pre-Calibration
IF YVARIATION EXCEEDS 2.00%,
ORIFICE SHOULD BE RECALIBRATED
(2)
Voc(STD)
7.0215
7.2481
4.3035
AVG=
4.4485
5.5074
6.9959
AVG=
5.0582 ~
4.2305
AVG=
(3)
y
0.992
0.997
0.997
0.995
0.998 ~
1.004
1.001
0.985
0.982
0.990
0.986
l
y
VARIATION(%)
0.11
0.72
~
The following equations are used to calculate the standard volumes of air passed through the DGM, V m (std), and the critical orifice,
V ~ (std), and the DGM calibration factor, Y. These equations are automatically calculated in the spreadsheet above. AVERAGE DRY GAS METER CALIBRATION FACTOR, Y = I 0.994
(1)
(2)
(3)
Vmc,u/J = K, •Vm• Pbar+(Ml /13.6) Tm
= Net volume of gas sample passed through DGM, corrected to standard condftions
K1 = 17.64 °R/in. Hg (English), 0.3858 "Kimm Hg (Metric)
Pbar *0 V, -K'•---..... cr(."'1) -.JTamb
Pcrc~,d> Y= -
Vm(sld}
Tm = Absolute DGM avg. temperature (0 R -English, °K -Metric)
= Volume of gas sample passed through the crftical orifice, corrected to standard condftions
T,mb = Absolute ambient temperature (0R -English, 'K-Metric)
K' = Average K' factor from Critical Orifice Calibration
= DGM calibration factor
AVERAGE L>.H@ -1 1.607
L>.H@=
(
0.75 0 )2 AH (Vm(std))
V0,(std) Vm
TEMPERATURE SENSORS 'F
REFERENCE IN OUT
32 33 32
72 73 73
203 203 202
1,Z!!Q
1.686
1.682
1.635
.1.,ill
1.613
~
1.515
1.508
METHOD 5 DRY GAS METER CALIBRATION USING CRITICAL ORIFICES
1) Select three critical orifices to calibrate the dry gas meter which bracket the expected operating range.
2) Record barometric pressure before and after calibration procedure.
3) Run at tested vacuum (from Orifice Calibration Report), for a period of time
necessary to achieve a minimum total volume of 5 cubic feet.
4) Record data and information in the GREEN cells, YELLOW cells are calculated.
TECHNICIAN:j X1Dang I INITIAL
DATE: 11/12/24
METER PART#: Console 6
METER SERIAL#: 68092
CRITICAL ORIFICE SET SERIAL #: 1453S
BAROMETRIC PRESSURE (in Hg): 25.50
EauIPMENT ID #: Console #6
K' TESTED
FACTOR I VACUUM DGM READINGS {FT')
ORIFICE# I RUN # {AVG) (in Hg) INITIAL FINAL
G: 0.6808 12
0.6808 12
0.6808 12
19.985 25.261
25.261 30.477
30.477 35.793 D:ffi2
□:rn2
USING THE CRITICAL ORIFICES AS CALIBRATION STANDARDS:
NET(Vml
5.276
5.216
5.316
TEMPERATURES "F
AMBIENT! DGM INLET I DGM OUTLET' DGM
INITIAL FINAL I INITIAL FINAL AVG
63 64 71 64 64
65 70 82 64 67
66 79 91 67 71
I I I I I I
I I I I I I
65.8
70.8
77.0
.--
FINAL
25.50
ELAPSED
TIME{MIN)
a
-
5.95
5.88
5.930
AVG(P.,,)
25.50
1.95
1.95
1.95 §§ §§
(1) I
Vm(STD)
4.5421
4.4481
4.4806
rlCJ¾
Post Calibration
Intrepid
IF YVARIATION EXCEEDS 2.00%,
ORIFICE SHOULD BE RECALIBRATED
l
(2)
V"{STD) I (~ Y VARIATION(%_) __
4.5181 0.995 1.638
4.4564 1.002 1.628
4.4900 1.002 1.613
AVG= 1.000 0.00
AVG=
AVG=
The following equations are used to calculate the standard volumes of air passed through the DGM, V m (std), and the critical orifice,
V" (std), and the DGM calibration factor, Y. These equations are automatically calculated in the spreadsheet above. AVERAGE DRY GAS METER CALIBRATION FACTOR, Y = I 1.000
(1)
(2)
(3)
Vm<s•"> =K, •Vm*Pbar+(Af-If13.6) Tm -= Net volume of gas sample passed through DGM, corrected to standard conditions
K, = 17.64 'Rlin. Hg (English), 0.3858 'Kimm Hg (Metric)
Pbar *0 -K'* ---Vcr1,,.> --JTamb
Vq,,d} Y= ---
Vm(ud)
Tm =·Absolute DGM avg. temperature ('R -English, 'K -Metric)
= Volume of gas sample passed through the critical orifice, corrected to standard conditions
T,mo = Absolute ambient temperature ('R -English, 'K -Metric)
K: = Average K: factor from Critical Orifice Calibration
= DGM calibration factor
AVERAGEAH@ =I f.626 !
AH@!=
(
0.75 0 )2 AH (Vm(std)\
V0,{std) Vm /
TEMPERATURE SENSORS °F
REFERENCE IN OUT
68 67 68
32 33 33
Type S Pitot Tube Inspection Data
Date: I/ 16/2024 -------Pitot Tube Identification: _____ 3_8_G ____ _
Technician: M. McNamara
i PA
Pa D,= --' ____ o_._37_5 __ m. Is PA= Pa? ____ Y_es ___ _
Is 1.05•D,,:; PA&Pa,:; 1.50•D,? ____ Y_es ___ _
PA= 0.479 in.
Pa= 0.479 in.
UJ < 10° UJ = ------a2<100 a2= _____ _
Zs0.125 in. Z= O.o18 in. ------
W s0.03125 in. W= 0.002 in. ------
W> 3 inches W= 4 in. ------
Z > 3/4 inch Z= __ 0_.8_7_5 __ in.
Y= __ 3_3_/4 __ in.
The pitot tube meets the specifications for a calibration factor of 0.84? Yes
Temperature Sensor Calibration
Reference· Omega CL3512A
Continuity Check Yes Probe Heat Check 248 Yes
temperature 1 emoerature I emperature
Source Keterence sensor Difference
(Medium) ("F) ("F) (OF)
Probe AIR 64 64 0
AIR 64 63 I
Stack ICE WATER 33 33 0
BOIL WATER 204 205 I
SILICONE OIL
TETCO
Sample Box Temperature Sensor Calibration
Date: 1/2/24 Calibrator: XuanN. Dan~ Reference: Ome~a CL3512A
Thermocouple Temperature Tern erature Temperature
Unit ID Location Source Reference Sensor Difference
(Medium) ("F) ("F) ("F)
Oven (3) Water 33 33 0
A Water 203 201 -2
Water 33 33 0 Oven (4) Water 203 201 -2
Oven (3) Water 33 33 0
B Water 203 202 -1
Water 33 33 0 Oven (4) Water 203 201 -2
Oven (3) Water 33 33 0
C Water 203 203 0
Water 33 33 0 Oven (4) Water 203 203 0
Oven (3) Water 33 33 0
D Water 203 203 0
Water 33 33 0 Oven (4) Water 203 203 0
Oven (3) Water 33 33 0
E Water 203 203 0
Water 33 33 0 Oven (4) Water 203 203 0
F Oven Water 33 33 0
Water 203 202 -1
G Oven Water 33 33 0
Water 203 202 -1
H Oven Water 33 33 0
Water 203 203 0
Impinger Out A Water 33 33 0
Water 203 203 0
Impinger Out B Water 33 33 0
Water 203 202 -1
Impinger Out C Water 33 33 0
Water 203 202 -1
Impinger Out D Water 33 33 0
Water 203 203 0
Impinger Out E Water 33 34
Water 203 203 0
Impinger Out F Water 33 33 0
Water 203 201 -2
Impinger Out G Water 33 33 0
Water 203 202 -1
Impinger Out H Water 33 33 0
Water 203 203 0
Impinger Out I Water 33 33 0
Water 203 203 0
Impinger Out J Water 33 33 0
Water 203 203 0
Impinger Out K Water 33 33 0
Water 203 203 0
TETCO
Annual Balance Calibration Check
Date 1 /23/24
Balance Denver Instruments, Model A-250, SN B045284
Weights Used Troemner Weight Set,
SN 98-115146
Certified Weight
qrams
0.1000
0.5000
1.0000
10.0000
50.0000
100.0000
120.0000
150.0000
Technician Michael McNamara
Measured Weight
qrams
0.1000
0.5000
1.0000
10.0000
50.0001
100.0000
120.0001
150.0000
Difference
qrams
0.0000
0.0000
0.0000
0.0000
-0.0001
0.0000
-0.0001
0.0000
F
APPENDIX F
Test Protocol and Related Correspondence
COMPLIANCE EMISSION TESTING PROTOCOL
FOR PARTICULATE MATTER
INTREPID WENDOVER POTASH, WENDOVER, UTAH
VENTURI WET SCRUBBER
Project Organization and Responsibility
The following personnel and the testing contractor are presently anticipated to be involved in the
testing program. The Utah Department of Environmental Quality, Division of Air Quality (DAQ)
and EPA may have their own personnel to observe all phases including the process
Company Contacts
Intrepid Potash, Wendover LLC Todd Stubbs 435 259-1282
P O Box 580
Wendover, UT 84083
TETCO Dean Kitchen 801 492-9106
391 East 620 South
American Fork, UT 84003
Facility and Location
The facility to be tested is Intrepid Potash, Wendover LLC located on the frontage road
approximately 4 (four) miles east of Wendover, Utah. The source to be tested is the Venturi Wet
Scrubber exhaust that serves the dryer heated by a 21 MMBtu/hr burner. The burner is fired with
propane.
Test Objective
The test objective is to comply with the facility’s approval order number DAQE-
AN0107420014-19. Testing procedures will include accumulating process and production data as
well as testing for PM10 particulate matter emissions using EPA Method 5. Condensable
particulate matter (CPM) will be measured according to EPA Method 202 and is not for
compliance but informational purposes only.
The allowable PM10 emission limits for this source are 0.05 gr/dscf and 6.0 lb/hr.
Test Date and Time
It is planned to complete this test November 11-12, 2024. The testing crew will arrive and set up
the testing equipment November 11th and begin testing that afternoon if production permits.
Testing will continue on November 12th as needed. A pre-test meeting may be scheduled by EPA,
DAQ or Intrepid Potash.
Process Data and Instrumentation
All process and instrumentation data will be made available to DAQ personnel. The venturi
scrubber water flow rate and pressure drop will be recorded by TETCO personnel during each test
run. The amount of material processed through the kiln dryer will be recorded by Intrepid Potash
Wendover personnel. The facility will run at normal conditions.
Site Access
Sample location access is by man-lift. Full-body harnesses will be used for anyone ascending in
the man-lift.
Potential Hazards
Moving Equipment Yes
Hot Equipment Yes
Chemical Pot Ash, Corrosive
Other Noise
Test Site
The stack inside diameter is 24.75 inches. Port location is depicted in Appendix 1 of this protocol.
The sample ports are located 7.3 diameters (15 feet) downstream from the last disturbance and
approximately 7.3 diameters (15 feet) upstream from the next disturbance. Sample port placement
conforms to the requirements of EPA Method 1.
Quality Assurance
All testing and analysis in these tests will be conducted according to Methods 5, 202 and
appropriate sections of 40 CFR 51 Appendix M.
Reporting
Reporting will be prepared by the testing contractor according to EPA Quality Assurance
Guidelines. A complete copy of raw data and test calculations summary will be included in the
reports. All process and production data will be recorded by Intrepid Potash, Wendover personnel
for inspection by DAQ and EPA, if requested.
Estimates of Test Parameters
Flow 19,000 fpm
Moisture 4-5 %
Temperature 125o F
Test Procedures
Particulate matter testing will be conducted on the Venturi Scrubber exhaust stack according to
EPA Method 5. The reason for using EPA Method 5 instead of Method 201A for PM10 is because
there are water droplets in the stack exhaust. The back-half of the Method 5 sampling train will be
sampled according to EPA Method 202 as specified in 40 CFR Part 51 Appendix M. Specific
procedures are as follows:
1. The total number of sample points will be 12 according to EPA Method 1. Six points will
be sampled on each port. Test run time will be at least 60 minutes.
2. EPA Method 2 will be used to determine the gas stream velocity. Calibration data for the
geometrically calibrated type “S” pitot tubes are included with this protocol. Dual
inclined/vertical manometers with graduations in .01 of an inch of water will be used.
Direction of gas flow will be checked for gas cyclonics prior to testing.
3. EPA Method 3 will be used to determine the gas stream dry molecular weight if the exhaust
gas is not ambient. An integrated flue gas sample will be taken from the exhaust line after
the dry gas meter orifice during each test run and analyzed at the completion of the test
with a Fyrite to determine the molecular weight of the effluent gas stream. If the exhaust
gas is ambient air then TETCO will use a dry molecular weight of 28.84 lb/lbmol (20.9
percent O2, 79.1 percent N2) in all calculations.
4. EPA Method 4 will be used to determine the gas stream moisture content.
5. The back-half, or condensible particulate matter will be handled according to EPA
Method 202 and will be for informational purposes only.
6. The barometric pressure will be measured with a barometer which is periodically checked
against a mercury barometer. The barometer will be checked prior to testing to assure an
accurate barometric pressure.
7. All current calibration data is submitted with this protocol, except nozzle calibration which
will be done at the test site. Nozzle calibration will be included on the first page of each set
of run sheets for each respective test run. Any calibration that is not current will be
re-calibrated prior to the test dates.
8. The glass fiber filters that will be used conform to the requirements of EPA Method 5.
9. Probe liners will be 316 stainless steel for all Method 5 tests.
10. Test preparation and sample recovery will be performed in the contractor's sampling trailer
or a clean area on Intrepid Potash’s property. The laboratory work and analysis will be
done by the contractor as soon as possible after the test project at 391 East 620 South,
American Fork, Utah.
11. Verbal results will be reported to a representative of Intrepid Potash, Wendover.
The written report will follow within 30 days following the completion of the test.
12. If maintenance or operating problems arise during the test, the test may be stopped. This
determination will be made by Intrepid Potash, Wendover representatives and operating
personnel in consultation with DAQ representatives
APPENDIX A
Facility Schematic
Facility:
Stack Identification:
33'g: Distance of Sample Level to Ground, feet
Intrepid Potach, Wendover
4-5
Venturi Scrubber
15'
15'
a: Distance upstream from next disturbance, feet
b: Distance downstream from last disturbance, feet
Salt DryerType:
Number of Ports
Process
Type:
Control Unit
2
Estimated Temperature, oF
Figure 1. Facilty Schematice Representation
Estimated Velocity, fpm
24.75"
Venturi Scrubber
Stack Inside Diameter, inches
Estimated Moisture, percent
120
2,600
a
g
b
APPENDIX B
Calibration Data
METHOD 5 DRY GAS METER CALIBRATION USING CRITICAL ORIFICES
1) Select three critical orifices to calibrate the dry gas meter which bracket the expected operating range.
2) Record barometric pressure before and after calibration procedure.
3) Run at tested vacuum (from Orifice Calibration Report), for a period of time
necessary to achieve a minimum total volume of 5 cubic feet.
4) Record data and information in the GREEN cells, YELLOW cells are calculated.
TECHNICIAN:INITIAL FINAL AVG (Pbar)
DATE:12/18/2023 METER SERIAL #:26144 BAROMETRIC PRESSURE (in Hg):25.45 25.45 25.45 IF Y VARIATION EXCEEDS 2.00%,
METER PART #:Console 5 CRITICAL ORIFICE SET SERIAL #:1453S EQUIPMENT ID #:ORIFICE SHOULD BE RECALIBRATED
K'TESTED TEMPERATURES °F ELAPSED
FACTOR VACUUM DGM READINGS (FT3)AMBIENT DGM INLET DGM OUTLET DGM TIME (MIN)DGM DH (1)(2)(3)Y
ORIFICE #RUN #(AVG)(in Hg)INITIAL FINAL NET (Vm)INITIAL FINAL INITIAL FINAL AVG q (in H2O)Vm (STD)Vcr (STD)Y VARIATION (%)DH@
1 0.8137 10 61.712 70.918 9.206 73 99 110 85 90 96.0 8.25 2.70 7.4955 7.4023 0.988 1.536
2 0.8137 10 70.918 77.963 7.045 73 107 112 90 91 100.0 6.25 2.70 5.6950 5.6078 0.985 1.525
3 0.8137 10 77.963 92.694 14.731 73 110 115 91 94 102.5 13.00 2.70 11.8552 11.6643 0.984 1.518
AVG = 0.985 -0.08
1 0.5317 13 39.754 44.884 5.130 72 75 84 67 74 75.0 7.25 1.10 4.3210 4.2546 0.985 1.513
2 0.5317 13 44.884 53.841 8.957 72 83 95 74 81 83.3 12.50 1.10 7.4298 7.3356 0.987 1.490
3 0.5317 13 53.841 61.606 7.765 72 94 100 81 85 90.0 10.75 1.10 6.3619 6.3086 0.992 1.472
AVG = 0.988 0.17
1 0.3307 13 92.841 100.319 7.478 75 81 85 78 83 81.8 16.75 0.40 6.2076 6.0966 0.982 1.410
2 0.3307 13 100.319 110.209 9.890 75 85 94 83 88 87.5 22.00 0.40 8.1236 8.0074 0.986 1.395
3 0.3307 13 110.209 117.677 7.468 75 94 98 88 91 92.8 16.50 0.40 6.0759 6.0056 0.988 1.382
AVG = 0.985 -0.08
AVERAGE DRY GAS METER CALIBRATION FACTOR, Y = 0.986
AVERAGE DH@ = 1.471
(1)=Net volume of gas sample passed through DGM, corrected to standard conditions
K1 =17.64 oR/in. Hg (English), 0.3858 oK/mm Hg (Metric)
Tm =Absolute DGM avg. temperature (oR - English, oK - Metric) DH@ = 0.75 q DH Vm(std)
Vcr(std) Vm
(2)=Volume of gas sample passed through the critical orifice, corrected to standard conditions
Tamb =Absolute ambient temperature (oR - English, oK - Metric)
K' = Average K' factor from Critical Orifice Calibration REFERENCE IN OUT
(3)=DGM calibration factor 32 33 32
72 73 73
203 203 202
TEMPERATURE SENSORS oF
2024 Pre-Calibration
Console #5
30
19
12
Joseph Wells
ENVIRONMENTAL SUPPLY COMPANY
USING THE CRITICAL ORIFICES AS CALIBRATION STANDARDS:
The following equations are used to calculate the standard volumes of air passed through the DGM, Vm (std), and the critical orifice, Vcr(std), and the DGM calibration factor, Y. These equations are automatically calculated in the spreadsheet above.
()2 ()
Type S Pitot Tube Inspection Data
Date:Pitot Tube Identification:
Technician:
Dt=0.375 Is PA = PB ?
Is 1.05 • Dt PA & PB 1.50 • Dt ?
PA = 0.479
PB =0.479
a1 < 10o a1 = o
a2 < 10o a2 = o
b1 < 5o b1 = o
b2 < 5o b2 = o
Z 0.125 in.Z = in.
W W 0.03125 in.W = in.
W > 3 inches W = in.
Z > 3/4 inch Z = in.
Y ≥ 3 inches Y = in.
The pitot tube meets the specifications for a calibration factor of 0.84?Yes
Reference:
TemperatureSource Reference Sensor
(Medium)(oF)(oF)
Probe AIR 64 64
AIR 64 63
ICE WATER 33 33
BOIL WATER 204 205
SILICONE OIL
Heat Check 248
Temperature Sensor Calibration
1
0
1Stack
Omega CL3512A
Probe Yes
Yes
Continuity Check
Temperature TemperatureDifference
(oF)
0
in.
in.
Yes
Yes
0.002
4
0.875
3 3/4
1/16/2024 38 G
M. McNamara
in.
0.018
1
1
2
1
b2
b1
B
A
w
Dt
PA
PB
Date:1/2/24 Calibrator:Reference:
Temperature Temperature
Source Difference
(Medium)(oF)
Water 0
Water -2
Water 0
Water -2
Water 0
Water -1
Water 0
Water -2
Water 0
Water 0
Water 0
Water 0
Water 0
Water 0
Water 0
Water 0
Water 0
Water 0
Water 0
Water 0
Water 0
Water -1
Water 0
Water -1
Water 0
Water 0
Water 0
Water 0
Water 0
Water -1
Water 0
Water -1
Water 0
Water 0
Water 1
Water 0
Water 0
Water -2
Water 0
Water -1
Water 0
Water 0
Water 0
Water 0
Water 0
Water 0
Water 0
Water 0
202
33 33
Impinger Out K 33 33
203 203
33 33
Impinger Out J
Impinger Out H
Impinger Out I
33
203
33
203
33
203
33
203
203
201
33
G
H
Oven (3)33 33
203 203
Oven (4)33
203
Oven 33 33
203 203
Oven 33 33
33
203 202
Oven (3)
A
201203
33
Oven (3)33 33
Oven (4)
Thermocouple
Location
203 201
Impinger Out F 33 33
203
203
203
203 202
203 203
33
33
Impinger Out G
203 201
Oven (3)33
203 203
33 33
203Oven (4)
203
Impinger Out D 33 33
203 203
Impinger Out E 33 34
203 203
203
33 33
203Impinger Out B
Impinger Out C 33 33
203 202
202
Impinger Out A 33 33
203
Oven (3)
Oven (4)
TETCO
Sample Box Temperature Sensor Calibration
B
C 203 203
33 33
33 33
203
33 33
Xuan N. Dang Omega CL3512A
Unit ID Reference
(oF)
Sensor
(oF)
Temperature
33
D
E
Oven 33 33
203 202F
Oven (4)
Balance Denver Instruments, Model A-250, SN B045284
Weights Used Troemner Weight Set,
SN 98-115146
Certified Weight Measured Weight Difference
grams grams grams
0.1000 0.1000 0.0000
0.5000 0.5000 0.0000
1.0000 1.0000 0.0000
10.0000 10.0000 0.0000
50.0000 50.0001 -0.0001
100.0000 100.0000 0.0000
120.0000 120.0001 -0.0001
150.0000 150.0000 0.0000
Technician Michael McNamara
TETCO
Annual Balance Calibration Check
Date 1/23/24