Loading...
HomeMy WebLinkAboutDAQ-2025-0002071 DAQC-017-25 Site ID 10742 (B4) MEMORANDUM TO: STACK TEST FILE – INTREPID POTASH WENDOVER, LLC – Wendover Potash Plant THROUGH: Rik Ombach, Minor Source Oil and Gas Compliance Section Manager FROM: Paul Bushman, Environmental Scientist DATE: January 8, 2025 SUBJECT: Source: Venturi Wet Scrubber Contact: Todd Stubbs: 435-259-1282 Location: Exit 4, Interstate 80 (the Blair exit) and the Frontage Road, Tooele County, UT Test Contractor: TETCO Permit/AO#: Approval Order (AO) DAQE-AN107420014-19, dated July 22, 2019 Action Code: TR Subject: Review of stack test report dated December 11, 2024 On January 3, 2025, DAQ received a test report for a Venturi Wet Scrubber at Intrepid Potash Wendover, LLC – Wendover Potash Plant in Tooele County, UT. Testing was performed on November 11, 2024, to demonstrate compliance with the emission limits found in condition II.B.4.a of DAQE-AN107420014-19. The calculated test results are: Source Test Date Pollutants Test Methods Tester Results DAQ Results Limits Venturi Wet Scrubber November 11, 2024 PM 5/202 3.69 lb/hr 3.6947 lb/hr 6.0 lb/hr 0.054 gr/dscf 0.0540 gr/dscf 0.05 gr/dscf DEVIATIONS: None. CONCLUSION: The Venturi Wet Scrubber is out of compliance with its emission limits. RECOMMENDATION: The emissions from the above listed unit should be considered to have been out of compliance with the emission limits of condition II.B.4.a of DAQE-AN107420014-17 during the time of testing. It is recommended to send a Compliance Advisory. ATTACHMENTS: DAQ stack test review excel spreadsheets; Intrepid Potash stack test report. Source Information Division of Air Quality Compliance Demonstration Source Information Company Name Intrepid Potash - Wendover - Venturi Wet Scrubber Company Contact:Todd Stubbs Contact Phone No.435-259-1282 Source Designation:Venturi Wet Scrubber Test & Review Dates Test Date: 11/11/2024 Review Date: 1/7/2025 Tabs Are Shown Observer:None Reviewer:Paul Bushman Particulate Emission Limits lbs/MMBtu lbs/hr gr/dscf 6.000 0.050 Emission Rates - "Front Half" lbs/MMBtu lbs/hr gr/dscf 3.6947 0.0540 Test Information Stack_I.D._inches As ft^2 Y Dl H @ Cp Pbar Pq (static)Dn 24.75 3.34 0.9940 1.607 0.84 25.7 -0.32 0.2535 Contractor Information Contracting Company: TETCO Contact: Dean Kitchen Phone No.: 801-492-9106 Project No.: Circular 10100 9780 9860 9190 8710 8710 8710 10540 10640 11950 320 10610 10200 10390 1970 1800 1910 1420 1040 1190 1250 F factor usedF factors for Coal, Oil, and Gas Anthrocite 2 Lignite Natural Propane Butane COAL OIL GAS Bituminous 2 Fd Fw Fc scf/MMBtu scf/MMBtu scf/MMBtu O2 CO2 lbs/MMBtu Page 1 Summary Division of Air Quality Reference Methods 5 - TSP Compliance Demonstration of Intrepid Potash - Wendover - Venturi Wet Scrubber Testing Results Lab Data - grams collected Test Date 11/11/2024 11/11/2024 11/11/2024 11/11/2024 Lab Data Probe Filter Back Circular Run 1 Run 2 Run 3 Run 4 Run 1 0.0098 0.1378 0.0081 As ft^2 3.34 3.34 3.34 Run 2 0.0061 0.1482 0.0085 Pbar 25.70 25.70 25.70 Run 3 0.0044 0.1971 0.0098 Pq (static)-0.32 -0.32 -0.32 Run 4 Ps 25.68 25.68 25.68 Avg. Ts F 102.67 105.08 107.17 Front Half Emissions Summary CO2 - FCO2 2.50 1.50 1.50 Run 1 Run 2 Run 3 Run 4 Avg. O2 18.00 19.00 18.50 gr./dscf 0.0481 0.0477 0.0661 0.0540 N2+C 79.50 79.50 80.00 lbs/hr 3.3048 3.3077 4.4716 3.6947 Md 29.12 29.00 28.98 lbs/MMBtu Ms 28.76 28.66 28.48 Y 0.99 0.99 0.99 Cp 0.84 0.84 0.84 Total Emissions Summary w/back half condensable Vm cf 57.53 62.16 58.58 Run 1 Run 2 Run 3 Run 4 Avg. Vlc 33.50 33.40 47.50 gr./dscf 0.0508 0.0503 0.0693 0.0568 AVG. Tm F 91.71 104.71 104.42 lbs/hr 3.4862 3.4899 4.6891 3.8884 Vm std 47.31 49.97 47.08 lbs/MMBtu Vw std 1.58 1.57 2.24 Bws 0.03 0.03 0.05 S Bws 0.08 0.09 0.09 Avg. Sqrt Dlp 0.82 0.83 0.82 Vs 51.25 51.95 51.65 F factor used scfm wet 8273.88 8350.96 8272.01 acfm 10274.29 10414.55 10354.12 Qsd dscfh 480421.11 485773.82 473818.68 # Sample Points 12.00 12.00 12.00 Dn 0.254 0.254 0.254 An 3.50E-04 3.50E-04 3.50E-04 Start Time 10:36 12:13 14:08 End Time 11:39 13:16 15:10 Total Test time 60.00 60.00 60.00 Time @ point 5.00 5.00 5.00 O2 CO2 lbs/MMBtu Page 2 Summary 80.00 90.00 100.00 110.00 120.00 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 % I s o k i n e t i c Points Run 1 PxP Isokinetic 80.00 90.00 100.00 110.00 120.00 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 % I s o k i n e t i c Sample Points Run 2 PxP Isokinetic 80.00 90.00 100.00 110.00 120.00 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 % I s o k i n e t i c Sample Points Run 3 PxP Isokinetic 80.00 90.00 100.00 110.00 120.00 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 Sample Points Run 4 PxP Isokinetic Page 3 Run 1 Intrepid Potash - Wendover - Venturi Wet Scrubber Flow & Moisture Test Date 11/11/2024 As ft^2 Pbar Pq (static) Ps Avg. Ts F CO2 - FCO2 O2 N2+C Md Ms 3.34 25.70 -0.32 25.68 103 2.50 18.00 79.50 29.12 28.76 Y Cp Vm cf Vlc Avg. Tm F Vm std Vw std Bws S Bws 0.0818 0.9940 0.84 57.534 33.50 91.71 47.312 1.577 0.0323 0.0818 0.999 Avg. Sqrt Dlp Vs scfm wet acfm Qsd dscfh # Sample Points Dn Total Test time (minutes) Time @ point (minutes)Avg. Dlh 0.818 51.25 8,274 10,274 4.80E+05 12 0.2535 60 5.00 2.370833 TRUE Point No.Meter (cf)dl "p"dl "h"ts F tm F (in)tm F (out)Imp. Liquid Collected 1 21.264 0.60 2.10 103 68 59 Wt. (Final)Wt. (Initial)lc 2 25.700 0.68 2.38 102 73 60 381.0 360.9 20.1 3 30.400 0.68 2.38 105 87 63 723.4 720.4 3.0 4 35.130 0.78 2.72 104 99 68 685.1 681.1 4.0 5 40.050 0.65 2.27 100 108 73 850.5 844.1 6.4 6 44.650 0.60 2.13 98 113 75 0.0 7 49.225 0.65 2.29 98 109 82 8 54.011 0.70 2.50 103 115 84 Isokinetics 93.9 9 59.055 0.75 2.70 104 121 87 Test Date 11/11/2024 10 64.300 0.75 2.70 104 125 90 Start Time 10:36 enter 11 69.450 0.60 2.14 105 127 92 End Time 11:39 12 74.150 0.60 2.14 106 128 95 13 78.798 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 Page 4 Run 2 Intrepid Potash - Wendover - Venturi Wet Scrubber Flow & Moisture Test Date 5/13/2009 As ft^2 Pbar Pq (static) Ps Avg. Ts F CO2 - FCO2 O2 N2+C Md Ms 3.34 25.70 -0.32 25.68 105 1.50 19.00 79.50 29.00 28.66 Y Cp Vm cf Vlc Avg. Tm F Vm std Vw std Bws S Bws 0.0879 0.9940 0.84 62.155 33.40 105 49.967 1.572 0.0305 0.0879 0.999 Avg. Sqrt Dlp Vs scfm wet acfm Qsd dscfh # Sample Points Dn Total Test time (minutes) Time @ point (minutes)Avg. Dlh 0.826 51.95 8,351 10,415 4.86E+05 12 0.2535 60 5.00 2.60 TRUE Point No.Meter (cf)dl "p"dl "h"ts F tm F (in)tm F (out)Imp. Liquid Collected 1 80.206 0.65 2.46 103 90 90 Wt. (Final)Wt. (Initial)lc 2 85.340 0.75 2.83 104 99 88 370.50 352.60 17.9 3 90.250 0.80 3.02 105 101 88 720.80 718.30 2.5 4 96.290 0.60 2.27 105 119 90 722.90 718.50 4.4 5 101.111 0.55 2.10 105 121 92 923.60 915.00 8.6 6 105.800 0.50 1.90 105 123 94 0.0 7 110.217 0.65 2.50 105 109 95 8 115.360 0.75 2.83 105 119 95 Isokinetics 98.1 9 120.775 0.75 2.83 107 124 95 Test Date 11/11/2024 10 126.100 0.80 3.05 106 127 96 Start Time 12:13 11 131.700 0.72 2.75 105 130 97 End Time 13:16 12 137.100 0.70 2.65 106 132 99 13 142.361 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 Page 5 Run 3 Intrepid Potash - Wendover - Venturi Wet Scrubber Flow & Moisture Test Date 5/13/2009 As ft^2 Pbar Pq (static) Ps Avg. Ts F CO2 - FCO2 O2 N2+C Md Ms 3.34 25.70 -0.32 25.68 107 1.50 18.50 80.00 28.98 28.48 Y Cp Vm cf Vlc Avg. Tm F Vm std Vw std Bws S Bws 0.0934 0.9940 0.84 58.581 47.50 104 47.079 2.236 0.0453 0.0934 0.999 Avg. Sqrt Dlp Vs scfm wet acfm Qsd dscfh # Sample Points Dn Total Test time (minutes) Time @ point (minutes)Avg. Dlh 0.817 51.65 8,272 10,354 4.74E+05 12 0.2535 60 5.00 2.31 TRUE Point No.Meter (cf)dl "p"dl "h"ts F tm F (in)tm F (out)Imp. Liquid Collected 1 43.107 0.65 2.25 106.0 86.0 86.0 Wt. (Final)Wt. (Initial)lc 2 47.985 0.75 2.57 107.0 95.0 86.0 383.4 357.6 25.8 3 53.085 0.80 2.74 110.0 103.0 86.0 711.6 702.2 9.4 4 58.400 0.55 1.90 109.0 112.0 88.0 728.0 722.5 5.5 5 62.775 0.55 1.90 108.0 115.0 89.0 942.7 935.9 6.8 6 67.300 0.50 1.71 108.0 118.0 91.0 0.0 7 71.506 0.60 2.06 107.0 110.0 94.0 8 76.105 0.75 2.57 106.0 121.0 95.0 Isokinetics 94.8 9 81.200 0.75 2.57 106.0 127.0 98.0 Test Date 11/11/2024 10 86.350 0.80 2.74 106.0 131.0 100.0 Start Time 14:08 11 91.640 0.70 2.40 107.0 135.0 102.0 End Time 15:10 12 96.750 0.65 2.25 106.0 136.0 102.0 13 101.688 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 Page 6 PARTICULATE MATTER COMPLIANCE TESTS CONDUCTED FOR INTREPID POTASH, WENDOVER, LLC WENDOVER, UTAH SOURCE TESTED: VENTURI WET SCRUBBER November 11, 2024 by: TETCO 391 East 620 South American Fork, UT 84003 Prepared for: Intrepid Potash - Wendover, LLC P.O. Box 580 Wendover UT, 84083 Date of Report: December 11, 2024 CERTIFICATION OF REPORT INTEGRITY Technical Emissions Testing Company (TETCO) certifies that this report represents the truth as well as can be derived by the methods employed. Every effort was made to obtain accurate and representative data and to comply with procedures set forth in the Federal Register. Dean Kitchen Reviewer: __ --,,c..,/t-----'1.,.a~"---=---~----- Xuan Dang Reviewer: ~.,........-:::---------~'---------==c...----- Date: ______ -/Z-~1,,_/,_,,k......,/ ....... 2;...,,,.~----- 11 iii TABLE OF CONTENTS PAGE Introduction Test Purpose, Location and Type of Process .......................................................................1 Test Dates.............................................................................................................................1 Pollutants Tested and Methods Applied ............................................................................. 1 Test Participants .................................................................................................................. 2 Deviations from EPA Methods ............................................................................................2 Errors or Irregularities..........................................................................................................2 Quality Assurance ................................................................................................................2 Summary of Results Emission Results ..................................................................................................................3 Allowable Emissions ...........................................................................................................3 Process Data .........................................................................................................................3 Description of Collected Samples ........................................................................................3 Percent Isokinetic Sampling ................................................................................................4 Source Operation Process Control Devices Operation .....................................................................................5 Process Representativeness ..................................................................................................5 Sampling and Analytical Procedures Sampling Port Location .......................................................................................................6 Sampling Point Location......................................................................................................6 Sampling Train Description .................................................................................................6 Sampling and Analytical Procedures ...................................................................................7 Quality Assurance ................................................................................................................7 Appendices A: Complete Results and Sample Calculations B: Raw Field Data C: Laboratory Data and Chain of Custody D: Facility Schematics E: Calibration Procedures and Results F: Related Correspondence iv LIST OF TABLES Table PAGE I Measured Particulate Matter Emissions ...............................................................................3 II Percent Isokinetic Sampling ................................................................................................4 III Sampling Point Location......................................................................................................6 IV Complete Results, Venturi Wet Scrubber ......................................................... Appendix A LIST OF FIGURES Figure 1 Facility Schematic Representation Venturi Wet Scrubber ................................ Appendix D 2 Schematic of Method 5/202 Sampling Train ..................................................... Appendix E 1 INTRODUCTION Test Purpose, Location and Type of Process This test was conducted to fulfill the testing requirements of Intrepid Potash- Wendover, LLC’s Approval Order Number DAQE-AN107420014-19 dated July 22, 2019. Those requirements include testing the Venturi Wet Scrubber exhaust for PM10 emissions. The Venturi Wet Scrubber exhaust serves the dryer heated by a 21 MMBtu/hr burner. The burner is fired with propane. The Intrepid Potash, Wendover LLC facility is located on the frontage road approximately 4 (four) miles east of Wendover, Utah. Emissions are expressed in terms of grains per dry standard cubic foot (gr/dscf) and pounds per hour (lb/hr). A schematic of process representation is given in Figure 1, located in Appendix D. Test Dates All testing was completed \November 11, 2024. Individual run times are on the Particulate Field Data sheets and the complete results table in Appendix A. Pollutants Tested and Methods Applied EPA Methods 201 and 201A are the acceptable methods for determining filterable PM10 particulate. However, Methods 201 and 201A are not appropriate for stacks that contain entrained water droplets. For this reason, 40 CFR 60, Appendix A, Reference Methods 1-5 were used to measure total particulate matter (PM) emissions from the Venturi Wet Scrubber exhaust. The Method 5 test is a gravimetric determination of PM particulate. Particulate matter is withdrawn isokinetically from the source and collected on a glass fiber filter. The particulate mass is determined gravimetrically after removal of uncombined moisture. This method is applicable for the determination of the particulate emissions from stationary sources. Condensable particulate matter (CPM) emissions were sampled in accordance with EPA Method 202. Method 202 is not for compliance purposes but for information only. A schematic of the sampling train is given in Figure 2. 2 Test Participants Intrepid Potash Todd Stubbs State None TETCO Dean Kitchen Xuan Dang Deviations From EPA Methods There were none. Errors or Irregularities There were no irregularities during the test project. Quality Assurance Testing Procedures and sample recovery techniques were according to those outlined in the Federal Register and the Quality Assurance Handbook for Air Pollution Measurement Systems. 3 SUMMARY OF RESULTS Emission Results Table I presents the PM test results. Table IV in Appendix A has more detailed testing data. Table I. Measured PM and Emissions Run PM Concentration (gr/dscf) Emission Rate (lb/hr) 1 0.048 3.30 2 0.048 3.30 3 0.066 4.47 Avg. 0.054 3.69 Allowable Emissions The allowable PM10 emissions for this source are 0.05 grains per dry standard cubic foot (gr/dscf) and 6.0 pounds per hour (lb/hr), as listed in the Facility Approval Order AO DAQE-AN107420014- 19. Process Data The facility was operated according to standard procedures. All pertinent process data was available for recording by agency personnel. Scrubber water flow rate and pressure drop readings across the Venturi Scrubber were recorded on the individual run sheets. Description of Collected Samples The filters for all three 3 test runs were covered with a moderate amount of particulate that was pink in color. The CPM filters were slightly gray in color. Impingers and water from the front-half catch of each run appeared slightly cloudy. 4 Percent Isokinetic Sampling Each test run was isokinetic within the ±10% of 100% criterion specified in the Federal Register. The isokinetic value for each EPA Method 5 test run is presented in Table II. Table II. Testing Isokinetics Run # Percent Isokinetic 1 94 2 98 3 100 5 SOURCE OPERATION Process Control Devices Operation All control devices were operated normally during the tests. The facility was operated according to standard procedures. The Venturi Wet Scrubber water flow rate and pressure drop readings across the scrubber were recorded and included in Appendix D. Process Representativeness The facility operated normally during the tests. Production rates were maintained by Intrepid Potash personnel. 6 SAMPLING AND ANALYTICAL PROCEDURES Sampling Port Location The stack inside diameter was 24.75 inches. Port location is depicted in Figure 1. The ports were located 7.3 diameters (15 feet) downstream from the last disturbance and 7.3 diameters (15 feet) upstream from the next disturbance. Sampling Point Location Table III shows the distance of each sampling point from the inside wall. Each point is marked with a glass tape wrapping and numbered. These points are determined by measuring the distance from the inside wall and adding the reference (port) measurement. Table III Sampling Point Location Point # Distance (inches) from Inside Wall 1 1.09 2 3.61 3 7.33 4 17.42 5 21.14 6 23.66 .Sampling Train Description All sampling trains were made of inert materials, (i.e., stainless steel and glass, etc.) to prevent sampled gas and particulate interference. The stack analyzer used to conduct these tests is constructed to meet the specifications outlined in 40 CFR 60, Appendix A, Method 5. The temperature sensors are K-type thermocouples. Heater, vacuum and pitot line connections have been designed to be interchangeable with all units used by the tester. The probe liners are of 316 grade stainless steel. Figure 2 in Appendix F is a sketch of the Method 5/202 sampling train. Sample boxes were prepared for testing by following the prescribed procedures outlined in 40 CFR 60, Appendix A, Methods 5. 7 Sampling and Analytical Procedures All test and analytical procedures employed were as specified in 40 CFR 60 Appendix A, Reference Method 5 and 40 CFR 51, Appendix M, Method 202. Quality Assurance All equipment set-up, sampling procedures, sample recovery and equipment calibrations were carried out according to the procedures specified in 40 CFR 60, Appendix A, Method 5, 40 CFR 51, Appendix M, Method 202 and the Quality Assurance Handbook for Air Pollution Measurement Systems. 8 APPENDICES A: Complete Results and Sample Calculations B: Raw Field Data C: Laboratory Data and Chain of Custody D: Facility Schematics E: Calibration Procedures and Results F: Related Correspondence A APPENDIX A Table IV Complete Results, Venturi Wet Scrubber Nomenclature Sample Equations Complete Results ScrubberTABLE IV COMPLETE RESULTS INTREPID WENDOVER, WENDOVER, UTAH DRYER VENTURI SCRUBBER EXHAUST Symbol Description Dimensions Run #1 Run #2 Run #3 Date Date 11/11/24 11/11/24 11/11/24 Filter #7787 7788 7789 Begin Time Test Began 10:36 12:13 14:08 End Time Test Ended 11:39 13:16 15:10 Pbm Meter Barometric Pressure In. Hg. Abs 25.70 25.70 25.70 DH Orifice Pressure Drop In. H2O 2.371 2.599 2.305 Y Meter Calibration Y Factor dimensionless 0.994 0.994 0.994 Vm Volume Gas Sampled--Meter Conditions cf 57.534 62.155 58.581 Tm Avg Meter Temperature oF 91.7 104.7 104.8 DP Sq Root Velocity Head Root In. H2O 0.8177 0.8257 0.8167 Wtwc Weight Water Collected Grams 33.5 35.4 47.0 Tt Duration of Test Minutes 60 60 60 Cp Pitot Tube Coefficient Dimensionless 0.84 0.84 0.84 Dn Nozzle Diameter Inches 0.2535 0.2535 0.2465 CO2 Volume % Carbon Dioxide Percent 2.50 1.50 1.50 O2 Volume % Oxygen Percent 18.00 19.00 18.50 N2 & CO Volume % Nitrogen and Carbon Monoxide Percent 79.50 79.50 80.00 Vmstd Volume Gas Sampled (Standard)dscf 47.332 49.988 47.066 Vw Volume Water Vapor scf 1.580 1.669 2.216 Bws (measured)Fraction H2O in Stack Gas (Measured)Fraction 0.032 0.032 0.045 Bws (calculated)Fraction H2O in Stack Gas (Calculated)Fraction 0.082 0.086 0.093 Bws Fraction H2O in Stack Gas Fraction 0.032 0.032 0.045 Xd Fraction of Dry Gas Fraction 0.968 0.968 0.955 Md Molecular Wt. Dry Gas lb/lbmol 29.12 29.00 28.98 Ms Molecular Wt. Stack Gas lb/lbmol 28.76 28.64 28.49 %I Percent Isokinetic Percent 94.0 98.2 100.2 AVG Ts Avg Stack Temperature oF 102.7 104.6 107.2 104.8 As Stack Cross Sectional Area Sq. Ft.3.341 3.341 3.341 PG Stack Static Pressure In. H2O -0.32 -0.32 -0.32 Pbp Sample Port Barometric Pressure In. Hg. Abs 25.67 25.67 25.67 Ps Stack Pressure In. Hg. Abs 25.646 25.646 25.646 Qs Stack Gas Volumetric Flow Rate (Std)dscfm 8.00E+03 8.08E+03 7.89E+03 7.99E+03 Qa Stack Gas Volumetric Flow Rate (Actual)cfm 1.03E+04 1.04E+04 1.04E+04 1.04E+04 Vs Velocity of Stack Gas fpm 3.08E+03 3.12E+03 3.10E+03 3.10E+03 Mfilter Mass of Particulate on Filter milligrams 137.8 148.2 197.1 Mp Mass of Particulate in Wash milligrams 9.8 6.1 4.4 MF Mass of Front Half milligrams 147.6 154.3 201.5 MB Mass of Back Half milligrams 8.1 8.5 9.8 CF Concentration of Front Half gr / dscf 0.0481 0.0476 0.0661 0.0539 Ccond Concentration of Condensibles gr / dscf 0.0026 0.0026 0.0032 0.0028 ERF Emission Rate of Front Half lb / hr 3.30 3.30 4.47 3.69 ERcond Emission Rate of Condensibles lb / hr 0.18 0.18 0.22 0.19 %I =percent isokinetic As =stack cross-sectional area (ft3) AS∆P =see √∆P Btu =unit heat value (British thermal unit) Bws =fraction of water in stack gas Ccpm =concentration of condensibles (grain/dscf) Cf =concentration of particulate matter, front half (gr/dscf,lb/dscf, etc.) Cmetal =concentration of metals (ppm, µg/ft3, etc.) atomic symbol replaces "metal" CO2 =percent carbon dioxide in the stack gas Cp =pitot tube coefficient (0.84) CX (avg)=species symbol replaces x . CX (corr)=actual gas concentration corrected to required percent O2 ∆H =orifice pressure drop (inches H2O) ∆H@ =orifice pressure (inches H2O) Dn =nozzle diameter (inches) Dn des =calculated desired nozzle size (inches) ∆P =stack flow pressure differential (inches H2O) Ds =diameter of the stack (feet) EA =percent excess air ERcpm =emission rate of condensibles (lb/hr) ERF =emission rate of front half particulate (lb/hr) ERmmBtu =emission rate per mmBtu or ton of fuel etc. ERX =emission rate of compound which replaces x K-fact =multiplier of test point ∆P to determine test point ∆H L =length of rectangular stack (inches) mBtu =thousand Btu Mcpm =mass of condensibles (milligrams) Md =molecular weight of stack gas, dry basis (lb/lb-mol) MF =mass of particulate on filter (mg) MFP =mass of particulate matter on filter and probe (mg) mmBtu =million Btu MP =mass of particulate matter in probe (mg) Ms =molecular weight of stack gas, wet basis (g/gmol) N2 =percent nitrogen in the stack gas O2 =percent oxygen in the stack gas √∆P =average of the square roots of ∆P (may also be referred to as AS∆P) Pbm =absolute barometric pressure at the dry gas meter (inches Hg) Pbp =absolute barometric pressure at the sample location (inches Hg) PG =stack static pressure (inches H2O) Ps =absolute stack pressure (inches Hg) Pstd =absolute pressure at standard conditions (29.92 inches Hg.) θ =time of test (minutes) Qa =stack gas volumetric flow rate (acfm) Method 5 / 202 Nomenclature Method 5 / 202 Nomenclature Qs =stack gas volumetric flow rate (dscfm) Qw =wet stack gas std. volumetric flow (ft3/min, wscfm) Tm =meter temperature (oF) Ts =stack temperature (oF) Tstd =absolute temperature at standard conditions (528oR) Tt =see θ Vm =sample volume (ft3) at meter conditions Vmstd =volume standard (dscf), sample volume adjusted to 68oF and 29.92 inches Hg. Vs =velocity of stack gas (fpm) Vw =volume water vapor (scf) at 68oF and 29.92 inches Hg. W =width of rectangular stack (inches) Wtwc =weight of the condensed water collected (grams) Xd =fraction of dry gas Y =meter calibration Y-factor (dimensionless) %I =Vmstd • (Ts + 460) • 1039 / (θ • Vs • Ps • Xd • Dn2) As =(Ds2 / 4) • π Bws =Vw / (Vmstd +Vw) Ccpm =Mcpm • 0.01543 / Vmstd Ccors =Mcors • 0.01543 / Vmstd Cf =Mfp • 0.01543 / Vmstd CX (corr)=CX (avg) • (20.9 - desired %O2) / (20.9 - actual %O2) Deq =2 • L • W / (L + W) Dn des =√{0.0269 • (Pbm + 0.0735) / [(Tm + 460) • Cp • Xd • √[(Ts + 460) • Ms) / (Ps • ∆P)]]} EA =(%O2 - 0.5 %CO) / [0.264 %N2 - (%O2 - 0.5 %CO)] ERcpm =Ccpm • Qs • 0.00857 ERF =Cf • Qs • 0.00857 ERmmBtu =ERX / (mmBtu / hr) K-fact =846.72 • Dn4 • ∆H@ • Cp2 • Xd2 • Md • Ps • (Tm + 460) / [Ms • (Ts + 460) • (Pbm + ∆H / 13.6)] Md =CO2 • 0.44 + O2 • 0.32 + N2 •0.28 Ms =(Md • Xd) + (18 • Bws) Ps =Pbp + (PG / 13.6) Qa =Vs • As Qs =Qa • Xd • Ps • Tstd / [(Ts + 460) • Pstd] Qw =Qs / Xd Vmstd =Vm • Y • Tstd • (Pbm + ∆H / 13.6) / [Pstd • (Tm + 460)] Vs =85.49 • 60 • Cp • √∆P • √ [(Ts + 460) / (Ps • Ms)] Vw =Wtwc • 0.04715 Xd =1 - Bws Method 5 / 202 Sample Equations B APPENDIX B Preliminary Velocity Traverse and Sampling Point Location Data Particulate Field Data Prelim 6 pts blank Facility Intrepid, Moab Stack Identification Venturi Scrubber Date LI ,-)t-1. cl ir-,,_., Barometric Pressure N Pbm ):_J, 7 CJ'i Hg PbP >J-;6_~g Static Pressure (Po) .-..,, z "). inH2O Estimated Moisture (Bw,) ~ % Sample Height from Ground ri) feet Comments: --------------------Stack Dia. 24.75 Reference: 6.25 Ports are ___ 1_5 __ Upstream from next disturbance Ports are 15 Downstream from last disturbance ----- Traverse Percent Distance From: Point Diameter ID Reference 1 4.4 1.09 7.34 2 14.6 3.61 9.86 3 29.6 7.33 13.58 4 70.4 17.42 23.67 5 85.4 21.14 27.39 6 95.6 23.66 29.91 Averages: A I) If ,~ t1 I) l"I Ts ___ _ ~p ---- B I'", v. ,~~ 76,IJ J-'i ,p~t rl1 ~60/;i- I)., L.Flow ✓~P Ports C ---- KEY=> l~T_s ___ ~_P __ L._F_lo_w~I D E F ------ [/}:@Field Data Sheet Plant: Intrepid Potash, Wendover Date: / z-11-he./ • ii Traverse II Ti1;1e It DGM .1.H (in Hp) TETCO Filter_ZW;;, Sample Box~ Location: Venturi Scrubber '-- Operator /2, )(t 1/;;t; ~ Vacumn II Temperatures (F)~ "-A II DGM Temp_ (T.,,) Page_(_ of_~l Run# _j N ,-'/ 6 B Stack Diameter 24. 75" Port Reference ~5" Ports are 15' Upstream from next disturbance ~ 1r }Ji l) Oii 71J1.~ ?.h IJt~ 7li 2 12,~'t IJ:T ~ :&116 Z l ;J_;f II Ct.'81 Cf t_ Ports are 15' Downstream from last disturbance 't 5 6 /J 1 11•t:v 1 1 vv 11-,, / er:✓ l'•ru"' '1/Z''_j,,Jn·r, I b I ,, u K" f ~~,..,.,,,,I" J. I "'.......l II..,,,,,,,,,,~ L -r----i v > _,... ~ ., ~ _ r..--. _ ~ ... • :., __ _ _ . ......v_ , , 1 2 3 4 5 6 Total Average Comments: d-7,FJ 1/ ✓_-~ ✓ ~ Time Water flow gpm ·"Wr!7 Scrubber ~p _i--- ------- f/:;,,Ct>rd-cd .J et1(?ra-l-c.fy -- ll_2J,,,. { Ob, "'J.. 2:2:01 C/IZ .,__ Assumed Moisture Probe ,J_.i:...t;_ Cp 0.84 Nozzle Calibration .;n ..H2_ , J--f/ --L)d_---/ AvgDn ,)-~tiiches Gas Bag /2 -t/ 7 Console_.../tz Y-Factor~{ i'>.H@ ~ in H20 Barometric Pressures Pbm J-r[', 7 0 in Hg Pbp )i-. /p 7 in Hg P0 ._,>) inH20 Leak Check: Pre Post fl'Jmin , t? ltl '?i'v').. vac in Hg ·);:). "; a 6 .. o PitotRate t?,0 a,_,O lnH20 ~tLJ 9:-z:; Water Collected YJ.J·- Time Sampled c,o Flow Rate g min dH@ cc/min K-"} ~-@Tmtpo K-@Tm 1,J- 1 qi;() ~/p O kid Data Sheet Plant: Intrepid Potash, Wendover Date: / /-../ /-=-Jy •:tr Total £), f.))-✓ f, yo77 )£! 7' Average ✓ , F) 1:.r z 1, 1-r r Comments: Time Water flow gpm Scrubber ~p -- Cf' 'I FilterZZ~Bs~m~leBox4 Location: Venturi Scrubber . Operator )I, fu fvl, ~ ~ 1-Ll-" 7 l(IY r_ r;. (. /oe,.c X1> ~rJ) lt!_!b.:Z Page J __ of___J_ Run#_;}- - N 6 B / 24.75" Port Reference ____g,25" ~ Upstream from next disturbance 15' Downstream from last disturbance Assumed Moisture tJ A. Probe 3'$6 Cp 0.84 Nozzle Calibration ~ ~ ~ __,_h_-r Avg D0 _!.,,2!!1:2:::!m'a.es Gas Bag ,,fl-CJ 7 Console {i: Y-Factor , q f Y t.H@ ), LPo/' H,O Barometric Pressures Pbm )-_J'"'; J C1' in Hg Pbp ?-,,.[)C, 7 in Hg P0 -. ,);z_ in H20 Leak Check: Pre Post ft 3 /min 'or l C2,/cJ vac in Hg );} : /0,, 0 PitotRate C?" 0 (J.0 InH,0 !!1_,t:7 a" e Water Collected .}Jr';/_ Time Sampled t;(J Flow Rate K-).7& @Tm K-@Tm g min AH@ cc/min J '1 ?Ct, $eld Data Sheet Plant: Intrepid Potash, Wendover Date //~~ /2 i Total Avera~e Comments: Time v"-9, >-YI ✓ i9010 ✓ .ff/6"7 Water flow gpm --- --------_ i--- -----f'~ i/ ;>7.c,c 2:-10 Scrubber L'lP i.--- i A-µ:TCO Filter-2Z.-'J?'J Sample Box C,,, Location Venturi Scrubber Operator &', K/Gl, t< q ~, !lib l<ZZ.h J f-p,~ ,Ji!,,, z;, - Page_)_of__j Run#__/ N B / 6 -;,,Db , I C'<f~ ti_ Jyt:19 24.75" Port Reference ~5" ~ Upstream from next disturbance 15' Downstream from last disturbance Assumed Moisture • P_::2 Probe 7 ff Q Cp 0.84 , Nozzle Calibration ,4 l., !2:z) JL.} 2Lj' d£:'Y V/f AvgD,, ,nf7f'.fucnes / C?-j~~.,, Gas Bag ,d:-c-'7 Console • b Y-Factor , ff'( LlH@ /, ~R,z,n H2O ' Barometric Pressures Pbm )'J77t:J inHg Pbµ ~V7 inHg P0 ........ , ] ?-inH20 ,,, Leak Check: Pre Post ft 3/min-j[j5f ,,t7t7Jh vac in Hg J-.. 6.C) PitotRate~. InH20 _, Water Collected Time Sampled ';-.1/ {, ,;({~ Flow Rate ·). r.,f 7 ~: r'-f Z ,;--'-f6J CJ?.t? tJ.o L11tf K~,). 'f_:t @Tm @Tm K~ g min AH@ cc/min C APPENDIX C Sample Recovery Particulate Analysis Sheets Condensable Particulate Analysis Sheets Gas Analysis Data (Fyrite) Chain of Custody Facility: lntrc~id Wendover Slack ldentilfoation:J/,e.p .. ~ 1' c:;> MS 202 lmpingcr Field Sheet .!MELl'iGJUlS. Run:_...,,/ __ _ Sample Box: Filter Number: lmpmger Number Dry 2 I Cold 3 I 4 5 Initial Volume of liquid (H20) in irnpingers, (ml) weigh & analyze we1g 1 an 1scar "1// Total (g) ===_3=· ==J=====,, "==J=-= ·Acetone. IMl'l:X[;ERS Run: ~ Sample Box: Filter Number: Tmpmger~um6er Drv 2 Initial Volume of liquid (H20) in impingcrs, (ml) Date: J/ ~ //1 /" c/ Method: 5/202 -------- A-= Initials Hexane /4 b Initials .JL Initial (g) _.,__,._,,::,,:,__,,,,__p:::;.u,L:.::1,_µc£,1~..i,,._-J--,'-//;,.µJL.L4-___ 4-__ _ Net (gJ '-' f pm{Iltcr description wcig 1 & analyze (hJL..lt-n-£-_#ft"PL_ -uf vV/4/, //-c.. Total (gl 35": c.f 'I. !f{f#W'i/' ~ ~SES 1120 Acetone Hexane , ,, ,tart / )) ').... i 'r:1p•,:c·11d / 1/) )-, inl 11,0 added <j t) iiVll'INW~RS Run: _-2_ Sample Box: -~C..__-_ Filler Number: Tm pinger Num6ei'· Dry I Cold 6 Hexane Facility: Intrepid Wendover Stack Identification: Venturi Scrbber Filter Number: 7887 Blanks & Rinses Filter Blanks Acetone (CH3COCH3) 0.0000 g/lO0ml Final 1: 0.8292 g --------Fin al 2: 0.8297 g FinalAvo: 0.8295 g FiltefPreweight: 0.6917 g Net 0.1378 g Net 137.8 mg Front Half Final1: 59.5534 g Final2: 59.5529 g FinalAvo: 59.5532 g Initial,: 59.5435 g Initial 2: 59.5432 g Initial A vo: 59.5434 g Gross: 0.0098 g Beaker Number: 88 Blank: 0.0000 g Net 0.0098 g Net 9.8 mg RESULTS Front Half Filter 137.8 mg Wash 9.8 mg Total 147.6 mg Date: 11/11/24 Run: ---- Sample Box: A Rinses ml Date: 11/20/24 Date: 11/20/24 Time: 9:00 ----Time: 15:00 Date: Date: Date: Date: Process Final 11/20/24 11/20/24 8/28/24 8/28/24 Process Final Initial CRITERIA Weight Time Pass Pass Time: 9:00 Time: 15:00 Time: 8:00 Time: 14:00 CRITERIA Weight Time Pass Pass Pass Pass Comments: Criteria: I) Weights are± 0.5 mg of each other, or within I% of the net weight. 2) There shall be at least 6 hrs between weighings. Lab Technician: D Kitchen Date: 11/20/24 Lab Technician: M McNamara Date: 11/12/24 Facility: Intrepid Wendover Stack Identification: Venturi Scrbber FilterNumber: 7888 Blanks & Rinses Filter Blanks Acetone (CH3COCH3) 0.0000 g/lO0ml Final 1: 0.8399 g --------Final2: 0.8404 g FinalAva: 0.8402 g Filter Preweight: 0.6920 g Net 0.1482 g Net 148.2 mg Front Half Final1: 57.5140 g Final2: 57.5136 g FinalAva: 57.5138 g Initial,: 57.5079 g Initial 2: 57.5075 g Initial Ava: 57.5077 g Gross: 0.0061 g Beaker Number: 89 Blank: 0.0000 g Net 0.0061 g Net 6.1 mg RESULTS Front Half Filter 148.2 mg Wash 6.1 mg Total 154.3 mg Date: 11/11/24 Run: 2 Sample Box: B Rinses Date: 11/20/24 Date: 11/20/24 Process Final Date: 11/20/24 Date: 11/20/24 . Date: 8/28/24 Date: 8/28/24 Process Final Initial ml Time: 9:00 -----Time: 15:00 CRITERIA Weight Time Pass Pass Time: 9:00 Time: 15:00 Time: 8:00 Time: 14:00 CRITERIA Weight Time Pass Pass Pass Pass Comments: Criteria: I) Weights are± 0.5 mg of each other, or within 1 % of the net weight 2) There shall be at least 6 hrs between weighings. Lab Technician: D Kitchen Date: 11/20/24 Lab Technician: M McNamara Date: 11/12/24 Facility: Intrepid Wendover --~-------------------Date: 11/11/24 St a ck Identification: Venturi Scrbber Run: 3 ----------------------Filter Number: 7889 Sample Box: C Blanks Rinses Blanks & Rinses Acetone (CH3COCH3) 0.0000 g/l00ml Acetone (CH3COCH3) 50 ml Filter Front Half Final 1: 0.8746 g -------Final2: 0.8750 g FinalAva: 0.8748 g Filter Preweight: 0.6777 g Final 1: Final2: Initial1: Initial 2: 47.9888 47.9884 -----"------g _______ g 47.9843 47.9840 ________ g ________ g Net 0.1971 g Net 197.1 mg FinalAva: 47.9886 g InitialAva: 47.9842 g Gross: 0.0044 g Beaker Number: 90 Blank: 0.0000 g Net 0.0044 g Net 4.4 mg RESULTS Front Half Filter 197 .1 mg ----Wash 4.4 mg Total 201.5 mg Date: 11/20/24 Time: 9:00 Date: 11/20/24 Time: 15:00 CRITERIA Process Weight Time Final Pass Pass Date: 11/20/24 Time: 9:00 Date: 11/20/24 Time: 15:00 Date: 8/28/24 Time: 8:00 Date: 8/28/24 Time: 14:00 CRITERIA Process Weight Time Final Pass Pass Initial Pass Pass Comments: Criteria: I) Weights are ± 0 .5 mg of each other, or within I% of the net weight. 2) There shall be at least 6 hrs between weighings. Lab Technician: D Kitchen Date: 11/20/24 Lab Technician: M McNamara Date: 11/12/24 Facilty: Intrepid Potash, Wendover Stack Identification: Venturi Scrubber Method 202 Laboratory Form ------------------------ Sample Description/ID # Run 1 Run2 Inorganic CPM Rel. Hum Rel. Hum Beaker/Tin # 991 Date Time % 992 Date Time % Final Weight (1), g 2.1343 111201241 8:oo I <l 2.1592 111201241 8:oo I <l Final Weight (2), g 2.1342 111201241 14:oo I <l 2.1591 111201241 14:oo I <l Ave. Final Wei!!ht, g 2.1343 2.1592 Initial Weight (1), g 2.1292 914124 I 10:00 I <l 2.1557 914124 I 10:00 I <l Initial Weight (2), g 2.1294 915124 I 9:oo I <l 2.1557 915124 I 9:oo I <l Ave. Initial Weight, g 2.1293 2.1557 mr: Initial Inorganic Wt, mg 4.95 3.45 H2O added in Extractions, ml 60 pH pH 60 pH pH Reconstituted H2O Volume, ml Start End Start End N: Normality ofNH4OH I I I I Vt: Volume ofNH4OH, ml m0: Mass ofNH4 Added, mg mi (or mib): Final Inorganic Wt, mg 4.95 3.45 Organic CPM Rel. Hum Rel. Hum Beaker/Tin # 994 Date Time % 995 Date Time % Final Weight (1), g 2.1619 111201241 8:oo I <l 2.1708 111201241 8:oo I <1 Final Weight (2), g 2.1619 111201241 14:oo I <l 2.1709 111201241 14:oo I <l Ave. Final Weight, g 2.1619 2.1709 Initial Weight (1), g 2:1567 914124 I 10:00 I <l 2.1636 914124 I 10:00 I <1 Initial Weight (2), g 2.1568 915124 I 9:oo I <l 2.1639 915124 I 9:oo I <1 Ave. Initial Weight, g 2.1568 2.1638 m0 (or m0b): Net Organic Wt, mg 5.15 7.10 mcom : Gross CPM, mg 10.1 10.5 mcpm : Blank CPM, mg 2.0 2.0 mcpm : Net CPM, mg 8.1 8.5 pH Meter: Oakton pHTestr BNC, Electrode Model: 35801-00 Fisher pH Buffer 4.00r======pH=====·=l==D=a=te=:I:= Fisher pH Buffer 7.00 ~-----~ t=j Lab Technician: Lab Technician: Test Date(s): 11/11/24 ---------- Run3 Rel. Hum 993 Date Time % 2.1764 111201241 8:oo I <1 2.1765 111201241 14:oo I < 1 2.1765 2.1729 914124 I 10:00 I <1 2.1730 915124 I 9:oo I < 1 2.1730 3.50 60 pH pH Start End I I 3.50 Rel. Hum 996 Date Time % 2.1527 111201241 8:oo I <1 2.1529 111201241 14:oo I <1 2.1528 2.1444 914124 I 10:00 I <1 2.1446 915124 I 9:oo I <1 2.1445 8.30 11.8 2.0 9.8 Mike McNamara Date: 11/15/24 Dean Kitchen Date: 11/20/24 Form Date: 10/21/15 Facilty: Intrepid Potash, Wendover Stack Identification: Venturi Scrubber Method 202 Laboratory Form Test Date(s): 11/11/24 Sample Description/ID # Recovery Blank ProofBiank Inorganic CPM Rel. Hum Rel.Hum% Beaker/tin # 997 Date Time % 998 Date Time Final Weight (1), g 2.1730 11/20/24 8:00 <l 2.1111 11/20/24 8:00 <1 Final Weight (2), g 2.1727 11/20/24 14:00 <l 2.1111 11/20/24 14:00 <1 Ave. Final Weight, g 2.1729 2.1111 Initial Weight (1 ), g 2.1716 9/4/24 10:00 <l 2.1102 9/4/24 10:00 <1 Initial Weight (2), g 2.1718 9/5/24 9:00 <l 2.1102 9/5/24 9:00 <1 Ave. Initial Weight, g 2.1717 2.1102 mr: Initial Inorganic Wt, mg 1.15 0.90 H20 added in Extractions, ml 60 pH pH 60 pH pH Reconstituted H20 Volume, ml Start End Start End N: Normality ofNJiiOH V1: Volume ofNH40H, ml me: Mass ofNHi Added, mg mi (or mib): Final Inorganic Wt, mg 1.15 0.90 OrganicCPM Rel. Hum Rel.Hum% Beaker/tin # 999 Date Time % 1 Date Time Final Weight (1), g 2.1469 11/20/24 8:00 <l 2.1727 11/20/24 8:00 <l Final Weight (2), g 2.1471 11/20/24 14:00 <l 2.1728 11/20/24 14:00 <l Ave. Final Weight, g 2.1470 2.1728 Initial Weight (1 ), g 2.1460 9/4/24 10:00 <l 2.1717 9/4/24 10:00 <l Initial Weight (2), g 2.1459 9/5/24 9:00 <l 2.1720 9/5/24 9:00 <l Ave. Initial W ei2:ht, g 2.1460 2.1719 m0 (or m0b): Net Organic Wt, mg 1.05 0.90 mcpm ( or mfb): Total CPM, mg 2.2 1.8 pH Meter: Oakton pHTestr BNC, Electrode Model: 35801-00 Fisher pH Buffer 4.00:1 =====p=H======I Date Fisher pH Buffer 7 .00 ..._ _____ _. I Time I Lab Tech.: Mike McNamara Lab Tech.: Date: Dean Kitchen Date: 11/15/24 11/20/24 Fonn Date: I 0/21/15 Facilty: Intrepid Potash, Wendover Stack Identification: Venturi Scrubber Method 202 Field Reagent Blank Form Test Date(s): 11/11/24 ---------- Blank Description/ID# Water RICCA Reagent Acetone Fisher ACS Hexane Sigma-Aldrich Lot# 2307F47 185673 MKCR-5028 Rel.Hum Rel.Hum Rel. Hum Beaker/tin # 985 Date Time % 986 Date Time % 987 Date Time % Final Weight (1), g 2.1467 11120124 I 8:oo I <1 2.1571 11/20/24 8:oo I <1 2.1581 11/20/24 8:oo I <1 ·-11120124 l 14:oo I 14:oo I 11120124 14:oo I Final Weight (2), g 2.1467 <l 2.1574 11/20/24 <1 2.1579 <l Ave. Final Weight, g 2.1467 2.1573 2.1580 Initial Weight (1), g 2.1466 914124 I 10:00 I <l 2.1574 9/4/24 10:00 I <1 2.1579 9/4/24 10:00 I <l Initial Weight (2), g 2.1467 915124 I 9:oo I <l 2.1571 915124 I 9:oo I <1 2.1580 9/5/24 9:oo I <1 Ave. Initial Weight, g 2.1467 2.1573 2.1580 Blank Residual Mass, mg 0.05 Water 0.00 Acetone 0.05 Hexane Blank Mass, g 218 138 149 Blank Volume, ml 218 176 223 Max Blank Residulal Mass, mg 0.22 0.18 0.22 Lab Technician: Mike McNamara Date: 11/15/24 Lab Technician: Dean Kitchen Date: 11/20/24 Form Date: 10/21/15 Method 202 Laboratory Reagent Blank Form Blank Description/ID# Water RICCA Reagent Acetone Fisher ACS Hexane Sigma-Aldrich Lot# 230F47 220983 MKCR-5028 Rel. Hum Rel. Hum Rel. Hum Beaker/tin # 988 Date Time % 989 Date Time % 990 Date Time % Final Weight (I), g 2.1207 11120124 I 8:oo I < 1 2.1573 11120124 I 8:oo I <1 2.1516 11120124 I 8:oo I <1 Final Weight (2), g 2.1207 11120124 I 14:oo I <1 2.1573 11120124 I 14 :oo I <l 2.1516 11120124 I 14:oo I <I Ave. Final Weight, g 2.1207 2.1573 2.1516 Initial Weight (1), g 2.1206 914124 I 10:00 I <1 2.1570 914124 I 10:00 I <l 2.1515 914124 I 10:00 I <l Initial Weight (2), g 2.1208 9;5;24 I 9:oo I <l 2.1574 915124 I 9:oo I <l 2.1517 915124 I 9:oo I <l Ave. Initial Weight, g 2.1207 2.1572 2.1516 Blank Residual Mass, mg 0.00 Water 0.10 Acetone 0.00 Hexane Blank Mass, g 139 162 179 Blank Volume, ml 139 206 268 Max Blank Residulal Mass, mg 0.14 0.21 0.27 Lab Technician: Mike McNamara Date: 11/15/24 Lab Technician: Dean Kitchen Date: 11/20/24 Form Date: 10/21/15 Analytical Method: _O_rs_at_/F~y'-r_it_e __________ _ Date//-/ /--J,y Gas~:~~~:~p Ambient Temp ' Operator ~ Date 1/--//7/y T~No~ Gas Bag No. - Ambient Temp . Operator ,_ Date 1[_-ll--r/ Test No. ') Gas Bag No. ,q:p_ Ambient Temp Operator Ml; Date -----Test No. ____ _ Gas Bag No. ____ _ Ambient Temp ____ _ Operator. _____ _ Gas 02 (Net is Actual 0 2 Reading Minus Actual CO2 Reading). N2 (Net is 100 Minus Actual 0 2 Reading). Gas CO2 0 2 (Net is Actual 0 2 Reading Minus Actual CO2 Reading). N2 (Net is 100 Minus Actual 0 2 Reading). I Gas CO2 0 2 (Net is Actual 0 2 Reading Minus Actual CO2 Reading). N2 (Net is 100 Minus Actual 0 2 Reading). Gas CO2 0 2 (Net is Actual 0 2 Reading Minus Actual CO2 Reading). N2 (Net is 100 Minus Actual 0 2 Reading). Actual Reading Actual Reading ),J- If; CJ Actual Reading /1J'- J?,J' Actual Reading RUN 2 Net Actual Net Reading RUN 2 Net Actual Net Reading --},J --;to - RUN 2 Net Actual Net Reading J,r -11,J· RUN 2 Net Actual Net Reading CO is not measured as it has the same molecular weight as N2 3 Actual Net Reading 3 Actual Net Reading /,)- I 'f,CJ - 3 Actual Net Reading /)-- ly'. J. -- 3 Actual Net Reading Average Net Volume Average Net Volume /..J" £,CO Average Net Volume dv 1#,f Average Net Volume TETCO Facility ( & Source): '/4,/e,r7 el Ov~ trlriy/cl .2 '9/"?/) J ~J/ Yt,~/v,,./ Sample ID Date 1:/,../ 1/-1/-.J..cl I, '/ . 'I ' V',n 2. ifu.,.., 7 '( rr,;,uf-i,J//,;,,,; k II-Jl-;.1 /(y~ IJ//:,,, k 1/ A'-e Id ,r ,.,,"', fl/c,.L • I/ ,,, Sampled By: Recovered Br: / t I( Analyzed By: /11 Relinquished By: Relinquished By: Stack Emission Analysis Accurate • Reliable • Qualified Chain of Custodr 0 ~ "' i::: i::: i:2 i:2 (I) <><l ..c: "' "' : C: 0 -5 ..c: i52 § : ~ ti! E cld u ..c: 2 I-< -§ 0 : E i M dd 2 µ.. ~ § ~ 0 (I) u i::: 0.. Method(s) of E µ.. "' ~ ~ ~ [ ~ ta ~ 0 Analysis 2 0 £ ~ 0 µ.. ~ u u ,!l ,,1-/un_ IA IX /-It A I/ .. }\ vt Ji.-~ ,t (/ ./\. l)( /t.. [}'-J. ,;,. P2=. J y.._ ;(_ II ?-v<--j. ti I f • f A,-- Received By: Received By: All samples remained in the custody of TETCO unless otherwise indicated. Comments: * (I) (I) "' "' C: C: i52 i52 "O cld ~ -§ -§ ~ ~ u i u .... 0 0 r/J £ "O <:.) u < /'- "' I 55 ~ :s: :I: IA f.. 391 E 620 S, American Fork, UT 84003 801-492-9106 • 801-492-9107 Notes Date: //-//-,). 'I Date: //-/)..-> cf Date: t l /z_o lz..:-t Date: Date: I D APPENDIX D Figure 1. Facility Schematic Representation Venturi Wet Scrubber Raw production data was retained by Intrepid personnel Facility: Stack Identification:  33'g: Distance of Sample Level to Ground, feet Intrepid Potach, Wendover 4-5 Venturi Scrubber 15' 15' a: Distance upstream from next disturbance, feet b: Distance downstream from last disturbance, feet Salt DryerType: Number of Ports Process Type: Control Unit 2 Estimated Temperature, oF Figure 1. Facilty Schematice Representation Estimated Velocity, fpm 24.75" Venturi Scrubber  Stack Inside Diameter, inches Estimated Moisture, percent 120 2,600 a g b E APPENDIX E Calibration of the console dry gas meter(s), pitot tubes, nozzles diameters, and temperature sensors were carried out in accordance with the procedures outlined in the Quality Assurance Handbook. The appropriate calibration data are presented in the following pages. The nozzle calibrations are recorded on the first page of the field data sheets. Figure 2. Schematic of Method 5/202 Sampling Train Meter Box Calibration Data and Calculations Forms Meter Box Post-test Calibration Sheet Type-S Pitot Tube Inspection Data Sample Box Temperature Sensor Calibration Filter Balance Calibration Figure 2. Schematic of Method 5/202 Sampling Train Temperature Sensor t t Type S Pitot Tube Probe Temperature Sensortl Gooseneck ! . . Nozzle "" / Type S Pitot Tube Stack Wall Orifice HecatTracecl Probe Temperature Sensor Glass Filter Holder Heated Area Manometer Temperature Sensors I Dry Gas \ ! Meter l \_) Thermocouple Recirculation Pump Empty Impinge rs Valve METHOD 5 DRY GAS METER CALIBRATION USING CRITICAL ORIFICES 1) Select three crftical orifices to calibrate the dry gas meter which bracket the expected operating range. 2) Record barometric pressure before and after calibration procedure. 3) Run at tested vacuum (from Orifice Calibration Report), for a period of time necessary to achieve a minimum total volume of 5 cubic feet. 4) Record data and information in the GREEN cells, YELLOW cells are calculated. TECHNICIAN:j. Reed Kitchen J INITIAL DATE: 1217/2023 METER SERIAL#: 68092 METER PART#: Console 6 CRITICAL ORIFICE SET SERIAL#: 1453S BAROMETRIC PRESSURE in Hg : 25.65 Eou1PMENT 1D #: Console #6 ORIFICE# I RUN # G G G 2 3 2 2 3 K' I TESTED FACTOR VACUUM (AVG) (in Hg) 0.8137 10 0.8137 10 0.8137 10 0.5317 11 0.5317 11 0.5317 11 0.3307 13 0.3307 13 0.3307 13 DGM READINGS (Fi'} INITIAL 204.981 213.255 221.823 184.867 190.097 196.569 227.035 233.113 240.071 FINAL 213.255 221.823 226.926 190.097 196.569 204.797 233.113 240.071 245.134 NET !Vm) 8.274 8.568 5.103 5.230 6.472 8.228 6.078 6.958 5.063 USING THE CRITICAL ORIFICES AS CALIBRATION STANDARDS: TEMPERATURES"F AMBIENT I DGM INLET I DGM OUTLET INITIAL FINAL INITIAL ANAL 71 71 84 69 71 71 82 88 70 72 71 86 88 72 72 69 72 80 69 71 65 78 82 70 71 65 79 84 70 72 72 83 80 72 72 72 78 79 71 71 72 78 89 71 71 DGM AVG 73.8 78.0 79.5 73.0 75.3 76.3 76.8 74.8 77:J FINAL 25.65 ELAPSED TIME(MIN) e 7.75 8.00 4.75 7.50 9.25 11.75 13.75 15.75 11.50 AVG(P,,,) 25.65 2.90 ~ 2.90 1.20 1.20 1.20 § 43 3 (1) Vm(STD) ~ 7.2699 4.3178 4.4576 Mru! 6.9704 5.1329 5.8980 4.2717 !W!f 2024 Pre-Calibration IF YVARIATION EXCEEDS 2.00%, ORIFICE SHOULD BE RECALIBRATED (2) Voc(STD) 7.0215 7.2481 4.3035 AVG= 4.4485 5.5074 6.9959 AVG= 5.0582 ~ 4.2305 AVG= (3) y 0.992 0.997 0.997 0.995 0.998 ~ 1.004 1.001 0.985 0.982 0.990 0.986 l y VARIATION(%) 0.11 0.72 ~ The following equations are used to calculate the standard volumes of air passed through the DGM, V m (std), and the critical orifice, V ~ (std), and the DGM calibration factor, Y. These equations are automatically calculated in the spreadsheet above. AVERAGE DRY GAS METER CALIBRATION FACTOR, Y = I 0.994 (1) (2) (3) Vmc,u/J = K, •Vm• Pbar+(Ml /13.6) Tm = Net volume of gas sample passed through DGM, corrected to standard condftions K1 = 17.64 °R/in. Hg (English), 0.3858 "Kimm Hg (Metric) Pbar *0 V, -K'•---..... cr(."'1) -.JTamb Pcrc~,d> Y= - Vm(sld} Tm = Absolute DGM avg. temperature (0 R -English, °K -Metric) = Volume of gas sample passed through the crftical orifice, corrected to standard condftions T,mb = Absolute ambient temperature (0R -English, 'K-Metric) K' = Average K' factor from Critical Orifice Calibration = DGM calibration factor AVERAGE L>.H@ -1 1.607 L>.H@= ( 0.75 0 )2 AH (Vm(std)) V0,(std) Vm TEMPERATURE SENSORS 'F REFERENCE IN OUT 32 33 32 72 73 73 203 203 202 1,Z!!Q 1.686 1.682 1.635 .1.,ill 1.613 ~ 1.515 1.508 METHOD 5 DRY GAS METER CALIBRATION USING CRITICAL ORIFICES 1) Select three critical orifices to calibrate the dry gas meter which bracket the expected operating range. 2) Record barometric pressure before and after calibration procedure. 3) Run at tested vacuum (from Orifice Calibration Report), for a period of time necessary to achieve a minimum total volume of 5 cubic feet. 4) Record data and information in the GREEN cells, YELLOW cells are calculated. TECHNICIAN:j X1Dang I INITIAL DATE: 11/12/24 METER PART#: Console 6 METER SERIAL#: 68092 CRITICAL ORIFICE SET SERIAL #: 1453S BAROMETRIC PRESSURE (in Hg): 25.50 EauIPMENT ID #: Console #6 K' TESTED FACTOR I VACUUM DGM READINGS {FT') ORIFICE# I RUN # {AVG) (in Hg) INITIAL FINAL G: 0.6808 12 0.6808 12 0.6808 12 19.985 25.261 25.261 30.477 30.477 35.793 D:ffi2 □:rn2 USING THE CRITICAL ORIFICES AS CALIBRATION STANDARDS: NET(Vml 5.276 5.216 5.316 TEMPERATURES "F AMBIENT! DGM INLET I DGM OUTLET' DGM INITIAL FINAL I INITIAL FINAL AVG 63 64 71 64 64 65 70 82 64 67 66 79 91 67 71 I I I I I I I I I I I I 65.8 70.8 77.0 .-- FINAL 25.50 ELAPSED TIME{MIN) a - 5.95 5.88 5.930 AVG(P.,,) 25.50 1.95 1.95 1.95 §§ §§ (1) I Vm(STD) 4.5421 4.4481 4.4806 rlCJ¾ Post Calibration Intrepid IF YVARIATION EXCEEDS 2.00%, ORIFICE SHOULD BE RECALIBRATED l (2) V"{STD) I (~ Y VARIATION(%_) __ 4.5181 0.995 1.638 4.4564 1.002 1.628 4.4900 1.002 1.613 AVG= 1.000 0.00 AVG= AVG= The following equations are used to calculate the standard volumes of air passed through the DGM, V m (std), and the critical orifice, V" (std), and the DGM calibration factor, Y. These equations are automatically calculated in the spreadsheet above. AVERAGE DRY GAS METER CALIBRATION FACTOR, Y = I 1.000 (1) (2) (3) Vm<s•"> =K, •Vm*Pbar+(Af-If13.6) Tm -= Net volume of gas sample passed through DGM, corrected to standard conditions K, = 17.64 'Rlin. Hg (English), 0.3858 'Kimm Hg (Metric) Pbar *0 -K'* ---Vcr1,,.> --JTamb Vq,,d} Y= --- Vm(ud) Tm =·Absolute DGM avg. temperature ('R -English, 'K -Metric) = Volume of gas sample passed through the critical orifice, corrected to standard conditions T,mo = Absolute ambient temperature ('R -English, 'K -Metric) K: = Average K: factor from Critical Orifice Calibration = DGM calibration factor AVERAGEAH@ =I f.626 ! AH@!= ( 0.75 0 )2 AH (Vm(std)\ V0,{std) Vm / TEMPERATURE SENSORS °F REFERENCE IN OUT 68 67 68 32 33 33 Type S Pitot Tube Inspection Data Date: I/ 16/2024 -------Pitot Tube Identification: _____ 3_8_G ____ _ Technician: M. McNamara i PA Pa D,= --' ____ o_._37_5 __ m. Is PA= Pa? ____ Y_es ___ _ Is 1.05•D,,:; PA&Pa,:; 1.50•D,? ____ Y_es ___ _ PA= 0.479 in. Pa= 0.479 in. UJ < 10° UJ = ------a2<100 a2= _____ _ Zs0.125 in. Z= O.o18 in. ------ W s0.03125 in. W= 0.002 in. ------ W> 3 inches W= 4 in. ------ Z > 3/4 inch Z= __ 0_.8_7_5 __ in. Y= __ 3_3_/4 __ in. The pitot tube meets the specifications for a calibration factor of 0.84? Yes Temperature Sensor Calibration Reference· Omega CL3512A Continuity Check Yes Probe Heat Check 248 Yes temperature 1 emoerature I emperature Source Keterence sensor Difference (Medium) ("F) ("F) (OF) Probe AIR 64 64 0 AIR 64 63 I Stack ICE WATER 33 33 0 BOIL WATER 204 205 I SILICONE OIL TETCO Sample Box Temperature Sensor Calibration Date: 1/2/24 Calibrator: XuanN. Dan~ Reference: Ome~a CL3512A Thermocouple Temperature Tern erature Temperature Unit ID Location Source Reference Sensor Difference (Medium) ("F) ("F) ("F) Oven (3) Water 33 33 0 A Water 203 201 -2 Water 33 33 0 Oven (4) Water 203 201 -2 Oven (3) Water 33 33 0 B Water 203 202 -1 Water 33 33 0 Oven (4) Water 203 201 -2 Oven (3) Water 33 33 0 C Water 203 203 0 Water 33 33 0 Oven (4) Water 203 203 0 Oven (3) Water 33 33 0 D Water 203 203 0 Water 33 33 0 Oven (4) Water 203 203 0 Oven (3) Water 33 33 0 E Water 203 203 0 Water 33 33 0 Oven (4) Water 203 203 0 F Oven Water 33 33 0 Water 203 202 -1 G Oven Water 33 33 0 Water 203 202 -1 H Oven Water 33 33 0 Water 203 203 0 Impinger Out A Water 33 33 0 Water 203 203 0 Impinger Out B Water 33 33 0 Water 203 202 -1 Impinger Out C Water 33 33 0 Water 203 202 -1 Impinger Out D Water 33 33 0 Water 203 203 0 Impinger Out E Water 33 34 Water 203 203 0 Impinger Out F Water 33 33 0 Water 203 201 -2 Impinger Out G Water 33 33 0 Water 203 202 -1 Impinger Out H Water 33 33 0 Water 203 203 0 Impinger Out I Water 33 33 0 Water 203 203 0 Impinger Out J Water 33 33 0 Water 203 203 0 Impinger Out K Water 33 33 0 Water 203 203 0 TETCO Annual Balance Calibration Check Date 1 /23/24 Balance Denver Instruments, Model A-250, SN B045284 Weights Used Troemner Weight Set, SN 98-115146 Certified Weight qrams 0.1000 0.5000 1.0000 10.0000 50.0000 100.0000 120.0000 150.0000 Technician Michael McNamara Measured Weight qrams 0.1000 0.5000 1.0000 10.0000 50.0001 100.0000 120.0001 150.0000 Difference qrams 0.0000 0.0000 0.0000 0.0000 -0.0001 0.0000 -0.0001 0.0000 F APPENDIX F Test Protocol and Related Correspondence COMPLIANCE EMISSION TESTING PROTOCOL FOR PARTICULATE MATTER INTREPID WENDOVER POTASH, WENDOVER, UTAH VENTURI WET SCRUBBER Project Organization and Responsibility The following personnel and the testing contractor are presently anticipated to be involved in the testing program. The Utah Department of Environmental Quality, Division of Air Quality (DAQ) and EPA may have their own personnel to observe all phases including the process Company Contacts Intrepid Potash, Wendover LLC Todd Stubbs 435 259-1282 P O Box 580 Wendover, UT 84083 TETCO Dean Kitchen 801 492-9106 391 East 620 South American Fork, UT 84003 Facility and Location The facility to be tested is Intrepid Potash, Wendover LLC located on the frontage road approximately 4 (four) miles east of Wendover, Utah. The source to be tested is the Venturi Wet Scrubber exhaust that serves the dryer heated by a 21 MMBtu/hr burner. The burner is fired with propane. Test Objective The test objective is to comply with the facility’s approval order number DAQE- AN0107420014-19. Testing procedures will include accumulating process and production data as well as testing for PM10 particulate matter emissions using EPA Method 5. Condensable particulate matter (CPM) will be measured according to EPA Method 202 and is not for compliance but informational purposes only. The allowable PM10 emission limits for this source are 0.05 gr/dscf and 6.0 lb/hr. Test Date and Time It is planned to complete this test November 11-12, 2024. The testing crew will arrive and set up the testing equipment November 11th and begin testing that afternoon if production permits. Testing will continue on November 12th as needed. A pre-test meeting may be scheduled by EPA, DAQ or Intrepid Potash. Process Data and Instrumentation All process and instrumentation data will be made available to DAQ personnel. The venturi scrubber water flow rate and pressure drop will be recorded by TETCO personnel during each test run. The amount of material processed through the kiln dryer will be recorded by Intrepid Potash Wendover personnel. The facility will run at normal conditions. Site Access Sample location access is by man-lift. Full-body harnesses will be used for anyone ascending in the man-lift. Potential Hazards Moving Equipment Yes Hot Equipment Yes Chemical Pot Ash, Corrosive Other Noise Test Site The stack inside diameter is 24.75 inches. Port location is depicted in Appendix 1 of this protocol. The sample ports are located 7.3 diameters (15 feet) downstream from the last disturbance and approximately 7.3 diameters (15 feet) upstream from the next disturbance. Sample port placement conforms to the requirements of EPA Method 1. Quality Assurance All testing and analysis in these tests will be conducted according to Methods 5, 202 and appropriate sections of 40 CFR 51 Appendix M. Reporting Reporting will be prepared by the testing contractor according to EPA Quality Assurance Guidelines. A complete copy of raw data and test calculations summary will be included in the reports. All process and production data will be recorded by Intrepid Potash, Wendover personnel for inspection by DAQ and EPA, if requested. Estimates of Test Parameters Flow 19,000 fpm Moisture 4-5 % Temperature 125o F Test Procedures Particulate matter testing will be conducted on the Venturi Scrubber exhaust stack according to EPA Method 5. The reason for using EPA Method 5 instead of Method 201A for PM10 is because there are water droplets in the stack exhaust. The back-half of the Method 5 sampling train will be sampled according to EPA Method 202 as specified in 40 CFR Part 51 Appendix M. Specific procedures are as follows: 1. The total number of sample points will be 12 according to EPA Method 1. Six points will be sampled on each port. Test run time will be at least 60 minutes. 2. EPA Method 2 will be used to determine the gas stream velocity. Calibration data for the geometrically calibrated type “S” pitot tubes are included with this protocol. Dual inclined/vertical manometers with graduations in .01 of an inch of water will be used. Direction of gas flow will be checked for gas cyclonics prior to testing. 3. EPA Method 3 will be used to determine the gas stream dry molecular weight if the exhaust gas is not ambient. An integrated flue gas sample will be taken from the exhaust line after the dry gas meter orifice during each test run and analyzed at the completion of the test with a Fyrite to determine the molecular weight of the effluent gas stream. If the exhaust gas is ambient air then TETCO will use a dry molecular weight of 28.84 lb/lbmol (20.9 percent O2, 79.1 percent N2) in all calculations. 4. EPA Method 4 will be used to determine the gas stream moisture content. 5. The back-half, or condensible particulate matter will be handled according to EPA Method 202 and will be for informational purposes only. 6. The barometric pressure will be measured with a barometer which is periodically checked against a mercury barometer. The barometer will be checked prior to testing to assure an accurate barometric pressure. 7. All current calibration data is submitted with this protocol, except nozzle calibration which will be done at the test site. Nozzle calibration will be included on the first page of each set of run sheets for each respective test run. Any calibration that is not current will be re-calibrated prior to the test dates. 8. The glass fiber filters that will be used conform to the requirements of EPA Method 5. 9. Probe liners will be 316 stainless steel for all Method 5 tests. 10. Test preparation and sample recovery will be performed in the contractor's sampling trailer or a clean area on Intrepid Potash’s property. The laboratory work and analysis will be done by the contractor as soon as possible after the test project at 391 East 620 South, American Fork, Utah. 11. Verbal results will be reported to a representative of Intrepid Potash, Wendover. The written report will follow within 30 days following the completion of the test. 12. If maintenance or operating problems arise during the test, the test may be stopped. This determination will be made by Intrepid Potash, Wendover representatives and operating personnel in consultation with DAQ representatives APPENDIX A Facility Schematic Facility: Stack Identification:  33'g: Distance of Sample Level to Ground, feet Intrepid Potach, Wendover 4-5 Venturi Scrubber 15' 15' a: Distance upstream from next disturbance, feet b: Distance downstream from last disturbance, feet Salt DryerType: Number of Ports Process Type: Control Unit 2 Estimated Temperature, oF Figure 1. Facilty Schematice Representation Estimated Velocity, fpm 24.75" Venturi Scrubber  Stack Inside Diameter, inches Estimated Moisture, percent 120 2,600 a g b APPENDIX B Calibration Data METHOD 5 DRY GAS METER CALIBRATION USING CRITICAL ORIFICES 1) Select three critical orifices to calibrate the dry gas meter which bracket the expected operating range. 2) Record barometric pressure before and after calibration procedure. 3) Run at tested vacuum (from Orifice Calibration Report), for a period of time necessary to achieve a minimum total volume of 5 cubic feet. 4) Record data and information in the GREEN cells, YELLOW cells are calculated. TECHNICIAN:INITIAL FINAL AVG (Pbar) DATE:12/18/2023 METER SERIAL #:26144 BAROMETRIC PRESSURE (in Hg):25.45 25.45 25.45 IF Y VARIATION EXCEEDS 2.00%, METER PART #:Console 5 CRITICAL ORIFICE SET SERIAL #:1453S EQUIPMENT ID #:ORIFICE SHOULD BE RECALIBRATED K'TESTED TEMPERATURES °F ELAPSED FACTOR VACUUM DGM READINGS (FT3)AMBIENT DGM INLET DGM OUTLET DGM TIME (MIN)DGM DH (1)(2)(3)Y ORIFICE #RUN #(AVG)(in Hg)INITIAL FINAL NET (Vm)INITIAL FINAL INITIAL FINAL AVG q (in H2O)Vm (STD)Vcr (STD)Y VARIATION (%)DH@ 1 0.8137 10 61.712 70.918 9.206 73 99 110 85 90 96.0 8.25 2.70 7.4955 7.4023 0.988 1.536 2 0.8137 10 70.918 77.963 7.045 73 107 112 90 91 100.0 6.25 2.70 5.6950 5.6078 0.985 1.525 3 0.8137 10 77.963 92.694 14.731 73 110 115 91 94 102.5 13.00 2.70 11.8552 11.6643 0.984 1.518 AVG = 0.985 -0.08 1 0.5317 13 39.754 44.884 5.130 72 75 84 67 74 75.0 7.25 1.10 4.3210 4.2546 0.985 1.513 2 0.5317 13 44.884 53.841 8.957 72 83 95 74 81 83.3 12.50 1.10 7.4298 7.3356 0.987 1.490 3 0.5317 13 53.841 61.606 7.765 72 94 100 81 85 90.0 10.75 1.10 6.3619 6.3086 0.992 1.472 AVG = 0.988 0.17 1 0.3307 13 92.841 100.319 7.478 75 81 85 78 83 81.8 16.75 0.40 6.2076 6.0966 0.982 1.410 2 0.3307 13 100.319 110.209 9.890 75 85 94 83 88 87.5 22.00 0.40 8.1236 8.0074 0.986 1.395 3 0.3307 13 110.209 117.677 7.468 75 94 98 88 91 92.8 16.50 0.40 6.0759 6.0056 0.988 1.382 AVG = 0.985 -0.08 AVERAGE DRY GAS METER CALIBRATION FACTOR, Y = 0.986 AVERAGE DH@ = 1.471 (1)=Net volume of gas sample passed through DGM, corrected to standard conditions K1 =17.64 oR/in. Hg (English), 0.3858 oK/mm Hg (Metric) Tm =Absolute DGM avg. temperature (oR - English, oK - Metric) DH@ = 0.75 q DH Vm(std) Vcr(std) Vm (2)=Volume of gas sample passed through the critical orifice, corrected to standard conditions Tamb =Absolute ambient temperature (oR - English, oK - Metric) K' = Average K' factor from Critical Orifice Calibration REFERENCE IN OUT (3)=DGM calibration factor 32 33 32 72 73 73 203 203 202 TEMPERATURE SENSORS oF 2024 Pre-Calibration Console #5 30 19 12 Joseph Wells ENVIRONMENTAL SUPPLY COMPANY USING THE CRITICAL ORIFICES AS CALIBRATION STANDARDS: The following equations are used to calculate the standard volumes of air passed through the DGM, Vm (std), and the critical orifice, Vcr(std), and the DGM calibration factor, Y. These equations are automatically calculated in the spreadsheet above. ()2 () Type S Pitot Tube Inspection Data Date:Pitot Tube Identification: Technician: Dt=0.375 Is PA = PB ? Is 1.05 • Dt  PA & PB  1.50 • Dt ? PA = 0.479 PB =0.479 a1 < 10o a1 = o a2 < 10o a2 = o b1 < 5o b1 = o b2 < 5o b2 = o Z  0.125 in.Z = in. W W  0.03125 in.W = in. W > 3 inches W = in. Z > 3/4 inch Z = in. Y ≥ 3 inches Y = in. The pitot tube meets the specifications for a calibration factor of 0.84?Yes Reference: TemperatureSource Reference Sensor (Medium)(oF)(oF) Probe AIR 64 64 AIR 64 63 ICE WATER 33 33 BOIL WATER 204 205 SILICONE OIL Heat Check 248 Temperature Sensor Calibration 1 0 1Stack Omega CL3512A Probe Yes Yes Continuity Check Temperature TemperatureDifference (oF) 0 in. in. Yes Yes 0.002 4 0.875 3 3/4 1/16/2024 38 G M. McNamara in. 0.018 1 1 2 1 b2 b1 B A w Dt PA PB Date:1/2/24 Calibrator:Reference: Temperature Temperature Source Difference (Medium)(oF) Water 0 Water -2 Water 0 Water -2 Water 0 Water -1 Water 0 Water -2 Water 0 Water 0 Water 0 Water 0 Water 0 Water 0 Water 0 Water 0 Water 0 Water 0 Water 0 Water 0 Water 0 Water -1 Water 0 Water -1 Water 0 Water 0 Water 0 Water 0 Water 0 Water -1 Water 0 Water -1 Water 0 Water 0 Water 1 Water 0 Water 0 Water -2 Water 0 Water -1 Water 0 Water 0 Water 0 Water 0 Water 0 Water 0 Water 0 Water 0 202 33 33 Impinger Out K 33 33 203 203 33 33 Impinger Out J Impinger Out H Impinger Out I 33 203 33 203 33 203 33 203 203 201 33 G H Oven (3)33 33 203 203 Oven (4)33 203 Oven 33 33 203 203 Oven 33 33 33 203 202 Oven (3) A 201203 33 Oven (3)33 33 Oven (4) Thermocouple Location 203 201 Impinger Out F 33 33 203 203 203 203 202 203 203 33 33 Impinger Out G 203 201 Oven (3)33 203 203 33 33 203Oven (4) 203 Impinger Out D 33 33 203 203 Impinger Out E 33 34 203 203 203 33 33 203Impinger Out B Impinger Out C 33 33 203 202 202 Impinger Out A 33 33 203 Oven (3) Oven (4) TETCO Sample Box Temperature Sensor Calibration B C 203 203 33 33 33 33 203 33 33 Xuan N. Dang Omega CL3512A Unit ID Reference (oF) Sensor (oF) Temperature 33 D E Oven 33 33 203 202F Oven (4) Balance Denver Instruments, Model A-250, SN B045284 Weights Used Troemner Weight Set, SN 98-115146 Certified Weight Measured Weight Difference grams grams grams 0.1000 0.1000 0.0000 0.5000 0.5000 0.0000 1.0000 1.0000 0.0000 10.0000 10.0000 0.0000 50.0000 50.0001 -0.0001 100.0000 100.0000 0.0000 120.0000 120.0001 -0.0001 150.0000 150.0000 0.0000 Technician Michael McNamara TETCO Annual Balance Calibration Check Date 1/23/24