HomeMy WebLinkAboutDSHW-2024-005393Clean Harbors Aragonite , LLC
I 1600 orth Aptus Road
Aragonite , UT 84029
435.884.8100
www.cleanharbors.com
Submitted via FedEx #8 18154005888
March 19, 2024
Mr. Bryce Bird
Division of Air Quality (DAQ)
Department of Environmental Quality
195 orth 1950 West
P.O. Box 144880
Salt Lake City, UT 84411-4880
RE: Relative Accuracy Test Audit (RAT A)
Clean Harbors Aragonite, LLC
Title V Operating Permit 4500048004
Dear Mr. Bird,
In acco rd ance with Utah Administrative Code (UAC) R307-l 70-7, C lean Harbors Aragonite,
LLC is notifying the U tah Department of Air Quality of the upcoming Relative Accuracy Test
Audit (RAT A) schedul ed to take place May 7, 2024. Enclosed is a copy of the RA TA Plan fo r
review. A copy was also emailed to Mr. Robert Leishman Jr. via email.
In accordance with Permit Condition I.K and Utah Administrative Code R307-4 l 5-5d, I certify
under penalty of law that this document and al l attachments were prepared under my direct
s upervision in accordance with a system designed to assure that qualified personnel properly
gather and evaluate the information subm itted . Based upon my inquiry of persons or persons who
manage the system, or those persons directly responsible for gathering the informati o n submitted
is , to the best of my knowledge and belief, true , accurate and complete. I am aware that there are
significant penalties for submitting false information, including the poss ibility of imprisonment for
known vio lations.
Should you have any questions regarding this matter, please contact me at the number li sted
below.
..People and Technology Creating a Better Environment "
William Simmons
Facil ity General Manager m
Clean Harbors Aragonite, LLC
11 600 North Aptus Ro ad
PO Box 133 9
Grantsvi ll e, U tah 84029-1339
(o) 435.884.8351
(c) 870.310.6029
simmons. william@ cleanharbors.com
www.cleanharbors.com
Allf
TECHNICAL GROUP
Site Specific Test Plan
C lean Harbors Aragonite LLC
11600 N . Aptus Road
Aragon it e, UT 84029
Source to be Tested : Incinerator System (INC)
RAT A -0 2 CO2 , SO2, NOx, CO & THC
Proposed Test Date: May 7, 2024
Project No. AST-2024-1517
Prepared By
A lliance Technical Grou p, LI.:C
3683 W 2270 S, Suit
West Valley C ity , uy 84120
,:
All1aNJe Site Specific Test Plan
Test Program Summary TEC 1NICAL GnOUP
Regul ato r y In fo rm atio n
Penni/ No.
Regulatory Ci1a1ions
Source In fo rmatio n
S ource Name
Incineration Syste m
Con tact In fo rmatio n
Test Location
C lean Harbors Aragonite LLC
I I 600 . A ptu s Road
A rago nite. UT 84029
Manager, Maintenance
Cody Parks
parks.cody@ cleanharbors.com
(435) 884-8242
AST-2024-1517
Utah Department of Environmental Quality (DEQ), Divisi on of Air Quality
(DAQ) Title V Operating Permit 4500048004
40 CFR 60, Perfor mance Specifications 2, 3, 4/4A , 6, and 8A
Source ID
I C
Test Co mpany
Alliance Technical Group, LLC
3683 W 2270 S, Suite E
West Valley City, UT 84120
Project Manager
C harles Horton
charles.horton@ al I iancetg.com
(352) 663-7568
Field Team Leader
Tobias Hubbard
tobias.hubbard@a lliancetg.com
(605) 645-8562
(s ubject to change)
QA/QC Manager
Kath leen Shonk
katie.shonk@al I iancetg.com
(812) 452-4785
Test Plan/Report Coord inator
lndah Rahmadina
indah.rahmadina@alliancetg.com
C lean I !arbors -Aragonite. UT
RATA Parameters
VFR , 0 2, CO2, SO2, Ox , CO, THC
Regulatory Agency
Utah DAQ
195 Orth 1950 West
Salt Lake City, UT 84 116
Environmental Health Scientist
Rob Leishman Jr.
rlei shman@ utah.gov
( 80 I ) 536-4438
Page i
TEC N CAL GROUP
TABLE OF CO TE TS
S ue Spec ific Tes t Plan
Table of Contents
1.0 Introduction .................................................................................................................................................. 1-1
1.1 Process/Control System De sc ripti ons ...................................................................................................... 1-1
1.2 CEMS Desc ripti ons .................................................................................................................................. 1-1
1.3 Project Team ............................................................................................................................................ 1-2
I .4 Safety Requirements ................................................................................................................................ 1-2
2.0 Summary of Test Program ............................................................................................................................ 2-1
2.1 General Description ................................................................................................................................. 2-1
2.2 Proces s/Control System Parameters to be Monitored and Recorded ....................................................... 2-1
2.3 Proposed Test Schedu l e ........................................................................................................................... 2-2
2.4 Relative Accuracy Requirements ............................................................................................................. 2-2
2.5 Test Report ............................................................................................................................................... 2-3
3.0 Test ing Methodology .................................................................................................................................... 3-1
3.1 U .S. EPA Reference Test Methods I and 2 -Sampl ing/Traverse Points and Volumetric Flow Rate ..... 3-1
3.2 U.S. EPA Reference Test Method 3A -Oxygen/Carbon Dioxide ........................................................... 3-1
3.3 U.S. EPA Reference Test Method 4 -Moistu re Content... ...................................................................... 3-2
3.4 U.S. EPA Reference Test Meth od 6C -Sulfur Dioxide .......................................................................... 3-2
3.5 U .S. EPA Referen ce Test Method 7E -itrogen Oxides ........................................................................ 3-2
3.6 U .S. EPA Reference Test Method IO -Carbon Monoxide ...................................................................... 3-2
3.7 U.S. EPA Reference Test Method 25A -Total Hydrocarbons ................................................................ 3-3
3.8 U.S . EPA Reference Tes t Method 205 -Gas Dilution System Certification ........................................... 3-3
3.9 Quality Assu r ance/Quality Contro l -U.S. EPA Reference Test Methods 3A, 6C, 7E and 10 ................ 3-3
3.10 Qual i ty Ass urance/Quality Control -U .S. EPA Reference Test Method 25A ........................................ 3-4
4.0 Q uality Ass urance Program .......................................................................................................................... 4-1
4.1 Equ ipment ................................................................................................................................................ 4-1
4.2 Field Sampling ......................................................................................................................................... 4-2
LIST OF TABLES
Tab le 1-1 : Project Team ........................................................................................................................................... 1-2
Table 2-1: Program Outline and Tenta tive Test Schedule ........................................................................................ 2-2
Tabl e 2-2: Re l ative Accuracy Requirements and Limits .......................................................................................... 2-3
Table 3-1: Sou rce T esting Methodology .................................................................................................................. 3-1
LI ST OF APPE DICES
Appendix A Meth od I Data
Appendix B Example Field Data Sheets
AST-2024 -15 I 7 Clean Harbors -A ragon lie, UT Page 11
f;! All1ar ....
TECIINICAL GROUP
1.0 Introduction
Site Spec ific Tesr Plan
lntrod11 ctron
A lliance Tech nica l Group, LLC (Alliance) was retained by C l ean Harbors Aragoni te, LLC (C lean Harbors) to
conduct performance speci fi cation (PS) te st ing at the Aragoni te, Utah facil ity. Porti ons of the facility are subject t o
provisi ons of 40 CFR 60, Appendix B , PS 2, 3, 4A and 8A and th e U tah Department of Environmental Quality
(UDEQ) Title V Operat ion Perm it o. 4500048004. Test ing will include co nducti ng a relative acc uracy te st audits
(RATA) to determine the relative accuracy (RA) of the oxygen (0 2), carbon dioxide (CO2), sulfur dioxide (SO 2),
nitrogen oxides ( Ox), carbon monox ide (CO) and total hydrocarbons (THC) primary, secon dary and backup
conti nu ous em iss ions monitoring systems (CEMS) and the volumetric flow rate (VFR) conti nuous emissions rate
monitoring system (CERMS) serving to monitor emi ss ion s from the incineration sys tem (I C). The RAT As w ill be
conducted to demonst rate com pliance w ith th e UDEQ Permit and 40 CFR 60, Append i x B , PS 2, 3, 4/4A , 6 and 8A.
This si te-specific test plan (SS TP) has been prepared to address the notification and testing requirements of the
U DEQ permit.
1.1 Process/Control System Description s
The permitted so urce i s a com mercial hazardous waste treatment, storage, and d i sposa l fac i lity (TSDF). Hazardous
waste is rece ived from various sou rces including refineries, chemical manufacturing plants, and co ke by-product
r ecovery plants. T he off-site material man agement unit at th e source in clu des sixteen liquid waste storage and
blending tanks, two sludge tanks, three bul k so lids ta nks, and several con tainer manageme nt buildings. Waste from
th e off-site material management unit is treated in an incinerator which in cludes primary and seco nd ary cham bers.
The incinerator control sys tem includes a spray dryer, carbon injection, baghouse, saturater, and we t sc rubber.
1.2 CEMS Descriptions
CEMS #I (Primarv)
Parameter: c o I CO2 SO2 I 0 2 NOx THC
Make: Se rvo mex Servomex T hermo Thermo
Model: 4900 4900 42i -HL 51 i-TH
Seria l No.: 653204 4021 06 14216782 1434964304
Soan : 0-200 ppm (low) I 0-20% 0-500 ppm I 0-25 % 0-1 ,000 ppm 0-1 00 ppm
CEMS #2 (Secondary)
Param eter: co I CO2 SO2 I 0 2 NOx T HC
Make: Servomex Servomex Thermo Therm o
Model: 4900 4900 42i-HL 51i-TH
Se ri al No.: 653305 4022 06142 16783 1203299856
Soa n: 0-200 oom (low) I 0-20% 0-500 oom I 0-25 % 0-1,000 oom 0-100 oom
CEMS #3 (Backup -#2 S pare)
Param eter: c o I CO2 SO2 I 02 NOx THC
Make: Servomex Servomex Thermo T hermo
Model: 4900 4900 42i-HL 5 1i-T H
Serial No.: 653205 652525 0836633949 1203299855
Soan: 0-200 oom (low) I 0-20 % 0-500 oom I 0-25 % 0-1,000 oom 0-1 00 oom
AST-2024-15 I 7 Clean Harbors -Aragonite. UT Page 1-1
f: All1a,-....
TECHNICAL GROUP
VF R FT2 195
Para meter: Flo w Ra te
Make: Rosemount
Model: 3051
Seri a l No.: 03606 1752
Span: --
1.3 Project T eam
Si1e Specific Tes/ Plan
/n1roducrion
Personnel planned to be involved in this project are identified in the following table.
Ta b le 1-1 : Project Tea m
Clea n Ha rb ors Pe rsonnel Cody Parks
Regulatory Agency Rob Leishman Jr. -UDAQ
Allian c e Pe rsonnel Tobias Hubbard
other field personne l assigned at time of testing event
1.4 Safety Require me nts
Testing personnel will have current OSHA or MSHA safety training and be equi pped with hard hats, safety g lasses
with side shields, steel-toed safety shoes, hearing protection, fire resistant cloth ing, and fa ll protection (i n c luding
shock corded lanyards and full -body h arnesses). Alliance personne l will conduct themse lves in a manner con s istent
with Cl ient and All iance 's safety po licies.
A Job Safety Analysis (JSA) will be completed dai ly by the Alliance Field Team Leader.
AST-2024-1517 Clean Harbors -Aragonite. UT Page 1-2
Allf
TECr-iNICAL GnOUP
2.0 S ummary of Test Progra m
Site Specific Tesr Plan
S ummary of Test Programs
To sati sfy the requirements of the U DEQ permit, the facility wi ll conduct this performance test program to
determine the RA of the 0 2, CO2, SO 2, NOx, CO and THC primary , secondary , and backup CEMS and th e VFR
CERMS serving to monitor emissions from the INC.
2.1 General Des c riptio n
All te sting will be performed in accordance with specifications st ipulated in U.S. EPA Reference Test Methods I , 2,
3A, 4, 6C, 7E , 10, and 25A. Table 2-1 presents an outline and tentative schedule for the emis sions testing program.
The following is a summary of the test objec ti ves.
• Em i ssions testing will be conducted at the control sy stem exhaust stack for the incinerati on unit.
• The RAT A of the primary, secondary and backup C EMS will be conducted simultaneo usly wh i le the
source is operating at a normal representative load.
• PS 2, 3, 4A, 6, and 8A will be used to determine th e RA of the CEMS .
• A m inimum of nine (9), 21 -m inute te st runs will be conducted to measure emi ssion co ncen trati ons of 0 2,
CO2, SO2, Ox, CO and THC. Concurrently measured vo lumetric fl ow rate (VFR) wi ll be used to ca lculate
Ox mass emission rates in units of pou nd s per hour (lb/hr). Stack gas ve loc ity traverses w ill be co nducted
once per test run. A moisture (BWS) sampling period will span I to 3 or more te st runs.
• Emissions for each analyte will be reported as fo llows -0 2 and CO2 -o/ovd ; SO 2 -ppmvd , ppmvd @ 7%
0 2; NOx -ppmvd, lb/hr; CO -ppmvd , ppm vd @ 7% 0 2; THC -ppmvw, ppmvd @ 7% 0 2. and VFR -
actua l cubi c feet per minute (acfm).
• Due to observed fluctuations in the diluent and pol l utant conce ntrat ions , a stratificat i on check may not be
conducted for the test program , as waived in 2017 by U DAQ. Sam pli ng wi ll be cond ucted from a sing l e
samp le point for Methods 3A, 4, 7E, IO and 25A.
• Bias and drift che cks may be conducted after every three (3), 2 1-minute test run s in accordance with
Method 7E, Secti on 8.5
• If necessary , to calculate a CEMS RA, an emission standard will be back ca lculated from the conce ntration
or mass emiss ion rate limi t using the average reference method measurements for 0 2, moisture (H 2O)
and/o r volumetric fl ow rate.
2.2 Process/Control System Parameters to be Monitored and Recorded
Plant pe rso nn el w ill collect operational and parametric data at least once every 15 minutes during the tes ting. The
following list identifies the measurements, observat ion s and records that w ill be collected during the testing
program:
• 0 2 I CO2 -% d ry
• SO2 -ppmvd , ppmvd @ 7% 0 2
• Ox -ppmvd, lb/hr
• CO -ppmvd, ppmvd @ 7% 02
• THC -ppmvw, ppmvd @ 7% 0 2
• VFR -acfrn
A ST -2024-15 17 C lea n Harbo rs -Arago n Ile, UT Page 2-1
All~nce
TECHNICAL GnOUP
2.3 Proposed Test Sc hed ul e
Table 2-1 presents an outline and tentative schedule for the emi ss ion s testi ng prog ram.
Table 2-1: Prog ra m Out lin e and Tentat ive Test Sch ed ul e
Sue Specific Test Plan
Summa,y of Test Programs
Testing Location Parameter US EPA Method No. of Runs Run Duration Est. Onsite
Time
DAY I -May 6, 2024
Eq uipment Setup & Prete st QA /QC Checks 6 hr
DAY 2 -May 7, 2024
YFR 1-2 9-12 -5 min
BWS 4 3-4 63 min
Incineration System
Od CO2 3A Stack
SO2 6C I O hr
Primary, Secondary NOx 7E 9-12 21 min
& Backup CEMS co 10
THC 25 A
DAY 3 -May 8, 2024
Finish RAT A Testing (if needed)
DAY 4 -May 9, 2024
Contingency Day (if needed)
2.4 Relative Accuracy Requ ire ments
T he required RA for each CEMS is listed in Table 2-2. RA w i ll be determined by using either the mean reference
method (RM) or applicable so urce standard (AS). If neces sary , to calculate a CEMS RA, an emiss ion standard will
be back calculated from the concentrati on or mas s emission rate limit using the average referen ce method
meas urements for 0 2• BWS an d/or VF R.
AST-2024-1517 Clean Harbors -Aragon11e, UT Page 2-2
Source CEM S
VFR
0 2
CO2
Incin erator SO2 Sys tem
1Ox
co
THC
2.5 T est Report
Ta bl e 2-2: Re lative Acc uracy Requirem ents a nd Li mits
Required Relative Applicable Standard /
Accuracv Limit
:520 %(RM) --
:S20%(RM)OR ± I %02 --
:S20%(RM)OR ± 1 %CO2 --
:520 % (R M) or :S 10 % (AS) 91 ppmvd @ 7% 0 2
:520 % (RM) or :SI 0 % (AS) 44.2 lb/hr
±10 % (R M ) or ±5 % (AS) I 00 ppmvd @ 7% 0 2
:520 % (RM) or :S I 0 % (AS) 10 ppmvd @ 7% 0 2
Sae Specific Test Plan
S11mmary o.fTest Programs
Citation
60, A ppendix B , PS 6
60, A pp endix B, PS 3
60, Append ix B, PS 3
60, Appen d ix B , PS 2
60, A ppen d ix B , PS 2
60, A ppend ix B, PS 4A
60, A ppendi x B , PS 8A
The final test report must be sub mitted with in 60 days of t he completion of the perfom1ance test and wi ll include th e
fo llowing information.
• lnirodu cti on -Brief discuss i on of project scope of work an d act ivities.
• Results and Disc ussion -A summary of tes t resu lts and process/contro l sys tem operat ional data wit h
comparison to regu latory requi re ments or vend or guaran tees along w ith a descri pti on of process con ditions
and/or tes ting devi at ions that may have affected the tes ting res u lt s.
• Methodology -A desc r ipt ion of the sam pl ing and analytica l m eth odo logies.
• Sample CalculaJions -Exampl e calc ulations for eac h target param eter.
• Field Data -Copies of actual handw r itten or el ec t ro ni c field data shee ts.
• Quality Conirol Data -Copies of all i nstrument calibration data and/or calibrat i on gas certificates.
• Pr ocess Operating Co ntrol System Data -Process operat ing and con trol syste m data (as prov ided by C l ean
H ar bo rs) to support t he t est results.
AST-2024-15 l 7 Clean Harbors -Aragonne, UT Page 2-3
3.0 Testing Methodology
Sae Specific Test Plan
Testing Methodology
This section provides a description of the sampling and analytical procedures for each test method that will be
employed during the test program. A ll equ i pment, procedures and qua lity assurance measures necessary for the
completion of the test program meet or exceed the specificati ons of each relevant test method. The emission testing
progra m will be co nducted in accordance with the test methods listed in Table 3-1.
Table 3-l : Source Testing Methodology
Parameter U.S. EPA Reference Notes/Remarks Test Methods
Volumetric Flow Rate 1&2 Fu ll Velocity Traverses
Oxygen I Carbon D i ox ide 3A Instrumental Analysis
Moisture Content 4 Gravimetric Analysis
Sulfur Dioxide 6C Instrumental Analysi s
Nitrogen Oxides 7E Instrumental Analysis
Ca rbon Monoxide 10 In strumental Analysi s
Total Hydrocar bo ns 25A In strumental Analysi s
Gas Dilution System Cert ifica tion 205 --
All stack diameters, depths, widths, upstream and downstream disturbance distances and nipple lengths will be
measured on site with an EPA Method I ve r ification measurement provided by the Field Team Leader. These
measurements will be included in th e test report.
3.1 .S. E PA Reference Test Methods land 2 -Sa mplin g/Traverse Po ints and Volumetric Flow Rate
The sampling location and number of traverse (sam pli ng) points will be se lected in accordance with U.S . EPA
Reference T est Method I. To determine the minimum number of traverse points, the upstream and downstream
distances will be equated into equivalent diameters and compared to Figure 1-2 in U.S. EPA Reference Test Method
I.
Full veloci ty traverses will be conducted in accordance with U.S. EPA Reference Test Method 2 to determine th e
average stack gas ve locity pressure, st atic pressure and temperature. The velocity and static pressure measurement
sys tem will consist of a pitot t ube and inclined manometer. The stack gas temperature will be measured with a K-
ty pe thermocouple and pyrometer.
T he relative accuracy of the CERMS wi ll be determined based on procedures found in 40 CFR 60 , Pe r for mance
Specification 6.
3.2 U.S. E PA Referen ce Test Method 3A -Oxygen/Carbon Dioxide
The oxygen (02) and carbon dioxide (CO2) testin g will be conducted in accordance with U.S . EPA Reference Test
Method 3A. Data will be collected on line and rep orted in one-minute averages. The samp ling system will consist
of a sta inless steel probe, Teflon sample l ine(s), gas conditioni ng sy stem and the identified gas ana lyzer. The gas
co nditioning sys tem will be a non-contact condense r used to remove moisture from the stack gas. If an unheated
Te flon sample line i s used, then a portable non -contact condenser will be placed in the system directly after the
AST-2024-1517 Clean Harbors -Aragonite, UT Page 3-1
Sue Specific Test Plan
Testing Methodolo gy
probe. Otherwise, a heated Teflon sample line will be used. The quality control measure s are described in Section
3.9.
The r elative accuracy o f the 0 2 and CO2 CEMS wi ll be determined based on procedures found in 40 CFR 60,
Appendix B , Performance Specification 3.
3.3 U.S. EPA Reference Test Method 4 -Moisture Content
The stack gas moistu re content will be determined in accordance with U.S. EPA Reference Test Method 4. The gas
co ndition ing train wi ll consist of a ser i es of chilled impingers. Prior to testing, each impinger will be filled with a
known quantity of water or silica gel. Each impinger will be anal yzed grav imetrically before and after each test run
on the same anal ytical balan ce to determine the amount of moisture co nd ensed.
3.4 U.S. EPA Reference Test Method 6C -Sulfur Dioxide
The su lfur dioxide (SO2) te sting wi ll be conducted in accordan ce with U.S. EPA Reference Test Method 6C. Data
will be collected on line and reported in one -minute averages . Th e sam pling system will consist of a heated stai nl ess
steel probe, Te flon sample line(s), gas condit ioning system and the identified analyzer. T he gas condition in g system
will be a non-contact condenser used to remove moi stu re from the source gas. If an unheated Teflon sample l ine i s
used , then a portable non-co ntact conden ser will be placed in the sys tem direc tly after the probe. Otherwi se , a
heated Teflon sample line will be used . The quality contro l measures are described in Section 3.9 .
The relati ve accuracy of the SO 2 CEMS will be det erm ined based on procedures fo und in 40 C FR 60, Appendix B,
Performance Specification 2.
3.5 U.S. EPA Reference Test Method 7E -Nitrogen Oxides
The nitrogen oxides ( Ox) testin g will be cond ucted in accordance w ith U.S. EPA Reference Test Method 7E . Data
will be collected on line and reported in one-minute average s. T he sa mpling sys tem will consist of a stainless steel
probe, Teflon sample line(s), gas conditionin g system and the identified gas analyzer. T he gas conditioning sy stem
wi ll be a non-contact condense r used to remove moisture from the stac k gas. If an unheated Teflon sa mple line is
used , then a portable non-contact conden ser w ill be placed in the sys tem directly after the probe. Otherwise, a
heated Tefl o n sample l i ne will be used. T he quality con trol measures are described in Section 3.9.
The rela t ive accuracy o f the Ox CEMS will be determined based on proce dures found in 40 CFR 60, Appendix B,
Performance Specification 2.
3.6 U.S. EPA Reference Test Method IO -Carbon Monoxide
The carbon monox ide (CO) testing w ill be conducted in accordan ce w ith U.S. EPA Reference Test Method 10.
Data will be collected on line and reported in one-minute average s. T he sa mpling system will consi st of a stainle ss
steel probe , Teflon sample line(s), gas condi ti on ing system , and the i dentified gas analyzer. The gas conditioning
system will be a non-contac t condenser used to rem ove mo i sture from th e gas. If an unheated Teflon sample line is
used, then a portable non-contact condenser will be placed in the sys tem directly after the probe. Otherwise, a
heated Teflo n sample line w ill be used. The quality co ntrol measures are desc ribed in Secti on 3.9.
T he rel ative accuracy of the CO CEMS will be determined based on procedures fo und in 40 CFR 60, Appendix B,
Performance Specification 4/4A.
A ST-2024 -15 I 7 Clean Harbors -Aragonit e. UT Page 3-2
J i All1arrce
TEC .. N ICAL GROUP
3.7 U.S. E PA Reference Test Method 25A -Tot al H ydrocarbons
S11e Specific Test Plan
Testing Methodology
The total hydrocarbons (TH C) testing will be conducted in accordance with U.S. EPA Reference Test Method 25A.
Data will be collected online and reported in one-minute averages. The sampling system will consist of a stainless steel
probe, heated Teflon samp le l ine(s) and the identified gas analyzer. The quality co ntrol measures are described in
Section 3.10.
The relative accuracy of the THC CEMS will be determined based on procedures found in 40 CFR 60 , Performance
Specification 8A.
3.8 U.S. EPA Reference Test Method 205-Gas Dilutio n System Certificatio n
A calibration gas dilution system field check will be conducted in accordance with U .S. EPA Reference Meth od
205. An initial three (3 ) point ca libration will be conducted, using individual Protocol I gases, on the ana l yzer used
to complete the dilution system field check . Multiple dilution rates and total gas fl ow rates will be utilized to force
the dilution system to perform two dilutions on each mass flow controller . The diluted calibration gases will be sent
directly to the analyzer, and the analyzer re sponse recorded in an electronic field data sheet. The analyzer response
must agree within 2% of the actual diluted gas concentrati on. A second Protocol I ca l ibration gas , with a cylinder
concentrati on within I 0% of one of the gas divider setti ngs described above, will be introduced directly to the
analyzer, and the ana lyzer response recorded in an electron ic field data shee t. The cyl inder concentration and the
analyzer response must agree within 2%. These steps will be repeated three (3) times.
3.9 Q ua li ty Assu ran ce/Qu a lity C ontrol -U.S. EPA Reference Test Methods 3A, 6 C, 7E and I 0
Cyl inder ca libration gases will meet EPA Protocol I (+/-2%) standard s. Copies of all ca libration gas certificates
w ill be i ncluded in th e Quality Assurance/Quality Control Appendix of the report.
Low Level gas will be introduced di rectl y to the analyzer. After adjust ing the analyzer to th e Low-Level gas
concentration and once th e analyzer reading is stable, the analyzer value will be recorded. T his process will be
repeated for the High-Level gas. For the Calibrat ion Error Test, Low, Mid, and High-Level ca l ibration gases w i ll be
seq uentially introduced directly to the analyzer. The Ca libration Error for each gas must be within 2.0 percen t of the
Ca l ibration Span or 0.5 ppmv/% abso lute difference.
High or Mid-Level gas (whichever is closer to the stack gas conce ntrati on) will be introduced at the probe and the
time required for the analyzer reading to reach 95 percent or 0.5 ppm/% (whichever was less restrictive) of the gas
concentration will be recorded. The analyzer reading will be observed until it reaches a stab le value, and this va lue
will be recorded. Next, Low-Level gas will be introduced at the probe and the time required for t he analyzer reading
to decrease to a value within 5.0 percent or 0.5 ppm/% (whichever was less restrictive ) will be recorded. 1 fthe Low-
Level gas is zero gas, the acceptable response must be 5.0 percent of the upscale gas concentration or 0.5 ppm/%
(whichever was l ess restrictive). The analyzer reading will be observed until it r eaches a stable value, and this value
will be recorded. T he measurement system response time and initial sys tem bias will be determined from these data.
The System Bias for each gas must be w ithin 5.0 percent of the Cal ibration Span or 0.5 ppmv/% ab sol ute difference.
High or M id-Level gas (whichever is closer to the stack gas concentrati on) will be introduced at the probe. After the
analyzer response is stab le, the value will be recorded . N ext, Low-Level gas will be introduced at the probe, and the
analyzer value will be recorded once it reaches a stable response. T he System Bias for eac h gas must be within 5.0
percent of the Ca libration Span or 0.5 ppmv/% absolute difference or the data i s inva lidated , and the Calibration
Error Test and System Bias must be repeated.
AST-2024-1 5 I 7 Clean Harbors -Aragon,te. UT Page 3-3
S11e Specific Tesr Plan
Tesrmg Merhodology
T he Drift between pre-and post-run System Bias mu st be w ithin 3 percent of the Ca libration Span or 0.5 ppm v/%
absolute difference or the Calibration Error T est and System Bias must be repeat ed .
To determine th e number of samp ling points , a gas stratificati on check will be conducted prior to initiating te st ing.
T he pollutant concentrations wi ll be measured at twelve traverse points (as described in Method I ) or three po ints
( 16.7, 50.0 and 83.3 percent of the measurement line). Each traverse point will be sampled for a minimum of twice
the system response time.
If the pollutant concentrati on at each traverse point do not differ more than 5% or 0.5 ppm/0.3% (whichever is less
restrictive) of the average pollutant co ncentration , then single point sampl ing w ill be conducted during th e test runs.
If the pollutant concent rati on does not meet these spec ifications but differs less than I 0% or 1.0 ppm/0.5% from th e
average concentrati on, then three (3) point sampling will be con du cted (s tacks less th an 7.8 feet in diameter -16.7,
50.0 and 83.3 percent of the measurement line; stack s greater than 7.8 feet in diameter -0.4, 1.0 , and 2 .0 meters
from the stack wall). I f the pollutant concentrati on differs by more than I 0% or 1.0 ppm/0.5% from the average
concentration, then samp ling will be conducted at a minimum of twelve ( 12) traverse points. Copies of stratification
check data will be included in the Quality Assurance/Quality Contro l Appendix of the report.
An 0 2 -0 converter check will be performed on the analyzer prior to initiating te sting o r at the completion of
te sting. An approximately 50 ppm nitrogen dioxide cylinder gas will be introduced directl y to the NOx analyzer and
the instrument response will be r ecorded in an electronic data sheet. T he instrument response mu st be within +/-I 0
per ce nt of the cylinder concentration.
A Data Acquis ition System with battery backup will be used to record the instrument response in one (I) minute
averages. The data will be contin uous ly stored as a * .CSV file in Excel format o n the hard drive of a computer. At
the comp letion of testing, the data will also be saved to the Alliance server. Al l data will be rev iewed by the Field
Team Leader before leaving the facility. Once arriving at All iance's office, all written and electronic data will be
relinqui shed to th e report coordinator and then a final review will be pe rformed by the Project Manager.
3.10 Quality Ass urance/Quali ty Control -U.S. EPA Referen ce Test Method 25A
Cylinder calibrati on gases will meet EPA Protoco l I (+/-2%) standards. Copies of all calibration gas ce rtificates
wi ll be inc luded in the Qual i ty Assurance/Quality Control Appendix of the report.
Within two (2) hours prior to testing, zero gas will be introduced through the sampling system to the analyzer. After
adjusting the analyzer to t he Zero gas concentrat ion and once th e analyzer reading is stable, the ana lyzer va lue will
be reco rded . This process will be repeated for the High-Level gas, and the time required for the analyzer reading to
reach 95 percent of the gas concentration will be recorded to determine the response time. ext, Low and M id-
Level gases will be introduced through the sampling system to the analyzer, and the re sponse will be recorded when
it is stable . All values must be less than +/-5 percent of the ca libration gas conce ntrations.
Mid-Level gas will be introduced through the sampli ng system. After t he anal yzer r esponse is stable, the va l ue w ill
be recorded . ext, Zero gas will be introduced through the sampling system, and the analyzer value recorded once
it reaches a stable re sponse. T he Anal yzer Drift must be less than +/-3 percent of the spa n value.
AST-2024-151 7 Clean Harbors -Aragonue. UT Page 3-4
~
Alli
TEC H N I CAL GROUP Sue Specific Test Plan
Testing Methodology
A Data Acq uisition System with battery back up will be used to record the instrument response in one (I) minute
averages. T he data will be continuously stored as a • .CSV file in Excel format o n the hard drive of a co mputer. A t
th e com pleti on of testing, the data will also be saved to the Alliance serve r. A ll data will be reviewed by the Field
Tea m Leade r before leaving the facil ity. Once arriving at All iance 's office, all written and el ectro nic data will be
relinqui shed to the report coo r dinator and then a final review will be performed by the Project Manage r.
AST -2024-1517 Clean Ha rbors -Aragonue. UT Page 3-5
4.0 Quality Assurance Program
SIie Spec ific Te s1 Plan
Q 11a/,ry Assurance Progr a m
Alliance fo llows the pro cedures out l i ned in th e Qual i ty Ass urance/Qual i ty Control Manage ment Plan to en sure t he
conti nuous producti on of usefu l and va lid da ta throughout the course o f this te st program . T he QC check s an d
procedures desc ribed in thi s sec ti on re prese nt an integra l pa rt of the overall sampl i ng and analyti ca l scheme.
Adherence to prescr i bed proced ures i s qu ite often th e mos t app l i ca bl e QC chec k .
4.1 Equipment
Fi eld test equ ipmen t is ass igned a un ique, per ma nent iden t ification num ber. Pr ior to mobil i zing for the test
pr ogram , equipment i s in spected befor e be ing packed to detect eq uipment problem s pri or to arriving on site. This
mi nimizes l os t time on the job si te due to eq uipment fa i l ure. Occasi onal equi pm ent fai l ure i n the fiel d i s
unav oidable despi te the most rigorous insp ection and maintenance procedures. T herefor e, repl ace men ts for cr iti cal
equipment or componen t s are brought to the job site. Equipment return i ng from the fiel d is inspected before it i s
return ed to storage. During the co urse of these i nspections, i t ems ar e cleaned, repaired, recond it ioned and
reca l i brated w here necess ary.
Cal i brations are cond ucted in a m ann er , and at a fre qu ency , wh ich meets or exceeds U.S. EPA specificati ons. T he
ca librati o n proce dures outlined in the U.S. EPA M eth ods, and thos e recommended within th e Qu al ity Ass urance
Han dbook for A ir Po llution Measurement Systems: Volume Ill (EPA -600 /R-94/038c, Sept ember 1994 ) ar e ut ilized .
When these meth ods ar e inappl icable, meth ods such as th ose prescr ibed by t he A merican Soc iety fo r Tes tin g and
Materials (ASTM) o r other nationally r ecogni ze d agency may be use d. Data ob tained during ca librati ons is chec ked
fo r com pl eteness an d acc uracy. Cop ies of ca librat i on fo rm s are i nclud ed in th e report.
T he fo llow ing secti ons elabor ate o n t he ca l ibrat ion procedu res followed by A lliance for th es e items of equipment.
• Dry Gas Met er and Ori fice . A full mete r ca l ibrati on usi ng cr iti ca l orifices as the ca libration standard is
co nducted at leas t semi -annua lly , mor e freque ntly i f requ ired. T he meter ca libratio n procedure de term ines
the me ter co rrect ion factor (Y) and the meter 's o ri fice pressure di fferen tial (l'iH@). A lliance uses approved
A l te rn ative Met hod 009 as a post-test calibrati on check to ens ure th at th e co rrection fac tor has not changed
mo re t han 5% si nce the last f ull meter ca libration. T his check is per formed after each test series.
• Pitot Tubes and Manometers. T y pe-S pi tot tube s that meet th e geometric crit eri a r equ ired by U.S. EPA
Reference Test Meth od 2 are assigned a coe ffici ent of 0 .84 unless a speci fi c coe fficient has been
det ermined from a win d tunn el ca libration. lf a spec i fic coeffici ent from a w ind tu nn el ca libra ti on has been
obta ined th at coefficient will be used in lieu of 0.84 . Standard pi to t tubes that mee t th e geometri c cri teria
required by U.S. EPA Referen ce T est Meth od 2 are as sig ned a coeffic ient of 0.99. A ny pi to t tub es not
meet ing the appropri at e geometric cr ite r ia are d isca rded and repl ace d. Manometers ar e ve rified to be leve l
and ze roed prior to each t est run and do not r equ ire fu rth er ca librat i on.
• T em perature Measurin g Devices . A ll th erm ocouple senso rs mounted in D ry Gas Meter Consoles are
calibrat ed semi -annu ally with a !ST-traceable th erm oco upl e ca l i brator (t emperature si mul ator) an d
verified during field use using a second NIST-traceabl e meter. !ST-traceabl e th erm ocouple calibrators
are ca l i brate d an nually by an outsi de labora tory.
• ozzles. ozz l es are measured three (3) t imes pri or to init iating sampl ing w ith a ca liper. The max i mum
difference between any two (2) dimen sions is 0.004 i n.
• D i gital Ca lipers . Cal ipers ar e cal ibrated annua lly by Allian ce by using gage bl ock s tha t are ca librated
ann ua lly by an outside laboratory .
AST-2024-15 1 7 Cl ean Harbors -Aragonue. UT Page 4-1
,:::;:-
Alli
TECHNICAL GROUP Su e Specific Tesr Plan
Qual,ry Assurance Program
• Barometer. The barometric pressure is obtained from a nationally recogn i zed agency or a ca l ibrated
barometer. Calibrated barometers are checked prior to each field trip against a mercury barometer. T he
barometer is acceptable if the values agree w ithin ± 2 percent absolute. Barometers not mee ting this
requirement are adjusted or taken out of service.
• Balances and Weights. Balances are calibrated annually by an outside laboratory. A functional check is
conducted on the balance each day it is use in the field using a calibration weight. Weights are re-certified
every two (2 ) years by an outside laboratory or internally. If conducted internally, they are weighed on a
1ST traceab le balance. If the weight does not meet the expected cri ter ia, they are replaced.
• Other Equipment. A mass flow controller calibration is conducted on eac h Environics sys tem annually
fol lowing the procedures in the Manufacturer's Operation manual. A methane/ethane penetration factor
check is con ducted on the total hydrocarbon anal yzers equipped with non-methane cutter s every six (6)
months following the procedures in 40 CFR 60, Subpart JJJJ. Other equipment such as probes, umb i lical
l ines, co ld boxes, etc. are routinely maintained and inspected to ensure that they are in good working order.
They are repaired or replaced as needed.
4.2 Field Samp ling
Field sampling will be done in accordance with the Standard Operating Proced ures (SOP) for the applicable test
method(s). General QC measures for the test program include:
• Cleaned glassware and sample train components will be sealed until assembly.
• Sample trains will be l eak checked before and after each test run.
• Appropriate probe, filter and impinger temperatures will be maintained.
• The sampling port will be sealed to prevent air from leaking from the port.
• Dry gas meter, t.P, t.H, temperature and pump vacuum data wi ll be recorded during each sample point.
• An isokinetic sampling rate of 90-1 10% will be maintained, as appl icab l e.
• All raw data will be maintained in organized manner.
• All raw data will be reviewed on a daily basis for completeness and acceptab ility.
A ST-2024-1 5 17 Clean Harbors -Aragonite. UT Page 4-2
Appendix .\
~ ;-
Al I ia nce
"' II
12
L
l.on1ion Otlltl Harbon Ara,:onilt LLC • An:,>rutc:, UT
Sourn l.nclfltn11o r S ~i l ffll (IN (l
Duel O n C":n lalkm:
Duct Deiutn:
Di.Uffl(t" from Far Wall 10 Ou1.,idC' of Pon:
IH
Kl •
• •
N11}f•k l.t1tteth:
Orp1h MOuc.c:
Crou Stchon.1111 Arn o( Dua:
No. or Tttl Porb :
Oolan<'tA:
ou:,anc, A Ourt t>iamtttr,:
Dl51anc't B:
Di.nana 8 Dun Dlamtrt•r,:
Actual Nwnixr or T ran nc-Pou ll.t.:
• •
' 67
!.S 0
7HI
9'1
Cross Scc1 O\JI Art~
•
•
•
•
•
•
• •
Me thod 1 Data
Hon,.001al
Ctrcul:u
67.50 in
7 50 in
60 00 i n
Jq6J n' ,. ... ,. 1/l~I
600 fl
12 0 (mmt b«->0.5)
500 fl
100 (mw.t bf'>l )
16
. ., ___ ,,_,,_.,.,,_.,., .
l -----· ._ ...
...l--~·----•t•--, . . . .
ClRCULAR DUCT
LOCATI ON OF TRAVERSE POINT S
t-'uMbu oftr111w,.i puUtb ,.,. • diaffld«
" IH
296
71);
85 '
916
• •
12
lfl(
19 •
\l'
677
KOO .. ,. ....
51..._i. Diag.un
A • t,Of\_
s • son
l)q)th of Duct 6(t Ill
• •
10
2 6
•i
IH
ll 6
"2
6H
n,
XH
91 X
97'
A
B
II ll
" 67
II 8
17 7
2!i 0
'56
6H
710
~2' .. ,
91'
979
Oownsh it.am
O,st urb•nce
Upsll'eam
Disturbance
Ois1anct Ut.Jlan<c:
TraurM" ......
from imidt: fro m
Point Dlamttt.r
1ull
outa:kkof
I '2 192 9 ;2
2 10 5 630 ll80
J 19 • 116' 191.&
' Jll 1938 26 ..
~ 677 4062 .&3 12
6 K06 48_16 s, 86
7 895 .SJ 70 61 20
• .,. . '"°" M.SS • ---
Ill ---
II ---
" ---
Appendix B
All~ ... -----S02 Summary
TECHN CAL GROUP
L o cation: ________________________________________ _
ource: -----------------------------------------Pro j e c I No.: ________________________________________ _
Referen ce Method CEMS Average
Run Time
No. Dare SO2 Concenlralion SO2 Concentration Difference
Start End ppmvd ppmvd ppmvd
I ----
2 ----
3 ----
➔ ---
5 ---
6 ----
7 ----
8 ----
9 ----
10 ----
II ----
12 ----
Average
Standard Dev1auon (Sd)
Applicable Source Standard (AS)
Confidence Coefficient (CC)
Relative Accuracy (RA ) -
Performance Required -Mean Reference M ethod RA '.S.20%
Performance Specification M ethod PS 2
Confiden ce Coefficient. CC
CC = I tfas x Sdl
where.
~,971 __ #_N_/_A __ = degrees offre~dom value
n 0 = number of runs selec ted for calculating the RA
Sd = standard deviatton of di fference
CC = confidence coefficient
Rclath·e Accuracy, RA
RA
Id I+ !CCI
AS or RM x lOO
where.
d _____ = average difference of Reference M ethod and CE MS
CC = confidence coetlic,ent
RM = referen ce method, ppm vd
RA = relative accuracy. %
All~ S02 Summary
TECHN CAL GROUP
Location: Source: ________________________________________ _
Project No.: ________________________________________ _
Time Reference Method C EMS Average Run
No. Date S02 Concentration S02 Concentration Difference
Start End ppmvd (jiJ 7 % 02 ppmvd @7 %02 ppmvd (ji) 7 % 02
I ----
2 ---
3 ----
4 ----
5 ----
6 ----
7 ----
8 ---
9 ----
10 ----
II --
12 ----
A verage
Standard Dev ia t ion (Sd)
Applicabl e Source Standard (AS)
Confidence Coefficient (C C)
Relative Accura cy (RA) -
Performance Required -Mean Reference Method RA ~ 20"/o
Performance Specification Method PS 2
Confidence Co efficient. CC
cc I t°Jt X Sdl
where.
t.i 9,. __ #_N_i_A __ = degrees of freedom value
n O = number of runs selected for calculatmg the RA
Sd = standard deviation of difference
CC = confidence coefficient
Rela tive Acc uracy. RA
RA I d I+ ICCI
AS or RM x l OO
where.
d _____ = average d1tlerence of Reference Method and CEMS
CC = confidence coefficient
RM = reference method. ppmvd @ 7 % 02
RA = relative accuracy,%
All~-.ce NOx Summary
TECHN CAL GROUP
Location: ________________________________________ _
ource: ________________________________________ _
Project ,'!o.: ________________________________________ _
Refer ence 1',,l eth od CE MS Average Run Time
No.
Date NOx Concen t ration NOx C oncentration Difference
Start E nd ppnwd pprnvd pprnvd
1 .. ..
2 .. ..
3 -..
4 .. ..
5 .. ..
6 .. ..
7 .. ..
8 .. ..
9 .. ..
10 .. ..
11 .. ..
12 .. ..
Average
Standard Deviation (Sd)
Applicable Source Standard (AS)
Confidence Coefficient (CC)
Relative Accuracy (RA) .
Performance Required • M ean Re ference Meth od RA <20%
Performance Specification Method PS 2
Confidence Coe fficient, CC
CC = I t7ns x Sd l
where,
~,.75 __ #_N_/A __ =degrees of freedom value
n O = number of runs se lected for calculating the RA
Sd = standard deviauon o f difference
CC = confidence coemc,ent
Rel ative ccuracy. RA
RA =
Id I+ ICC!
AS OT RM x lOO
where,
d _____ = average difference of Reference Method and CEMS
CC = con fidence coeflicient
RM = reference method, ppmvd
RA = relative accu racy. %
All~ NOx Summary
TECHN CAL GROUP
Location: So urce: ________________________________________ _
Projec t No.: ________________________________________ _
Time Reference Method CEMS Average
Run
No. Date NOx Emission Rate NOx Emission Rate Differ ence
Start End lb/hr lb/hr lb/hr
I .. ..
2 .. ..
3 .. ..
4 .. ..
5 .. ..
6 .. --
7 .. ..
8 .. ..
9 .. ..
10 ---
II .. --
12 .. ..
Average
Standard Devia11on (Sd)
Applicable Source Standard (AS)
Confidence Coefficient (CC)
Relative Accuracy (RA) .
Performance Required • Mean Reference M ethod RA :,20%
Performance Specification Method PS 2
Confidence Coefficient, CC
CC = I tJris x Sdl
where.
lo 915 __ #_N_I_A __ = degrees of freedom value
n 0 = number of runs selected for calculaung the RA
Sd = standard devia11on of difference
CC = confidence coefficient
Relative Acc uracy, RA
Id I+ ICCI
RA = AS or RM x lOO
where,
d _____ =average difference of Referen ce Method and CEMS
CC = confidence coefficient
RM = reference method. lb/hr
RA = relauve accuracy, %
All~-.ce CO Summary
TECH N CAL GROUP
Location: Source: ________________________________________ _
Project 11,o.: ________________________________________ _
Time Reference Method CEMS Run
No. Da te C O Concent r ation CO Concentra tio n
Sta rt E nd ppmvd ppm,•d
I ----
2 ----
3 ----
4 ----
5 ----
6 ----
7 ----
8 ----
9 ----
10 ----
II ----
12 ----
Average
Stan dard Deviation (Sd)
Applicable Source Standard (AS)
Confidence Coeflic,ent (CC)
Relative Accuracy (RA)
Performance Required -Mean Reference Method
Performance Specification Method
Confidence Coefficient. CC
cc = It:;? X Sdl
wh ere.
lo 975 __ #_N_/_A __ = degrees of freedom value
n O = number of runs selec ted for calculating the RA
Sd = standard deviation of difTerence
CC = confidence coellic,ent
Re la tive ACCUl'd Cy. RA
I d I+ !CCI
RA = AS OT RM x lOO
where.
d _____ = average difTerence of Reference Method and CEMS
CC = confidence coetlic,ent
RM = reference method. ppmvd
RA = relative accuracy. %
Alternative Re lative Accuracy, RA
RA = ldl + cc
where,
Ce
d _____ = average d1fTerence of Referen ce Method and CEMS
_____ = confi dence coeflic,ent
RA = relative accurac}. ppm
Average
Difference
ppmvd
-
RA < 10%
PS4A
All~-.ce CO Summary
TECHN CAL GROUP
Location: So urce: ________________________________________ _
Project No.: ________________________________________ _
Time
Referen ce Method CEMS Average
Run
No. Date CO Concentration CO Concentration Difference
St art End ppmvd @ 7 %02 ppmvd @ 7 % 02 ppmvd @ 7 % 02
I ----
2 ---
3 ----
4 ----
5 ----
6 ----
7 ----
8 ----
9 --
10 ----
II ----
12 ----
Average
Standard Deviation (Sd)
A pplicable Source Standard (AS)
Confidence Coefficient (CC)
Relative Accuracy (RA) -
Perfo rm ance Req uired -M ean Reference M et hod RA ~ 10%
Performance Specificat ion M ethod PS 4A
Con fid ence Coefficient. CC
CC = I t7ns x Sdl
where,
to 971 __ #_/_A __ = degrees of freedom value
n O = number of runs selected for calculattng the RA
d = standard deviation of difference
CC = confidence coefficient
Relative Accuracy, RA
Id I+ !CCI
RA = AS or RM x lOO
where.
d _____ = average di fference of Reference Method and CEMS
CC = confidence coeffici ent
RM = reference method, ppmvd , 7 % 02
RA = relattve accuracy. %
A lternative Relative Accurac,y. RA
RA = ldl + CC
wher e,
d _____ = average difference of Reference Method an d CEM S
CC = confidence coefficient
RA = rclattve accuracy. ppm
c::::;'
Alllance THC Summary
TECHN CAL GROUP
Location: Source: ______________________________________________ _
Project 'o.: ______________________________________________ _
T ime
Re ference Method CEM S
Run
No. Date THC (as CJH 8) Concentration THC (as CJH 8) Concentration
Start End ppmvd ppmvd
I ----
2 ---
3 ----
4 ---
5 ----
6 ----
7 ----
8 ---
9 ----
10 ---
II ----
12 ----
Average
Standard Deviatmn (Sd)
Applicable Source Standard (AS)
Confidence Coefficient (CC)
Relative Accuracy (RA)
Perfonnan ce Required -Mean Reference Method
Confidence Coefficient. CC
cc = I t:;;s X Sd l
wh er e,
to.975 __ #_N_I_A __ = degrees of freedom value
n O = number of runs selected for calculat ing the RA
Sd = standard deviation of difference
CC = confidence coefficient
Relative Accuracy, RA
Id I + ICCI RA = ----x 100 AS or RM
where,
d _____ = average difference of Reference Method and CEMS
CC = confidence coefficient
RM = reference method. ppmvd
RA = relative accuracy. %
Perfonnance Specification Me1hod
Average
Difference
ppmvd
-
RA :<:20%
PS 8
All~tee THC Summary
TECHN CAL GROUP
Location: Sou r ce: _________________________________________ _
Proj ect No.: _____________________________________________ _
T ime Reference Method CE M S Average Run
No. Date THC (as CJH8) Concen tralion THC (as CJ H 8) Conce ntration Difference
Start End ppmvd @ 7 %02 ppmvd @ 7 % 02 ppmvd @ 7 %02
I ---
2 ---
3 ----
4 ---
5 ----
6 ----
7 ----
8 ---
9 ----
10 ----
II ---
12 ---
A verage
Standard Deviation (S d)
Applicable Source Standa rd (AS)
Confidence Coeflic1ent (CC)
Re la tive Accuracy (RA ) -
Performance Required -M ean Reference Method RA :S 200/4
Per formance Specification Method PS 8
Co nfidence Coe ffici ent. CC
cc = I t:;;s X Sd l
where,
to .,, __ #_N_/_A __ = degrees of freedom valu~
n 0 = nu mber of runs selected for calcula ting the RA
Sd = standard deviation of difference
CC = co nfidence coeflic1ent
Rel ati,•e Acc uracy, RA
Id I + ICCI
RA = AS or RM x lOO
wh er e.
Ce
d _____ = average difference of Reference Method and CEMS
_____ = confidence coeflic1ent
RM = reference method, ppmvd (@ 7 % 0 2
RA = relative accuracy, %
All~ 02 Summary
TECHN CAL GROUP
Location: So urce: ________________________________________ _
Project No.: ________________________________________ _
Time Reference M et hod CEMS Ave ra ge Run
No. Date 02 Conce ntration 02 Co ncentr.i tion Difference
Start End %dry % dry %dry
I .. ..
2 .. ..
3 .. ..
4 .. ..
5 .. ..
6 .. ..
7 .. ..
8 .. ..
9 .. ..
10 .. ..
11 .. ..
12 .. ..
Average
Standard Deviation (Sd)
Confidence Coefficient (CC)
Relative Accuracy (RA) .
Perfonnance Reqmred -Mean Reference Method RA ~20%
Perfonnance Specification Method PS 3
Confidence Coeffici e nt. CC
CC = I t°J/is x Sdl
where,
lo 975 #NI A = degrees of freedom value
n 0 = number of runs selected for calculat1ng the RA
Sd = standard deviation of difference -----cc = confidence coefficient
Relative Accuracy, RA
Id I+ !CCI
RA = AS or RM x 100
where,
d _____ = average difference of Re ference Method and CEMS
CC = confidence coefficient
RM = reference method, % dry
RA = relat1ve accuracy, %
CO2 Summary
Loca tion: So urce: ________________________________________ _
Project No.: ________________________________________ _
Time
Reference Method CEM S Ave rage Run
No. Date CO2 Concentnllion CO2 C oncentration Difference
Start End %dry % dry %dry
I ----
2 ----
3 ----
4 ----
5 ----
6 ----
7 ----
8 ----
9 ----
10 ----
II ----
12 ----
Average
Standard Deviation (Sd)
Confidence Coefficient (CC)
Relative Accuracy (RA) -
Performance Required -M ean Reference M ethod RA :0 20%
Performance Specification M ethod PS 3
Co nfidence Coe fficient, CC
cc = I trns X Sd l
where.
lo.,, __ #_N_/_A __ = degrees of freedom value
n O = number of run s se lected for calculating the RA
Sd = standard deviation of difference
CC = confidence coefficient
Relative Accuracy, RA
Id I + ICCI
RA = AS or RM x lO O
wher e.
d _____ = average dttTerence of Reference Method and CEM S
CC = confidence coefficient
RM = reference method.% dry
RA = relative accuracy . %
All~-.ce VFR Summary
TECHN CAL GROUP
Location: Source: ________________________________________ _
Project 'o.: ________________________________________ _
Time
Reference Method C EMS
Run
No. Date Flow Rate Flow Rate
Start End acfm-dry acfm-dry
I
2
3
4
5
6
7
8
9
10
11
12
Average -
Standard Deviation (S d)
Confidence Coefficient (CC)
Relative Accuracy (RA)
Acceptabilit) Criteria -Mean Reference Method
Perfonnance Spec1ficat1on Method
Confidence Coefficient, CC
cc = I t:;t X Sdl
where.
to 97, __ #_N_/_A __ = degrees of freedom value
n O = number of runs selected for calculating the RA
Sd = standard deviation of difference
CC = confidence coefficient
Relati\'C Accuracy, RA
Id I + !CCI
RA = RM x 100
where.
d _____ = average difference of Reference Method and CEMS
CC = confidence coefficient
RM = reference method, scfm-dry
RA = relauve accuracy, %
Average
Difference
acfm-dry
.
~20%
PS6
All~rce Run 1 Data
TCCIIN CAL GROUP
Location: -------------------------------------Source: -------------------------------------Project No .: -------------------------------------Date: --------------------------------------
Time
nit
Status
Parameter
Uncorrected Run Average (Co b,)
Ca l Gas Concentration (CMA)
Pretest System Zero Res ponse
Posttest System Zero Res ponse
Average Zero Response (Co)
Pretest System Ca l Respo nse
Posttest System Cal Respo nse
Average Cal Response (CM)
Corrected Run Average (Corr)
Valid
CO2
%dry
Valid
Diluent
02 CO2
S02
ppmvd
Valid
S02
'Ox
ppmvd
Va li d
co
ppmvd
Vali d
Polluta nt
NOx CO
THC
ppmvw
Valid
THC
NA
QA Data
TECHN CAL GROUP
Loca ti on : --------------------------------Source: --------------------------------Project o.: _______________________________ _
Parameter 0 2 C O 2 S02 NOx c o THC
Make ------------
Model ------------
SIN
Operatin g Range --
C y lind er Number ID
LOW NA NA NA NA NA
MID
HIGH
Cylinder C ertified Values
LOW NA NA NA NA NA
MID
HIGH
C ylinder Vendor ID (PGVPID)
LOW NA NA NA NA NA --
MID --
HIGH --
Cylinder Expiration Date
LOW NA NA NA NA NA
MID
HIGH
C y linder EPA G a s Tyoe C ode
LOW ZERO ZE RO ZE RO ZERO NA NA
MID NA NA
HIGH NA NA
All~1.ce Response Time Data
TE.C lNIC-'\L GROU-"
Location: ____________________________________ _
So urce: ____________________________________ _
Project No .: ____________________________________ _
Re s ponse T imes, second s
Parameter 02 C O2 S02 NOx co THC
Zero ------------
Low NA A A NA NA --
Mid ------------
Hich ------------
Avera!!e ------------
Allli.nce Calibration Data
TECH\JICAL GROUP
Locatio n: Source : ________________________________________ _
Project No.: Date: ________________________________________ _
Parameter 02 CO2 SO1 NOx co THC
Exoected Averae.e C oncentration ------------
iSpan S hould be between:
Low -----
High -----
Desired Soan -----------
Low R ange Gas Should be between
Lo" NA A A A A -
Hie h NA NA NA NA NA -
Mid Range Gas S ho uld be between
Low ------
Hi!!h -----
High Range Gas S h ou ld be between
Low A A A NA A -
Hie.h NA NA NA NA NA -
Actual C once ntrat ion(% or ppm)
Zero 0.00 0.00 0 .00 0 .00 0 .00 0.00
Low NA NA NA NA NA --
Mid -----------
Hieb ------------
Resoonse Time (seconds) ------------
Upscale C alibration Gas (CMA) M id Mid Mi d Mid Mid Mid
Instrument Respo nse(% o r ppm)
Zero ------------
Low NA NA NA NA NA --
Mid ------------
llie.h ------------
P erformance(% of S pan o r C a li bration Gas)
Zero ----------0 .0
Low NA NA NA NA NA --
Mid ------------
Hieb ------------
Linearity(% of Span or Cal. Gas Cone.)
------------
S t a tu s
Zero ----------PASS
Low A NA NA NA NA --
Mid -----------
Hi!!h ------------
All~,ce Runs 1-3 Bias/Drift Determinations
TCGIIN GAL GROUP
Location: So urce : ____________________________________ _
Project No.: Date :-_------------------------------------
Parameter 0 2 co, so, NOx co THC
Run I
Span Val ue . . . .
I nitial Instrument Zero Cal Response . . . -
Initial Instrument Upscale Cal Re sponse -. . -
Final Instrument Zero Cal Response . . -.
Final Instrument Upscale Cal Response . . . .
Prete st System Zero Response . -. . -
Posttes t System Zero Response . . .
Pretest System Mtd Response .
Posnest System Mtd Resoonse . . . -
Bias o r System Performance (%)
Pretest Zero .. .. ·-.. -NA
Posnest Zero --.. .. .. .. NA
Pretest Span .. .. .. .. .. NA
Posttest Span --.. .. .. .. NA
Drift(%)
Zero . . . . .
Mid . . . .
Run 2
Span Value -. -
Initial I nstrument Zero Cal Response . . . -
Initial Instrument Upscale Cal Response -. . -
Final Instrument Zero Cal Response . . . . .
Final Instrument Upscale Cal Response . --.
Pretest System Zero Response . . -. . .
Po snest System Zero Response . . .
Pretest System Mid Response . . . .
Posttest System Mid Resoonse . -
B ias(%)
Pretest Zero .. .. . . .. .. NA
Posttest Zero ·-.. .. .. .. NA
Pretest Span .. .. .. .. .. NA
Posttest Soan .. --.. .. .. NA
Drift(%)
Zero . . . .
Mid .
Run 3
Span Value -. -
Initial Instrument Zero Cal Respo nse -. . .
Initial Instrument Upscal e Cal Response --. . .
Final Instrument Zero Cal Response -. . -. .
Fi nal Instrument Upscale Ca l Response . .
Pretest System Zero Response . -.
Posttest System Zero Response . ---. .
Pretest System Mid Response . -.
Posttest System Mid Response . . . . .
Bias(%)
Pretest Zero .. .. .. .. .. NA
Posttest Zero -· .. .. .. .. NA
Pretest Span .. .. .. .. .. NA
Posttest Soan .. .. .. .. . . NA
Drift (%)
Zero . --.
M id --.
Cyclonic Flow Check
Location ----------------------------------Source ----------------------------------Project o._--______________________________ _
Date --------------------------------
Sample Point Angle (~P=O)
I
2
3
4
s
6
7
8
9
10
II
12
13
14
IS
16
Average --
f!!E' All1&nce
TECHNICAL GROUP
Method 2 Data
, .. )(".ti,oo-=----------------------------------------------------------------------------
Sourc•_-__________________________________________________________________________ _
l"roj('C't ,,o...c-'---------------------------------------------------------------------------
l<un ;\o.
D•I•:
Slallll!t
SurtTI-
MOf Tim•
l..-a1li.Cl1•d
Tn1trMI \I'
Polnl in.\\("
:--quu• Rt•K r,f \I', (in. \\'()1~ ( \l-')11
,\••raf:I' \l'.ln.\\( (\P)
1-'itot Tut. C twr1"K"ffn1 (()I)
Bu0r11•1ri<' l'r,r,,,,tm\ In. 111, (l"b)
M•lir l>r"'""u,l,..\\C {PJ,)
StK L. P""'-'Wff, In. llll (l'l-)
,\,tn~ 1°l'fllpt'ritUn•, ~J,' n •)
,\>rr ■l"l•mJl'l'r•Nr•,"k (l,l
\ln~r.-d \k,isn.irt •h(:tion (HWSmwl)
\lt.ohhirl' Fra.:tion 11 ~•hlrarit>ri (H\\"!;i<,t)
\k,b.tun· hKtioo, (BWS )
02 C'om"'tralk,n.. •/4 (01)
CO2 ((lfK'Nl1n~. % (CO2)
~loltt1'11r \\'rl#IC. IMb--molt-(dry) (~kl)
\lc,,IPC"Ubr\\'t-irh1.,lt>Jl~(,.·t1) (\h)
\'..todty,fl/'1!« (\'•)
\'Ht•t!>CK L.wndhlo.u,..-fin ◄().)
\ FN •1 .-,.Jtd1rd c:Oltdldoro,_ !ICffi (Q,," I
\'FR •1 tund1rJ c-llftdiliooli. ~ (Q,d}
\'l•l/:11~nduJf'Oltdition!<,,rlll• (()!; .. )
\"►ll: 11 ,-tandard ~ondill,onJ.. J,d"m (~)
\"►ll: •I l<landnd «>ndirion.,_ lhdm (Q:;d►
R\I n-ll: ., -~'•ndud «indirimt,, Kfh ,,J-,,. 0? (Q,,..l •J%02)
VAl ,J
,. ..
I
.\I '
in \H"
Vahd
,. ..
"1
t\P
In. \\C
Va1tiJ
T• ... \I'
In. \H·
Va1ltd
..... ...
I
\I'
in.WC
Valid
T~ ...
I n.\\("
I
V■hd
,. . .. \I'
in.\\('
Va lid
,·.
"1
\I'
in.WC'
V■hd
,. ..
"1
,\P
in.\\('
V■lld
T, ...
"
V1hd
A P
i01.W('
T, ..
II
v.1,J
\I'
__!_n~-~-
I
... ., .
I
"' In.\\('
"
Valid
1 , ...
J
I
All~
TEC:HN C:AL GROUP
--~ ---·--·---1--_,.
_(;_,_
~r_,_
\u•l-•Ha ~ -.
. .
_, __ ...
~-·-·• -·-" ~-· ==-"=-~ :-.,
~'"-=:~.::.. ...
,_..,.. .. __ -..,_ ,_ ,_..,. ..... --,_ ,_..,.,..,.
""' ""' ·-
Method 2 Data
NO x C on ve rter Effici ency C heck
Location: ______________________________ _
Source:
Project No.:-------------------------------
Converter Check
Anal yzer Make --Pre-Test Date Time
Anal yzer i\lode l --Pre-Test Concen t ration, ppm
Analyzer erial Number --Pre-Tes t Efficiency,% -
Cylinder ID II Pos t-Test Date Time
Cylinder Exp. Date Post-Test Co ncentration, ppm
Cvlinder Concentrati on, com Post-Test Efficiency, % -
•E,_[fic,ency must be ~ 90 %
EPA Method 205
Field Calibration of Dilution System
Lontion: Source: ___________________________________________ _
Project :.~~--------------------------------------------
Tar:et Mass Flow
Cont rollers
I0L/I0L•
I0UI0L•
I0L/5L
I0U5L
I0UIL
I0UIL
Mtthod Crittr ia EPA
Parameter 02
Make -
M odtl -
SIN ..
Soa n -
Cvlindu Number ID
Z,,o NA
Mid -
Hi11.h -
Cvlinde:r Certified Values
Z,,o 0.0
M id -
Hi"'h -
l nstrumrnl RrsnonH 1•1. or nnm)
Zero -
Mid -
Hieb -
Calibration Gas Selection c•;. or Soan)
Mid -
Hioh -
Calibration E rror Ptrfornunce 1•;. of Snan}
Z.ro ..
Mid -
Hieb ..
Linearitv ,•;. or Ran2d
..
Analyzer Make
Analyzer Model
Analyzer SN
Env1rorm:s ID
Compo nen t/Balance Gas ~0~2~/N~1~------------
C~ lrndcr Gas ID (Dllu flOn)
Cylinder Gas Concentration (D1lut1on). '?,o
Cylinder Gas ID (M1d•Lc\·cl)
C~ lmdcr Gas Concentration (M1d·Level). o/e
lnjtttion I Injection 2 lnjer1ion J A verage
Target T argtl Artual Analyur An alyzer Analyur A na ly ze r
Dil ution Target flow Ra te Concentra t ion Concentra tion Concentration Conn:ntration Concentration Concentration
(V.l 1nm 1•1., 1%) 1%1 1%1 1•1., 1•1.,
900 70
800 70
800 50
500 50
100 40
100 40
Difference
1•1.,
•Not all AST Env1ron1cs Un1ts ha,·e 2·10L Mass flo" Controllers For these un1ts the 9('.>o/• a, 11pm and ll~/• q, 11pm lRJCCllons \\111 not be conducted .
Average
Analyzer I njection I
Concentration E rror
(o/•) ( ± l •t.1
Mid Level Sunnlv Cu Ca libration Direct to Analvur
Calibration Injection 1 l njtttion 2 lnjution 3
Gas Analyzu Analyt.tr Ana lyzer
Concentration Concentration Concentration Concentration
t•1.1 t•I.) 1•1.) (¾I
Injection 2
Error
I,,,._,
Avenge
Ana lyzer
Concentration
1%)
Injection 3
Er ror
( ¾2 .,.,
Difference
1•1.1
Ave ra&e
Error
I ±2•,•>
Avua2;e
E rror
1±1•!.)
QA Data
Location_-_-__________________________________ _
Sou rce -------------------------------------P r ojec t No._-_-__________________________________ _
Param ete r (s):_-_-__________________________________ _
Date Pilot ID Evid e nce of Evidence of Calibrat ion or
d a ma2e? mis-ali2 nm ent? Re pa ir re quired?
Da te Probe ID Refer e nc e Indi cated Diffe r ence C r ite ria T e mp. {°F) T e mp. (°F)
--± 1.5 % (absolute)
Field Ba la n ce Check
Date
Ba lance ID:
Test Weight ID :
Ce rtified Weigh t (g):
Measured Weight (g):
Weight Difference (g): ------
Da t e Ba r o metric t:vidence of Readi n g C a libra tio n o r Ba r o mete r ID Pressure dam a2e? Ve rified Repair r eq ui red ?
Da t e M e ter Box ID Positive Press ure Le ak C hec k
0 Pass
QA Data
Stratification Check
Locatio n : 0 ----------------------------S ource: 0 ----------------------------Project o.: 0 ----------------------------Date: ----------------------------
Travers e Po int Time NOx c o S02 0 2 CO2
(ppm ) (oom) (ppm) (%) (%)
A -I
2 0:00
3 0:00
4 0:00
5 0:00
6 0:00
B-1 0 :00
2 0:00
3 0:00
4 0:00
5 0:00
6 0:00
Average ----------
S tatu s Single Point Single Point Si ng le Point Single Point Single Point
Location: Source: ____________________________ _
Project No.: Run /Method: -R:-u_n_l __ -M-et-:-h-o--,d_3_A _____________________ _
Oxygen Co ncentration (C02), %
where,
C obs _____ = average ana l y zer value during test ,% vd
C0 = average of pretest & posttest zero responses.% vd
CMA = actual concentration of calibration gas. o/ovd
CM = average of pretest & posttest cal ibration responses,% vd
C02 = 02 concentration , % vd
Carbon Dioxide Concentration (Cc 02), %
where,
Cobs _____ = average analyzer value during test.% vd
C0 = average of pretest & posttest zero responses. % vd
C M A = act ua l concentrati on of calibration gas.% vd
CM = avera ge of pretest & posttest calibration responses ,% vd
Cc02 = CO2 concen trati on. % vd
Appendix A
Example Calc ulations
All~
TECH'\J CAL GROUP
Location:
Appendix A
E xample Calculations
Source:---------------------------
Proj ec t No.: __________________________ _
Run /Method : Run I -Method 6C
Sulfur Diox ide C oncentr atio n (C502), ppmvd
w here,
Cobs = average analyzer v alue during test , ppmvd ----
Co = average of pretest & posttest zero responses. ppmvd
CMA = actual concentration of ca l ibration gas. ppmvd
CM = average o f prete st & posttest calibration respon ses. ppmvd
Cso2 = S02 concentration . ppmvd
Sulfur Diox ide Concen trati on @ 7% Oxygen (C502,7), ppm vd @ 7% 0 2
20.9 -7
C -c x----S02c7 -s02 20 _9 _ Coz
where,
Cso2 = S02 concentration. ppm vd -----
C02 = 0 2 concentration. %
Cs02c, = ppmvd @ 7% 0 2
All~
TCC1IN CAL GROUP
Location:
Appendix A
Exa mple Calculations
------------------------------S ource: ------------------------------Project o.: _____________________________ _
Ru n/Method: Run I -Method 7E
itrog en Oxides C oncentra tio n (CNo,), pp mvd
where,
Cobs = average analyzer value during test. ppmvd ------
c o = average of pretest & posttest zero responses. ppmvd
C~iA = actual concentration of calibrat ion gas, ppmvd
CM = average of pretest & posttest calibr ation responses. ppmvd
C:-:ox = Ox concentr ation, ppmvd
Nitrogen Oxides Em ission Rate (E RNo,), lb/hr
ERNox = CNOX x Q s x 60 • CF
where,
C •0x = Ox concentration. ppmvd ------
CF = Ox (as NO2) Conversion Factor , lb/dscf
Qs = stack gas volumetric flow rate at standard cond i tions. dscfm
E RNox = lb/hr
All~.:e
TECH\J 1 CAL GROUP
Location: ---------------------------So urce: ---------------------------Project No.: ---------------------------Run/Method: Run I -Met.hod 10
Carbon Monoxide Concentration (C eo), ppmvd
where,
C00, = average analy zer val ue during te st, ppmvd ----
c o = average of pretest & pos ttest zero responses. ppmvd
CMA = actua l co ncentration of cali bration gas. ppmvd
CM = average o r pretest & posttest calibration responses, ppm v d
Ceo = CO concentrat ion. ppmvd
Carbon Monoxide Concentration @ 7% Oxygen (Ccoc7), ppmvd @ 7% 02
20.9 -7
C -c x----
COc7 -co 20.9 -Co2
where,
Ceo ____ = C O concentratio n. ppmvd
C02 = 0 2 concen tration. %
Cc0c 1 = ppmvd @ 7% 0 2
Appendix A
Example Calculations
A111i!.,.:e
TECl-f'l 'CAL GROUP
Location:
S ource: ----------------------------------------------------Project No.: Run /Method: _R_u_n_l -_ -M-e-th_o_d_2_5_A ___________________ _
Total Hyd rocarbons Concentration (C rncd), ppmvd
CTHCw
1 -BWS
where,
CTHc" = THC concentration. ppm vw (as C3 H8 ) ----
BW = moisture fraction. unitless
CTHcd = ppm v d
Tota l Hydrocarbons C oncentratio n @ 7% Oxygen (Crnc,7), ppmvd @ 7% 02
20.9 -7
C -c x ----THOCc7 -THOC 20 _9 _ Caz
whe re ,
Cvoc = THC concentration. ppmvd (as C3 H8 ) -----
C02 = 0 2 concentr at ion. %
Cvocc7 = ppmvd @ 7% 0 2
Appendix A
Example Calculations
All~r-ce
TECHN CAL GROUP
Location -----------------------------------Source _-________________________________ _
Proj ec t No._-________________________________ _
Run 'o. I -----------------------------
Meter Pressu r e (Pm), in. Hg
ti H
Pm = Pb + 13 _6
where,
Pb ______ = baromemc pressure, m. Hg
6 H -pressure d1ffere1111al ofonfice, m H2O
Pm = tn Hg
Absolute Stack Gas Pressure (Ps), in. H g
w here,
Ps = Pg
Pb + 13.6
Pb ______ -barornelric pressure, m. Hg
Pg = static pressure. m H,O
Ps = in Hg
Standard M eter Volum e (Vmstd), dscf
Vmstd
17.636x Vmx Pm x Y
Tm
wher e,
Y __ 0 __ ._000-'-'--__ -meler correcllon factor
Vm meter volume. cf
Pm = absolu1e melcr pressure, in. Hg
Tm -absolute mc1cr 1emperalure, "R
Vmsld = dscf
Standard Wet Volume (Vwstd), sc f
Vwstd = 0.04 706 x Vic
w here,
Vic ______ # Volume ofH2O collect ed, ml
Vws1d = scf
Moisture Fraction (BWSsat), dimens ionless (th eoretical at saturated conditions)
wh ere,
BWSsat
( 2,827 )
106.3 7-Ts+ill
Ps
Ts ______ = slack 1empcra1ure. °F
Ps = absol ule Slack gas pressure, m Hg
BWSsa1 dimensionless
M oisture Fraction (BWS), dimension l ess
Vw std
BWS
where,
(Vwstd + Vmstd)
Vws1d ______ s standard wet volume, scf
Vm std standard meter vol ume, dscf
BWS = d,mens,onlcss
Appendix A
Example Calculations
Loca tion _-_______________________________ _
Source _-_______________________________ _
Project :-l o._-_______________________________ _
Ru n No. I --------------------------------
M oisture Fr ac t ion (BWS), dimensionless
BWS = BWSm sd u nless BWSsat < BWSm sd
wher e,
BWSsa1 _____ = moisture frac11on (theoretical at satura ted conditions)
BWSmsd = moisture frac11on (measured)
BWS -----
M olec ular We ight (D RY) (Md), l b/lb-mole
Md = (0 .44 x % CO2) + (0.32 x % 0 2) + (0.28 (100 -% CO2 -% 02))
where,
CO2 = carbon d1ox1de concentration, ~. -----02 = OX) gen concentration. , o
Md = lb/lb ntol
M olec ular Weight (W ET) (i\ls), l b/lb-mol c
Ms = Md (1 BWS) + 18.01 5 (BWS)
w he re.
M d _____ = molecular "eight (DRY). lb/lb mol
BWS = moisture fraction, d1mens1onless
M s -lbllb mol
A ver age Velocity (Vs), f t/sec
Vs = 85.49 x Cp
wher e,
Cp _____ -pi 101 lube coefficient
6 p "' average pre/post test velocity head of stack gas, (in H2O)'12
Ts = average pre1pos1 1es1 absolute stack temperature . 0 R
Ps = absolute stack gas pressure, m Hg
Ms = molecular we1gh1 of stack gas, lb/lb mol
Vs = ft/sec
Average Stack G as Flow at Stack Condi t io ns (Qa), acrm
Qa = 60 x Vs x As
whe re.
Vs _____ = stac k gas veloc1ry, ft/sec
As = cross -sectional area of stack, ft '
Qa = acfm
Average Stack G as Fl ow at Standa r d Conditions (Qs), dscfm
Qsd I 7 636 x Qa x ( I • BWS) X ~ Ts
Qa _____ = average stack gas 0ow at stack cond111ons. acfm
BWS moisture frac11on. dimensionless
Ps = absolute stack gas pressure, m. Hg
Ts = average pre/post test absolute slack temperature, 0 R
Qs = dscfm
Appendix A
Example Calculations
All~,ce
TECHN .CAL GROUP
Location ---------------------------------Source ---------------------------------Project No._-______________________________ _
Run No. I -----------------------------
Dry G as Meter Calibration C heck (Yqa), d imensionless
y _ (v0m 0.0319 x Tm x 29 ~avg)
!J.H @ x (Pb + /J. f3~~g-) x Md •
Yq a =--....;_-----------------'--y X 100
wh ere,
Y O -meter correc11on fac tor, dimensionless
0 0 run time, m,n .
Vm _____ total meter volume, def
Tm _____ -absolute meter temperature , 0 R
.O.H@ O ~ orifice meter cahbra11on coefficient, tn H,O
Pb barometnc pressure , in. Hg
.O.H avg _____ = average pressure dilTcrential of orifice, 111 H,O
Md -molecular weight (ORY), lb/lb mol
(6 H)112 ;;.VALUE! average squareroot pressure dilTerent ial of on fice, (in. H20)11
'
Yqa ~ percent
Appendix A
Example Calculations