Loading...
HomeMy WebLinkAboutDAQ-2025-0001681 DAQC-026-25 Site ID 10159 (B4) MEMORANDUM TO: STACK TEST FILE – NORTH DAVIS SEWER DISTRICT – Wastewater Treatment Plant – Davis County THROUGH: Rik Ombach, Minor Source Oil and Gas Section Manager FROM: Kyle Greenberg, Environmental Scientist DATE: January 9, 2024 SUBJECT: Sources: Cogeneration Engine #3: 923 kW Lean Burn Engine Contact: Myron Bachman: 801-825-0712 Location: Davis County, UT Test Contractor: TETCO Permit/AO#: DAQE-AN101590008-17, dated November 1, 2017 Action Code: TR Subject: Review of Stack Test Report dated September 30, 2024 On September 30, 2024, Utah Division of Air Quality (DAQ) received a test report for the above listed unit. Testing was performed September 11, 2024, to demonstrate compliance with the emission limits found in Condition II.B.2 of the Approval Order DAQE-AN101590008-17. The calculated test results are: Source Test Date Test Method Pollutant Tester Results DAQ Results Limits Cogeneration Engine #3 September 11, 2024 7E NOx 1.95glb/hr 0.75 g/bhp-hr 1.954 lb/hr 0.747 g/bhp-hr 4.31 lb/hr 1.50 g/bhp-hr 10 CO 6.04 lb/hr 2.31 g/bhp-hr 6.043 lb/hr 2.310 g/bhp-hr 7.61 lb/hr 2.65 g/bhp-hr DEVIATIONS: None. CONCLUSION: The stack test report appears to be acceptable. RECOMMENDATION: The emissions from Cogeneration Engine #3 should be considered to have been in compliance with the AO emission limits during testing. ATTACHMENTS: DAQ Stack Test Review Excel Spreadsheets, North Davis Sewer District Stack Test Report. 4 ' - ) - " Emissions North Davis Sewer District Wastewater Treatment Plant Davis County, Utah Cogeneration Engine #3: 923 kW Lean Burn Engine Test Date: 911/24 Run # 1 2 3 Average Start Time 8:38 11:27 12:50 Stop Time 9:41 12:27 13:50 Sample Duration (minutes) 60 60 60 BHP Engine Load - Actual (bhp) 1188 1185 1187 1187 DS Stack Diameter (inches) 13.0 13.0 13.0 13.0 PAVG Average (Delta P)½ (" H2O)½1.4622 1.4251 1.3828 1.4234 CP Pitot Tube Constant (unitless) 0.84 0.84 0.84 0.84 TS Stack Temperature (°F) 434 432 435 434 Pbar Barometric Pressure (" Hg) 25.50 25.50 25.50 25.50 Ps Stack Pressure ('' H2O)-1.40 -1.40 -1.40 -1.40 Yd Meter Y Factor (unitless) 0.9980 0.9980 0.9980 0.9980 Tm Meter Temperature (°F) 78 76 78 77 Vm Sample Volume (ft3)37.692 38.018 35.105 36.938 H Orifice Pressure Delta H (" H2O)1.0 1.0 1.0 1.0 Vlc Moisture (g) 97.0 102.1 89.9 96.3 O2%vd O2 (%vd)9.2 9.1 9.1 9.2 CO2%vd CO2 (%vd)10.1 10.0 10.1 10.1 N2%vd N2 (%vd)80.6 80.9 80.8 80.8 dry NOX (ppmvd)95.3 101.5 101.3 99.4 dry CO (ppmvd) 508.0 499.2 506.5 504.5 Run # 1 2 3 Average Vmstd Sample Volume (dscf) 31.564 31.920 29.348 30.944 Vwstd Moisture Volume (scf) 4.57 4.82 4.24 4.54 Bws Measured Moisture Content (%/100) 0.127 0.131 0.126 0.128 Bws Saturated Moisture Content (%/100) 28.756 28.426 29.150 28.777 Bws Actual Moisture Content (%/100) 0.127 0.131 0.126 0.128 MD Molecular Weight Dry (lb/lb-mole) 29.99 29.96 29.98 29.98 MA Molecular Weight Wet (lb/lb-mole) 28.48 28.39 28.47 28.45 VS Gas Velocity (ft/sec)116.7 113.8 110.5 113.7 FACFM Gas Flow (acfm) 6455 6296 6109 6287 FDSCFM Gas Flow (dscfm) 2826 2746 2672 2748 FWSCFM Gas Flow (wscfm) 3238 3162 3060 3153 FKWSCFH Gas Flow (kwscfh) 194 190 184 189 FKWSCFM Gas Flow (kwscfm) 3 3 3 3 lb/hr Gas Flow (lb/hr) 14357 13981 13566 13968 Fo Fo (unitless)1.150 1.181 1.166 1.166 wet O2 (%vw)8.1 7.9 8.0 8.0 wet CO2 (%vw)8.9 8.6 8.8 8.8 wet NOX (ppmvw)83.238 88.219 88.531 86.663 15 NOX (ppmvd @ 15% O2)48.189 50.971 50.764 49.974 lb/hr NOX (lb/hr)1.928 1.996 1.938 1.954 4.3 g/bhp-hr NOX (g/bhp-hr)0.736 0.764 0.741 0.747 1.5 wet CO (ppmvw) 443.671 433.725 442.570 439.989 15 CO (ppmvd @ 15% O2)256.853 250.599 253.768 253.740 lb/hr CO (lb/hr) 6.257 5.974 5.899 6.043 7.6 g/bhp-hr CO (g/bhp-hr) 2.389 2.287 2.254 2.310 2.7 Permit Limits Field Reference Method Data Reference Method Calculations Page 1 of 5 Linearity North Davis Sewer District Cogeneration Engine #3: 923 kW Lean Burn Engine Davis County, Utah Test Date: 911/24 #REF! O2 CO2 NOX CO 20.7 20.4 234.2 906.3 9.77 9.75 126.4 481.0 0.1 0.0 1.0 3.0 9.7 9.7 126.0 478.0 Linearity Bias (Zero) 0.0 0.0 1.0 2.0 Linearity Bias (Span) 9.8 9.8 127.0 480.0 % % (ppm) (ppm) 0.00 0.00 0.0 0.0 9.77 9.75 126.4 481.0 20.73 20.41 234.2 906.3 0.0 0.0 1.0 2.0 9.8 9.8 127.0 480.0 20.8 20.1 237.0 921.0 0.0 0.0 1.0 2.0 0.0 0.0 0.6 1.0 0.0 0.3 2.8 14.7 0.0 0.0 0.0 0.0 0.43% 0.05% 0.00% 0.11% 0.48% 0.44% 0.43% 0.22% 0.10% 1.52% 1.20% 1.62% Gas Concentration 1 2 3 Linearity Information Gas Span Gas Value/Range Bias Gas Value 4 Difference 1 4 Response 1 2 Span Bias Max Calibration Error Bias Check (Zero) Bias Check (Span) 2 3 4 Results 3 Zero Bias Page 2 of 5 Run 1 North Davis Sewer District Run 1 Cogeneration Engine #3: 923 kW Lean Burn Engine Davis County, Utah Start Time 8:38 Test Date: 911/24 Run Length 60 #REF! Stop Time 9:41 O2 CO2 NOX CO 20.7 20.4 234 906 9.77 9.75 126.4 481.0 0.1 0.0 1.0 3.0 9.7 9.7 126.0 478.0 -0.1 0.0 1.0 4.0 9.8 9.6 128.0 492.0 0.3% 0.2% 0.0% 0.2% 0.3% 0.6% 0.4% 1.3% 0.7% 0.2% 0.0% 0.1% 0.8% 0.1% 0.9% 1.5% Corrected O2 % Corrected CO2 % Corrected NOX ppm Corrected CO ppm 9.2 10.1 95.3 508.0 Run Length (Minutes) Uncorrected O2 % Uncorrected CO2 % Uncorrected NOX ppm Uncorrected CO ppm 60 9.2 10.1 96.0 512.0 Zero% Span% Absolute Bias (Zero) Absolute Bias (Span) Absolute Drift (Zero) Absolute Drift (Span) Results Post Test Calibration Calibration Information Instrument Range Span Gas Value Gas Calibration Pretest Calibration Zero% Span% Page 3 of 5 Run 2 North Davis Sewer District Run 2 Cogeneration Engine #3: 923 kW Lean Burn Engine Davis County, Utah Start Time 11:27 Test Date: 911/24 Run Length 60 #REF! Stop Time 12:27 O2 CO2 NOX CO 20.7 20.4 234 906 9.77 9.75 126.4 481.0 0.0 0.1 2.0 4.0 9.9 9.7 126.0 481.0 0.1 0.1 2.0 4.0 9.9 9.7 127.0 481.0 0.4% 0.4% 0.4% 0.2% 0.6% 0.5% 0.0% 0.1% 0.4% 0.1% 0.0% 0.0% 0.0% 0.2% 0.4% 0.0% Corrected O2 % Corrected CO2 % Corrected NOX ppm Corrected CO ppm 9.1 10.0 101.5 499.2 Run Length (Minutes) Uncorrected O2 % Uncorrected CO2 % Uncorrected NOX ppm Uncorrected CO ppm 60 9.3 9.9 102.0 499.0 Gas Instrument Range Post Test Calibration Zero% Span Gas Value Calibration Pretest Calibration Zero% Calibration Information Results Absolute Bias (Zero) Absolute Bias (Span) Absolute Drift (Zero) Absolute Drift (Span) Span% Span% Page 4 of 5 Run 3 North Davis Sewer District Run 3 Cogeneration Engine #3: 923 kW Lean Burn Engine Davis County, Utah Start Time 12:50 Test Date: 911/24 Run Length 60 #REF! Stop Time 13:50 O2 CO2 NOX CO 20.7 20.4 234 906 9.77 9.75 126.4 481.0 0.1 0.1 2.0 4.0 9.9 9.7 127.0 481.0 0.2 0.1 0.0 3.0 9.9 9.7 127.0 469.0 0.9% 0.7% 0.4% 0.1% 0.9% 0.2% 0.0% 1.2% 0.5% 0.2% 0.9% 0.1% 0.3% 0.3% 0.0% 1.3% Corrected O2 % Corrected CO2 % Corrected NOX ppm Corrected CO ppm 9.1 10.1 101.3 506.5 Run Length (Minutes) Uncorrected O2 % Uncorrected CO2 % Uncorrected NOX ppm Uncorrected CO ppm 60 9.3 10.0 102.0 500.0 Post Test Calibration Instrument Range Zero% Results Absolute Bias (Zero) Span% Span% Zero% Absolute Bias (Span) Absolute Drift (Zero) Absolute Drift (Span) Calibration Information Span Gas Value Calibration Pretest Calibration Gas Page 5 of 5 Tel: Fax: 801 825-0712 801 773-6320 4252 West 2200 South Syracuse, Utah 84075 Reclaiming Earth’s Most Valuable Resource September 30, 2024 State of Utah Department of Environment Quality Utah Division of Air Quality Attention Jay Morris 150 North 195 West P.O. Box 144820 Salt Lake City, Utah 84114-4820 Dear Jay: Subject: Stack Test Engine 06-003 Compliance TETCO was retained to provide stack testing as required as per the District’s Air Quality approval order DAQE-AN101590008-17 on our cogeneration unit #06-003. The test was originally scheduled for May 7th, 2024, but due to mechanical failure we were forced to terminate the stack test. We placed the engine out of service until the appropriate repairs could be made. The test was rescheduled for September 11th, 2024. Please find attached a copy of the stack test results showing the engine is complying with our approval order. Please contact me at (801) 728-6830 if you have questions or comments. Sincerely, Myron Bachman NDSD Plant Superintendent CC: Kyle Greenberg Dave hatch Scott Vineyard NORTH DAVIS SEWER DISTRICT NOx AND CO COMPLIANCE TEST CONDUCTED AT NORTH DAVIS SEWER DISTRICT SYRACUSE, UTAH WAUKESHA 923kW LEAN BURN ENGINE September 11, 2024 by: TETCO 391 East 620 South American Fork, UT 84003 Prepared for: North Davis Sewer District (NDSD) 4252 West 2200 South Syracuse, UT 84075 Date of Report: September 20, 2024 CERTIFICATION OF REPORT INTEGRITY Technical Emissions Testing Company (TETCO) certifies that this report represents the truth as well as can be derived by the methods employed. Every effort was made to obtain accurate and representative data and to comply with pr0,cedures set forth in the Federal Register. Dean Kitchen Reviewer: ____ &;_~_,,,_/2_~_-________ _ Date: ______ f_-~~-_-_;;,,-,_<f~---- ~----Reviewer: ~ --= ..... """"""------------------ Xuan Dang Date: _____ ~'f,_7z-=-lJ.....,/,~l.-,..,,.f-f------ ii iii TABLE OF CONTENTS Page Introduction Test Purpose .........................................................................................................................1 Test Location, Type of Process ............................................................................................1 Test Dates.............................................................................................................................1 Pollutants Tested and Methods Applied ..............................................................................1 Test Participants ...................................................................................................................1 Discussion of Errors or Irregularities ...................................................................................2 Quality Assurance ................................................................................................................2 Summary of Results Emission Results ..................................................................................................................3 Process Data .........................................................................................................................3 Allowable Emissions ...........................................................................................................3 Gas Analyzer Performance Criteria .....................................................................................3 Source Operation Process Control Devices Operation .....................................................................................4 Process Representativeness ..................................................................................................4 Sampling and Analysis Procedures Sampling Port Location .......................................................................................................5 Sampling Point Location......................................................................................................5 Sampling Train Description .................................................................................................5 Sampling and Analytical Procedures ...................................................................................6 Quality Assurance ................................................................................................................6 Appendices A: Complete Results and Sample Calculations B: Raw Field Data C: Laboratory Data D: Raw Production and Control Equipment Data E: Calibration Procedures and Results F: Related Correspondence iv LIST OF TABLES Table Page I Measured NOx and CO Emissions ...........................................................................3 II Sample Point Location .............................................................................................5 III Complete Results, Waukesha 923 kW Lean Burn Engine .................... Appendix A LIST OF FIGURES Figure 1 Schematic Representation of Facility .................................................... Appendix D 2 Schematic of Method 4 Sampling Train ................................................ Appendix E 3 Schematic of Gas Analyzer Sampling Train .......................................... Appendix E 1 INTRODUCTION Test Purpose This testing project was conducted to determine the NOx and CO emissions from the Waukesha 923 kW Lean Burn Engine located at the North Davis Sewer District (NDSD) facility. Emissions are expressed in terms of pounds per hour (lb/hr) and grams per brake horsepower hour (g/bhp-hr). Test Location, Type of Process NDSD operates a water treatment facility located at 4252 West 2200 South, Syracuse, Utah. Part of the water treatment includes collecting digester gas which is prepared for use as a fuel for engines at the facility. Figure 1 in Appendix D is a schematic of the engine's exhaust stack. Test Dates All testing was completed September 11, 2024. A fourth test run was completed because the second Method 4 test run sample volume was only 17.512 dry standard cubic feet (dscf), which was less than the 21 dscf required by Method 4. Pollutants Tested and Methods Applied The tests were a determination of NOx and CO emissions in accordance with EPA Methods 4, 7E, and 10. One Method 4 test run was completed for each Method 7E and 10 test run as directed by Kyle Greenburg of the Utah Department of Environmental Quality, Division of Air Quality (UDAQ). Test Participants Test Facility Myron Bachman Scott Vineyard State Agency Kyle Greenberg TETCO Dean Kitchen Jeremiah Opthof Xuan Dang 2 Discussion of Errors of Irregularities None. Quality Assurance Testing procedures and sample recovery techniques were according to those outlined in the Federal Register and the Quality Assurance Handbook for Air Pollution Measurement Systems. 3 SUMMARY OF RESULTS Emission Results Table I presents the test results for runs 1, 3, and 4. Results for all four test runs are included on Table III in Appendix A. TABLE I. Measured NOx and CO Emissions Run # Waukesha 923kW Lean Burn Engine NOx lb/hr NOx g/bhp-hr CO lb/hr CO g/bhp-hr 1 1.92 0.73 6.26 2.39 3 1.99 0.76 5.97 2.29 4 1.94 0.74 5.89 2.25 Avg 1.95 0.75 6.04 2.31 Limits 4.31 1.5 7.61 2.65 Process Data The process was operated according to standard procedures. Engine power output was recorded on the Method 4 Field Data Sheet during each individual run. A summary of the production data is also found in Appendix D. Gas Analyzer Performance Criteria The NOx and CO gas analyzers met all bias and calibration checks criteria as specified in the Federal Register. The Method 3A gas analyzers met all bias and calibration checks criteria. The results of all checks are on the gas analyzer field data sheet in Appendix B. 4 SOURCE OPERATION Process Control Devices Operation All process control devices were operated normally. Process Representativeness The facility was operated normally. 5 SAMPLING AND ANALYSIS PROCEDURES Sampling Port Location The stack diameter was 13 inches. Sample ports were located 12.31 diameters (160 inches) downstream from the last disturbance and approximately 8.0 diameters (104 inches) upstream from the nest disturbance. Two, four-inch diameter ports were available for testing. Sampling Point Location Table II shows the sampling point distance from the inside wall according to EPA Method 1. Each point is marked and identified with a glass tape wrapping and numbered. These points are determined by measuring the distance from the inside wall and adding the reference (port) measurement. A stratification check was conducted according to Method 7E, section 8.1 using three sample points. The results of the stratification check show that all sample points were within 5 percent of the mean and the stacks were considered unstratified. One sample point was used for the remainder of the Methods 7E and 10 testing. TABLE II. Sample Point Location Sample Point Distance (inches) from Inside Wall 1 0.87 2 3.25 3 9.75 4 12.13 Sampling Train Description To determine the actual emission rates for these stacks 40 CFR 60, Appendix A, EPA Methods 4, 7E, and 10 were followed. All sampling trains were made of Teflon, stainless steel and glass to prevent interference of the sampled gas. The stack analyzer used to conduct Method 4 was constructed to meet the specifications outlined in the CFR. The temperature sensors were K-type thermocouples. Heater, vacuum and pitot line connections were designed to be interchangeable with all units used by the tester. The probe liner was of 316 stainless steel. A Method 4 sampling train sketch is found as Figure 2 in Appendix E. 6 The sample box was prepared for testing following the prescribed procedure outlined in Method 4. The NOx analyzer was an Horiba Model CLA-510SS Chemiluminescence unit. The analyzer span was 0-234 ppm. EPA Protocol 1 gases were used as the span and mid-range for the NOx analyzer during all tests; their respective concentrations were 234 and 126 ppm. Dry nitrogen was used as the zero gas for the analyzer. The CO analyzer was a Horiba, Model VIA 510 NDIR. The analyzer span was 0-920 ppm. EPA Protocol 1 gases were used as the span and mid-range for the CO analyzer during all tests. Their respective concentrations were 920 and 481 ppm. Dry nitrogen was used as the zero gas for the analyzer. The CO2/O2 analyzer was a CAI Model ZRE, dual gas unit. The NDIR CO2 analyzer span was 20.41 % with calibration gases of 20.41% and 9.75% CO2. The electrochemical cell O2 analyzer span was 20.73 % with calibration gases of 20.73% and 9.77 % O2. EPA Protocol 1 gases were used as the span and mid-range for both analyzers. Dry nitrogen was used as the zero gas for the analyzer. The gaseous analyzer sampling train was constructed with a stainless steel sampling probe about 2 feet long. The heated sample line between the sampling probe and gas conditioner was Teflon. The sample conditioner utilized permeation tubes to dry the sample gas. Purge air to the tubes whisks away any collected water vapor. Sample lines from the gas conditioner to the analyzer were Teflon. A sampling train sketch appears as Figure 3 in Appendix E. Sampling and Analytical Procedures All sampling and analytical test procedures employed were as specified in 40 CFR 60 Appendix A, Methods 4, 7E, and 10. Quality Assurance All equipment set up, sampling procedures, sample recovery and equipment calibrations were carried out according to the procedures specified in 40 CFR 60 and the Quality Assurance Handbook for Air Pollution Measurement Systems. 7 APPENDIX A: Complete Results and Sample Calculations B: Raw Field Data C: Laboratory Data D: Raw Production Data E: Calibration Procedures and Results F: Related Correspondence A APPENDIX A Table III Complete Results, 923 kW Lean Burn Engine Nomenclature Sample Equations CRTABLE III COMPLETE RESULTS NORTH DAVIS SEWER DISTRICT WAUKESHA 923 kW LEAN BURN ENGINE Symbol Description Dimensions Run #1 Run #2 Run #3 Run #4 Date 9/11/24 9/11/24 9/11/24 9/11/24 Begin Time Test Began 8:38 10:04 11:27 12:50 End Time Test Ended 9:41 11:05 12:28 13:52 Pbm Meter Barometric Pressure In. Hg. Abs 25.50 25.50 25.50 25.50 DH Orifice Pressure Drop In. H2O 1.000 1.000 1.000 1.000 Y Meter Calibration Y Factor dimensionless 0.998 0.998 0.998 0.998 Vm Volume Gas Sampled--Meter Conditions cf 37.692 20.831 38.018 35.105 Tm Avg Meter Temperature oF 77.5 75.8 76.1 78.4 DP Sq Root Velocity Head Root In. H2O 1.4622 1.3811 1.4251 1.3828 Wtwc Weight Water Collected Grams 97.0 50.4 102.1 89.9 Cp Pitot Tube Coefficient Dimensionless 0.84 0.84 0.84 0.84 CO2 Volume % Carbon Dioxide Percent 10.14 9.79 9.95 10.10 O2 Volume % Oxygen Percent 9.23 9.15 9.15 9.13 N2 & CO Volume % Nitrogen and Carbon Monoxide Percent 80.62 81.06 80.90 80.78 Vmstd Volume Gas Sampled (Standard)dscf 31.583 17.512 31.940 29.366 Vw Volume Water Vapor scf 4.575 2.377 4.815 4.240 Bws Fraction H2O in Stack Gas Fraction 0.127 0.120 0.131 0.126 Xd Fraction of Dry Gas Fraction 0.873 0.880 0.869 0.874 Md Molecular Wt. Dry Gas lb/lbmol 29.99 29.93 29.96 29.98 Ms Molecular Wt. Stack Gas lb/lbmol 28.48 28.51 28.39 28.47 Ts Avg Stack Temperature oF 433.5 433.4 432.4 434.8 As Stack Cross Sectional Area Sq. Ft.0.922 0.922 0.922 0.922 PG Stack Static Pressure In. H2O -1.40 -1.40 -1.40 -1.40 Pbp Sample Port Barometric Pressure In. Hg. Abs 25.47 25.47 25.47 25.47 Ps Stack Pressure In. Hg. Abs 25.367 25.367 25.367 25.367 Qs Stack Gas Volumetric Flow Rate (Std)dscfm 2.83E+03 2.69E+03 2.75E+03 2.67E+03 Qa Stack Gas Volumetric Flow Rate (Actual)cfm 6.46E+03 6.10E+03 6.30E+03 6.11E+03 Ave for Vs Velocity of Stack Gas fpm 7.01E+03 6.61E+03 6.83E+03 6.63E+03 Runs 1, 3 & 4 CNOx Concentration of NOx ppmdv 95 94 101 101 99 CCO Concentration of CO ppmdv 508 489 499 506 504 ERNOx Emission Rate of NOx lb / hr 1.92 1.81 1.99 1.94 1.95 ERCO Emission Rate of CO lb / hr 6.26 5.74 5.97 5.89 6.04 Prod Engine Production Kw 886.2 882.6 884.0 885.2 885.1 Prod Engine Production Hp 1188 1184 1185 1187 1187 Prod Engine Production bhp 1188 1184 1185 1187 *1187 ERNOx Emission Rate of NOx g/bhp-hr 0.734 0.694 0.761 0.742 0.746 ERCO Emission Rate of CO g/bhp-hr 2.391 2.200 2.287 2.254 2.311 *Calculatin assumes that the bhp was equal to the produced electricity which assumes 100% efficiency. If a lower efficiency was used, the bhp would higher and the calculated g/bhp-hr values would be less. As =stack cross-sectional area (ft3) AS∆P =see √∆P Btu =unit heat value (British thermal unit) Bws =fraction of water in stack gas CO2 =percent carbon dioxide in the stack gas Cp =pitot tube coefficient (0.84) Cgas =concentration (ppm dry basis) of sampled gas using Method 6C, 7E, or 10 corrected for bias checks. Species symbol replaces gas. Cgas (corr)=actual gas concentration corrected to desired percent O2 Cgas (lb/dscf)=gas concentration converted to lb/dscf Deq =equivlent diameter for rectangular stack ∆H =orifice pressure drop (inches H2O) ∆H@ =orifice pressure (inches H2O) ∆P =stack flow pressure differential (inches H2O) Ds =diameter of the stack (feet) EA =percent excess air Ergas =emission rate of a gas (lb/hr) ERmmBtu =emission rate per mmBtu or ton of fuel etc. ERX =emission rate of compound which replaces x mBtu =thousand Btu Md =molecular weight of stack gas, dry basis (lb/lb-mol) mmBtu =million Btu Ms =molecular weight of stack gas, wet basis (g/gmol) Mwgas =molecular weight of gas species (lb/lb-mol) N2 =percent nitrogen in the stack gas O2 =percent oxygen in the stack gas √∆P =average of the square roots of ∆P (may also be referred to as AS∆P) Pbm =absolute barometric pressure at the dry gas meter (inches Hg) Pbp =absolute barometric pressure at the sample location (inches Hg) PG =stack static pressure (inches H2O) Ps =absolute stack pressure (inches Hg) Pstd =absolute pressure at standard conditions (29.92 inches Hg.) θ =time of test (minutes) Qa =stack gas volumetric flow rate (acfm) Qs =stack gas volumetric flow rate (dscfm) Qw =wet stack gas std. volumetric flow (ft3/min, wscfm) R =gas constant (21.85 inches Hg*ft3/(lbmol*R)) Tm =meter temperature (oF) Ts =stack temperature (oF) Tstd =absolute temperature at standard conditions (528oR) Tt =see θ Vm =sample volume (ft3) at meter conditions Method 4 and Gases Nomenclature Method 4 and Gases Nomenclature Vmstd =volume standard (dscf), sample volume adjusted to 68oF and 29.92 inches Hg. Vs =velocity of stack gas (fpm) Vw =volume water vapor (scf) at 68oF and 29.92 inches Hg. Wtwc =weight of the condensed water collected (grams) Xd =fraction of dry gas Y =meter calibration Y-factor (dimensionless) As =(Ds2 / 4) • π Bws =Vw / (Vmstd +Vw) Cgas (corr)=CX (avg) • (20.9 - desired %O2) / (20.9 - actual %O2) Deq =2 • L • W / (L + W) EA =(%O2 - 0.5 %CO) / [0.264 %N2 - (%O2 - 0.5 %CO)] Ergas =Pstd • Qs • Mwgas • Cgas • 60 / (R • Tstd • 106) Ergas =Cgas(lb/dscf) • Qs • 60 (Either ERgas equation gives equivalent lb/hr values to 3 sig. figures) ER(mmBtu)=Cgas(lb/dscf) • Fd • (20.9/(20.9 - %O2), Method 19 Equation 19-1 Md =CO2 • 0.44 + O2 • 0.32 + N2 •0.28 Ms =(Md • Xd) + (18 • Bws) Ps =Pbp + (PG / 13.6) Qa =Vs • As Qs =Qa • Xd • Ps • Tstd / [(Ts + 460) • Pstd] Qw =Qs / Xd Vmstd =Vm • Y • Tstd • (Pbm + ∆H / 13.6) / [Pstd • (Tm + 460)] Vs =85.49 • 60 • Cp • √∆P • √ [(Ts + 460) / (Ps • Ms)] Vw =Wtwc • 0.04715 Xd =1 - Bws Method 4 and Gases Sample Equations B APPENDIX B Preliminary Velocity Traverse and Sampling Point Location Data Method 4 Field Data Sheet Gas Analyzer Field Data Sheets and Data Logger Printout Stratification Check Prelim 4 pts I Facility North Davis Sewer District Stack Identification Waukesha 923 kW Engine Date 9-LI--H ~o N Barometric Pressure Pbm..),,,r..!,_V in Hg PbP )i!,,,.l""'✓.zinHg Static Pressure (PG) ~ /, 'f# in H2O ~ Stack Dia. 13.00 Ports are ~ 104" Ports are 160" Traverse Percent Point Diameter 1 6.7 2 25.0 3 75.0 4 93.3 Reference: 2.00 Upstream from next disturbance Downstream from last disturbance Distance From: ID Reference 0.87 2.87 3.25 5.25 9.75 11.75 12.13 14.13 Averages: Estimated Moisture (Bw,) a Sample Height from Ground ~ 25' Comments: Time: Ports A If ff 7 II Ts ___ _ ~P __ _ B ~ 7 'I I). L Flow ✓~P C D ---- KEY=> ~IT_s ___ ~_P_L._F_lo_w~I % feet E F ·, M_!1__ Field Data Sheet TETCO Filter M_ Sample Box_p__ Page _l_ of __ l Run # --L- Plant: North Davis Sewer District Date: °{ -11 -2£-1 Traverse Time DGM Point Clock Min (0) (ft)) /-f ~' 1 lr1•.~ 0.0 f I c; f?t) y 1 ~,'q-,D 2 7.5 3 15.0 ,£o I'.<'.; I (1 4 22~5 '2..::;' -:l_l~ & 1 q1 J/ 30.0 "1t () ~ I c::;0 2 37.5 l'htJ tt: .. 0 fl 3 45.0 '1. q L.JZ° 2- 4 52.5 /_I /.J . "o r:;r, {;-LJ J 60.0 t/CI' ft?/,1.,. 371&'1'L- Average 6P 6H (mH,01 Vacuum (inHP) Desired Actual (in Hg) "J ,6 l' I cO/) 1,01) '7- '?,{)~ ! () () I n r, ""}__,,. 7JJ-r:; I r'J f) I, t) f} ?_ 7-.,)4 ·, I)/} f f')f) -, 2,lt: t: oo t ·Ot) 1-- :Z.1 7J >II {JO I •(),f '2--- '2-,'11 hO() f I {)I) ~ /J .1 ~, , () r., HOl ,., , _x --"· 'J' ~ .-~ ,_ < V 'J ,.uv V J/-Gf7;, ~m ✓ I L~~~,m, ~ ~ t,O-v Location: Waukesha 923 kW Engine f Operator: .:Tevefli t v(,Vl O,tf{,yo . I i Temperatures ('F) Stack (T,) Probe Oven Filter Effluent J .11..'7 1-1,D ............... ............... 1;;,.,.1 ,_}{.-z, 1 c:;rA ........._ ........._ (;o,7, 'J~~ J/_,,? ........._ ........._ i:? t,-/1-JL-I 1/i 'Zi ~ --.......... i_,J,( i.J ':-1-i ,;,it? ~ ~ tl/1 I;_;~ L1 -c:t: ........._ -'-,'a . 1-½" 7//( !VO ........._ ........._ tifl l-P 7 r; lln 7,.- ........._ ........._ cAl .-, ---_, /.-1 '1Y! I ...,-1 ........ ....... '-7,)'-', ✓ --.......... ........._ ........._ ........._ ~ --.......... ~ ~ ~ ~ ~ ~ ~ ~ 01-t&0 L{?;i![ DGM Temp (Tm) Out In N ,4 0 7/r, -,-z, !} -?fn --,~ Stack Diameter ~1=3~"---Port Reference _1:__ • ,_,_ 27; ½:.-; -½rI-; 17'h 74{ -J / l7 .__;~ -=[q --,a ):,.;,., lfi~'f '-~ J ._ -- Ports are Ports are ,.,., ,,._., ..£?4" #4" ~ IJ-'f t:J ~ Upstream from next disturbance 160" Downstream from last disturbance Assumed Moisture 12 % Probe )'. b<:? Cp 0.84 Nozzle Calibration __ NA _____ _ Avg D. NA inches Gas Bag ,,1--,, It /y i ~ ,,- Console~ Y-FactoM!fJ!_ llH@ J, .. 1('7 inH,0 Leak Check: ft3/min Barometric Pressures Pbm ,Z :5_ 5V in Hg Pbp 2, t;, 5:z_ in Hg . P0 -} , 'f inH20 Pre Post ,oo/ vacinHg_-212.. 01DQO ~ Pitot Rate -12..:._ 0 lnH20 !::f_ &, !) -!:L 1 Water Collected 2::Z O g Time S~~pled 6 a min ~ .,.. Review J01M71.,.;-K= @Tm K= @Tm Comments: TimelkW TimelkW f<w i:55' '5177 ~;tO ~q~ q~t' 4) l1t1...!1._ Field Data Sheet Plant: North Davis Sewer District Date: q~ \\ • 1H Traverse Time DGM tiP iiH i;nH,O) Point Clock 1 JO•DI- 2 3 4 1 I 0! 1,c, 2 3 4 t1:oc; Total Average Comments: Min (0) (ft'J (inH20) Desired 0.0 ~1q, 41...( 1-,ll. I. I 7.5 c::--Z • D \-1.Z:, 1.01 I I 15.0 ?:L./ 'i{~) 1_.Jt I I 22.5 -z;-7.? S(t( "1 I 0 I 1 30.0 i;-q I {b\S9 r,1c; LI 37.5 rA ,.t;OI 1,,¢ J, 1 45.0 r';;~, fJ 1s !.10 l ."I 52.5 (IJ~.'ff«7 /"77 I l 60.0 -u) 1'11.. 2-0. g; r ✓ IIJll~b I ✓ /, I{ TimelkW JD:o~ -oir /0.'10 ~7q ,oi; ~tcS~ Actual I, I I J ·1 I I \ l I l r ! i.1 f J /,_!IC) TETCO V Filter__M__ Sample Box~ Location: Waukesha 923 kW Engine ., •~ Operator: :j""e✓ ~ /41 / {./ h U;/7'1 ~- Vacuum Temperatures ('F) DGM Temp (Tm) (in Hg) Stack (T,) Probe Oven Filter Effluent Out In -')_ 1-11..H /(Y) .___ .___ !&-i 74? ,c:; Page _l_of __ l Run# Z. i N A'-0 !} '2. /47,i,J ·12..7 -............. -.............. <']~ 11 7Ci' Stack Diameter __,,l-=-3'_' __ Port Reference -1:_ ~ L-11,i./ 11-4 -............. ............... '17 -")_ I 1-'t.W l '7_'7 -............. -............. 7( ~ 1-/J/7, 'l ?--5 ............... t,. ·7 /- ,7 L-J '2, r:; /--Z I ............... -.............. '1< '1 "] i/31-) 2,:, -.............. -.............. C{I 1-. t-11-ic; 1,,7~ -.............. ~ 01 -............. -............. -............. -............. -............. -............. -............. -............. -............. -............. -............. -............. -............. -............. -............. -............. J'f1,7 TimelkW ! o: II {lql tJ, 9),- 775' ,'7 7h /UJ -, ft, -Ji# '· 1c;' 7C 1J:.I -~ ~c: ~£/ -,;:(' Ports are Ports are ~If~ .76',15 ~ Upstream from next disturbance 160" Downstream from last disturbance Assumed Moisture Probe ~w g__% Cp 0.84 Nozzle Calibration NA _____ _ AvgDn NA inches Gas Bag .J-n q /~ -z e-,.. Console~H Y-Factor ~(>1 °f9B7 iiH@ i 1 7 ( l;nH 2O Leak Check: ft3/min vacinHg Barometric Pressures Pbm 7.. !71 q-o in Hg Pb0 'kbk ~].... in Hg Pr. ......., [,J./_ _inH 20 Pre Post £),0 _fil 0 JZ"zo _s:: Pitot Rate {2 I 0 0,0 lnH20 ~ Water Collected Time Sampled Review -1i- J'l)wt:/ 6t2 ,.. ~-==== K= K= @Tm @Tm g min ,!/{J____!i Field Data Sheet TETCO Filter a_ Sample Box ,::::: Page __l_ of __ l Run # ---ffe. Plant: North Davis Sewer District Date: t?f -/ L--Z!{ Location: Waukesha 923 kW Engine f Operator: :::Fe✓.tf?Pl I Ct A. D,i?f.A-b I A Traverse Time DGM dP dH {mH,oJ Vacuum Temperatures rFJ DGM Temp (Tm) Point Clock Min (9) (ft3) (inH20) Desired Actual (inHg) Stack (T,) Probe Oven Filter Effluent Out In 1 lf'."2.1 0.0 ,o, (o zi 2., oc, I.L>O t.oo 2-'-13 <, ·1-1~ ...........___ M 1f? -r2 i N ,4. 0 !J 2 7.5 ,c;,47c;-1-,05> /. oD l .oo '7.. l-/3'7 2~{tt ~ -----. he;{ -re, 71,-/ Stack Diameter _1,..,3:..." __ _ Port Reference _1"__ 3 4 \3 1 I[ :.si 2 3 4 /'l.. ', 1« Total Average Comments: 15.0 ... ,..,,,.'0,0C n.,lo 1 r,Q I on L /..f?,L-{ 1.£./'i ,............__ ,............__ 22.5 tV-{.ltJ'J l./0 I. o O I, o O z. Lf3! 2-l{ i) ~ ,............__ 30.0 qq ,1-tii'!J 1AJG /,00 f,t)(} ,,-t-i-[ l 'f ? /}f.? ,............__ ~ 37.5 ti t-1 ':i ltli" l,O l.tJO I o<J ?_ 4~Ci z:i,o -----. ............ 45.0 qq, J Z.6 /,q~ Loo !,tJO 2 1,..1,Z,l:i z;g~ -----. -----. 52.5 [CJ'3, 'b40 1,or I <'1r1 1.00 l-i17, C, 1--~l ~ ~ 60.0 1,Q~,fn-40 ,............__ ,............__ ,............__ ,............__ ,............__ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ,ti,Of ~ ✓ fl,L/O<ft ✓ 1,t-f25'l l, t)O ~31151 ~ L--!32-37':J TimelkW / 1:1:JO ?(q?- } I ~~5' ~g-q ri~oo 751, TimelkW 12:1.,1 'if 1'3 1)-.;-7 i/'76 (.,.:;, 1'C, b3 75 t, 3 75 (,,, "?, 7-r;- ic:r ,~ (of,? 7?, 17 77 7fi '7t:t <ff/) 7C/ . Ports are Ports are pf~ /21~ 10,IZb ~ Upstream from next disturbance 160" Downstream from last disturbance Assumed Moisture 12 % Probe '30-2 Cp 0.84 Nozzle Calibration NA _____ _ Avg Dn NA inches Gas Bag -In q /y 'Z ~,,,. Console_!j_ Y-Factor I qqg' AH@ /,7/~ inH20 Barometric Pressures Pbm -Z ~• 5"'"0 in Hg Pb0 "2§ 1 S2--in Hg Pa -/,LJ. inH20 Leak Check: Pre Post ft3/min 0,0 0,000 vac in Hg ~ _:[_ PitotRate (20 o,D lnH20 1-L._ -d- Water Collected Ld1·t Time Sampled L Review · ~ -----___.,... K= K= @Tm @Tm g min Lft1_!j_ Field Data Sheet Plant: North Davis Sewer District Date: q-[/-J..q Traverse Time DGM Point Clock Min (0) (ft)) A. 1 1'/..'5{) 0.0 'I,/~? 2 7.5 J'l,,)O'J 3 15.0 (tp l~'tS B 4 22.5 7-1., 'f/io 1 !3~z..z. 30.0 2,.502- 2 37.5 '3 2,, I &5' 3 45.0 'i;,0 «or;- 4 52.5 '-lt.4.S-0 l-;: c;:z. 60.0 J../t-( 270 35', lO~ Average Comments: Time ti:SV J 1,; off l 3~ Z-f) TETCO Filter £IL_ SampleBox_JZ___ Page_l_of __ l Run#_!j_ Location: Waukesha 923 kW Engine f Operator: ,:J't,t~j'VJ I cvh. tJ;f)f-/1# i , LiP LiH (m H,oJ Vacuum Temperatures m (inH:P) Desired Actual (in Hg) Stack (T,) Probe Oven Filter 1..,lt' I .oo I, tJO ,z__ J-t'1,~ M7 -........__ -........__ 115 r.oo f,f)O '1. J..{-;/.{ "7-?7 .........___ ........_ ,z_, l 5 l 00 l,f/0 -2_ I-/';~ "'2-?/l .........___ .........___ '2. ,~ 1.00 1.00 1-t . .g 4 1,.:2,0 .............__ .............__ I ,{AO I, (":ri f ,(')0 '1 t-f~., --;q I .............__ .............__ l ,7n I, (}0 {, ()() 2 41, ,;-'24"1, .............__ ............... LtO 1,00 { I 00 7_ J...{3 Li 2.t/11 ............... .............__ I. 4{'(, 1,m> l,()0 ?_ J../~5 J.J-11,, ............... ............... ............... .............__ ............... ............... ............... .............__ ............... ............... ............... ............... ............... ............... .........___ ........_ .........___ ........_ ✓ l l.O&'J,,;,-l 10 1,l-{1$ ✓ ~ 1, () 1-l"bt-f,1~ kW Time kW f66"l-1:;:,5 <oqt/J ?!1fJ t):$"{} t&O '67Co Effluent b'i ~7) b'"6 (p~ hb (,.,~ r~6 tp7 DGM Temp (Tm) Out In ru-; 7b N A-0 !} 7l? ;Cf Stack Diameter -"13,_" __ _ Port Reference ..L_ ,-, xD 77 BO 7~ 77 77 gz. 7« 'h'Z- ,i:/. '/52- 11,;-~ I . ' [/ ! ,,.., Ports are Ports are ~ 1C6 ,L.f 3 7 ~ Upstream from next disturbance 160" Downstream from last disturbance Assumed Moisture 12 % Probe ~b'? Cp 0.84 Nozzle Calibration NA _____ _ AvgD. NA inches Gas Bag ,I;, q /y -z: ~ ,,- Console ~ I Ctt'f73 Y-Factor LiH@_l,7/(? inH20 Leak Check: ft3/min vacinHg PitotR.ate lnH20 Barometric Pressures- Pbm ,Z.{;,'5" CJ Pb0 'Z 5', 5"" _;i. in Hg in Hg inH20 Pa -} •l-f Pre Post o--:o 0.,000 7..,() ~ o.D __Q_O !j_ ____!z g WaterCollected ~9: 2 Time Sampled 6 't2 min Review ~ /' K= . @Tm K= @Tm Facility North Davis Sewer District Source Waukesha 923 KW Engine Gas Species NO, co CO2(%) 02(%) Calibration Gas I 0 0 0.00 0.00 Calibration Gas 2 126 481 9.75 9.77 Calibration Gas 3 234 920 20.41 20.73 Calibration Gas 4 Calibration Gas 5 Cal. Response Gas I I ;., -P,//1 t>.t:,J Cal. Response Gas 2 J).7 ctBI) 'i, 7~ ct.11- Cal. Response Gas 3 1 '\ 7 'll.1 ')0,/0 (,;l(!)")J ,. Cal. Response Gas 4 Cal. Response Gas 5 Cal. Response Gas 1 Cal. Response Gas 2 Cal. Response Gas 3 Cal. Response Gas 4 Cal. Response Gas 5 Comments: All values are either ppmdv or mole percents. Corrected averages are analyzer averages corrected using equation 7E-5 unless otherwise indicated. Rate is sample flow rate in cc/min. and is set within analyzer manufacturer specifications. ,.... Gas Analyzer Field Data Operator .d f/Jc4,h, Date 9-//",;.{ Response Time 1 7£: Start Time: Run: I Port Change: Gas Species EndTime: f Port Change: Gas Species End Time: // t1/ J-NOx Rate (cc min.) Zero Initial Bias -~----+---t---..,,...,::t---~'--:lr----11 Zero Final Bias Span Initial Bias~-'----,.-t-4--½,f-r.-l-~=:--'--+-''="'~~r-~--1 Span Final Bias Analyzer Raw A verage1-..::.....:---1--d....,.......;..-1-...t-.,...:..-'--1-=""-!==1~---1 Corrected Average Start Time: End Time: . Analyzer Raw AverageJ-#'-::;_'-"''-:--t-+:-:--!'7'-::;.l--h~~+-f::::"--F!"~~---1 Corrected A. verage Start Time: Run: Time NOx ppm CO ppm CO2 %O2 %Time NOx ppm CO ppm CO2 %O2 %Time NOx ppm CO ppm CO2 %O2 %Time NOx ppm CO ppm CO2 %O2 % 8:38 98 514 10.03 9.25 10:04 90 491 9.63 9.19 11:27 99 498 9.86 9.23 12:50 103 502 10.03 9.25 8:39 98 515 10.03 9.25 10:05 90 490 9.59 9.19 11:28 98 496 9.80 9.22 12:51 103 501 10.04 9.25 8:40 97 513 10.02 9.24 10:06 90 490 9.60 9.19 11:29 99 498 9.84 9.22 12:52 103 502 10.05 9.25 8:41 98 513 10.01 9.24 10:07 88 486 9.59 9.19 11:30 98 497 9.85 9.22 12:53 103 501 10.04 9.25 8:42 94 506 9.91 9.23 10:08 90 487 9.54 9.19 11:31 99 500 9.91 9.23 12:54 103 502 10.05 9.25 8:43 97 510 9.98 9.24 10:09 91 489 9.53 9.19 11:32 99 500 9.93 9.23 12:55 104 497 10.07 9.25 8:44 99 514 10.00 9.23 10:10 92 490 9.59 9.19 11:33 100 502 9.91 9.23 12:56 101 498 10.04 9.25 8:45 98 514 10.02 9.24 10:11 92 491 9.62 9.19 11:34 99 501 9.91 9.22 12:57 104 501 10.05 9.25 8:46 99 517 10.03 9.23 10:12 89 490 9.61 9.20 11:35 100 500 9.91 9.22 12:58 104 499 10.05 9.25 8:47 98 513 10.03 9.23 10:13 92 493 9.65 9.20 11:36 100 502 9.91 9.21 12:59 101 500 10.02 9.25 8:48 99 515 10.05 9.22 10:14 92 492 9.67 9.20 11:37 101 502 9.91 9.21 13:00 102 499 10.03 9.25 8:49 96 513 10.03 9.23 10:15 91 492 9.66 9.21 11:38 100 500 9.90 9.22 13:01 104 502 10.05 9.25 8:50 98 515 10.05 9.22 10:16 92 494 9.68 9.21 11:39 101 502 9.91 9.21 13:02 104 500 10.05 9.24 8:51 95 509 10.06 9.22 10:17 93 496 9.69 9.21 11:40 99 498 9.87 9.23 13:03 102 497 10.05 9.24 8:52 94 509 10.03 9.22 10:18 94 495 9.70 9.21 11:41 101 502 9.89 9.24 13:04 102 498 10.03 9.25 8:53 94 512 10.03 9.22 10:19 94 495 9.70 9.21 11:42 101 503 9.89 9.25 13:05 103 499 10.04 9.25 8:54 97 515 10.06 9.22 10:20 95 496 9.70 9.21 11:43 102 503 9.89 9.25 13:06 102 479 10.03 9.27 8:55 96 513 10.06 9.21 10:21 94 496 9.69 9.21 11:44 101 501 9.87 9.25 13:07 102 501 10.01 9.27 8:56 96 513 10.06 9.21 10:22 96 497 9.71 9.21 11:45 100 501 9.87 9.25 13:08 100 499 9.99 9.27 8:57 96 513 10.05 9.22 10:23 95 497 9.69 9.21 11:46 102 504 9.92 9.24 13:09 100 499 9.98 9.27 8:58 97 512 10.05 9.22 10:24 96 496 9.70 9.21 11:47 103 505 9.93 9.25 13:10 101 501 9.99 9.26 8:59 94 510 10.00 9.21 10:25 95 494 9.70 9.21 11:48 102 505 9.93 9.25 13:11 101 499 9.98 9.27 9:00 95 512 10.04 9.21 10:26 94 492 9.69 9.21 11:49 99 501 9.90 9.25 13:12 104 504 10.02 9.27 9:01 93 511 10.01 9.21 10:27 96 496 9.72 9.22 11:50 100 502 9.88 9.25 13:13 103 502 10.02 9.27 9:02 93 509 9.99 9.22 10:28 94 493 9.68 9.22 11:51 101 503 9.91 9.25 13:14 103 502 10.02 9.27 9:03 94 511 10.01 9.21 10:29 94 492 9.70 9.22 11:52 102 503 9.92 9.25 13:15 102 501 9.99 9.27 9:04 93 509 10.02 9.22 10:30 94 494 9.70 9.22 11:53 103 504 9.94 9.26 13:16 102 501 10.01 9.26 9:05 95 511 10.04 9.21 10:31 94 494 9.70 9.22 11:54 103 504 9.93 9.26 13:17 101 498 9.99 9.26 9:06 95 512 10.05 9.20 10:32 95 495 9.72 9.22 11:55 104 506 9.95 9.26 13:18 104 503 10.02 9.26 9:07 95 512 10.04 9.20 10:33 96 496 9.75 9.22 11:56 101 502 9.92 9.25 13:19 103 501 10.03 9.26 9:08 94 511 10.04 9.19 10:34 96 497 9.76 9.23 11:57 13:20 9:09 10:35 11:58 port change 13:21 9:10 port change 10:36 port change 11:59 13:22 port change 9:11 10:37 12:00 99 502 9.62 9.25 13:23 9:12 96 513 9.99 9.18 10:38 93 495 9.64 9.22 12:01 102 505 9.78 9.25 13:24 9:13 96 514 10.01 9.19 10:39 96 496 9.69 9.23 12:02 103 503 9.82 9.25 13:25 102 499 10.03 9.26 9:14 97 515 10.05 9.18 10:40 96 496 9.71 9.23 12:03 101 502 9.83 9.26 13:26 103 498 10.04 9.26 9:15 97 514 10.07 9.19 10:41 96 497 9.72 9.23 12:04 103 503 9.86 9.27 13:27 104 499 10.03 9.27 9:16 96 514 10.06 9.19 10:42 96 495 9.74 9.23 12:05 104 504 9.88 9.27 13:28 103 498 10.01 9.26 9:17 96 514 10.08 9.17 10:43 96 496 9.73 9.23 12:06 104 502 9.88 9.27 13:29 102 498 9.99 9.26 9:18 99 516 10.11 9.17 10:44 97 498 9.75 9.22 12:07 104 501 9.88 9.27 13:30 101 500 10.03 9.26 9:19 96 514 10.08 9.17 10:45 97 497 9.75 9.23 12:08 104 500 9.89 9.27 13:31 104 502 10.04 9.26 9:20 96 513 10.07 9.17 10:46 98 498 9.75 9.23 12:09 103 500 9.88 9.26 13:32 102 499 10.03 9.25 9:21 96 513 10.08 9.16 10:47 97 496 9.76 9.23 12:10 103 496 9.88 9.26 13:33 103 499 10.01 9.27 9:22 95 512 10.07 9.16 10:48 98 498 9.76 9.23 12:11 103 495 9.87 9.26 13:34 102 500 9.99 9.27 9:23 96 514 10.08 9.17 10:49 98 498 9.77 9.23 12:12 103 493 9.88 9.26 13:35 102 499 9.98 9.27 9:24 94 508 10.08 9.18 10:50 100 500 9.78 9.23 12:13 104 492 9.80 9.26 13:36 105 502 9.99 9.27 9:25 97 510 10.10 9.17 10:51 99 499 9.77 9.23 12:14 104 491 9.82 9.26 13:37 104 500 10.03 9.26 9:26 96 509 10.09 9.18 10:52 99 499 9.78 9.24 12:15 103 490 9.79 9.26 13:38 101 497 10.04 9.27 9:27 94 507 10.05 9.18 10:53 98 499 9.77 9.26 12:16 102 489 9.79 9.26 13:39 102 502 10.03 9.27 9:28 95 510 10.06 9.18 10:54 96 495 9.76 9.27 12:17 103 487 9.82 9.26 13:40 102 499 10.01 9.27 9:29 96 510 10.07 9.18 10:55 99 499 9.78 9.27 12:18 104 471 9.83 9.25 13:41 102 499 9.99 9.25 9:30 95 508 10.06 9.18 10:56 98 498 9.77 9.25 12:19 107 506 9.89 9.26 13:42 102 500 9.98 9.27 9:31 95 510 10.06 9.18 10:57 97 496 9.77 9.24 12:20 105 506 9.87 9.26 13:43 105 499 9.99 9.27 9:32 97 514 10.07 9.18 10:58 96 496 9.76 9.24 12:21 103 507 9.85 9.26 13:44 104 502 9.99 9.27 9:33 97 514 10.08 9.18 10:59 97 495 9.76 9.24 12:22 105 508 9.87 9.26 13:45 98 499 10.03 9.27 9:34 97 513 10.07 9.18 11:00 99 495 9.73 9.24 12:23 103 500 9.84 9.26 13:46 100 499 10.04 9.26 9:35 96 513 10.05 9.18 11:01 97 494 9.70 9.24 12:24 105 483 9.86 9.26 13:47 100 500 10.03 9.27 9:36 97 514 10.07 9.18 11:02 96 495 9.74 9.24 12:25 102 485 9.84 9.26 13:48 102 499 10.03 9.27 9:37 98 516 10.08 9.19 11:03 100 498 9.77 9.24 12:26 103 487 9.84 9.26 13:49 102 502 10.02 9.27 9:38 94 511 10.05 9.19 11:04 101 499 9.78 9.24 12:27 102 487 9.82 9.26 13:50 105 500 10.01 9.28 9:39 96 513 10.05 9.19 11:05 97 494 9.75 9.24 12:28 103 490 9.82 9.26 13:51 104 498 10.01 9.28 9:40 94 511 10.04 9.19 13:52 103 499 10.01 9.29 9:41 95 513 10.05 9.20 Avg 96 512 10.05 9.20 Avg 95 495 9.71 9.22 Avg 102 499 9.87 9.25 Avg 102 500 10.02 9.26 North Davis Sewer District Waukesha 923 kW Lean Burn Engine (9/11/24) Run 1 Run 2 Run 3 Run 4 Time NOx ppm CO ppm CO2 %O2 %Time NOx ppm CO ppm CO2 %O2 %Time NOx ppm CO ppm CO2 %O2 %Time NOx ppm CO ppm CO2 %O2 % North Davis Sewer District Waukesha 923 kW Lean Burn Engine (9/11/24) Run 1 Run 2 Run 3 Run 4 Gas Val 126 481 9.75 9.77 Gas Val 126 481 9.75 9.77 Gas Val 126 481 9.75 9.77 Gas Val 126 481 9.75 9.77 Zeroinitial 1 3 0.00 0.10 Zeroinitial 1 4 0.04 -0.05 Zeroinitial 2 4 0.06 0.01 Zeroinitial 2 4 0.08 0.10 Zerofinal 1 4 0.04 -0.05 Zerofinal 2 4 0.06 0.01 Zerofinal 2 4 0.08 0.10 Zerofinal 0 3 0.13 0.20 Spaninitial 126 478 9.67 9.65 Spaninitial 128 492 9.64 9.82 Spaninitial 126 481 9.69 9.88 Spaninitial 127 481 9.65 9.87 Spanfinal 128 492 9.64 9.82 Spanfinal 126 481 9.69 9.88 Spanfinal 127 481 9.65 9.87 Spanfinal 127 469 9.71 9.94 Corr.95 508 10.14 9.23 Corr.94 489 9.79 9.15 Corr.101 499 9.95 9.15 Corr.101 506 10.10 9.13 Calibration Calibration Calibration Calibration Span 234 920 20.41 20.73 Span 234 920 20.41 20.73 Span 234 920 20.41 20.73 Span 234 920 20.41 20.73 Zero Cal Gas 0 0 0.00 0.00 0 0 0.00 0.00 0 0 0.00 0.00 0 0 0.00 0.00 Mid Cal Gas 126 481 9.75 9.77 126 481 9.75 9.77 126 481 9.75 9.77 126 481 9.75 9.77 High Cal Gas 234 920 20.41 20.73 234 920 20.41 20.73 234 920 20.41 20.73 234 920 20.41 20.73 Zero Resp 1 2 -0.01 0.01 1 2 -0.01 0.01 1 2 -0.01 0.01 1 2 -0.01 0.01 Mid Cal Resp 127 480 9.76 9.75 127 480 9.76 9.75 127 480 9.76 9.75 127 480 9.76 9.75 High Cal Resp 237 921 20.10 20.75 237 921 20.10 20.75 237 921 20.10 20.75 237 921 20.10 20.75 Ana. Cal. Error (ACE)ACE ACE ACE Zero Cal Error 0.43%0.22%-0.05%0.05%0.43%0.22%-0.05%0.05%0.43%0.22%-0.05%0.05%0.43%0.22%-0.05%0.05% Mid Cal Error 0.43%-0.11%0.05%-0.10%0.43%-0.11%0.05%-0.10%0.43%-0.11%0.05%-0.10%0.43%-0.11%0.05%-0.10% High Cal Error 1.28%0.11%-1.52%0.10%1.28%0.11%-1.52%0.10%1.28%0.11%-1.52%0.10%1.28%0.11%-1.52%0.10% System Bias (zero, SB)SB SB SB Sys Zero Cal Bias Initial 0.00%0.11%0.05%0.43%0.00%0.22%0.24%-0.29%0.43%0.22%0.34%0.00%0.43%0.22%0.44%0.43% Sys Zero Cal Bias Final 0.00%0.22%0.24%-0.29%0.43%0.22%0.34%0.00%0.43%0.22%0.44%0.43%-0.43%0.11%0.69%0.92% System Zero Drift (D)0.00%0.11%0.20%0.72%0.43%0.00%0.10%0.29%0.00%0.00%0.10%0.43%0.85%0.11%0.24%0.48% System Bias (upscale, SB)SB SB SB System Cal Bias Initial -0.43%-0.22%-0.44%-0.48%0.43%1.30%-0.59%0.34%-0.43%0.11%-0.34%0.63%0.00%0.11%-0.54%0.58% System Cal Bias Final 0.43%1.30%-0.59%0.34%-0.43%0.11%-0.34%0.63%0.00%0.11%-0.54%0.58%0.00%-1.20%-0.24%0.92% System Cal Drift (D)0.85%1.52%0.15%0.82%0.85%1.20%0.24%0.29%0.43%0.00%0.20%0.05%0.00%1.30%0.29%0.34% CGas = (Cavg - C0) • [Cma / (Cm - C0)]Eq. 7E-5 C0 = (C0i + C0f) / 2 Cm = (Cmi + Cmf) / 2 ACE = (CDir - Cv) • 100% / CS Eq. 7E-1 SB =(Cs - CDir) • 100% / CS Eq. 7E-2 Drift (D) =ABS(SBfinal - Sbinitial)Eq. 7E-4 STRATIFICATION CHECK FIELD SHEET Facility NDSD Source Waukesha 923 kW Lean Burn Operator Dean Kitchen Date 9/11/24 Time O2 %Time O2 %Time O2 % 8:00 9.24 8:05 9.22 8:10 9.23 8:01 9.24 8:06 9.23 8:11 9.23 8:02 9.23 8:07 9.22 8:12 9.23 8:03 9.23 8:08 9.22 8:13 9.24 8:04 9.23 8:09 9.23 8:14 9.24 Ave 9.23 9.22 9.23 3 Pt. Mean 9.23 9.23 9.23 % Diff From Mean 0.04 0.07 0.04 -The three sample points were on the east/west traverse line. -If the % diff from mean is less than 5%, one sample point may be used. Use the sample point that gave the value closest to the mean value. -If the % diff from mean is between 5% and 10%, use three sample points at 16.7, 50.0, and 83.3 % of diam. -If the % diff from mean is greater than 10%, sample 12 points chosed according to EPA Method 1. Point 1 Point 3Point 2 C APPENDIX C Sample Recovery Method 4 Facility: North Davis Sewer District Stack Identification: 1/v'~ dd1h~ f)·) Date: t -L 1-J-t IMP[NGERS IMPH~GIERS '~ Run: _ __,_ __ Sample Box: D Impinger Number _l.,, 2_ I i I --4-I 5 Initial Volume ofliquid (HP) in impingers, (ml) 100 Total (g) 7' ?; 0 ====t:::::=f==:== Run: h Sample Box: L-- lmpfoger Number _1.,, .,.L I i I 4.. I 5 mi.._ Initial Volume ofliquic.l (H2O) in impingers, (ml) 100 100 ! I SilicaGel I 1 J 4 Total (g) F(/, c.,/ ========== HMiP'INGEIRS ,./ Run: S Sample Box: t" 7 ---- lmpinger Number _1.,, 2. I i I ,,4= I -2--~ Initial Volume of liquid (H2O) in impingers, (ml) I 00 I 00 ! I Silica Gel I Total (g) /~. / ==±===~=== ,llMIPHNGERS Run: --·-1t/~-Sample Box: (/ Jmpinger Number _L -h I i I 4.. I _J___ Initial Volume of liquid (l-12O) in impingers, (ml) 100 l 00 I I Silica Gel I I 2 • J 4 Total (g) ===.w-'!='r':f=_. _=-=_=f:.o/= .. =· = Ilrnifo1ls a hl!tiais D APPENDIX D Figure 1. Facility Schematic Representation Raw Production Data (Recorded on the Method 4 Field Data Sheet) Figure 1. Facility Schematic Representation Facility: Stack Identification: ∅ NDSD 11.0% 450 7,000 Waukesha 923 kW Engine ~ 104" 160" α: Distance upstream from next disturbance, in. β: Distance downstream from last disturbance, in. 25'γ: Distance of Sample Level to Ground, feet EngineType: Number of Ports Process Type: Control Unit 2 Estimated Temperature, oF Estimated Velocity, fpm 13" None ∅: Stack Inside Diameter, inches Estimated Moisture, percent α γ β Time kW Time kW Time kW Time kW 8:40 864 10:05 885 11:30 892 12:50 882 8:55 890 10:20 879 11:45 889 13:05 870 9:10 895 10:35 884 12:00 885 13:20 876 9:25 894 10:50 883 12:15 878 13:35 898 9:40 888 11:04 882 12:27 876 13:50 900 Ave 886.2 Ave 882.6 Ave 884.0 Ave 885.2 Run 1 Run 2 Run 3 Run 4 Waukesha 923 kW Production (9/11/24) E APPENDIX E Calibration of the console dry gas meter(s), pitot tubes and temperature sensors were carried out in accordance with the procedures outlined in the Quality Assurance Handbook. The appropriate calibration data are presented in the following pages. Figure 2. Schematic of Method 4 Sampling Train Figure 3. Schematic of Gas Analyzer Sampling Train Meter Box Calibration Data and Calculations Forms Post-test Dry Gas Meter Calibration Data Forms Type S Pitot Tube Inspection Data Sample Box Temperature Sensor Calibration Calibration Gas Certifications NOx Converter Efficiency Check Figure 2. Schematic of Method 4 Sampling Train Slack Wll Heal T!IIO!ld G!asHned F'rllile lrlllillerTll!hOplionlll, MlliyBIIRllj:laolld E\'An ~Ctindenller l~ Figure 3. Schematic of Gas Analyzer Sampling Train. Mesh Filter StackWall Sample Probe Heated Sample Line Bias Valve Bias Line Sample Line Calibration Gases Calibration Gas Lines Analyzer Analyzer Analyzer Analyzer Flowmeters By-Pass Flowmeter Sample Exhaust Valve Valve Sampled Gas Manifold Exhaust Data Aquisition System Sample Pump Water Peristalic Pump Peltier Cooler METHOD 5 DRY GAS METER CALIBRATION USING CRITICAL ORIFICES 1) Select three critical orifices to calibrate the dry gas meter which bracket the expected operating range. 2) Record barometric pressure before and after calibration procedure. 3) Run attested vacuum (from Orifice Calibration Report), fora period of time necessary to achieve a minimum total volume of 5 cubic feet. 4) Record data and information in the GREEN cells, YELLOW cells are calculated. TECHNICIAN: Joseph Wells INITIAL DATE: 12/19/2022 METER SERIAL#: 27863 METER PART#: Console 4 CRITICAL ORIFICE SET SERIAL#: 14535 BAROMETRIC PRESSURE (in Hg : 25.35 Eou1PMENT 10 #: Console #4 ORIFICE# I RUN # G G G 2 3 2 3 K' I TESTED FACTOR VACUUM (AVG) (in Hg) 0.8137 11 0.8137 11 0.8137 11 0.5317 13 0.5317 13 0.5317 13 0.3307 13 0.3307 13 0.3307 13 DGM READINGS (FT3) INITIAL I FINAL I NET !Vm) 832.125 842.747 842.747 853.441 853.441 864.062 806.381 813.332 813.332 820.303 820.303 827.282 892.625 897.750 897.750 903.142 903.142 908.557 10.622 10.694 10.621 6.951 6.971 6.979 5.125 5.392 5.415 USING THE CRITICAL ORIFICES AS CALIBRATION STANDARDS: TEMPERATURES'F AMBIENT I OGM INLET I OGM OUTLET INITIAL FINAL INITIAL FINAL 71 72 88 69 71 71 84 85 71 74 71 84 82 74 74 71 78 77 71 72 71 77 78 71 71 71 75 78 71 72 68 73 72 70 70 68 72 72 70 70 68 72 73 70 70 OGM AVG 75.0 78.5 78.5 74.5 74.3 74.0 71.3 71.0 71.3 FINAL AVG(Pbac) ~ 25.35 --i ELAPSED 10.00 3.20 10.00 3.20 10.00 3.20 1.20 1.20 10.00 1.20 11.76 0.45 12.38 0.45 12.43 0.45 ,,~ (1) I Vm(STD) .!!,J!lli 8.9680 8.9067 5.8390 5".8585 5.8680 ~ 4.5494 4.5666 2024 Pre-Calibration IF YVARIATION EXCEEDS 2.00%, ORIFICE SHOULD BE RECALIBRATED (2) Voc(STD) 8.9541 8.9541 8.9541 AVG= 5.8509 ~ 5.8509 AVG= -----4.2-817 4.5180 4.5362 AVG= (3) y 0.999 0.998 1.005 ~ .till 0.999 0.997 0.999 0.993 0.993 0.993 l y VARIATION(%) 0.31 0.15 0.993 --0.46 The following equations are used to calculate the standard volumes of air passed through the DGM, V m (std), and the critical orifice, V~ (std), and the DGM calibration factor, Y. These equations are automatically calculated in the spreadsheet above. AVERAGE DRY GAS METER CALIBRATION FACTOR, Y = I 0.998 (1) (2) (3) Vm,,,., = K1 •Vm• Pbar+(t,Jf /13.6) Tm = Net volume of gas sample passed through DGM, corrected to standard conditions K1 = 17.64 'R/in. Hg (English), 0.3858 "Kimm Hg (Metric) Tm= Absolute DGM avg. temperature ('R -English, "K -Metric) Pbar *0 K'* ---···-Vcr<a1aJ = ../Tamb YCfi: . .-id) Y= -- Vm(.,,,n = Volume of gas sample passed through the crttical orifice, corrected to standard conditions T ,mb = Absolute ambient temperature ('R -English, 'K -Metric) K' = Average K' factor from Critical Orifice Calibration = DGM calibration factor AVERAGE LiH@ -1 1.716 LiH@ = ( 0.75 8 )2 LiH (Vm(std)) Vc,(std) Vm TEMPERATURE SENSORS 'F REFERENCE IN OUT 32 33 32 72 73 73 203 203 202 .1ill 1.883 1.883 1.656 1.657 1.658 ~ 1.604 1.603 METHOD 5 DRY GAS METER CALIBRATION USING CRITICAL ORIFICES 1) Select three critical orifices to calibrate the dry gas meter which bracket the expected operating range. 2) Record barometric pressure before and after calibration procedure. 3) Run at tested vacuum (from Orifice Calibration Report), for a period of time necessary to achieve a minimum total volume of 5 cubic feet. 4) Record data and information in the GREEN cells, YELLOW cells are calculated. TECHNICIAN: D Kitchen 1----~----~ DATE: 9/19/24 METER SERIAL#: 27863 METER PART#: Console 4 CRITICAL ORIFICE SET SERIAL#: 1453S INITIAL BAROMETRIC PRESSURE (in Hg): 25.50 EouIPMENT ID #: Console #4 K' I TESTED ~------~ FACTOR VACUUM DGM READINGS _(Fr3) ORIFICE# RUN# (AVG) (in Hg) INITIAL FINAL G: 0.5317 11 0.5317 11 0.5317 11 82.372 87.506 87.506 92.610 92.610 97.708 D:ffi EB D:ffi EB USING THE CRITICAL ORIFICES AS CALIBRATION STANDARDS: NET(Vml 5.134 5.104 5.098 TEMPERATURES°F AMBIENT! DGM INLET I DGM OUTLET INITIAL FINAL INITIAL FINAL 71 74 79 71 ·72 72 78 82 72 72 72 81 84 72 72 I I I I I ! I I I I I I DGM AVG 74.0 76.0 77.3 FINAL 25.50 ELAPSED TIME(MIN) e AVG (Pb.,) 25.50 1.15 1.15 1.15 §§ §§ (1) Vm(STD) 4.3415 4.3001 4.2850 Post Calibration IF Y VARIATION EXCEEDS 2.00%, ORIFICE SHOULD BE RECALIBRATED (2) V"(STD) 4.4247 4.3788 4.3724 AVG= AVG= AVG= (3) y 1.019 1.018 1.020 1.019 l y VARIATION(%) 0.00 The following equations are used to calculate the standard volumes of air passed through the DGM, Vm (std), and the critical orifice, V" (std), and the DGM calibration factor, Y. These equations are automatically calculated in the spreadsheet above. AVERAGE DRY GAS METER CALIBRATION FACTOR, y = ( 1.019 (1) (2) (3) Vm<""l =K, *Vm*Pbar+(Llll/13.6) Tm = Net volume of gas sample passed through DGM, corrected to standard conditions K, = 17.64 'Riin. Hg (English), 0.3858 'Kimm Hg (Metric) Tm = Absolute DGM avg. temperature ('R -English, 'K -Metric) Pbar *E> Va-(,td) = K'* -/Tamb = Volume of gas sample passed through the critical orifice, corrected to standard conditions T,m, = Absolute ambient temperature ('R -English, °K • Metric) Vc.r(,mJ Y= -- Vn1(staJ K' = Average K' factor from Critical Orifice Calibration = DGM calibration factor AVERAGE AH@=f 1.576 ! AH@l = ( 0.75 8 ) 2 AH (Vm(std)) V0,(std) Vm TEMPERATURE SENSORS 'F REFERENCE IN OUT 1.579 1.576 1.573 Date: ___ 1/_3/_2_0_24 __ I I : PA Pa Type S Pitot Tube Inspection Data Pitot Tube Identification: ______ 3_6_S ____ _ Technician: X. Dan Dl= PA= 0.294 in. PB= 0.294 in. Z ~ 0.125 in. Z= __ 0_ . .;...04_1 __ in. W ~ 0.03125 in. W = __ o_ . .;...02_1 __ in. W >3 inches W= 8 in. ------ Z >3/4 inch Z= in. ------ _, -L_Y;:o:3inches Y= 3 7/8 in. ------ The"pitot tube meets the specifications for a calibration factor of0.84? Yes Temperature Sensor Calibration Reference: Omega CL3512A Continuity Check Yes Probe Heat Check 248 Yes 1 emperarnre 1 emoerarnre 1 em perarnre Source Kererence :,ensor Difference (Medium) ("F) ("F) (°F) Probe AIR 70 71 I AIR 70 71 I Stack ICE WATER 33 33 0 BOIL WATER 203 203 0 SILICONE OIL TETCO Sample Box Temperature Sensor Calibration Date: 1/2/24 Calibrator: XuanN. Dang Reference: Omega CL3512A Thermocouple Temperature Tern erature Temperature Unit ID Location Source Reference Sensor Difference (Medium) (°F) (''F) ("F) Oven (3) Water 33 33 0 A Water 203 201 -2 ater 33 33 ~ Oven (4) Water 203 201 Oven (3) Water 33 33 B Water 203 202 1 Water 33 33 ~ Oven (4) Water 203 201 Oven (3) Water 33 33 C Water 203 203 Water 33 33 ~ Oven (4) Water 203 203 Oven (3) Water 33 33 D Water 203 203 Water 33 33 ~ Oven (4) Water 203 203 Oven (3) Water 33 33 E Water 203 203 Water 33 33 0 Oven (4) Water 203 203 0 F Oven Water 33 33 0 Water 203 202 -1 G Oven Water 33 33 0 Water 203 202 -1 H Oven Water 33 33 0 Water 203 203 0 Impinger Out A Water 33 33 0 Water 203 203 0 Impinger Out B Water 33 33 0 Water 203 202 -I Impinger Out C Water 33 33 0 Water 203 202 -1 Impinger Out D Water 33 33 0 Water 203 203 0 Impinger Out E Water 33 34 1 Water 203 203 0 Impinger Out F Water 33 33 0 Water 203 201 -2 Impinger Out G Water 33 33 0 Water 203 202 -1 Impinger Out H Water 33 33 0 Water 203 203 0 Impinger Out I Water 33 33 0 Water 203 203 0 Impinger Out J Water 33 33 0 Water 203 203 0 Impinger Out K Water 33 33 0 Water 203 203 0 Airgas Specialty Gases Airgas USA LLC S., an Air Liquide company 525 North Industrial Loop Road Tooele, UT 84074 Airgas.com , CERTIFICATE OF ANALYSIS Grade of Product: EPA PROTOCOL STANDARD Part Number: Cylinder Number: Laboratory: PGVP Number: Gas Code: E03Nl99E15A0362 Reference Number: EB0096011 Cylinder Volume: 124 -Tooele (SAP) -UT Cylinder Pressure: 872023 -, Valve Outlet: CO,NO,NOX,BALN Certification Date: Expiration Date: Feb 27, 2031 . 153-402668446-1 144.0 CF 2015 PSIG · 660 Feb 27, 2023 Certification performed in accordance with "EPA Traceability Protocol for Assay and Certification of Gaseous Calibration Standards (May 2012)" document EPA ·600/R-12/531, using the assay procedures listed, AnalyticarMethodology does.not require correction for analytical interference. This cylinder has a total analytical uncertainty as stated below with a confidence level of 95%. There are no significanf impurities which affect the use of this calibration mixture, All concentrations are on a mole/mole basis unless otherwise noted. The results relate only to the items tested, The report shall not be reproduted except in full without approval of the laboratory. Do Not l:lse This Cylinder below 100 psig, i.e, 0.7 megapascals. · . __ ._,,,t,,__;_ ,,. -· ·-· -· ·----.-----:AN:At-Y-.fl:€AL-RES-BL'TS ·-.-·,:·: .. ,, ---~ .,·~-.-,., .. ----· --,~·· --·-~..-- Component Requested Actual Protocol Total Relative Assay Concentration Concentration Method Uncertainty Oates NOX 125.0 PPM 126.4 PPM G1 +/-1.0% NIST Traceable 02/20/2023, 02/27/2023 CARBON MONOXIDE 125.0 PPM 124.1 PPM G1 +/-0.6% NIST Traceable 02/2(,)/2023. NITRIC OXIDE 125.0 PPM 126.3 PPM G1 +/-1 ;0% NIST Traceable 02/20/2023, 02/27/2023 NITROGEN Balance " CALIBRATION STANDARDS Type Lot ID Cylinder No Concentration Uncertainty Expiration Date NTRM 11010111 ,, KAL003133 97.31 PPM CARBON MONOXIDE/NITROGEN 0.4% May 25, 2028 NTRM 11060558 110605 101.2 PPM NITRIC OXIDE/NITROGEN +/-0.6% Feb 16, 2017 GMIS DCl<12072022 CC754103 98.25 PPM NITRIC OXIDE/NITROGEN 0.9 Jan 04, 2031 PRM 12409 D913660 15.01 PPM NITROGEN DIOXIDE/AIR 1.5%' Feb 17, 2023 GMIS 1534012021103 ND73012 4.956 PPM NITROGEN DIOXIDE/NITROGEN 1.6% Jun 15, 2025 The $RM, NTRM, PRM, or RGM noted above is only in reference 'lo the GMIS used In the assay and not part of the analysis. ANALYTICAL EQUIPMENT Instrument/Make/Model Analytical Principle Last Multip~int Calibration Nicolet iS50 AUP2110269 CO LCO FTIR Feb 15, 2023 Nicolet iS50 AUP2110269 NO LNO · FTIR Feb 23, 2023 Nicolet iS50 AUP2110269 N02 impurity FTIR N02.impurity Feb 10, 2023 ~,~_ T.ri.ad.D.ata..AvailableUPOn .Reg""u=.;~""s"""t-~--..;__~------'-";;... ---~ Page 1 of 1 - .· : ::: Airgas. an Air Liquide company Part Number: Cylinder Number: laboratory: · PGVP Number: Gas Code: Airgas Specialty Gases Airgas USA LLC 11711 S. Alameda Street Los Angeles, CA 90059 Airgas.com · CERTIFICATE OF ANALYSIS Grade of.Product: EPA PROTOCOL STANDARD .• E03N I99E 15A5RD9 XC026532B 124 -Los Angeles {SAP) -CA B32023 CO,NO,NOX,BALN Expiration Date: Reference Number: Cylinder Volume: Cylinder Pressure: Valve Outlet: Certification Date: . Feb 24 2031 48-402668447-1 144.0 CF 2015 PSIG 660 Feb 24, 2023 Certification performed In accordance with '.'EPA Traceability Protocol for Assay and Certification of Gaseous Calibration Standards (May 2012)" document EPA 600/R-121531, using the assay procedures listed. Analytical Methodology does n.ot require correction for analytical Interference. This cylinder has a total analytical uncertain!~ as stated below with a confidence level of 95%. There are no significant Impurities which affect the use of this calibration mixture. All concentrations are on a mole/mole basis unless otherwise noted. The results relate only to the Items tested. The report shall not be reproduced except In full without approval of the laboratory. Do· Not Use This Cylinder below 100 psig, i.e. o. 7 megapascals. · . ' ANALYfICAL RESULTS .. , ~, . -Actual -Protocol --~--:: Component Requested Total Relative Assay Concentration Concentration Method Uncertainty Dates NOX 230.0 PPM 234.2 PPM G1 +/-1.2% NIST Traceable .. . 02/17/2023, 02/24/2023 CARBON MONOXIDE ·230.0 PPM 230.8 PPM G1 +/-0.4% NIST Traceable 02/21/2023 NITRIC. OXIDE 230.0 PPM 232.4 PPM G1 +/-1.0% NIST Traceabl~ 02/17 l2'023, 02/24/2023 · NITROGEN Balance CALIBRATION STANDARDS .. Type Lot10· Cylinder No ConcentraUon Uncertainty . Expiration Date ·NTRM 14080317 CC432084 252.5 PPM CARBON MONOXIDE/NITROGEN. +/-0.3% Feb 13, 2026 ~RM 12409 · D913660 15.01 PPM NITROGEN DIOXIDE/AIR . +/-1.5% Feb 17, 2023 NTRM 200603-09 EB0112912 250.3 PPM NITRIC OXIDE/NITROGEN +/-0.8% Oct19,2026 GMIS 1534012021101 ND73001 4.947 PPM NITROGEN DIOXIDE/NITROGEN +/-1.6% The SRM, NTRM, PRM, or j:{GM noted above is only in reference to the GMIS used in the assay and not part of the analysis. Jun 15, 2025 ANALYTICAL EQUIPMENT Instrument/Make/Model Analytical Principle Last Multipoint Calibration SIEMENS 6E CO LOW NDIR Feb 07, 2023 Nicolet iS50 AUP2110317. NO FTIR Feb 08, 2023 Nicolet iS50 AUP2110317 N02 FTIR Feb 09, 2023 Triad Data Available Upon Request Page 1 of 1 .. Making our world• more productive . , DocNumber: 576272 Customer & Order l11formatio11 Certificate /s;u~µ~e Date: 07/23/2024 Linde Gas & Equipment Inc . 5700 S. Alameda Street Los Angeles CA 90058 Tel: 323-585-2154 Fax: 714-542-6689 PGVP ID: F22024 FIJI Date: 08/17/2024 Lot Number: 70088418904 LGEPKG PROVO UT HS . 1211 S INDUSTRIAL PKWY PROVO UT 84608-8136 · Unde orr1;J, Number: 72850412 Pait.Number: NI CO475N2E-AS Customer Pb Number: 80864341 Cy/Jnder Style & Out/at: AS CGA 660 Cylinder Pressure and Volume: 2000 psig 140 ft3 Certified ~fJ:ncentration _..,,,.....,....,,.,..--,=-,,--------....,..,---....,,._...,.... Expiration Dale:.----··01119/2032.; .f NIST Traceable . ·cyiiricfer Number: CC.168274 _ ·( Expanded U~certalnty ---~,----------------,.----1 481 ppm Carbon ·monoxide ± 2 ppin 469 ppm Nitric oxide :t 2 ppm Balance Nitrogen For Reference Only: .. NOx 470 ppm 1 Certijication:Jnftrmation: .. , Cert/ffcation Date: 07/19/202f, ., Term: 96 Months _ Exp!ration Date: 07/19/2032 · This cylinder was certified according to the 2012 EPA Traceablllly Protocol, Documarit #Ei;'.A'800/R-12/531, using Procedure G1. Uncertainty above Is expressed as absolute expanded uncertainty at a level of confidence cif apptoxlmately 95% with a coverage factor k" 2. Do _Not Use this Standard It Pressure Is less than 100 PSIG. · • • • ~ J .,. .•. :i 1 Analvtical Data: . '(R;;Reference Standard, z,.,zero G~s, C"Gas Candidate) 1. Component: Carbo_n mon~xlde Reference Standard: Type/ Cylinder#: GMIS / SA4008 . Requested eoncentration: · 475 ppm Certified Concentration: 481 ppm Instrument Used: HorlbaVIA-51 O S/N 577172043 Analytlcsl Method: NDI~ Last Multipoint CalibraUon: .06/2512024 Concentration / Uncertainty: 500.9 ppm :1;2,0 ppm Expiration Date: 03/30/203.1 Traceable to: SRM #tSample#/ Cylinder#: SRM 1681b / 1-M-11 / FF6005 SRM Concentration / Uncertainty: 986. 7 PPM / ±2.0 PPM SRM Expiration Date: .09/30/2027 ---~·-='.'c~_:c-·~ ~~:l1sls.Da~; ,;~~~-;; .~•~: •. ~~1~. .• =~cr:7a~•~ \ ~< --~; .. ~~d:~alysls::t~r::~:,-... ,~, _ _: "!:~ec: ·, ~• 2. R: 500.9 Z: 0 C: 481 Cone: 481 R: O Z: O C: 0 Cone: 0 Z: 0 C: 481 R: 500.9 Cone: 481 Z: O C: O R: 0 Cone: · 0 UOM: ppm Mean Test Assay: 481 ppm UOM: ppm. Me~n Test Ass~y: Component: Nitric oxide.;. Requested Concentration: .4 75 P,Pm Certified Concentration: 469 ppm Instrument Used: ' · Thermo Electron 421-HL SIN 1030545087 Analytical Method: Chemllumlnescence Last Multipoint CallbraUo~: 08/24/2024 Reference Standard: Type/ Cylinder#: GMIS / GN0018718 ConcentraUon I Uncertainty: 502 ppm ±2 ppm Expiration Date: 03/17/2031 Traceable to: SRM #/ Sample#/ Cylinder#: 1686b / 42-M-57 /CAL017855 SRM Concentration / Uncertainty: 493.1 PPM / ±2.2 PPM . SRM Expiration Date: 04/06/2023 ppm First Analysis Data: Date 07/11/2024 Second Analysts Data:. Date 07/19/2024 Z: 0 R: ·602 C: 489 Cone: 469 Z: 0 R: 502 C: 469 Cone: 469 R: 502 Z: 0 C: 468 Cone: 468 R: 502 Z: 0 C: 469 Cone: 469 Z: 0 C: 468 R: . 502 Cone: 468 Z: 0 C: 470 R: 502 Cone: 470 UOM: ppm ppm UOM: ppm Moan Test Assay: 469 ppm Analyzed By . Certified By Information contained herein has been prepared at your request by qualified experts within Linde G.as & Equipment Inc. While we believe that the Information Is accurate wllhln the limits of the analytical methods employed and Is complete to the oxteht of the specific analyses perfonned, we make no warranty or representation as to the sultablllty of the use of the lnfomiatlon tor any purpose. The lnfonnation Is offered with the understanding that any use of the Information Is at the sole discretion and risk of the user. In no event shall the llablllty of Linde Gas & Equipment Inc. , arising out of the use of the infonnatlon contained herein. exceed the fee established for providing such informatloli. 1 Of 1 as. Airgas .specialty Gases Airgus USA, LLC an Air Liquide company 12722 S. Wentworth Ave. Chicago, IL.60628 Airgas:,•om CERTIFICATE OF ANALYSIS Grade·.of Product:• EPA Protocol PartNumbe;r; Cylinder Number: Laboratory: PGVP Number: Gas Code: E:03Nl99E15A0274 CC78937 124 • Chicago (SAP) -IL e12·020 CO;NQ,NOX,ijA½N. Ex irt;;tiorf'Oate: Reference Number: Cylinr;Jer Volume: Cylinder Pressure; Valve Outlet: Certification Date: Au <07 2028 5.4-40186.9349-1 144.4 OF 2015 PSIG 660 Aµg 07, 2Q20 . Cet:tllicalloii ·performeq·iri ~ecori.tario!=J Ylll 'l'raceabilityi?roiiJ~o1·forAssa'y.and OerUficatbn of Gaseous.Qalibi:a!lof\ St.indlilrtl~.(May2Q1~)" 1:ig9ument Ef"A 600/R012/$31, using 'lhe:ilssay proc;,dllres ·. •Analytical Mettit:idt:ilogy cloes'nQtrequlre c9n;.,.;lionfor.ia11~lj1!ical .. interference. This,cyllnderlias:a 1otalanalyticiil uncertainty asstated below with a ·confidence lev.el of.95%, The.re ar;, no significa11t impurjtieswhich affect.the use ofthls calibration mixl!Jra: All concentrations· are, on a mole/mole basis u~less otherwlse,noted: Ot:i Not Use Thls.Cvlinderbelow 100 osin, i.e·: 0;7 meal!oascals: ANA.LYl'lCAL RESULTS · Requ¢sted"'· · ~ .,~-"'At'ttra', co'pcenfr,tion Pofieentratio11 Prot~co1·-· ·-1",<>tli'l"~elatlvior------·--·~·-·........ .. .. /rss•ar·-..... · Method Uncertair1ty .. · D1,1tes NOX CARBON MONOXIDE NITRIC OXlDE. NITROGEN 920,0 PPM 90.6.3 PPM 9;;!(),0PPM 91!,Mlf>F'M 920.0 PPM 906.3 PPM 9 : G1 G1 G1 +/-0,6% NISTTraceable +ls. 0.6o/o Nist Ttaceable, +/• .Cl.6'¾i N.IST Traceable satim~ \ CAE:l~RATION STAND A.RDS' Type L.btlD . C:yUnder No C,onc;ilrifratl9r, NTRM 14060112 .. CC4325'68 :990.9 PPM CARBON MONOXlDEJNiTRdGeN PRM 12386 0685025 9.91 PPM NITROGEN biOXIDE/AIR NTRM 1/5060242 CC449!l15 997.2 PPMNITRJC;OXlDEtNITRO'GEN GM1s 1302011104 .· . . . cc5oMo4 . 4A2a PPM NIrnooeN otoxioE1N1tR0GeN 'fhe.S~M,,PRM or RGM, noted. above.ls o'rily i~ r~feien~e Jo the GMl$,ute1Un the assiw ardhOt par,t.ot \11e !!nalysi$, ANALY1.tICAL EQUIPMENT Uncertainty +/•0'.6% +/•2;0% +/, Q:5,% +/~2.1% 07/3112020, 08/0712020 om112020 07/31/2020, 08107/2020 Expiration Date Nov 15, 20;?5 Feb20,2020 Nov01, ?020 Jul03;2022 lnsttumentlMake/lVlodel .A.oalytical Pr:lit.¢:iple · -LaJt Multipoint Calibration I ·. Nic.olct 6700 AMPO.~oottJO Nicolet 670Q.AMP09001•00 Nicolet 670CJ AMP09001 OQ Triad Data Available IJpon Request FTIR. FTIR FTIR Jul 15, 2020 Jul15,202O J1.,111~.202Q Page 1 of54-401869349•1 ■-~~· Linde Gas & Equipment Inc. . 5700 S. Alameda Street Docliluinber: '. . . l!J. ,. .. Los Angeles CA 90058' Tel: 323-585.~2154'. . Fax: 714-542-6689 . PGVP ID: F22021 .· G_erllficate lssuali'f,e Date: 12/0.l/2021 · . LGEPK~ SALT LAKE CITY UT H: . Linde Orde(,'Number: 7)~1}~'693 : : Lot Number: 70086132602 6880 S 2300 E .. Pa1 Number:. NI '¢.D9.7501E-AS Customer PC/Number: 798699M . Cylinder Style & Outlet: AS CGA 590 SALT LAKE CITY UT 84121-3183 I Cylinde_r Pressurf! ~nd Volume: 2000 pslg 148 ft3 Certified Concentration ProSpec EZ Cert '9;75 % 9.77 % Balance 11/30/2029 : i NIST Traceable . Expanded Uncertainty ±·o.os % ±0.04%; C~rt/.fication Information: . . Term: 96 Months Expiration Dat~: 11/30/202~ . This cyllnd~r \V~;\lertlfted ~ccordlng to the 201·2 EPA Tracieablllty Protoco -uncertainty at.a 1eve1·of confidence of approximately 95% with a coverage fact CO2 response~ have bee~ corrected f~r Oxygen IR Broadenln~ ~fleet. 0~ ;e~p • ·6'00/R-12/531, using Procedure G1. Uncertainty above Is expressed as absolute expanded t LJ!e.thJs· Standard If Pressure Is less than 100 PSJG. n corrected for CO2 Interference • ..... ·. Anafvtical Data: (R=Reference Standard, z~z~ro,G.as;C;;,G 1. Component: Carbon dioxide '\r;,-¢: :Reference Standard: Type / Cylinqer #: .,,GMJS.f.GC283571 Reques,ted Concentration: 9.75 % :,.,_?,-l,1.•,,_:.:· . Concenlratlcin / Uncertainty:' 0 14 71 .2 15 4 1 ° 2 Y, 0 _ 2 :1: 9 9.04 % Certified Concentration: · · .9.75 % ~ Expiration Date: Instrument Used:. H0rl_ba.VJA-510 SIN 20C194WK r,i; :_Traceable lo: SRM #/Sample# / Cylinder#: RGM I NIA I yC28033 Analytical Method: NDIR · J;r..:,: SRM Concentration/ Uncertainty: 19.67% I ±0.04% ~L_as_t_M_u_1u_po1n_1_c_a1_1b_ra_11_on_:_1_1_12_n_2_02_1 _______ __,===-i· f:: · . SRM Expiration Date: 0711512021 "'---...;...;' ----...... ===,-..J· F!=~=s Oat::. 14~24; ,; .•. -~'. .• :,;:"~~ate.'.:IT: ... ~,_ .. ,,.,:~1L't!.,';~--·~· _0_2~,--,;:.,: ;,v;:,~&if'•,~i-\. 'd;~ '6 ': ~~:~ . ~ : .,~Y-->.-..c.-...---... ii Z: O C: 9. 77 R: 14.25 Cone: 9.77 ~'/ z O C· O R· O Cone· o UOM: % Mean Test Assay: 9.75 % ·. 1· U~M: % • .MeanTestAssay:. · 2. Componon(: Oxygen /Reference Standard: Type/Cylinder#: NTRM/·DT0010262 · Requested Concentration: 9.75 % Concentration/ Uncertainly: 9.875 % ±0.040 % Coitlfied Concentration: 9.71 % Expiration Date: 11118/2022 Instrument Used: . Siemens Oxymal 6E S/N 7MB20211AAOOOCA1 Tracoablo to: SRM # I Sample# I ~er#: NTRM / 170701 / DT0010262 Analytical Method: Paramagnetic SRM Concentration/ Uncertainly: 9.875% 1±0.040% Last Multipoint Calibration: 11/12/2021 SRM Expiration Date: 11 /1812022 First Analysis Data: ale 11/30/2021 Second Analysis Data: Date Z: 0 R: 9.88 C: 9.76 Z: 0 R: ·O C: 0 Cone: 0 R: 9.88 z: 0 c: 9.76 R: 0 Z: 0 C: 0 Cone: 0 Z: 0 C: 9.78 R: 9.77 Z: 0 C: 0 R: 0 Cone: 0 UOM: % .9.77 % UOM: %·. Mean Test Assay: Analyzed lly Certified By NelsorfMa'. Information contained herein has been prepared at your request by quaflfied experts within Linda~ & Equipment Inc. While we believe that the Information is ac=rate within the fimils or thl'l · analytical methods employed and is complete to the extant of the specific analyses performed, w_e make no warranty or rapre~entatlon as lo the suitability' of the use of the Information for any purpose. The Information is offered with the understanding that any use of the infonnation Is at the sole discretion and risk of the user. ·In no event shall the llabiilty of .-Linde Gas & Equipment Inc. arising out of the use or the inrorrnaUon contained l)erein exceed the fee estab6shed for providing such lnforma:ion. · ' -Making our world -more productive DocNumber: 555077 I • •• til . Certlficata lssu~nca Data: 08/11/2023 Linda Ordti( NiJmbar: 72533908 Linde Gas & Equipment Inc. 5700 S. Alameda Street Los Angeles CA 90058 Tel: 323-585,2154 Fax: 714•542-6689 PGVP ID: F22023 Fill Date: 08/07/2023 Lat Number: 70086321907 Customer & Order Information LGEPKG SALT. LAKE CITY UT H 6880 S 2300 E . . paJt Number: NI CD20,5O1 E-AS Customer P~ Number: 80543739 Cylinder Style & Outlet: AS CGA 590 SALT LAKE err? UT84121-3183 Cylinder Pressure and Volume: 20.00 pslg .158 ft3 Expiration Date: . \ . CY.l(~der Number: 20.41 % 20.73 % Balance l Certified Jtmcentration 08/11/2031 CC145183 Carbon dioxide Oxygen Nitrogen· NIST Traceable Expanded Uncertainty ±0.06% ±0.04% \ . l ' Ce~tijicatio.n Information: · .. Certification Date: 08;·11/2021·' · Term: 96 Months Expiration Date: 08/1.1/2031 This cylinder ~:certified according to the 2012 EPA Trac9ablllty Protocol, Document #E '. -600/R-12/531, using Procedure G1, Uncertainty above Is expressed as absolute expanded uncertainty at a level of confidence of approximate!~ 95% with a coverage factor k = 2. Do Not Uiufthls Standard If Pressure Is less than 100 PSIG • . · ·1 CO2 responses have_ been correcled for Oxygen IR Broadeni;1J affec\. 02 responses hava,faen corrected for CO2 Interference. Ana,V,ical Data: (R=Referenca Standard, Z=Zero Gas, C=Gas Cen~ldale} 1. Component: Carbon dioxide Requ,sted Concentration: 20.5 % Cartmed Concentration: 20.41 % Instrument Used: Horlba VIA-510 SIN 20C194WK Analytical Method: NDIR Last MulUpolnt Calibration: 07/28/2023 First Analysis Data: Date 08/11/2023 Z: 0 R: 26 •. 96. ~-----~,-.~-----1-... ,...,,,-,2.,,,0.,9""6 2:: 0 . C: ?0.42 ~1;1_n~:. , 20.42 C: 20.41--,, .,,-.,1:qnc: "20.41" R: 26,96 ,cone: 20.41 2. Z: 0 C: 20,4·1 UOM:· % Mean Test Ass_ay: 20,41 % Component: · Oxygen Requested Concentration: 20.5 % Certified Concentration: 20. 73 % Instrument Used: Siemens Oxymat 6E S/N 7MB20211AA000CA1 Analytlcat"Method: Paramagnetic Last Multlpolnl Calibration: 07/28/2023 First Analysis Data: Z: 0 R: 24.96 Z: 0 C: 20.76 C: 20.75 C: 20,73 R: 24.98 Date 08/11/2023 Cone: 20.74 Cone: 20.72 Cone: 20.75 R: 24.99 Z: 0 UOM: % Mean Test Assay: · 20.73 % Analyzed BY Suchana Gurung Reference Standard: Type/Cylinder#: GMIS/CC305911 Concentration/ Uncertal~ty: 26.96 % ±0,05 % Expiration Date: 03/29/2031 Traceable to: SRM #/Sample# I Cylinder#: RGM#CC193512 / NIA I CC193512 SRM Concentration I Unc;ertalnty: 26.99% / ±0.05% SRM Expiration Date: 05115/2023 Sei:ond Analysis Data: [)ate .~R...;'·-~0 ... ~· --•..,C~:~_0_..,___ Cone: 0 · z: o c:" o Con~:· ·c;-····· ·--··-. -.. ~-· · Z: 0 c: o R: O Cone: o UOM: % Mean Test Assay: Reference Standard: Type/ Cylinder#: GMIS I DT0025134 Concentration/ Uncertainty: .24.96 % ±0.04 % Expiration Date: 12/14/2026 Traceable to: SRM #/Sample# /Cylinder#: SRM 2659a / 71-E-19 / FF22331 SRM Concentration I Uncertainty: 20,863% I ±0.021o/o SRM Expiration Date: 02/27/2026 Second Analysis Data: Dale Z: 0 R: 0 C: 0 Cone: 0 R: 0 Z: 0 C: 0 Cone: 0 Z: 0 C: 0 R: 0 Cone: 0 UOM: 'lo Mean Test Assay: % % lntormation contained herein has been prepared at your request by qualified experts within Linde Gas & Equipment Inc. Whtie we believe that the Information Is accurate within Iha limits of Iha . analytical methods employed and Is complete to the extent of the specific analyses performed, we make no warranty or representation as to the sultablllly of the use of the Information for any purpose. The Information Is offered with the understanding that any use of the Information Is al the sole discretion.and risk of the user. In no event shall the llabllltyof Linde Gas·& Equipment Inc., arising out of the use of the Information contained herein exceed the fee eslabllshed for providing such Information. Page 1 of 1 Making our planet more productive Customer & Order Information: PRAXAIR PKG SALT LAKE CITY UT H 6880 S 2300 E, SALT LAKE CITY; UT84121-3183 Praxair Order Number: 71651798 Customer PO Number: 79649355 Praxair Distribution. Inc. 5700 S. Alameda Street Los Angeles, CA 90058 Tel: 323-585-2154 Fax: 714-542-6689 Certificate Issuance Date: 4/5/2021 Certification Date: 4/5/2021 Lot Number: N70086108904 Part Number: Nl5;5CE-AS DocNumber: 389899 CERTIFICA TE,:OF ANALYSIS .. . Nitrogen, 5. 5 ContinuoustEmission Monitoring _Zero Analytes Nitrogen Carbon Dioxid~ ·· . -~. Carbon Monoxide . Total Hydrocarbons Oxides of Nitrogen Oxygen Sulfur Dioxide Water Cylinder Style: AS _____ . ___ c....,~er.essur:e--®-,,7.0...F-:-200().;psig Cylinder Volume: 142 ft3 Valve Outlet Connection: CGA 580 I .. . \ . · Sp~cification ~)}~ .. 9995 % · S 1 ppm so}ppm S() fppm so,ippm ·;·:. so;~ ppm \! so.~ ppm ,.· S2ppm Analytical Results ~ 9!3.9995 % S0.3 ppm s o.1·ppm s 0.1 ppm s 0.1 ppm S0.5ppm S 0.1 ppm s 0.9 ppm . Analytical Analytical Reference Uncertainty 4 N/A 2 ±10% 2 ±15% 5 ±15%, 7 ±15% 6 ±15% 1 .±15% 3 ±10% FiU Datd~ 3/30/2021 Filling M~thod: Pressure/Temperature Ana IVs is Date __ J,4/412021~-----, .. _~,:>~~""-··.,,,.: . .._,_..,...,..,,..,~--------;-----'---~---~~ -, ····} .. Cylinder Number(s): DT0040915,-DT0040861,>DT0040977, DT0040924, D'1'0040857, DT0040872, DT0040792, DT0040978, D1'0040983, DT0040994, DT0040878, DT0040863 ~ . : DT0040915, ~ ½o~ Approved Signer: Brandon Aguilar Key to Analytical Techni(lues: Reference Analytical Instrument -Analytical Principle Ametek 921CE SIN AW-921-S321 -UV Spectrometry 2 Horlba Instruments Inc. GA-360E -NDIR 3 Meeco Aquavolt PLUS -Specific Water Analyzer 4 NIA -By Difference of Typical Impurities 5 Rosemount/Beckman 400A -FID Total Hydrocarbon Analyzer 6 Servomex DF310E SN# PT-25457-V6-Electrolytic Cell/Electrochemical 7 Thermo Electron 42i-LS SIN 1030645077-Chemiluminescence This analysis of the product described herein was prepared by Praxair Distribution, Inc. using instruments whose calibration is certified using Praxair Distribution, _Inc,. Reference Materials which are traceable to the International System of Units (SI) through either weights traceable to the National Institute of Standards and Technology (NISl) or Measurement ca·nada, ·or through NIST Standard Reference Materials or equivalent where available. · · Note: All expressions for concentration (e.g., % or ppm) are for gas phase, by mole unless otherwise noted. Analytlcal'uncertanlty is expressed as a Relative% unless otherwis_e n_oted. IMPORTANT . . . . : · · . . The Information contained herein has been prepared at your request by personnel within -Prax_al(,.Dls.!~ibution, inc. While we believe the information is accurate within the limits of the analytical methods employed and Is complete to the extent of the specific analyses performed, we make no warr1:1nty·qr representation as to the suitability of the use of the Information for any particular purpose. The . information is offered with the understanding that any use of the Information Is at the sole-discr~tlon·and·risk of the user. In no event shall liability of Praxair Distribution, Inc. arising out of the use of the information contained herein exceed.the fee established for providing such information;· · ·· · · .' ·: · Date Time Output 9/11/24 7:25 53.40 Concentration of Certified Gas used 126 ppmdv NOx 9/11/24 7:26 54.04 Diluted with air at approx 1:1 9/11/24 7:27 53.99 Instrument Range 234 ppmdv 9/11/24 7:28 53.96 9/11/24 7:29 53.89 NOxPeak 54.0 9/11/24 7:30 53.89 NOxFinal 53.1 9/11/24 7:31 53.94 (Eq. 7E-9)EffNO2 1.7 % 9/11/24 7:32 53.97 9/11/24 7:33 53.87 Average Reading 53.7 ppmdv 9/11/24 7:34 53.85 9/11/24 7:35 53.82 9/11/24 7:36 53.82 9/11/24 7:37 53.81 9/11/24 7:38 53.77 9/11/24 7:39 53.81 9/11/24 7:40 53.74 9/11/24 7:41 53.72 9/11/24 7:42 53.70 9/11/24 7:43 53.69 9/11/24 7:44 53.66 9/11/24 7:45 53.64 9/11/24 7:46 53.47 9/11/24 7:47 53.51 9/11/24 7:48 53.48 9/11/24 7:49 53.39 9/11/24 7:50 53.42 9/11/24 7:51 53.44 9/11/24 7:52 53.34 9/11/24 7:53 53.29 9/11/24 7:54 53.13 40 CFR 60 Appendix A-4, Method 7E, Section 16.2.2 Fill a Tedlar bag approximately half full with either ambient air, pure oxygen, or an oxygen standard gas with at least 19.5 percent by volume oxygen content. Fill the remainder of the bag with mid-level NO in nitrogen calibration gas... Immediately attach the bag to the inlet of the NOx analyzer (or external converter if used)… Measure the NOx concentration for a period of 30 minutes. If the NOx concentration drops more than 2 percent absolute from the peak value observed, then the NO2 converter has failed to meet the criteria of this test. Take corrective action. The highest NOx value observed is considered to be NOxPeak. The final NOx value observed is considered to be NOxFinal. NOx Converter Efficiency Test F APPENDIX F The testing protocol and other correspondence related to the tests are included here. From:Dean Kitchen To:"Kyle Greenberg"; "Myron Bachman" Cc:"Scott Vineyard"; "David Hatch" Subject:RE: [External] RE: Utah Division of Air Quality - Stack Test Observation - North Davis Sewer District’s Cogeneration Engine #3 Lean Burn Engine Date:Wednesday, 28 August, 2024 9:55:00 AM Kyle,   It looks like we will be testing the NDSD Waukesha on the 11th of Sept. In preparation for that, I had a question about calculating the NOx and CO g/bhp-hr values.  Can we use the engine’s efficiency rating to calculate the engine bhp from the recorded engine power output?  In the past we have always used the engine power output in kW andused that as the bhp in the denominator of the equation.  This is conservative and over calculates the engine emissions because the actual engine bhp would be greater than the recorded power output of the engine.   I believe using the engine efficiency would be a better approximation of the actual engine bhp.  If that will not work, is there another, simple way to get the engine bhp?   Thanks, Dean Kitchen TETCO  From: Kyle Greenberg <kgreenberg@utah.gov> Sent: Tuesday, 7 May, 2024 3:15 PM To: Myron Bachman <myronbachman@ndsd.org> Cc: Dean Kitchen <dean.kitchen@tetco-ut.com>; Scott Vineyard <svineyard@ndsd.org>; David Hatch <dhatch@ndsd.org> Subject: Re: [External] RE: Utah Division of Air Quality - Stack Test Observation - North Davis Sewer District’s Cogeneration Engine #3 Lean Burn Engine   Thanks Myron,   I also looked into the required time length for the three runs.  I know in the past that shorter runs were allowed, but I have been diving into state rules, the Approval Order, and 40 CFR Part 63 Subpart ZZZZ and it looks like to be compliant with the state rules, three 1-hour runs will be required for this internal combustion engine.  A new pretest protocol will not need to be resubmitted since the run times are not defined in theprotocol, so that protocol will work again for when the test is rescheduled. I believe the initial mistake in allowing the runs to be less than a hour was mistakenwith the run lengths allowed for turbines in 40 CFR Part 60 SubpartKKKK https://www.ecfr.gov/current/title-40/part-60/subpart-KKKK#p-60.4400(b)  But since all these Cogens are Internal Combustion engines, 1-hour runs are required to be in compliance with the state and any future EPA audits as well.    Sorry for the less than ideal news, but it'll ensure that everything is in compliance, Kyle   On Tue, May 7, 2024 at 2:19 PM Myron Bachman <myronbachman@ndsd.org> wrote: Kyle I apologize for the engine miss hap that forced us to cancel the stack test. NDSD had Woodward controls install a E3 fuel blending and engine control on this engine in the fall of 2016. I have attached a copy of the screenshot showing the fault that forced us to stop thetest. The controls felt that digester gas was not available even though it was trying to run on it. I have had the engine locked out until we can have the Woodward rep onsite to help us troubleshoot the issue.Once I know more I will try to reschedule with both yourself and Dean. Thanks Again Myron   Myron Bachman Plant Superintendent Phone: (801) 728-6830 Cell:  (801) 430-3422 Email: mbachman@ndsd.org www.ndsd.org Reclaiming Earth's Most Valuable Resource From: Kyle Greenberg <kgreenberg@utah.gov> Sent: Monday, May 6, 2024 11:51 AM To: Myron Bachman <myronbachman@NDSD.org> Cc: Dean Kitchen <dean.kitchen@tetco-ut.com>; Scott Vineyard <svineyard@NDSD.org>; David Hatch <dhatch@NDSD.org> Subject: Re: [External] RE: Utah Division of Air Quality - Stack Test Observation - North Davis Sewer District’s Cogeneration Engine #3 Lean Burn Engine   Hi Myron,   I just wanted to follow up for tomorrow. Paul Bushman and Connor Kijowski will not be able to make it for tomorrow, but I'll still be observing.  If everything is still on schedule, I am Planning on being onsite around 7:15am and will stick around probably for 2 of the stack test runs.  My work cell # is 385-306-6533 in case anyone needs to get a hold of me in the AM tomorrow.   Thanks for your help in getting this set up, Kyle   On Thu, Apr 25, 2024 at 8:59 AM Myron Bachman <myronbachman@ndsd.org> wrote: Awesome    Sent from my iPhone   On Apr 25, 2024, at 8:46 AM, Kyle Greenberg <kgreenberg@utah.gov>wrote: Thanks,   We'll plan on being there on Tuesday just a little bit after 7am, but I'll be in touch on Monday, May 6, just to make sure everything is still on schedule.   Kyle   On Wed, Apr 24, 2024 at 1:35 PM Myron Bachman <myronbachman@ndsd.org> wrote: Kyle that would be awesome. For this test p Lu steel toed shoes would be required. Myron   Sent from my iPhone   On Apr 24, 2024, at 1:16 PM, Dean Kitchen <dean.kitchen@tetco-ut.com> wrote: Kyle,   So, the 6th will just be a set up day.  We may do a stratification check Monday, but that would be it.  The test will be on Tuesday.  Usually, we would be at the plant by 7 am and start around 8 to 8:30, give or take. Dean  From: Kyle Greenberg <kgreenberg@utah.gov> Sent: Wednesday, 24 April, 2024 1:07 PM To: myronbachman@ndsd.org; Dean Kitchen <dean.kitchen@tetco- ut.com> Subject: Utah Division of Air Quality - Stack Test Observation - North Davis Sewer District’s Cogeneration Engine #3 Lean Burn Engine   Mr. Bachman and Mr. Dean:  The DAQ would like to observe the upcoming stack teston the North Davis Sewer District’s Cogeneration Engine#3 Lean Burn Engine that is scheduled to be conductedon May 6-7.  For the inspectors there will be myself, Paul Bushmanand Connor Kijowski. Really the purpose of this observation is to get Connor (new to inspecting stack tests) familiar with the observation process.  Dean I'll confirm with you late next week on timing, but ideally we would like to be there to observe the initial calibration and leak checks and then if everything is going smoothly I'd imagine we'll probably leave after run 2.   Myron please let me know if this scheduling will work and if you could let me know what the required PPE is for the site.   Thanks for your help in getting this set up, Kyle Greenberg   --   <~WRD0000.jpg>Kyle Greenberg Environmental Scientist | Minor Source Compliance P: (385) 306-6533 airquality.utah.gov <~WRD0000.jpg><~WRD0000.jpg>   Emails to and from this email address may be considered public records and thus subject to Utah GRAMA requirements.    --   Kyle Greenberg Environmental Scientist | Minor Source Compliance P: (385) 306-6533 airquality.utah.gov   Emails to and from this email address may be considered public records and thus subject to Utah COMPLIANCE EMISSION TESTING PROTOCOL FOR NOx AND CO EMISSIONS AT NORTH DAVIS SEWER DISTRICT (NDSD) SYRACUSE, UTAH Waukesha 923 kW Lean Burn Engine Project Organization and Responsibility The following personnel and the testing contractor are presently anticipated to be involved in the testing program. The Utah Division of Air Quality (DAQ) may have their own personnel to observe all phases including the process. Company NDSD 4252 West 2200 South Syracuse, UT 84075 Contacts Myron Bachman (801) 825-0712 Test Contractor: TETCO 391 East 620 South American Fork, UT 84003 Dean Kitchen 801- 492-9106 Facility Location and Description NDSD operates a water treatment plant in Syracuse, Utah. The process includes collecting digester gas which is prepared as a fuel gas for onsite engines. Test Objective This test is being conducted to comply with the testing requirements of the Waukesha 7100GL, 923 kW engine. The engine is to be tested at least once every 5 years for NOx and CO emissions. The results shall be reported in terms of pounds per hour (lb/hr) and grams per brake horse- power-hour (g/bHp-hr). Testing is to be conducted according to the principals of EPA Methods 1-4, 7E, and 10. Test Schedule It is planned to complete all testing May 6-7, 2024. The test crew will set up the testing equipment May 6th and then begin testing if time and production permits. If needed, testing may be conducted on May 7th. The testing crew will take preliminary velocity and cyclonic flow measurements prior to beginning the stack test. If desired a pretest meeting may be scheduled by DAQ or NDSD. Operational Data and Instrumentation The engine will operate normally during the test project. All pertinent process data will be made available to DAQ personnel. Test Procedures Three test runs will be completed on the exhaust stack. Stack testing will be EPA Methods 1-4, 7E, and 10 as specified in 40 CFR 60, Appendix A. One Method 4 test run may span up to three Method 7E and 10 test runs. Specific procedures are as follows: EPA Methods 1-4 1.The stack inside diameter is 13 inches. Sample ports are located 160 inches downstream and approximately 104 inches upstream from any flow disturbance. It is planned to sample four sample points per port (eight total points). The number of sample points is based upon Method 1 for a nonparticulate traverse. 2.EPA Method 2 will be used to determine the gas stream velocity. Type “S” pitot tubes will be used with a Cp factor of 0.84. Dual inclined/vertical manometers with graduations of 0.01 inches of water will be used. If necessary a more sensitive manometer with graduations of 0.005 may be used. The absence of cyclonic flow will be verified prior to beginning the test. 3.EPA Method 3A will be used to measure the CO2 and O2 concentrations to determine the gas stream dry molecular weight. These samples will be taken with the NOx and CO sampling train. Method 3 maybe used as a backup for Method 3A. 4.EPA Method 4 will be followed to determine the gas stream moisture content. Test run time and sample flow rate will be sufficient to sample at least 21 dscf. One Method 4 may span up to three Method 7E and 10 test runs. 5.Probe liners will be 316 stainless steel. 6.The barometric pressure will be measured with a barometer which is periodically checked against a mercury barometer. The barometer will be checked prior to testing to assure an accurate barometric pressure. 7.Calibration data is submitted with this protocol. Any calibration that is not current will be re-calibrated prior to the test dates. 8.Any necessary preparation and clean-up by the contractor will be performed in the contractor's sampling trailer or a clean area on NDSD property. 9.Verbal results will be reported to NDSD on site. The written reports will submitted within 30 days following completion of the tests. Gaseous Analyzer Measurements Gaseous analyzers will be used to measure the CO2/O2, NOx and CO concentrations levels according to EPA Methods 3A, 7E, and 10 respectfully. The gaseous analyzer measurements will be taken simultaneously with EPA Methods 1-4. EPA Protocol 1 gases will be used as a standard for all analyzers. Bias checks, calibration drift, zero drift and calibration error will follow the specified guidelines of EPA Method 7E. The gas analyzer sampling train will consist of the following: an in-stack glass fiber filter, heated stainless steel probe, Teflon heated sampling line to the water removal system, water removal system, Teflon transport lines, gas manifold, and out of stack Teflon filter after the gas manifold but prior to analyzer. The sampling train is built such that the sampled gas only comes in contact with inert materials, i.e., Teflon, stainless steel, and glass. A data logger will be used to provide a recorded gas concentration measurements that will be averaged on a minute basis. A stratification check will be performed to determine the number and location of the gaseous analyzer sample points. Potential Hazards Moving Equipment No Hot Equipment Yes Chemical Chlorine on site Other Biological. Wash hands frequently and eat only in designated areas. Quality Assurance All testing and analysis in these compliance tests will be conducted according to Methods 1-4, 7E, 10, and appropriate sections of the EPA Quality Assurance Handbook for Air Pollution Measurement Systems Volume III. Reporting Complete copies of raw data, calculations and summary of test will be included in the test report. All process and production data will be recorded and retained for inspection and copying by DAQ. Appendix A Calibration Data and Sample Equations METHOD 5 DRY GAS METER CALIBRATION USING CRITICAL ORIFICES 1) Select three critical orifices to calibrate the dry gas meter which bracket the expected operating range. 2) Record barometric pressure before and after calibration procedure. 3) Run at tested vacuum (from Orifice Calibration Report), for a period of time necessary to achieve a minimum total volume of 5 cubic feet. 4) Record data and information in the GREEN cells, YELLOW cells are calculated. TECHNICIAN:INITIAL FINAL AVG (Pbar) DATE:12/21/2023 METER SERIAL #:300315 BAROMETRIC PRESSURE (in Hg):25.55 25.65 25.60 IF Y VARIATION EXCEEDS 2.00%, METER PART #:Console 3 CRITICAL ORIFICE SET SERIAL #:1453S EQUIPMENT ID #:ORIFICE SHOULD BE RECALIBRATED K'TESTED TEMPERATURES °F ELAPSED FACTOR VACUUM DGM READINGS (FT3)AMBIENT DGM INLET DGM OUTLET DGM TIME (MIN)DGM DH (1)(2)(3)Y ORIFICE #RUN #(AVG)(in Hg)INITIAL FINAL NET (Vm)INITIAL FINAL INITIAL FINAL AVG q (in H2O)Vm (STD)Vcr (STD)Y VARIATION (%)DH@ 1 0.8137 10 100.418 105.533 5.115 71 82 87 75 78 80.5 4.759 3.00 4.3128 4.3028 0.998 1.740 2 0.8137 10 105.533 110.912 5.379 72 85 89 78 81 83.3 5.012 3.00 4.5125 4.5278 1.003 1.735 3 0.8137 10 110.912 117.512 6.600 72 90 93 80 83 86.5 6.081 3.00 5.5038 5.4935 0.998 1.724 AVG = 1.000 -0.18 1 0.5317 11 83.911 89.115 5.204 69 69 75 66 70 70.0 7.477 1.22 4.4522 4.4262 0.994 1.675 2 0.5317 11 89.115 94.226 5.111 71 74 79 71 74 74.5 7.282 1.22 4.3358 4.3027 0.992 1.668 3 0.5317 11 94.226 99.407 5.181 72 79 83 74 75 77.8 7.332 1.22 4.3686 4.3281 0.991 1.661 AVG = 0.992 -0.91 1 0.3307 13 117.962 123.015 5.053 74 90 89 82 84 86.3 11.603 0.45 4.1851 4.2521 1.016 1.561 2 0.3307 13 123.015 128.053 5.038 75 88 89 84 86 86.8 11.514 0.45 4.1688 4.2155 1.011 1.563 3 0.3307 13 128.053 133.107 5.054 75 89 90 86 87 88.0 11.508 0.45 4.1725 4.2133 1.010 1.559 AVG = 1.012 1.08 AVERAGE DRY GAS METER CALIBRATION FACTOR, Y = 1.001 AVERAGE DH@ = 1.654 (1)=Net volume of gas sample passed through DGM, corrected to standard conditions K1 =17.64 oR/in. Hg (English), 0.3858 oK/mm Hg (Metric) Tm =Absolute DGM avg. temperature (oR - English, oK - Metric) DH@ = 0.75 q DH Vm(std) Vcr(std) Vm (2)=Volume of gas sample passed through the critical orifice, corrected to standard conditions Tamb =Absolute ambient temperature (oR - English, oK - Metric) Average K' factor from Critical Orifice Calibration REFERENCE IN OUT (3)=DGM calibration factor 32 33 32 62 63 63 204 205 205 TEMPERATURE SENSORS oF 2024 Pre-Calibration Console #3 30 19 12 D Kitchen ENVIRONMENTAL SUPPLY COMPANY USING THE CRITICAL ORIFICES AS CALIBRATION STANDARDS: The following equations are used to calculate the standard volumes of air passed through the DGM, Vm (std), and the critical orifice, Vcr(std), and the DGM calibration factor, Y. These equations are automatically calculated in the spreadsheet above. ()2 () Type S Pitot Tube Inspection Data Date:Pitot Tube Identification: Technician: Dt=0.375 Is PA = PB ? Is 1.05 • Dt  PA & PB  1.50 • Dt ? PA = 0.455 PB =0.455 a1 < 10o a1 = o a2 < 10o a2 = o b1 < 5o b1 = o b2 < 5o b2 = o Z  0.125 in.Z = in. W W  0.03125 in.W = in. W > 3 inches W = in. Z > 3/4 inch Z = in. Y ≥ 3 inches Y = in. The pitot tube meets the specifications for a calibration factor of 0.84?Yes Reference: TemperatureSource Reference Sensor (Medium)(oF)(oF) Probe AIR 71 71 AIR 71 70 ICE WATER 33 34 BOIL WATER 204 204 SILICONE OIL 1/3/2024 27 G-2 X. Dang in. 0.016 0 0 2 2 0 in. in. Yes Yes 0.016 6.875 0.875 3 3/4 Heat Check 248 Temperature Sensor Calibration 1 1 0Stack Omega CL3512A Probe Yes Yes Continuity Check Temperature TemperatureDifference (oF) b2 b1 B A w Dt PA PB Type S Pitot Tube Inspection Data Date:Pitot Tube Identification: Technician: Dt=0.244 Is PA = PB ? Is 1.05 • Dt  PA & PB  1.50 • Dt ? PA = 0.294 PB =0.294 a1 < 10o a1 = o a2 < 10o a2 = o b1 < 5o b1 = o b2 < 5o b2 = o Z  0.125 in.Z = in. W W  0.03125 in.W = in. W > 3 inches W = in. Z > 3/4 inch Z = in. Y ≥ 3 inches Y = in. The pitot tube meets the specifications for a calibration factor of 0.84?Yes Reference: TemperatureSource Reference Sensor (Medium)(oF)(oF) Probe AIR 70 71 AIR 70 71 ICE WATER 33 33 BOIL WATER 203 203 SILICONE OIL 1/3/2024 36 S X. Dang in. 0.041 2 0 2 2 1 in. in. Yes Yes 0.021 8 1 3 7/8 Heat Check 248 Temperature Sensor Calibration 1 0 0Stack Omega CL3512A Probe Yes Yes Continuity Check Temperature TemperatureDifference (oF) b2 b1 B A w Dt PA PB Date:1/2/24 Calibrator:Reference: Temperature Temperature Source Difference (Medium)(oF) Water 0 Water -2 Water 0 Water -2 Water 0 Water -1 Water 0 Water -2 Water 0 Water 0 Water 0 Water 0 Water 0 Water 0 Water 0 Water 0 Water 0 Water 0 Water 0 Water 0 Water 0 Water -1 Water 0 Water -1 Water 0 Water 0 Water 0 Water 0 Water 0 Water -1 Water 0 Water -1 Water 0 Water 0 Water 1 Water 0 Water 0 Water -2 Water 0 Water -1 Water 0 Water 0 Water 0 Water 0 Water 0 Water 0 Water 0 Water 0 202 33 33 Impinger Out K 33 33 203 203 33 33 Impinger Out J Impinger Out H Impinger Out I 33 203 33 203 33 203 33 203 203 201 33 G H Oven (3)33 33 203 203 Oven (4)33 203 Oven 33 33 203 203 Oven 33 33 33 203 202 Oven (3) A 201203 33 Oven (3)33 33 Oven (4) Thermocouple Location 203 201 Impinger Out F 33 33 203 203 203 203 202 203 203 33 33 Impinger Out G 203 201 Oven (3)33 203 203 33 33 203Oven (4) 203 Impinger Out D 33 33 203 203 Impinger Out E 33 34 203 203 203 33 33 203Impinger Out B Impinger Out C 33 33 203 202 202 Impinger Out A 33 33 203 Oven (3) Oven (4) TETCO Sample Box Temperature Sensor Calibration B C 203 203 33 33 33 33 203 33 33 Xuan N. Dang Omega CL3512A Unit ID Reference (oF) Sensor (oF) Temperature 33 D E Oven 33 33 203 202F Oven (4) Airgas Specialty Gases Airgas USA LLC an Air Liquide company 525 North Industrial Loop Road Tooele, UT 84074 Airgas.com CERTIFICATE OF ANALYSIS Grade of Product: EPA PROTOCOL STANDARD Part Number: Cylinder Number: Laboratory: PGVP Number: Gas Code: E03Nl99E15A0362 EB0096011 124 -Tooele (SAP) -UT B72023 CO,NO,NOX,BALN Expiration Date: Reference Number: Cylinder Volume: Cylinder Pressure: Valve Outlet: Certification Date: Feb 27 2031 153-402668446-1 144.0 CF 2015 PSIG 660 Feb 27, 2023 Certification performed in accordance with "EPA Traceability Protocol for Assay and Certification of Gaseous Calibration Standards (May 2012)" document EPA 600/R-12/531, using the assay procedures listed. Analytical Methodology does not require correction for analytical interference. This cylinder has a total analytical uncertainty as stated below with a confidence level of 95%. There are no significant impurities which affect the use of this calibration mixture. All concentrations are on a mole/mole basis unless otherwise noted. The results relate only to the items tested. The report shall not be reproduced except in full without approval of the laboratory. Do Not Use This Cylinder below 100 psig, i.e. 0 7 megapascals ·--··-···'--··-·------··--··ANA:tYPieAf:.·R:ESHl.'fS ---··. --·oi-----·-,-· ··-----.------ Component Requested Actual Protocol Total Relative Assay Concentration Concentration Method Uncertainty Dates NOX 125.0 PPM 126.4 PPM G1 +/-1.0% NIST Traceable 02/20/2023, 02/27/2023 CARBON MONOXIDE 125.0 PPM 124.1 PPM G1 +/-0.6% NIST Traceable 02/20/2023 NITRIC OXIDE 125.0 PPM 126.3 PPM G1 +/. 1.0% NIST Traceable 02/20/2023, 02/27/2023 NITROGEN Balance CALIBRATION STANDARDS Type Lot ID Cylinder No Concentration Uncertainty Expiration Date NTRM 11010111 KAL003133 97.31 PPM CARBON MONOXIDE/NITROGEN 0.4% May 25, 2028 NTRM 11060558 110605 101.2 PPM NITRIC OXIDE/NITROGEN +/-0.6% Feb 16, 2017 GMIS DCK:12072022 CC754103 98.25 PPM NITRIC OXIDE/NITROGEN 0.9 Jan 04, 2031 PRM 12409 D913660 15.01 PPM NITROGEN DIOXIDE/AIR 1.5% Feb 17, 2023 GMIS 1534012021103 ND73012 4.956 PPM NITROGEN DIOXIDE/NITROGEN 1.6% Jun 15, 2025 The SRM, NTRM, PRM, or RGM noted above is only in reference to the GMIS used in the assay and not part of the analysis. ANALYTICAL EQUIPMENT Instrument/Make/Model Analytical Principle Last Multipoint Calibration Nicolet iS50 AUP2110269 CO LCO FTIR Feb 15, 2023 Nicolet iS50 AUP2110269 NO LNO FTIR Feb 23, 2023 Nicolet iS50 AUP2110269 N02 impurity FTIR NO2 impurity Feb 10, 2023 Page 1 of 1 ~ an Air Liquide company Airgas Specialty Gases Airgas USA LLC 11711 S. Alameda Street Los Angeles, CA 90059 Airgas.com CERTIFICATE OF ANALYSIS Part Number: Cylinder Number: Laboratory: PGVP Number: Gas Code: Grade of Product: EPA PROTOCOL STANDARD E03Nl99E15A5RD9 XC026532B 124 -Los Angeles (SAP) -CA B32023 CO,NO,NOX,BALN Expiration Date: Reference Number: Cylinder Volume: Cylinder Pressure: Valve Outlet: Certification Date: Feb 24 2031 48-40266844 7-1 144.0 CF 2015 PSIG 660 Feb 24, 2023 Certification performed in accordance with "EPA Traceability Protocol for Assay and Certification of Gaseous Calibration Standards (May 2012)" document EPA 600/R-121531, using the assay procedures listed. Analytical Methodology does not require correction for analytical interference. This cylinder has a total analytical uncertainty as stated below with a confidence level of 95%. There are no significant impurities which affect the use of this calibration mixture. All concentrations are on a mole/mole basis unless otherwise noted. The results relate only to the items tested. The report shall not be reproduced except in full without approval of the laboratory. Do Not Use This Cylinder below 100 psig i e 0 7 megapascals · I••.• ' ANALYTICAL RESULTS --~·-•-+ --------·~----------Component Requested Actual Protocol Total Relative Assay Concentration Concentration Method Uncertainty Dates NOX 230.0 PPM 234.2 PPM G1 +/-1.2% NIST Traceable 02/17/2023, 02/24/2023 CARBON MONOXIDE 230.0 PPM 230.8 PPM G1 +/-0.4% NIST Traceable 02/21/2023 NITRIC OXIDE 230.0 PPM 232.4 PPM G1 +/-1.0% NIST Traceable 0211712'023, 02/24/2023 NITROGEN Balance CALIBRATION STANDARDS Type Lot ID Cylinder No Concentration Uncertainty Expiration Date NTRM 14060317 CC432084 252.5 PPM CARBON MONOXIDE/NITROGEN +/-0.3% Feb 13, 2026 PRM 12409 0913660 15.01 PPM NITROGEN DIOXIDE/AIR +/-1.5% Feb 17, 2023 NTRM 200603-09 EB0112912 250.3 PPM NITRIC OXIDE/NITROGEN +/-0.8% Oct 19, 2026 GMIS 1534012021101 ND73001 4.947 PPM NITROGEN DIOXIDE/NITROGEN +/-1.6% Jun 15, 2025 The SRM, NTRM, PRM, or ~GM noted above is only in reference to the GMIS used in the assay and not part of the analysis. ANALYTICAL EQUIPMENT Instrument/Make/Model Analytical Principle Last Multipoint Calibration SIEMENS 6E CO LOW NDIR Feb 07, 2023 Nicolet iS50 AUP2110317 NO FTIR Feb 08, 2023 Nicolet iS50 AUP2110317 NO2 FTIR Feb 09, 2023 Triad Data Available Upon Request Page 1 of 1 DocNumber: Linde Order Number: 7Hl6,9"693 Linde Gas & Equipment Inc. 5700 S. Alameda Street Los Angeles CA 90058 Tel: 323-585.-2154 Fax: 714-542-6689 PGVP ID: F22021 Lot Number: 70086132602 LGEPKG SALT LAKE CITY UT H 6880 S 2300 E Pa~ Number. Nl(;b9.75ci1E-AS Customer Pd Number: 79869904 Cylinder Style & Otdlet: AS CGA 590 SALT LAKE CITY UT 84121-3183 Cylinder Pressure and Volume: 2000 psig 148 ft3 Certified Concentration ProSpec EZ Cert Expiration Dale/_> !l Qylinder Number.t,. 9.75 % 9.77 % Balance Certification Information: This cylinder wa~ \l:ertified according to the 2012 EPA Traceability Protocol, u~certainty at.a level of confidence of approximately 95% with a cover"~ge factof CO2 responses have been corrected for Oxygen IR Broadening cffeci. 02 re~p Ana/vtical Data: 1. Component: Carbon dioxide Reques,ted Concentration: 9.75 % Certified Concentration: 9.75 % . Instrument Used: Horiba.VIA-510 S/N 20C 194WK Analytical Method: NDIR Last Multipoint Calibration: 11/2712021 NIST Traceable Expanded Uncertainty ± 0.05 % ± 0.04 %. [!I • .00 ii.:. Term: 96 Months Expiration Date: 11/30/2029 .·. ,'•)!.- p -o00/R-12/531, using Procedure G1. Uncertainty above is expressed as absolute expanded t Use this Standard if Pressure is less than 100 PSIG. een corrected for CO2 interference. ··i/::;:1. Reference Standard: Type/ Cylintjer#: GMIS /_CC283571 ·:o:\ Concentration I Uncertainty:· 14.24 % ±0.04 % ti Expiration Date: 07/15/2029 i!c ·Traceable to: SRM #/Sample# /Cylinder#: RGM / N/A / CC28033 f SRM Concentration/ Uncertainty: 19.67% / ±0.04% SRM E,qira!ion Dale: 07/15/2021 ~F-lr-st-A--na_l_y-sl_s_D_a-ta-,------------D-ate ___ 1_1_f30!2 __ "0"'2"'1--, Second Analysis Data: Date cOrjc: 0 Z: O R: 14.24 C: 9._75 Cone: 9.75 ;;c..,_ __ -l-'->i''...;z,!i,;~·::cl,·,ci'l•.l;;P,e".;'-,·'..;\-.·\',":"';",;R1>);:::>---'-··_,0"-.:"""'.~ee·...:·-"-',:;;.·''-'•'-· '-"0-"'_...~.;;.;:.=:.....;. -'-------~==.-.· ~~1-4t~/~~:•~nc"'';'--'9o-."'"77,.._'---~-"'\ ;= ~ ~: ~ ~: ~. ! U~M: % : :MeanTestAssay: Cone: 0 Cone: 0 UOM: % Mean Test Assay: 9.75 % 2, Component: Oxygen Requested Concentration: 9.75 % Certified Concentration: 9.77 % Instrument Used: Siemens Oxymat 6E S/N 7MB20211AA000CA1 Analytical Method: Paramagnetic Last Multipoint Calibration: 11/12/2021 First Analysis Data: ate 11/30/2021 Z: 0 R: 9.88 C: 9.76 R: 9.88 Z: 0 C: 9.76 Z: 0 C: 9.78 R: 9.77 UOM: % 9.77 % Analyzed By 'Reference Standard: Type/ Cylinder#: NTRM / DT0010262 Concentration/ Uncertainly: 9.875 % ±0.040 % Expiratloo Date: 11/18/2022 Traceable to: SRM #/Sample#/ Cylinder#: NTRM / 170701 / DT0010262 SRM Concentration/ Unce<°.alnly: 9.875% I ±0.040% SRM Expiration Date: 11/18/2022 Second Analysis Data: Date Cone: 0 Cone: 0 Cone: O Z: 0 R: 0 Z: 0 UOM: % Certified By R: 0 Z: 0 C: 0 Nelsorl'Ma C: C: R: 0 0 0 Mean Test Assay: % Information contained herein has been prepared at your request by qualified experts within Linde Gas & Equipment Inc. While we believe that the information is aco.,rate within the limits of th~ analytical methods employed and Is complete to the extent of the specific analyses performed, we make no warranty or representation as to the suitability of the use of the Information for any purpose. The information is offered with the understanding that any use of the infoonation is at the sole discretion and risk of the user. In no event shall the liability of Linde Gas & Equipment Inc. , arising out of the use of the information contained herein exceed the fee estabfished for providing such information. .. Making our world more productive DocNumber: 555077 Certificate Issuance Date: 08/11/2023 , Linde Ord~r Number: 72533908 Linde Gas & Equipment Inc. 5700 S. Alameda Street Los Angeles CA 90058 Tel: 323-585-2154 Fax: 714-542-6689 PGVP ID: F22023 Fill Date: 08/07/2023 Lot Number: 70086321907 Customer & Order Information LGEPKG SALT LAKE CITY UT H 6880 S 2300 E . Pah Number: NI CD20.5O1 E-AS Customer P~ Number: 80543739 Cylinder Style & Outlet: AS CGA 590 SALT LAKE CIT'( UT84121-3183 Cylinder Pressure and Volume: 2000 psig 158 ft3 E~piration Date: Cylfnder Number: 20.41 % 20.73 % Balance Certified clncentration 08/11/2031 CC145183 Carbon dioxide Oxygen Nitrogen NIST Traceable Expanded Uncertainty ±0.06% ±0.04% Certijicatio,n Information: Certification Date:08/11/202,i Term: 96 Months Expiration Date: 08/11/2031 This cylinder w~ certified according to the 2012 EPA Trac~abHity Protocol, Document #E~t600/R-12/531, using Procedure G1. Uncertainty above is expressed as absolute expanded uncertainty at a level of confidence of approximatel;· 95% with a coverage factor k = 2. Do Not Use this Standard If Pressure Is less than 100 PSIG. ·, CO2 responses have been corrected for Oxygen IR Broadenl;i,:J affec~. 02 responses have ~Ben correclf!d for CO2 interference. Anafvtical Data: (R=Reference Standard, Z=Zero Gas, C=Gas Candidate) 1. Component: Carbon dioxide Requ~sted Concentration: 20.5 % Certified Concentration: 20.41 % Reference Standard: Type/ Cylinder#: GMIS / CC305911 Concentration/ Uncertainty: 26.96 % ±0.05 % Expiralion Date: 03/29/2031 Instrument Used: Horiba VIA-510 S/N 20C194WK Traceable to: SRM #/Sample# /Cylinder#: RGM#CC193512 / N/A / CC193512 Analytical Method: NDIR Last Multipoint Calibration: 07/28/2023 First Analysis Data: Z: 0 R: 26.96 C: Date 20.42 Cone: 08/11/2023 20.42 '" 2e.se ·~--z~,-~---~-,,.~~---~"'2"'0 . ..,.4•1-~,,.__,_. 0 C: 20.41 -~·"-Cone: Z: 0 C: 20.41 20.41 R: 26.96 Cone: UOM: % 20.41 % Mean Test Assay: 2. Component: Oxygen Requested Concentration: 20.5 % Certified Concentration: 20.73 % Instrument Used: Siemens Oxymat 6E S/N 7MB20211AA000CA 1 Analytical Melhod: Paramagnetic Last Multipoint Calibration: 07/28/2023 First Analysis Data: Z: 0 R: 24.96 Z: 0 C: 20.76 C: 20.75 C: 20.73 R: 24.98 Date 08/11/2023 Cone: 20.74 Cone: 20.72 Cone: 20.75 R: 24.99 Z: 0 UOM: % Mean Test Assay: 20.73 % Analyzed By SRM Concentralion / Uncertainty: 26.99% / ±0.05% SRM Expiration Date: 05/15/2023 Second Analysis Data: Date _z, __ o R: 0. C: O Cone: O .~z~,-~o ..... --c;~---Col'I~: ·Q~ R: O Z: 0 C: O R: O Cone: o UOM: % Mean Test Assay: Reference Standard: Type/ Cylinder#: GMIS / DT0025134 Concentration / Uncertainty: 24.96 % ±0.04 % Expiration Date: 12/14/2026 Traceable to: SRM #/ Sample#/ Cylinder#: SRM 2659a /71-E-19/ FF22331 SRM Concentration/ Uncertainty: 20.863% /±0.021% SRM Expiration Date: 02/27/2026 Second Analysis Data: Date Z: 0 R: 0 C: 0 Cone: 0 R: 0 Z: 0 C: 0 Cone: 0 Z: 0 C: 0 R: 0 Cone: 0 UOM: % Mean Test Assay: CertifleffBy % % Information contained herein has been prepared at your request by qualified experts within Linde Gas & Equipment Inc. While we believe that the information is accurate within the limits of the analytical methods employed and is complete to the extent of the specific analyses performed, we make no warranty or representation as to the suitability of the use of the informatiori for any purpose. The information is offered with the understanding that any use of the information is at the sole discretion and risk of the user. In no event shall the liability of Linde Gas & Equipment Inc. , arising out of the use of the Information contained herein exceed the fee established for providing such information. Page 1 of 1