HomeMy WebLinkAboutDRC-2009-008030 - 0901a06880140a20GROUNDWATER STUDY
WHITE MESA FACILITY
BLANDING,UTAH
PREPARED By
UMETCO MINERALS CORPORATION
PEEL ENVIRONMENTAL SERVICES
--,.JANUARY 1993
EXECUTIVE SUMMARY
(1)Umetco Minerals Corporation conducted additional groundwater studies for
the White Mesa facility during November-December,1992.
Four new borings were drilled and completed as monitoring wells.Two
wells were established upgradient and two downgradient of the facility.
(3)The borings encountered an average of 98 feet of very dry to dry
sandstones with claystone layers overlying a saturated zone in the Burro
Canyon Formation of limited thickness (average 26 feet).
•
(4)Some investigators (U.S.DOE consultants)consider water in the Dakota
Burro Canyon sequence not to be an aquifer because of its limited extent
and low hydraulic conductivity properties.(Naturita Tailings Remedial
Action Project)
(5)Travel times to the Burro Canyon saturated zone from pond releases have
been estimated based on analysis on the boring and well test data.
Travel times can be as short as a few weeks for joints directly in
contact with tailings solutions to 60+years for partially saturated
flow conditions.
(6)The chemistry of groundwater from the monitoring wells is extremely
variable,but all tend to be dominated by the sulfate ion.
(7)Use of a single monitoring well for background purposes appears to be
inappropriate.Time comparisons of a specific ion species (chlorides)
within specific wells is recommended for determining operational impacts
on the saturated zone in the Burro Canyon Formation.
(8)Statistical "T"tests (at the 0.05 level of significance)performed on
samples of chloride populations from specific wells over time show no
significant change in chloride concentrations.Some downgradient wells
analyzed do show a statistical significant decrease in the chloride ion
populations.
•
I~
Executive Summary
Page 2
(9)The statistical analysis is confirmed by the chemistry of Cell 2 leak
detection system.
(10)Analyses of subsurface data collected from the present and past studies
and analysis of groundwater chemistry show that uranium recovery
operations at White Mesa have not affected the groundwater in the
saturated zone of the Burro Canyon Formation.
1.0
2.0
3.0
4.0
TABLE OF CONTENTS
INTRODUCTI ON
REGIONAL GEOLOGY
2.1 Physiography and Structure
2.2 Stratigraphy
HYDROGEOLOGY
3.1 Regional Hydrology
3.1.1 Bedrock Aquifers
3.1.2 Regional Recharge
3.2 Groundwater Use
SUBSURFACE CONDITIONS
4.1 General
4.2 White Mesa Stratigraphy
1-1
2-1
2-1
2-3
3-1
3-1
3-1
3-3
3-4
4-1
4-1
4-1
4.2.1
4.2.2
4.2.3
Dakota Formation
Burro Canyon Formation
Brushy Basin Member
4-5
4-5
4-7
5.0 SITE GROUNDWATER
5.1 Occurrence
5.1.2 Aquifer Tests
5.2 Groundwater Water Movement
5.2.1 Vadose Zone
5.2.2 Saturated Zone
5.3 Water Quality
5.4 Impact of Operations on Groundwater
5-1
5-1
5-1
5-8
5-8
5-9
5-10
5-23
()LIST OF TABLES
Page
Tab1e 3.2-1 Location of Permitted Water Wells 3-6
Tab1e 4.2-1 Rock Properties 4-6
Table 5.I-I White Mesa Monitor Wells 5-4
Table 5.1-2 Groundwater Occurrence 5-5
Table 5.1.2-1 Aquifer Test Results,Existing Well s 5-6
Table 5.1.2-2 Borehole Permeability Test Results 5-7
LIST OF FIGURES
White Mesa Mill Site 1-2
Location of Geologic Cross Sections 4-2
Generalized East-West Geologic Cross Section 4-3
White Mesa Mill Site
East-West Stratigraphic Section through the 5-3
White Mesa Mill Site
5-11
North-South Stratigraphic Section through the 5-2
White Mesa Mill Site
Generalized North-South Geologic Cross Section 4-4
White Mesa Mill Site
Location of Permitted Water Wells in Vicinity 3-6
of White Mesa Mill
White Mesa Primary Joints 2-4
Dakota and Burro Canyon Formations
White Mesa Secondary Joints 2-5
Dakota and Burro Canyon Formation
Tectonic Map of Southeastern Utah and 2-2
Southwestern Colorado
Phreatic Surface of the Ground Water in the
Burro Canyon Formation beneath the White
Mesa Mi 11 Site
Local Stratigraphic Section 2-6
Generalized Stratigraphic Section Showing 3-2
Fresh Waterbearing Units in Southeastern Utah
Figu re 1.0-1
Figure 2.1-1
Figure 2.1-2
Figure 2.1-3
Figure 2.2-1
Figure 3.1.1-1
Figure 3.2-1
Figure 4.2-1
Figure 4.2-2
Figure 4.2-3
Figure 5.1-1
Figure 5.1-2
Figure 5.2.2-1
Figure 5.3-1A Classification of Water Types Using the
Trilinear Design
5-13
Figure 5.3-1 Trilinear Plot of Water from White Mesa Mill
Monitor Wells,Fly Ash Pond and Slimes Drain,
and Surrounding Stock Wells
5-14
Figure 5.3-2 Stiff Diagrams of Water from Monitor Wells 5-15
Figure 5.3-3 Stiff Diagrams of Water from Monitor Wells
and Stock Well
5-16
•
l
LIST OF FIGURES (Continued)
Page
Figure 5.3-4 Staff Diagrams Slimes Drain,Fly Ash Pond 5-17
Surrounding Stock Wells
Figure 5.3-5 Time-Sequence Tri 1i near Plot of WMMW-2 5-18
Figure 5.3-6 Time-Sequence Tri 1inear Plot of WMMW-3 5-)9
Fig ure 5.3-7 Time-Sequence Trilinear Plot of WMMW-4 5-20
LIST OF APPENDICES
APPENDIX A -Drilling,Geophysical Logging,and New Monitor Well Construction
APPENDIX B Geophysical Logs of Existing Monitor Wells
APPENDIX C Aquifer Tests
APPENDIX 0 -Water Quality Data
APPENDIX E -Statistical Analyses
I")
1.0 INTRODUCTl ON
I - I
•
•
Umetco Minerals Corporation in conjunction with Peel Environmental
Services has conducted a geotechnical/geohydrological investigation at the
White Mesa Mill site near Blanding,Utah (see Figure 1.0-1).The study was
performed to update and verify previous investigations and studies of the
geohydrology of the White Mesa facility.
The work consisted of the following:
Review of existing data and previous studies.
Preparation of study and data acquisition plan.
Site inspection and mapping by a geologist and geotechnical
engineer .
Aquifer pump testing and geophysical logging of existing monitor
wells.
Drill ing,geophysical logging and testing hydrogeologic properties
of four new borings.
Construction of the four new borings as monitor wells.
The following report presents our methods of investigation,the
geotechnical and geohydrological conditions encountered at the project area,
and presents our conclusions as to the impact of uranium recovery operations on
groundwater.
This report supplements the "Environmental Report 1978"by Dames and
Moore and the "1991 License Renewal Application (License SUA-1358)."It also
incorporates data and analysis from the report "Ground-water Hydrology at the
White Mesa Tailings Facility"by Hydro-Engineering,July,1991.
1-2
R 22 E----~---,r-1-5----1
16
o AnderSO/1 Well
VVlndmfIJ WaHo1
White Mesa
Mill SiteN.M8x.1Ariz.
~'-----,---::-;-,
Utah I Colo.
•
20 21 22oJetPumpWell
1-+_--'\Property Boundary
WMfvWV·19•
'NMMW-1
o
T
37
S
28 27
/~CellH I~~
32
Cell No.2
&Mwt Cell No.3 ~
v \:WMMW-5 WMMW.')
•cellNOAZ
WMMW-16 n-WMMW.15 33
~v 'M."-14
•WMMW-17
o Stock Wells
o Existing Monitor Wells
•New Monilor Wells
o
Jones Well
White Mesa Mill Site
Figure 1.0 - 1
•
2-1
2.0 REGIONAL GEOLOGY
The White Mesa Mill is situated near the western margin of the
Blanding Basin in southeastern Utah.Thousands of feet of multi-colored marine
and non-marine sedimentary rocks have been uplifted and warped,and subsequent
erosion has carved a spectacular landscape for which the region is famous.
2.1 Physiography and Structure
The White Mesa Mill site is located within the Canyon Lands section of
the Colorado Plateau physiographic province (Figure 2.1-1).To the north,this
region is bounded by the Bookcliffs and Grand Mesa of the Uinta Basin;the
western margins are defined by the tectonically controlled high plateaus of the
Monument Uplift.The eastern boundary,less distinct,falls where the elevated
surface of the Canyon Lands section merges with the Southern Rocky Mountain
province.The southern boundary is arbitrarily defined as the San Juan River .
The Canyon Lands has undergone epirogenic uplift and subsequent
erosion which have produced the region's characteristic topography represented
by high plateaus,mesas,buttes,and deep canyons incised into relatively flat
lying sedimentary rocks of pre-Tertiary age.Elevations range from
approximately 3,000 feet in the bottoms of the deep canyons along the
southwestern margins of the region to more than 11,000 feet in the Henry,Abajo
and La Sal Mountains located to the north and northeast of the White Mesa Mill.
With the exception of the deep canyons and isolated mountain peaks,an average
elevation slightly in excess of 5,000 feet persists over most of the Canyon
Lands.
The Mill site is located near the western edge of the Blanding Basin,
which is situated east of the north-south trending Monument Uplift,south of
the Abajo Mountains and southwest of the northwest-trending Paradox fold and
fault belt.The southern boundary is defined by the Tyende Saddle and Carrizo
Mountains just south of the Utah-Arizona border.
•
2-2
~~"w
::Ii
o
o
Tectonic Map of Southeastern
Utah and Southwestern Colorado
Figure 2.1 - 1
•
•
2-3
Topographically,the Abajo Mountains are the most prominent feature in
the region,rising more than 4,000 feet above the broad,flat surface of the
Great Sage Plain.The Great Sage Plain is a structural slope,capped by the
resistant Burro Canyon Formation and Dakota sandstone.These strata lie almost
horizontal in an east-west direction,but dip to the south with a regional dip
of about 2,000 feet over a distance of nearly 50 miles.Though not as deeply
or intricately dissected as other parts of the Canyon Lands,the plain is cut
by narrow,vertical-walled south-trending valleys which range from 100 to more
than 500 feet in depth.
The strata underlying White Mesa have a regional dip of 1/2'to l'to
the south;however,local dips of 5'have been measured.Haynes,et al (1972)
includes a map showing the structure at the base of the Dakota Formation.No
faults have been mapped in the immediate vicinity of White Mesa.During an
investigation of the site a number of fracture attitudes were measured along
the rims of Corral and Cottonwood Canyons.Analysis of these data indicates
that there are two joint sets.The distance between the joints in each set
varies 5 to 20 feet.The primary joints strike from north-south to N20E with a
vector mean of N11E (Figure 2.1-2)and the secondary fractures have a strike
ranging between N40W to N60W with a vector mean of N47W (Figure 2.1-3).All
joint sets are near vertical to vertical.Only one small fracture was found in
the cores during recent drilling.However,this is to be expected in an area
of widely-spaced vertical joints.
2.2 Stratigraphy
Rocks of Upper Jurassic and Cretaceous age are exposed in the canyon
walls in the vicinity of the White Mesa Mill site (Figure 2.2-1).These rock
units include,in ascending order,the Salt Wash sandstone,the Recapture
shale,the Westwater Canyon sandstone and the Brushy Basin shale members of the
Upper Jurassic Age Morrison Formation.Overlaying these units are the
Cretaceous Age Burro Canyon Formation,Dakota sandstone,and erosional remnants
•
•
2-4
.'l:L
s
Number of readings =27
Class Interval =20 degrees
Maximum Percentage =48.1
Mean Percentage =14.29
Standard Deviation =15.70
Vector Mean =N11 E
White Mesa Primary Joints
Dakota and Burro Canyon Formations
Figure 2.1 - 2
•
2-5
s
•
Number of readings =25
Class Interval =20 degrees
Maximum Percentage =28.0
Mean Percentage =12.50
Standard Deviation =8.87
Vector Mean =N47W
White Mesa Secondary Joints
Dakota and Burro Canyon Formations
Figure 2.1 -3
2-6
Lithologic DescriptionUnitName
Dakota Sandstone
Burro Canyon Formation
Sandstone,quartz,Lightgray to light
brown,cross-bedded,conglomeratJc,
poorly sone<llnterbedded with
gray-green shale---------.,.
Sand &Sill,reddish brown veryEolianSandfin,""cainediMi~nco~s]S~h~al~e=========Sha!e,light gray,soft
Sandslone,quartz,light yelicJw'brown,poorly sorted,Iron
concreations,well Indurated
Approximate
Thickness (It)
-Jst60±+75±
::.::.::.::.::.::.:.::.::.::.::.::.::.:
I')
::.::.::.::.::.::.::.::.::.::.::.::.::.::.::.::.::.::.
::.::.::.::.::.::.::.::.::.::.::.::.::.::.::.::.::.::.
::.::.::.::.::.::.:.
...........:<.".
lflfll'll'lI!1fll'F::.::.::.::.::.::.::.
295
Brushy Basin Member Shale,gray,gray-green,and
purple,silty in part with some
sandstone lenses
::.::.::.::.::.::.::.
•
::.::.::.::.::.::.::.::.::.::.::.::.::.::.::.::.::.::.::.::.::.::.::.::.::.::.::.::.::.::.::.::.::.::.::.::.::.::.::.::.::.::.::.::.::<:.::.::.::.::.::.::.::.::.::.::.:
::.::.::.::.::.::.::.::.::.::.::.::.::.::.::.::.::.::.::.::.::.::.::.::.::.::.::.::.::.::.::.::.::.::'::.::.
::'::'::'::'::'::'::'::'::'.
60
120
>50
I
Westwater Canyon Member
Recapture Member
Salt Wash Member
c.Q
"iiiE
tl:
coVl'E sandstone,arkosic,yellow-10
a greenish gray,,fine-to
~coarse-grained,Interbeddedwith
greenish-gray to reddlsh·brownshale
Shale,reddish-gray silty to sandy
Interbedded with sandstone,arkosic,
reddish-gray,to yellow-brown,fine-
to medium -graine<l
Sandstone,quartz,yellowish-to
reddish brown,fine-to
coarse-grained Interbedded
with reddish-gray shale
Local Stratigraphic section
Figu re 2.2 - 1
•
•
2-7
of Mancos shale.Erosional remnants of Mancos shale are only found north of
the Mill site.Eolian sand of Quaternary age and varying of thickness overlies
the Dakota sandstone and Mancos shale on the mesa,and alluvium,also of
Quaternary age,occurs in the bottoms of steam valleys.A thin deposit of
talus derived from rock falls of Dakota sandstone and Burro Canyon Formation
mantles the lower valley flanks.
A description of each stratigraphic unit at the project area,based on
borehole information,field reconnaissance and information provided by other
investigators follow:
Salt Wash Member -Medium to thick bedded,hard,gray to bluish-gray,
fine-to coarse-grained sandstone,fractured to slightly fractured in
the outcrop,interbedded with thinly laminated,hard,light
bluish-gray siltstone.This unit is approximately 105 feet thick.
Recapture Member -Thinly laminated,friable to well indurated,
yellowish brown to reddish-gray argillaceous siltstone,unfractured.
Interbedded with a 20-foot thick grayish brown sandstone layer which
pinches out to the south of the Mill site (D'Appolonia,1982).The
thickness of this unit is 120±feet.
Westwater Canyon Member -Thick bedded,well indurated,light grayish
green silty sandstone (fine-to corase-grained),fractured to slightly
fractured,fine-to coarse-grained,interbedded with thinly laminated
greenish-gray silty claystone and clayey siltstone.The thickness of
this unit is 50±feet.
Brushy Basin Member -Thinly laminated to medium bedded,soft to hard,
variegated claystone and siltstone,interbedded with thick lenses of
gray sandstone.Total thickness is approximately 300 feet.
Burro Canyon Formation -Thin cross-bedded,well indurated,light to
dark greenish-gray,gray and light brown sandstone occasionally
conglomeratic,interbedded with thick,soft,light greenish-gray,waxy
shale and siltstone.Thickness is 7S±feet.
2-8
Dakota Sandstone -Thin bedded,well indurated,light yellowish-brown,
poorly sorted,very fine-to medium-grained,kaolinitic,sandstone.
The thickness of this formation is GO±feet.
Mancos Shale -Light gray,thin bedded,soft,shale.Only random
occurring thin <5-foot thick remnants occur in the area north of the
mill site.
Eolian Sand -Reddish brown,very fine sand and silt,unconsolidated
to partially cemented with caliche,approximately 20 feet thick.In
some areas,particularly south of the Mill site,a 3-to 6-inch layer
of caliche was encountered at a depth of 5 feet.
Talus and Colluvium -Sandstone rock fall debris,talus and slope
wash,sizes range from cobbles to massive blocks derived from Dakota
sandstone and Burro Canyon Formation.Talus is commonly incorporated
with clay and silt slopewash,forming a matrix of angular sandstone
cobbles mixed with inner materials and containing numerous voids.
Thickness of this unit varies considerably,probably from zero to a
maximum of 20 feet (D'Appolonia,1982).
Alluvium -Soft,reddish-brown to yellowish-brown sandy silt with
lenses of loose sandy gravel,slightly calcareous.
•
3 -I
3.0 HYDROGEOLOGY
3.1 Regional Hydrogeology
The regional occurrence and distribution of groundwater in the project
area are controlled by the type and extent of rock formations and the
structural features of the Canyon Lands section of the Colorado Plateau
Physiographic Province.
An intricate system of deep canyons along and across hogbacks and
cuestas has resulted from faulting,upwarps and dislocation of rocks around the
intrusive rock masses such as Abajo Mountains,approximately 25 miles to the
north of the project site.Thus,the region is divided into numerous
hydrological areas controlled by structural features such as the San Rafael
Swell,the Monument Upwarp,and the Abajo,Henry and La Sal Mountains,as well
as the faulted anticlines in Salt,Spanish and Lisbon Valleys.
Water-bearing sedimentary rock formations of Cambrian and Devonian
through Cretaceous age are exposed in the region or have been identified in the
Blanding Basin.
3.1.1 Bedrock Aquifers
'-.
Regionally,the formations that are recognized as bedrock aquifers are
the Cretaceous-age Dakota sandstone and sandstones within the upper part of the
Morrison Formation of late Jurassic age;the Bluff,the Entrada and the Navajo
sandstones of Jurassic age;the Wingate sandstone and the Shinarump member of
the Chinle Formation of Triassic age,and the DeChelle member of the Cutler
Formation of Permian age.These units are shown in Figure 3.1.1-1,a
general ized section of stratigraphic units showing the fresh water-bearing
units in southeastern Utah.
3-2
GEOLOGICAGE
I""'>-Woo:
1-""3:::.:::
a
SHINARUMP member of Chinle
formation and OeCHELLY sandstone
member of Cutler formation.
Locally provide good water where
they are near surface,as in
vicinity of Bluff.
Artesian aquifer,
potable water.Crops out in western
and southern parts of area but base
reaches depth of nearly 1500 feet in
central part of area (near Aneth field
in Blanding basin).
NAVAJO sandstone.Artesian aquifer
yielding good quality water.Crops
out in western and southern parts of
area and reaches depths of 1850 feet
near Aneth oil field.
\IWINGATE sandstone.Artesian aquifer
Provides good quality water for
wells in vicinity of Bluff.
Cutler formation
De Chelly member }
Wingate sandstone }\\
Chinle formation ,\
I-7S7'hc:.i~n~a:.::ru::::m",p,-;"m:;:e:.;:m:::,b::..ere-\}
Moenkopi formation
zz
W
0..
Hermosa formation
Rico formation
~ALLUVIUM.Provides small quantities of water
rI1~a~n~co~s~S~h_from shallow wells.Such wells are subject
IDakota ss }to great seasonal variation in amount of
---+-------1 "yield.The water is generally of poor
Morrison"quality--probably owing to the sulfate salts
formation ~in the Mancos shale.
Sl uff sandstone }~DAKOTA sandstone and upper part of MORRISON
Summerville fm formation.Water of fair to poor quality
Entrada ss ]available by pumping.
Carmel fm 1 [BLUFF sandstone.Artesian aquifer,potable
water.Supplies a spring east of BluffNavajosandstoneandweilssouthofHatch.
Kayenta formation
•
Generalized Stratigraphic section Showing Fresh
Waterbearing Units In Southeastern Utah
After Goode (1958)Figure 3.1.1 . 1
3-3
Other formations within this sequence also contain water but its
quality varies from slightly saline to very saline.Beneath the Permian,
Cutler Formation are saline water-bearing units within the Rico and the Hermosa
Formations of Pennsylvanian age from which oil is produced in the Blanding
Basin.Hydrogeologic data on the formations in the area are limited.
The Bl uff sandstone,found on 1yin southern San Juan County,has
reportedly yielded 13 and 25 gpm in two wells drilled near Bluff (Feltis,
1966).The Entrada sandstone is reported to yield an average of 143 gpm at
five wells drilled in San Juan County,but yields as high as 1200 gpm have been
reported in other areas of southeast Utah (Feltis,1966).
The Navajo sandstone is one of the most permeable bedrock aquifers in
the region with reported yields as high as 1335 gpm (Feltis,1966),although
many wells drilled into the Navajo in southeast Utah only have yields varying
between 35 to 72 gpm.The Umetco/Energy Fuels industrial well drilled into the
Navajo sandstone is reported to have yielded 120 gpm after 1.5 hours of pumping
shortly after it was drilled.
Throughout the area,small quantities of water are produced from
shallow wells constructed in the alluvium that occurs in stream valleys and as
a veneer on the flattop mesas.These wells are subject to great seasonal
variation in yield and the water withdrawn is generally of poor quality.
3.1.2 Regional Recharge
The source of recharge to bedrock aquifers of the region is
precipitation.Precipitation in southeastern Utah is characterized by wide
variations in seasonal and annual rainfall and by long periods of deficient
rainfall.Short duration summer storms furnish rain in small areas of a few
square miles and this is frequently the total rainfall for an entire month
within a given area.The average annual precipitation in the region ranges
from less than 8 inches at Bluff to more than 16 inches on the eastern flank of
the Abajo Mountains,as recorded at Monticello.The mountain peaks in the
•
3-4
Henry,La Sal and Abajo Mountains may receive more than 30 inches of
precipitation,but these areas are very small in comparison to the vast area of
much lower precipitation in the region.
Recharge to bedrock aquifers in the region occurs by direct
infiltration of precipitation into the aquifers along the flanks of the Abajo,
Henry and La Sal Mountains and along the flanks of the folds,such as Comb
Ridge Monocline and the San Rafael Swell,where the permeable formations are
exposed at the surface.Recharge also occurs on the wide expanses of flat
lying beds that cap the mesas between these major structural features.In
these cases,some precipitation has been to percolate through the near surface
joints,fractures and intergranular porosity in the shales and sandstones.
3.2 Groundwater Use
Forty groundwater appropriation applications,within a five-mile
radius of the Mill site,are on file with the Utah State Engineer's office.
The location of the applications is shown on Figure 3.2-1 and is listed on
Table 3.2-1.The majority of the applications are by private individuals and
are for wells drawing small quantities of water,less than S gallons per minute
(gpm),from the Surro Canyon Formation.For the most part,these wells are
located upgradient (north)of the White Mesa Mill site.Stockwatering and
irrigation are listed as primary use of the majority of the wells.(Studies by
consultants performed at the U.S.Department of Energy's disposal site at
Naturita also note that the Dakota sandstones,Burro Canyon Formation and upper
sandstones of the Brushy Basin member are not considered an aquifer due to the
low permeability,discontinuous nature and limited thickness of these units.)
Union Carbide and Plateau Resources have appropriation applications on file for
deep wells (Entrada Formation)capable of much larger volumes of water
production for industrial use.
Two water wells exist approximately 4.5 miles southeast of the site on
the Ute Indian Reservation.These wells supply domestic water for the village
on the mesa along Highway 191.Both wells are completed in the Entrada
sandstone which is 1500±feet below the ground surface.
3-5
F'ure 3.2 . 1
Location Of Permitted Water
Wells In Vicinity Of White
Mesa Mill
32
----
.-.-"-----
T
"
6
.-,~/
J :>--
I
t.:.+
L!J·t~'30
'\
.\'--;::,~<::,::-~
I .-.--,'
,'-
r'l~"~\--I ,.,-,c'
,.,_...._.~•.'.'.~I ~•v_7.~.::~._,:-~B
J
•
3-6
Table 3.2-1
Wells Located Within A 5-Mile Radius of
The White Mesa Mill Site
White Mesa Project
San Juan County,Utah
Map No.Water Right
1 Nielson,Norman and Richard C.
2 Guymon,Willard M.
3 Nielson,J.Rex
4 Nielson,J.Rex
5 Lyman,Fred 8.
6 Plateau Resources
7 Plateau Resources
8 Nielson,Norman and Richard C.
9 Lyman,George F.
1a Ho~,N.E.,McLaws,W
11 Perkins,Dorothy
12 Union Carbide Corporation
13 Union Carbide Corporation
14 ~ah Launch Complex
15 Union Carbide Corporation
16 Union Carbide Corporation
17 Union Carbide Corporation
18 Union Carbide Corporation
19 Jones,Aima U.
20 Union Carbide Corporation
21 BLM
22 Haiilday,Fred L.
23 Perkins,Paui
24 Redd,James D.
25 Brown,Aroe G.
26 Brown,George
27 Brown,110 M.
28 Rentz,Alyce M.
29 Rogers,Clarence
30 Perkins,Dorothy
31 Brandt J.R.&C.J.
32 Montella,Frank A.
33 8nyder,Bertha
34 Martineau,8tanley D.
35 Kirk,Ronald D.&Catherine A.
36 Palmer,Ned J.and Marilyn
37 Grover,Jess M.
38 Monson,Larry
39 Neilson,Norman and Richard
40 Watkins,Henry Clyde
0-Domestic
I -Irrigation
8 -8tockwatering
o -Industrial
8EC TWP RNG CF8
11 378 22E 0.015
10 378 22E 0.015
10 378 22E 0.015
10 378 22E 0.013
10 378 22E 0.022
15 378 22E 0.015
15 378 22E 0.015
14 378 22E 0.015
15 37S 22E 0.015
15 37S 22E 0.007
21 37S 22E 0.015
21 37S 22E 0.6
22 37S 22E 1.11
27 378 22E 0.015
28 378 22E 1.11
28 378 22E 1.11
28 378 22E 0.015
28 378 22E 0.6
33 378 22E 0.015
33 378 22E 0.6
8 378 22E 0.01
11 378 22E 0.015
2 378 22E 0.015
2 378 22E 0.1
1 378 22E 0.015
1 378 22E 0.015
1 37S 22E 0.004.
1 378 22E 0.015
2 378 22E 0.015
2 378 22E 0.015
1 37S 22E 0.015
3 378 22E 0.015
1 378 22E 0.1
1 378 22E 0.015
1 37S 22E 0.015
1 378 22E 0.015
1 37S 22E 0.015
1 378 22E 0.015
1 37S 22E 0.015
1 378 22E 0.015
U8E
IDS
S
IDS
8
IDS
o
o
18
S
8
8
o
o
o
o
o
DSO
o
8
o
S
18
10
10
IS
108
IDS
10
S
8
108
100
IDS
10
108
IDS
8
108
18
18
Depth
150-200
82
160
165
120
740
135
150-200
135
195
150
1600
1820
650
1885
1850
1800
1600
200
1600
170
180
180
200
210
140
141
180
142
100-200
160
190
160
160
160
o
160
140
132
150
o
4.0
4.1
SUBSURFACE CONDITIONS
General
4-1
The subsurface conditions at the White Mesa facility have been
previously investigated by Dames &Moore (1978),D'Appolonia (1980),and Chen &
Associates (1978).Monitoring wells have been previously installed by
D'Appolonia and Sampson &Associates.
This investigation consisted of drilling four new borings (WMMW-16
through WMMW-19).The physical and hydrogeological properties of the bedrock
were evaluated by performing field aquifer and laboratory tests on core
samples.
4.2 White Mesa Stratigraphy
The lithology of the bedrock at White Mesa was verified by drilling
four new borings to depths from 95 to 150 feet below the eXisting ground
surface.
The generalized stratigraphy through White Mesa (Figure 4.2-1)is
shown on Figures 4.2-2 and 4.2-3.The description of the drilling process and
boring logs is shown in Appendix A.All of the borings were drilled through
the Dakota/Burro Canyon Formations and were terminated in the Brushy Basin
member of the Morrison Formation.The boring log descriptions are based on
visual descriptions of air rotary cuttings and core samples.The contacts
between the different rock types or beds are based on examination of samples,
gamma-ray logging and drilling characteristics.It was apparent from drilling
and logging that the physical characteristics of the bedrock materials vary
considerably,both vertically and laterally.This refl'ects the nature of the
fluvial and coastal plain depositional environments in which they were
deposited.
4-2 .-~..
Location Of Geologic Cross SectioM
.S"""',s
19 '.
"Ir:u
"
18 ~1},.-.~.f";,.:-..,....
/"
s~·
5
~n.~"~~Ruin Sp"
7 -A.J ;{,Po,nt 8
J -5 l.'r.
--~()c--;F~---+-::-
o..,
12
25
":::::,\-T--f-r~c"."",;r-f""ic";,--c---+~'~-+F"'+-~~""-:J-"+-~~rii/Ifii
I ;:"t .""~
",
$"00 ;31
•
FtgUre 4.2 •1
5600
5500
~<V.1'.5400
E
c.2~~5300
<V
W
5200
..
A
West
co>-c'"o
LJoo3:co'"oo
Vertical Scale Exagerated
Brushy Basin Member
•vii
AI
East
U1..-'"<V
os:~:::;0
t "iiito<::7 Cell No.4A
00
~~I!......_-------,
\
Perched Waler Table
Generalized Easl-West
Geologic Cross Section
White Mesa Mill Site
HorIzontal Scala 1-=2330'
Fioure 4.2 - 2
.,•.;j
B B'
WhlleMesaMill Site
So,th
North
-""I-""
!loo~
()
~
"o
:.:.:::::-,-7..,.
Perched Waler Table
'.:,.""..,.
BrudlyBHk11
>Westwata-r I -~-':J"'"Member~;;j/,,//////
~~oo;;~~~~.~
~1
~
5700
5600
"5S00
0~
"c 54000.~
•W 5300
5200
5100
5000
'900
Vf:ftlal seal.Ext~ratcd
Generalized North-South
Geologic Cross Section
White Mesa Mill SiteHorlz.ontal Scale:1·_3960'
Floure 4.2 -3
4.2.1 Dakota Formation
4-5
Directly below 3 to 6 feet of very silty clays to clayey silts and
silts,the borings penetrated the Dakota Formation at depths of 43 to 66 feet
(elevations 5572 to 5518 feet)below the surface.The Dakota at this site is
typically composed of moderately hard to hard sandstones with random
discontinuous shale (claystone)and siltstone layers.The sandstones have beds
varying from a few inches to 10 feet in thickness and are occasionally cross
bedded.The sandstones are moderately cemented (upper part of formation)to
well cemented with kaolinitic clays.The porosity of the Dakota is
predominately intergranular.Laboratory tests performed (see Table 4.2-1)show
the total porosity of the sandstones varies from 13.4 to 26.0 percent with an
average value of 19.9 percent.The effective porosity of the formation is
estimated to be 15.0 percent.The formation is very dry to dry with volumetric
water contents varyin9 from 0.6 to 7.1 percent with an average value of 3
percent.Saturation values for the sandstones vary from 3.7 to 27.2 percent.
The claystones and siltstones are typically 2 to 3 feet thick.Boring WMMW-19
encountered a siltstone layer having a thickness of 8 feet at a depth of 33 to
41 feet.No groundwater or perched water conditions were found in drilling of
the four borings in the Dakota Formation.
4.2.2 Burro Canyon Formation
Previous investigators have made no distinction between the Dakota and
Burro Canyon Formations.However,examination of borehole cuttings,cores and
geophysical logging methods has allowed separation of the two formations for
analysis purposes.Directly below the Dakota Formation,the borings
encountered sandstones and random discontinuous shale layers of the Burro
Canyon Formation were found to extend to depths of 91 to 141 feet (elevation
5509 to 5421 feet).
.~
~&;)
Tabla 4.2-1
Rock Properties
Whlta Masa Project
San Juan County,Utah
Well No.and Moisture Moisture Dry Unit Porosity Particie Saturation Absorption Liquid Plastic Plasticity
Sample Interval Content Conlent Weight Sp.Gr.Limit Limit Index Rock Type Formation
(Percent)Volumetric (Ibslcurt)(Percent)(Percent) (Percent)
WMMW·16 26.4'-27.1'1.51 3.3 135.2 17.9 2.64 18.2 5.10 Sandstone Dakota
WMMW·16 37.8'·38.4'0.40 0.8 127.4 22.4 2.63 3.7 6.30 Sandstone Dakota
WMMW·16 45.0'.45.5'5.60 12.6 140.9 16.4 2.7 77.2 29.6 15.4 14.2 Sandy Mudstone Burro Canyon
WMMW·16 47.5'.48.0'2.56 5.9 142.8 12 2.60 48.9 4.37 Sandstone Burro Canyon
WMMW·16 53.5'-54.1'0.68 1.4 129.0 19.9 2.58 7.1 6.38 Sandstone Burro Canyon
WMMW·16 60S·61.0'0.11 0.2 117.9 27.6 2.61 0.8 9.89 Sandstone Burro Canyon -i'>
I
WMMW·16 65.5'•66.0'2.62 5.5 131.5 19.6 2.62 28.2 7.13 Sandstone Burro Canyon m
WMMW·16 73.0'.73.5'0.13 0.3 130.3 20.6 2.63 1.3 5.50 Sandstone Burro Canyon
WMMW·16 82.0'•82.4'0.05 0.1 134.3 18.5 2.64 0.6 4.78 Sandstone Burro Canyon
WMMW·16 90.0'-90.7'0.12 0.3 161.5 2 2.64 15.8 0.85 Sandstone Burro Canyon
WMMW·16 91.1'·91.4'5.20 9.8 118.1 29.1 2.67 33.8 33.7 16.2 17.5 Claystone Burro Canyon
WMMW-17 27.0'-27.5'0.29 0.6 138.8 13.4 2.57 4.8 5.11 Sandstone Dakota
WMMW·17 49.0'-49.5'3.62 7.1 121.9 26 2.64 27.2 9.60 Sandstone Dakota
WMMW-17 104.0'-104.5'0.17 0.4 161.4 1.7 2.67 26.6 0.81 Sandstone Burro Canyon
4-7
Although similar to the Dakota,the Burro Canyon Formation varies from
a very fine-to coarse-grained sandstone.The sand grains are generally poorly
sorted.The coarse-grained layers also tend to be conglomeratic.The grains
are cemented with both silica and kaolin but the silica cemented sandstones are
prominent.The formation is extremely argillaceous near the contact with the
Brushy Basin member of the Morrison Formation.
Based on the core samples tested,the sandstones of the Burro Canyon
Formation vary in total porosity from 1.7 to 27.6 percent;the average being
16.0 percent.Volumetric water content in these sandstones ranges from 0.1 to
7.1 percent,averaging 2.2 percent,with the fine grained materials having the
higher moisture content.Porosities in the claystone layers vary from 16.4 to
29.I percent with saturation values ranging from 33.8 to 77.2 percent.A
perched 9roundwater table was found at the base of the Burro Canyon Formation.
•4.2.3 Brushy Basin Member
Each of the borings penetrated the Burro Canyon Formation and was
terminated within the Brushy Basin member of the Morrison Formation.The
borings encountered moderately plastic dark green to dark reddish-brown
mudstones of medium consistency.
5-1
5.0 SITE GROUNDWATER
5.1 Occurrence
At White Mesa a vadose (unsaturated)zone occurs to depths of
approximately 73 to 109 feet.Fluids in this zone are held in the bedrock
pores under negative pressure conditions.The saturated (groundwater)zone
occurs as discontinuous perched water within the Burro Canyon Formation at its
contact with the Brushy Basin member of the Morrison Formation.The Brushy
Basin member acts as an aquitard to ,vertical flow.Figures 5.1-1 and 5.1-2
show the depth of thickness of both the vadose and saturated zones below the
site.Table 5.1-1 is a list of monitor wells constructed at White Mesa to
monitor the saturated zone.Table 5.1-2 shows the data obtained from the
existing and new observation wells.
5.1.2 Aquifer Tests
As part of this investigation,all existing monitor wells and the new
wells (where feasible)were tested to determine hydrogeological properties.
The existing wells were pumped at extremely low rates to extend the test
duration as long as possible.Methods developed by Strausberg (1982)(see
Appendix C)were used to determine bedrock permeability values in the tight
formations.Injection tests were performed in three wells because of the
extremely low permeability of the bedrock.The recent test results compare
favorably with the work done by Hydro-Engineering in 1991.Field permeability
tests by the Bureau of Reclamation method E-18 were performed both in the
unsaturated and saturated zones to determine rock permeability in the new
borings.Wells completed in these borings will be developed and pump-tested at
a later date.Weather conditions prevented these activities in December,1992.
A description of the aquifer tests performed in each respective
boring,and/or completed well with the test results is presented in Appendix C.
The results are also summarized in Tables 5.1.2-1 and 5.1.2-2.For the pump
tests,hydraulic conductivity values have been corrected for the portion of the
plotted wells below the shales of the Brushy Basin member of the Morrison
Formation.
••.J
en
I
N
__'l _
~WMMW'l~=o
5650
WUIAW-l
")--
Dakota
Fm
/\~
WJlUoN~11
I'W'l WUMW-1S
-
Burro Canyon
Fm
J __'lZ __
Q~vUJ
5550
I
Srushy BasIn
Member ~r_:;7__~___Vadose
5500 -i "")S --- -_ZOl1e
aturated---__ZOl1e --J -:;7-_
Left-Natural Gamma Log
Right-Neutron Log
5000 J Well locations not to scale
Figure 5.1-1 -North-South Stratigraphic Section Through The White Mesa Mill Site
~..~
5650
(J1
I
W
/'
/
/'
/'
/
/
WJ.lMW-l1
Vadose Zone_______ _L _'Y
Saturated Zone -
WUMW-SWI./I.f'N·2
__-"-_/1__Sl__
8um>C""'Y""'"
~em
IlNlI?t au,","-
5600
5550
;;
.l'
cE
cQ
~~
55DO
Left-Natural Gamma Log
5450-i Right-Neutron Log
Well Locations not to scale
Figure 5.1-2 -East -West Stratigraphic Section Through The White Mesa Mill Site
5-4
Table 5.1-1
White Mesa Monitor Wells
White Mesa Project
San Juan County,Utah
Water Level Measuring Point
Date Depth Elevation Above LSD Elev.
Well Name Datelnstalled Total Depth Pertorations (tt)(tt-MSL)(tt)(tt -MSL)
WMMW-1 Sep-79 117'92'-112'19111192 75.45 5572.77 2.0 5648.22
WMMW-2 Sep-79 128.8'85'-125'19111192 110.06 5503.43 1.8 5613.49
WMMW-3 Sep-79 98'67'-87'19111/92 83.74 5471.58 2.0 5555.32
WMMW-4 Sep-79 123.6'92'-112'19/11/92 92.42 5530.15 1.6 5822.57
WMMW-5 May-80 136'95.5'-133.5'19111/92 108.32 0.6 5609.33
WMMW-6 MaY-80 This well was destroyed in March 1993 during construction of Cell 3
WMMW-7 MaY-80 This well was destroyed In March 1993 during construction of Cell 3
WMMW-s May-80 This weil was destroyed in March 1993 during construction of Cell 3
WMMW-11 Oct-82 135'90.7'-130.4'19111/92 102.53 5508.55 2.4 5611.08
WMMW-12 Oct-82 130.3'84'-124'19/11192 109.68 5499.77 0.9 5609.45
WMMW-13 Oct-82 116.5'This well was destroyed in during construction of Cell 4A
WMMW-14 Sep-89 129.1'90'-120'19111/92 105.34 5491.05 0.0 5598.39'.WMMW-15 Sep-89 138'99'-129'19/11/92 108.28 5490.34 0,8 5598.62
WMMW-16 Dec-92 91.5'78.5'-88.5'7/12/92 Dry 1.5
WMMW-17 Dec-92 110'90'-100'11/30192 87.46 1.5
WMMW-18 Dec-92 14S.5'103.5'-133.5'11/30192 92.11 1.5
WMMW-19 Dec-92 149'101'-131'10/12/92 85.00 1.5
#9-1 'May-80 33.5'10'-30'3/4/91 Dry 1.S 5622.S3
#9-2 May-SO 62.7'39.7-59.7 314191 Dry 2 5622.58
#10-2 May-SO 33.5'11.3-31,3 3/4191 Dry 2 5633.58
#10-2 May-SO 62,2'39.2-59,2 3/4/91 Dry 2.1 5633.39
1)
5-5
Table 5.1-2
Ground Water Occurrence
White Mesa project
San Juan County,Utah
Well Name Ground Elev.Top Saturated Zone Depth To Sat Zone Thickness Sat Zone
WMMW·1 5646.22 5572.77 73.45 37
WMMW·2 5611.69 5503.43 108.26 12.5
WMMW·3 5553.32 5471.58 81.74 5.25
WMMW·4 5620.97 5530.15 90.82 17
WMMW·5 5608.73 5500.95 107.78 12
WMMW·11 5608.68 5508.55 100.13 25.75
WMMW·12 5608.55 5499.77 108.78 7
WMMW·14 5596.39 5491.05 105.34 15.25
WMMW·15 5597.82 5490.34 107.48 20
Max=5646.22 5572.77 108.78 37
Min=5553.32 5471.58 73.45 5.25
Average=5605.82 5507.62 98.20 16.86
New Wells
WMMW·16 Dry 0
WMMW·17 87.46 17.7
WMMW·18 92.11 46.6
WMMW·19 85 46.3
Max=92.11 46.6
Min=85 0
Average=88.19 27.65
All Wells
Max=108.78 46.6
Mln=0 0
Average=89.97 21.67
5-6
Table 5.1.2-1
AquiferTest Results,Existing Wells
While Mesa Project
San Juan County,Utah
Hydro-Engineering Peel Enviromental
Interval Interval Hydraulic Sustained Well
Type of Transmissivity Transmissivity Conductivity Yield (Est.)
Well No.Interval(~)Test pdI~~ftld
WMMW-l 92-111 Slug 2.0 0.03 0.04
WMMW-2 107-,119 Pump 9.0 0.13 0.02
WMMW-3 82.5-87.5 Slug 0.3 0.Q1 0.001 '
WMMW-4 91-107,5 Pump 1.6 0,03 0.19
WMMW-5 107.5-119.5 Slug 3.1 8.8 0.10 0.02
WMMW-ll 114-125 Pump 808 604.3 3.97 0.24
WMMW-12 108.5-115.5 Pump 5.1 2.9 0.06 0.03
WMMW-14 105.5-121 Pump 298 224.0 2.13 0.34•WMMW-15 106.5-126.5 Pump 10.5 7.9 0.05 0.67
Average 95.6 0.7 0.2
Median 7,9 0.1 0.04
11
5-7
Table 5.1.2-2
Borehole Penneability Test Results
White Mesa Project
San Juan County,Utah
Hydraulic Hydraulic Hydraulic
Type 01 Formation Conductivity Conductivity Conductivity
Well No.Interval(~)Test gpd!ft'2 em/sec fUd
WMMW-16 28.5·31.5 Constant Head Dakota 19.3 9.10E-Q4 2.58
45.5·51.5 Constant Head Burro Canyon 1.1 5.10E-Q5 0.14
65.5·71.5 Constant Head Burro Canyon 1.7 7.80E-Q5 0.22
85.5·91.5 Constant Head Burro Canyon 0.6 2.90E-Q5 0.08
WMMW·17 45·50 Constant Head Dakota 0.1 3.00E-Q6 0.01
90·95 Constant Head Burro Canyon 0.1 3.50E-QS 0.01
100·105 Constant Head Burro Canyon 0.1 5.50E-QS 0.02
WMMW·18 27·32 Constant Head Dakota 2.3 1.10E-Q4 0.31
85·90 Constant Head Burro Canyon 0.5 2.50E-Q5 0.07
115·120 Constant Head Burro Canyon 0.1 4.50E-QS 0.01
WMMW·19 55·60 Constant Head Dakota 0.2 8.40E-QS 0.02
95·100 Constant Head Burro Canyon 0.03 1.40E-QS 0.004
Average Dakota 5.5 2.58E-Q4 0.7
Median Dakota 1.3 5.92E-Q5 0.2
Average Burro Canyon O.S 2.83E-Q5 0.08
Median Burro Canyon 0.5 2.50E-Q5 0.07
5.2
5.2.1
Groundwater Water Movement
Vadose Zone
5-8
•
Fluid movement in the vadose zone (Dakota Formation)occurs
principally in the vertical direction from the driving forces of both capillary
pressure gradients and gravity.When seepage occurs through a nearly dry
foundation material,as is the case at White Mesa,the capillary gradients act
in the same direction as gravity and the rate of downward flow is enhanced.
Capillary gradients,however,are most important in the vicinity of the
"wetting front."As seepage proceeds,the driving force due to gravity becomes
increasingly important relative to capillary pressure.In the horizontal
direction,the gradient of capillary pressure is the only driving force.Just
as in the vertical direction,the capillary gradients decrease as the seepage
spreads laterally .
When the wetting front encounters a layer with smaller pore size and
lower permeability,the invading fluid is readily absorbed.There is,however,
a corresponding decrease in the capillary gradient as the tight layer wets up
and gravity becomes the dominant driving force.The maximum flux that can be
sustained by gravity alone is that which is equal to the permeability of the
layer.If the seepage rate from the impoundment is greater than the
permeability,water will perch on the tight layer.
The permeability of the strata relative to the seepage rate is of
critical importance to the question of whether or not perched water will
develop.Field measurements of permeability indicate that the permeability of
the tightest layers (claystones)within the Dakota Formation is about 1.0 x
10-7 cm/s (0.1 ft/yr).Downward flow from net infiltration in the current
natural state is expected to be much,much smaller than 0.1 ft/yr.Therefore,
it is to be expected that no water perched on the claystones would be
encountered,as indeed,is the case.Assuming that natural,net infiltration
is 5 percent of precipitation,a layer with permeability of 0.05 ft/yr,or
less,would be required to cause sustained perched water to occur.The fact
5-9
that no perched water was encountered in drilling the four new borings suggests
that the permeability of the claystone layers present in the formation have a
permeability greater than 0.05 ft/yr.It is believed that the most reasonable
value for permeability of the mudstone layers is about I x 10-7 cm/s (0.1
ft/yr),but it may range downward to perhaps 5.0 x 10-8 cm/s (0.05 ft/yr).
Considering the above,travel times for partially saturated flow
through the vadose zone to the Burro Canyon can be estimated based on estimated
infiltration rates of permeability and water content of the formation.
Assuming an average volumetric water content of 3 percent,the velocity through
the Dakota sandstone is estimated to range from 1.7 to 3.3 feet per year.
Taking the average depth to the saturated zone as 98 feet,it would take
apprOXimately 29 to 57 years for pond seepage to reach the perched water table
in the Burro Canyon Formation.In the absence of shale layers,the McWhorter-
Nelson model predicts a travel time of 15.0 years for (pond)seepage to reach
the water table.This analysis is valid for parts of the site where the
discontinuous lenticular claystones do not exist.Considering the variability
of the strata,more refined estimates would be pointless.
If pond leakage occurred,there is a possibility that seepage under
positive pressure could be in direct contact with vertical joints at the base
of the ponds.For this condition,seepage would occur as localized saturated
flow through the joints within the Dakota into the Burro Canyon.For this
case,the travel time to the saturated zone is difficult to estimate but could
be on the order of a few weeks to months.
5.2.2 Saturated Zone
The groundwater in the Burro Canyon Formation exists as an unconfined
perched water body on top of the Brushy Basin member.Its occurrence is
discontinuous and hydraulic conductivity values determined from tests are low
to extremely low (see Table 5.1.2-1).Consequently,based on the low hydraulic
conductivities and extent of the saturated zone,it is not considered to be a
viable aquifer in the immediate project area.
5-10
Water movement within this zone is in a south-southwest direction,the
same as the dip of the bedrock strata.Using an average hydraulic conductivity
value of 0.7 feet per day,an effective porosity of 15 percent,and an average
hydraulic gradient of 0.01 foot/foot,the average velocity of groundwater
movement is 0.047 feet per day (17 feet per year).Hydro-Engineering (1991)
estimated an average groundwater movement rate of 44 feet per year in the
saturated zone in the vicinity of the tailings cells.For a saturated
thickness of 26 feet and a length of 3,500 feet across the mesa,the flow rate
through the saturated zone of the Burro Canyon is 22 gallons per minute.
5.3 Water Quality
Groundwater monitoring has been conducted at the White Mesa facility
since 1979.Table 5.1-2 presented previously shows a list of wells that has
been constructed for monitoring purposes at White Mesa.The water quality data
obtained from these wells are shown both in tabular and graphical form in
Appendix B.
Comparisons of the water chemistries from the various wells were
analyzed by graphical techniques.The trilinear plot and the Stiff diagram
were used in "fingerprinting"site groundwater and differentiating the
groundwater from different sources or wells.The trilinear plot is a graphical
technique (Figure 5.3-1A)in which the percentage composition of the major
anions and cations in a water sample is plotted onto triangular plotting
fields.The resultant plotting positions are then projected into a central
plotting diamond,defining the sample's composition.The plot is so designed
that mixtures of water are shown by progression along a straight line
connecting the plotted points of both waters in the central plotting diamond.
Thus,the trilinear plot is extremely useful in determining the percentage
mixtures,based on the major ion compositional profile of the two-end point
solutions.
5-11
17 16 15
o Anderson Wall
5770
o YVindmili Well
5720
22
27
34
o Jet Pump Well
5656
WMMW·18 I-+_....J\Property BoundaryoWMMW·19o
WMMW-1
21
29
32
20
T
37
S•
91~
11
5480
Phreatic Surface of the Ground Water in the Burro Canyon Formation
Beneath the White Mesa Mill Site.
Figure 5.2 .2 -1
5-12
The Stiff diagram is a "signature"formed by plotting the relative
percentage of major cations to the left of a central axis and the anions to the
right of the central axis and connecting the plotted points.In the computer
mapping program utilized,the cations are plotted in the order of sodium plus
potassium,calcium,and magnesium to the left of the central axis.The anions
are plotted in the order of chloride,carbonate plus bicarbonate,and sulfate
to the right of the central axis.Such a graphical signature is useful in
making visual comparisons of various water chemistries.
Figure 5.3-1 is a trilinear plot for the water sampled in wells in the
immediate vicinity of the Mill site during the fall of 1992.Figures 5.3-2
through 5.3-4 are Stiff diagrams presenting the same data.It can be seen from
these plots that the water from all well s is of the sulfate (anion type).The
cation definition of the water type is extremely variable.Of the thirteen
wells analyzed for water chemistry four fall in the calcium-sulfate type
category,four fall in the (sodium plus potassium)-sulfate type,two samples
classify in the magnesium-sulfate type.Five samples have no dominant cation
type.These five samples tend,however,to classify close to the (sodium plus
potassium)-sulfate and calcium-sulfate types.
A time sequence change of water chemistries from four sampling periods
for wells WMMW-l,WMMW-2 and WMMW-3 using the trilinear plotting technique is
shown in Figures 5.3-5 through 5.3-7.These figures present the change in
water chemistries from October,1979 through February 1991.The change in
water chemistry is attributed to initial incomplete cleaning of wells,
groundwater variation,laboratory analytical errors or a combination.The data
for 1979 appears to be suspect with respect to providing an accurate
representation of the groundwater chemistry.This is probably due to
incomplete cleaning of the well after drilling and prior to the first sample.
•I
50
+-ca
Cations
5-13
%meq/I
\
50
CI--+
Anions
CLASSIFICATION OF WATER
TYPES USING THE
TRILINEAR DIAGRAM
UMETCO MINERALS CORPORATION
t}DATE:12!92 FIG.NO.5.3-1 A.
5-14
No.ms Well Name
1 1329 MW-1
2 3132 MW-2
3 5056 MW-3
4 3284 MW-4
5 2063 MW-5
!6 2679 MW-11
7 3798 MW-12
01 8 3523 MW-14+9 3849 MW-15Mg101217JonesWell
11 2563 Anderson Well
12 1909 Windmill Well
13 3078 Jet PUfT'4l Well
14 1282 Fly Ash Pond
15 756 Cell 2 LOS
16 47115 Slimes Drain
80 60 40
~Oa
Cations
20
%meq/I
20 40 60
01 -+
Anions
80
Figure 5.3 - 1 Trilinear Plot of Water From White Mesa Mill Monitor Wells,Fly Ash
Pond and Slimes Drain,and Surrounding Stock Wells
5-15
Cations meqJ1 Anions
I I I I I I I I
125 100 75 50 25 0 25 50 75 100 125
Na + K CI
Ca HC03 +C03
Mg 304
MW-1 (Nov,1992)
Na+K CI
Ca HC03 +C03
Mg 304
MW-2 (Nov,1992)
Na+K CI
Ca HC03 +C03
Mg 304
MW-3 (Nov,1992)
Na+K CI
Ca HC03 +C03
Mg 304
MW-4 (Nov,1992)
Na+K CI
Ca HC03 +C03
Mg 304
MW-5 (Nov,1992)
Figure 5.3 - 2 Stiff Diagrams Of Water From Monitor Wells
Cations
125
Ca
Mg
i
100
i
75
i
50
I
25
5-16
meqll
a
i
25
I
50
I
75
i
100
Anions
125
Ci
HC03 +C03
804
•
Ca
Mg
Ca
Mg
Na+K
Ca
Mg
Na+K
Ca
Mg
MW-11 (Nov,1992)
MW-12 (Nov,1992)
MW-14 (Nov,1992)
MW-15 (Nov,1992)
CI
HC03+C03
804
Ci
HC03+C03
804
CI
HC03 +C03
804
CI
HC03 +C03
804
I~
Jones Well(Nov,1992)
Figure 5.3 -3 Stiff Diagrams Of Water From Monitor Wells and Stock Well
Cations
125
Na +K
Ca
Mg
I
100
I
75
I
50
I
25
5-17
meqll
a
I
25
I
50
I
75
I
100
Anions
125
CI
HC03+C03
S04
Na +K
Ca
Mg
Na +K
Ca
Mg
Ca
Mg
Anderson Well (Nov,1992)
Windmill Well (Nov,1992)
Jet Pump Well (Nov,1992)
CI
HC03+C03
S04
CI
HC03 +C03
S04
CI
HC03 +C03
S04
Fiy Ash Pond (Sep,1991)
Na + K CI
Ca HC03 +C03
Mg S04
Cell 2 LOS (Sep,1991)
Na + K CI
Ca HC03 +C03
Mg S04
Slimes Drain (Sep,1991)
Figure 5.3-4 Stiff Diagrams Slimes Drain,Fly Ash Pond and Surrounding Stock Wells
5-18
No.ms Sample Date
1 612 Oct·79
2 1103 Jan/SO
3 1200 AprlSO
4 1297 Feb/91
5 1329 Nov/92
!
CI
+
Mg
\
S04
80 60 40
..-Ca
Cations
20
%meq/l
20 40 60
CI -------+
Anions
80
Figure 5.3 - 5 Time -Sequence Trilinear Plot of WMMW-1
5-19
No.TDS Sample Dale
1 1837 OcV79
2 3298 Jan/80
3 3288 Apr/80
4 4358 Feb/91
5 5056 Nov/92
..
80 60 40
..-Ca
Cations
20
%meq/I
20
+
Mg
40 60
01 --..
Anions
\
S04
80
Figure 5.3 . 6 Time ·Sequence Trilinear Plot of WMMW·3
•
5-20
No,ms Sample Date
1 2524 Oct/79
2 3031 Jan/80
3 3486 Apr/80
4 3223 Feb/91
5 3284 Nov/92
!
CI
+
Mg
\
S04
80 60 40
...-Ca
Cations
20
%meq/I
20 40 60
CI-.
Anions
80
•Figure 5.3 - 7 Time -Sequence Trilinear Plot of WMMW-4
•
5-21
Comparison of well chemistries to a common background well (chemistry)
will not provide correct information on the possible effects of pond seepage on
groundwater.However,by evaluating the possible chemical change of a specific
ionic species within individual wells over time is plausible.The statistical
"T"test was performed on samples from chloride populations within specific
wells over time (see Appendix E).Because chlorides are a conservative species
and are concentrated in the tailings solutions,analyses using this parameter
offers the best method of detecting detrimental changes to the groundwater.In
addition,information on Cell 2 leak detection system chemistry provides a
useful picture of the water chemistry directly below Cell 2.The following is
a discussion of the analyses.
Cell 2 Leak Detection System -The water found in Cell 2 leak
detection system (LOS)contains the lowest total dissolved solids
(ToS)content (756 mg/l)of any water sampled in the area (Figure
5.3-1).Excepting the Jones wells,it also contains the highest
percentage of carbonate and bicarbonate when compared to the other
monitoring wells.The slimes drain contains a ToS value of 47,115
mg/l and no carbonates due to its extremely low pH (typically 1.5
to 3).Any leakage of tailings solution into the LOS would react with
the carbonates and raise the ToS levels which has not occurred to
date.
WMMW-I (Installed September 1979)-This well was originally chosen as
the background well for the site.It is believed that improper well
completion and/or analytical errors gave erroneous chemistry values
for this well in 1979 (see Figure 5.3-5).Chlorides in this well have
been relatively low (varying from II to 53.2)since 1980.
A "T"test was performed on sample population from 1980-81 to a sample
population from 1990-92.The tests indicate that there is a
significant difference in the mean of the populations at the 0.05
level of significance.Statistically,the chloride levels are shown
to have decreased significantly.Tests performed on a sulfate
population from the period 1980-81 to a population from 1990-92 show
the sulfates in this well have significantly increased.
•
5-22
WMMW-3 (Installed September 1979)-This well was originally
constructed to serve as the "point of compliance well",Statistical
testing ("T"test)on a chloride population from 1980-81 compared to a
chloride population from 1990-92 shows that there is no significant
difference in the two chloride populations.Sulfate samples taken
1980-81 compared to samples taken 1988-91 show there is a significant
increase in sulfates.
WMMW-5 (Installed May 1980)-Statistical tests ("T"test)performed
on a sample from the chloride population (1981-83)to a sample from a
chloride population (1990-92)shows there is a significant difference
in the means of the chloride populations and that the chloride content
has decreased.
WMMW-I2 (Installed December 1982)-The statistical "T"test performed
on a sample from the chloride population from 1982-85 compared to the
chloride population from 1990-91 shows there is a significant
difference in the means of the chloride populations of these two
sampling periods and that the chloride content has decreased.
WMMW-14 and 15 (Installed September 1989)-These monitor wells were
installed in the south embankment of Tailings Cell No.3 in 1989.
Wells 14 and IS have similar water chemistry as monitor well 12 which
was installed in 1980 (see Figures 5.3-1 and 5.3-3).A statistical
"T"test performed on samples from a chloride population from November
1989 through November 1992 show wells 14 and 15 to have different mean
population values from 12 and they are significantly lower than the
mean chloride population of well 12.Since well 12 has had a
significant decrease in chloride content,it is likely that the
groundwater chemistry in the vicinity of these wells has undergone
similar changes.Analyses of these wells also show a decrease in
chlorides since 1989-90 to 1990-91.
•
5-23
5.4 Impact of Operations on Groundwater
Uranium recovery operations at White Mesa has produced tailings
solutions wit high concentrations of sulfates and chlorides.Using the
chloride ion to track changes in groundwater chemistry is the most feasible
method to detect changes in groundwater chemistry.To date,all indications
show that operations at White Mesa have not impacted the saturated zone of the
Burro Canyon Formation.
REFERENCES
Chen and Associates,1978,Soil Property Study,Earth-lined Tailings Retention
Cells,White Mesa Uranium Project,Blanding,Utah,for Energy Fuels
Nuclear,Inc.
Dames and Moore,1978,Environmental Report,White Mesa Uranium Project,
San Juan County,Utah for Energy Fuels Nuclear,Inc.
D'Appolonia,1982,Environmental and Engineering Assessments,Section 16
Tailings Project,Blanding,Utah for Energy Fuels Nuclear,Inc.
Eardly,A.J.,1958,Physiography of southeastern Utah in Intermountain
Association Petroleum Geologists Guidebook 9th Annual Field
Conference,Geology of the Paradox Basin,p.10-15.
Feltis,R.D.,1966,Water in Bedrock in the Colorado Plateau of Utah,Utah
State Engineer Technical Publication No.15.
Goode,H.D.,1958,The Geology and Distribution of Aquifers in the
Southeastern Part of San Juan County,Utah,U.S.G.S.Open File Report.
Haynes,O.D.,Vogel,D.G.and Wyant,D.G.,1972,Geology Structure and
Uranium Deposits of the Cortez Quadrangle,Colorado and Utah,U.S.G.S.
Miscellaneous Investigation Series,May 1-629.
Hydro-Engineering,1991,Ground-Water Hydrology at the White Mesa Tailings for
Umetco Minerals Corporation.
Kelley,V.C.,1958,Tectonics of the Region of the Paradox Basin in
Intermountain Association Petroleum Geologists Guidebook 9th Annual
Field Convention,Geology of the Paradox Basin,p.31-38.
Mc\'horter,D.B.and Nelson,J.D.,Seepage in the Partially Saturated Zone
Beneath Tailings Impoundments,Mining Engineering,April 1980.
Shoemaker,E.M.,1956,Structural Features of the Colorado Plateau and Their
Relation to Uranium Deposits.U.S.Geological Survey Professional Paper
300,p.155-168.
Strausberg,1982,Permeability from "Mini-Rate"Pumping Tests,Groundwater
Monitoring and Remediation,Summer,1982.
United States Department of Energy (MK-Environmental Services)Albuquerque,
New Mexico "Uranium Mill Tailings Remedial Action Project (UMTRAP),
Naturita,Colorado,Preliminary Design for Review,Volume I",May 1990.
APPENDIX A
DRILLING,GEOPHYSICAL LOGGING
AND
NEW MONITOR WELL CONSTRUCTION
,,..
•
DRILLING AND WELL CONSTRUCTION PROCEDURES
DRILLING
Four new observation wells were drilled and constructed at the White
Mes a Mi 11 site duri ng November and December,1992.
Twelve-inch borings were drilled to a depth of 19.5 feet for each of
the new monitor wells.Steel surface casing 10-inch in diameter and 0.25-inch
thick was set to this depth and cemented into place with a cementlbentonite
9rout and allowed to set up for 72 hours.
WMMW-16 was cored to total depth using an HQ diamond bit with an outer
diameter of 4.25 inches.Once the total depth was achieved,the well was
reamed using a 7 7/8-inch tricone bit.Ten-foot,2.34-inch cores were obtained
during each .
WMMW-17,-18 and -19 were drilled in a similar manner as WMMW-16
except these wells were not cored over the total depth of the hole.Once the
surface casing was set,the borehole was drilled down to the first core point
using a 7 7/8-inch tricone bit.(Drilling was conducted with air using small
quantities of water from the White Mesa Culinary Well to keep the cuttings
moist and reduce dust.)A 10-foot core was obtained using the equipment
described for WMMW-16.Upon completion of the coring,the hole was then reamed
with the tricone bit and drilled down to the next core point.It should be
noted that core recoveries in WMMW-17,-18 and -19 are well below the 100
percent recoveries achieved in WMMW-16.The low core recovery rate in these
boring is due to the following conditions:
•
-2-
Each new core run was started in an 8-inch hole which allowed the
barrel and pipe to wobble in the hole resulting in the core not
being held firmly in the core catcher as it was cut.
-In order to recover an uncontaminated core,the driller was not
allowed to use a "core-loss polymer"which would have enhanced
recovery.
The drill rig,bit and pipe were decontaminated upon completion of
each hole,prior to moving to the next location.
WELL DEVELOPMENT
Once the borehole had been logged,the well was developed by jetting
the groundwater and residual cuttings out of the borehole,then allowing the
well to partially recover,then jetting once again.This was repeated until
all the cuttings were removed and the water was clear.
WELL CONSTRUCTION
Each observation well was constructed using 4-inch flush-joint
schedule 40 PVC pipe,20-slot (0.02-inch)was used for the slotted section,10
-20 Colorado silica sand gravel pack,bentonite pellets,and cement/bentonite
grout.A cap was placed on the bottom of the 4-inch PVC-riser pipe.This was
followed by an interval of blank PVC pipe to act as a sump for the well.A
screened interval was placed above of the sump,followed by blank PVC pipe to
surface.A gravel pack was then placed between the 4-inch PVC pipe and the
wall of the borehole from the bottom of the hole to a selected point above the
slotted portion of the PVC pipe.Five feet of bentonite pellets were then
placed above the gravel pack.Bentonite/cement grout was placed from the top
of the bentonite pellet seal to surface.PVC caps were then placed on the pipe
and a locking cap constructed on the steel casing.
Bora Hola No.:
WMMW-16
Whi M Surface Elav.5587 est T =91.5 UMETCO Minerals Corporation
C""lrlhel
F.A.P~IG$Jlo 1st:
$.ond_,qu......~or."I,.,..10 mo<lluM-9""ino<l,......"".,rdlo""'n::l.o,
Con:)'",__.I.:~Qf"',..rq.....,10 OIlb<lrquiw,ch.-l'IOn.<:lMl..
$il~:g......ngfay..urdy"PWl,<X:CUb1a .
s"ndl:l<:>M:"".,u"iQhl9'1If.1....IOmoodiun 9";".:1,JUbOJrw>ed.,;Iy,l,lIC<In""J'.........~,(:W:;<;.>""""'".O"..lrM9'...e<l.<:IO:'-l""""lpeOI>Iot.
Sind;q...-tvod6:ohb<t>omJ"-9<....od ~od~,.
Sample Description
S.nd_:qu-u.""'1 0'''.mod.....QI....od.tub.o'9Jltt10 .,brou>d.wool:
><:fled,1Yolf1i1i::.po::w 10~nllfQl'lf'll.U1s:on>Vy.(>O;,l~1oo~IMId
Q'.I>SIOfl(j~o::t><j<>mo<••o.ltY>Qoon."oc.o..".,>l...,......
9>...:9.-rOshOray.IIWI~Wl.l>toloo-Olic.
Sond_:qu....u,......!WI101';nI 0''',,,,,,,1"""'7oi1lad.lUb..........'.I'..,..
"'<WIlt....,...,po<ooory,lrrcnoo.o::>n::I'1Ol""""~_"""lll..........
~~:~~~~;'~~~~=-~:.n.d~\e.
CLoplOnt'IiQhlO"'l',My,""illll'.-.dy.ltJ/n~.p.tIflQlI.~..,j.
Sln<l...".,..,qu.u.ki>'qr."W<y_'1""'*1,...~,k"'*'Uo,"';'C>'Ca •-...."0PVCbo<Io:;fng,l\ln:l.,
o
Nflutron "API
Il-++++-f'rl $.ond_qu-u..'1'IY.......9'"'f,I...Io.........m9/.itMod•.....,.".,nd..:llotl:ll.llld__itie,lrIronSlMIroq."..ao-.-"9,
Slnd_,qu.m.lo;>'>lqrllf.modOznIo~or.nod.k.....Iril.I<:,~"i<:poW.............~1itIIi:U"'r-I'Il'.
Dg th to Water:
9
Soil
Gamrn.a (Nat)
Dato:12/07/92
•
@ Environfn(tnilli SMv/~.
~co PXJ}ln-t.\,I
Bora Hole No.:
WMMW·17
Surface Elev.5580 est 110'UMETCO MInerals Co retion
Cornrmnts e
Costructlon
F.A.Peel
Sample Descti ptlcn
s...d:q.J.u,~""'t<'own.f"""mo<.li<Im~r<>..n<jI""""""'n<I.IWS.Ml
Surla:>tC.IIQ
S-Jojoloo<o:Q"'~:""JhlQTrf.I~."""...,~.~_I:.""'d.co.t.....""r<lg:...,••no:I~'n_I""'_.lopl·,.~~.I•.
Wry•..0,/.
s......""""":quorU,lighl bUl.m<Xlo..m.lQ ~~""l,oinod,s.ub«:u/'ld,>.aoii"""'"OQ::~.~.ltooo...,.,1lM'l.
Sor>c!o.Ion.:q.JIOil,Q~Q'ay.!.....IO~.I'Iod.IIIJt:.o<.n:l,~1l,,(d>t<1_lIll*.p.bI:II.)""l:l •.dlrf1l.
5.>o'>cblc:on.'~rU.lQhlb1ll.I ....IO""""""'~...~.~ic,tiQ/lI.oa::_~.loo_.
SIno::lslo<l.:qu.rU,1Qhl Ofll,/,'''~'.Md,:W::n:>Jn<I.I';';"I."on"",,,"""'".
86.S Geolo ist:
NoU1ron •API
tl--+-+-+-':kl-H ~.:",.-It,";Ngift,w<yIn.I<>....Q'w.od.~.JuolinU::,~ro......n.""tw.sw.-.Q..-.....,bo:>o<tllo~9~.~tIlykli>«i._k::.,""I.
{}(I th to Water:
·········r
11oLc.::..L-LLL...LJU-.L--L__---"=L-J
SOil I
Dakota Fm
I
Gamma (Nat)
Date:12/07192
•
<§>/En¥jfl>(f.....,taI~~or"Hole No.:
"'-=_n.4I'"WMMW-18
:,~,~.W",o Moo.Surflc.Elev.5W)I,0 •1411.5"UMETCO Mineral.Comoration
Data:12/07/0'2 Ooctllto W-tOf":'"IG~oo~,F.A.Pool
j I '"'""~Well
G.-nm.("-'I)~tn:>n.""PI s.mpM Oncriptl()l1 C~ctk)rl
~~,~
0 lJ -,q-u.,..,--...,.,.~~
SO,
Ma~ISha~s-..",~odl.rl..,._---
10 I ~,w .....lq"ll:<l~l>:l1'qh'Q'..........,.".,I"od."""',,''''''~"'",0t:~~I "U'....~~»,1___.c.:.:~lhepo1>Cl.,""""M
oI>··l*1no·
)
20(~.,~_.
f\o<:~.7S>~
/'.n """-~~""""s.-.d......,"-"»',<ory""'"QI<m...-Snpoort,••'.I€......-.
»O<>l>......,."....""'l""'~~"'...,...Sorod-.",W......bJll.l"~n.........,..""""0<1.M"o;lITfy
....""'l"""'""'"'M<tl"liOc,hooo..........,,"'l.
s...>-'o:w-u.10000l>ly~I"<T-I.1,,~,."0<I.....~•...,"""-""'l.
t s...-.;oa>n",__.»...,l"O"Q"'''O<l.
"BurroCanyon Fm ·SIb"".:f"lhl~,"",,""7.,.""'l'U-....",..,....·..·..
!·..·"..·..
'~I..
70 _..1=)'s...........:<JJ"'<I.''l"'Q'O''f.'*'1M.i1._.IY~I.......,.
....inito.
1\
"c.""Sa.-.l.......,q""""I~"'9,.,..•...,l....ltImo<llumi1"_'""......~,..=_..
s..,..,o...,.,.,.....",..1'ltO<bodd.""''''C<:J-,q'''''''''-'pot>bIoo~Ht\Cl,1>'iIh1'i1''''•......,'"'*'",-x"!.S~....",...<'0
"JZ:s...-.;-."..""""'..._............
IVQ719'2
'00 S.....IJ\Q1"quwu.'iI'",H.h7."~"~f.O~.""~,,.,..,
\"'I>'''''f'd._"""'"'--..'0_0<1....<>=O<lo",,,",'0..,...1='''l'_,_io'll>n;rwn,OdI.!::
\O,""~
==~.-110 f='1==1=
Pi."Coo.tJ s--.:o."""",OJ-.I.jI1I~'_"'~.........'""",.'''Jfr,..~m•.E"""Q'...,O<I,......<:o..n:l.""I1"i~1=p~,C<J-<i'''''''_poo:>ti,li"..~"'lm"",,"---rmllO".""'Y Ie ~_·"E·''''-c·e<y.......:l1"'-'i=I)120 j>~,1="-"~~:...-.I.jI1,~,_.•.,..,ho~,,"o~••~'I""=""",,,on 1="io...........~,_.....nu>Q.L F:s-o.lO'>o:__.1=i='"1=
I ~\
J--~',..,.SI...:,_....to"""...."..>or..--------
12107/'0t2
~.Itcl'W'hil"~SUrl.OIl Elov.5650 IT I"t _1.\l)
I ~h 10 W.ler:150 IGo<!m:F.A.PMoi
Bore Holo No.:
WMMW~19
UMETCO Mif)ef"ala COl'pontion
e<:<nn_W.lI
C~C'llon~
Ie
10 -1iiI-H--flH-+
s_~"'<>J"",-rqhll>u~.•.,.,h-"modi""."..""<l,~~I.'""'tnv><!."""nit>:.irm ...."nq.
Sonj"""o:q.....-tt.r"ll1lM.-y!n...1<l,u"i""'1lrwnO<l,
~"..10""_'~"""""~'
•..............I'V<.
•
0.0 ,Rooel.$'
,~.
60
SuiCanyon Fm
"I
~.r;":"'~~"~~~..~~'~~':"~"1<l""""l'1<rn.....,~..~....~"'.
Sr.:I_",,""t,-.,'n"IaM~,."od....e.u...d,"'*'Y"";'''''
~.....,-"""9.""""ole pon~.»H...,I'oor<I"'-.
Soon<!.tD1.,Q..-<l,lio;Jmg,..,.••t<'f"""'I<I~"'""'l....nO<j,..,btttJ<'o4,
I(lO:Iiiciti<:,
(10
,~.
I")
<f----+--i1i0
/120
100
,.,,--L?J+-H++--II-
Shof.:.....,.,.•.
s.....-.,q,.....!"l"l~......,"'q,"'l'.I~"9'.t>O<!.=",oOym.
g'........~.~od'n'lC.
-
KiLl •.........,,I ....'I'll I
...(SIal!Card)
FILL THIS CARD~COMPLETELY
Onorabout __LLL:L3/7 2..twlll
NO..~~Of ""ENT,,,,,,TO uJ'(,LL
(Slort Cord)
FILL THIS CARD OUI COMPLETELY
On or about /!I '2 "3 /'7:t...
iI
. I will
DRilL REPLACE CLEN~I
NEV/WElLif ClOWELLO REPAIRO DEEP£NO FtLGO
DRILL REFlACE ClEANi
NE'N Wi'll S OLD WELL 0 REPAIR 0 DEEP£N 0 PLUG 0
5"tJ Cor"
E.....SLM orUSM.
8..Inch Well for UJ-1FTC.O b,',,-CAJ.s G,,..bi
..-;:).faler Usaf,Nama)1(:)13.<.)02.'"(;,.............)1/...<:-I,'Mc GO B/~O'7....
(WoferUsaf,Address)
a
of Sao.
UnderSlote Englnee(s .I
Authorization.RE:12.-07 -Os ]'-f LJ
ON E
Well Location S /6 (()H.-:W-21,0 ft.from
33 Township "3>7 ~Ran~e zz..
~'-fb ~K k~
We IlXlfier No.Well Drtllet,Signature
'Sh~e out WOlds notapplicable.
I 8 fnchWeilfor I/METc...O iY;...,nJ s CU'f'-
)(Water User,Noma)
()'i3 d x 10 -z..r G-r-~~J 1'"""<--~fo!1,co 61S'D7...
(WafS(Users Aodtes.s)
ode!'State Englnee(s .
uthorlzalion.RE:..91....-0 L Oe.....J3c.!.M~tJL...•.~~
reIlLocollon)fp''',S __2.-loO__ft.W q5:()ft.from pE:Cor.•
'Sec.J z..Township '17 ~Range 22,~.SlM or USM.
(Lr;y-£~If Ld
WallXllIorNo.Well ~
·Sfrlce out\vo.rds nor oppJi:::oble,
«1f!-/ls w;jf
NOTICE OF INTENTION TO DRILL
(Start Card)
fIll THIS CARD OUT COMPLEJElY
On Ofobout 1//?3/9"L-.1 will
DRILL REFtACE CLEANi
NE\\fWFU.W olDwmD REPAIRD DEEPf~0 PLUGO
tJ 0 h:fl,...c..«'.v r..Ac.5"r V ~'j ...(-+-iu.
NOTICE Of fNTENTlON TO DRILL
(Slott Card)
.l il-IIS CARD OUT COMPLETElY
On or about II /Z 3/'1?...-
OOILl REPLACE CLEANiNEWWEl~Q/CLDWELLD REPAIRD DEEP£ND =tUGD
•I viII
b.Q.ot............L W J,,(....c:""Y7 I'/~./*e.-(
IL-ll'lchWellfor (J M ETeo H,-,It:".)~G,...p
.'(Water Users Nome)•?.o 84.>"-/02.'G:r"vY.J.Tv.,~:f'I~({)'6/)'07.-.
(WoI,"User',Address)
o
Under state Engfnee(s Of -z.._{3 "f -()')rlU
Authorization.RE:~::..=~~--=:....::::.--.....:::.._....~
WeU location S '2-"S '10ft.W 'J ?0 ft.from IJ E:Cor..
2$Tovmshlp '1?~Range .2.'2-~.SLM OfUSM
C'It 4h R ~
We"DcflIer No.Wi>Il D,ilet.Sionotlile
'Slrllco out..'Old.001 applicable.
of Sec.
co gKO'l-
(Waler Use(s ~.,lome~,
/0 2-4'C;:r...~J.:I.Uot ,t;",<
(Wat~r User,.A.ddress)
r -r ~_.__._-~~
Well Dllllet.Signaturo
L Inch \'loll for J 1'1£'T C<)/1.'r-cA J S C~JC P•
?0 13""--
6Cf6
/all Orliler No.
ilil<e outWCfdl rot applIcable.
>II Locaf'on
der Stale EngJneets q2 6 q-d'I
thodzotlon.RE:...L -(-6 J w
"f ._1(.{,.Q._ff.~_I{,(,()_ft.from IJ €Cor..
3ec.?jf Township ~1 of Range z-z.i.SlM or USM.
~g-~
•
APPENDIX B
GEOPHYSICAL LOGS
OF
EXISTING MONITOR WELLS
'l
GEOPHYSICAL SURVEYS
Each hole was logged with the gamma (natural)jneutron geophysical
probe.For the new wells,these geophysical logs have been incorporated with
the 1ithological log (see Appendix A).Geophysical logs of previously
installed wells are shown on the following pages.
U Umelco Mlneral5 CorporatIon
D,lII.:1tn:lfn
Cd.8O'V.&611.&
T,D.124 WMMW-2
,Gamlllll (Nat)CPS»>0
,••••••••••••••.\•••.•.•••••.•.•..........
."1
...•,
10-+-+-+++lt-
,.
olO-+-+++-tH
f ...
7°-++±+-bH
•
5O-+-+±+-tt-
)~...........••.50 .........•.................••,....
1/
.•..::.(:.:.:.......••....•.••......
I.i~,\.80i·~·..···············-+-++-t-+-t-.....•••••••J\:
...::..:.::.:,:::-I····.::.
......'=:.::.01..:.............................~.
......:::::.01:•..:::.:...............\.....
..Bruihy&lsin ~.'I,j......."'1):1:'('1'1:'1
:,.Ii Umelco Mineral5 CorporatIon
ioYJi
0..;l1nA1r.l
Gd,81l'>'.5642.2
T.O.114 WMMW·1
r~.···········
I····....·r············Ii
1O-tnl7~d;7s
20 L .
l
30-+++-+-H-j
......:.:..::::::
I·:·::.:.
i
·:::F·::
50 1:::".
so
...:.
•:\:...I
i······r··
c .
i~·.·.:.·.f:=·.···················i~:i~:ri .....:.:.
I'.•..~·.·.·..·.·.·.··••·..:•.·..·····.·.:·~'··t3r::·:::::::1:::1
•.•.:~•...:..::.::....~....
1,(1•.....•..•.•..·••.·.•lSi..::.·.·····
90
Ii .....
f;T Ti Umetco Mlneral:s Corpomtioni:Y.JI
u..rr..n...(Hilt)·NttutJon Pora.fty
Gd.8.....$621
T,O.12(l WMMW-4
···Eol.n&'00".......,.
i ...·
50 -++"1.--...+.-...+..-...M.rI
iCI:··.···.·.·.·.•iii.~:
:;~JJd
•
...............
•••••••••.•.•.•••••••::::::::12..••.....I......
......:c-:-.,_•••:••.:y ••.
."..,t:::."'1"1'O=.Bl\JSh~Basin ~r.
U Umelco MInerals Corporatlon
o.u.:11~
Od.80y.SWlI.9
T,D.lU WMMW·5
10-+-....f-+••..•••.++.::--lH:]
O!keMaletial
l·o."~I·'.:":•..:••.,..........................,,,".
30
'::.ritc~{:::·······
::::::::::::;!":.:::::::'
::'::/::
•::e:e,.
.......
,...:::.:::.......4O+1:::-+r~··F·:::+:·:~R
f···········
'I ..··:·:·..:·:·::::··::::::::::::.....5O~i=i=FR
I Icii ....\
···:f:·······:::.:..:.::.:::6O-++++-H-i
':••:•••..-n •.•••.•••
.,,...~:::::::....70
:::+.
Burro Carryoo Fm"············::::r::::
:.:::""
so :::::"..,......
j:::::::.re:::
90 {'"....::.::..
i··:_r·····:::::!.:::::'
I:::)"::
C<::::::::::::::::::::::~::::::.,..,:),100 ".,.
::::::::::::::::..=..===::....::.~=';~;;1.............·..··········~····llllJin··,....110',.,.,;'
,.::::::'::.•:.::.:·::::::::·••••••5.·:·:·:·1·······:.'.
...., 120 ,.
i~i :..:~==~.:8~.••.N.~•••.•.!.;.•..•.".p~...........................""-.
130 ...
U Umelco Mlneral:s Corporatfon
~.~
0.11I:l1r.tJlt'2
Cd.allY.56Qa,a
T.O.I:J..I WMMW-11
rss·:·:···········:::·
I.::::::.:).::::::::.::::.::10 -++-+-t-H-----I
<.i ..I
.•.••...
2O-f-++++H
1..•....·..\·:::::C:.
..
__D~......t·:.............
.........
1/··········:r~I ..··.....
:g.~.~~:::.
40-f-+++-tl-H1.:•.••·.·:·.··.·.·.·:
so Fi.__...\.....
60 -+-+-t---t-H:ci......1••.
1 .
.:.'::1 .
.:.1:..1•...1:.1\
fl
il':'·•.Ht~'••·.·'i __•••:.
100 llJUIlI1
....F=.....<+~.'+I\.:.•.:--
\.120 .
IC.:·b.·····I .
·.'.·i':·:·:·:·:·:·:·~P:·:·:·:·.·:·:·.·:·.·:·.~l::.~.~.D:.~:~tc?~:l
.......•.•...j "':'.])11
:,-ti UmolCO Minerals Corporationi.YJi
Cd,8.....$60&.5
T.O.129 WMMW·12
•.~•.~····~·;U
1°-44"'··j:.:···"'··I"···4·:;;···'1'·::::..
•Gamma (Nlrt)CPS m Q
i ..1li))\~)i
.....N9t.(1'OfI.PoI03ily .''''''
;....
o
20--+++--\-Ht--1·:OiM~f:.·
...........'................
I':50 -+"'.•••+'.••.+.....'+.:.:'4.":.""1':::"'11:::
i
l~;i "T?~60 -.~.~::?o~r~:.•:.:
70 -44::+++5f".i.~~t.T"·i············•····•·······•······•····•····..........................6O+::+:H"+'*"I
Iz::·.:·:·:·:·:·:············:.:.3
:.::::\..:::.:....::::.:..
1(·····························
90 -+--++-\-H--1!(\.
1·\1i•••••1 .....I......."
J"li Umetco Minerals Corporatlon
ilY.J
000.:l1r.tVt:Z
Gamma (Hilt)•tiItutroo Poro-ity
Cod.e......5$G
T.D.127 WMMW·14
•Oanm.tlNl!l CPS lOO 0
20+···.'t···:::;···F···+·'="'rr+"'I
:::.:.(.
ri······.....
:D<lkol;a Fm::"
····1····
4O+FFf"'HFi
7O-+-+++fFH
6O+rFF1+••'.FI]
SO-+'f=R"+A
.
.
::J::
:Z·:·,·····.........'.
..,.
:ti ,
::/.....+f++f7F1:::\s:::;:.:,•••,...60 ...•.........
'i;"':;;;!i'.;;:i.:':;:.:'::
•
.................._.::::::•.;$..............= ..==
•••~.;:-:.::.~=!-":+'...-'H"...-"'+'"-"f-"'-1'
...ic·i;...·;,i2{~c.0
.......=j,O=...
f}..:.,',..:~
U Umelco Minerals CorporatIon
Gd.80'1.s,s')olJ)J
T.O,l~WMMW·15
Gwntnll (Nal)CPS•M 0 ....~-PoroSty"",",
f::·:e.·:::.
••••••••••••••••••1
i::·:·::
i::···.
I .
4O-+-+-+++-H
50
..........5O-+-+-+++-H..(._.:_:s..~;::;:_::::::.::::::::.
.::::<::::C:::.
i.:.:.:·:·:\ii
:-•.•••••••••"".::pt5••••:••••
:....::...--r:::
"SuIfO CanyonFm ....
•••••••••.-'1 ••••••••
"'''.f·r :....:
r····:t .
.............I..···..
:.:.:.:.:.:.:.:.:.:.:.:.::.-::.:.:.:.:.:.:.:.:.:.:,:.:.L\30 .:8rwhyBallin Merrbor.r••••¥+·
•
f}
APPENDIX C
AQUIFER TESTS
~.,~
0.00
2.00
<:?
c 4.00~0u~f"
0
u 6.00
'"1:1'"l::
00 8.00
10.00
12.00
,""•~."""•"~r',.T=264*Q Q=0.3gpm •!',s &5=8.8 It l'r'T= 9 g/d/It ~
K=1.0 g/d/ftA2 ~=13 IUd
=4.7E-05 em/sec ....
I I I I
10
Time (min)
100 1000
WMMW-2 Semi-Log Plot Of Time vs Drawdown (Corrected For Dewatering)
Aquifer Test Data For WMMW-2
Facility Whrt Mesa Milt
Monrtor Welt WMMW-2
Date Pump 11/19/92
Time (min)Depth to Water(ft)Drawdown(ft)Drawdown Correeted(ft)
Pump Started 0.1 110.03 0
I 110.24 0.21 0.21
3 110.57 0.54 0.53
4 110.63 0.6 0.59
5 110.79 0.76 0.75
6 111 0.97 0.95
7 111.11 1.08 1.05
8 111.22 1.19 1.16
10 111.39 1.36 1.32
15 111.79 1.76 1.69
20 112.08 2.05 1.96
25 112.63 2.6 2.45
30 113 2.97 2.78
35 113.45 3.42 3.17
40 113.89 3.86 3.54
45 114.27 4.24 3.85
50 114.68 4.65 4.18
55 115.15 5.12 4.55
65 115.87 5.84 5.10
75 116.68 6.65 5.69
85 117.45 7.42 6.22
95 118.23 8.2 6.74
105 119.05 9.02 7.25
115 119.83 9.8 7.71
125 120.62 10.59 8.15
135 121.3 11.27 8.51
145 121.8 11.77 8.76
155 122.27 12.24 8.98
170 122.85 12.82 9.25
185 123.47 13.44 9.51
200 124.47 14.44 9.91
Well out at Water 206 126.35 16.32 10.53
208 125.9 15.87
209 125.77 15.74
210 125.69 15.66
211 125.6 15.57
212 125.56 15.53
213 125.54 15.51
214 125.53 15.5
215 125.49 15.46
225 125.37 15.34
235 125.3 15.27
245 125.25 15.22
255 125.18 15.15
265 125.11 15.08
275 125.07 15.04
1)290 125.09 15.06
305 125.01 14.98
375 124.77 14.74
435 124.49 14.46
••••••••••••••.'••..~.
'\.
.~
l"\
T~264*Q Q-0.46 gpm '\
L'l5 1>.5=30 It 1'\T=4 g/d/It ~K=0.20 gJdlft'2 '\=2.71 E-02 ft/d "\=9.55E-06 em/sec 1"\
f'\
~
0.00
5.00
g
c 10.00;;::
0
"0;;::
'"~0 15.00-g
~20.00~00
25.00
30.00 10
•
Time (min)
100
ij
1000
WMMW-4 Semi-Log Plot Of Time vs Drawdown (Corrected For Dewatering)
Aquifer Test Data For WMMW-4
Facility WhIT Mesa Mill
MonITor Well WMMW-4
Date Pump 11/17/92
Time (min)Depth to Water(ft)Drawdown(ft)Drawdown Corrected(ft)
Pump Started 0.1 92.41 0
I 92.69 0.28 0.28
2 92.88 0.47 0.47
3 93.03 0.62 0.61
4 93.03 0.62 0.61
5 93.07 0.66 0.65
6 93.05 0.64 0_63
7 93.02 0.61 0.60
8 93.06 0.65 0.64
9 93.09 0.68 0.67
10 93.11 0.7 0.69
11 93.15 0.74 0.73
16 93.21 0.8 0.79
21 93.28 0.87 0.86
26 93.38 0.97 0.95
31 93.45 1.04 1.02
36 93.49 1.08 1.06•41 93.53 1.12 1.10
51 93.67 1.26 1.23
61 93.66 1.25 1.22
71 93.73 1.32 1.29
81 93.85 1.44 1.40
91 93.9 1.49 1.45
109 94.1 1.69 1.64
137 94.17 1.76 1.70
152 94.26 1.85 1.79
165 94.62 2.21 2.12
212 97.98 5.57 5,02
227 98.84 6.43 5.69
242 99.69 7.28 6.33
257 101.03 8.62 7.29
272 102.35 9.94 8.18
302 104.11 11.7 9.26
332 105.45 13.04 10.00
Well out of Water 333 105.49 13.08 10.02
~.,;;,
0.00
0.50
'"1.00c
3:0"03:l"0 1.50"0Q)
tlQ)to
0
0 2.00
2.50
T=264*Q O~2.06 gpm
r----..!:>s "'s~O.g ft
r---r--..T=604.27 g/d/ft
I"-......r-..K~28.7 g1d/ft'2I--=3.8 ft/d...........
r---......-=1.4E-03 em/sec
•r----..•..........•I if"-l""-I"'-[w-I-..~-r---r-----......r----
10
Time (min)
100 1000
WMMW-11 semi-Log Plot Of Time vs Drawdown (Corrected For Dewatering)
Aquifer Test Data For WMMW-11
Facility Whit Mesa Mill
Monitor Well WMMW-11
Date Pump 11/12/92
Time (min)Depth to Water(tt)Drawdown(tt)Drawdown Corrected(tt)
Pump Started 0,1 102,27 0
I 102.71 0,44 0,44
2 102,92 0,65 0,64
3 103,02 0.75 0,74
4 103,12 0,85 0,84
5 103,18 0,91 0,90
6 103,24 0,97 0.95
7 103.29 1.02 1.00
8 103.33 1,06 1,04
9 103.4 1.13 1,11
10 103.47 1,2 1.17
15 103,61 1.34 1.31
20 103,72 1.45 1.41
25 103.72 1.45 1.41
30 103.76 1.49 1.45
35 103.85 1.58 1.54
40 103.85 1.58 1.54
55 103.88 1,61 1.56
65 103,93 1.66 1.61
75 103.98 1.71 1.66
85 104.03 1.76 1.70
95 104.05 1,78 1.72
100 104.12 1,85 1.79
110 104,18 1.91 1.84
120 104.22 1.95 1.88
135 104.25 1.98 1,91
150 104.27 2 1.93
165 104,35 2.08 2.00
180 104,35 2,08 2.00
Pump off 200 104.38 2.11 2.03
205 104,38 2,11 2.03
206 104.Q3 0.35
207 103.8 0.58
208 103.66 0.72
209 103.58 0.8
210 103,5 0,88
211 103.44 0,94
212 103.41 0.97
213 103.33 1.05
214 103,35 1,03
215 103.34 1.04
220 103.18 1,2
225 103.09 1.29
235 103,03 1.35
250 102.92 1.46
270 102,88 1.5
290 102.78 1,6
310 102.78 1,6
;j ~j
0.00
5.00
§:
c,.10.000"0,.
l"
0
"0<Dti<D 15.00'=00
20.00
••\•...••\••
.~
\
\
\
~T=264*Q Q=O.27gpm
6s ~s=24.5 ft \T=2.91 g/dift
K=4.8E-01 gldlftA2
=.064 ftld
=2.2E-05 em/see
25.00
10
Time (min)
100 1000
WMMW-12 Semi-Log Plot Of Time vs Drawdown (Corrected For Dewatering)
Aquifer Test Data For WMMW·12
Facility Whrt Mesa Mill
MonrtorWel1 WMMW-12
Date Pump 11/19/92
Time (min)Depth to Water(tt)Drawdown(ft)Drawdown COITected(tt)
Pump Started 0.1 109.45 0
2 110 0.55 0.54
3 110.24 0.79 0.78
4 11 0.47 1.02 1.00
5 110.63 1.18 1.16
6 110.68 1.23 1.20
9 110.79 1.34 1.31
18 110.95 1.5 1,46
19 111 1.55 1.51
20 111.07 1.62 1.57
24 111.61 2.16 2.06
29 112.08 2.63 2.51
34 112.6 3.15 2.97
.39 113.3 3.85 3.59
44 113.83 4.38 4.04
49 114.93 5.48 4.94
50 115.52 6.07 5.41
59 115.84 6.39 5.66
69 118.77 9.32 7.77
79 121.47 12.02 9.44
89 123.64 14.19 10.59
99 125.66 16.21 11.52
Well dry 109 128.92 19.47 12.70
114 128.91 19.46 12.70
115 128.83 19.38 12.67
117 128.65 19.2 12.62
118 128.49 19.04 12.57
119 128.48 19.03 12.56
120 128.44 18.99 12.55
121 128.37 18.92 12.53
122 128.35 18.9 12.52
123 128.34 18.89 12.52
124 128.29 18.84 12.50
129 128.15 18.7 12.46
139 128 18.55 12.41
149 127.8 18.35 12.34
164 127.97 18.52 12.40
179 127.75 18.3 12.32
209 127.35 17.9 12.18
339 125.84 18.39 11.59
399 125.18 15.73 11.31
464 124.48 15.03 11.00
1414 116.12 6.67 5.88
Ii I I
T=Z64*Q Q=1.57 gpm
65 65=1.85 ft ~
T=224 g/d/ft
I'f-
~K=16 g/d/ftA2
........=2.1 ft/d f-
~=7.5E-04 em/sec••"--...i-•••>......•.-.j):-..............
~
;J
0.00
0.50
:2"-1.00c
3:0"03:1.50['l
0
"0QJ
13 2.00'"l::00
2.50
3.00
3.50
10
...
Time (min)
100
ij
1000
WMMW-14 Semi-Log Plot Of Time vs Drawdown (Corrected For Dewatering)
Aquifer Test Data For WMMW·14
Facility Whit Mesa Mill
Monitor Weil WMMW-14
Date Pump 11/13/92
Time (min)Depth to Water (It)Drawdown (It)Drawdown Corrected (It)
Pump Started 0.1 105.43 0
I 106.21 0.78 0.77
2 106.4 0.97 0.95
3 106.62 1.19 1.16
4 106.74 1.31 1.28
5 106.88 1.45 1.41
6 106.94 1.51 1.47
7 107.01 1.58 1.54
8 107.07 1.64 1.59
9 107.12 1.69 1.64
10 107.17 1.74 1.69
14 107.36 1.93 1.86
19 107.51 2.08 2.00
24 107.64 2.21 2.12
29 107.72 2.29 2.20
34 107.83 2.4 2.30
39 107.91 2.48 2.37
44 107.99 2.56 2.44
49 108.04 2.61 2.49
54 108.11 2.68 2.55
59 108.13 2.7 2.57
64 108.22 2.79 2.65••74 108.32 2.89 2.74
84 108.41 2.98 2.82
94 108.53 3.1 2.93
104 108.6 3.17 2.99
114 108.69 3.26 3.07
124 108.81 3.38 3.18
134 108.85 3.42 3.21
149 108.99 3.56 3.33
164 109.14 3.71 3.46
179 109.18 3.75 3.50
194 109.28 3.85 3.59
211 109.39 3.96 3.68
Pump Shut Down 224 109.53 4.1 3.80
226 109.48 4.05
227 108.86 3.43
228 108.56 3.13
229 108.32 2.89
230 108.2 2.77
231 108.08 2.65
232 108 2.57
233 107.91 2.48
234 107.84 2.41
239 107.67 2.24
244 107.5 2.07
254 107.33 1.9
269 107.15 1.72
11 284 107.02 1.59
299 106.96 1.53
314 106.92 1.49
329 106.86 1.43
;J .,~
0.00
5.00
10.00
is 15.00c:;<
0";<
~20.000
"CD13CDto 25.0000
30.00
35.00
40.00
•J J J J j J'ii'...
~
~'""'""""-~T=264*Q Q=O.9gpm
!!.s I',s=30 It
T=7.92 g/d/It '"~
K=.4 g/d/ft'2 1'-..
=5.3E-02!t1d
=1.9E-05 em/sec
10
Time (min)
WMMW-15 Semi-Log Plot Of Time vs Drawdown (Corrected For Dewatering)
100
Aquifer Test Data For WMMW·15
Facility Whrt Mesa Mill
MonrtorWell WMMW-15
Date Pump 11/13/92
Time (min)Depth to Water(ft)Drawdown(ft)Drawdown Correeted(ft)
Pump Started 0.1 107.25 0
I 108 0.75 0.74
2 108.53 1.28 1.25
3 109.02 1.77 1.71
4 109.53 2.28 2.19
5 110 2.75 2.61
6 110.35 3.1 2.93
7 110.67 3.42 3.21
8 111 3.75 3.50
9 111.25 4 3.71
10 111.55 4.3 3.97
15 112.85 5.6 5.04
20 113.8 6.55 5.78
25 115.23 7.98 6.84
30 116.37 9.12 7.83
35 117.46 10.21 8.35
45 119.48 12.23 9.56
55 121.43 14.18 10.59
65 123.28 16.03 11.44
75 124.94 17.69 12.10
85 126.45 19.2 12.62
95 128.44 21.19 13.17
Out ot water 108 130.2 22.95 13.54
110 129.79 22.54 13.47
111 129.5 22.25 13.41
112 129.19 21.94 13.34
113 128.91 21.66 13.28
114 128.66 21.41 13.22
115 128.4 21.15 13.16
120 127.06 19.81 12.80
125 125.66 18.41 12.36
130 124.19 16.94 11.82
135 123.06 15.81 11.35
140 121.99 14.74 10.86
146 120.21 12.96 9.96
150 118.15 10.9 8.78
160 116.1 8.85 7.45
170 114.35 7.1 6.20
180 112.83 5.58 5.02
195 111 .31 4.06 3.77
210 110.18 2.93 2.78
225 109.9 2.65 2.52
320 108.41 1.16 1.14
420 107.94 0.69 0.68
Ioil!<
I''.~.
r 2 In(UR)r=0.33 ft K=
°-.....".
~L=10.00 ft 2LTo
R=0.33 ft K=2.6E-02 ft/day......~To=1000 min~K=9.3E-06 em/sec
r----"":::>~To
•~~
~
I~C"o-
0>ro
1il
Ol
.Q
o,;:
J:
.Q
1iia:
"0'"<llJ:
;j
1.00
0.10
o 500 1000
~
1500
Time since pumping slopped
2000 2500
~
3000
WMMW-l Semi log Plot of Head Ratio vs Time
Aquifer Test Data For WMMW-1
Facility Whn Mesa Mill
Monnor Well WMMW-1
Date Pump 11/19/92
Time(min)Depth to Water(ff)Drawdawn(ft)tit'h/ho
0.1 75.67 0
Well out of Water
3 89.1 13.43 0.03 1.00
4 89.04 13.37 1.00 1.00
5 88.88 13.21 1.33 0.98
6 88.74 13.07 1.67 0.97
7 88.67 13 2.00 0.97
8 88.64 12.97 2.33 0.97
9 88.63 12.96 2.67 0.97
10 88.6 12.93 3.00 0.96
11 88.59 12.92 3.33 0.96
12 88.55 12.88 3.67 0.96
17 88.38 12.71 4.00 0.95
22 88.23 12.56 5.67 0.94
27 88.11 12.44 7.33 0.93
32 88.01 12.34 9.00 0.92
37 87.89 12.22 10.67 0.91
42 87.75 12.08 12.33 0.90
47 87.67 12 14.00 0.89
52 87.58 11.91 15.67 0.89
57 87.47 11.8 17.33 0.88
67 87.27 11.6 19.00 0.86
77 87.07 11.4 22.33 0.85
87 86.91 11.24 25.67 0.84
107 86.54 10.87 29.00 0.81
127 86.26 10.59 35.67 0.79
147 86 10.33 42.33 0.77
172 85.58 9.91 49.00 0.74
207 85.17 9.5 57.33 0.71
1152 79.51 3.84 69.00 0.29
2530 77.08 1.41 384.00 0.10
-•~
t -------....--.....r--
--------- - - -- -------1------- -------I--~-----To
I
f=0.33 ft f 2 In(UR)IKL=5.00 ft 2LTo IR=0.33 ft
To=6764 min K~6.2E-03 tvday I
K=2.2E-06 ern/sec I
I
I
I
1.00
Q)
0;
1il
C>g 0.37
0J:-J:
0:;;corr:
"0coQ)::c
0.10
a 1000 2000 3000 4000 5000 6000 7000 8000
Time since pumping stopped
WMMW-3 Semi log Plot of Head Ratio vs Time
f)Aquifer Test Data For WMMW-3
Facility Whil Mesa Mill
Monilor Well WMMW-3
Date Pump 11/16/92
Tlme(mln)Depth to Water(~)Drawdown(~}1/l'h/ho
0.1 83.81 0
Well dry 7 88.99 5.18 0.01 1.00
8 88.92 5.11 1.00 0.99
9 88.89 5.08 1.14 0.98
10 88.86 5.05 1.29 0.97
11 88.85 5.04 1.43 0.97
12 88.83 5.02 1.57 0.97
14 88.8 4.99 1.71 0.96
19 88.78 4.97 2.00 0.96
24 88.68 4.87 2.71 0.94
29 88.61 4.8 3.43 0.93
34 88.59 4.78 4.14 0.92
39 88.58 4.77 4.86 0.92
49 88.57 4.78 5.57 0.92
74 88.55 4.74 7.00 0.92
134 88.5 4.69 10.57 0.91
514 88.24 4.43 19.14 0.86
1094 87.96 4.15 73.43 0.80•2534 87.2 3.39 156.29 0.65
3974 86.64 2.83 362.00 0.55
5489 86.08 2.27 567.71 0.44
6884 85.7 1.89 784.14 0.36
Aquifer Test Data For WMMW-5
Facility Whrt Mesa Mill
MonnorWel1 WMMW-5
Date Pump 11/17/92
Time(mln)Depth to Water(!t)Drawdown(tt)tit'h/ho
0.1 108.39 °5 113.53 5.14 0.02 1.00
6 113.47 5.08 1.00 0.99
7 113.38 4.99 1.20 0.97
8 113.35 4.96 1.40 0.96
9 113.32 4.93 1.60 0.96
10 113.3 4.91 1.80 0.96
11 113.25 4.86 2.00 0.95
12 113.2 4.81 2.20 0.94
13 113.18 4.79 2.40 0.93
18 113.06 4.67 2.60 0.91
23 112.96 4.57 3.60 0.89
28 112.82 4.43 4.60 0.86
33 112.72 4.33 5.60 0.84
38 112.6 4.21 6.60 0.82
43 112.55 4.16 7.60 0.81
48 112.45 4.06 8.60 0.79
53 112.4 4.01 9.60 0.78
58 112.3 3.91 10.60 0.76
63 112.22 3.83 11.60 0.75
68 112.13 3.74 12.60 0.73
83 111.96 3.57 13.60 0.69
98 111.78 3.39 16.60 0.66
113 111.62 3.23 19.60 0.63
128 111.45 3.06 22.60 0.60
258 110.42 2.03 25.60 0.39
323 110.09 1.7 51.60 0.33
518 109.45 1.06 64.60 0.21
Pressure Gage
~Water Meter
H(pressure)'I ~
- - - - - - - - - -(MI):I':::=:::::::=::::~:::=::::==:J--
',-----
I---1.5-pipe
GWL
~VPaCker
7\--r-
L
f-------L-,,,-2r-,, ,
G¥-
Single-Packer Permeability Test,Equipment Set-Up
l'l Location
Data
Goohydrologist
Borehole Tested
CONSTANT HEAD TESTS
White Mesa Mill,Utah
11/30/92
F.A.Peel
MW-16
Test #
Depth to Bottom of Borehole
Depth to Top of Test Soction
Depth to Base of Test section
Diameter of Borehole
Depth to Ground Water
Height of Press Gage Above G.L
Pn~ssure(static conditions)
Pump Rate (static conditions)
0=6 gailmin
L=311
H=67.22 11
r=0.1811
1
31.5 tt
28.5 tt
31.5 tt
4.25 in
NA tt
9.5 tt
12 psi
6 gal/min
Permeability (k)=1.3E"()2 gal/minlft'2
9.1 E..()4 em/sec
Test #
Depth to Bottom of Borehole
Depth to Top of Test Soction
Depth to Base of Test section
Diameter of Borehole
Depth to Ground Water
Height of Press Gage Above G.L.
Pressure (static conditions)
Pump Rate (static conditions)
Q=2.7 gailmin
L=6 tt
H=333.62 tt
r=0.18tt
Permeability (k)=7.6E"()4 gal/minltt'2
5.1 E-05 em/sec
2
51.5 tt
45.5 ft
51.5 tt
4.25 in
NA tt
7.92 ft
120 psi
_...::;2.,,-7 gal/min
Q '"Pump rate under static conditions
L '"Length of test section
H '"DiHerential head under static conditions
r :l radius of hole tested
Q (L---xln-
2nxLxH R
CONSTANT HEAD TESTS
f)Location White Mesa Mill.Utah
Date 1/1/92
Geohydrologist F.A.Peei
Borehole Tested MW·16
Test#3
Depth to Bottom of Borehole 71.5 fi
Depth to Top of Test section 65.5 fi
Depth to Base of Test Section 71.5 ft
Diameter of Borehole 4.25 in
Depth to Ground Watar NA ft
Height of Press Gage Above G.L 8.6 ft
Pressure (static conditions)65 psi
Pump Rate (static conditions)2.8 gal/min
Q=2.8 gal/min
L=6 ft
H=227.25 ft
r =0.18 ft
Permeability (k)=1.2E-Q3 gal/minlft'2
7.8E-QS em/sec
..
)
Test #
Depth to Bottom of Borehole
Depth to Top of Test section
Depth to Base of Test Section
Diameter of Borehole
Depth to Ground Water
Height of Press Gage Above G.L.
Pressure (static conditions)
Pump Rate (static conditions)
Q =1.4 gal/min
L=6ft
H =309.615 ft
r=0.18 ft
Permeability (k)=4.2E-Q4 gai/minlft'2
2.9E-Q5 em/sec
Q '"Pump rate under static conditions
L ""Length of test section
H ""Differentia!head under static conditions
r -=radius of hole tested
4
91.5 ft
85.5 ft
91.5ft
4.25 in
NA ft
9.75 ft
91.5 psi
_---'1"-.4.:..gal/min
)
Location
Date
Geohydrologist
Borehole Tested
CONSTANT HEAD TESTS
White Mesa Mill,Utah
1/1/92
F.A.Peel
MW-17
Test #
Depth to Bottom of Borehole
Depth to Top of Test section
Depth to Base of Test section
Diameter 01 Borehole
Depth to Ground Water
Height of Press Gage Above G.L
Pressure (static conditions)
Pump Rata (static conditions)
Q=0.12gallmin
L =5 ~
H =284.99 ~
r=0.18~
1
50 ~
45 ft
50 ~
4.25 in
NA ft
8.8 ~
99 psi
0.12 gal/min
•
•
Permeability (k)=4.SE-QS gaVminlftA2
3.0E-Q6 em/sec
Test #
Depth to Bottom of Borehole
Depth to Top of Test section
Depth to Base of Test section
Diameter 01 Borehole
Depth to Ground Water
Height of Press Gage Above G.L
Pressure (static conditions)
Pump Rate (static conditions)
Q =0.2 gal/min
L =5 ft
H =406.95 ft
r=0.18ft
Permeability (k)=5.2E-Q5 gaVminlftA2
3.5E-Q6 em/sec
Q '"Pump rate under static conditions
L '"Length of test section
H '"Differential head under static conditions
r ""radius of hole tested
2
95 ~
90 ft
95 ~
4.25 in
89 ft
6.1 ft
135 psi
_-'0"'.2=.gailmin
Location
Date
Goohydrologist
Borehole Tested
CONSTANT HEAD TESTS
White Mesa Mill,Utah
111192
F.A.Peel
MW·17
Test #
Depth to Bottom of Borehole
Depth to Top of Test Section
Depth to Base of Test section
Diameter of Borehole
Depth to Ground Water
Heightof Press Gage Above G.L
Pressure (static conditions)
Pump Rate (static conditions)
0.6 gallmin
5h
792.5 h
0.18 h
3
105 h
100 h
105 h
4.25 in
89 h
10.5 h
300 psi
0.6 gallmin
•
Permeability (k)=8.0E-Q5 gallminlft'2
5.5E-ll6 cmJsec
..Q""Pump rate under static conditions
L '"Length of test section
H =Differentia!head under static conditions
r '"radius of hole tested
Location
Date
Geohydrologist
Borehole Tested
CONSTANT HEAD TESTS
White Mesa Mill,Utah
1/3/92
f.A.Peel
MW-18
Test #
Depth to Bottom of Borehole
Depth to Top of Test section
Depth to Base of Test section
Diameter of Borehole
Depth to Ground Water
Height of Press Gage Above G.L
Pressure (static conditions)
Pump Rate (static conditions)
Q =1.6 gal/min
L =5 ft
H =105.9 ft
r=0.18ft
1
32 ft
27 ft
32 ft
4.25 in
NA ft
7.1 ft
30 psi
1.6 gal/min
•
)
Permeability (k)=1.6E"()3 gal/min/ft'2
1.1 E..()4 em/sec
Test #
Depth to Bottom of Borehole
Depth to Top of Test section
Depth to Base of Test section
Diameter of Borehole
Depth to Ground Water
Height of Press Gage Above G.L
Pressure (static conditions)
Pump Rata (static conditions)
Q =0.65 gal/min
L =5 ft
H =186.6 ft
r=0.18ft
Permeability (k)=3.7E"()4 gal/min/ft'2
2.5E"()5 em/sec
Q '"Pump rate under static conditions
L =:Length of test section
H '"Differential head under static conditions
r '"radius of hole tested
2
90 ft
85 ft
90 ft
4.25 in
NA ft
6.7 ft
_..,.-:4::-0 psi
0.65 gal/min
f')Location
Date
Geohydrologist
Borehole Tested
CONSTANT HEAD TESTS
While Mesa Mill,Utah
1/3/92
F,A,Peel
MW-18
Test#
Depth to Bottom of Borehole
Depth to Top of Test section
Depth to Base of Test Soction
Diameter 01 Borehole
Depth to Ground Water
Height of Press Gage Above G,L
Pressure (static conditions)
Pump Rate (static conditions)
Q =1 gal/min
L = 5 h
H =279 h
r=0,18h
3"
90 h
85 h
90 h
4,25 in
NA ft
6.7 ft
80 psi
1 gal/min
•
Permeability (k)=3.8E-Q4 gal/minlft'2
2.6E-Q5 em/sec
Test#
Depth to Bottom of Borehole
Depth to Top of Test section
Depth to Base of Test Soction
Diameter of Borehole
Depth to Ground Water
Height of Press Gage Above G.L.
Pressure (static conditions)
Pump Rate (static conditions)
Q =0.231 gal/min
L=5ft
H =368.75 ft
r=0.18ft
Permeability (k)=6.7E-Q5 gal/minlft'2
4.5E-Q6 ern/sec
4
125 h
120 h
125 h
4.25 in
91
12,1 h
115 psi
0.231 gal/min
J
~This test covers the same interval that was tested in Test #2.The constant head pressure,
however,was changed.
a '"Pump rate under static conditions
L'"Length of test section
H ::=Differential head under static conditions
r '"radius of hole tested
Location
Date
Geohydrologi.t
Borehole Te.ted
CONSTANT HEAD TESTS
White Mesa Mil,Utah
117/92
F.A.Peel
MW-19
Te.t#
Depth to Bottom of Borehole
Depth to Top of Test section
Depth to Ba.e of Test Section
Diameter of Borehole
Depth to Ground Water
Height of Pre••Gage Above G.L
Pressure (static conditions)
rump Rate (.tatic condition.)
Q =0.22 gaVmin
l =5 ft
H =189.95 ft
r=0.18ft
1
60
55
60
4.25 in
NA
5.4 ft
55 psi
0.22 gal/min
•
..
Permeability (k)=1,2E-Q4 gaVminift'2
8.4E-Q6 em/sec
Te.t#
Depth to Bottom of Borehole
Depth to Top of Te.t section
Depth to Be.e of Test Section
Diameter of Borehole
Depth to Ground Weter
Height of Pre••Gage Above G.L
Pre••ure (.tatie condition.)
Pump Rete (.tatic condition.)
Q =0.1 gal/min
L =5 ft
H =519.8 ft
r=0.18 ft
Permeability (k)=2.0E-Q5 gal/minift'2
1.4E.Q6 em/sec
Q ""Pump rate under static conditions
L ""Length of test section
H '"Differential head under static conditions
r '"radius of hole tested
2
100
95
100
4.25 in
97
7.0 ft
180 psi
_-,0",.1",gal/min
•
I
APPENDIX D
WATER QUALITY DATA
Ground Waler Quality Data
U~NaJ uCilml
J'"MW#i MW#2 MWII'J MW#4 MW#5 MW#ii MW#i2 MW#13 CULINARY MW#14 MWH15
3O-Sep-81 2.7E.Q9 3.2E-oa 2.4E-DB 1.5E-oa L4E-DB 6.8E-jQ
31-Dec-8i 6.5E-l0 3.0E.Q9 l.4E-DB 2.0E.Q9 3.0E-D9 6.9E-l0
31-Mar-82 6.5E-l0 2.0E-D9 2.7E.Q9 6.9E·i0 6.8E-l0 6.9E-i0
3(}.Jun-82 l.4E.Q9 4.7E-D9 2.4E-DB 1.3E-D9 2.7E.Q9 7.0E-l0
30-Sep-82 6.8E-l0 2.7E-D9 8.9E.Q9 6.8E·i0 6.7E-to 4.5E-D9
3i-Dec-82 6.8E-l0 6.6E-l0 2.5E-DB 6.7E-l0 6.7E-l0 6.6E-l0
31-Mar-83 7.4E.Q9 2.0E-DB 1.0E-DB 5.5E-D9 8.0E-l0 3.4E-l0 5.0E-D9 4.1E-D9
3()..Jun-83 6.7E-l0 3.4E-D9 2.0E-DB 6.8E·10 6.7E-l0 6.8E-l0 2.0E-D9 4.0E-D9
30-Sep-83 2.3E.Q9 2.3E-D9 L4E-DB 2.3E-D9 5.6E.()9 8.5E.()9 1.1 E-DB 6.8E.()9
31~Dec-83 2.3E.Q9 6.0E.()9 2.8E-DB 6.7E-l0 6.8E-l0 6.9E-l0 1.0E-DB iAE-oa
31-Mat-84 2.71E.Q9 1.35E.()9 1.49E-DB 1.35E-D9 1.35E.()9 7.45E-D9 2.91E-DB 524E.()9 3.25E.Q8
3(}.Jun-84 2.71E.Q9 2.71 E.()9 1.2\lE.Q8 2.71 E-D9 2.71 E.()9 2.71 E.()9 1.83E.Q8 1.83E-DB 2.71E-D9
3()'Sep-84 8.12E-10 4.06E·l0 1.22E.Q9 4.06E-l0 4.06E-l0 4.06E-l0 4.06E-l0 4.06E-l0 4.06E-l0
31-Dec-84 4.06E-10 O.OOE+OO 1.49E.()9 8.12E-l0 O.OOE+OO 1.76E.()9 1.62E.()9 1.49E-D9 1.35E-D9
31-Mat-85 1.76E.()9 1.90E.()9 1.56E.Q9 4.20E-D9 6.09E-l0 2.71E-10 4.74E-l0 2.30E-D9 2.03E-l0
3Q.Jun-BS 7.99E-i0 6.20E-D9 1.08E.()9 9.00E-l0 6.03E-l0 2.98E-l0 6.80E...()9 2.50E-D9 1.50E-D9
30-Sep-85 1.3SE.()9 1.69E-DB 3.05E-DB 1.35E-D9 3.39E.()9 8.80E-D9 3.39E.()9 2.03E-09 1.66E-D9
31-Dec-85 1.70E.()9 9.40E-09 2.06E-DB 1.60E-D9 5.00E-l0 5.00E-10 6.60E-Q9 1.35E.Q8 2.15E-D9
31-Mar-86 1.90E.Q9 8.80E.()9 1.90E.Q8 2.20E-D9 1.10E.()9 1.70E-D9 9.60E-D9 1.48E-DB
3lhJun-86 1.90E-D9 6.40E.()9 i.50E-oB 1.80E-D9 5.00E-D9 1.50E-09 9.60E..Q9 1.10E.Q8 1.00E-D9
04-Sep-86 2.30E.()9 5.80E.()9 1.67E-oa 1.00E-D9 7.00E-10 4.00E-to 9.00E-D9 1.17E-oa 2.00E-D9
l().Dec-86 2.90E-Q9 8.20E-D9 1.21 E-oa 1.90E-10 1.60E-D9 1.90E-l0 1.29E-D8 1.17E-oa 2.20E-D9
2().Feb-87 1.90E-l0 3.50E.()9 1.10E-oa 1.90E-l0 1.90E-l0 1.90E-l0 9.10E-D9 7.00E-D9 1.90E-l0
29-Apr-87 1.50E.Q9 3.10E.Q9 1.26E-D8 1.30E-D9 9.00E-l0 3.00E-l0 1.05E-D8 9.50E-D9 7.00E-l0
·19-Aug...a7 2.40E.Q9 6.20E.Q9 2.30E-oa 1.50E-D9 2.10E.Q9 7.00E-to 9.00E-D9 1.20E-DB 5.00E-l0
2O-Nov...a7 1.30E-D9 4.10E.Q9 1.60E-oa 9.00E-10 3.00E-10 5.00E-l0 9.40E-D9 1.20E-oa 3.00E-10
2Wan-88 1.80E.Q9 4.10E.Q9 2.00E-oa 1.60E-D9 1.00E.Q9 1.90E-l0 8.90E-D9 1.20E-oa 3.00E-10
0i..Jun-88 7.00E-l0 4.70E-D9 1.84E-oa 1.40E-D9 9.00E-l0 5.00E-l0 1.23E-oa 1.43E-oa 8.00E-l0
23-Aug-88 7.20E.Q9 1.10E-D9 1.50E-D9 5.40E-l0 1.20E-l0 5.00E-11 1.00E-D9 1.20E-D9 2.20E-10
03-Nov-88 1.22E-D9 4.94E-D9 1.48E-D7 3.80E-12 1.08E.Q9 2.71E-l0 1.20E-D7 1.23E-D7 1.62E.Q9
09-Mar-89 1.02E.Q9 6.00E-D9 2.20E...Q8 1.40E-D9 1.50E-D9 9.00E-to 1.00E-oa O.OOE+OO 1.90E.Q9•21.Jun-89 2.00E.Q9 6.80E-D9 2.30E-oa 1.20E-D9 6.00E-10 8.00E-l0 1.10E-oa O.OOE+OO 6.00E-10
01-Sep-89 9.00E-10 8.80E.Q9 2.20E-oa 2.60E-D9 1.10E-09 1.80E-D9 1.10E-D8 O.OOE+OO 9.00E-l0
2().Nov-89 2.00E-l0 9.50E-09 1.90E-oa 9.00E-l0 4.00E-l0 6.00E-l0 5.80E-09 O.OOE+OO 2.7E.Q8 4.4E-oa
16-Feb-90 2.40E-09 7.40E.()9 1.40E-oa 1.80E-D9 7.00E-10 7.00E-l0 8.80E-D9 3.00E-10 3.2E-oa 3.0E-oa
OB-May-90 7.00E-l0 8.00E-D9 2.30E-oa 1.60E.Q9 7.00E-10 8.00E-l0 1.00E-oa 3.00E-l0 3.3E.Q8 3.OE-oa
i&-Aug·90 4.67E-l0 5.87E-09 1.67E-08 1.27E-D9 6.00E-10 4.67E-l0 1.07E-D8 4.00E-l0 3.3E-oa 2.5E-oa
13-Nov-90 5.00E·l0 7.20E-09 1.60E-D8 1.20E.Q9 3.00E-l0 6.00E-jQ 1.00E-oa 5.00E-l0 3.3E-oa 2.4E-oa
27-Feb-91 2.20E-l0 3.50E-09 8.00E-Q9 1.30E-D9 2.70E-10 2.00E-10 8.80E-D9 2.00E-l0 2.4E.Q8 2.0E-oa
21-May-91 9.10E-l0 4.30E-09 1.30E-D8 7.70E-l0 1.10E-09 2.30E-l0 1.00E-D8 8.80E-l0 2.2E-DB 1.8E-oa
24-Sep-91 8.20E-l0 7.80E-09 2.20E-D8 9.00E-l0 8.00E-l0 7.40E-l0 1.10E-D8 9.90E-l0 3.1E.Q8 3.3E-oa
03-Dec-91 4.30E-l0 9.50E-D9 8.10E-09 7.40E-l0 5.30E-l0 2.40E-l0 6.80E-09 2.40E-l0 3.0E.Q8 2.3E-oa
17~Mar-92 4.54E-to 7.07E-09 4.53E-09 1.02E-D9 1.60E-D9 2.70E-09 1.01 E-D8 1.46E.Q9 3.03E.Q8 2.37E-oa
11-Jun·92 2.76E-09 4.66E-D9 9.13E..os 2.00E-l0 2.00E-l0 2.00E-l0 5.53E-09 2.00E-l0 2.6E.Q8 1.9E-oa
03-Sep-92 2.03E-09 1.15E-oa 1.9E-oa 4.06E-D9 4.06E-09 3.39E-09 1.29E-D8 2.03E.Q9 4.27E.Q8 2.78E-oa
i9-Nov·92 5.42E-l0 1.02E-oa 1.12E-oa 1.42E-D7 6.nE-jQ 3.18E-D9 1.39E-D8 1.83E.Q9 4.3E.Q8 2.7E-oa
I
Ground WalerOJaJity Data
CI mgA
MW#1 MW#2 MWII:3 MWII4 MWlt5 MW#11 MWlt12 MW#13 CULINARY MW#14 MW#15
31-oot-79 2.5 5 12.6 20.1
31.Jan-80 14 18 25 35
3O-May-80 20 18 50 44 50
3<hJun-80 16 15 51 43 57
31..Jul-80 20 20 62 48 50
31-Aug-80 18 16 65 56 60
3O-Sep-OO 13 15 62 43 51
31-Qct-80 30 20 65 50 55
3Q...Nov-ao 12 8 64 38 49
31-Dec-80 13 10 65 41 52
31.Jan-81 15 11 71 48 53
2B-Feb-81 14 9 65 41 54
31-Mar-81 14 10 66 40 55
3O-Apr-81 13 11 66 41 53
3O-May-81 14 13 110 41 53
3O-JurH31 12 10 69 43 53
31-Aug-81 14 7 67 32 52
31-Dec-81 15 14 66 41 20
31..Jan-82 13 8 64 42 51
3O-Ap'-82 12 7 64 40 50
31·Aug-82 12 6 67 43 43·
31-Dec-82 10.9 5.5 53 36 47.1·24.4 57.4 40.5 4.6
25-Jan-83 16 11 71 46 57·32 70 53 6.4
3O-Jun-83 16.5 25 66.5 37,3 48.1·26.8 80.5 43.8 2.8
31-Dec-83 13 8 63 36 64·32 65
31·Mar-84 14.3 9A 67.2 43.1 57.8 .31.4 64.1 50.4 2.4
3O-Jun-84 12.0 7.0 63.0 43.0 64.0 32.0 65.0 49,0 3.0
3D-Sep-84 15.4 10,9 57.4 44.6 66.6-33.9 64.6 50.9 1.9
31~Dec-84 14.2 7.1 67.4 42.5 53.2 '31,9 67.4 49,6 3.5
31-Mar-8S 14.0 13.0 68.0 46.0 59.0·34.0 67.0 50.0 10.0
3Q.Jun-85 17.0 7.8 73.0 42,0 53.0 31.0 62.0 46.0 1.0•30-Sep-85 18.0 17.0 78.0 47.0 62.0 38.0 71.0 47.0 47.0
31-Dec-85 53.2 70.9 35.0 53.0 71,0 .71.0 53.0 71.0 62.0 )19-Jun-86 25.0 15.0 140.0 98.0 130.0 77.0 170.0 120.0 7.7
3G-Jun-86 25.0 17.0 140.0 95.0 130.0 70.0 150.0 100.0 9.1
04-Sep-86 2.0 9.5 64.0 42.0 53.0 32.0 66.0 48.0 8.1
1D-Dec-86 8.8 2.7 68.0 45.0 54.0·33.0 64.0 50.0 3.3
2D-Feb-87 11.0 6.6 66.0 44.0 54.0·32.0 63.0 48.0 32.0
2S-Ap'-87 12.1 7.7 65.3 42.4 54.3 43.2 62.7 48.7 1.7
19-Aug-87 11.0 6.0 65.0 46.0 54.0 33.0 61.0 51.0 0.4
2D-Nov-87 9.3 4.6 62.6 45.3 53.2·31.9 61.2 49.2 0.1
27..Jan-88 10.0 3.7 64.0 45.0 54.0·31.0 61.0 48.0 0.9
01..Jun-88 9.9 4.8 66.0 45.0 53.0 32.0 64.0 50.0 0.1
23-Aug-88 13.2 6.4 66.1 48.5 53.9·33.5 64.8 51.2 0.9
03-Nov..a8 11.8 6.6 67.7 48.2 54.7 .35.2 65.1 52.1 2.7
09-Mar-89 12.0 7.6 64.0 45.0 52.6 .32.3 61.5 48.8 5.7
21-Jun-89 11.3 6.4 66.9 45.9 54.6 .32.4 60.8 5.2
01-Sep-89 10.0 6.0 65.0 46.0 54.0 34.0 59.0 8.0
1S.Nov-89 11.0 5.0 66.0 45.0 54.0·34.0 63.0 7.0 25.0 49.0
2D-Feb-OO 11.0 5.0 65.0 47.0 55.0·33.0 63.0 4.0 20.0 44.0
OB-May-OO 12.0 7.0 67.0 48.0 66.0·33.0 62.0 6.0 23.0 44.0
07.Aug-90 11.0 6.0 65.0 48.0 53.0·33.0 53.0 7.0 21.0 44.0
13-/'IJov·90 12.0 6.0 68.0 50.0 54.0 34.0 63.0 4.0 23.0 44.0
27-Feb-91 12.0 10.0 68.0 50.0 50.0 31.0 61.0 1.0 23.0 41.0
21-May-91 12.0 6.0 66.0 44.0 48.0·30.0 55.0 1.0 21.0 3ll.O
24-Sep-91 11.0 9.0 60.0 45.0 54.0 30.0 59.0 2.0 15.0 38.0
03-Dec-91 13.0 7.0 64.0 46.0 50.0·31.0 60.0 2.0 19.0 38.0
17·Mar~g2 13.0 7.0 64.0 48.0 51.0 '32.0 60.0 2.0 22.0 40.0
ll-Jun-92 10.0 6.0 76.0 43.0 46.0·29.0 66.0 1.0 18.0 35.0
03-Sep-92 11 6 66 43 46·31 56 1 20 37
19-Nov-92 13.0 6.0 63.0 45.0 50.0·41.0 62.0 1.0 18.0 39.0
l t
Ground Water OuaJity Data
Conductance
1}MW#1 MW#2 MW/,I3 MW#4 MW#5 MW#ll MW#12 MW#13 CULINARY MW#14 MW#15
31.Qct"79 94B 1270 3260 =3O-May-80 1500 2413 3915 3205 2660
3O-Jun-80 1367 3031 4276 3196 2372
31-Jul-80 14<39 2500 4386 3264 2371
31-Aug--80 1565 2712 4537 3233 244D
3O-Sep-80 1547 2791 4768 2791 2559
31-Cct-80 1578 2930 484€3268 2479
3O-Nov-80 1509 2668 4782 3289 2568
31·0ec-80 1568 2730 4828 3254 2412
31.Jan-81 1682 3190 5398 3435 2282
28-F00-81 1723 3089 5054 3370 2268
31-Mar-81 1472 5153 3391 2638
3O-Apr-81 1425 3097 4893 3363 2589
30-May-81 1543 2985 4918 3064 2422
3O-.Jun-81 1303 2806 4433 3108 2699
14-Aug-81 1716 3702 5632 3963 3077
27..Joo-82 1450 3450 5100 3370 3050
07·Apr-82 1635 3402 5489 3630 3275 459
07..Jul-82 1570 334()5170 3380 2790 573
lo-Oec-82 1320 2720 4390 3030 222<)2102 3200 3360 530
25-Jan-83 1310 2680 4260 2910 2150 1630 3130 3290 439
3O-Apr-83 1320 2800 4820 3420 2490 2330 3400 3970 450
07.S0p-83 1390 2810 4490 2970 2130 2260 3250 3160 412
26-Oc1-83 1680 3560 5550 3700 2840 2600 4000 4380 470
2o-Mat-M 1200 2300 4200 2340 2150 1500 3050 3200 312
14-Jun-84 1200 2400 4500 2500 2300 1000 3200 3200 370
05-0ec-M 1100 2275 3975 2325 2000 1900 3000 3050 238
21·FOO-85 1300 2800 4000 2700 2100 1900 4000 3200 380
25.Jun-B.5 1100 2600 4200 2800 2200 1850 3300 3150 300
30-Sep--85 1500 2500 5000 3300 2000 2350 3800 3000 470
15-0ec-85 3000 3200 4700 3000 2200 3100 2600 3600•27-Mar-86 1350 2650 4000 2800 2300 1900 3100 3000 500
26-.Jun"86 1900 3800 5600 3600 3800 3400 5400 4400 700
04-Sep--85 1800 3700 6000 4100 3250 2700 5500 5000 550
lo-Oec-86 2200 3200 4600 3400 2400 1500 3300 3600 000
2o-F00-87 1800 3800 5600 3200 2600 3400 5500 4400 4SO29--Apr-87 1800 5000 5600 2600 3700 3250 4400 3900 500
1S-Au9-87 1500 3300 5400 3800 2700 2800 3300 4200 500
20-Nov-81 1600 3400 5000 3700 2600 2300 3900 4000 600
27.Jan-88 1300 2600 4500 1900 1000 3000 3050 265
01-Jun-88 1350 2800 4500 2850 2100 2000 3250 3400 340
23-Aug...aa 1550 3400 4500 3100 2200 1000 3400 3350 310
03-Nov-88 1250 2850 4400 2000 1950 3000 3300
09-Mar-89 1300 2800 4200 2700 2100 2000 3200 3150
21-Jun-89 1694 3660 5<360 3690 2710 2520 4000 550
01-Sep-89 1670 3670 5550 3670 2740 2560 4010 575 3860 4560
15-Nov-89 1680 3620 5590 3640 2750 2510 4020 693 3880 4450
2o-F<tr90 1695 3630 5550 3630 2700 2750 3980 684 3830 4300
08-May·90 1694 3630 5650 3650 2750 2550 4000 700 3880 4360
07-Au9"90 1667 3560 5400 3550 2680 2530 3880 688 3710 4240
13-Nov-90 1040 2060 4010 2070 2000 1090 3000 550 2000 3030
27·F<tr91 1700 3720 5530 3730 2640 2680 4120 449 3960 4360
21-May-91 1705 3660 5<360 3670 2650 2620 4040 448 3880 4400
24-Sep-91 1726 3660 5570 3660 2650 2690 4030 447 3840 4310
03-0ec·91 1705 3650 5560 3610 2630 2610 4100 442 3900 4=
17-Mar-92 1702 3600 5490 3670 2620 2630 4070 44D 3890 4320
11.Jun-92 1669 3640 5400 3620 2600 2600 4000 447 3850 4380
03-Sep-92 1694 3620 5590 3610 2600 2630 4000 411 3810 4200
19-Nov-92 1690 3660 5710 3650 2680 2630 4070 407 3850 4270
Ground WaJ.er OJality Dala
pH
MW#1 MW#2 MW#3 MW#4 MW#5 MW#11 MW#12 MW#13 CULINARY MWH14 MWlf15
31.()cj-79 8.6 72 7.3 7.1
31.Jan-80 7.4 7.2 68 7.1
3O-May-80 7.3 7.4 7.2 7.2 7.6
3{Nun-80 7.5 7.4 7.2 7.3 7.6
31-Jul-OO 7.4 7.5 7.2 7.3 7.7
31-Aug-80 7.2 72 6.9 7.1 7.4
3O-Sep-oo 7.6 7,6 7.6 7,7 7.7
31-Qct-oo 7.4 7.3 7.2 7.8 7.6
3O-Nov-oo 7.5 7.4 7.1 7.3 7.7
31-Dec-OO 7.4 7.4 7.1 7.2 7.2
31.Jan-81 7.2 72 7 7,1 7.4
28-Feb-a1 7.2 7.1 6.8 7 7.3
31-Mar-B1 7.5 7.15 7 7.7 7.7
3O-Apr-B1 7.5 7.2 7,1 7,5 7.5
3O-May-81 7 7 6.5 6.8 7,2
3O-Jun--81 7.3 7.2 6.8 7.3 7.3
31-Aug-B1 7.4 7.4 6.9 7.2 7.8
31-Dec-B1 7,5 7.7 7.3 7.7 7.7
31.Jan-82 7.3 72 6.7 7.1 7.35
3O-Apr-B2 7.7 7.5 7.2 7.3 7.8
31~Aug-82 7.8 7.7 7.5 7.8 8
31-Dec-B2 7.8 7.7 7.5 7.6 8 8.2 7,8 7.85
31·Mar-83 7.6 7,5 7.2 7.3 8,05 7.4 6.7 7,4
3O-Jun-83 7.8 7.7 7.5 7.7 8.12 8 7,4 8
31-Dec-B3 7.6 7.55 7.4 7.55 7.7 7.2 7.2 7.6
31-Mar-84 7,7 7,0 6,8 7,8 7,9 7,8 7,2 7.0 7,6
3O-Jun-84 7,6 72 7.4 7,8 7,8 7,2 7,8 7,5 8,2
30-Sep-84 7,5 7,1 6,6 7,0 7,5 7,9 6,8 7,0 7,8
31-Dec-84 7,7 7,1 6,8 6,8 7,8 7,9 6,7 7,1 8,3
31-Mar-B5 7,8 7,6 6,9 7,1 7,8 7,9 7,1 7,4 8,0
3O-Jun-85 7,6 7,0 6,8 6,7 7,9 8,0 6,8 7,2 7,8•3O-Sep-85 6,8 7,1 6.4 6,3 7.0 7,9 6,9 6,5 7,4
31~Dec-85 7,3 7,3 6.8 6,9 8,1 7,1 7,7 7,1
31-Mar-86 7,0 7,0 6,6 6,9 7,0 7.0 6,7 6,g 7,0
3O-Jun-86 7,5 7,0 6,7 7,0 7.5 7,9 6.7 6,9
04-Sep-86 7,3 6,9 6,7 6.8 7,6 7,9 6.8 7,0 7,0
1o-Dec~7,7 6,9 6,5 7,0 7,1 7,9 7,1 7,1 7,6
2G-Feb-a7 7,4 7,1 6,5 7,0 7.6 7,9 $,g 7,0 8,5
2S-Apr-B7 7,$$,7 $,5 6,9 7,$ 7,8 6,9 7,0 7,$
19,..Aug-87 7,6 6,7 6,6 7,9 7.4 7,5 7,0 7,1 7,4
2O-Nov--87 7,8 7.4 7.2 7.2 8,0 7,8 7,3 7,4 7,4
27.Jan-88 8,0 7,4 6,8 7,7 7,0 7,1 7,1 7,7
01.Jun...a8 8,1 7,2 7,0 7.1 7,6 7,9 7,1 7,3 8,2
23-Aug~88 7.6 7,1 6.7 6,8 7,8 7.7 6,7 6,9 7,8
03-Nov-88 7,5 7.2 6.7 7,5 8,0 6,6 7,0 7,8
09-Mar-8g 7,4 7,1 6.7 7,3 7,6 7,9 6,9 6,8
21-Jun-89 8,0 7,1 6,7 6,9 7.4 7,8 6.8 7,7
01-Sep-89 7,3 7.4 6,9 7,0 7,7 7,8 6,8 7,7
15-Nov-89 7,5 7,0 6,5 6,8 7.8 7,8 7,1 7,6 6,9 6,9
2o-Feb-90 7,8 7,5 6.8 7,0 8,0 8,1 7,2 8.0 6,87 7,46
08-May~90 7.5 7,1 6.6 7.0 7,6 7,8 6,8 7,9 6,8 7,07
07-Aug-90 7,5 7,0 6.8 7.7 7,7 7.4 7,0 7,8 6,87 7,18
13-Nov-90 7,9 7.5 6,6 7.7 8,0 8,0 7,5 8,2 6,47 7,06
27-Feb-91 7,9 7.5 6,6 7,7 8,0 8,0 7,5 8.2 6,47 7,06
21-May-91 7,4 7.1 6,3 6,8 7.4 7,9 7,0 7,1 6,82 7,06
24-Sep-91 7.7 7,0 6.7 7,0 7.4 8,0 6.8 7,3 6,69 6,94
03-Dec-91 7,6 7.3 6,8 6,9 7,7 7,9 6,9 7,8 $,8 7
17·Mat-92 6.7 7.2 5,8 6,9 7,6 7,9 7,0 7,1 7 7,21
11.Jun-92 7,1 6.9 6,1 6.7 7.2 7,4 6.6 7,7 6.6 7,33
03-Sep-92 8,1 7,9 6,7 7,0 7,6 7,9 7,4 7,6 6.89 7,03
19-Nov-92 7.5 7.8 7,1 6,9 7,8 6.2 8,1 7,7 6,83 7,16
1)
Ground Walor Oualify Dms
Sodium mgil
MW.,MW#2 MW#3 MWII4 MW#5 MW.,'MW#12 MW#13 CULINARY MW#14 MW.,5
31..Qc1-79 106 154 282 342
31-Jan-80 14D 213 334 274
3O-May-80 165 34S 575 34S 478
3O-Jun-80 166 361 642 322 462
31-Jul-80 160 418 442 335 435
31-Aug-80 158 410 653 336 4S5
30-~156 468 566 371 SOD
31.()ct-80 162 415 677 341 443
3O-Nov-80 166 419 567 309 428
31-Dec-BO 166 442 699 338 4&J
31-Jan-81 170 467 756 335 467
2B-Feb-81 148 462 704 384 487
31-Mar-il1 175 470 745 338 473
3O-Apr-il1 161 476 703 314 467
3O-May-il1 160 472 718 350 459
3O-Jun-81 162 458 6B5 351 437
31-Aug-il1 161 4SO 688 323 426
31~0ec-81 170 469 730 330 4SO
31-Jan-82 170 483 757 340 490
3O-Apr-il2 190 4&J 790 330 510
31-Aug-82 160 470 750 340 470
31-Dec-il2 170 4SO 810 334 431 550 310 630 67
3O-Jun-83 170 470 770 330 458 480 310 640 27
31-0ec-83 170 500 800 320 480 54D 290 640
3O-Jun-84 170 500 78ll 310 470 530 320 650 5.6
31-Dec-il4 182 443 489 340 428 440 328 459 7.2
3O-Jun-85 20 640 790 370 540 610 330 6BO 7.3
31-Dec-ilS 320 490 78ll 340 530 550 380 600 5.5
19-Jun.a6 262 643 937 326 514 sao 430 659 23.6
04-Sep-il6 175 456 746 289 436 477 296 541 29.5
10-Dec-il6 210 529 784 335 501 250 324 562 68.0•20-Felr87 116 333 513 209 307 366 197 360 54.3
2S-Apr-il7 134 362 518 232 360 378 235 389 7.0
20-Nov-il7 212 618 958 395 S64 768 334 677 11.6
27-Jan-88 185 507 776
23-Aug-88 157 495 768 266 432 535 244 445 15.2
03-Nov-88 172 4SO 659 289 410 486 28ll 510 17.4
09-Mar-89 169 464 713 275 321 375 186 S64 22.0
01-8Ep-89 163 466 713 287 411 489 269
15-Nov-il9 194 515 637 270 508 567 321 70.1 70.7 72.6
Q9..May-90 188 504 756 291 456 517 284 70.8 388.0 566.0
13-Nov~90 165 470 698 285 410 475 277 48.9 348.0 640.0
27-Feb-91 171 477 708 284 430 522 213 19.0 265.0 466.0
21 -May~91 177 503 796 274 44D 549 271 15.0 353.0 590.0
03-Dec-91 179 492 797 324 466 640 336 17.0 366.0 490.0
11-Jun-92 18ll 490 760 300 410 54D 290 15.2 350.0 510.0
03-Sep-92 162 475 742 291 428 538 291 9.5 345 504
19-Nov~92 182 467 736 318 453 520 318 8.5 358.0 478.0
1}
Ground Water OJaJity Dala
TDS m'l'1'l MW#1 MW#2 MW#3 MWII4 MWlt5 MWlt11 MW#12 MW#13 CULINARY MWH14 MWH15
31-Oct·79 625 790 2100 2950
31-Jan-80 870 1080 24SO 2800
3O-May-OO 12SO 1950 44DO 3600 2300
3O-Jun-80 12SO 2300 47SO 2500 2280
31-Jul-80 1182 2449 4024 3198 2060
31-Aug...aG 1220 2278 4908 3480 2218
3Q.Sep-80 1285 2769 4593 3525 2182
31-Oc1-80 1220 2652 4>328 3402 2096
3Q.Nov-80 1166 2492 4522 2990 1960
31-Dee-80 1194 2848 4982 2998 2105
31-Joo-81 1273 2768 5053 3330 2072
28-Fel>-81 1254 2835 4804 3322 2192
31-Mar-81 1317 5122 3320 2256
3Q.Apr-81 1330 3028 5130 3318 2309
3Q-.May-81 1306 2998 5198 3296 2297
3O-Jun-81 1188 2983 5387 3608 2114
31-Aug-81 1197 2932 5124 3337 2119
31-Dec-81 1199 2901 5167 33n 2190
31-Jan-82 1200 2800 4950 3200 2250
3Q.Apr-82 1200 2800 5125 3200 2500
31-Aug-82 1200 2950 5300 3500 2250
31·Dec-82 1326 3056 5366 3470 2180 1812 4116 3780 334
3O-Jun-83 1150 3500 4900 3500 2200 1650 4OSO 38SO
31-Dee-83 1200 2950 51SO 3250 2100 15SO 39SO 37SO
3O-Jun-84 1400 3200 5300 3500 2200 1700 4100 3700 280
31-Dee-84 693 1479 2733 1581 1300 2000 2033 139
3O-Jun-85 1560 3130 3610 2200 1700 4300 3900 221
31-Dee-85 4000 3700 5000 4600 6600 5100 5100 6800
19-Jun-86 1280 3200 5500 34SO 2130 1700 4140 3870 277
~un-86 1330 32SO 5500 3610 3210 1700 4210 38SO 292
04-Sep-86 12SO 3240 5320 34SO 2040 1710 4040 3nO 263•1().Dee-86 1270 3140 5290 3530 2100 1710 4110 3820 403
2().Fel>-87 1270 3230 5330 3480 2OSO 1710 4120 3780 311
29-Apr-87 1270 3180 5400 3340 2380 1880 4120 3810 249
19-Aug-87 1280 3190 5320 3530 1990 1690 3990 37SO 234
2Q..Nov-87 1330 3260 5520 3570 1970 1720 4130 3840 236
27.Jan-88 1310 3270 5100 3460 2030 1640 3960 3740 22
01-Jun-88 12SO 3140 5240 3430 1890 1880 4060 3720 25
23-Aug-BB 1220 3080 5230 3320 1930 1620 3010 3720 207
03-Nov-88 1250 3150 5430 3450 1800 1710 4060 3670 170
Q9-.Mar-89 1280 3140 5270 3530 2010 1730 3960 3780
21-Jun-89 1280 3210 54SO 3580 2020 17SO 4030 316
01-Sep-89 1210 3040 5290 3430 1940 1760 3630 296
l5-Nov-89 1200 3060 52SO 3370 209Q 1860 3900 544 3430 3990
2().Feb-OO 1280 3190 5300 3540 2110 1780 4030 202 3710 3970
08-May·90 1160 30SO 5060 3240 19SO 1860 3700 338 3000 3740
07-Au9-90 1210 3080 5220 3320 1970 1700 37SO 344 3500 3nO
l3-Nav-90 1170 31SO 5290 3280 1880 1720 3760 308 3440 3760
27-Feb-91 1272 3154 5268 3424 1850 1686 3260 252 2684 3356
21-May·91 1275 3037 5326 334i3 1871 1740 3943 250 3613 3950
24-Sep-91 1352 3149 5309 3471 2139 1819 3810 266 3818 3817
03-Dee-91 1286 3179 5188 3462 1943 1810 3930 238 3861 3843
17-Mar-92 1285 3206 5317 3523 1922 1797 4024 237 3704 3910
11.Jun-92 990 2910 4930 3190 1810 1740 3900 219 3580 3800
03-Sep-92
19-Nov-92
Ground Waler Quality Data
SuHates mgA'l MWN1 MW#2 MW#3 MW#4 MW#5 MW#11 MW#12 MW#13 CULINARY MWN14 MWN15
31-Oc1-79 220 240 930 122Q
31-Jan-80 520 630 2100 1700
3O-May-80 635 1075 2430 1860 1290
3O-Jun-BO 632 1290 2625 18SO 1200
31-Jul-80 610 1400 24SO 1980 1100
31-Aug-BO 612 1345 2975 1980 11SO
3O-Sep.SO 640 1550 2800 2075 960
31-Oc1-80 570 1635 3OSO 2020 1060
3O-Nov-80 613 1425 27SO 1780 1050
31-Dee-80 62D 1520 3060 1780 11 SO
31-Jan-81 638 1530 3012 1900 1140
2B-Feb-B1 600 15SO 2780 1980 1260
31-Ma<--81 658 31SO 1890 1210
3O-Apr-81 62D 166{)3030 1880 1220
3O-May-81 650 1730 3100 1910 1190
3Q...Jun-81 62£1690 3040 2070 1105
31-Aug-81 630 17SO 3OSO 1910 1115
31..Jan-82 613 1590 3100 1920 1260
3O-Apr-82 697 1766 3239 2056 1518
31-Aug-82 662 1788 3185 2047 1295
31-Dee-82 853 1749 3259 1979 1182 926 2395 2288 39
3O-Jun-83 656 1801 3226 2109 1228 943 2420 2324 41
31~Dec-83 66{)1820 3200 2075 1200 900 2338 2265 64
29-Fet>-84 637 1835 3235 2056 1175 937 2400 22SO 77
3O-Jun-84 66{)1900 3300 2075 1200 920 2400 2200 32
31-Dee-84 637 1835 3235 2056 1175 937 2400 2250
3O-Jun..as 816 1890 2040 1210 909 2440 2300 18
31-Dee-85 1080 1270 2870 2020 7820 79 782()2120 79
19-Jun..a6 703 2010 34SO 2120 1240 943 2500 2420 45
3O-Jun-8G 691 2040 3400 2150 1890 949 2520 2420 43
04-Sep-86 707 2020 3410 2160 1230 956 2470 2400 49•10-Dee-86 880 1860 2620 2()()()1140 911 2370 2240 77
2O-Feb-87 657 1910 2640 2030 1120 895 2100 1990 62
29-Apr-87 664 1920 3200 1930 1310 1020 2300 2270 22
19-Aug-87 691 2()()()3400 2130 1140 951 2430 2380 26
20-Nov-87 697 2040 3520 2170 1120 961 2560 2450 25
27-Jan-88 690 1930 3020 206Q 1130 919 2380 2300 22
01-Jun-B8 661 1900 33SO 2120 1030 947 2450 2370 25
23.-Aug-88 648 1970 3330 2100 10SO 915 2290 2330 7
03.-Nov-B8 688 1980 3410 2120 1090 974 2500 2240 34
09-Mar-89 694 1990 3410 2070 1180 975 2530 2400 41
21..Jun-89 718 2040 3500 2180 1180 1020 2500 65
01-Sep-89 352 2()()()3500 2140 1140 1020 22SO 60
15-Nov-89 697 1990 2670 21 SO 1180 993 22SO 105 2230 2560
2O-Feb-90 692 2D2O 3330 2140 1210 1010 2460 98 2250 2490
08-May-90 664 2020 3480 2080 1180 1()()()2070 51 1160 1260
07-Aug-90 665 1970 3400 2080 1140 973 2450 B8 2240 2445
13-Nov-90 667 1980 3460 2130 1100 975 2460 89 2230 2470
27-Feb-91 662 1849 2712 1948 1028 967 1850 45 1512 1876
21-May-91 652 1885 2947 1988 1010 936 2255 51 2112 2299
24--Sep-91 692 1848 2532 1939 BSO 956 2240 49 1971 2215
03-Dee-91 677 1883 2214 1956 1035 968 2326 27 1919 2253
17-Mar-92 667 1899 3220 2035 1022 976 2330 21 2162 2314
11..Jun¥92 642 1862 2894 1993 998 976 2304 26 2138 2293
03-Sep-92 670 1933 3312 2029 1033 1005 2352 30 2208 2368
19..Nov~92 654 1664 3200 1951 1055 1507 2343 21 2098 2362
Ground Waler Quality Da1a
ARSENIC
,»MW#1 MWII2 MW#3 MW#4 MW#5 MW#11 MW#12 MW#13 CULINARY MW#14 MW#15
31.,Jul-80 0.0009 0.016 0.012 0.008 0.006
31·Aug-80 0.004 0.004 0.0009 0.002 0.0009
3O-Sep-80 0.002 0.002 0.002 0.0009 0.0009
31-0ct-8D 0.0009 0.0009 0.0009 0.0009 0.0009
3O-Nov-80 0.002 0.004 0.004 0.002 0.002
31-Dee-8Q 0.0009 0.0009 0.0009 0.0009 0.0009
31.,Jan-81 0.0009 0.0009 0.0009 0.0009 0.0009
2B-Feb-81 0.0009 0.0009 0.0009 0.0009 0.0009
31-Mat-81 0.0009 0.0009 0.0009 0.0009 0.0009
3O-Apr-81 0.0009 0.0009 0.0009 0.0009 0.0009
3O-May-81 0.0009 0.0009 0.0009 0.0009 0.0009
3O-Jun-81 0.0009 0.0009 0.0009 0.0009 0.0009
31-AU9-81 0.0009 0.0009 0.0009 0.0009 0.0009
31~an-82 0.0009 0.0009 0.0009 0.0009 0.0009
05-May-8S 0.0009 0.0009 0.0009
2B-Jun-85 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.008
23-Jul-8S 0.0009 0.021 0.0009
OB-AU9-85 0.001 0.001 0.0009
30-Sep-85 0.0009 0.0009 0.0009
30-0c.-85 0.0009 0.0009 0.0009
27-Nov-85 0.0009 0.0009 0.0009
15-Dee-8S 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009
24-Jan-86 0.0009 0.0009 0.0009
28-Feb-86 0.0009 0.0009 0.0009
27-Mar-86 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.002 0.0009
OB-Apr-86 0.0009 0.0009 0.0009
Q2·May-86 0.0009 0.0009 0.0009
04-Sep-86 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009
tQ.-Dee-as 0.001 0.003 0.005
2Q.-Feb-87 0.0009 0.002 0.002 0.002 0.002 0.001 0.002 0.002 0.0009
2<>-Apr-87 0.002 0.002 0.001 0.0009 0.0009 0.002 0.003 0.002 0.011•2Q.-Nov-87 0.003 0.005 0.000 0.002 0.001 0.001 0.009 0.008 0.013
27.Jan-88 0.0030 0.0009 0.0030
23--Aug-88 0.014Q 0.0190 O.02SO 0.0220 0.0170 0.01SO 0.0230 0.0190 0.0070
03-Nov..aa 0.0009 0.004Q 0.0110 0.0009 0.0009 0.0009 0.0009 0.0030 0.0009
09-Mar-89 0.01 SO 0.0320 0.0460 0.0330 0.0190 0.01 SO 0.03S0 0.0300 0.0070
22~un-89 0.004Q 0.014Q 0.0330 0.0170 0.0100 O.OOSO 0.0210 0.0150
01-Sep-89 0.0010 O.OOSO 0.0060 0.0030 0.0010 0.ססOO 0.0030 0.0060
15-Nov-89 0.0010 0.0080 0.0100 0.0020 0.0070 0.0020 0.0030 0.0130 0.0030 0.0060
08-May-90 0.0020 0.0010 O.OOSO 0.0010 0.0009 0.0010 0.0010 0.0120 0.0010 0.0020
13-Nov-90 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0110 0.0009 0.0009
27-Feb-91 OJXl10 0.0009 0.0009 0.0020 0.0009 0.0020 0.0010 0.014Q 0.0009 0.0009
24-Sep-91 0.0009 0.0010 0.0009 0.0020 0.0080 0.0009 0.0010 0.0130 0.0009 0.0010
17-Mar-92 0.0009 0.0009 0.0009 0.0020 0.0100 0.0020 0.0009 0.0130 0.0009 0.0020
03-Sep-92 0.0009 0.0009 0.0009 0.0009 0.0060 0.0060 0.0009 0.0210 0.0009 0.0009
Ground Water Quality Data
SELENIUMA.MW#1 MW#2 MW/13 MWII4 MW#5 MW#11 MW#12 MW#13 CULINARY MW#14 MW#15
:]1~ul-80 0.0009 0.025 0.0009 0.0009 0.0009
31-Aug-80 0.002 0.026 0.005 0.002 0.003
3O-Sep-80 0.0009 0.012 0.0009 0.0009 0.0009
31-Oct-80 0.0009 0.017 0.0009 0.0009 0.0009
30-f\k)v..oo 0.001 0.011 0.003 0.001 0.001
31-Dec-80 0.0009 0.0009 0.0009 0.0009 0.0009
31-JaMl1 0.0009 0.016 0.0009 0.0009 0.0009
28-Feh-81 0.0009 0.0009 0.0009 0.0009 0.0009
31-M",--81 0.0009 0.0009 0.0009 0.0009
30-Ap1'-81 0.0009 0.0009 0.0009 0.0009 0.0009
3O-May-81 0.0009 0.002 0.0009 0.0009 0.0009
3o-Jun-81 0.0009 0.01 0.0009 0.0009 0.0009
31-Aug-81 0.0009 0.004 0.0009 0.0009 0.0009
31.Jan-82 0.0009 0.009 0.003 0.003 0.0009
3O-Jun-i>4 0.0049 0.015 0.031 0.009 0.0049 0.0049 0.0049 0.005 0.0049
OS-May-85 0.0009 0.0009 0.0009
2B.Jun-85 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009
23-Ju~0.037 0.0009 0.0009
06-Aug-85 0.0009 0.0009 0.0009
30-Sep-85 0.0009 0.0009 0.0009
30-0ct-85 0.0009 0.0009 0.0009
27-Nov-85 0.0009 0.0009 0.0009
15-Dec-85 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009
24-Jan-86 0.0009 0.0009 0.0009
28-Feh-86 0.0009 0.0009 0.0009
27-Mar-86 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009
08-Apr-llS 0.0009 0.003 0.0009
02-May-llS 0.0009 0.0009 0.0009
04-Sep-a6 0.0009 0.0009 0,001 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009
10-Dec-llS 0.0019 0.0019 0.0019
2O-Feh-87 0.0009 0.0009 0.002 0.0009 0.001 0.003 0.001 0.007 0.0009
29-Apr-87 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009
2Q..Nov-87 0.005 0.023 0.036 0.01 0.Q18 0.02 0.004 0.027 0.0009
27~an-88 0.009 0.01 0.016
23-Aug-88 0.014 0.045 0.091 0.008 0.061 0.072 0.015 0.057 0.0009
03-Nov-88 0.005 0.024 0.037 0.005 0.026 0.029 0.003 0.03 0.0009
Q9-.Mar-a9 0.004 0.017 0.027 0.019 0.005 0.002 0.021 0.027 0.001
22.Jun-a9 0.001 0.002 0.003 0.003 0.004 0.004 0.001 0.001
01-Sep-89 0.001 0.001 0.004 0.003 0 0 0 0.001
15-Nov-89 0.005 0.Q15 0.019 0.015 0.006 0.02 0.02 0.001 0.014 0.019
08-May-90 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009
13-Nov-90 0_0009 0.004 0.003 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009
27-Feb-91 0.002 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019
24-Sep-91 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.(X)19 0.0019 0.0019 0.0019
17-Mar-92 0.0019 0.002 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019
03-Sep-92 0.0019 0.003 0.011 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.017
Ground Waler Quality Data
Ra-226
"»pCiIl MW#1 MW#2 MW#3 MW#4 MW#5 MW#11 MW#12 MW#13 CULINARY MW#14 MW#15
31-Jul-80 1 1.3 1 0.7 1
31-Aug-80 0.7 1.7 0.6 0.7 0.6
3O-Sep-80 0.7 0.3 0.5 0.4 02
31-Oct-80 0.8 1.9 1.1 0.9 1.1
3O-Nov--80 0.7 1.1 0.8 0.8 0.8
31-D<>e-80 0.5 0.4 0.3 0.7 0.4
31-Jan-81 0.5 1.3 1.3 0.5 0.6
28-Feb-81 0.6 1.7 0.6 0.9 0.6
31·Mar-81 2 1.6 0.8 0.9 0.7
3O-Apr-81 22 1.3 1.8 0.5 0.3
3Q..May-81 3.5 2.3 1.5 1.3 0.8
3<hJun-81 1.5 2 2.3 1.2 1.8
31-Aug-81 0.8 7.5 15.5 1.1 1.6
30-&3p-81 0.4 1.1 0.5 0.8 0.2
31-Jan-82 0.8 1.6 1.1 1 0.9
3O-Apr-82 0.3 0.6 0.5 1 0.3
3().Jun-83 0.4 0.17 1.4 1 1.2 0.4 0.6 0.6 0.4
3O..Jun-84 3 8 8 7 2 2 6 3 7
3<Wun-85 1 1.3 1 1.4 0.3 0.1 1.1 0.9 2
31-D<>e-85 0.5 0.9 5.3 0.9 0.8 0.1 0.7 0.4 0.55
21-Mar-86 0.5 1 0.8 0.6 0.2 0.1 0.6 0.1 0.4
19-Jun..a6 0.5 0.9 5.3 0.9 0.8 0.1 0.7 0.4 0.055
04-Sep-86 1.5 0.8 0.9 0.6 0.2 0.2 0.9 0.1 1.3
W-D<>e-86 0.4 0.5 1.1 0.7 0.3 0.3 0.7 0.3 0.3
2O-Feb-87 0.2 0.5 1.1 0.5 0.4 0.4 0.7 0.2 0.3
29-Apr-87 0.6 0 0.3 0.4 0.3 0.2 0.6 0.3 0.5
2O-Nov-87 0.3 0.2 0.3 0.1 0 02 0.3 0 0.6
27-Jan-88 0.6 0.2 0.8
23-Aug-88 0.5 02 0.7 0.3 0.1 0.1 0.5 0.1 0.5
OJ..Nov-88 0.1 0.2 0.3 0.1 0 0.2 0.7 0 0.5
09-Mar-89 0.1 0.2 0.3 0.1 0.1 0.1 0.2 0.2 0.9•01-&3p-89 0 0.5 0.2 0.2 0 0.1 0.5 0.2
1,S..Nov-89 0.2 0.2 0.4 0.2 0.1 0.2 0.1 0.1 0.1 0.1
OB-May-90 0.2 0.3 0.6 0.4 0.2 0.1 0.4 0.3 0.1 0.1
13-Nov-90 0.2 0.4 0.2 0.1 0.2 0.4 0.1 0.4 0.2 0.3
27-Feb-91 0.1 0.3 0.2 0.3 0 0.1 0.3 0.3 0.3 0
24-Sep-91 0.4 0.1 0.2 0 0 0 0.3 0.2 0.2 0
17-Mar-92 0.4 0.2 0.7 0.9 0.4 0.3 0.2 0.3 0.4 0.3
03-Sep-92 0.2 0.8 0.8 0.4 0.1 0.1 0.4 0.7 0.2 0
Ground Waler Quality Data
Ra-22B,)pCi~MW#1 MW#2 MW#3 MW#4 MW'5 MW.11 MW'12 MW#13 CULINARY MW#14 MW.15
27-Feb-91 1.7 2.5 1.1 2.1 1.2 0.9 2.8 1,4 0.5 1.2
24-S€p-91 1.8 2.2 1.9 1.9 0.8 0.7 2.1 0 a 0.3
17-Mar-92 1.6 1.6 0 2.1 0,4 0 1.6 0.6 0.9 0.3
03-S€p-92 1.8 0 2.5 1.4 0 0 0 0 0.6 0,4
Avemge 1.725 1.575 1.375 1.875 0.600 0,400 1.625 'DIV/OI 0.500 0.500 0.550
Standard Deviation 0.083 0.965 0.936 0.286 0.447 0.406 1.030 #NUMI 0.574 0.324 0.377
Minimum 1.600 0.000 0.000 1.400 0.000 0.000 0.000 0.000 0.000 0.000 0.300
Maximum 1.800 2.500 2.500 2.100 1.200 0.900 2.800 0.000 1.400 0.900 1.200
Ground WalerQuality Data
Th-22Q
(..pOll MW#1 MW#2 MW#3 MW#4 MW#5 MW#11 MWII12 MW#13 CULINARY MW#14 MW#15
31.Jul-ao 0.4 0.3 0.3 0.4 0.5
31-Aug-80 0.4 0.4 0.5 0.3 0.3
3O-Sep-aO 0.8 0.5 0.4 0.7 0.9
31-Qcl-8Q 0.5 0.9 0.4 0.9 1.1
3O-Nov..oo 0.8 0.6 0.5 0.6 0.9
31-Dec-80 0.5 0.4 0.8 0.9 0.6
31-Jan-81 0.5 1.3 1.3 0.5 0.6
21>-F€b-81 0.5 0.8 0.6 0.7 0.6
31-Mar-81 0.8 0.4 0.8 0.8 0.5
3O-Apr-81 0.5 0.6 0.6 0.5 0.9
3O-May-81 1.1 0.7 0.5 1.2 0.8
3Q..Jun-81 1.7 1.1 0.8 1.3 0.7
31-Aug-81 0.7 1.2 1.1 1.4 0.9
31-Jan-82 1.1 0 0 1 2.9
3O-Apr-82 0.8 0.9 1.5 0.8 1.7
31-Aug-82 02 0 0 0 0
~un-83 0 0.4 0.5 0.1 0.2 0 0.1 0.1 0
3()..Jun-84 2 4 1 0 0.1 2 0 5 2
3<hJun-85 1.2 O,S 0.5 0.9 0.1 12 0.6 0.5 0.3
31-1Je<:-85 0.1 [)0.7 0.1 0.1 0.1 0.5 0.1 0.05
21·Mar-86 0.1 0 0.7 0.1 0.1 0.1 0.5 0.1 0.05
19-Jun-86 0.1 0 0.7 0.1 0.1 0.1 0.5 0.1 0.05
04-Sep-86 0.4 0.7 0.9 2.4 1.B 1.2 0 0.5 0.5
1O-1Je<:-86 0 0 0 0.5 0.1 0 0 0 0
2D-F€b-87 02 1.5 0 0 0.9 0 0 0 0.1
2S-Apr-87 0.1 0.1 0.2 0.6 0.3 1.9 5.4 4.3 1.2
2O-Nov-87 0 0 0 0.1 0 0.1 0 0.1 0
27.Jan-88 0.1 0.1 0.3
23-Aug-86 0.9 0 0.7 0 0.4 0 0 0 0.4
03-Nov-88 0.7 0.2 0.3 0.4 0 0 0.5 0.5 0.2
09-Mar-89 0 0 0 0.1 0 0.2 0.2 0.2 0•01-Sep-89 0 0 0 0 0.1 0 0.4 0
2O-Nov-89 0 0 10 0.1 0 0 0 3.2 0 4.7
08-May-OO 0.1 0 0_1 0 0 0 0 0 0 0
13-Nov~90 0.2 0.1 0 0.1 0 0.2 0.2 0 0 0.2
27-Feb-91 0 0 0.1 0 0 0 0 0.1 0 0.1
24-Sep-91 0 0 0 0 0 0 0.1 0 0 0.1
17-Mar-92 0 0 0 0 0 0 0 0 0 0
03-Sep-92 0 0 0 0 0 0 0 0 0 0.2
Ground Waler Ouality Dala
f'b-.210;")pCVI MW#1 MW#2 WM#3 WM#4 WM#5 WM#11 WM#12 WM#13 CULINARY WM#14 WM#15
31-Jul-80 3 3 3 3 5
31-Aug-80 3 3 5 2 3
3O-Sep--80 3 3 2 3 5
31-0ct-80 3 3 3 2 3
3Q-.t'kw-80 3 2 4 5 4
31-Dec-80 5 3 3 4 2
31.Jan-81 3 3 4 2 4
28-Feb-81 4 5 4 3 5
31~Mar-81 4 5 3 5
3O-Apr-81 4 5 5 3 5
3O-May-81 4 3 5 3 4
3O-Jun..fl1 3 5 6 3 5
31-Aug-81 2 3 6 5 3
31...Jan..a2 a 5 a a 8
3O-Apr-82 1.3 12 1.8 0.9 1.1
31·Aug-82 a 0.5 1.03 0.9 a
3O-Jun-83 a a 0.5 a a a a a a
3O-Jun-84 1.2 9 7 1 3 1 8 1.2 8.8
3O-Jun..a5 2.7 8.3 1.2 a 0.3 0.8 a 0.2 1.6
31-Dec-85 a 1 0.4 0.2 0.3 0.9 0.1 0.2 0.2
21-Mar-86 a 1 0.4 0.2 0.3 0.9 0.1 0.2 0.2
19-Jun-86 a 1 0.4 0.2 0.3 0.9 0.1 0.2 0.2
O4-Sep-OO 0.3 a 0 a 3.6 0.1 0.3 a a
1O-Dec-86 2.2 3 0 a 0 0.8 a a a
2O-Feb-87 2.2 2.3 1.8 1.5 2.7 1.5 2.1 1.1 1.3
2S-Apr-B7 3.1 0.2 0.5 6.6 2.4 4 0 1.8 0.9
2O-Nov-87 0.7 0.0 0.0 1.7 0.6 6.7 2.3 1.2 0.9
27-Jan--B8 0.0 0.0 0.0
23--Aug..aa 0.0 0.4 0.0 0.0 0.0 0.4 0.0 0.0 0.0
03--Nov..a8 0.0 0.0 0.0 0.0 0.0 0.4 0.0 0.0 0.0
09-Mar-89 0.2 0.8 0.1 0.8 0.1 0.7 0.3 0.8 0.9•01-Sep-89 0.0 0.1 0.0 0.5 0.0 0.1 0.0 0.3
2O-Nov-89 0.4 1.3 1.3 0.1 1.0 0.1 0.2 1.2 1.0 0.0
OB-May-90 0.4 0.0 1.0 0.4 1.1 0.7 0.8 0.0 0.7 1.3
13--Nov-90 0.7 1.3 0.4 0.9 0.0 1.1 0.3 0.0 0.6 0.1
27-Feb-91 0.0 0.4 0.1 2.6 0.9 0.6 0.3 0.8 0.6 0.7
24-Sep-91 0.5 0.7 1.1 0.0 0.0 0.1 1.8 1.8 1.7 0.0
17-Mar-92 1.4 2.6 1.3 1.5 1.8 1.5 2.2 2.0 2.3 2.2
08-Sep-92 0.0 0.0 0.0 0.0 1.1 0.4 0.0 0.6 0.6 0.0
Ground WaJer Quality Dala
WalerA}Depth WM'1 WMII2 WM.3 WM.4 WM.5 WM#11 1Mv1#12 WM#13 CULINARY WM#14 WM#15
06-Sep-79 93.0
07-Sep-79 94.7
1Q-Sep-79 108.5 115.2 94.6
14-Sep-79 77.3 109.6 94.6
25-Sep-79 76.6 110.1 83A 94.7
10-0ct-79 81.7 110.2 84.9 94.7
1().J8/HlO 76.0 109.5 832 93.9
28-Feb-8Q 74.0 108.1 81.9 92.8
2Q.Mar-80 74.0 107.9 BO.8 92A
3O-May-80 75.9 110.0 83.1 94.3 112.2
17-Jun-80 75A 110.0 83.7 94.3 108.0
16-Jul-80 75A 110.0 83.6 94.3 108.0
19-Aug-80 75.1 110.0 83.6 942 108.0
07-Sep-80 762 111.1 83.7 94A 108A
11-Sep-80 74.3 110.5 83.7 94.3 108.5
08-001-80 762 111.1 84A
27.Jan-82 75.3 110.0 83.6 94.3 108.6 104.0 118.7 78.0
26-Sep-84 832 112.3 87.5 96A 1082 113.4 111.8 77.3
05-Dec-&!76.0 110A 84.0 94.0 108.0 104.0 109.6 73.0
21-Feb-85 76.0 110.3 84.3 94.2 108.0 104.0 110.1 73.3
25.Jun-85 762 110,5 84.5 94.0 108.2 103.9 109.8 73.2
30-Sep-85 75A 110.0 83.7 93A 107.5 102.9 108.8 77.0
31-0ct-85 75.0 110.8 83.0
27~Nov-85 75.9 112.2
15-Dec-SS 75.5 110.3 83.7 93.5 108.1 103.7 109.7 77.5
24,J8O-86 80.2 110.0 83.7
28-Feb-86 75.8 110.1 83.8
2Q-Mar-86 762 110.5 84.5 94.0 108.2 103.9 110.8 73.3
27~Mar-86 75.8 110.3 84.0 103.0 110.0 77.0
OB-Apr-86 75.6 109.9 84.8
19.,Jun-86 75.7 109.8 83A 93.4 107.9 102.8 109.3 77.2•26-Jun-86 75.7 109.8 83A 93.4 107.9 102.8 109.3 77.2
04-Sep-86 75.9 110.1 83.8 93.5 107.9 103.0 109.3 77.1
1Q-Dec-86 76.5 111.3 83.8 95.7 108.2 103.2 111.2 79.3
2Q-Feb-87 76.8 111.3 83.8 95.7 108.2 103.2 110.2 79.3
26-Apr-87 75.7 110.2 83.8 93.2 108.0 102A 109.7 78.0
14-Aug-87 76.3 111.1 83.3 93.3 108.3 102.6 108.5 78.0
2O-NoV-87 76.0 110.4 83.9 93.3 108.3 103.2 109.7 77.3
27.Jan-88 75.9 110A 83.8 93.6 108.3 102.8 109.7 77.2
01.Jun-88 75.8 110A 83.8 93.4 108.3 101.9 109.6 77.2
23-Aug-88 75.2 110.1 83A 93,1 110.5 102.0 109.1 77.4
03-Nov-88 75.3 110.0 83.5 93.3 108.1 102.6 109.2 76.9
Q9..Mar-89 73.0 110.1 83.8 93.8 108.7 102.5 109.5 77.4
21-Jun-89 76.1 110.3 83.7 93.2 108.1 102.5 109.2
01-Sep-B9 75.6 110.0 85.7 93.3 108.2 102.6 109.4
15-Nov-89 75.8 110.1 83.7 93.1 108.3 102,5 109.5 105.2 107.67
16-Feb-90 75.81 110.01 83.64 93.11 108.14 102.52 109.45 105.34 107.47
08-May~90 75.5 109.8 83.6 92.9 108.1 102.2 109.5 105.44 107A
07-Aug-90 75.0 110.0 83.9 92.9 108.2 102.6 109.4 105.47 107.59
13-Nov-90 75.8 109.8 84.2 92.8 109.0 102.5 109,0 105 107.7
27-Feb-91 75.6 110.1 83.7 92.5 108.1 102.1 109.2 105.37 108.45
21~May-91 75.5 110.0 83.7 92.4 108.3 102.5 109.6 105.4 107.56
24-Sep-91 75.0 110.3 84.0 92.6 108.5 102.6 109.7 105.46 107.62
03-Dec-91 75.7 110A 83.9 92.5 108.5 102.5 109.7 105,6 107.76
17-Mar-92 75.7 110.0 83.8 92.2 108.2 101.9 109.4 105.25 107.71
11.Jun·92 75.7 110.2 83.7 92.5 108.5 102.3 109.5 105.29 107.52
03-Sep-92 75.2 110.1 83.7 92A '108A 102.2 109.5 105.43 107.71
19-Nov-92 75.7 110.0 83.9 92A 108A 102A 109.6 105.58 107.58
1j
Ground Water OuaJily Data
Phreatic WM#1 'NM1I2 'NM#3 WM#4 'NM#5 ¥VM#11 VVM#12 WM#13 CULINARY WM#14 #15.f)Elevation 5648.22 5613.49 5555.32 5622.57 5609.33 5609.45 5611.08 5570.35 5596.39 5598.62
06-Sap-79 5529.57
07-Sap-79 5527.87
10-Sap-79 5539.72 5498.29 5527.97
14-Sap-79 5570.92 5503.89 5527.97
25-Sap-79 5571.62 5503.39 5471.92 5527.87
10-001-79 5566.52 5503.29 5470.42 5527.87
1<hJW1-OO 5572.22 5503.99 5472.12 5528.67
26-Fe!HlO 5574.22 5505.39 5473.42 5529.77
20-Mar-OO 5574.22 5505.59 5474.52 5530.17
3O-May-80 5572.32 5503.49 5472.22 5528.27 5497.13
17.Jun-80 5572.82 5503.49 5471.62 5528.27 5501.33
1EWul-80 5572.82 5503.49 5471.72 5528.27 5501.33
19-Aug-BO 5573.12 5503.49 5471.72 5528.37 5501.33
07-Sap-80 5572.02 5502.39 5471.62 5528.17 5500.93
"-Sap-80 5573.92 5502.99 5471.62 5528.27 5500.83
08-001-00 5572.02 5502.39 5470.92
27-Jan--82 5572.92 5503.49 5471.72 5528.27 5500.73 5S>5.45 5502.41 5492.35
26-Sep-84 5565.01 5501.20 5467.78 5526.13 5501.16 5506.08 5499.33 5493.06
06-Dec-84 5572.22 5503.07 5471.32 5528.57 5501.33 5505.45 5501.50 5497.35
21-Feb-85 5572.22 5503.16 5471.07 5528.40 5501.33 5505.45 5501.00 5497.10
2s.Jun..s5 5572.05 5502.99 5470.82 5528.57 5501.16 5505.53 5501.25 5497.18
3Q..Sep-85 5572.80 5503.49 5471.65 5529.15 5501.83 5506.53 5502.25 5493.35
31-001-85 5573.22 5502.66 5472.32
27~Nov-85 5572.30 5501.32
15-Dec-85 5572.72 5503.16 5471.65 5529.07 5501,25 5505,78 5501.41 5492.85
24-Jan..a6 5568.05 5503.49 5471.65
26-Feb-86 5572.39 5503.41 5471.57
2O-Mar..a6 5572.05 5502.99 5470.82 5528.57 5501.16 5505.53 5500.28 5497.10
27"Mar-86 5572.39 5503.16 5471.32 5506.45 5501.08 5493.35
Q8..Apr-86 5572.64 5503.57 5470.57
19-Jun..a.6 5572.55 5503.66 5471.90 5529.15 5501.41 5506.62 5501.83 5493.18•26.Jun--B6 5572.55 5503.66 5471.90 5529.15 5501.41 5506.62 5501.83 5493.18
04-Sep-86 5572.30 5503.41 5471.49 5529.07 5501.41 5506.45 5501.83 5493.27
10-Dec-86 5571.72 5502.19 5471.52 5526.87 5501.13 5506.25 5499.88 5491.05
20-FelHl7 5571.47 5502.24 5471.57 5526.90 5501.16 5506.28 5500.91 5491.02
28-Apr-87 5572.55 5503.32 5471.57 5529.40 5501.33 5507.03 5501.41 5492.35
14-Aug-87 5571.89 5502.41 5471.99 5529.32 5501.00 5506.87 5502.58 5492.35
2Q-.Nav-87 5572.22 5503.07 5471.40 5529.24 5501.00 5506.28 5501.41 5493.10
27..Jan-88 5572.30 5503.07 5471.49 5528.99 5501.00 5506.62 5501.41 5493.18
01-Jun..a8 5572.47 5503.12 5471.49 5529.15 5501.08 5507.55 5501.50 5493.18
23-Aug..aB 5573.05 5503.37 5471.90 5529.45 5498.83 5507.45 5502.00 5492.93
03-Nav-88 5572.12 5503.19 5471.52 5529.34 5501.24 5506.98 5501.85 5570.35
Q9.Mar-S9 5575.22 5503,39 5471.52 5528.77 5500.63 5506.95 5501.58
21-Jun-89 5572.12 5503.19 5471.62 5529.34 5501.24 5506.98 5501.85
01-Sap-89 5572.67 5503.45 5469.59 5529.30 5501.18 5506.85 5501.72
15-Nov-S9 5572.43 5503.37 5471.60 5529.45 5501.08 5506.95 5501.63 5491.19 5490.95
16-Feb-90 5572.41 5503.48 5471.68 5529.46 5501.19 5506.93 5501.63 5491.05 5491.15
08~May~90 5572.71 5503.69 5471.68 5529.67 5501.20 5507.29 5501.55 5490,95 5491.22
07-Aug-90 5573.19 5503.48 5471.45 5529.64 5501.09 5506.89 5501.58 5490.92 5491.03
13-Nov~90 5572.42 5503.69 5471.12 5529.77 5500.33 5506.95 5502.08 5491.39 5490.92
27-Feb-91 5572.64 5503.42 5471.67 5530.10 5501.26 5507.39 5501.86 5491.02 5490.17
21-May-91 5572.77 5503.45 5471.58 5530.15 5501.03 5507.00 5501.52 5490.99 5491.06
24-Sap-91 5573.26 5503.19 5471.36 5529.97 5500.80 5506.89 5501.43 5490.93 5491.00
03-Dec-91 5572.52 5503.11 5471.42 5530.03 5500.84 5506.94 5501.36 5490.79 5490.86
17~Mar·92 5572.52 5503.47 5471.57 5530.37 5501.15 5507.53 5501.64 5491.14 5490.91
11-Jun-92 5572.52 5503.27 5471.64 5530.09 5500.86 5507.18 5501.55 5491.10 5491.10
03-Sap-92 5572.99 5503.40 5471.64 5530.14 5500.98 5507.27 5501.55 5490.96 5490.91
19-Nov-92 5572.55 5503.46 5471.48 5530.16 5500.89 5507.10 5501.44 5490.81 5491.04
u
Ground Waler Quality Data
Alkalinity
(mgil)
Dale
01-Nov-89
2O-Nov-89
15-Dec..a9
24-Jan~90
27-Feb-91
19-Nov~92
MW#1
260
271
258
MW#2
344
349
345
WM"'3
277
204
352
WM#4
347
384
350
WM#5 1Mv1#11 WM#12
326 316 346
322 301 342
314 304 324
300 300 319
303 301 296
322 329 334
WM#14 WM#15 Culinary
428 374 0
379 3S3 240
392 355
382 353
361 356 201
406 357 1a9
•
Ground Waler Ouality Dala
Ammonia
(mg;1)MW#1 MW#2 WM""WM#4 'NM'S MA#11 1MA#12 WM#14 WM.1S Culinary
Date
a1·l\Iov-89 0.7 0.6 0.2 0.1 0.1
2O-Nov-89 0.5 0.009 0.009 0.7 0.7 0.6 0.1 0.009 0.2 0.2
15-Dec-89 0.7 0.6 0.1 0.1 0.1
24-Jan-90 0.5 0.5 0.09 0.09 0.09
Ground WaJer OJaJrly Data
"
Cadmium
(m9~1
Dale
01-l'klv-89
2Q-.Nov-89
15-Dec-a9
24-Jan-90
24-Sep-9l
1?-Mar-92
l4-Sep-92
MW.,
0.0049
O.DOl
0.0009
0.0009
MW#2
0.0049
0.0009
0.0009
0.0009
WM#3
0.0049
0.0009
0.0009
0.0009
WM#4
0.0049
0.0009
0.0009
0.0009
WM.S
0.0049
0.0049
0.0049
0.0049
0.0009
0.0009
0.0009
W'M#11
0.0049
0.0049
0,007
O.DO?
0.0009
O.DOl
0.0009
WM#12
0.0049
0.0049
0.006
O.DO?
0.0009
0.001
0.0009
WM#14
0.0049
0.0049
0.0049
0.0049
0.0009
0.0009
0.0009
WM#lS
0.0049
0.0049
0.0049
0.0049
0.0009
0.0009
0.0009
Culinary
0.0049
0.0009
0.0009
0.0009
'j
Ground Willer Quality Data
Chromium
(mgil)MW#1 MW#2 WM#3 WM#4 WM#S 1NM#11 W1'vi#12 WM#14 WM#15 Culinary
Date
01~Nov-a9 0.009 0.009 0.009 0.009 0.009
2O-Nov-89 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009
15-Dec-89 0.009 0.009 0.009 0.009 0.009
24-Jan-90 0.009 0.009 0.009 0.009 0.009
..
Ground Water Quality Data
Cyanide
(mgil)MW#1 MW#2 WM#3 WM#4 WM#5 1Ntvt#11 WM#12 WM#14 WM#15 Culinary
Dale
01-NoIl-89 0.009 0.009 0.009 0.009 0.009
2O-Nov-89 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009
15-Dec-89 0.009 0.009 0.009 0.009 0.009
2<hJan-90 0.009 0.009 0.009 0.009 0.009
•
I)
Ground Waler Quality Dala
Mercury
(m9~1 MW#1 MW#2 WM#3 WM#4 WM#5 WM#11 Vv'M#12 WM#14 WM#15 Culinary
Dale
01-1'k>v-89 0.00019 O,CXXJ1 9 0.00019 0.00019 0.00019
2O-Nov-89 0.00019 0.00019 0.00019 0.00019 0.00019 0.00019 0.00019 0.00019 0.00019 0.00019
1&Dec-89 0.00019 0.00019 0.00019 0.00019 O,CXX>19
24-Jan-90 0.00019 0.00019 0.00019 0.00019 0.00019
Ground Water OJaJity Data
II
•
I)
Molybdenum
(mg")
Dale
01-Nov..ag
20-Nov-89
15-Dec..ag
2<hJan-90
24-Sej>-91
17-Mar·92
14-Sej>-92
MW#1
0.01
O,C)Ql
0.001
0.0009
MW#2
0.02
0.003
0.001
0.0009
'IIM#3
0.009
0.01
0.0009
0.0009
'IIM.4
0.02
0.014
0.0009
0.0009
'IIM.5
0.009
0.009
0.009
0.009
0.0009
0.0009
0.001
'IIM#11
0.009
0.009
0.009
0.009
0.0009
0.0009
0.001
'IVM#12
0.02
0.02
0.02
0.009
0.006
0.002
0.001
WM#14
0.02
0.02
0.02
0.009
0.025
0.003
0.002
WM#15 Culinary
0.04
0.009 0.009
0.03
0.01
0.001
0.003 0.001
0.0009 0.001
GroL!nd Water Quality Data
1)
•
u
Nickel
(m9~1
Dale
01~Nov-89
2Q..Nov-89
15-Dec-il9
24-J811-90
27-Feb-91
24-Sep-91
17-Mar-92
14-Sep-92
MW#1
0.009
0.02
0.009
0.009
0.0009
MW#2
0.009
0.06
0.Q1
0.Q1
0.0009
WM#3
0.05
0.1
0.02
0.01
0.019
WM#4
0.02
0.07
0.009
0.009
0.0009
WM#5
0.009
0.009
0.009
0.009
0.04
0.009
0.009
0.0009
1f'.I1...i#11
0.009
0.009
0.009
0.009
0.05
0.009
0.009
0.0009
WM#12
0.03
0.02
0.02
0.009
0.06
0.009
0.009
0.0009
WM#14
0.03
0.02
0.03
0.01
0.05
0.009
0.009
0.0009
WM#15
0.02
0.02
0.02
0.009
0.07
0.009
0.009
0.0009
Culinary
0.009
0.01
0.009
0.009
0.0009
•
u
Ground Water OJaJily Dal:a
Vanadium
(m9~)MW#1 MW#2 WM/I;)WM#4 WM#5 Vv'M#11 WM#12 WM#14 WM#15 Culinary
Dale
01*Nov--8g 0.009 0.009 0.009 0.009 0.009
2O-Nov-B9 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.03 0.04
15-Dec-a9 0.009 0.009 0.009 0.009 0.01
24-Jan-90 0.009 0.009 0.009 0.009 0.009
•
1..)
Ground Waler Ouality Dala
Thallium
(mgA)MWt.l1 MW#2 WM#3 WM#4 WM#5 WM#11 VVM#12 WM#14 WM#15 Culinary
Data
01-Nov-89 0.009 0.009 0.009 0.009 0.009
2o-Nov-S9 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009
15-Dec-a9 0.009 0.009 0.009 0.009 0.009
24.Jan~90 0.009 0.009 0.009 0.009 0.009
Ground Water Quality Data
Gross Alpha
Dissolved
(pC~)
Dale
01-Nov-89
2O-Nov-89
15-0ec-89
24-Jan-90
27-Fel:r91
24-Sep-91
17-Mar-92
03-Sep-92
MW#1
6.3
o
oo
5
MW#2
39
4
21
67
36
WM#3 YVM#4
65 4
o 10
76 2
38 31
34 5
YVM#5 1MA#11 WM#12
7 42 47
8 17 27
7 13 62
o 0 16
15 17 24
5 5 27
12 10 0
10 0 10
WM#14 WM#15 Culinary
53 89
68 81 1.9
67 90
4<l 68
48 19 0.1
62 24 5.9
82 47 0.2
48 27 0
Ground Water OJalify Dala
Gross Beta
Dissolved
(pCiII)
Date
01*Nov-S9
2O-Nov-89
15-Dec-89
24-Jarr90
27-Feb-91
24-S<>p-91
17-Mar-92
03-S<>p-92
MW#1
11
7.1
15
20
12
MW#2 WM#3 WM#4
31 50 15
21 31 13
21 63 40
28 42 22
58 60 10
12 21 30
18 7 34
19 16 44
13 10 29
6.3 8.3 26
17 18 25
13 16 25
10 14 38
WM#14 WM#15 Culinary
43 55
40 29 6.7
37 51
37 41
25 18
33 42 5.6
56 29 4.2
67 39 4.2
'.
I.)
Ground Water QuaJily Data
Methylene
Chloride
(lJ9I1)MW#1 MW#2 WM#3 WM#4 WM#5 WM#ll Vv'M#12 WM#14 WM#15 Culinary
Dale
01·Nov-S9 4.9 4.9 4.9 4.9 4.9
2Q..Nov-89 4.9 4.9 4.9 4.9 4.9 4.9 4.9 4.9 4.9 130
15-Dec-89 4.9 4.9 4.9 4.9 4.9
24-Jan-90 4.9 4.9 4.9 4.9 4.9
•
1)
Ground Water Ouality Data
Acetone
(ugA)MW#1 MW#2 WM#3 WM#4 WM#5 WM#11 WM#12 WM#14 WM#15 Culinary
Dale
01~Nov-89 99 99 99 99 99
2O-Nov-89 99 99 99 99 99 99 99 99 99 99
15-Dec-a9 9.9 9.9 9.9 9.9 9.9
24-Jan~90 9.9 9.9 9.9 9.9 9.9
1)
Ground WaterQuality Daia.
Carlx,"
msuHide
(ugJ1)MW#1 MW#2 WM#3 WM#4 WM#5 WM#ii WM#12 WM#14 WM#i5 Culinary
Dale
01~NoV--89 4.9 4.9 4.9 4.9 4.9
2Q...Nov--8g 4.9 4.9 4.9 4.9 4.9 4.9 4.9 4.9 4.9 4.9
i5-Dee-89 4.9 4.9 4.9 4.9 4.9
24-Jan-90 4.9 4.9 4.9 4.9 4.9
•
lj
Ground Waler Quality Dala
Chloroform
(u9'11 MW#1 MW#2 WM#3 WM#4 WM#5 Vfl.A#11 VVM#12 WM#14 WM#15 Culinary
Dale
01-Nov-S9 4.9 4.9 4.9 4.9 4.9
2O-Nov-89 4.9 4.9 4.9 4.9 4.9 4.9 4.9 4.9 4.9 4.9
15-Dec-89 4.9 4.9 4.9 4.9 4.9
24-Jan~9Q 4.9 4.9 4.9 4.9 4.9
Ground WaJer OJaHty Data
2·8utanone..~(ug;1)MW#1 MW#2 WM#3 WM#4 WM#S WM#l1 1f.IM#12 WM#14 WM#1S Culinary
Dale
01·Nov-89 99 99 99 99 99
2O-Nov-a9 99 99 99 99 99 99 99 99 99 99
15-Dec-a9 9.9 9.9 9.9 9.9 9.9
2<hJan-90 9.9 9.9 9.9 9.9 9.9
u
Ground Water Ouality Data
Beryllium
0 (mgJI)MW#1 MW#2 WM#3 WM#4 WM#5 WM#11 YVrv1#12 WM#14 WM#15 Culinary
Dale
24-Sep-91 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009
17-Mar-92 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009
03-Sep-92 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009
..
Ground Water Ouality Data
Cak:ium
~.(mg~)MW#1 MWII2 WM#3 WM#4 WM#5 VVM#11 WM#12 WM#14 WM#15 Culinary
Dale
03-S€p-92 126 306 377 377 110 34.5 488 467 359 47
14-Nov-92 152 334 437 424 132 198 504 474 431 49
•
u
•
1)
Ground Waler OJaJity Daia
Polassium
(mgA)MW#1 MWII2 WM#3 WM#4 WM#5 'NM#11 WNI#12 WM#14 WM#15 Culinary
Date
03-Sep-92 6.77 11.4 23.9 10.17 7.7 6.3 13.8 12 10.2 3.27
14-Nov-92 6.65 1225 24.3 10.6 7.65 10.55 13.25 11.5 10.1 3.15
•
Ground Water Qualily Data
Magnesium
(mgJI)MW#1 MW#2 WM#3 WM#4 WM#5 \¥M#11 VVM#12 WM/#14 WM#15 Culinary
Dale
Q3.Sep-92 60.5 105 252 192 42 12 231 161 166 23
14-Nov-92 63 104 244 185 43 73 224 157 172 21
..•
UMETCO MINERALS CORPORATION
White Mesa Mill
wi
200
180
160
140
'"120
0>E
Ul.g 100
~
-C0 80
60
40
20
0
+
!l
~.~/+\.-+/t r~..~\~/~+_+/+-+..._+-._.-.-+-+----+/+-.-.-.'+••/--;.-.,,\>.......+-+_~...-.\./..-,-,-..e-__!-+--~~t:\t~\V".\~YAf ~\-~__-~-.l-J.-"-~"-:-~~
fI <5 'd\,<"O----<f + \
•-\p ""
'Il'~~.-~;=,-rJ")1!J:~~.~ISO .~~-:~-,lIc !.~~!;::..~~C lJ LJ ~~'U U ~.olOD ';-'LJLJ-Lf 'eJUu-u 'LrLJ U ,
,I I ,
05/25/79 10106/80 02118/82 07/03/83 11/14/84 03/29/88 08/11/87 12/23/88 05/07/90 09/19/91
I •MW1 ---{]-MW2 --+--MW3 -----<>---MW4 --r--MW5 I
01/31/93
'---•..
UMETCO MINERALS CORPORATION
Wile Mesa Mill
180
160
140
i
l:Jo----u
,
~
,~
III
il\fto-o
,,/\!
~
6>---..,
I ~~+-.-+-+-~Jj \r~+-+-+~~~+-+-~+
~.-------.------.-..-.-----II-II-.-11-II-.---.~•..-.---11-_.-'.
+----=--------:-----+---+---f-\-------------.:~::::,,'lE'J,.--,---...-...-.~cA..-_--_I"'-?'i:
_J:'>.-,.A.A A
40
60
o
20
120
'§,
E 100
woii9 80
i3
02/18/82 07/03/83 11/14/84 03/29/86 08/11/87 12/23/88 05/07/90 09/19/91 01/31/931---MW11 -D--MW12 --+--MW13 --<>-Cui ..MW14 ----IS--MW1s1
\;•-.,
UMETCO MINERALS CORPORATION
WHITE MESA MILL
7000
6000
~
~;v+---.¥\/'/~~.~_~,~A._..A-",,,/,,\-r--~-..............-~V,.,
..~+-++-+,++.•-+•-.-./...-~+-+-.,---\/+-+--\¥.--+-.'\IL....__.....II~__._.-.£5.•-.-•.•/.•...I \,/II \Ir"\\~__••1\11If\
t\.o-
J<-"\-"1 ./1;fi ·'"50000>E
vio:::;a 4000
(j)
ow>--'g 3000
o
--'
i:'::2 2000
1000 /~~J..'J..~~-~\~/.~i ~
·':j.-'-J..--"'-'-l..-i..-"-'_4-"'-·A_'---~"'_r"'-"'-l.........~
1.
o
OS/25/79 10/06/80 02/18/82 07/03/83 11/14/84 03/29/86 08/11/87 12/23/88 05107190 09/19/91
I •MW2 --+--MW3 --+--MW4 ---0--MW5 ...MW1 I
01/31/93
..•'III
UMETCO MINERALS CORPORATION
WHITE MESA MILL
01/31/9307103/83 11/14/84 03/29/86 08/11/87 12123188 05/07/90 09/19/91
I •MW11 ----{}---MW12 --+-_.MW14 ----<>--MW15 ..Cui I
n.~Jl
()\\JlDn n n n n n n-v \/I u V V/~~~-~
+y~
\1 I •
-----.--.-----...-~-----.----.-.-..--.--..-.--.-..--.-.-.-.
•
~~....-~A'_A
A A________-----'".~--...,
A-J!y-A-..._____._A-J.-A-A-..l..,,
I T ,,
6000
7000
1000
o
02118/82
§>5000
<Iio::i~4000
ow>-'oZJ 3000
15
-';::R2000
•
9000
8000
7000
6000
•
UMETCO MINERALS CORPORATION
WHITE MESA MILL
I "I j \
wJ
"D-nr-O--!:}-{]O--D--{]I ~~~_~
~~~~~+-+A U=~~I O~:d "-l-~-H,"-.A-*-~-~rH-+~u-F:;::::''$.i~--.-.-..-.-.-'""j:tr--1I_.....·._..=-II·..·.-..-",_..~~:,==,7,:::-~:.]_
-&-:,~~~~~~~~~~~~~~~-J
J.--"""~.MJJ-""'-..--"'-..-.._~..-..-j.-~-..-..-j.......-..-..-A~..--...-..-..-..,,-,,-,,-,-,,-,,-,,-"-"--,l-j.Y
~E 5000
w~4000
(/)
3000
2000
1000
o I , ,
OS/25179 10/06/80 02/18/82 07/03/83 11/14/84 03/29/86 08/11/87 12/23/88 05/07/90 09/19/911----MW2 --0----MW3 --+--MW4 -0--MW5 --j.---MWl I 01/31/93
Iv -.-..J
UMETCO MINERALS CORPORATION
WHITE MESA MILL
9000
8000
7000
6000
"a,
E 5000
W!;;:
~4000
Ul
01/31/9307/03/8311/14/84 03/29/86 08/11/87 12/23/88 05/07/90 09/19/91
I •MW11 ---D---MW12 --+--MW14 -<:>--MW15 --"--Cul I
~-D-~~-D ~_""~~~¥~-+~/.~t:1 -+'
+
I ••••.=-~~.---....-IF.•.•----....-.-R--.=IF.~...___I
I ..4 b4 ..I ~A-=i'-.,.........~...."l"-~'"+..*-.o
02/18/82
2000
3000
1000
~..-'fIIfIi
UMETCO MINERALS CORPORATION
WHITE MESA MILL
1.6E-07
01/31/9302118/82 07103/83 11/14/84 03/29/86 08/11/87 12123188 05107/90 09/19/91
I •MW2 --0-MW3 --+--MW4 ~MW5 --,l---MW1 I
-I--
:;J
~CJ q 1\~0 nOn
:\[[jtrr1_.~_fi:.::i?~0
'\~-_~~~.-4.h--D;;:_.........w"
1.4E-07
2.0E-08
1.2E-07
4.0E-08
O.OE+OO
10106/80
1.0E-07
~0::>
<i 8.0E-08510z:J 6.0E-08
11/14/84 03/29/86 08/11/87 12123188 05/07/90 09/19/91
1----MW11 -D---MW12 --+--MW14 ~MW15 •Cui I
~
2.00E-07
1.80E-07
1.80E-07
1AOE-07
E 1.20E-07
~0
"iii 1.00E-07
"1iiz::'l 8.00E-08
6.00E-08
4.00E-08
2.00E-08
O.OOE+OO
07103/83
-""a\\."'Jn Ik~-,
•
UMETCO MINERALS CORPORATION
WHITE MESA MILL
Q
~-./~"+
~~'J v
~~~*I·..........--_.
....
~
01/31/93
~
1 6
14
•
UMETCO MINERALS CORPORATION
WHITE MESA MILL
+
-~
12
10
60-
W 8NN
'"CC
6
4
/,
"~
\I
1~I~~~+-..~~.~~~_~A2
o I I ~I I
05/25/79 10106/80 02/18/82 07/03/83 11/14/84 03/29/86 08/11/87 12/23/88 05/07190 09/19/91 01/31/93
I •MW1 -----0-MW2 --+--MW3 -----<)---MW4 --~--MW5 -tr--SerieS61
4;;
20
18
16
14
'"12
0"-
CD 10'"'"'"0:8
6
4
2
0
•
UMETCO MINERALS CORPORATION
WHITE MESA MILL
..-
/~
11\\
I ~
p~~~~~~~~--n ~
I ,.-4i
--'"-.
02/18/8207/03/83 11/14/8403/29/8608/11/8712/23/8805107190 09119/91 01/31/931----MWll --[J--MW12 --+--Cui ----<>-----MW14 --0&--MW15 .,-:':SerieS61
..•....
UMETCO MINERALS CORPORATION
White Mesa Mill
01/31/9310/06/80 02118/82 07/03/83 11/14/84 03/29/86 08/11/87 12/23/88 05/07/90 09/19/91
I •MW1 --0-----MW2 ~-+~-MW3 -------------<>MW4 ...MW5 I
v......~,.•-.-..,...••-•.••-.-IIJ.-•.•~.•.•-•.•-.-.-•.•-••-.-.
•
~~OO ~~0 ~
lplfllJ.lll ~-E-.:r...kA..--'J!J~1O--n-J ס-סoo-It.JA..-::::::.:-...-:~_k::"A:~"=...---..I.:_:.l :i..7~
U .I..y
\A'~+-/.-+-.-....'""_...-.-•.•-+-•.•-.-....-.-,/.~.-.-.-.-.-.-•.•-..-...
-+
,,5460.00
OS/25!79
5480.00
5500.00
5580.00
5540.00
5560.00
""C-o~>iIi 5520.00
<J~
l".cn..
~•..,,;
UMETCO MINERALS CORPORATION
WHITE MESA MILL
5508.00
01/31/9302118/82 07103/83 11/14/84 03/29/86 08/11/87 12/23/88 05/07/90 09/19/91
I •MW11 -[}----MW12 --+--MW14 --------<>-----MW15 I
~,I ••-.;--V/-••-.-II-•.•-~.?--..?...
•J ••
0..
~n K
~D~\I OO-Ci
L.r ""
n ~uGD
~L.r
.._.....----
,
•~+
,
v -,.~~
,5490.00
10106/80
5492.00
5494.00
5504.00
5496.00
5506.00
5502.00
'"c
,g 550000'".>CDill
g 5498.00'"1Il.c<l.
--lIo..
'llIIIlJ"-~
UMETCO MINERALS CORPORATION
WHITE MESA MILL
1000
01/31/93
.---.-•..---.---.
'.I.~,..Y"-~~
.-.-
~~y
.-.-.-.-
(v·~+----\j-i 'vi I t_\+i~+~+I
,++-+/""-A IV\/+
+
.+,
10106/80 02118/82 07103/83 11/14/84 03/29/86 08/11/87 12/23/88 05107190 09/19/91
I •MW2 -------0--MW3 ----+----MW4 ---<)---MW5 -----MW1 I
.)II/-a-....
•-:~~=~~~~=;;====::\~II==~~~~=~~~~==~::~=:~~~~=:-',-I
I I II ""~/"/"'//I'"II ~~~;::;;D Ir:4._!if "',-,;;;Q--Q r I I \7ft IT /=u===1 I
o
05/25(/9
700
900
400
500
800
300
100
200
'"600
E
:i
:::Joa(J)
-..
UMETCO MINERALS CORPORATION
WHITE MESA MILL
;j
07103/83 11/14/84 03/29/86 08/11/87 12123188 05/07/90 09/19/91
I •MW11 ---D--MW12 --+--MW14 -<>---MW15 --.l--CuI I
1000
900
800
700
'"600
a>E
:,;500::J00(j)400
300
200
100
0
02118/82
~.l-,l.~
•....""~
~-J.",,"--.l
01/31/93
--t..,•;:J
UMETCO MINERALS CORPORATION
While Mesa Mill
01/31/9303/29/86 08/11/87 12123/88 05/07/90 09/19/91
\
\
~~
~N4 r-___4_______/4~-4
1/1/\V~--
4
\
o ~~~~-------.\VI \~~..J)
~o
11/14/84
0.01
0.015
0.05
0.04
0.02
0.045
0.03
0.035
0.005
""g'
.20.025c<D~«
1-----MW11 --D--MW12 --+--MW14 -<:>--MW15 --4--Cul I
••~
UMETCO MINERALS CORPORATION
While Mesa Mill
0.05
01/31/9310106/80 02/18/82 07103/83 11/14/84 03/29/86 08/11/87 12/23/88 05/07/90 09/19/91
I •MWl --{]-MW2 _....•--MW3 -<>-----MW4 --j,--MWS I
•
•
J f
0 /;~
1/)r\
I-
"~
~,i\~\?
.J
721 /.\t
,"-,I/~g ~~'=-~j 0,,..\.~~o
05/25179
0.01
0.015
0.02
0.035
0.045
0.04
0.03
0.005
""g'
.2 0.025c<Di'!<:
.,
800 -
700
600
500
"E
::;400::J
Cio(j)
300
200
100
•
UMETCO MINERALS CORPORATION
WHITE MESA MILL
~~~
-----~~'-------------.--+--++~.-----------+--+
+
___-----------.....:A._~...---------.a--..-_......---.---..---.
..J
o I Ir-----r---I ,II------,
10/22/79 12/11/79 01/30/80 03/20/80 05/09/80 06/28/80 08/17/80 10/06/80 11/25/80 01/14/81 03/05/81
1_--#2 -0--#3 --+--#4 --<>---#5 --..--#1:Baseline I
I~J
I
It+
---'//
I U
I ...
\I i /~:I~A
11\1//\I,?\~V~1.V \f\'/\.1;.,'"~~~"lA~N~~f
\.,
9
8
7
6
S0 5n-
o
'".6 40-
3
2
o
OS/25179
e
UMETCO MINERALS CORPORATION
WHITE MESA MILL
10/06/80 02118/82 07/03/83 11/14/84 03/29/86 08/11/87 12/23/88 05/07/90 09/19/911-----MW1 -{}--MW2 --+--MW3 -<>--MW4 ----MW51
..
01/31/93
~-•~
UMETCO MINERALS CORPORATION
WHITE MESA MILL
01/31/9307/03/83 11/14/84 03/29/86 08/11/87 12/23/88 05/07/90 09/19/91
[•MW11 ---{}-----MW12 --+--MW14 ---<>-MW15 --.--Cul [
j
\\
\\!
\'/
-\\/--
\\
\p ~
\\~/•A./rr~_V,.\VIii·~~~
,o
02/18/82
9
8
7
6
s0 5
0-
ei
~
N.6 4CL
3
2
~..
9
8.5
8
I
Qg 7.5
wu:
7
6.5
6
OS/25/79
•
UMETCO MINERALS CORPORATION
WHITE MESA MILL
10/06/80 02118/82 07103/83 11/14/84 03/29/86 08/11/87 12/23/88 05/07/90 09/19/91
I •MW2 --[}-MW3 --+--MW4 -<>--MW5 k MW1 I
~
01/31/93
--Jil..
~
9
8.5
8
I0-
g 7.5
wu:::
7
6.5
•
UMETCO MINERALS CORPORATION
WHITE MESA MILL
I '"I
I '..;..[--------
~
6
02118/82 07/03/83 11/14/84 03/29/86 08/11/87 12123/88 05/07/90 09/19/91
1--If---MW11 ---[}---MW12 --+--MW14 --<)--MW15 --"'--Cul I
01/31/93
--->...,•.-..;
UMETCO MINERALS CORPORATION
WHITE MESA MILL
0.1
0.09
0.08
0.07
I I--+\i~-~~~~-~~-
I J -t I I
10106/80 02118/82 07103/83 11/14184 03/29/86 08/11/87 12123188 05/07/90 09/19/91
I --II--MW1 --0-MW2 --+--MW3 ---<r-MW4 ...MW51
~
01/31/93
I
~
r--~I
TI /I \\\
I~\/I !~~
If~W~\l ~
~.~ll)·~..0.
•
~s~~\
,.I "l i i
1~J\~~~I _
Q?/\
o
05/25179
0.03
0.02
0.01
0.06~
E 005".·c
<D~0.04
<;;•.....,
UMETCO MINERALS CORPORATION
WHITE MESA MILL
01/31/9303/29/86 08/11/87 12/23/88 05/07/90 09/19/91
•
\ n
/\\/\I~
m r.l r:i.l r.l ~V\i I \-r.~-------
Io
11/14/84
0.07
0.08
0.05
0.02
0.06
0.03
0.01
g
~0.04
c
'"~
!--_--MW11 -....--o-MW12 --+--MW14 -<>---MW15 --"--Cul I
.,•
UMETCO MINERALS CORPORATION
WHITE MESA MILL
.,
10
9
8
7
6
""i:30.
0 S'"N.Cof--4
3
2
!'I
7\
1 ~JJ H 1
10/08/80 02118/82 07/03/83 11/14/84 03/29/86 08/11/87 12/23/88 OS/07/90 09/19/91
I •MW1 ---{}-MW2 --+--MW3 -<>---MW4 ----MWSI
o
OS/2S/79
.·\}!\~L~·-·-·
"'->'
~/~
~v J
,A -
01/31/93
(
\
\~\
f\11
L~.~\'\
L ~"--cl\~~~~'co -¥~-nI
~..
10
9
8
7
6s0C>-
o 5C')
N.cf-4
3
2
o
02116/82
*'
UMETCO MINERALS CORPORATION
WHITE MESA MILL
07/03/83 11/14/84 03/29/86 08/11/87 12/23/88 05/07/90 09/19/91
I •MW11 -0--MW12 --+--MW14 ------<>--MW15 --...-----Cui I
.;}
01/31/93
t;;•...
.,)
UMETCO MINERALS CORPORATION
WHITE MESA MILL
6000
-1li,",
~~\_/h-k-H-\(r---"'-...
-y------II
'"\"'~\v.~~~\-..-.:~
5000 I {I ':1n1 l.-.J \l \--------o--f \l ....---tJ /\I
2000
1000
4000
U>o.cE"'"g 3000
oj
13""0c:oo
o
OS/25/79 10/06/80 02118/82 07/03/83 11/14/84 03/29/86 08/11/87 12123/88 05/07/90 09/19/91
I ----MW2 --D-MW3 --+--MW4 --0---MW5 •MW1 I
01/31/93
-.•.,
UMETCO MINERALS CORPORATION
WHITE MESA MILL
6000
5000
~-_"'-J."...-..::1.--"'_.6._"'_'"
.~+-.-.~
'"/,/\--k---I.\~
...--------.
~~"'''''~--.t.-----/--/
4000
2000
1000
;g
~
"g 3000
'"13""0coo
o
02/18/82 07/03/83 11/14/84 03/29/86 08/11/87 12123/88 05/07/90 09/19/91
I •MW11 ----[}----MW12 --+--MW14 -----<>---MW15 ..Cui I
01/31/93
4;;•.....
UMETCO MINERALS CORPORATION
WHITE MESA MILL
0.05
t:
~\
'r1i
II \
/~\
/!~\I
A<-A<A<-A<//~~\\/\1.1f A<~A<1.A<.l.
/~//\\~~
~~"'1 /"'-~~.~..t 1 ~::t::~,,o
01/2?/87 08/11/87 02127/88 09/14/88 04/02189 10/19/89 05/07/90 11/23/90 06/11/91 12/28/91 07/15/921---MWl -D--MW2 --+--MW3 ----<>--MW4 ._--A<--NRC Limit I
0.03
0.04
0.01
0.02
0.045
0.035
0.015
0.005
""§'
.2 0.025c:
Q)~«
f)
APPENDIX E
STATISTICAL ANALYSES
1)
Basic Data For White Mesa Monotor Wells
White Mesa Project
San Juan County,Utah
Water Level Measuring Point
Date Depth Elevation Above LSD Elev.
Well Name Datelnstalled Total Depth Periorations (It)(It-MSL)(It)(It -MSl)
WMMW-1 Sep-79 117'92'-112'19/11/92 75.45 5572.77 2.0 5648.22
WMMW-2 Sep-79 12S.S'S5'-125'19/11/92 110.06 5503.43 1.S 5613.49
WMMW-3 Sep-79 9S'67'-87'19/11/92 83.74 5471.58 2.0 5555.32
WMMW-4 Sep-79 123.6'92'-112'19/11/92 92.42 5530.15 1.6 5622.57
WMMW-5 May-80 136'95.5'-133.5'19/11/92 108.32 0.6 5609.33
WMMW-6 May-80 This well was destroyed in March 1993 during construction of Cell 3
WMMW-7 May-80 This well was destroyed in March 1993 during construction of Cell 3
WMMW-S May-SO This well was destroyed In March 1993 during construction of Cell 3
WMMW-11 Oct-82 135'90.7'-130.4'19/11/92 102.53 5508.55 2.4 5611.08
WMMW-12 Oct-82 130.3'S4'-124'19/11/92 109.68 5499.77 0.9 5609.45
WMMW-13 Oct-82 116.5'This well was destroyed in during construction of Cell 4A
WMMW-14 Sep-89 129.1'90'-120'19/11/92 105.34 5491.05 0.0 5596.39
WMMW-15 Sep-89 138'99'-129'19/11/92 108.28 5490.34 0.8 5598_62
WMMW-16 Dec-92 91.5'78.5'-88.5'7/12/92 Dry 1.5
WMMW-17 Dec-92 110'90'-100'11/30/92 87.46 1.5
WMMW-18 Dec-92 148.5'103.5'-133.5'11/30/92 92.11 1.5
WMMW-19 Dec-92 149'101'-131'10/12/92 85.00 1.5
#9-1 May-SO 33.5'10'-30'3/4/91 Dry 1.8 5622.83
#9-2 May-80 62.7'39.7-59.7 3/4/91 Dry 2 5622.58
#10-2 May-SO 33.5'11.3-31.3 3/4/91 Dry 2 5633.58
#10-2 May-SO 62.2'39.2-59.2 3/4/91 Dry 2.1 5633.39
..-..,•
Chlorides-~T"Test
Monitor WefJ-MW-1
~
Date Data set 1 Date Data set 2
I-Test:Two-Sample Assuming Equal Variances
Data set 1 Data 59t 2
30-Noy-80
31-0ec-80
31..Jan-81
28-Feb-81
31-Mar-81
30-Apr-81
30-May-81
30.Jun-81
31-Aug-81
31-0ec-81
12
13
15
14
14
13
14
12
14
15
07-Aug-90
13-Nov-90
27-Feb-91
21-May-91
24-Sap-91
03-0ac-91
17-Mar-92
l1-Jun-92
03-Sap-92
19-NoY-92
Data set 1
Mean
Standard Error
Median
Mode
Standard Deviation
Variance
Kurtosis
Skewness
Range
MinImum
Maximum
Sum
Count
11.0
12.0
12.0
12.0
11.0
13.0
13.0
10.0
11
13.0
13.60
0.34
14.00
14.00
1.07
1.16
-0.88
.Q.32
3_00
12.00
15.00
136.00
10
Mean
Variance
Observations
Pooled Variance
Hypothesized Mean Differenc
df
1
peT-<=1)one-tail
t Critical one-tail
peT-<=I)two-tail
t Critical fINo-tall
Data set 2
Mean
Standard Error
Median
Mode
Standard Deviation
Variance
Kurtosis
Skewness
Range
MinImum
Maximum
Sum
Count
13_6 11.8
1 1
10 10
1.11
0_00
18.00
3.82
0_00
1.73
0.00
2.10
1(80
0.33
12_00
11.00
1.03
1.07
.Q.90
-0.27
3.00
10.00
13.00
118.00
10
"._.-•
U-nat-~rTest
Monitor Wall-MW-t
~
Data Data sat 1 Data Data sat 2
t-Test:Two-Sample Assuming Equal Variances
Data sat 1 Data sat 2
30-Sap-81
31-0ae-81
31-Mar-82
30-Jun-82
30-Sap-82
31-0ae-82
3t-Mar-a3
30-Jun-83
30-Sep-83
31-Dec-83
2_lE-09
6.5E-tO
6_5E-l0
lAE-09
6.8E-l0
6.8E-l0
lAE-09
6.lE-l0
2_3E-09
2_3E-09
16-Aug-90
13-Nov-90
2l-Feb-91
21-May-91
24-Sap-91
03-0ae-91
tl-Mar-92
l1-Jun-92
03-Sep-92
19-Nov-92
Data set 1
Mean
Standard Error
Median
Mode
Standard Deviation
Variance
Kurtosis
Skewness
Range
Minimum
Maximum
Sum
Count
4_6lE-l0
5_00E-l0
2.20E-l0
9_10E-l0
8-20E-l0
4.30E-1O
4.54E-tO
2_l6E-09
2_03E-09
5A2E-l0
1.94E-09
6.59E-l0
1.02E-09
6-50E-l0
2_0aE-09
4_35E-18
6.10E+00
2.35E+00
6-75E-09
6.50E-1O
l.40E-09
1.94E-08
10
Mean
Variance
Observations
Pooled Variance
Hypothesized Mean Differenc
df
1
PiT<=1)one-tail
t Critical one~talJ
P(T<=1)two-tail
t Critical two-tall
Data set 2
Mean
Standard Error
Median
Mode
Standard Deviation
Variance
Kurtosis
Skewness
Range
Minimum
Maximum
Sum
Count
1.938E~9 9_133E-l0
o 0
10 10
0.00
0.00
13.00
lA5
0.08
L73
0.17
2.10
9.13E-l0
2.60E-l0
5.21E-l0
#N/A
a.23E-1O
6.laE-19
2.13E+00
1.73E+00
2.54E-09
2.20E-l0
2.l6E-09
9.13E-09
10
--'"
,.J •
Sulfates-MrTest
Monitor Well-MW-1
'fill
Date Data sat 1 Oats Data set 2
I-Test:Two-Sample Assuming Equal Variances
Data set 1 Data set 2
31-Jan-BO
30-May-BO
30-Jun-80
31-Jul-BO
31-Aug-BO
30-Sep-BO
31-Oct-BO
30-Nov-BO
31-Dec-BO
31-Jan-B1
520
635
632
610
612
640
570
613
620
63B
07-Aug-90
13-Nov-90
27-Feb-91
21-May-91
24-Sep-91
03-Dec-91
17-Mar-92
11-Jun-92
03-Sep-92
19-Nov-92
Data set 1
Mean
Standard Error
Median
Mode
Standard Deviation
Variance
Kurtosis
Skewness
Range
Minimum
Maximum
Sum
Count
685
687
662
652
692
677
667
642
670
654
6.09E+02
1.18E+01
6.17E+02
#N/A
3.74E+Ol
1.40E+03
3.18E+00
-1.BOE+OO
1.20E+02
5.20E+02
6.40E+02
6.09E+03
10
Mean
Variance
Observations
Pooled Variance
Hypothesized Mean Difference
df
I
PIT<=1)one-Iall
t Critical one-tail
P(T<=1)two-tail
t Critical two-tail
Data set 2
Mean
Standard Error
Median
Mode
Standard Deviation
Variance
Kurtosis
Skewness
Range
Minimum
Maximum
Sum
Count
609 66B_8
1400 274
10 10
836.98
0.00
18.00
-4.62
0.00
1.73
0.00
2.10
6.69E+02
5.24E+00
6.69E+02
#N/A
1.66E+01
2.74E+02
-1.lOE+OO
-1.29E-Ol
5.00E+Ol
6.42E+02
6.92E+02
6.69E+03
10
---..;.,
Chloridas-~rTest
Monilor Weli-MW-3
.J
DatB Data SBt 1 DatB Data set 2
t-Test Two-Sample Assuming Equal Variances
Variable 1 Variab/8 2
30-Nov-B0
31-[1"c-80
31-Jan-81
28-Feb-81
31-Mar-81
30-Apr-81
30-May-81
30-Jun-Sl
31-Aug-81
31-Dec-81
64
65
71
65
66
66
110
69
67
66
07-Aug-90
13-Nov-90
27-F"b-91
21-May-91
24-Sep-91
03-Dec-91
17-Mar-92
l1-Jun·92
03-Sep-92
19-Nov-92
Data set 1
Mean
Standard Error
Median
ModB
Standard Deviation
Variance
Kurtosis
Skewness
Range
Minimum
Maximum
Sum
Count
65.0
68.0
68.0
56.0
60.0
64.0
64.0
76.0
56
63.0
70.90
4.39
66.00
66.00
13.89
192.99
9.40
3.04
46.00
64.00
110.00
709.00
10
Mean
Variance
Observations
Pooled Variance
Hypothesized Mean OiHerence
df
I
PiT<.1)one-Iail
t Critical one-tail
PiT<.1)two·tail
t Critical two-tail
Data set 2
Mean
Standard Error
Median
Mode
Standard Deviation
Variance
KurtosIs
Skewness
Range
Minimum
Maximum
Sum
Counl
70.9 64.2
193 33
10 10
112.81
0.00
18.00
1.41
0.09
1.73
0.18
2.10
64.20
1.81
64.00
68_00
5.71
32.62
1.02
0.66
20_00
56.00
76.00
642.00
10
~•
U-Nat-~T"T8st
Monitor Well-MW-3
~
Date Data set 1 Date Data set 1
t-Test:Two-Sample Assuming Equal VarlancBs
Data set 1 Data set 2
30-Sep-S1
31-Dec-Sl
31-Mar-82
30-Jun-S2
30-Sep-S2
31-Dee-S2
31-Mar-S3
30-Jun-S3
30-Sep-S3
31-Dee·83
2.4E-Q8
1.4E-08
2.7E-Q9
2.4E-QS
S.9E·09
2.5E·OS
1.0E-OS
2.0E-08
1.4E·OS
2.8E·OS
16-Aug-90
13-Nov-90
27-Feb-91
21-May-91
24-Sep-91
03-Dec-91
17-Mar·92
11-Jun-92
03-Sep-92
19-Nov-92
Data set 1
Mean
Standard Error
Median
Mode
Standard Deviation
Variance
Kurtosis
Skewness
Range
Minimum
Maximum
Sum
Count
1.67E-OS
1.60E-OS
S.00E-09
1.30E-OS
2.20E-OS
S.10E·09
4.53E·09
9.13E-09
1.9E-OS
1.12E·OS
1.71E·OS
2.64E-09
1.70E-OS
2.40E-08
8.36E-09
6.99E-17
-1.09E+00
-3.35E-01
2.53E-OS
2.70E-09
2.80E-OS
1.71E-07
10
Mean
VarIance
Observations
Pooled Variance
Hypothesized Mean Difference
df
1
P(T<=1)one-tail
t Critical one-tail
PIT<=1)two-tail
t Critical wo-tall
Data set 1
Mean
Standard Error
Median
Mode
Standard Deviation
Variance
Kurtosis
Skewness
Range
Minimum
Maximum
Sum
Count
1.706E-OS 1.277E-Q8
o 0
10 10
0.00
0.00
lS.00
1.35
0.10
1.73
0.19
2.10
1.28E-08
1.76E-09
1.21E·08
#N/A
5.56E-Q9
3.09E-17
-9.33E-Q1
2.46E-01
1.75E-Q8
4.53E-Q9
2.20E-Q8
1.28E-07
10
--"-....•
Sulfates--rTest
Monitor WelJ-MW-3
~
Date Data set 1
t-Test:
Date Data set 2
Paired Two-Sample for Means
Data set 1 Data set 2
1/30/80 2100
5/30/80 2430
6130180 2625
7/31/80 2450
8/31/80 2975
9/30/80 2800
10/31/80 3050
11/30/80 2750
12131/80 3068
1/31/81 3012
11/3/88 3410
3/9189 3410
6/21/89 3500
9/1/89 3500
11/15/89 2670
2/20190 3330
5/8190 3480
8/7190 3400
11/13190 3468
2/27191 2712
Data set 1
Mean
Variance
Observations
Pearson Correlation
Pooled Variance
Hypothesized Mean Differen
df
1
P(T<=1)one-tail
t Critical one-tail
P(T<=1)two·tall
t Critical two-tail
Data set 2
2726 3288
104184 101881
10 10
·0041
·42384.67
0.00
9.00
·3.30
0.00
1.83
0.01
2.26
Mean
Standard Em
Median
Mode
Standard De\
Variance
Kurtosis
Skewness
Range
Minimum
Maximum
Sum
Count
2726.00
102.07
2775.00
#N/A
322.78
104184.22
-0.27
-0.74
968.00
2100.00
3068.00
27260.00
10
Mean
Standard Error
Median
Mode
Standard Deviation
Variance
Kurtosis
Skewness
Range
Minimum
Maximum
Sum
Count
3288.00
100.94
3410.00
#N!A
319.19
101880.89
1.19
-1.67
830.00
2670.00
3500.00
32880.00
10
..•
Chlorides-"r"Test
Monitor Well-MW-5
.,
Oats Data set 1 Date Data set 2
!-Test:Two-Sample Assuming Equal Variances
Variable 1 Variable 2
30-Nav-80
31-Dee-80
3h1an-81
28-Feb-81
3t-Mar-8t
30-Apr-81
30-May-81
30-Jun-8t
31-Aug-81
31-Dee-81
64
65
71
65
66
66
110
69
67
66
07-Aug-90
13-Nov·90
27-Feb-91
21-May-9t
24-Sep-91
03-Dec-91
17-Mar-92
ll-Jun-92
03-Sep-92
19-Nov-92
Data set 1
Mean
Standard Error
Median
Mode
Standard Deviation
Variance
Kurtosis
Skewness
Range
Minimum
Maximum
Sum
Count
49
52
53
54
55
53
53
53
52
20
70_90
4_39
66_00
66_00
13_89
192_99
9040
3_04
46_00
64_00
110_00
709.00
10
Mean
Variance
Observations
Pooled Variance
Hypothesized Mean DiHerence
df
I
PiT<=1)one-tail
tCritical one-tail
PiT<=1)two-tail
t Critical two-tail
Dafa set 2
Mean
Standard Error
Median
Mode
Standard Deviation
Variance
Kurtosis
Skewness
Range
Minimum
Maximum
Sum
Count
70_9 4904
193 109
10 10
151.07
0_00
18_00
3_91
0_00
1.73
0_00
2.10
49040
3.30
53_00
53.00
10045
109_16
9.39
-3_03
35_00
20_00
55.00
494.00
10
~•
U-Nal-TTasl
Monitor Well-MW-5
rJ
Date Data sat t Date Data sat 2
t-Test:Two-Sample Assuming Equal Variances
Data sat 1 Data set 2
30-Sap-81
31-Dee-81
31-Mar-82
30-Jun-82
30-Sap-82
31-0ae-82
31-Mar-83
30-Jun-83
30-Sap-83
31-Dec-83
L4E-D8
3.0E-D9
6.8E-l0
2.7E-09
6.7E-l0
6.7E-l0
8_0E-l0
6.7E-l0
5.6E-09
6.8E-10
16-Aug-90
13-Nov-90
27-Fab-91
21-May-91
24-Sap-91
03-Dee-91
17-Mar-92
l1-Jun-92
03-Sap-92
19-Nov-92
Data set 1
Mean
Standard Error
Median
Mode
Standard Deviation
Variance
Kurtosis
Skewness
Range
Minimum
Maximum
Sum
Count
6_00E-l0
3.00E-l0
2.70E-1O
LlOE-09
8.00E-1O
5.30E-1O
L60E-09
2_00E-10
4_06E-09
6.llE-l0
2.90E-09
1.29E-09
7.40E-1O
6.70E-10
4_07E-09
1.65E-17
5_90E+OO
2_37E+OO
1-28E-08
6.70E-l0
1.35E-08
2_90E-08
10
Mean
Variance
Observations
Pooled Variance
Hypothesized Mean Difference
df
t
PIT<=1)ana-tail
t Critical one-tail
PiT<=t)two-tail
t Critical two-tall
Data set 2
Mean
Standard Error
Median
Mode
Standard Deviation
Variance
Kurtosis
Skewness
Range
Minimum
Maximum
Sum
Count
2.897E-09 LOI4E-09
o 0
10 10
0_00
0.00
18.00
L41
0.09
1.73
0_18
2.10
L01E-09
3.64E-l0
6.39E-l0
#N/A
1.15E-D9
L32E-18
6.53E+OO
2A5E+OO
3.86E-D9
2.00E-10
4.06E-09
L01 E-08
10
-.110.--tJ
Chlorides-MrTest
Monilor Well-MW-ll
~
!-Tesl:Two-Sample Assuming Equal Variances
Data set 1 Data set 2DateDataset1Dat9Dataset2
31-Mar-84 31.4 07-Aug-90 33.0
30--1un-84 32.0 13-Nov-90 34.0
30·Sep-84 33.9 27-Feb-91 31.0
31-Dee-84 31.9 21-May-91 30.0
31-Mar-8S 34.0 24-Sep-91 30.0
30-Jun-8S 31.0 03-Dee-91 31.0
30-Sep-8S 38.0 17-Mar-92 32.0
31-Dee·8S 71.0 l1-Jun-92 29.0
19-Jun-86 77.0 03-Sep·92 31
30-Jun-86 70.0 19-Nov-92 41.0
Data set 1
Mean
Variance
Observations
Pooled Variance
Hypothesized Mean Difference
dl
t
P(T<=t)one-tail
t Critical one-tail
PiT<=1)two-tail
t Critical mo-tail
Data set 2
45.016 32.2
371 12
10 10
191.46
0.00
18.00
2.07
0.03
1.73
0.05
2.10
Mean
Standard Error
Median
Mode
Standard Deviation
Variance
Kurtosis
Skewness
Range
Minimum
Maximum
Sum
Count
45.02
6.09
33.93
#N/A
19.27
371.19
-1.08
1.03
46.00
31.00
77.00
450.16
10
Mean
Standard Error
Median
Mode
Standard Deviation
Variance
Kurtosis
Skewness
Range
Minimum
Maximum
Sum
Count
32.20
1.08
31.00
31.00
3.43
11.73
5.44
2.17
12.00
29.00
41.00
322.00
10
~•
U-Nat-MITest
Monitor Well-MW-11
-..,;
Two-Sample Assuming Equal Variances
Data set 1 Data set 2
t-Test:
Date Data set 1 Date Data set 2
31~Mar~84 7.45E~09 07~Aug~90 4.67E~1O
30...1un-84 2.71 E~09 13-Nov-90 6.00E-1O
30-Sep·84 4.06E~10 27-Feb-91 2.00E-l0
31-Dec-84 1.76E~09 21-May-91 2.30E-1O
31~Mar-85 2.71E-l0 24-Sep-91 7.40E-l0
30-Jun-85 2.98E-l0 03-Dec-91 2.40E~10
30~Sep~B5 B.BOE-09 17-Mar-92 2.70E-09
31-Dec~B5 5.00E-l0 l1-Jun-92 2.00E~1O
i9-Jun-B6 1.70E-09 03-Sep~92 3.39E-D9
3D-Jun-B6 1.50E-09 19-Nov-92 3.18E-09
Data set 1
Mean
Variance
Observations
Pooled Variance
Hypothesized Mean Difference
df
1
P(T<=1)one-tail
t Critical one-tail
P(T<=1)two-tail
t Critical two-tail
Data set 2
2.54E·09 1.195E-09
o 0
10 10
0.00
0.00
18.00
1.27
0.11
1.73
0.22
2.10
Mean
Standard Error
Median
Mode
Standard Deviatlon
Variance
Kurtosis
Skewness
Range
Minimum
Maximum
Sum
Count
2.54E-09
9.70E~10
lo60E·09
#N/A
3.07E·09
9.40E-18
1.12E+00
1.54E+00
B.53E-09
2.71E~1O
B.80E-D9
2.54E·08
10
Mean
Standard Error
Median
Mode
Standard Deviation
Variance
Kurtosis
Skewness
Range
Minimum
Maximum
Sum
Count
1.19E-09
4.21 E-l0
5.34E-l0
2.00E-1O
1.33E·09
1.77E-18
~9.99E~01
lo02E+00
3.19E~09
2.00E-l0
3.39E-09
1.19E-08
10
..,•
Chlorides--rTest
MonilorWell·MW·12
wi
Date Data 59t 1 Date Data set 2
t-Test:Two-Sample Assuming Equal VarJances
Variable 1 Variable 2
31·060-82
25.Jan·83
30.Jun·83
31·060·83
31-Mar·84
30·Jun·84
30·Sep·84
31-060-84
31·Mar·85
30-Jun-85
57.4
70
80.5
65
64.1
65.0
64.6
67.4
67.0
62.0
07-Aug-90
13·Nov·90
27·Feb·91
21·May·91
24-Sep·91
03·060-91
17-Mar·92
11·Jun·92
03·Sep·92
19-Nov-92
Data set 1
Mean
Standard Error
Median
Mode
Standard Deviation
Variance
Kurtosis
Skewness
Range
Minimum
Maximum
Sum
Count
63.0
63.0
61.0
55.0
59.0
60.0
60.0
56.0
56
62.0
66.30
1.90
65.00
65.00
6.02
36.20
3.57
1.35
23.10
57.40
80.50
663.01
10
Mean
Variance
Observations
Poored Variance
Hypothesized Mean Difference
df
1
PIT<=1)one·tail
t Critical one-tail
P(T<=1)two-tail
1Critical two-tall
Data set 2
Mean
Standard Error
Median
Mode
Standard Deviation
Variance
Kurtosis
Skewness
Range
Minimum
Maximum
Sum
Count
66.301 59.5
36 9
10 10
22.46
0.00
18.00
3.21
0.00
1.73
0.00
2.10
59.50
0.93
60.00
63.00
2.95
8.72
·1.31
·0.39
8.00
55.00
63.00
595.00
10
.;•
U Nal-"T"T9St
Monitor Well-MW-12
..
Date Data set 1 Dat9 Data set 2
t-Test:Two-Sample AssumIng Equal Variances
Data set 1 Data set 2
31-Mar-B3
30-Jun-B3
30-Sep-B3
31-Dee-B3
31-Mar-84
30-Jun-B4
30-Sep-B4
31-Dee-B4
31-Mar-B5
30...Jun-85
5.0E-Q9
2.0E-Q9
1.1 E-QB
1.0E-QB
2.91 E-OB
1.B3E-OB
4.06E-IO
1.62E-09
4.74E-IO
6.BOE-09
07-Aug-90
13-Nov-90
27-Feb-91
21-May-91
24-Sep-91
03-Dee-91
17-Mar-92
l1-Jun-92
03-Sep-92
19-Nov-92
Data S9t 1
Mean
Standard Error
Median
Mode
Standard Deviation
Variance
Kurtosis
Skewness
Range
Minimum
Maximum
Sum
Count
1.07E-OB
1.00E-OB
B.BOE-09
1.00E-OB
1.10E-OB
6.BOE-09
1.0IE-OB
5.53E-09
1.29E-OB
1.39E-OB
B.47E-09
2.91 E-Q9
5.90E-09
#N/A
9.21 E-09
B.4BE-17
1.BIE+OO
1.44E+00
2.B7E·OB
4.06E-l0
2.9IE-OB
B.47E-OB
10
Mean
Variance
Observations
Pooled Variance
Hypothesized Mean Difference
df
I
PiT<ot)on9-tail
tCritical one-tall
PIT<01)two-lail
t Critical two-tail
Data S9t 2
Mean
Standard Error
Median
Mode
Standard Oevialion
Variance
Kurtosis
Skewness
Range
Minimum
Maximum
Sum
Count
B.47E-Q9 9.973E-Q9
o 0
10 10
0.00
0.00
IB.OO
-0.50
0.31
1.73
0_62
2.10
9.97E-09
7.94E-IO
1.01E-OB
1.00E-OB
2.51 E-Q9
6.31E-IB
7.B9E-02
-2.99E-Ql
B.37E-09
5.53E-Q9
1.39E-OB
9.97E-OB
10