Loading...
HomeMy WebLinkAboutDAQ-2024-0050441 DAQC-089-24 Site ID 13091 (B4) MEMORANDUM TO: STACK TEST FILE – LINDE GAS NORTH AMERICA, LLC – Hydrogen Gas Production THROUGH: Rik Ombach, Minor Source Oil and Gas Compliance Section Manager FROM: Paul Bushman, Environmental Scientist DATE: February 1, 2024 SUBJECT: Sources: Reformer Unit Contact: Michelle Fox: 801-389-7256 Location: 2351 North 1100 West, North Salt Lake, Davis County, Utah Test Contractor: TETCO Permit/AO#: DAQE-AN130910007-20 dated August 5, 2020 Action Code: TR Subject: STACK TEST REVIEW received January 31, 2024 On January 31, 2024, Utah Division of Air Quality (DAQ) received a test report for the Reformer Unit at Linde Gas North America, LLC, in Davis County, Utah. Testing was performed on August 29, 2023, to demonstrate compliance with the emission limits found in condition II.B.2.c of Approval Order DAQE-AN130910007-20. The calculated test results are: Source Test Date Pollutant Method Tester Results DAQ Results Limits Reformer Unit August 29, 2023 NOx 7E 8.54 lb/hr 8.598 lb/hr 8.94 lb/hr CO 10 0.22 lb/hr 0.217 lb/hr 4.92 lb/hr PM 5 0.72 lb/hr 0.7168 lb/hr 1.73 lb/hr SO2 6C 0.02 lb/hr 0.02 lb/hr Inventory use Purge Gas HHV 19 268.233 btu/scf N/A Condition II.B.2.a.1(c) H2S ASTM D1946-90 0.819 ppm N/A II.B.2.b.1(c) DEVIATIONS: None. CONCLUSION: The stack test report appears to be acceptable. RECOMMENDATION: The emissions from the Reformer Unit should be considered to have been in compliance with the emission limits of condition II.B.2.c. of the AO during testing. ATTACHMENTS: DAQ stack test review excel spreadsheets, Linde Gas stack test report. $1_RM 2, 2F, 2G, 2H, 3A, 6C, 7E, 10, _ 19 - RA (B_W(Modified Feb. 27, 2018) Reference Methods 2, 3A, 6C, 7E, 10, & 19 Source Information Company Name Linde Gas North America, LLC Company Contact:Michelle Fox Contact Phone No.801-389-7256 Stack Designation:Reformer Unit Test & Review Dates Test Date:8/29/2023 & Review Date: 2/1/2024 Observer:Unobserved Reviewer:Paul Bushman Emission Limits Emission Rates SO2 NOX CO SO2 NOX CO lbs./MMBtu lbs./hr. 1.0 8.94 4.92 0.02 8.598 0.217 ppm Percent %O2 Correction as a whole # Test Information Equivalent Diameter (in.)As ft^2 Y Dl H @ Cp Pbar Pq (static) Ps Stack Pressure 59.57 24.899 1.0030 0.84 25.72 -0.92 25.652353 Contractor Information Contact:Dean Kitchen Contracting Company: TETCO Address: 391 East 620 South, American Fork, UT 84003 Phone No.: 801-492-9106 Project No.: 8710 Division of Air Quality Instrumental Reference Methods - Gaseous Measurements Rectangular Method 19 - F factors for Coal, Oil, and Gas Fd Fw Fc dscf/MMBtu wscf/MMBtu scf/MMBtu Diluent F factor used O2 CO2 Anthracite 2 Bituminous 2 Lignite Natural Propane Butane 10100 COAL OIL GAS 9780 9860 9190 8710 8710 8710 10540 10640 11950 320 10610 10200 10390 1970 1800 1910 1420 1040 1190 1250 Wet CEM Correct For O2 CO2 Interference w/CO Yes Yes Yes $1_RM 2, 2F, 2G, 2H, 3A, 6C, 7E, 10, _ 19 - RA (B_W(Modified Feb. 27, 2018) Division of Air Quality NSPS Relative Accuracy Performance Specification Test - CEMS Certification Linde Gas North America, LLC Reformer Unit Average Emission Dry SO2 NOX CO lbs./MMBtu 0.000 0.031 0.001 Average % concentration lbs./hr.0.02 8.60 0.22 CO2 O2 ppm corrected for %O2 0.00 0.00 0.00 19.07 2.74 Run 1 Enter O2 or CO2 Dry SO2 NOX CO CO2 O2 O2 Atomic Weight 64 46 28 lbs./MMBtu (O2)6.61E-05 3.01E-02 4.71E-04 E=Cd x Fd x (20.9/(20.9-%O2d)) lbs./MMBtu (CO2)E=Cd x Fc x (100 / % CO2d) lbs./cu.ft 6.648E-09 3.026E-06 4.738E-08 lbs./hr.0.02 8.08 0.13 18.75 2.60 ppm corrected for %O2 0.00 0.00 0.00 18.75 2.69 Run 2 Dry SO2 NOX CO CO2 O2 Atomic Weight 64 46 28 lbs./MMBtu (O2)6.85E-05 3.06E-02 1.31E-03 E=Cd x Fd x (20.9/(20.9-%O2d)) lbs./MMBtu (CO2)E=Cd x Fc x (100 / % CO2d) lbs./cu.ft 6.814E-09 3.041E-06 1.306E-07 lbs./hr.0.02 8.55 0.37 19.27 2.80 ppm corrected for %O2 0.00 0.00 0.00 18.75 2.87 Raw Value Run 3 Dry SO2 NOX CO CO2 O2 Atomic Weight 64 46 28 lbs./MMBtu (O2)5.19E-05 3.13E-02 5.35E-04 E=Cd x Fd x (20.9/(20.9-%O2d)) lbs./MMBtu (CO2)E=Cd x Fc x (100 / % CO2d) lbs./cu.ft 5.152E-09 3.111E-06 5.306E-08 lbs./hr.0.02 9.17 0.16 19.21 2.83 ppm corrected for %O2 0.00 0.00 0.00 18.96 2.86 Raw Value Run 4 Dry SO2 NOX CO CO2 O2 Atomic Weight 64 46 28 lbs./MMBtu (O2)E=Cd x Fd x (20.9/(20.9-%O2d)) lbs./MMBtu (CO2)E=Cd x Fc x (100 / % CO2d) lbs./cu.ft lbs./hr. ppm corrected for %O2 Raw Value Run 5 Dry SO2 NOX CO CO2 O2 Atomic Weight 64 46 28 lbs./MMBtu (O2)E=Cd x Fd x (20.9/(20.9-%O2d)) lbs./MMBtu (CO2)E=Cd x Fc x (100 / % CO2d) lbs./cu.ft lbs./hr. ppm corrected for %O2 Raw Value Corrected For Cal. Drift Raw Value Corrected For Cal. Drift Corrected For Cal. Drift Corrected For Cal. Drift Corrected For Cal. Drift O2 CO2 Clear lbs./MMBTU $1_RM 2, 2F, 2G, 2H, 3A, 6C, 7E, 10, _ 19 - RA (B_W(Modified Feb. 27, 2018) Calibration Error Test Test Date August 29, 2023 O2 CS - Cal. Span 4.99 Units % Cylinder No. Expiration Date Cal. Gas CV- Certified Concentration CDir or CS - Measured Concentration Difference ACE Eq. 7E-1 Analyzer Cal. Error Status Low-level 0.00 0.01 0.01 0.20%Passed Cal. SG9102110ALB 06/08/25 Mid-level 2.48 2.50 0.02 0.40%Passed Cal. CC243835 11/30/29 High-level 4.99 5.05 0.06 1.20%Passed Cal. % of Span Sec. 8.2.1 Cal Gas Verification 0 to 20% of CS - Cal. Span Low-Level 0.00% 40 to 60% of Cal. Span Mid-level 49.70% 100% of Cal. Span High-level 100.00% Test Date August 29, 2023 CO2 CS - Cal. Span 20.23 Units % Cylinder No. Expiration Date Cal. Gas CV- Certified Concentration CDir or CS - Measured Concentration Difference ACE Eq. 7E-1 Analyzer Cal. Error Status Low-level 0.00 0.00 0.00 0.000%Passed Cal. CC457136 11/30/29 Mid-level 9.75 9.79 0.04 0.198%Passed Cal. EB0051440 06/05/26 High-level 20.23 19.95 0.28 1.384%Passed Cal. % of Span Sec. 8.2.1 Cal Gas Verification 0 to 20% of Cal. Span Low-Level 0.00% 40 to 60% of Cal. Span Mid-level 48.20% 100% of Cal. Span High-level 100.00% Test Date August 29, 2023 SO2 CS - Cal. Span 47.50 Units ppm Cylinder No. Expiration Date Cal. Gas CV- Certified Concentration CDir or CS - Measured Concentration Difference ACE Eq. 7E-1 Analyzer Cal. Error Status Low-level 0.00 0.20 0.20 0.421%Passed Cal. CC738122 04/28/25 Mid-level 23.60 23.50 0.10 0.211%Passed Cal. DT0036959 04/28/25 High-level 47.50 47.90 0.40 0.842%Passed Cal. % of Span Sec. 8.2.1 Cal Gas Verification 0 to 20% of Cal. Span Low-Level 0.00% 40 to 60% of Cal. Span Mid-level 49.68% 100% of Cal. Span High-level 100.00% Test Date August 29, 2023 NOx CS - Cal. Span 47.10 Units ppm Cylinder No. Expiration Date Cal. Gas CV- Certified Concentration CDir or CS - Measured Concentration Difference ACE Eq. 7E-1 Analyzer Cal. Error Status Low-level 0.00 0.20 0.20 0.425%Passed Cal. EB0141000 09/14/24 Mid-level 22.30 22.50 0.20 0.425%Passed Cal. CC121457 07/28/26 High-level 47.10 47.30 0.20 0.425%Passed Cal. % of Span Sec. 8.2.1 Cal Gas Verification 0 to 20% of Cal. Span Low-Level 0.00% 40 to 60% of Cal. Span Mid-level 47.35% 100% of Cal. Span High-level 100.00% Test Date August 29, 2023 CO 4.92 CS - Cal. Span 22.30 Units ppm Cylinder No. Expiration Date Cal. Gas CV- Certified Concentration CDir or CS - Measured Concentration Difference ACE Eq. 7E-1 Analyzer Cal. Error Status Low-level 0.00 0.10 0.10 0.448%Passed Cal. EB0141000 09/14/24 Mid-level 11.20 11.30 0.10 0.448%Passed Cal. CC3394 07/28/25 High-level 22.30 22.50 0.20 0.897%Passed Cal. % of Span Sec. 8.2.1 Cal Gas Verification 0 to 20% of Cal. Span Low-Level 0.00% 40 to 60% of Cal. Span Mid-level 50.22% 100% of Cal. Span High-level 100.00% Valid Cal Gas Valid Cal Gas Valid Cal Gas Valid Cal Gas Valid Cal Gas Valid Cal Gas Valid Cal Gas Valid Cal Gas Valid Cal Gas Valid Cal Gas $1_RM 2, 2F, 2G, 2H, 3A, 6C, 7E, 10, _ 19 - RA (B_W(Modified Feb. 27, 2018) Division of Air Quality Stack Test Review of Linde Gas North America, LLC SO2 NOX CO CO2 O2 Reformer Unit CS Calibration Span 47.50 47.10 22.30 20.23 4.99 Units ppm ppm ppm %%Unprotected CV - Cylinder Value:SO2 NOX CO CO2 O2 Low-Level 0.00 0.00 0.00 0.00 0.00 Mid-Level 23.60 22.30 11.20 9.75 2.48 High-Level 47.50 47.10 22.30 20.23 4.99 0 to 20% of Cal. Span 0.00%0.00%0.00%0.00%0.00% 40 to 60% of Cal. Span 49.7%47.3%50.2%48.2%49.7% 100% of Cal. Span 100.0%100.0%100.0%100.0%100.0% Cdir - Enter Actual Up-scale Cylinder Value Used To Correct Emission Concentration. CDir CMA 23.60 22.30 11.20 9.75 2.48 Calibration Error Test Cs - Measured Concentration SO2 NOX CO CO2 O2 Low-Level 0.20 0.20 0.10 0.00 0.01 Mid-Level 23.50 22.50 11.30 9.79 2.50 High-Level 47.90 47.30 22.50 19.95 5.05 Enter Up-scale Analyzer Response to be used during testing. ACE Eq. 7E-1 23.50 22.50 11.30 9.79 2.50 Low-Level 0.42%0.42%0.45%0.00%0.20% ppmdv Difference 0.2 0.2 0.1 0 0.01 Status Passed Cal. Passed Cal. Passed Cal. Passed Cal.Passed Cal. Mid-Level 0.21%0.42%0.45%0.20%0.40% ppmdv Difference 0.1 0.2 0.1 0.04 0.02 Status Passed Cal. Passed Cal. Passed Cal. Passed Cal.Passed Cal. High-Level 0.84%0.42%0.90%1.38%1.20% ppmdv Difference 0.4 0.2 0.2 0.28 0.06 Status Passed Cal. Passed Cal. Passed Cal. Passed Cal.Passed Cal. Pre-Test Sampling System Bias Initial Values SO2 NOX CO CO2 O2 CO - Low-Level 0.20 0.10 0.10 0.00 0.02 System Bias. SBi - Zero Bias 0.00%0.21%0.00%0.00%0.20%± 5% of Span Difference 0 0.1 0 0 0.01 Pass or Failed Invalid Run Passed Cal. Passed Cal. Passed Cal. Passed Cal. Passed Cal. CM - Up-scale Gas 23.90 22.50 11.10 9.85 2.54 SBi - Up-Scale Bias 0.84%0.00%0.90%0.30%0.80% Difference 0.40 0.00 0.20 0.06 0.04 Pass or Failed Invalid Run Passed Cal. Passed Cal. Passed Cal. Passed Cal. Passed Cal. Raw Test Data Time Start Stop Test Date:8/29/2023 SO2 SO2 NOX CO CO2 O2 NOX 0.2 25.3 0.74 18.8 2.7 CO 0.4% 53.7% 3.3% 92.7% 53.9%CO2/O2 NOTE These cells scans for the appropriate Cir. gas after the Cm If this scan is incorrect change the Cdir to the correct gas value. Failed Bias Dialog Failed Cal Error Dialog CO Calibration Gas $1_RM 2, 2F, 2G, 2H, 3A, 6C, 7E, 10, _ 19 - RA (B_W(Modified Feb. 27, 2018) Division of Air Quality Stack Test Review of Linde Gas North America, LLC Post-Test System Bias 7E-2 SB=(Cs - Cdir)/CS x 100 Final Values SO2 NOX CO CO2 O2 CO - Low-Level 0.10 -0.10 0.10 0.00 -0.01 System Bias. SBi - Zero Bias 0.21% 0.64% 0.00% 0.00% 0.40%± 5% of Span Difference 0.1 0.3 0.0 0.0 0.0 Pass or Invalid Run Passed Cal. Passed Cal. Passed Cal. Passed Cal. Passed Cal. CM - Up-scale Gas 23.30 22.00 11.10 9.65 2.59 SBi - Up-Scale Bias 0.42%1.06%0.90%0.69%1.80% Difference 0.2 0.5 0.2 0.1 0.1 Pass or Invalid Run Passed Cal. Passed Cal. Passed Cal. Passed Cal. Passed Cal. Calibration Drift % of Span - D=ABS(SBf - SBi) Low-Level Drift 0.21%0.42%0.00%0.00%0.20%Drift Difference 0.1 0.2 0.0 0.0 0.0 3% of Span Pass or Re-Calibrate Pass Pass Pass Pass Pass Up-scale Gas Drift 0.42% 1.06% 0.00% 0.40% 1.00% Difference 0.6 0.5 0.0 0.2 0.0 Pass or Re-Calibrate Pass Pass Pass Pass Pass Reformer Unit Flow & Moisture As ft^2 Pbar Pq (static) Ps Avg. Ts F CO2 - FCO2 O2 N2+C Md Ms 24.899 25.72 -0.92 25.65 343 18.75 2.60 78.65 31.10 28.29 Y Cp Vm cf Vlc AVG Tm F Vm std Vw std Bws S Bws 9.9811 1.0030 0.84 55.498 270.20 82 46.596 12.718 0.2144 0.9990 0.999 Load - Megawatts Avg. √∆P's Vs (ft./sec.)Qsw scfh wet Qa acfm Qsd dscfh Heat Input Btu/hr.Low Mid High 0.8903 67.25 3,397,851 3,440 2,669,275.48 Enter >X 3D Pitot #1 - Times Date Point No.∆P √∆P ts F tm F (in) tm F (out) Final Vf Initial Vi 1 1.50 1.225 345 75 74 559.30 371.20 188.10 2 1.25 1.118 344 75 74 565.60 520.90 44.70 3 1.20 1.095 344 77 75 728.40 708.10 20.30 4 1.05 1.025 344 78 76 958.60 941.50 17.10 5 0.86 0.927 343 81 77 6 1.10 1.049 342 80 78 2811.90 2541.70 Sum 7 0.89 0.943 343 82 79 8 0.56 0.748 343 83 79 9 0.51 0.714 343 84 80 10 0.52 0.721 343 84 81 11 1.25 1.118 343 83 81 12 0.54 0.735 344 84 82 13 0.41 0.640 343 85 83 14 0.48 0.693 343 86 83 15 0.43 0.656 343 86 84 16 1.40 1.183 343 86 84 17 0.72 0.849 344 87 84 18 0.75 0.866 344 88 85 19 0.81 0.900 344 88 85 20 0.45 0.671 343 89 86 21 1.10 1.049 342 86 85 22 0.80 0.894 342 87 85 23 0.67 0.819 342 88 86 24 0.53 0.728 342 89 86 Failed Drift Dialog Failed Bias Dialog $1_RM 2, 2F, 2G, 2H, 3A, 6C, 7E, 10, _ 19 - RA (B_W(Modified Feb. 27, 2018) Division of Air Quality Stack Test Review of Linde Gas North America, LLC SO2 NOX CO CO2 O2 Reformer Unit CS Calibration Span 47.50 47.10 22.30 20.23 4.99 Units ppm ppm ppm %% CV - Cylinder Value:SO2 NOX CO CO2 O2 Low-Level 0.00 0.00 0.00 0.00 0.00 Mid-Level 23.60 22.30 11.20 9.75 2.48 High-Level 47.50 47.10 22.30 20.23 4.99 0 to 20% of Cal. Span 0.00%0.00%0.00%0.00%0.00% 40 to 60% of Cal. Span 49.7%47.3%50.2%48.2%49.7% 100% of Cal. Span 100.0%100.0%100.0%100.0%100.0% Cdir - Enter Actual Up-scale Cylinder Value Used To Correct Emission Concentration. CMA 23.60 22.30 11.20 9.75 2.48 Calibration Error Test Measured Concentration SO2 NOX CO CO2 O2 Low-Level 0.20 0.20 0.10 0.00 0.01 Mid-Level 23.50 22.50 11.30 9.79 2.50 High-Level 47.90 47.30 22.50 19.95 5.05 Enter Up-scale Analyzer Response to be used during testing. ACE Eq. 7E-1 23.50 22.50 11.30 9.79 2.50 Low-Level 0.42%0.42%0.45%0.00%0.20% ppmdv Difference 0.2 0.2 0.1 0 0.01 Status Passed Cal. Passed Cal. Passed Cal. Passed Cal.Passed Cal. Mid-Level 0.21%0.42%0.45%0.20%0.40% ppmdv Difference 0.1 0.2 0.1 0.04 0.02 Status Passed Cal. Passed Cal. Passed Cal. Passed Cal.Passed Cal. High-Level 0.84%0.42%0.90%1.38%1.20% ppmdv Difference 0.4 0.2 0.2 0.28 0.06 Status Passed Cal. Passed Cal. Passed Cal. Passed Cal.Passed Cal. Pre-Test Sampling System Bias Initial Values SO2 NOX CO CO2 O2 CO - Low-Level 0.10 -0.10 0.10 0.00 -0.01 System Bias. SBi - Zero Bias 0.21%0.64%0.00%0.00%0.40%± 5% of Span Difference 0.1 0.3 0 0 0.02 Pass or Invalid Run Passed Cal. Passed Cal. Passed Cal. Passed Cal. Passed Cal. CM - Up-scale Gas 23.30 22.00 11.10 9.65 2.59 SBi - Up-Scale Bias 0.42%1.06%0.90%0.69%1.80% Difference 0.2 0.5 0.2 0.14 0.09 Pass or Invalid Run Passed Cal. Passed Cal. Passed Cal. Passed Cal. Passed Cal. Raw Test Data Time Start Stop Test Date:8/29/2023 SO2 SO2 NOX CO CO2 O2 NOX 0.1 25.1 1.93 19.1 2.9 CO 0.3% 53.2% 8.7% 94.3% 57.5%CO2/O2 Failed Bias Dialog Failed Cal Error Dialog $1_RM 2, 2F, 2G, 2H, 3A, 6C, 7E, 10, _ 19 - RA (B_W(Modified Feb. 27, 2018) Division of Air Quality Stack Test Review of Linde Gas North America, LLC Post-Test System Bias 7E-2 SB=(Cs - Cdir)/CS x 100 Final Values SO2 NOX CO CO2 O2 CO - Low-Level 0.10 0.10 0.20 -0.02 -0.02 System Bias. SBi - Zero Bias 0.21% 0.21% 0.45% 0.10% 0.60%± 5% of Span Difference 0.1 0.1 0.1 0.0 0.0 Pass or Invalid Run Passed Cal. Passed Cal. Passed Cal. Passed Cal. Passed Cal. CM - Up-scale Gas 23.20 21.90 11.40 9.64 2.49 SBi - Up-Scale Bias 0.63%1.27%0.45%0.74%0.20% Difference 0.3 0.6 0.1 0.1 0.0 Pass or Invalid Run Passed Cal. Passed Cal. Passed Cal. Passed Cal. Passed Cal. Calibration Drift % of Span - D=ABS(SBf - SBi) Low-Level Drift 0.00%0.42%0.45%0.10%0.20%Response Spec. Difference 0.0 0.2 0.1 0.0 0.0 3% of Span Pass or Re-Calibrate Pass Pass Pass Pass Pass Up-scale Gas Drift 0.21% 0.21% 0.45% 0.05% 1.60% Difference 0.1 0.1 0.3 0.0 0.1 Pass or Re-Calibrate Pass Pass Pass Pass Pass Reformer Unit Flow & Moisture As ft^2 Pbar Pq (static) Ps Avg. Ts F CO2 - FCO2 O2 N2+C Md Ms 24.90 25.72 -0.92 25.65 343 19.27 2.80 77.93 31.19 28.73 Y Cp Vm cf Vlc AVG Tm F Vm std Vw std Bws S Bws 9.9677 1.0030 0.84 56.691 228.90 90 46.905 10.774 0.1868 0.9990 0.999 Load - Megawatts Avg. √∆P's Vs Qsw scfh wet Qa acfm Qsd dscfh Heat Input Btu/hr.Low Mid High 0.9126 68.41 3,456,891 3,500 2,811,154.02 Enter >X 3D Pitot #1 - Times Date Point No.∆P √∆P ts F tm F (in) tm F (out) Final Vf Initial Vi 1 1.10 1.049 342 83 84 536.70 375.40 161.30 2 1.20 1.095 342 84 84 640.30 601.40 38.90 3 1.10 1.049 343 86 84 728.50 713.10 15.40 4 0.88 0.938 342 88 85 944.40 931.10 13.30 5 0.70 0.837 342 89 86 6 1.00 1.000 343 88 87 2849.90 2621.00 Sum 7 0.78 0.883 343 90 87 8 0.60 0.775 343 90 88 9 0.57 0.755 343 91 88 10 0.45 0.671 342 92 89 11 1.50 1.225 344 90 89 12 1.30 1.140 344 91 89 13 0.81 0.900 344 93 90 14 0.66 0.812 344 94 90 15 0.61 0.781 343 94 91 16 1.20 1.095 343 92 90 17 1.00 1.000 344 93 91 18 0.82 0.906 344 94 91 19 0.59 0.768 343 95 92 20 0.38 0.616 344 95 92 21 1.00 1.000 342 93 92 22 0.93 0.964 342 94 92 23 0.71 0.843 343 96 93 24 0.64 0.800 343 96 93 Failed Drift Dialog Failed Bias Dialog $1_RM 2, 2F, 2G, 2H, 3A, 6C, 7E, 10, _ 19 - RA (B_W(Modified Feb. 27, 2018) Division of Air Quality Stack Test Review of Linde Gas North America, LLC SO2 NOX CO CO2 O2 Reformer Unit CS Calibration Span 47.50 47.10 22.30 20.23 4.99 Units ppm ppm ppm %% CV - Cylinder Value:SO2 NOX CO CO2 O2 Low-Level 0.00 0.00 0.00 0.00 0.00 Mid-Level 23.60 22.30 11.20 9.75 2.48 High-Level 47.50 47.10 22.30 20.23 4.99 0 to 20% of Cal. Span 0.00%0.00%0.00%0.00%0.00% 40 to 60% of Cal. Span 49.7%47.3%50.2%48.2%49.7% 100% of Cal. Span 100.0%100.0%100.0%100.0%100.0% Cdir - Enter Actual Up-scale Cylinder Value Used To Correct Emission Concentration. CMA 23.60 22.30 11.20 9.75 2.48 Calibration Error Test Measured Concentration SO2 NOX CO CO2 O2 Low-Level 0.20 0.20 0.10 0.00 0.01 Mid-Level 23.50 22.50 11.30 9.79 2.50 High-Level 47.90 47.30 22.50 19.95 5.05 Enter Up-scale Analyzer Response to be used during testing. ACE Eq. 7E-1 23.50 22.50 11.30 9.79 2.50 Low-Level 0.42%0.42%0.45%0.00%0.20% ppmv Difference 0.2 0.2 0.1 0 0.01 Status Passed Cal. Passed Cal. Passed Cal. Passed Cal.Passed Cal. Mid-Level 0.21%0.42%0.45%0.20%0.40% ppmv Difference 0.1 0.2 0.1 0.04 0.02 Status Passed Cal. Passed Cal. Passed Cal. Passed Cal.Passed Cal. High-Level 0.84%0.42%0.90%1.38%1.20% ppmv Difference 0.4 0.2 0.2 0.28 0.06 Status Passed Cal. Passed Cal. Passed Cal. Passed Cal.Passed Cal. Pre-Test Sampling System Bias Initial Values SO2 NOX CO CO2 O2 CO - Low-Level 0.10 0.10 0.20 -0.02 -0.02 System Bias. SBi - Zero Bias 0.21%0.21%0.45%0.10%0.60%± 5% of Span Difference 0.1 0.1 0.1 0.02 0.03 Pass or Invalid Run Passed Cal. Passed Cal. Passed Cal. Passed Cal. Passed Cal. CM - Up-scale Gas 23.20 21.90 11.40 9.64 2.49 SBi - Up-Scale Bias 0.63%1.27%0.45%0.74%0.20% Difference 0.3 0.6 0.1 0.15 0.01 Pass or Invalid Run Passed Cal. Passed Cal. Passed Cal. Passed Cal. Passed Cal. Raw Test Data Time Start Stop Test Date:8/29/2023 SO2 SO2 NOX CO CO2 O2 NOX 0.1 25.6 0.92 19.0 2.9 CO 0.3% 54.3% 4.1% 93.7% 57.3%CO2/O2 Failed Bias Dialog Failed Cal Error Dialog $1_RM 2, 2F, 2G, 2H, 3A, 6C, 7E, 10, _ 19 - RA (B_W(Modified Feb. 27, 2018) Division of Air Quality Stack Test Review of Linde Gas North America, LLC Post-Test System Bias 7E-2 SB=(Cs - Cdir)/CS x 100 Final Values SO2 NOX CO CO2 O2 CO - Low-Level 0.10 0.10 0.20 0.02 0.00 System Bias. SBi - Zero Bias 0.21% 0.21% 0.45% 0.10% 0.20%± 5% of Span Difference 0.1 0.1 0.1 0.0 0.0 Pass or Invalid Run Passed Cal. Passed Cal. Passed Cal. Passed Cal. Passed Cal. CM - Up-scale Gas 23.30 21.90 11.10 9.61 2.51 SBi - Up-Scale Bias 0.42%1.27%0.90%0.89%0.20% Difference 0.2 0.6 0.2 0.2 0.0 Pass or Invalid Run Passed Cal. Passed Cal. Passed Cal. Passed Cal. Passed Cal. Calibration Drift % of Span - D=ABS(SBf - SBi) Low-Level Drift 0.00%0.00%0.00%0.00%0.40%Response Spec. Difference 0.0 0.0 0.0 0.0 0.0 3% of Span Pass or Re-Calibrate Pass Pass Pass Pass Pass Up-scale Gas Drift 0.21% 0.00% 0.45% 0.15% 0.00% Difference 0.1 0.0 0.3 0.0 0.0 Pass or Re-Calibrate Pass Pass Pass Pass Pass Reformer Unit Flow & Moisture As ft^2 Pbar Pq (static) Ps Avg. Ts F CO2 - FCO2 O2 N2+C Md Ms 24.90 25.72 -0.92 25.65 343 19.21 2.83 77.96 31.19 28.71 Y Cp Vm cf Vlc AVG Tm F Vm std Vw std Bws S Bws 9.9945 1.0030 0.84 58.929 237.40 95 48.318 11.174 0.1878 0.9990 0.999 Load - Megawatts Avg. √∆P's Vs Qsw scfh wet Qa acfm Qsd dscfh Heat Input Btu/hr.Low Mid High 0.9576 71.81 3,627,796 3,673 2,946,389.55 Enter >X 3D Pitot #1 - Times Date Point No.∆P √∆P ts F tm F (in) tm F (out) Final Vf Initial Vi 1 1.40 1.183 345 90 90 519.10 352.70 166.40 2 1.40 1.183 344 91 90 634.40 593.20 41.20 3 1.20 1.095 344 93 91 715.00 700.30 14.70 4 1.10 1.049 344 94 91 863.30 848.20 15.10 5 0.84 0.917 343 95 92 6 1.10 1.049 344 94 92 2731.80 2494.40 Sum 7 0.84 0.917 344 95 93 8 0.61 0.781 344 96 93 9 0.65 0.806 343 97 94 10 1.56 1.247 341 98 95 11 1.60 1.265 344 96 94 12 1.10 1.049 344 96 94 13 0.91 0.954 344 98 95 14 0.73 0.854 343 99 95 15 0.44 0.663 343 99 96 16 1.20 1.095 343 97 96 17 0.86 0.927 343 98 96 18 0.68 0.825 343 99 96 19 0.61 0.781 343 100 97 20 0.44 0.663 343 100 97 21 0.94 0.970 342 97 96 22 0.98 0.990 342 98 96 23 0.73 0.854 342 99 96 24 0.75 0.866 342 100 97 Failed Drift Dialog Failed Bias Dialog Source Information Division of Air Quality Compliance Demonstration Source Information Company Name Linde Gas North America - Reformer Unit Company Contact:Michelle Fox Contact Phone No.801-389-7256 Source Designation:Reformer Unit Test & Review Dates Test Date: 8/29/2023 Review Date: 2/1/2024 Tabs Are Shown Observer:Unobserved Reviewer:Paul Bushman Particulate Emission Limits lbs/MMBtu lbs/hr gr/dscf 1.730 Emission Rates - "Front Half" lbs/MMBtu lbs/hr gr/dscf #DIV/0! 0.7168 0.0018 Test Information Equivalent Diameter (ft.)As ft^2 Y Dl H @ Cp Pbar Pq (static)Dn 4.96 24.90 1.0030 1.655 0.84 25.72 -0.92 0.2516 Contractor Information Contracting Company: TETCO Contact: Dean Kitchen Phone No.: 801-492-9106 Project No.: 320 Rectangular 10100 9780 9860 9190 8710 8710 8710 10540 10640 11950 320 10610 10200 10390 1970 1800 1910 1420 1040 1190 1250 F factor usedF factors for Coal, Oil, and Gas Anthrocite 2 Lignite Natural Propane Butane COAL OIL GAS Bituminous 2 Fd Fw Fc scf/MMBtu scf/MMBtu scf/MMBtu O2 CO2 lbs/MMBtu Page 1 Summary Division of Air Quality Reference Methods 5 - TSP Compliance Demonstration of Linde Gas North America - Reformer Unit Testing Results Lab Data - grams collected Test Date 8/29/2023 8/29/2023 8/29/2023 8/29/2023 Lab Data Probe Filter Back Rectangular Run 1 Run 2 Run 3 Run 4 Run 1 0.0043 0.0009 0.0038 As ft^2 24.90 24.90 24.90 Run 2 0.0056 0.0004 0.0017 Pbar 25.72 25.72 25.72 Run 3 0.006 -0.0006 0.0012 Pq (static)-0.92 -0.92 -0.92 Run 4 Ps 25.65 25.65 25.65 Avg. Ts F 343.08 343.00 343.12 Front Half Emissions Summary CO2 - FCO2 18.72 19.07 19.15 Run 1 Run 2 Run 3 Run 4 Avg. O2 2.62 2.79 2.83 gr./dscf 0.0017 0.0020 0.0017 0.0018 N2+C 78.66 78.14 78.02 lbs/hr 0.6471 0.7844 0.7188 0.7168 Md 31.10 31.16 31.18 lbs/MMBtu #DIV/0! Ms 28.30 28.71 28.71 Y 1.00 1.00 1.00 Cp 0.84 0.84 0.84 Total Emissions Summary w/back half condensable Vm cf 55.50 56.69 58.93 Run 1 Run 2 Run 3 Run 4 Avg. Vlc 270.20 228.90 237.40 gr./dscf 0.0030 0.0025 0.0021 0.0025 AVG. Tm F 82.80 90.36 95.50 lbs/hr 1.1200 1.0067 0.8785 1.0017 Vm std 46.74 47.10 48.52 lbs/MMBtu #DIV/0! Vw std 12.72 10.77 11.17 Bws 0.21 0.19 0.19 S Bws 1.00 1.00 1.00 Avg. Sqrt Dlp 0.88 0.91 0.95 Vs 66.41 67.89 71.32 F factor used scfm wet 55927.66 57186.48 60065.23 320 acfm 99216.73 101439.79 106562.17 Qsd dscfh 2637900.43 2792369.43 2929332.76 # Sample Points 25.00 25.00 25.00 Dn 0.252 0.252 0.252 An 3.45E-04 3.45E-04 3.45E-04 Start Time 10:01 12:18 14:28 End Time 11:34 13:49 16:00 Total Test time 75.00 75.00 75.00 Time @ point 3.00 3.00 3.00 O2 CO2 lbs/MMBtu Page 2 Summary 80.00 90.00 100.00 110.00 120.00 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 % I s o k i n e t i c Points Run 1 PxP Isokinetic 80.00 90.00 100.00 110.00 120.00 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 % I s o k i n e t i c Sample Points Run 2 PxP Isokinetic 80.00 90.00 100.00 110.00 120.00 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 % I s o k i n e t i c Sample Points Run 3 PxP Isokinetic 80.00 90.00 100.00 110.00 120.00 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 Sample Points Run 4 PxP Isokinetic Page 3 Run 1 Linde Gas North America - Reformer Unit Flow & Moisture Test Date 8/29/2023 As ft^2 Pbar Pq (static) Ps Avg. Ts F CO2 - FCO2 O2 N2+C Md Ms 24.90 25.72 -0.92 25.65 343 18.72 2.62 78.66 31.10 28.30 Y Cp Vm cf Vlc Avg. Tm F Vm std Vw std Bws S Bws 9.9784 1.0030 0.84 55.498 270.20 82.80 46.742 12.718 0.2139 0.9990 0.999 Avg. Sqrt Dlp Vs scfm wet acfm Qsd dscfh # Sample Points Dn Total Test time (minutes) Time @ point (minutes)Avg. Dlh 0.879 66.41 55,928 99,217 2.64E+06 25 0.2516 75 3.00 1.615600 TRUE Point No.Meter (cf)dl "p"dl "h"ts F tm F (in)tm F (out)Imp. Liquid Collected 1 335.522 1.50 3.00 345 75 74 Wt. (Final)Wt. (Initial)lc 2 338.514 1.25 2.47 344 75 74 559.3 371.2 188.1 3 341.245 1.20 2.38 344 77 75 565.6 520.9 44.7 4 343.963 1.05 2.08 344 78 76 728.4 708.1 20.3 5 346.499 0.86 1.72 343 81 77 958.6 941.5 17.1 6 348.877 1.10 2.20 342 80 78 0.0 7 351.444 0.89 1.78 343 82 79 8 353.801 0.56 1.12 343 83 79 Isokinetics 102.3 9 355.729 0.51 1.02 343 84 80 Test Date 8/29/2023 10 357.542 0.52 1.04 343 84 81 Start Time 10:01 enter 11 359.386 1.25 2.53 344 83 81 End Time 11:34 12 362.074 0.54 1.08 343 84 82 13 364.001 0.41 0.82 343 85 83 14 365.684 0.48 0.87 343 86 83 15 367.471 0.43 0.87 343 86 84 16 369.172 1.40 2.82 344 86 84 17 372.067 0.72 1.45 344 87 84 18 374.264 0.75 1.51 344 88 85 19 376.449 0.71 1.43 343 88 85 20 378.605 0.45 0.91 342 89 86 21 380.360 1.10 2.22 342 86 85 22 382.917 0.80 1.82 342 87 85 23 385.335 0.67 1.36 342 88 86 24 387.407 0.53 1.07 342 89 86 25 389.267 0.45 0.82 342 90 87 26 391.020 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 Page 4 Run 2 Linde Gas North America - Reformer Unit Flow & Moisture Test Date 5/13/2009 As ft^2 Pbar Pq (static) Ps Avg. Ts F CO2 - FCO2 O2 N2+C Md Ms 24.90 25.72 -0.92 25.65 343 19.07 2.79 78.14 31.16 28.71 Y Cp Vm cf Vlc Avg. Tm F Vm std Vw std Bws S Bws 9.9677 1.0030 0.84 56.691 228.90 90 47.096 10.774 0.1862 0.9990 0.999 Avg. Sqrt Dlp Vs scfm wet acfm Qsd dscfh # Sample Points Dn Total Test time (minutes) Time @ point (minutes)Avg. Dlh 0.905 67.89 57,186 101,440 2.79E+06 25 0.2516 75 3.00 1.65 TRUE Point No.Meter (cf)dl "p"dl "h"ts F tm F (in)tm F (out)Imp. Liquid Collected 1 391.958 1.10 2.30 342.0 83.0 84.0 Wt. (Final)Wt. (Initial)lc 2 394.652 1.20 2.31 342.0 84.0 84.0 536.70 375.40 161.3 3 397.361 1.10 2.12 343.0 86.0 84.0 640.30 601.40 38.9 4 399.966 0.88 1.70 342.0 88.0 85.0 728.50 713.10 15.4 5 402.319 0.70 1.35 342.0 89.0 86.0 944.40 931.10 13.3 6 404.438 1.00 1.93 343.0 88.0 87.0 0.0 7 406.816 0.78 1.54 343.0 90.0 87.0 8 409.034 0.60 1.17 343.0 90.0 88.0 Isokinetics 97.4 9 411.015 0.57 1.11 343.0 91.0 88.0 Test Date 8/29/2023 10 412.924 0.45 0.87 342.0 92.0 89.0 Start Time 12:18 11 414.646 1.50 2.92 344.0 90.0 89.0 End Time 13:49 12 417.577 1.30 2.52 344.0 91.0 89.0 13 420.424 0.81 1.77 344.0 93.0 90.0 14 422.833 0.66 1.28 344.0 94.0 90.0 15 424.858 0.61 1.18 343.0 94.0 91.0 16 426.825 1.20 2.33 343.0 92.0 90.0 17 429.425 1.00 1.94 344.0 93.0 91.0 18 431.919 0.82 1.59 344.0 94.0 91.0 19 434.213 0.59 1.16 343.0 95.0 92.0 20 436.187 0.38 0.74 344.0 95.0 92.0 21 437.777 1.00 1.95 342.0 93.0 92.0 22 440.286 0.93 1.83 342.0 94.0 92.0 23 442.589 0.71 1.39 343.0 96.0 93.0 24 444.770 0.64 1.26 343.0 96.0 93.0 25 446.781 0.54 1.06 343.0 96.0 94.0 26 448.649 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 Page 5 Run 3 Linde Gas North America - Reformer Unit Flow & Moisture Test Date 5/13/2009 As ft^2 Pbar Pq (static) Ps Avg. Ts F CO2 - FCO2 O2 N2+C Md Ms 24.90 25.72 -0.92 25.65 343 19.15 2.83 78.02 31.18 28.71 Y Cp Vm cf Vlc Avg. Tm F Vm std Vw std Bws S Bws 9.9838 1.0030 0.84 58.929 237.40 96 48.524 11.174 0.1872 0.9990 0.999 Avg. Sqrt Dlp Vs scfm wet acfm Qsd dscfh # Sample Points Dn Total Test time (minutes) Time @ point (minutes)Avg. Dlh 0.951 71.32 60,065 106,562 2.93E+06 25 0.2516 75 3.00 1.81 TRUE Point No.Meter (cf)dl "p"dl "h"ts F tm F (in)tm F (out)Imp. Liquid Collected 1 449.640 1.40 2.69 345.0 90.0 90.0 Wt. (Final)Wt. (Initial)lc 2 452.476 1.40 2.69 344.0 91.0 90.0 519.1 352.7 166.4 3 455.337 1.20 2.30 344.0 93.0 91.0 634.4 593.2 41.2 4 458.040 1.10 2.11 344.0 94.0 91.0 715.0 700.3 14.7 5 460.713 0.84 1.63 343.0 95.0 92.0 863.3 848.2 15.1 6 462.916 1.10 2.13 344.0 94.0 92.0 0.0 7 465.434 0.84 1.63 344.0 95.0 93.0 8 467.718 0.61 1.18 344.0 96.0 93.0 Isokinetics 95.6 9 469.720 0.65 1.26 343.0 97.0 94.0 Test Date 8/29/2023 10 471.726 1.55 3.01 341.0 98.0 95.0 Start Time 14:28 11 474.639 1.60 3.11 344.0 96.0 94.0 End Time 16:00 12 477.743 1.10 2.13 344.0 96.0 94.0 13 480.345 0.91 1.76 344.0 98.0 95.0 14 482.735 0.73 1.42 343.0 99.0 95.0 15 484.889 0.44 0.86 343.0 99.0 96.0 16 486.543 1.10 2.33 343.0 97.0 96.0 17 489.052 0.86 1.67 343.0 98.0 96.0 18 491.465 0.68 1.33 343.0 99.0 96.0 19 493.546 0.61 1.19 343.0 100.0 97.0 20 495.538 0.44 0.86 343.0 100.0 97.0 21 497.270 0.94 1.83 342.0 97.0 96.0 22 499.634 0.98 1.90 342.0 97.0 96.0 23 502.082 0.73 1.42 342.0 98.0 96.0 24 504.255 0.75 1.47 342.0 99.0 97.0 25 506.424 0.71 1.39 341.0 100.0 97.0 26 508.569 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 Page 6 COMPLIANCE EMISSION TEST PROTOCOL LINDE GAS NORTH AMERICA, LLC REFORMER UNIT POLLUTANTS TO BE TESTED: PARTICULATE MATTER (PM) CONDENSABLE PARTICULATE MATTER (CPM) NITROGEN OXIDES (NOx) SULFUR DIOXIDE (SO2) CARBON MONOXIDE (CO) by: TETCO 391 East 620 South American Fork, UT 84003 Phone: 801 492-9106 • Fax: 801 492-9107 Prepared for: Linde Gas North America 685 S Chevron Way North Salt Lake, Utah 84054 CERTIFICATION OF REPORT INrEGRITY Technical Emissions Testing Company (TETCO) certifies that this report represents the truth as well as can be derived from the methods employed. Every effort was made to obtain accurate and representative data and to comply with procedures set forth in the Federal Register. Dean A. Kitchen XuanN. Dang ~--Reviewer: ---------~ ---"'"------~~-------------- Date: _____ _..D,_,_7_,/i ...... 1_~~'~L-J1----------- ii iii TABLE OF CONTENTS PAGE Introduction Test Purpose ........................................................................................................................1 Test Location, Type of Process ...........................................................................................1 Test Dates ............................................................................................................................1 Pollutant and Testing Methods ............................................................................................1 Test Participants ..................................................................................................................2 Discussion of Errors or Irregularities ..................................................................................2 Quality Assurance ...............................................................................................................2 Summary of Results Emission Results .................................................................................................................3 Process Data ........................................................................................................................3 Description of Collected Samples ........................................................................................3 Percent Isokinetic Sampling ...............................................................................................3 Source Operation Process Control Device Operation ......................................................................................4 Process Representativeness .................................................................................................4 Sampling and Analytical Procedures Sampling Port Location ......................................................................................................5 Sampling Point Location .....................................................................................................5 Sampling Train Description ................................................................................................5 Quality Assurance ...............................................................................................................6 Appendices A: Complete Results and Sample Equations B: Raw Field Data C: Laboratory Data D: Raw Production Data E: Equipment Calibrations and Gas Certifications F: Related Correspondence iv LIST OF TABLES Table PAGE I Emission Test Results ..........................................................................................................3 II Percent Isokinetic Sampling ............................................................................................... 3 III Complete Results (Combined) ......................................................................... Appendix A LIST OF FIGURES Figure 1 Facility Schematic Representation, Reformer Unit ............................... Appendix D 2 Schematic Representation of Method 5/202 Sampling Train ................ Appendix E 3 Schematic of Gas Analyzer Sampling Train .......................................... Appendix E 1 INTRODUCTION Test Purpose This test project was conducted to measure the particulate matter (PM), NOx, SO2, CO, and condensable emissions from the Reformer exhaust stack. The PM, NOx, and CO emissions were measured as directed in the facility Approval Order (DAQE-AN130910007-20), dated August 5, 2020. The SO2 emissions were measured to gather information for inventory purposes. In addition to the PM, condensable, NOx, SO2, and CO testing on the Reformer exhaust, samples were taken from the hydrogen purification unit purge gas to determine the gas composition, heat content, and hydrogen sulfide content. Facility Location and Description Linde Gas operates a hydrogen production plant located in North Salt Lake City. The plant consists of a single Steam Methane Reformer (SMR) and associated equipment that can provide up to 26 MMScfd of 99.9% pure hydrogen. The plant employs steam methane reforming to convert feedstock gas (refinery gases and/or natural gas) plus steam to pure hydrogen. Test Dates The test project was conducted on August 28-29, 2023. TETCO personnels traveled to the facility and set up the testing equipment on August 28, 2023. No test runs were performed on August 28, 2023. All testing was conducted on August 29, 2023. Pollutants and Testing Methods Three test runs were completed on the Reformer exhaust stack. Testing was conducted for PM, SO2, NOx, CO, and condensable emissions according to EPA Methods 5, 6C, 7E, 6C, 10, and 202 respectfully. The Method 5 and Method 202 testing was conducted concurrently with the NOx, SO2, and CO analyzers. 2 Test Participants The following participants were present during the test. Company Linde Gas 685 South Chevron Way North Salt Lake City, UT 84054 Personnels Alina Pak Michelle Fox Test Contractor: TETCO 391 East 620 South American Fork, UT 84003 Dean Kitchen Joseph Wells Reed Kitchen Discussion of Errors or Irregularities There were no errors or irregularities. Quality Assurance Testing procedures and sample recovery techniques were in accordance with those outlined in the Federal Register and the Quality Assurance Handbook for Air Pollution Measurement Systems. 3 SUMMARY OF RESULTS Emission Results Table I presents the Emission Results for the Reformer Unit. Table I. Emission Test Results Pollutants Measured Emission Rate (lb/hr) PM CPM NOx CO SO2 0.71 0.28 8.54 0.22 0.02 Process Data The process was operated according to standard procedures. All testing occurred while the Reformer Unit was operating at its maximum rate. Description of Collected Samples There were light, tan-colored rings on the test filters. The front washes all appeared to be clear. Percent Isokinetic Sampling Each particulate matter test run was isokinetic within ±10% of 100% criterion specified in the Federal Register. Isokinetic values for each EPA Method 5 test run are presented in Table II. Table II. Percent Isokinetic Run # Reformer Unit 1 103 2 96 3 96 4 SOURCE OPERATIONS Process Control Devices Operation All control devices operated normally. Process Representativeness The facility was operated normally. Production data is contained in Appendix F. 5 SAMPLING AND ANALYTICAL PROCEDURES Sampling Port Location The sample location complies with the requirements of EPA Method 1. The inside dimensions of the rectangular stack were 54.125 inches by 66.25 inches. The equivalent diameter was calculated at 59.577 inches for purposes of calculating upstream and downstream disturbance distances. Five sample ports were located approximately 145 inches (2.43 diameters) downstream and more than 33 inches (.55 diameters) upstream from the nearest flow disturbances. Sampling Point Location The “Preliminary” data sheet in Appendix B shows the distance determination for each sampling point according to EPA Method 1. Each point was marked and identified on the probe with a wrapping of glass tape and numbered. These points were determined by measuring the distance from the inside wall and adding the reference (port) measurement. Sampling Train Descriptions All sampling trains were made of inert materials (Teflon, stainless steel, and glass) to prevent interference of the sampled gas and particulate. The stack analyzers used to conduct these tests were constructed to meet the specifications outlined in the CFR. The temperature sensors were K-type thermocouples. Heater, vacuum, and pitot line connections were designed to be interchangeable with all units used by the tester. A stainless-steel probe liner was used for all tests. Figures 2 and 3 in Appendix F are sketches of the Method 5/202 and Gas Analyzer sampling trains. Sample boxes were prepared for testing by following the prescribed procedure outlined in each individual method. The NOx analyzer was set at 0-50 ppm range with a high-level calibration gas at 47.1 ppm. The NOx analyzer was model CLA-510 Horiba Instruments, serial number 41679080031, manufactured in 2001. The SO2 analyzer was set at 0-50 ppm range with a high-level calibration gas at 47.5 ppm. The SO2 analyzer was a Rosemount, model 890, serial number 890149300000, manufactured in 1997. The CO analyzer was set at 0-25 ppm range with a high-level calibration gas of 20.23 ppm. The CO analyzer was model VIA-510 Horiba Instruments, serial number 43223490033, manufactured in 1995. The hydrogen purge gas heat content and composition were determined with grab bag samples Tedlar bags and sent for analysis using ASTM Method D1945. Hydrogen sulfide levels were measured from the same Tedlar bags and analyzed as per ASTM Method D5504. Samples were sent to Empact Analytical Systems (Brighton, CO) for analysis. 6 Quality Assurance All equipment set-up, sampling procedures, sample recovery and equipment calibrations were carried out according to the procedures specified in 40 CFR 60, Appendix A, Methods 1-5, 6C, 7E, 10, 40 CFR 60, Appendix M, Method 202, and the Quality Assurance Handbook for Air Pollution Measurement Systems APPENDIX A: Complete Results and Sample Calculations B: Raw Field Data C: Laboratory Data D: Raw Production Data E: Equipment Calibrations and Gas Certifications F: Related Correspondence A APPENDIX A Complete Results and Sample Equations Table III. Complete Results (Combined) Nomenclature Sampling Equations TABLE III PARTICULATE MATTER AND SO2 COMPLETE RESULTS LINDE GAS, NORTH SALT LAKE CITY, UTAH REFORMER Symbol Description Dimensions Run #1 Run #2 Run #3 Date 8/29/23 8/29/23 8/29/23 Filter #7649 7650 7651 Begin Time Test Began 10:01 12:18 14:28 End Time Test Ended 11:34 13:49 16:00 Pbm Meter Barometric Pressure In. Hg. Abs 25.80 25.80 25.80 DH Orifice Pressure Drop In. H2O 1.624 1.653 1.812 Y Meter Calibration Y Factor dimensionless 1.003 1.003 1.003 Vm Volume Gas Sampled--Meter Conditions cf 55.498 56.691 58.929 Tm Avg Meter Temperature oF 82.8 90.4 95.5 DP Sq Root Velocity Head For Emission Rate Root In. H2O 0.8814 0.9079 0.9530 Wtwc Weight Water Collected Grams 270.2 228.9 237.4 Tt Duration of Test Minutes 75 75 75 Cp Pitot Tube Coefficient Dimensionless 0.84 0.84 0.84 Dn Nozzle Diameter Inches 0.2510 0.2530 0.2510 CO2 Volume % Carbon Dioxide Percent 18.75 19.07 19.15 O2 Volume % Oxygen Percent 2.62 2.79 2.83 N2 & CO Volume % Nitrogen and Carbon Monoxide Percent 78.63 78.13 78.02 Vmstd Volume Gas Sampled (Standard)dscf 46.906 47.256 48.692 Vw Volume Water Vapor scf 12.743 10.795 11.196 Bws (measured)Fraction H2O in Stack Gas (Measured)Fraction 0.2136 0.1860 0.1869 Bws (saturated)Fraction H2O in Stack Gas (Saturated)Fraction 1.0109 1.0109 1.0109 Bws Fraction H2O in Stack Gas **Fraction 0.2136 0.1860 0.1869 Xd Fraction of Dry Gas Fraction 0.786 0.814 0.813 Md Molecular Wt. Dry Gas lb/lbmol 31.10 31.16 31.18 Ms Molecular Wt. Stack Gas lb/lbmol 28.30 28.72 28.71 %I Percent Isokinetic Percent 102.9 96.3 96.2 AVG Ts Avg Stack Temperature oF 343.1 343.0 343.1 343.1 As Stack Cross Sectional Area Sq. Ft.25.292 25.292 25.292 PG Stack Static Pressure In. H2O -0.92 -0.92 -0.92 Pbp Sample Port Barometric Pressure In. Hg. Abs 25.72 25.72 25.72 Ps Stack Pressure In. Hg. Abs 25.652 25.652 25.652 Qs Stack Gas Volumetric Flow Rate (Std)dscfm 4.476E+04 4.739E+04 4.968E+04 4.73E+04 Qa Stack Gas Volumetric Flow Rate (Actual)cfm 1.010E+05 1.033E+05 1.084E+05 1.04E+05 Vs Velocity of Stack Gas fpm 3.993E+03 4.083E+03 4.287E+03 4.12E+03 Mfilter Mass of Particulate on Filter milligrams -0.6 0.4 0.9 Mp Mass of Particulate in Wash milligrams 6.0 5.6 4.3 MF Mass of Front Half milligrams 5.4 6.0 5.2 Mcpm Mass of Condensable Particulate Matter (CPM)milligrams 3.8 1.7 1.2 CF Concentration of Front Half gr / dscf 0.0018 0.0020 0.0016 0.0018 Ccpm Back Half Particulate Concentration gr / dscf 0.0013 0.0006 0.0004 0.0007 CF CPM Combined Front and CPM Concentration gr / dscf 0.0030 0.0025 0.0020 0.0025 ERf Emission Rate Front Half lb/hr 0.6814 0.7956 0.7015 0.7262 Ercpm Emission Rate of CPM lb/hr 0.4795 0.2254 0.1619 0.2889 ERF CPM Combined Front and CPM Concentration lb/hr 1.1608 1.0210 0.8634 1.0151 CNOx Concentration of NOx ppmdv 25.3 25.5 26.0 25.61 CCO Concentration of CO ppmdv 0.65 1.8 0.7 1.06 CSO2 Concentration of SO2 ppmdv 0.0 0.0 0.0 0.03 ERNOx Emission Rate of NOx lb / hr 8.12 8.64 9.27 8.68 ERCO Emission Rate of CO lb / hr 0.13 0.37 0.16 0.22 ERSO2 Emission Rate of SO2 lb / hr 0.02 0.02 0.01 0.02 %I =percent isokinetic, percent As =stack cross-sectional area (ft3) AS∆P =see √∆P Btu =unit heat value (British thermal unit) Bws =fraction of water in stack gas Ccpm =concentration of condensibles (grain/dscf) Cf =concentration of particulate matter, front half (gr/dscf,lb/dscf, etc.) CO2 =percent carbon dioxide in the stack gas Cp =pitot tube coefficient (0.84) Cgas =concentration (ppm dry basis) of sampled gas using Method 6C, 7E, or 10 =corrected for bias checks. Species symbol replaces gas . Cgas (corr)=actual gas concentration corrected to desired percent O2 Cgas (lb/dscf)=gas concentration converted to lb/dscf ∆H =orifice pressure drop (inches H2O) ∆H@ =orifice pressure (inches H2O) ∆Hd =orifice pressure head (inches H2O) needed for impactor flow rate Dn =nozzle diameter (inches) ∆P =stack flow pressure differential (inches H2O) Ds =diameter of the stack (feet) EA =percent excess air Ercpm =emission rate of condensibles (lb/hr) Erf =emission rate of front half particulate (lb/hr) Ergas =emission rate of a gas (lb/hr) ERmmBtu =emission rate per mmBtu or ton of fuel etc. ERX =emission rate of compound which replaces x F =F-factor ratio of the gas volume of the products of combustion to the heat content =of the fuel. mBtu =thousand Btu Mcpm =mass of condensibles (milligrams) Md =molecular weight of stack gas, dry basis (lb/lb-mol) Mf =mass of particulate on filter (mg) Mfp =mass of particulate matter on filter and probe (mg) mmBtu =million Btu MP =mass of particulate matter in probe (mg) Ms =molecular weight of stack gas, wet basis (g/gmol) Mwx =molecular weight of gas species (g/gmol) N2 =percent nitrogen in the stack gas O2 =percent oxygen in the stack gas √∆P =average of the square roots of ∆P (may also be referred to as AS∆P) Pbm =absolute barometric pressure at the dry gas meter (inches Hg) Pbp =absolute barometric pressure at the sample location (inches Hg) PG =stack static pressure (inches H2O) Ps =absolute stack pressure (inches Hg) Pstd =absolute pressure at standard conditions (29.92 inches Hg.) Method 5, 202, and Gases Nomenclature Method 5, 202, and Gases Nomenclature θ =time of test (minutes) Qa =stack gas volumetric flow rate (acfm) Qs =stack gas volumetric flow rate (dscfm) Qw =wet stack gas std. volumetric flow (ft3/min, wscfm) R =gas constant (21.85 inches Hg*ft3/(lbmol*R)) ρp =particle density (1 g/cm3) ρs =stack gas density (g/cm3) Tm =meter temperature (oF) Ts =stack temperature (oF) Tstd =absolute temperature at standard conditions (528oR) Tt =see θ Vm =sample volume (ft3) at meter conditions Vmstd =volume standard (dscf), sample volume adjusted to 68oF and 29.92 inches Hg. Vs =velocity of stack gas (fpm) Vw =volume water vapor (scf) at 68oF and 29.92 inches Hg. Wtwc =weight of the condensed water collected (grams) Xd =fraction of dry gas Y =meter calibration Y-factor (dimensionless) %I =Vmstd • (Ts + 460) • 1039 / (θ • Vs • Ps • Xd • Dn2) As =(Ds2 / 4) • π Bws =Vw / (Vmstd +Vw) Ccpm =Mcpm • 0.01543 / Vmstd Cf =Mfp • 0.01543 / Vmstd Cgas (corr)=Cgas • (20.9 - desired %O2) / (20.9 - actual %O2) Cgas (lb/dscf)=Cgas (ppm) • Conversion factor from Method 19, Table 19-1) Deq =2 • L • W / (L + W) Dn des =√{0.0269 • (Pbm + 0.0735) / [(Tm + 460) • Cp • Xd • √[(Ts + 460) • Ms) / (Ps • ∆P)]} EA =(%O2 - 0.5 %CO) / [0.264 %N2 - (%O2 - 0.5 %CO)] Ercpm =Ccpm • Qs • 0.00857 ERf =Cf • Qs • 0.00857 Ergas =Pstd • Qs • Mwgas • Cgas • 60 / (R • Tstd • 106) Ergas =Cgas(lb/dscf) • Qs • 60 =(Either ERgas equation gives equivalent lb/hr values to 3 sig. figures) ER(mmBtu) =Cgas(lb/dscf) • Fd • (20.9/(20.9 - %O2), Method 19 Equation 19-1 K-fact =846.72 • Dn4 • ∆H@ • Cp2 • Xd2 • Md • Ps • (Tm + 460) / [Ms • (Ts + 460) • (Pbm + ∆H / 13.6)] Md =CO2 • 0.44 + O2 • 0.32 + N2 •0.28 Ms =(Md • Xd) + (18 • Bws) µs =[51.05 + 0.207 • (Ts + 460) + 3.24 •10-5 • (Ts + 460)2 + 0.53147 • %O2 - 74.143 • Bws] • 10-6 Ps =Pbp + (PG / 13.6) Qa =Vs • As Qs =Qa • Xd • Ps • Tstd / [(Ts + 460) • Pstd] Qw =Qs / Xd Vmstd =Vm • Y • Tstd • (Pbm + ∆H / 13.6) / [Pstd • (Tm + 460)] Vs =85.49 • 60 • Cp • √∆P • √ [(Ts + 460) / (Ps • Ms)] Vw =Wtwc • 0.04715 Xd =1 - Bws Method 5, 202, and Gases Sample Equations B APPENDIX B Raw Field Data Preliminary Velocity Traverse and Sampling Point Location Data Method 5/202 Field Data Sheets Gas Analyzer Field Data Sheets and Data Logger Printout NOx Converter Efficiency Check Gas Sample Stratification Check C APPENDIX C Laboratory Data Sample Recovery Sheet Method 5 Laboratory Recovery Sheets Method 202 Laboratory Recovery Sheets Facility:Linde Date:08/29/23 Stack Identification:Reformer Run:3 Filter Number:7651 Sample Box:C Blanks &Blanks Rinses Rinses Acetone (CH3COCH3)0.0000 g/100ml Acetone (CH3COCH3)125 ml Filter Final1:0.6691 g Date:08/31/23 Time:8:00 Final2:0.6692 g Date:08/31/23 Time:14:00 FinalAVG:0.6692 g Filter Preweight:0.6683 g CRITERIA Net 0.0009 g Process Weight Time Net 0.9 mg Final Pass Pass Front Half Final1:104.2449 g Date:08/01/23 Time:8:00 Final2:104.2451 g Date:Time: FinalAVG:104.2450 g Initial1:104.2408 g Date:12/02/22 Time:9:00 Initial2:104.2405 g Date:12/05/22 Time:9:00 InitialAVG:104.2407 g Gross:0.0043 g CRITERIA Beaker Number:54 Blank:0.0000 g Process Weight Time Net 0.0043 g Final Pass Net 4.3 mg Initial Pass Pass RESULTS Front Half Filter 0.9 mg Wash 4.3 mg Total 5.2 mg Comments:Criteria: 1) Weights are ± 0.5 mg of each other, or within 1% of the net weight. 2) There shall be at least 6 hrs between weighings. Lab Technician:Mike McNamara Date:8/30/23 Lab Technician:Dean Kitchen Date:8/31/23 Facility:Linde Date:08/29/23 Stack Identification:Reformer Run:2 Filter Number:7650 Sample Box:B Blanks &Blanks Rinses Rinses Acetone (CH3COCH3)0.0000 g/100ml Acetone (CH3COCH3)150 ml Filter Final1:0.6711 g Date:8/31/23 Time:8:00 Final2:0.6713 g Date:8/31/23 Time:14:00 FinalAVG:0.6712 g Filter Preweight:0.6708 g CRITERIA Net 0.0004 g Process Weight Time Net 0.4 mg Final Pass Pass Front Half Final1:103.3879 g Date:8/1/23 Time:8:00 Final2:103.3881 g Date:Time: FinalAVG:103.3880 g Initial1:103.3826 g Date:12/2/22 Time:9:00 Initial2:103.3822 g Date:12/5/22 Time:9:00 InitialAVG:103.3824 g Gross:0.0056 g CRITERIA Beaker Number:53 Blank:0.0000 g Process Weight Time Net 0.0056 g Final Pass Net 5.6 mg Initial Pass Pass RESULTS Front Half Filter 0.4 mg Wash 5.6 mg Total 6.0 mg Comments:Criteria: 1) Weights are ± 0.5 mg of each other, or within 1% of the net weight. 2) There shall be at least 6 hrs between weighings. Lab Technician:Mike McNamara Date:8/30/23 Lab Technician:Dean Kitchen Date:8/31/23 Facility:Date: Stack Identification:Run:1 Filter Number:7649 Sample Box:A Blanks &Blanks Rinses Rinses Acetone (CH3COCH3)0.0000 g/100ml Acetone (CH3COCH3)125 ml Filter Final1:0.6325 g Date:08/31/23 Time:8:00 Final2:0.6326 g Date:08/31/23 Time:14:00 FinalAVG:0.6326 g Filter Preweight:0.6332 g CRITERIA Net -0.0006 g Process Weight Time Net -0.6 mg Final Pass Pass Front Half Final1:100.8890 g Date:08/01/23 Time:8:00 Final2:100.8893 g Date:Time: FinalAVG:100.8892 g Initial1:100.8831 g Date:12/02/22 Time:9:00 Initial2:100.8832 g Date:12/05/22 9:00 InitialAVG:100.8832 g Gross:0.0060 g CRITERIA Beaker Number:52 Blank:0.0000 g Process Weight Time Net 0.0060 g Final Pass Net 6.0 mg Initial Pass Pass RESULTS Front Half Filter -0.6 mg Wash 6.0 mg Total 5.4 mg Comments:Criteria: 1) Weights are ± 0.5 mg of each other, or within 1% of the net weight. 2) There shall be at least 6 hrs between weighings. Lab Technician:Date:8/30/23 Lab Technician:Date:8/31/23 Mike McNamara Dean Kitchen Linde Reformer 08/29/23 Fa c i l t y : St a c k I d e n t i f i c a t i o n : Te s t D a t e ( s ) : Sa m p l e D e s c r i p t i o n / I D # In o r g a n i c C P M Be a k e r / T i n # 52 2 Da t e Re l . H u m % 52 3 Da t e Ti m e Re l . H u m % 52 4 Da t e Ti m e Re l . H u m % Fi n a l W e i g h t ( 1 ) , g 2. 2 3 5 2 9/ 6 / 2 3 8: 0 0 < 1 2. 2 5 6 3 9/ 6 / 2 3 8: 0 0 < 1 2. 2 5 3 8 9/ 6 / 2 3 8: 0 0 < 1 Fi n a l W e i g h t ( 2 ) , g 2. 2 3 5 2 9/ 6 / 2 3 14 : 0 0 < 1 2. 2 5 6 6 9/ 6 / 2 3 14 : 0 0 < 1 2. 2 5 3 9 9/ 6 / 2 3 14 : 0 0 < 1 Av e . F i n a l W e i g h t , g 2. 2 3 5 2 2. 2 5 6 5 2. 2 5 3 9 In i t i a l W e i g h t ( 1 ) , g 2. 2 3 1 5 12 / 1 2 / 2 2 14 : 0 0 < 1 2. 2 5 5 5 12 / 1 2 / 2 2 14 : 0 0 < 1 2. 2 5 2 8 12 / 1 2 / 2 2 14 : 0 0 < 1 In i t i a l W e i g h t ( 2 ) , g 2. 2 3 1 5 12 / 1 3 / 2 2 10 : 0 0 < 1 2. 2 5 5 5 12 / 1 3 / 2 2 10 : 0 0 < 1 2. 2 5 2 7 12 / 1 3 / 2 2 10 : 0 0 < 1 Av e . I n i t i a l W e i g h t , g 2. 2 3 1 5 2. 2 5 5 5 2. 2 5 2 8 mr: I n i t i a l I n o r g a n i c W t , m g 3. 7 0 0. 9 5 1. 1 0 H2O a d d e d i n E x t r a c t i o n s , m l 60 pH pH 60 pH pH 60 pH pH Re c o n s t i t u t e d H 2O V o l u m e , m l St a r t En d St a r t En d St a r t En d N: N o r m a l i t y o f N H 4OH Vt: V o l u m e o f N H 4OH , m l mc: M a s s o f N H 4 A d d e d , m g mi ( o r m ib ): F i n a l I n o r g a n i c W t , m g 3. 7 0 0. 9 5 1. 1 0 Or g a n i c C P M Be a k e r / T i n # 52 5 Da t e Ti m e Re l . H u m % 52 6 Da t e Ti m e Re l . H u m % 52 7 Da t e Ti m e Re l . H u m % Fi n a l W e i g h t ( 1 ) , g 2. 2 7 0 4 9/ 6 / 2 3 8: 0 0 < 1 2. 2 5 8 8 9/ 6 / 2 3 8: 0 0 < 1 2. 2 5 6 7 9/ 6 / 2 3 8: 0 0 < 1 Fi n a l W e i g h t ( 2 ) , g 2. 2 7 0 4 9/ 6 / 2 3 14 : 0 0 < 1 2. 2 5 9 2 9/ 6 / 2 3 14 : 0 0 < 1 2. 2 5 6 9 9/ 6 / 2 3 14 : 0 0 < 1 Av e . F i n a l W e i g h t , g 2. 2 7 0 4 2. 2 5 9 0 2. 2 5 6 8 In i t i a l W e i g h t ( 1 ) , g 2. 2 6 9 2 12 / 1 2 / 2 2 14 : 0 0 < 1 2. 2 5 7 0 12 / 1 2 / 2 2 14 : 0 0 < 1 2. 2 5 5 3 12 / 1 2 / 2 2 14 : 0 0 < 1 In i t i a l W e i g h t ( 2 ) , g 2. 2 6 9 1 12 / 1 3 / 2 2 10 : 0 0 < 1 2. 2 5 7 2 12 / 1 3 / 2 2 10 : 0 0 < 1 2. 2 5 5 7 12 / 1 3 / 2 2 10 : 0 0 < 1 Av e . I n i t i a l W e i g h t , g 2. 2 6 9 2 2. 2 5 7 1 2. 2 5 5 5 mo ( o r m ob ): N e t O r g a n i c W t , m g 1. 2 5 1. 9 0 1. 3 0 mcp m : G r o s s C P M , m g 5. 0 2. 8 2. 4 mcp m : B l a n k C P M , m g 1. 2 1. 2 1. 2 mcp m : N e t C P M , m g 3. 8 1. 7 1. 2 pH M e t e r : O a k t o n p H T e s t r B N C , E l e c t r o d e M o d e l : 3 5 8 0 1 - 0 0 pH Da t e Ti m e La b T e c h n i c i a n : Da t e : 8/ 3 0 / 2 3 Fi s h e r p H B u f f e r 4 . 0 0 Fi s h e r p H B u f f e r 7 . 0 0 La b T e c h n i c i a n : Da t e : 9/ 6 / 2 3 10 / 2 1 / 1 5 Fo r m D a t e : Me t h o d 2 0 2 L a b o r a t o r y F o r m Ru n 1 Ru n 2 Ru n 3 8/ 2 9 / 2 3 Li n d e Re f o r m e r Mi k e M c N a m a r a De a n K i t c h e n Fa c i l t y : St a c k I d e n t i f i c a t i o n : Te s t D a t e ( s ) : 8/ 2 9 / 2 3 Sa m p l e D e s c r i p t i o n / I D # In o r g a n i c C P M Be a k e r / t i n # 52 8 Da t e Ti m e Re l . H u m % 52 9 Da t e Ti m e Re l . H u m % Fi n a l W e i g h t ( 1 ) , g 2. 2 2 8 0 9/ 6 / 2 3 8: 0 0 < 1 2. 2 4 7 0 9/ 6 / 2 3 8: 0 0 < 1 Fi n a l W e i g h t ( 2 ) , g 2. 2 2 8 0 9/ 6 / 2 3 14 : 0 0 < 1 2. 2 4 6 9 9/ 6 / 2 3 14 : 0 0 < 1 Av e . F i n a l W e i g h t , g 2. 2 2 8 0 2. 2 4 7 0 In i t i a l W e i g h t ( 1 ) , g 2. 2 2 7 2 12 / 1 2 / 2 2 14 : 0 0 < 1 2. 2 4 5 8 12 / 1 2 / 2 2 14 : 0 0 < 1 In i t i a l W e i g h t ( 2 ) , g 2. 2 2 7 5 12 / 1 3 / 2 2 10 : 0 0 < 1 2. 2 4 6 0 12 / 1 3 / 2 2 10 : 0 0 < 1 Av e . I n i t i a l W e i g h t , g 2. 2 2 7 4 2. 2 4 5 9 mr: I n i t i a l I n o r g a n i c W t , m g 0. 6 5 1. 0 5 H2O a d d e d i n E x t r a c t i o n s , m l 60 pH pH 60 pH pH Re c o n s t i t u t e d H 2O V o l u m e , m l St a r t En d St a r t En d N: N o r m a l i t y o f N H 4OH Vt: V o l u m e o f N H 4OH , m l mc: M a s s o f N H 4 A d d e d , m g mi ( o r m ib ): F i n a l I n o r g a n i c W t , m g 0. 6 5 1. 0 5 Or g a n i c C P M Be a k e r / t i n # 53 0 Da t e Ti m e Re l . H u m % 53 1 Da t e Ti m e Re l . H u m % Fi n a l W e i g h t ( 1 ) , g 2. 2 3 4 2 9/ 6 / 2 3 8: 0 0 < 1 2. 2 5 7 0 9/ 6 / 2 3 8: 0 0 < 1 Fi n a l W e i g h t ( 2 ) , g 2. 2 3 4 1 9/ 6 / 2 3 14 : 0 0 < 1 2. 2 5 7 0 9/ 6 / 2 3 14 : 0 0 < 1 Av e . F i n a l W e i g h t , g 2. 2 3 4 2 2. 2 5 7 0 In i t i a l W e i g h t ( 1 ) , g 2. 2 3 3 6 12 / 1 2 / 2 2 14 : 0 0 < 1 2. 2 5 6 0 12 / 1 2 / 2 2 14 : 0 0 < 1 In i t i a l W e i g h t ( 2 ) , g 2. 2 3 3 7 12 / 1 3 / 2 2 10 : 0 0 < 1 2. 2 5 6 3 12 / 1 3 / 2 2 10 : 0 0 < 1 Av e . I n i t i a l W e i g h t , g 2. 2 3 3 7 2. 2 5 6 2 mo ( o r m ob ): N e t O r g a n i c W t , m g 0. 5 0 0. 8 5 mcp m ( o r m fb ): T o t a l C P M , m g 1. 2 1. 9 pH M e t e r : O a k t o n p H T e s t r B N C , E l e c t r o d e M o d e l : 3 5 8 0 1 - 0 0 pH Da t e Ti m e La b T e c h . : Da t e : 8/ 3 0 / 2 3 Fi s h e r p H B u f f e r 4 . 0 0 Fi s h e r p H B u f f e r 7 . 0 0 La b T e c h . : Da t e : 9/ 6 / 2 3 10 / 2 1 / 1 5 Fo r m D a t e : Me t h o d 2 0 2 L a b o r a t o r y F o r m Re c o v e r y B l a n k Pr o o f B l a n k Li n d e Re f o r m e r Mi k e M c N a m a r a De a n K i t c h e n Fa c i l t y : St a c k I d e n t i f i c a t i o n : Te s t D a t e ( s ) : Bl a n k D e s c r i p t i o n / I D # Wa t e r Ac e t o n e He x a n e Lo t # 11 1 A 2 4 21 6 5 1 1 MK C R 0 5 2 8 Be a k e r / t i n # 53 2 Da t e Ti m e Re l . H u m % 53 3 Da t e Ti m e Re l . H u m % 53 4 Da t e Ti m e Re l . H u m % Fi n a l W e i g h t ( 1 ) , g 2. 2 2 8 5 9/ 6 / 2 3 8: 0 0 < 1 2. 2 2 3 8 9/ 6 / 2 3 8: 0 0 < 1 2. 2 4 8 1 9/ 6 / 2 3 8: 0 0 < 1 Fi n a l W e i g h t ( 2 ) , g 2. 2 2 8 4 9/ 6 / 2 3 14 : 0 0 < 1 2. 2 2 3 9 9/ 6 / 2 3 14 : 0 0 < 1 2. 2 4 8 0 9/ 6 / 2 3 14 : 0 0 < 1 Av e . F i n a l W e i g h t , g 2. 2 2 8 5 2. 2 2 3 9 2. 2 4 8 1 In i t i a l W e i g h t ( 1 ) , g 2. 2 2 8 1 12 / 1 2 / 2 2 14 : 0 0 < 1 2. 2 2 3 6 12 / 1 2 / 2 2 14 : 0 0 < 1 2. 2 4 7 8 12 / 1 2 / 2 2 14 : 0 0 < 1 In i t i a l W e i g h t ( 2 ) , g 2. 2 2 8 6 12 / 1 3 / 2 2 10 : 0 0 < 1 2. 2 2 4 0 12 / 1 3 / 2 2 10 : 0 0 < 1 2. 2 4 8 1 12 / 1 3 / 2 2 10 : 0 0 < 1 Av e . I n i t i a l W e i g h t , g 2. 2 2 8 4 2. 2 2 3 8 2. 2 4 8 0 Bl a n k R e s i d u a l M a s s , m g 0. 1 0 Wa t e r 0. 0 5 Ac e t o n e 0. 1 0 He x a n e Bl a n k M a s s , g 21 0 16 2 14 8 Bl a n k V o l u m e , m l 21 0 20 6 22 2 Ma x B l a n k R e s i d u l a l M a s s , m g 0. 2 1 0. 2 1 0. 2 2 La b T e c h n i c i a n : Da t e : 8/ 3 0 / 2 3 La b T e c h n i c i a n : Da t e : 9/ 6 / 2 3 10 / 2 1 / 1 5 Fo r m D a t e : Me t h o d 2 0 2 F i e l d R e a g e n t B l a n k F o r m 08 / 2 9 / 2 3 Li n d e Re f o r m e r Fi s h e r A C S Si g m a - A l d r i c h RI C C A R e a g e n t Mi k e M c N a m a r a De a n K i t c h e n Bl a n k D e s c r i p t i o n / I D # Wa t e r Ac e t o n e He x a n e Lo t # 11 1 1 A 2 4 21 5 5 4 1 MK C R 0 5 2 8 Be a k e r / t i n # 53 5 Da t e Ti m e Re l . H u m % 53 6 Da t e Ti m e Re l . H u m % 53 7 Da t e Ti m e Re l . H u m % Fi n a l W e i g h t ( 1 ) , g 2. 2 4 9 6 9/ 6 / 2 3 8: 0 0 < 1 2. 2 3 1 8 9/ 6 / 2 3 8: 0 0 < 1 2. 2 2 7 7 9/ 6 / 2 3 8: 0 0 < 1 Fi n a l W e i g h t ( 2 ) , g 2. 2 4 9 3 9/ 6 / 2 3 14 : 0 0 < 1 2. 2 3 1 7 9/ 6 / 2 3 14 : 0 0 < 1 2. 2 2 7 8 9/ 6 / 2 3 14 : 0 0 < 1 Av e . F i n a l W e i g h t , g 2. 2 4 9 5 2. 2 3 1 8 2. 2 2 7 8 In i t i a l W e i g h t ( 1 ) , g 2. 2 4 9 4 12 / 1 2 / 2 2 14 : 0 0 < 1 2. 2 3 1 9 12 / 1 2 / 2 2 14 : 0 0 < 1 2. 2 2 7 8 12 / 1 2 / 2 2 14 : 0 0 < 1 In i t i a l W e i g h t ( 2 ) , g 2. 2 4 9 6 12 / 1 3 / 2 2 10 : 0 0 < 1 2. 2 3 1 7 12 / 1 3 / 2 2 10 : 0 0 < 1 2. 2 2 7 7 12 / 1 3 / 2 2 10 : 0 0 < 1 Av e . I n i t i a l W e i g h t , g 2. 2 4 9 5 2. 2 3 1 8 2. 2 2 7 8 Bl a n k R e s i d u a l M a s s , m g 0. 0 0 Wa t e r 0. 0 0 Ac e t o n e 0. 0 0 He x a n e Bl a n k M a s s , g 20 7 15 4 13 3 Bl a n k V o l u m e , m l 20 7 19 7 19 9 Ma x B l a n k R e s i d u l a l M a s s , m g 0. 2 1 0. 2 0 0. 2 0 La b T e c h n i c i a n : Da t e : 8/ 3 0 / 2 3 La b T e c h n i c i a n : Da t e : 9/ 6 / 2 3 10 / 2 1 / 1 5 Me t h o d 2 0 2 L a b o r a t o r y R e a g e n t B l a n k F o r m RI C C A R e a g e n t Fi s h e r A C S Si g m a - A l d r i c h Fo r m D a t e : Mi k e M c N a m a r a De a n K i t c h e n D APPENDIX D Raw Production Data Figure 1. Facility Schematic Raw Production Data EMPACT Flue Gas Analysis Chain of Custody Fa c i l i t y : St a c k I d e n t i f i c a t i o n : Es t i m a t e d M o i s t u r e , p e r c e n t a: D i s t a n c e u p s t r e a m f r o m n e x t d i s t u r b a n c e , i n c h e s b : D i s t a n c e d o w n s t r e a m f r o m l a s t d i s t u r b a n c e , i n c h e s Re f o r m e r U n i t ap p r o x . 5 5 " 14 5 " 55 . 1 2 5 " Ty p e : Nu m b e r o f P o r t s Pr o c e s s Ty p e : Co n t r o l U n i t 5ap p o x . 7 5 " W: S t a c k I n s i d e W i d t h , i n c h e s 3, 9 0 0 Es t i m a t e d T e m p e r a t u r e , oF Es t i m a t e d V e l o c i t y , f p m 66 . 2 5 " L: S t a c k I n s i d e L e n g t h , i n c h e s Fi g u r e 1 . F a c i l i t y S c h e m a t i c R e p r e s e n t a t i o n , P i t m a n F a r m s 3 5 . 7 m m B t u / h r B o i l e r L Li n d e G a s , N o r t h S a l t L a k e , U T 14 - 1 7 % 32 5 g: D i s t a n c e o f S a m p l e L e v e l t o G r o u n d , f e e t a g b W E APPENDIX E Equipment Calibrations and Gas Certifications Calibration of the console dry gas meter(s), pitot tubes, nozzles diameters, and temperature sensors were carried out in accordance with the procedures outlined in the Quality Assurance Handbook. The appropriate calibration data are presented in the following pages. The nozzle calibrations are recorded on the first page of the field data sheets. Figure 2. Schematic of Method 5/202 Sampling Train Figure 3. Schematic of Gas Analyzer Sampling Train Sample Box Temperature Sensor Calibration Pre-test and Post-test Dry Gas Meter Calibration Data Forms Type-S Pitot Tube Inspection Data Meter Box Calibration Data and Calculation Forms Gas Calibration Certifications Fi g u r e 2. Sc h e m a t i c of Me t h o d 5/ 2 0 2 Sa m p l i n g Tr a i n Fi g u r e 3 . S c h e m a t i c o f G a s A n a l y z e r S a m p l i n g T r a i n . Me s h Fi l t e r St a c k W a l l Sa m p l e P r o b e He a t e d S a m p l e L i n e Bi a s V a l v e Bi a s L i n e Sa m p l e L i n e Ca l i b r a t i o n Ga s e s Ca l i b r a t i o n Ga s L i n e s An a l y z e r An a l y z e r An a l y z e r An a l y z e r Fl o w m e t e r s By -Pa s s Fl o w m e t e r Sa m p l e E x h a u s t Va l v e Va l v e Sa m p l e d Ga s Ma n i f o l d Ex h a u s t Da t a A q u i s i t i o n Sy s t e m Sa m p l e Pu m p Wa t e r Pe r i s t a l i c Pu m p Pe l t i e r C o o l e r Date:1/5/23 Calibrator:Reference: Temperature Temperature Source Difference (Medium)(oF) Water 1 Water 1 Water 0 Water 1 Water 0 Water 0 Water 0 Water 0 Water 1 Water -1 Water -1 Water 0 Water -1 Water 0 Water -1 Water 0 Water 0 Water 0 Water 0 Water 0 Water 0 Water 0 Water 0 Water 0 Water 0 Water 0 Water 1 Water -2 Water 0 Water -1 Water 0 Water 0 Water 1 Water -1 Water 1 Water 0 Water 0 Water 0 Water 1 Water -2 Water 0 Water -1 Water 0 Water -2 Water 0 Water -1 Water 0 Water -1 202 33 33 Impinger Out K 33 33 204 203 33 34 Impinger Out J Impinger Out H Impinger Out I 33 202 33 203 33 204 33 204 204 204 33 G H Oven (3)33 33 204 204 Oven (4)33 204 Oven 33 33 204 204 Oven 33 33 33 204 204 Oven (3) A 205204 33 Oven (3)33 34 Oven (4) Thermocouple Location 204 205 Impinger Out F 33 33 203 204 204 204 204 204 204 33 33 Impinger Out G 204 204 Oven (3)32 204 204 33 32 204Oven (4) 204 Impinger Out D 33 34 204 203 Impinger Out E 33 34 204 204 202 33 33 204Impinger Out B Impinger Out C 33 33 204 204 203 Impinger Out A 33 34 204 Oven (3) Oven (4) TETCO Sample Box Temperature Sensor Calibration B C 204 203 33 32 33 33 204 33 34 Mike McNamara Omega CL3512A Unit ID Reference (oF) Sensor (oF) Temperature 33 D E Oven 33 33 204 204F Oven (4) ME T H O D 5 D R Y G A S M E T E R C A L I B R A T I O N U S I N G C R I T I C A L O R I F I C E S 1) Se l e c t t h r e e c r i t i c a l o r i f i c e s t o c a l i b r a t e t h e d r y g a s m e t e r w h i c h b r a c k e t t h e e x p e c t e d o p e r a t i n g r a n g e . 2) Re c o r d b a r o m e t r i c p r e s s u r e b e f o r e a n d a f t e r c a l i b r a t i o n p r o c e d u r e . 3) Ru n a t t e s t e d v a c u u m ( f r o m O r i f i c e C a l i b r a t i o n R e p o r t ) , f o r a p e r i o d o f t i m e ne c e s s a r y t o a c h i e v e a m i n i m u m t o t a l v o l u m e o f 5 c u b i c f e e t . 4) Re c o r d d a t a a n d i n f o r m a t i o n i n t h e GR E E N c e l l s , Y E L L O W c e l l s a r e c a l c u l a t e d . TE C H N I C I A N : IN I T I A L FI N A L AV G ( P ba r ) DA T E : 12 / 1 6 / 2 0 2 2 ME T E R S E R I A L # : 30 0 3 1 5 BA R O M E T R I C P R E S S U R E ( i n H g ) : 25 . 6 5 25 . 6 5 25 . 6 5 IF Y V A R I A T I O N E X C E E D S 2 . 0 0 % , ME T E R P A R T # : Co n s o l e 3 CR I T I C A L O R I F I C E S E T S E R I A L # : 14 5 3 S EQ U I P M E N T I D # : OR I F I C E S H O U L D B E R E C A L I B R A T E D K' TE S T E D TE M P E R A T U R E S ° F EL A P S E D FA C T O R VA C U U M DG M R E A D I N G S ( F T 3) AM B I E N T DG M I N L E T DG M O U T L E T DG M TI M E ( M I N ) DG M DH (1 ) (2 ) (3 ) Y OR I F I C E # RU N # (A V G ) (i n H g ) IN I T I A L FI N A L NE T ( V m) IN I T I A L FI N A L IN I T I A L FI N A L AV G q (i n H 2O) Vm ( S T D ) Vcr ( S T D ) Y VA R I A T I O N ( % ) DH@ 1 0. 8 1 3 7 10 58 . 3 8 1 63 . 4 1 4 5. 0 3 3 71 78 81 75 76 77 . 5 4. 7 5 2. 9 0 4. 2 7 4 5 4. 3 0 3 5 1. 0 0 7 1. 6 8 8 2 0. 8 1 3 7 10 63 . 4 1 4 68 . 4 7 0 5. 0 5 6 71 80 82 75 75 78 . 0 4. 7 5 2. 9 0 4. 2 9 0 0 4. 3 0 3 5 1. 0 0 3 1. 6 8 6 3 0. 8 1 3 7 10 68 . 4 7 0 73 . 5 3 6 5. 0 6 6 71 81 83 75 76 78 . 8 4. 7 5 2. 9 0 4. 2 9 2 5 4. 3 0 3 5 1. 0 0 3 1. 6 8 4 AV G = 1. 0 0 4 0. 0 9 1 0. 5 3 1 7 12 41 . 2 6 7 46 . 2 8 1 5. 0 1 4 70 76 77 72 72 74 . 3 7. 2 5 1. 2 5 4. 2 6 4 1 4. 2 9 6 2 1. 0 0 8 1. 7 0 3 2 0. 5 3 1 7 12 46 . 2 8 1 53 . 0 2 8 6. 7 4 7 70 77 79 72 74 75 . 5 9. 7 5 1. 2 5 5. 7 2 4 6 5. 7 7 7 6 1. 0 0 9 1. 6 9 9 3 0. 5 3 1 7 12 53 . 0 2 8 58 . 0 5 8 5. 0 3 0 70 78 79 74 74 76 . 3 7. 2 5 1. 2 5 4. 2 6 1 8 4. 2 9 6 2 1. 0 0 8 1. 6 9 7 AV G = 1. 0 0 8 0. 5 0 1 0. 3 3 0 7 13 73 . 6 4 2 78 . 6 6 0 5. 0 1 8 73 79 78 76 76 77 . 3 11 . 5 0 0. 4 5 4. 2 3 4 0 4. 2 2 6 5 0. 9 9 8 1. 5 8 1 2 0. 3 3 0 7 13 78 . 6 6 0 83 . 6 8 3 5. 0 2 3 73 78 78 76 76 77 . 0 11 . 5 0 0. 4 5 4. 2 4 0 2 4. 2 2 6 5 0. 9 9 7 1. 5 8 2 3 0. 3 3 0 7 13 83 . 6 8 3 88 . 7 1 0 5. 0 2 7 73 79 78 78 76 77 . 8 11 . 5 0 0. 4 5 4. 2 3 7 6 4. 2 2 6 5 0. 9 9 7 1. 5 8 0 AV G = 0. 9 9 7 -0 . 5 8 AV E R A G E D R Y G A S M E T E R C A L I B R A T I O N F A C T O R , Y = 1. 0 0 3 AV E R A G E DH@ = 1. 6 5 5 (1 ) = Ne t v o l u m e o f g a s s a m p l e p a s s e d t h r o u g h D G M , c o r r e c t e d t o s t a n d a r d c o n d i t i o n s K1 = 17 . 6 4 oR/ i n . H g ( E n g l i s h ) , 0 . 3 8 5 8 oK/ m m H g ( M e t r i c ) Tm = Ab s o l u t e D G M a v g . t e m p e r a t u r e ( oR - E n g l i s h , o K - M e t r i c ) DH@ = 0. 7 5 q DH V m(s t d ) Vcr (s t d ) V m (2 ) = Vo l u m e o f g a s s a m p l e p a s s e d t h r o u g h t h e c r i t i c a l o r i f i c e , c o r r e c t e d t o s t a n d a r d c o n d i t i o n s Tam b = Ab s o l u t e a m b i e n t t e m p e r a t u r e ( oR - E n g l i s h , o K - M e t r i c ) Av e r a g e K ' f a c t o r f r o m C r i t i c a l O r i f i c e C a l i b r a t i o n RE F E R E N C E IN OU T (3 ) = DG M c a l i b r a t i o n f a c t o r 32 33 32 62 63 63 20 4 20 5 20 5 TE M P E R A T U R E S E N S O R S oF 20 2 3 P r e - C a l i b r a t i o n Co n s o l e # 3 30 19 12 R K i t c h e n EN V I R O N M E N T A L S U P P L Y C O M P A N Y US I N G T H E C R I T I C A L O R I F I C E S A S C A L I B R A T I O N S T A N D A R D S : Th e f o l l o w i n g e q u a t i o n s a r e u s e d t o c a l c u l a t e t h e s t a n d a r d v o l u m e s o f a i r p a s s e d t h r o u g h t h e D G M , V m (s t d ) , a n d t h e c r i t i c a l o r i f i c e , Vcr (s t d ) , a n d t h e D G M c a l i b r a t i o n f a c t o r , Y . T h e s e e q u a t i o n s a r e a u t o m a t i c a l l y c a l c u l a t e d i n t h e s p r e a d s h e e t a b o v e . ( )2 ( ) ME T H O D 5 D R Y G A S M E T E R C A L I B R A T I O N U S I N G C R I T I C A L O R I F I C E S 1) Se l e c t t h r e e c r i t i c a l o r i f i c e s t o c a l i b r a t e t h e d r y g a s m e t e r w h i c h b r a c k e t t h e e x p e c t e d o p e r a t i n g r a n g e . 2) Re c o r d b a r o m e t r i c p r e s s u r e b e f o r e a n d a f t e r c a l i b r a t i o n p r o c e d u r e . 3) Ru n a t t e s t e d v a c u u m ( f r o m O r i f i c e C a l i b r a t i o n R e p o r t ) , f o r a p e r i o d o f t i m e ne c e s s a r y t o a c h i e v e a m i n i m u m t o t a l v o l u m e o f 5 c u b i c f e e t . 4) Re c o r d d a t a a n d i n f o r m a t i o n i n t h e GR E E N c e l l s , Y E L L O W c e l l s a r e c a l c u l a t e d . TE C H N I C I A N : IN I T I A L FI N A L AV G ( P ba r ) DA T E : 08 / 3 1 / 2 3 ME T E R S E R I A L # : 30 0 3 1 5 BA R O M E T R I C P R E S S U R E ( i n H g ) : 25 . 3 5 25 . 3 5 25 . 3 5 IF Y V A R I A T I O N E X C E E D S 2 . 0 0 % , ME T E R P A R T # : Co n s o l e 3 CR I T I C A L O R I F I C E S E T S E R I A L # : 14 5 3 S EQ U I P M E N T I D # : OR I F I C E S H O U L D B E R E C A L I B R A T E D K' TE S T E D TE M P E R A T U R E S ° F EL A P S E D FA C T O R VA C U U M DG M R E A D I N G S ( F T 3) AM B I E N T DG M I N L E T DG M O U T L E T DG M TI M E ( M I N ) DG M DH (1 ) (2 ) (3 ) Y OR I F I C E # RU N # (A V G ) (i n H g ) IN I T I A L FI N A L NE T ( V m) IN I T I A L FI N A L IN I T I A L FI N A L AV G q (i n H 2O) Vm ( S T D ) Vcr ( S T D ) Y VA R I A T I O N ( % ) DH@ 1 0. 6 8 0 8 11 50 9 . 4 5 1 51 4 . 4 6 7 5. 0 1 6 74 73 76 74 75 74 . 5 5. 7 5 1. 9 5 4. 2 2 2 7 4. 2 9 5 6 1. 0 1 7 1. 6 5 5 2 0. 6 8 0 8 11 51 4 . 4 6 7 51 9 . 6 7 6 5. 2 0 9 74 75 77 74 80 76 . 5 6. 0 0 1. 9 5 4. 3 6 8 8 4. 4 8 2 3 1. 0 2 6 1. 6 4 8 3 0. 6 8 0 8 11 51 9 . 6 7 6 52 4 . 8 9 8 5. 2 2 2 74 78 80 81 84 80 . 8 6. 0 0 1. 9 5 4. 3 4 5 3 4. 4 8 2 3 1. 0 3 2 1. 6 3 5 AV G = 1. 0 2 5 0. 0 0 1 2 3 AV G = 1 2 3 AV G = AV E R A G E D R Y G A S M E T E R C A L I B R A T I O N F A C T O R , Y = 1. 0 2 5 AV E R A G E DH@ = 1. 6 4 6 (1 ) = Ne t v o l u m e o f g a s s a m p l e p a s s e d t h r o u g h D G M , c o r r e c t e d t o s t a n d a r d c o n d i t i o n s K1 = 17 . 6 4 oR/ i n . H g ( E n g l i s h ) , 0 . 3 8 5 8 oK/ m m H g ( M e t r i c ) Tm = Ab s o l u t e D G M a v g . t e m p e r a t u r e ( oR - E n g l i s h , o K - M e t r i c ) DH@ = 0. 7 5 q DH V m(s t d ) Vcr (s t d ) V m (2 ) = Vo l u m e o f g a s s a m p l e p a s s e d t h r o u g h t h e c r i t i c a l o r i f i c e , c o r r e c t e d t o s t a n d a r d c o n d i t i o n s Tam b = Ab s o l u t e a m b i e n t t e m p e r a t u r e ( oR - E n g l i s h , o K - M e t r i c ) K' = Av e r a g e K ' f a c t o r f r o m C r i t i c a l O r i f i c e C a l i b r a t i o n RE F E R E N C E IN OU T (3 ) = DG M c a l i b r a t i o n f a c t o r TE M P E R A T U R E S E N S O R S oF Po s t C a l i b r a t i o n Li n d e J W e l l s Co n s o l e # 3 25 EN V I R O N M E N T A L S U P P L Y C O M P A N Y US I N G T H E C R I T I C A L O R I F I C E S A S C A L I B R A T I O N S T A N D A R D S : Th e f o l l o w i n g e q u a t i o n s a r e u s e d t o c a l c u l a t e t h e s t a n d a r d v o l u m e s o f a i r p a s s e d t h r o u g h t h e D G M , V m (s t d ) , a n d t h e c r i t i c a l o r i f i c e , V cr (s t d ) , a n d t h e D G M c a l i b r a t i o n f a c t o r , Y . T h e s e e q u a t i o n s a r e a u t o m a t i c a l l y c a l c u l a t e d i n t h e s p r e a d s h e e t a b o v e . ( )2 ( ) Type S Pitot Tube Inspection Data Date:Pitot Tube Identification: Technician: Dt=0.375 Is PA = PB ? Is 1.05 • Dt  PA & PB  1.50 • Dt ? PA = 0.474 PB =0.474 a1 < 10o a1 = o a2 < 10o a2 = o b1 < 5o b1 = o b2 < 5o b2 = o Z  0.125 in.Z = in. W W  0.03125 in.W = in. W > 3 inches W = in. Z > 3/4 inch Z = in. Y ≥ 3 inches Y = in. The pitot tube meets the specifications for a calibration factor of 0.84?Yes Reference: Temperature Source Reference Sensor (Medium)(oF)(oF) Probe AIR 71 71 AIR 70 71 ICE WATER 33 34 BOIL WATER 204 205 SILICONE OIL Heat Check 248 Temperature Sensor Calibration 1 1 1Stack Omega CL3512A Probe Yes Yes Continuity Check Temperature Temperature Difference (oF) 0 in. in. Yes Yes 0.002 4.75 1 3 1/4 1/3/2023 60 G-2 M. McNamara in. 0.012 1 0 1 0 b2 b1 B A w Dt PA PB Type S Pitot Tube Inspection Data Date:Pitot Tube Identification: Technician: Dt=0.375 Is PA = PB ? Is 1.05 • Dt  PA & PB  1.50 • Dt ? PA = 0.454 PB =0.454 a1 < 10o a1 = o a2 < 10o a2 = o b1 < 5o b1 = o b2 < 5o b2 = o Z  0.125 in.Z = in. W W  0.03125 in.W = in. W > 3 inches W = in. Z > 3/4 inch Z = in. Y ≥ 3 inches Y = in. The pitot tube meets the specifications for a calibration factor of 0.84?Yes Reference: Temperature Source Reference Sensor (Medium)(oF)(oF) Probe AIR 69 70 AIR 70 70 ICE WATER 33 33 BOIL WATER 204 204 SILICONE OIL Heat Check 248 Temperature Sensor Calibration 0 0 0Stack Omega CL3512A Probe Yes Yes Continuity Check Temperature Temperature Difference (oF) 1 in. in. Yes Yes 0.002 5 1.5 3 3/4 1/3/2023 60 G-1 M. McNamara in. 0.012 1 1 2 2 b2 b1 B A w Dt PA PB TETCO Themocouple Meter Reading Calibration Date:1/6/2023 Calibrator:Reference:Omega CL3512A Temperature Temperature Source Sensor Difference (Medium)(oF)(oF) Water 33 1 Water 206 0 Water 32 0 Water 206 0 Water 32 0 Water 206 0 Water 32 0 Water 205 -1 Water 32 0 Water 205 -1 Water 32 0 Water 205 0 Water 32 0 Water 205 0 Water 32 -1 Water 204 -1 Water 33 31 -2 Water 205 204 -1 Water 33 31 -2 Water 205 204 -1 Water 33 33 0 Water 205 206 1 Water 33 34 1 Water 205 206 1 Water 33 34 1 Water 205 206 1 Water 33 34 1 Water 205 206 1 Water 34 1 Water 206 1 Water 33 0 Water 205 0 Water 33 33 0 Water 206 206 0 Water 33 32 -1 Water 206 205 -1 Water 33 32 -1 Water 206 206 0 Water 33 31 -2 Water 206 205 -1 Water 31 -2 Water 205 -1 Water 31 -2 Water 205 -1 Water 34 1 Water 205 0 Water 33 33 0 Water 205 205 0 Water 33 33 0 Water 205 204 -1 Water 33 34 1 Water 205 205 0 Water 33 33 0 Water 205 205 0 Water 33 0 Water 205 0 Water 35 2 Water 206 1 Temperature 32 32 205 33 M. McNamara Thermocouple Meter ID Reference (oF) Dial Position #1 7 6 1 205 206 32 33 7 8 5 6 32 206 205 33 205 5 33 1 33 205 1 2 3 4 206 #2 33 205 #3 1 2 3 7 4 5 6 2 3 4 #4 2 3 4 5 6 7 205 33 205 32 206 32 206 32 206 33 206 TETCO Themocouple Meter Reading Calibration Date:1/6/2023 Calibrator:Reference:Omega CL3512A Temperature Temperature Source Sensor Difference (Medium)(oF)(oF) Water 33 0 Water 206 0 Water 33 32 -1 Water 206 205 -1 Water 33 32 -1 Water 206 204 -2 Water 33 32 -1 Water 206 205 -1 Water 33 32 -1 Water 206 205 -1 Water 33 32 -1 Water 205 206 1 Water 33 0 Water 204 -10 Water 35 2 Water 203 -2 Water 33 35 2 Water 205 205 0 Water 33 34 1 Water 205 205 0 Water 33 33 0 Water 205 204 -1 Water 33 33 0 Water 205 203 -2 Water 33 33 0 Water 205 204 -1 Water 32 -1 Water 204 -1 Water 32 -1 Water 204 -1 Water 33 0 Water 204 -1 Water 33 34 1 Water 205 206 1 Water 33 34 1 Water 205 205 0 Water 33 33 0 Water 205 205 0 Water 33 33 0 Water 205 205 0 Water 33 0 Water 205 0 Water 33 33 0 Water 205 205 0 Water 32 -1 Water 205 0 Water 32 -1 Water 205 0 Water 33 31 -2 Water 205 205 0 Water 33 31 -2 Water 205 205 0 Water 33 32 -1 Water 205 206 1 Water 33 32 -1 Water 205 206 1 Water 33 0 Water 206 1 Water 33 0 Water 205 0 Water 32 1 Water 205 0 Water 33 33 0 Thermocouple Meter ID Dial Position Temperature Reference 2 6 205 33 206 205 33 M. McNamara (oF) 7 5 4 3 2 6 205 1 33 Shop Meter 1 33 205 2 7 5 33 8 33 6 #8 205 205 #7 1 33 205 #6 1 33 8 3 4 5 33 7 4 7 3 2 1 #5 33 33 205 4 3 5 2 6 205 205 33 205 TETCO Themocouple Meter Reading Calibration Water 205 204 1 Water 33 32 1 Water 205 205 0 Water 33 33 0 Water 205 205 0 Water 33 34 -1 Water 205 205 0 Water 33 0 Water 205 0 Water 33 33 0 Water 205 205 0 Water 33 34 -1 Water 205 206 -1 Water 34 -1 Water 204 1 Probe Water 31 2 CONSOLE #6 Water 203 2 Oven Water 33 34 -1 Water 205 206 -1 Probe Water 31 2 #1 LINE Water 203 2 CONTROLLER Oven Water 33 32 1 Water 205 203 2 Shop Meter 2 3 4 7 8 9 33 205 5 6 33 205 33 205 205 33 F APPENDIX F Protocol and Related Correspondences COMPLIANCE EMISSION TEST PROTOCOL LINDE GAS NORTH AMERICA, LLC REFORMER UNIT POLLUTANTS TO BE TESTED: PARTICULATE MATTER (PM) CONDENSABLE PARTICULATE MATTER (CPM) NITROGEN OXIDES (NOx) SULFUR DIOXIDE (SO2) CARBON MONOXIDE (CO) Contractor: TETCO 391 East 620 South American Fork, UT 84003 Phone: 801 492-9106 • Fax: 801 492-9107 Introduction Project Organization and Responsibility The following personnel and the testing contractor are presently anticipated to be involved in the testing program. The Utah Division of Air Quality (DAQ) and EPA may have their own personnel to observe all phases including the process. Company Linde Gas 685 South Chevron Way North Salt Lake City, UT 84054 Contacts Alina Pak 385 243-5748 Michelle Fox 801 389-7256 Test Contractor: TETCO 391 East 620 South American Fork, UT 84003 Dean Kitchen 801 492-9106 Facility Location and Description Linde Gas operates a hydrogen production plant located in North Salt Lake City. The plant consists of a single Steam Methane Reformer (SMR) and associated equipment that can provide up to 28.5 MMScfd of 99.9% pure hydrogen. The plant employs steam methane reforming to convert feedstock gas (refinery gases and/or natural gas) plus steam to pure hydrogen. Test Objective This test project is being conducted to measure the particulate matter (PM), NOx, SO2, CO, and condensable emissions from the Reformer exhaust stack. The PM, NOx, and CO emissions will be measured as directed in the facility Approval Order (DAQE-AN130910007-20), dated August 5, 2020. The SO2 emissions will be measured to gather information for inventory purposes. In addition to the PM, condensable, NOx, SO2, and CO testing on the Reformer exhaust, samples will be taken from the hydrogen purification unit purge gas to determine the gas composition, heat content, and hydrogen sulfide content. Test Dates It is planned to complete the test project August 28-29, 2023. The test crew will mobilize and set up the testing equipment on August 28th. Testing is anticipated to begin the morning of August 29th and continue until all samplings have been completed. If necessary, a pretest meeting may be scheduled by DAQ or Linde Gas. Test Procedures Test Method Identification Three test runs will be completed on the Reformer exhaust stack. Testing will be for PM, SO2, NOx, CO, and condensable emissions according to EPA Methods 5, 6C, 7E, 6C, 10, and 202 respectfully. The Method 5 and Method 202 testing will run concurrent with the NOx, SO2, and CO analyzers and will provide the necessary stack flow rate measurements for calculating the pollutant emission rates. Specific procedures are as follows: EPA Method 5 1. The sample location complies with the requirements of EPA Method 1. The inside dimensions of the rectangular stack are 54.125 inches by 66.25 inches. The equivalent diameter is calculated at 59.577 inches for purposes of calculating upstream and downstream disturbance distances. Five sample ports are located approximately 60 feet (12.1 diameters) downstream and 13.9 feet (2.8 diameters) upstream from the nearest flow disturbances. The number of sample points will be 20, or 25. 2. EPA Method 2 will be used to determine the gas stream velocity. Type “S” pitot tubes will be used with a Cp factor of 0.84. Dual inclined/vertical manometers with graduations of 0.01 inches of water will be used. If the measured pressure differential is below 0.05 inches of water a more sensitive manometer will be used with graduation marks of 0.005 inches of water. Direction of gas flow will be checked for cyclonics prior to testing. 3. EPA Method 3A will be used to determine the gas stream dry molecular weight. 4. EPA Method 4 will be followed as part of Method 5 to determine the gas stream moisture content. 5. Particulate matter will be measured according to EPA Method 5. Test run duration will be at least 60 minutes. 6. The glass fiber filters that will be used meet the requirements specified in EPA Method 5. 7. Condensable emissions will be measured according to EPA Method 202 and will run simultaneously with EPA Method 5. 8. The probe liners will be 316 grade stainless steel, borosilicate glass or quartz. 9. The barometric pressure will be measured with a barometer which is periodically checked against a mercury barometer. The barometer will be checked prior to testing to assure an accurate barometric pressure. 10. Calibration data is provided with this protocol. Equipment calibrations that fall past due prior to the test dates will be recalibrated prior to being used. Any calibrations not included with this protocol, such as new or additional equipment, will be made available to DAQ representatives upon request. 11. Any necessary preparation and clean-up by the contractor will be performed in the contractor's sampling trailer or a clean area on Linde Gas property. EPA Methods 6C, 7E, and 10 1. Gaseous analyzers will be used to measure the NOx, SO2, and CO levels simultaneously with mass flow measurements. The gas analyzer sampling train will consist of the following: an in-stack glass fiber filter, heated stainless steel probe, heated Teflon sampling line to water removal system, water removal system, Teflon transport lines, gas manifold, and out of stack Teflon filter after the gas manifold but prior to analyzer. The sampling train is built such that the sampled gas only contacts inert materials, i.e., Teflon, stainless steel, and glass. EPA Protocol 1 gases will be used as standards with dry nitrogen as a zero gas. 2. A data logger will record gas concentration averages on at least 60-second averages. Only valid gas analyzer data will be used for emission calculations. Before commencement or resuming testing (i.e., after port change) the gas analyzers will be allowed to stabilize as per applicable test method system requirements. 3. Bias checks, calibration drift, zero drift, system response, and calibration error will follow the specified guidelines of EPA Methods 6C, 7E, and 10. 4. A stratification check will be performed prior to the test as required by Methods 6C, 7E, and 10. 5. It is planned to run the NOx analyzer on the 0-50 ppm range with a high-level calibration gas of approximately 45 ppm. The NOx analyzer is model CLA-510 Horiba Instruments, serial number 41679080031, manufactured in 2001. A NOx converter efficiency check will be conducted each day testing occurs. 6. It is planned to run the SO2 analyzer on the 0-50 ppm range with a high-level calibration gas of approximately 45 ppm. The SO2 analyzer is a Rosemount, model 890, serial number 890149300000, manufactured in 1997. 7. It is planned to run the CO analyzer on the 0-25 ppm range with a high-level calibration gas of approximately 22 ppm. The CO analyzer is model VIA-510 Horiba Instruments, serial number 43223490033, manufactured in 1995. Hydrogen Purge Gas The hydrogen purge gas heat content and composition will be determined with grab bag samples taken by canister, or Tedlar bag, and sent for analysis using ASTM Method D1945. Hydrogen sulfide levels will be measured from the same canisters, or Tedlar bags, and analyzed as per ASTM Method D5504. Samples will be sent to Empact Analytical Systems (Brighton, CO) for analysis. Additional Procedures 1. All current calibration data is submitted with this protocol. Any calibration that is not current will be re-calibrated prior to the test dates. 2. Verbal gaseous results for NOx, CO, and SO2 will be reported to Linde Gas on site. PM and condensable test results will be reported to Linde Gas within 10-days following completion of the test. Hydrogen purge gas sample results will be reported to Linde Gas within 25-days of the test project. The written reports will be submitted by TETCO to Linde Gas within 30 days following completion of the tests. 3. Linde Gas will submit the final report to DAQ within 60-days following the completion of the test. Process Description Description of Process In a closed system inside the Steam Methane Reformer (SMR), desulfurized feed gas is mixed with process steam which is then fed to catalyst tubes located in a downfired, downflow reformer furnace. The catalyst tubes are filled with nickel catalyst. The reaction to the catalyst is at equilibrium which is limited based on furnace outlet temperature and pressure. The reaction does not produce air emissions and is endothermic. The reaction does require additional heat, supplied by downward firing Ultra Low-NOx design burners located at the top of the furnace. The burners provide indirect heat to the process. The burner exhaust does not directly contact the reaction gases. These burners are the only source of SMR air emissions. The rest of the process equipment performs two major functions. A series of heat exchangers, boilers, and a steam drum recover SMR furnace heat to generate process steam and steam for export. At the end of the process, a recovery unit called a Pressure Swing Adsorption Unit (PSA) uses adsorbent beds and cyclic changes in pressure to separate SMR reaction products and provide pure export hydrogen from the top of the beds and a waste gas from the bottom of the beds. This waste gas, also referred to as PSA off-gas or tailgas, is circulated back to the SMR burners and provides most of the plant fuel requirements. Additional fuel for the SMR furnace comes from local natural gas. Refinery fuel gas from a refinery can be used as a back-up if the H2S content of that fuel is low enough to allow proper burner operation. Since the PSA off-gas is consumed in the furnace, the entire process generates few waste streams. During emergency events and startup/showdown, the process gases are routed to a flare and destroyed. Operational Data and Instrumentation All operational and instrumentation data will be made available to state agency personnel. Applicable production records will be included and submitted with the report. A chart showing the amount of hydrogen produced during the test project will be included in the test report. Safety Personal Protection Equipment Minimum personal protection equipment (PPE) required at Linde Gas shall be: Steel toed boots Safety glasses Hard hat Fire retardant clothes 4-gas Monitor Potential Hazards Moving Equipment Yes Hot Equipment Yes Chemical Yes Other None Appendix A Calibration Data Any equipment or calibration gases that fall past due prior to the test date will be recalibrated or replaced before being used. Calibration sheets of any recalibrated or replaced items will be provided at the time of the test and will be included in the test report. METHOD 5 DRY GAS METER CALIBRATION USING CRITICAL ORIFICES 1) Select three critical orifices to calibrate the dry gas meter which bracket the expected operating range. 2) Record barometric pressure before and after calibration procedure. 3) Run at tested vacuum (from Orifice Calibration Report), for a period of time necessary to achieve a minimum total volume of 5 cubic feet. 4) Record data and information in the GREEN cells, YELLOW cells are calculated. TECHNICIAN:INITIAL FINAL AVG (Pbar) DATE:12/16/2022 METER SERIAL #:300315 BAROMETRIC PRESSURE (in Hg):25.65 25.65 25.65 IF Y VARIATION EXCEEDS 2.00%, METER PART #:Console 3 CRITICAL ORIFICE SET SERIAL #:1453S EQUIPMENT ID #:ORIFICE SHOULD BE RECALIBRATED K'TESTED TEMPERATURES °F ELAPSED FACTOR VACUUM DGM READINGS (FT3)AMBIENT DGM INLET DGM OUTLET DGM TIME (MIN)DGM DH (1)(2)(3)Y ORIFICE #RUN #(AVG)(in Hg)INITIAL FINAL NET (Vm)INITIAL FINAL INITIAL FINAL AVG q (in H2O)Vm (STD)Vcr (STD)Y VARIATION (%)DH@ 1 0.8137 10 58.381 63.414 5.033 71 78 81 75 76 77.5 4.75 2.90 4.2745 4.3035 1.007 1.688 2 0.8137 10 63.414 68.470 5.056 71 80 82 75 75 78.0 4.75 2.90 4.2900 4.3035 1.003 1.686 3 0.8137 10 68.470 73.536 5.066 71 81 83 75 76 78.8 4.75 2.90 4.2925 4.3035 1.003 1.684 AVG = 1.004 0.09 1 0.5317 12 41.267 46.281 5.014 70 76 77 72 72 74.3 7.25 1.25 4.2641 4.2962 1.008 1.703 2 0.5317 12 46.281 53.028 6.747 70 77 79 72 74 75.5 9.75 1.25 5.7246 5.7776 1.009 1.699 3 0.5317 12 53.028 58.058 5.030 70 78 79 74 74 76.3 7.25 1.25 4.2618 4.2962 1.008 1.697 AVG = 1.008 0.50 1 0.3307 13 73.642 78.660 5.018 73 79 78 76 76 77.3 11.50 0.45 4.2340 4.2265 0.998 1.581 2 0.3307 13 78.660 83.683 5.023 73 78 78 76 76 77.0 11.50 0.45 4.2402 4.2265 0.997 1.582 3 0.3307 13 83.683 88.710 5.027 73 79 78 78 76 77.8 11.50 0.45 4.2376 4.2265 0.997 1.580 AVG = 0.997 -0.58 AVERAGE DRY GAS METER CALIBRATION FACTOR, Y = 1.003 AVERAGE DH@ = 1.655 (1)=Net volume of gas sample passed through DGM, corrected to standard conditions K1 =17.64 oR/in. Hg (English), 0.3858 oK/mm Hg (Metric) Tm =Absolute DGM avg. temperature (oR - English, oK - Metric) DH@ = 0.75 q DH Vm(std) Vcr(std) Vm (2)=Volume of gas sample passed through the critical orifice, corrected to standard conditions Tamb =Absolute ambient temperature (oR - English, oK - Metric) Average K' factor from Critical Orifice Calibration REFERENCE IN OUT (3)=DGM calibration factor 32 33 32 62 63 63 204 205 205 TEMPERATURE SENSORS oF 2023 Pre-Calibration Console #3 30 19 12 R Kitchen ENVIRONMENTAL SUPPLY COMPANY USING THE CRITICAL ORIFICES AS CALIBRATION STANDARDS: The following equations are used to calculate the standard volumes of air passed through the DGM, V m (std), and the critical orifice, Vcr (std), and the DGM calibration factor, Y. These equations are automatically calculated in the spreadsheet above. ()2 () Type S Pitot Tube Inspection Data Date:Pitot Tube Identification: Technician: Dt=0.375 Is PA = PB ? Is 1.05 • Dt  PA & PB  1.50 • Dt ? PA = 0.454 PB =0.454 a1 < 10o a1 = o a2 < 10o a2 = o b1 < 5o b1 = o b2 < 5o b2 = o Z  0.125 in.Z = in. W W  0.03125 in.W = in. W > 3 inches W = in. Z > 3/4 inch Z = in. Y ≥ 3 inches Y = in. The pitot tube meets the specifications for a calibration factor of 0.84?Yes Reference: Temperature Source Reference Sensor (Medium)(oF)(oF) Probe AIR 69 70 AIR 70 70 ICE WATER 33 33 BOIL WATER 204 204 SILICONE OIL Heat Check 248 Temperature Sensor Calibration 0 0 0Stack Omega CL3512A Probe Yes Yes Continuity Check Temperature Temperature Difference (oF) 1 in. in. Yes Yes 0.002 5 1.5 3 3/4 1/3/2023 60 G-1 M. McNamara in. 0.012 1 1 2 2 b2 b1 B A w Dt PA PB Date:1/5/23 Calibrator:Reference: Temperature Temperature Source Difference (Medium)(oF) Water 1 Water 1 Water 0 Water 1 Water 0 Water 0 Water 0 Water 0 Water 1 Water -1 Water -1 Water 0 Water -1 Water 0 Water -1 Water 0 Water 0 Water 0 Water 0 Water 0 Water 0 Water 0 Water 0 Water 0 Water 0 Water 0 Water 1 Water -2 Water 0 Water -1 Water 0 Water 0 Water 1 Water -1 Water 1 Water 0 Water 0 Water 0 Water 1 Water -2 Water 0 Water -1 Water 0 Water -2 Water 0 Water -1 Water 0 Water -1 202 33 33 Impinger Out K 33 33 204 203 33 34 Impinger Out J Impinger Out H Impinger Out I 33 202 33 203 33 204 33 204 204 204 33 G H Oven (3)33 33 204 204 Oven (4)33 204 Oven 33 33 204 204 Oven 33 33 33 204 204 Oven (3) A 205204 33 Oven (3)33 34 Oven (4) Thermocouple Location 204 205 Impinger Out F 33 33 203 204 204 204 204 204 204 33 33 Impinger Out G 204 204 Oven (3)32 204 204 33 32 204Oven (4) 204 Impinger Out D 33 34 204 203 Impinger Out E 33 34 204 204 202 33 33 204Impinger Out B Impinger Out C 33 33 204 204 203 Impinger Out A 33 34 204 Oven (3) Oven (4) TETCO Sample Box Temperature Sensor Calibration B C 204 203 33 32 33 33 204 33 34 Mike McNamara Omega CL3512A Unit ID Reference (oF) Sensor (oF) Temperature 33 D E Oven 33 33 204 204F Oven (4) Balance Denver Instruments, Model A-250, SN B045284 Weights Used Denver Instruments Weight Set, SN 98-115146 Certified Weight Measured Weight Difference grams grams grams 0.1000 0.1000 0.0000 0.5000 0.5000 0.0000 1.0000 1.0000 0.0000 10.0000 10.0000 0.0000 50.0000 50.0000 0.0000 100.0000 100.0000 0.0000 120.0000 120.0000 0.0000 150.0000 149.9999 0.0001 Technician Michael McNamara TETCO Annual Balance Calibration Check Date 1/03/23 Airgas Specialty Gases Airgas USA, LLC an Air Liquide company 525 North Industrial Loop Road Tooele, UT 84074 Part Number: CERTIFICATE OF ANALYSIS Grade of Product: EPA Protocol E03Nl99E15A0PK1 Reference Number: Cylinder Number: CC495698 Cylinder Volume: Laboratory: 124 -Tooele (SAP) -UT Cylinder Pressure: PGVP Number: B72021 Valve Outlet: Gas Code: CO,NO,NOX,BALN. Certification Date: Expiration Date: Sep 15, 2024 Airgas.com 153-402210499-1 144.3 CF 2015 PSIG 660 Sep 15, 2021 Certification performed in accordance with "EPA Traceability Protocol for Assay and Certification of Gaseous Calibration Standards (May 2012)" document EPA 600/R-12/531, using the assay procedures listed. Analytical Methodology does not require correction for analytical interference. This cylinder has a total analytical uncertainty as stated below with a confidence level of 95%. There are no significant impurities which affect the use of this calibration mixture. All concentrations are on a mole/mole basis unless otherwise noted. D N t U Th' C I' d b I 100 . 0 7 0 0 se Is ;yin er eow PSIQ, I.e. . meQapascals. " -. .. '>-.,.. cccc ... --ANALITJCAI:;1IBSULT~'.: -"-"-------· ~---.::::~--~----:::-r--_--·-··--···-·· - Component , Requested Actual Protocol Total Relative Assay •• Concentration Concentration Method Uncertainty Dates NOX 4.500 PPM 4.668 PPM G1 +/-1.3% NIST Traceable 09/08/2021, 09/15/2021 CARBON MONOXIDE 4.500 PPM 4.385 PPM G1 +/-1.4% NIST Traceable 09/08/2021 NITRIC OXIDE 4.500 PPM 4.625 PPM G1 +/-1.2% NIST Traceable 09/08/2021, 09/15/2021 NITROGEN Balance CALIBRATION STANDARDS Type Lot ID Cylinder No Concentration Uncertainty Expiration Date NTRM 12062857 CC401933 9.82 PPM CARBON MONOXIDE/NITROGEN 1.0% Feb 12, 2024 PRM 12401 APEX1324267 5.00 PPM NITRIC OXIDE/NITROGEN 0.8% Dec 23, 2022 GMIS 08012126A KAL004291 5.08 PPM NITRIC OXIDE/NITROGEN 0.9% Apr27,2024 PRM 12401 APEX1324267-NOX 5.00 PPM NOx/NITROGEN 0.8% Dec 23, 2022 GMIS 08012126A KAL004291-NOX 5.08 PPM NOx/NITROGEN 0.9% Apr27,2024 The SRM, PRM or RGM noted above is only in reference to the GMIS used in the assay and not part of the analysis. ANALYTICAL EQUIPMENT Instrument/Make/Model Analytical Principle Last Multipoint Calibration Thermo 48i-TLE 1163640031 CO CO NDIR (Mason) Aug 17, 2021 Thermo 42i-LS 1123749327 NO Chemiluminescence (Mason) Aug 30, 2021 Thermo 42i-LS 1123749327 NOx Chemiluminescence (Mason) Aug 30, 2021 Triad Data Available Upon Request Page 1 of 153-402210499-1 as. an Air Liquide company CERTIFICATE OF ANALYSIS Grade of Product: EPA Protocol Part Number: E03Nl99E15A3631 Reference Number: Cylinder Number: EB0141000 Cylinder Volume: Laboratory: 124 -Tooele (SAP) -UT Cylinder Pressure: PGVP Number: 872021 Valve Outlet: Gas Code: CO,NO,NOX,BALN Certification Date: Expiration Date: Sep 14, 2024 Airgas Specialty Gases Airgas l,JSA, LLC 525 North Industrial Loop Road Tooele, UT 84074 Airgas.com 153-402211480-1 144.3 CF 2015 PSIG 660 Sep 14, 2021 Certification performed in accordance with "EPA Traceability Protocol for Assay and Certification of Gaseous Calibration Standards (May 2012)" document EPA 600/R-12/531, using the assay procedures listed. Analytical Methodology does not require correction for analytical interference. This cylinder has a total analytical uncertainty as stated below with a confidence level of 95%. There are no significant impurities which affect the use of this calibration mixture. All concentrations are on a mole/mole basis unless otherwise noted. C d b 1 Do Not Use This ;vlin er elow 00 osiq, i.e. 0.7 meqaoascals. ANALYTICAL RESULTS ···componem ,.t·--C•1wqffirsteu=~~Actua1 ·,·ProTocol . Total Relalive ------Ks~~~---~ Concentration Concentration Method Uncertainty Dates NOX 11.00 PPM 11.15 PPM G1 +/-1.2% NIST Traceable 09/07/2021, 09/14/2021 CARBON MONOXIDE 11.00 PPM 11.20 PPM G1 +/-1.2% NIST Traceable 09/07/2021 NITRIC OXIDE 11.00 PPM 11.12 PPM G1 +/-1.3% NIST Traceable 09/07/2021, 09/14/2021 NITROGEN Balance CALIBRATION STANDARDS Type Lot ID Cylinder No Concentration Uncertainty Expiration Date NTRM 12062857 CC401933 9.82 PPM CARBON MONOXIDE/NITROGEN 1.0% Feb 12, 2024 NTRM 12010210 AAL073499 10.04 PPM NITRIC OXIDE/NITROGEN 1.0% Oct 16, 2022 NTRM 12010507 KAL004854 20.00 PPM NITRIC OXIDE/NITROGEN 1.1% Feb 13, 2024 NTRM. 12010507 KAL004854-NOX 20.00 PPM NOx/NITROGEN 1.1% Feb 13, 2024 NTRM 12010210 AAL073499-NOX 10.04 PPM NOx/NITROGEN 1.0% Oct 16, 2022 ANALYTICAL EQUIPMENT Instrument/Make/Model Analytical Principle· Last Multipoint Calibration Thermo 48i-TLE 1163640031 CO CO NDIR (Mason) Aug 17, 2021 Thermo 42i-LS 11237 49327 NO Chemiluminescence (Mason) Aug qO, 2021 Thermo 42i-LS 1123749327 NOx Chemiluminescence (Mason) Aug 3Q, 2021 Triad Data Available Upon Request ~~ Page 1 of 153-402211480-1 . Making our world more productive DocNumber: 488688 Certificaw /ssuan~e Date: 07/28/2022 Linde Order Number: 72093085 Linde Gas & Equipment Inc. 5700 S. Alameda Street Los Angeles CA 90058 Tel: 323-585-2154 Fax: 714-542-6689 PGVP ID: F22022 Fill Date: 07/06/2022 Lot Number: 70086218703 Customer & Order Information LGEPKG SALT LAKE CITY UT H 6880 S 2300 E Part Number: NI C022.5MN2EAS Customer PO 'Number: 80096754 Cylinder Style & Outlet: AS CGA 660 SALT LAKE CITY UT84121-3183 I Cylinder Pressure and Volume: 2000 psig 140 ft3 Expiration Date: Cylinder Number: For Reference Only: 22.3 ppm 22.3 ppm Balance NOx 22.4ppm Certified Concentration 07/28/2025 CC3394 Carbon monoxide· Nitric oxide Nitrogen NIST Traceable Expanded Uncertainty ± 0.1 ppm ±0.2 ppm Certification Inf(Jrmation: Cerlification Date:07/28/2022 Term: 36 Months Expiration Date: 07/28/2025 ~- This cylinder was certified according to the 2012 EPA Traceability Protocol, Document#EPA-600/R-12/531, using Procedure G1. Uncertainty above is expressed as absolute expanded uncertainty at a level of confidence of approximately 95% with a coverage factor k = 2. Do Not'Use this Standard if Pressure is less than 100 PSIG. Analvtical Data: (R=Reference Standard, Z=Zero Gas, C=Gas CanciiJ~te) 1. Component: Carbon monoxide RequesteaConcentration: 22.5 ppm Certified Concentration: Instrument Used: Analytical Metl)~d:. · 22.3 ppm Horiba VIA-510 S/N 43627990042 NDIR Last Multipoint Calibratioh:' 06/27/2022 Reference Standard: Type/ Cylinder#: GMIS / CC707385 Concentration/ Uncertainty: 24.51 ppm ±0.04 ppm Expiration Date: 10/09/2027 Traceable to: SRM #/Sample# / Cylinder#: SRM 2635a / 58-E-34 / FF10666 SRM Concentration/ Uncertainty: 24.512 ppm/ ±0.029 ppm SRM Expiration Date: 03/28/2021 First Analysis Data: ;,,c"•t'·~,,~;·· 24.5 ~:~_c: ... ,.>c-.o~~~__'.l~,: •. ;=•,S~,:2,.:~1J.ndAn~,Y-~ta: _,_ .... ~ , .... J>ate'--•. ~ .. -... C: 22.3 Cone: 22.3 Z: O R: O C: · O Cone: 0 2. R: 24.6 Z: 0 Z: 0 C: 22.4 UOM: ppm Component: Nitric oxide Requested Coqcentration: 22.5 ppm Certified Concentration: 22.3 ppm C: 22.4 Cone: 22.4 R: o Z: O C: o Cone: 0 R: 24.5 Cone: 22.4 Z: o C: O R: o Cone: 0 Mean Test Assay: 22.3 ppm UOM: ppm Mean Test Assay: Reference Standard: Type/ Cylinder#: GMIS / DT0037183 Concentration I Uncertainty: 19.97 ppm ±0.20 ppm Expiration Date: 04/1212025 Instrument Used: . , Thermo Electron 42i-LS SIN 1030645077 Traceable to: SRM #/Sample#/ Cylinder#: 2629a / 50-G-17 / FF31691 Analytical Method: Chemiluminescence Last Multipoint Calibration: 06/28/2022 SRM Concentration I Uncertainty: 18.99 ppm /±0.19 ppm SRM Expiration Date: 10/21/2023 ppm First Analysis Data: Date 07/14/2022 Second Analysis Data: Date 07/28/2022 Z: 0 R: 20 C: 22.3 Cone: 22.3 Z: 0 R: 20 C: 22.3 Cone: 22.2 R: 20 Z: 0 C: 22.4 Cone: 22.4 R: 20 Z: 0 C: 22.3 Cone: 22.2 Z: 0 C: 22.2 R: 20 Cone: 22.2 Z: 0 C: 22.3 R: 20.1 Cone: 22.2 UOM: ppm Mean Test Assay: 22.3 ppm UOM: Mean Test Assay: 22.2 ppm Analyzed By Henry Koung Information contained herein has been prepared at your request by qualified experts within Linde Gas & Equipment Inc. While we believe that the information is accurate within the limits of the analytical methods employed and Is complete to the extent of the specific analyses performed, we 'make no warranty or representation as to the suitability of the use of the Information for any purpose, The information is offered with the understanding that any use of the information is at the sole discretion and risk of the user. In no event shall the liability of Linde Gas & Equipment Inc. , arising out of the use of the information contained herein exceed the fee established for providing such information. .. Making our world more productive I DocNumber: 451254 Certificate /ssuand~ Date: 0410512022 Linde Order N,aml)er: 72001747 Linde Gas & Equipment Inc. 5700 S. Alameda Street Los Angeles CA 90058 Tel: 3.23-585-2154 Fax: 714-542-6689 PGVP ID: F22022 Lot Number: 70086208302 LGEPKG SALT LAKE CITY UT H 6880 S 2300 E Part Number: NI CO47.5MN1EAS I Cylinder Style,& Outlet: AS CGA 660 SALT LAKE CITY UT 84121-3183 Customer PO Number: 80004083 Cylinder Pressure and Volume: 2000 psig 140 ft3 Certified Cof1;Centration Expiration Date: Cylinder Number: For Reference,Only: 47.9 ppm 47.2 ppm Balance NOx47.4ppm 04/05/2025 . DT0009759 .Carbon monoxide Nitric oxide Nitrogen Certification Information: Certification Date: 04/05/2022 I I l.- : NIST Traceable Expanded Uncertainty Term: 36 Months ±0.4 ppm ± 0.3 ppm Expiration Date: 04/05/2025 This cylinder was certified according to the 2012 EPA Traceability Protocol, Document #EPA-1:i00IR-12/531, using Procedure G1. Uncertainty above is expressed as absolute expanded uncertainty at a level of confidence of approximately 95% with a coverage factor k = 2. Do Not µse this Standard If Pressure Is less than 100 PSIG. Ana(vtical Data: (R=Reference Standard, Z=Zero Gas, C=Gas Candid~te) 1. Component: ' Carbon monoxide . t'' eference Standard: Type I Cylinder#: NTRM / CC78493 Requested Concentrafion: ·47 .5 ppm Concentrafion / Uncertainty: 100.1 ppm ±0.8 ppm Certified Concentration: 47.9 ppm •, Expirafion Date: 07/0912027 Instrument Used: Honba VIA-510 SIN 43627990042 ' raceable to: SRM #/Sample#/ Cylinder It NlRM / 190703 / CC8737 Anatyfical Method: NDIR \'· SRM Concenlration / Uncef1ainly: 100.1 ppm/ ±0.8 ppm ·--~---~, ,, LastM~l::~::~:::~:~~:=~'k' •:~~us:,,.~!:t\~~;';,,::1:912g22, '.k" ~F~-~~~~~': 2~. Z: 0 R: 100.1 C: 2. R: 100 Z: 0 C: 47.8 Cone: 47.8 R: O Z: O C: 0 Cone; 0 Z: 0 C: 47.9 R: 100.2 Cone: 47.9 Z: O C: o R: o Cone: o UOM: ppm Mean Test Assay: 47.9 ppm Component: Nitric oxide Requested Concentration: 47 .5 ppm Certified Concentration: 47 .2 ppm Instrument Used: Thermo Electron 42i-LS S/N 1030645077 Anatyfical Method: Chemiluminescence Last Multipoint Calibration: 0312512022 First Analysis Data: Date 0312912022 Z: 0 R: 47.6 C: 47.2 Cone: 47.2 R: 47.6 Z: 0 C: 47.2 Cone: 47.2 Z: 0 C: 47.1 R: 47.5 Cone: 47.1 UOM: ppm Mean Test Assay: Analyzed By Henry Koung UOM: ppm Mean Test Assay: Reference Standard: Type / Cylinder ii': GMIS / ND8755 Concentration/ Uncertainty: 47 .6 ppm ±02 ppm E,q,:raoon Dale: D3/09/2025 Traceable to: SRM #/Sample Ii' I Cylinder#: PRM / C1765710.01 I APEX 1324323 SRM Concenlralion / Uncerlanty: 50.04 ppm I =fl.20 ppm SRM E,cpira5o,n Dale: 12JD9.l2022 Second Analysis Data: Da:le 04/05/2022 Z: 0 R: 47.6 C: 472 Cone: 47.3 R: 47.5 Z: 0 C: 47.1 Cone:: 472 Z: 0 C: 47.1 R: ",7.S Cone:: '472 UOM: ppm llleanTestAssay: ifl2 ppm Certified By Information contained herein has been pn,pared alyounequest byqualiliied experts within 1.n1e Gas & Equipmentlla!:. 'ffl:>1e we beiieJe that the information is accurate within the \imils<f.lh: analytical methods employed and Is complete to the extent of 11le spedlicarayses petformed. we make no·wanani,«~tion as to the suitability of the use of the information fci:'""'J' ~ The information is offered with the understanding that any use of !he~ is al the sole discretion and risk ofle_._ ~ no event shall the liability of Linde Gas & Equipmeotih::. .""'5b;ait of the use of the information contained herein exceed the fee eslablished -~ such irn!om,ation. !fftiffJIPRAXAIR Making ow-planet more productive DocNumber: 408483 Customer & Order Information PRAXAIR PKG SALT LAKE CITY UT H 6880 S2300 E SALT LAKE C.ITY UT 84121-3183 Expiration Date: Cylinder Number: 23.6 ppm Balance Certificate Issuance Date: 04/28/2021 Praxair Order Number: 71642108 Par/Number: NI SD23.5ME-AS Customer PO Number: 79639576 Certified Concentration 04/28/2025 CC738122 Sulfur dioxide Nitrogen Praxair Distribution, Inc. 5700 S. Alameda Street Los Angeles CA 90058 Tel: 323-585-2154 Fax: 714~542-6689 PGVP ID: F22021 Fill Date: 04/08/2021 Lot Number: 70086109803 Cylinder Style & Oullet: AS CGA 660 Cylinder Pressure and Volume: 2000 psig 140 fl3 NIST Traceable Expanded Uncer.tainty ±0.1ppm ProSpec EZ Cert· Certification Information: Certification Date:04/26/2021 Term: 48 Months Expiration Date: 04/28/2025 This cylinder was certified according to the 2012 EPA Traceability Protocol, Document #EPA-600/R-121531, using Procedure G1. Uncertainty above is expressed as absolute expended uncertainty at a level of confidence of approximately 95% with a coverage factor k = 2. Do Not Use this Standard If Pressure is less than 100 PSIG. Anafvtical Data: (R=Reference Standard, Z=Zero Gas, C=Gas Candidate) 1. Component: Sulfur dioxide Requested Concentration: 23.5 ppm Certified Concentration: 23.6 ppm Instrument Used: Ametek 921CE SIN AW-921-S321 Analytical Method: UV Spectrometry Last Multipoint Calibration: 04/15/2021 Flrst.An.alys_ls Data: Date 04/2112021 Z: 0 R: 50.7 C: 23.4 Cone: 23.4 R: 50.7 Z: 0 C: 23,5 Cone: 23.5 Z: 0 C: 23.5 R: 50.6 Cone: 23.5 UOM: ppm Mean Test Assay: 23.5 ppm Analyzed By Henry Koung Reference Standard: Type/ Cylinder#: GMIS / DT0029008 Concentration / Uncertainty: 50.69 ppm ±0.29 ppm Expiration Date: 01/27/2025 Traceable to: SRM # / Sample # / Cylinder#: SRM 1693a / 96-N-31 / FF25489 SRM Concentration (enter with units)/ 50.21 ppm/±± 0.28 ppm SRM Expiration Date: 06127 /2023 ... _,,," .. --·~-· ltecond A,:,aly~lsJ!at.a: . .. Date 04/28/2021 Z: 0 R: 50.7 C: 23.7 Cone: 23.7 R: 50.7 Z: 0 C: 23.7 Cone: 23.7 Z: 0 C: 23.7 R: 50.7 Cone: UOM: PP".' Mean Test Assay: . ppm Certified By Information contained herein has been prepared at your request by qualified experts within Praxair Distribution, Inc. While we believe that the informafion is accurate within the limits of the analytical methods employed and is complete to the extent of the specific analyses performed, we make no warranty or representation as to the suitability of the use of the information for any purpose. The information is offered with the understanding that any use of the information is at the sole discretion and risk of the user. In no event shall the liability of Praxair Dlstribuiion, me., arising out of the use of the information contained herein exceed the fee established for providing such information. Making our planet more productive DocNumber: 408482 Praxair Distribution, Inc. · 5700 S. Alameda Street Los Angeles CA 90058 Tel: 323-585-2154 Fax: 714-542~689 PGVP ID: F22021 Customer & Order Information PRAXAIR PKG SALT LAKE CITY UT H 6880S 2300 E Certificate Issuance Date: 04/28/2021 Praxair Order Number: 71642108 Fill Date: 04/08/2021 Lot Number: 70086109802 SALTLAKE CITY UT 84121-3183 Pad Number: NI SD47.5ME-AS Customer PQ Number: 79639576 Cylinder Style & Outlet: AS CGA 660 Cylinder Pressure and Volume: 2000 psig 140 ft3 Certified CMcentration ProSpec EZ Cert Expiration Date: Cylinder Number: 47.5 ppm Balance 04/28/2025 DT0036959 Sulfur dioxide Nitrogen Certification Information: Certification Date: 04/28/2021 NIST Traceable Expanded Uncertainty ± 0.3 ppm Term: 48 Months Expiration Date: 04/28/2025 This cylinder was certified according to the 2012 EPA Traceability Protocol, Document #EPA-600/R-12/531, using Procedure G1. Uncertainty above is expressed as absolute expanded uncertainty at a level of confidence of approximately 95% with a coverage factor k = 2. Do Not Use this Standard if Pressure is less than 100 PSIG. Ana/vtical Data: (R=Reference Standard, Z=Zero Gas, C=Gas Carldidate) 1 . Component: Sulfur dioxide Requested Concentration: 47.5 ppm Certified Concentration: 47.5 ppm Instrument Used: Ametek 921CE S/N AW-921-S321 Analytical Method: UV Spectrometry Last Multipoint Calibration: 04/15/2021 First Analysis Data: Date 04/21/2021 ,::-:---'-\._._ •:z;··--0------...-"--.. ·R: ! 50.7 --~ C: :.47.i . " Cone: · 47.:~ --- R: 50.7 Z: 0 C: 47.4 Cone: 47.4 ~ 0 C: 4~4 R: 50.6 Cone: 47.4 UOM: ppm Mean Test Assay: 47.4 ppm Analyzed By Henry Koung Reference Standard: Type I Cylinder#: GMIS / DT0029008 Concentration / Uncertainty: 50.69 ppm ±0.29 ppm Expiration Date: 01/27/2025 Traceable to: SRM #/Sample# /Cylinder#: SRM 1693a / 96-N-31 / FF25489 SRM Concentration (enter with unitsl / 50.21 ppm/±± 0.28 ppm SRM Expir~tion Date: ·06/27/2023 Second Analysis Data: . Date 04/2812021 . Z: .. 0 • .. R: 50.7 . C: 47~ -· Cone:· 47.6---~ R: 50.7 Z: 0 C: 47.5 47.5 Z: 0 C: 47.7 R: 50.7 47.7 UOM: ppm 47.6 ppm Certified By Information contained herein has been prepared at your request by qualified experts within Praxr,jr Distribution, Inc. While we believe that the information is accurate within the limits of the analytical methods employed and is complete to the extent of the specific analyses performed, we make no warranty or representation as to the suitability of the use of the information for any purpose. The information is offered with the understanding that any use of the information is at the sole discretion and risk of the user. In no event shall the liability of Praxair Distribution, Inc., arising out of the use of the information contained herein exceed the fee established for providing such information. .. Makingour world more produ(tive DocNumber: 443002 Certificate Issuance Date: 1210112021 Linde Orrie( Number: 55894134 Linde Gas & Equipment Inc . 5700 S. Alameda Street Los Angeles CA 90058 Tel: 323-585-2154 Fax; 714-542-6689 PGVP ID: F22021 Fill Date: 11/22/2021 Lot Number: 70086132607 Customer & Order Information TETCO 391 E 620S Part Number: NI CD4.7501E-AS Customer PO Number: 0 Cylinder Style & Outlet: AS CGA 580 AMERICAN FORK UT 84003 Cylinder Pressure and Volume: 2000 pslg 140 ft3 Certified Concentration ProSpec EZ Cert Expiration Date: Cylinder Number: 4.57 % 4.99 % Balance 11/30/2029 CC243835 Carbon dioxide Oxygen Nitrogen NIST Traceable Expanded Uncertainty ± 0.02 % ± 0.03 % Certification Information: Certification Date: 11/30/2021 Term: 96 Months Expiration Date: 11/30/2029 This cylinder was ce'rti!ied according to the.2012 EPA Traceability Protocol, Document #EPA0600IR-12/531, using Procedure G1. Uncertainty above is expressed as absolute expanded uncertainty at a level oftonfidence of approximately 95% with a coverage factor k = 2. Do Not Use this Standard If Pressure is less than 100 PSIG. . CO2 responses have been cbrr.ected for Oxygen IR Broadening effect. 02 responses have been corrected for CO2 interference. Anafvtical Data: . (R=Reference Standard, Z=Zero Gas, C=Gas-Candidate) 1. Component: Carbon dioxide ·Requested Concentration: ... Certified Concentration: Instrument Used: A~'alytical Methpd: 4.75% 4.57% Horiba VIA-510 S/N 20C194WK NDIR Last Multipoint Calibration: 11/22/2021 Reference Standard: Type/ Cylinder#: GMIS / CC243646 Concentration/ Uncertainty: 6.91 % ±0.01 % Expiration Date: 06/07/2026 Traceable to: SRM #/Sample# / Cylinder#: SRM 1674b"/'7-H-07 / FF10631 SRM Concentration/ Uncertainty: 6.944% / ±0.013% SRM Expiration Date: 06/17/2019 First Analysis Data: D,ite 11/30/2021 ;; Second Analysis Data: Date Z: 0 R,:" ~h---•·"· ... C: -.::4.57. R: 6.91 Z: 0 C: 4.58 . ·"· .Conc.:~4'57""' ""'•~·v-.. J. , ....... ,"~"""""""''""i~iZ:•·'-· o · R: •0 -· Cone: 4.58 R: O Z: O ·C: .. ··iJ C: 0 "Ci,,..,; ·o--·-•·-·----·- Conc: 0 C: 4.58 R: 6.92 Cone: 4.58 Z: 0 UOM: % Mean Test Assay: 4.57 % 2. Component: Oxygen Requested Concentration: 4.75 % Certified Concentration: 4.99 % Instrument Used: Siemens Oxymat SE S/N 7MB20211MOOOCA1 Analytical Method: Paramagnetic Last Multipoint Calibration: 11/1212021 First Analysis Data: Date 11/30/2021 Z: 0 R: 9.88 C: Cone: 4.99 R: 9.88 Z: 0 C: Cone: 4.99 Z: 0 C: 5 R: Cone: 5 UOM: % 4.99 o/o Analyzed By Z: 0 C: 0 R: 0 Co_nc: O UOM: % Mean Test Assay: Reference Standard: Type / Cylinder#: NTRM / DT0010262 Concentration I Uncertainty: 9.875 % ±0.040 % Expiration Date: 11/18/2022 Traceable to: SRM #/Sample# /Cylinder#: NTRM / 170701 / DT0010262 SRM Concentration/ Uncertainty: 9.875% / ±0.040% SRM Expiration Date: 11/18/2022 Second Analysis Data: Date Z: 0 R: 0 C: 0 Cone: 0 R: 0 Z: 0 C: 0 Cone: 0 Z: 0 C: 0 R: 0 Cone: 0 UOM: % Mean Test Assay: Certified By % % Information contained herein has been prepared at your request by qualified experts within Linde Gas & Equipment Inc. While we believe that the information is accurate within the limits of the analytical methods employed and is complete to the extent of the specific analyses performed, we make no warranty or representation as to the suitability of the use of the Information for any purpose. The information is offered with the understanding that any use of the information is at the sole discretion and rtsk of the user. In no event shall the liability of Linde Gas & Equipment Inc. , artsing out of the use of the information contained herein exceed the fee established for providing such information. DocNumber: Linde Order Number: 7Hl6,9"693 Linde Gas & Equipment Inc. 5700 S. Alameda Street Los Angeles CA 90058 Tel: 323-585.-2154 Fax: 714-542-6689 PGVP ID: F22021 Lot Number: 70086132602 LGEPKG SALT LAKE CITY UT H 6880 S 2300 E Pa~ Number. Nl(;b9.75ci1E-AS Customer Pd Number: 79869904 Cylinder Style & Otdlet: AS CGA 590 SALT LAKE CITY UT 84121-3183 Cylinder Pressure and Volume: 2000 psig 148 ft3 Certified Concentration ProSpec EZ Cert Expiration Dale/_> !l Qylinder Number.t,. 9.75 % 9.77 % Balance Certification Information: This cylinder wa~ \l:ertified according to the 2012 EPA Traceability Protocol, u~certainty at.a level of confidence of approximately 95% with a cover"~ge factof CO2 responses have been corrected for Oxygen IR Broadening cffeci. 02 re~p Ana/vtical Data: 1. Component: Carbon dioxide Reques,ted Concentration: 9.75 % Certified Concentration: 9.75 % . Instrument Used: Horiba.VIA-510 S/N 20C 194WK Analytical Method: NDIR Last Multipoint Calibration: 11/2712021 NIST Traceable Expanded Uncertainty ± 0.05 % ± 0.04 %. [!I • .00 ii.:. Term: 96 Months Expiration Date: 11/30/2029 .·. ,'•)!.- p -o00/R-12/531, using Procedure G1. Uncertainty above is expressed as absolute expanded t Use this Standard if Pressure is less than 100 PSIG. een corrected for CO2 interference. ··i/::;:1. Reference Standard: Type/ Cylintjer#: GMIS /_CC283571 ·:o:\ Concentration I Uncertainty:· 14.24 % ±0.04 % ti Expiration Date: 07/15/2029 i!c ·Traceable to: SRM #/Sample# /Cylinder#: RGM / N/A / CC28033 f SRM Concentration/ Uncertainty: 19.67% / ±0.04% SRM E,qira!ion Dale: 07/15/2021 ~F-lr-st-A--na_l_y-sl_s_D_a-ta-,------------D-ate ___ 1_1_f30!2 __ "0"'2"'1--, Second Analysis Data: Date cOrjc: 0 Z: O R: 14.24 C: 9._75 Cone: 9.75 ;;c..,_ __ -l-'->i''...;z,!i,;~·::cl,·,ci'l•.l;;P,e".;'-,·'..;\-.·\',":"';",;R1>);:::>---'-··_,0"-.:"""'.~ee·...:·-"-',:;;.·''-'•'-· '-"0-"'_...~.;;.;:.=:.....;. -'-------~==.-.· ~~1-4t~/~~:•~nc"'';'--'9o-."'"77,.._'---~-"'\ ;= ~ ~: ~ ~: ~. ! U~M: % : :MeanTestAssay: Cone: 0 Cone: 0 UOM: % Mean Test Assay: 9.75 % 2, Component: Oxygen Requested Concentration: 9.75 % Certified Concentration: 9.77 % Instrument Used: Siemens Oxymat 6E S/N 7MB20211AA000CA1 Analytical Method: Paramagnetic Last Multipoint Calibration: 11/12/2021 First Analysis Data: ate 11/30/2021 Z: 0 R: 9.88 C: 9.76 R: 9.88 Z: 0 C: 9.76 Z: 0 C: 9.78 R: 9.77 UOM: % 9.77 % Analyzed By 'Reference Standard: Type/ Cylinder#: NTRM / DT0010262 Concentration/ Uncertainly: 9.875 % ±0.040 % Expiratloo Date: 11/18/2022 Traceable to: SRM #/Sample#/ Cylinder#: NTRM / 170701 / DT0010262 SRM Concentration/ Unce<°.alnly: 9.875% I ±0.040% SRM Expiration Date: 11/18/2022 Second Analysis Data: Date Cone: 0 Cone: 0 Cone: O Z: 0 R: 0 Z: 0 UOM: % Certified By R: 0 Z: 0 C: 0 Nelsorl'Ma C: C: R: 0 0 0 Mean Test Assay: % Information contained herein has been prepared at your request by qualified experts within Linde Gas & Equipment Inc. While we believe that the information is aco.,rate within the limits of th~ analytical methods employed and Is complete to the extent of the specific analyses performed, we make no warranty or representation as to the suitability of the use of the Information for any purpose. The information is offered with the understanding that any use of the infoonation is at the sole discretion and risk of the user. In no event shall the liability of Linde Gas & Equipment Inc. , arising out of the use of the information contained herein exceed the fee estabfished for providing such information.