HomeMy WebLinkAboutDAQ-2024-0050441
DAQC-089-24
Site ID 13091 (B4)
MEMORANDUM
TO: STACK TEST FILE – LINDE GAS NORTH AMERICA, LLC – Hydrogen Gas
Production
THROUGH: Rik Ombach, Minor Source Oil and Gas Compliance Section Manager
FROM: Paul Bushman, Environmental Scientist
DATE: February 1, 2024
SUBJECT: Sources: Reformer Unit
Contact: Michelle Fox: 801-389-7256
Location: 2351 North 1100 West, North Salt Lake, Davis County, Utah
Test Contractor: TETCO
Permit/AO#: DAQE-AN130910007-20 dated August 5, 2020
Action Code: TR
Subject: STACK TEST REVIEW received January 31, 2024
On January 31, 2024, Utah Division of Air Quality (DAQ) received a test report for the Reformer Unit at
Linde Gas North America, LLC, in Davis County, Utah. Testing was performed on August 29, 2023, to
demonstrate compliance with the emission limits found in condition II.B.2.c of Approval Order
DAQE-AN130910007-20. The calculated test results are:
Source Test Date Pollutant Method Tester Results DAQ Results Limits
Reformer
Unit
August
29, 2023
NOx 7E 8.54 lb/hr 8.598 lb/hr 8.94 lb/hr
CO 10 0.22 lb/hr 0.217 lb/hr 4.92 lb/hr
PM 5 0.72 lb/hr 0.7168 lb/hr 1.73 lb/hr
SO2 6C 0.02 lb/hr 0.02 lb/hr Inventory use
Purge Gas
HHV 19 268.233 btu/scf N/A Condition
II.B.2.a.1(c)
H2S ASTM
D1946-90 0.819 ppm N/A II.B.2.b.1(c)
DEVIATIONS: None.
CONCLUSION: The stack test report appears to be acceptable.
RECOMMENDATION: The emissions from the Reformer Unit should be considered to have
been in compliance with the emission limits of condition II.B.2.c. of the
AO during testing.
ATTACHMENTS: DAQ stack test review excel spreadsheets, Linde Gas stack test report.
$1_RM 2, 2F, 2G, 2H, 3A, 6C, 7E, 10, _ 19 - RA (B_W(Modified Feb. 27, 2018)
Reference Methods 2, 3A, 6C, 7E, 10, & 19
Source Information
Company Name Linde Gas North America, LLC
Company Contact:Michelle Fox
Contact Phone No.801-389-7256
Stack Designation:Reformer Unit
Test & Review Dates
Test Date:8/29/2023 &
Review Date: 2/1/2024
Observer:Unobserved
Reviewer:Paul Bushman
Emission Limits Emission Rates
SO2 NOX CO SO2 NOX CO
lbs./MMBtu
lbs./hr. 1.0 8.94 4.92 0.02 8.598 0.217
ppm
Percent
%O2 Correction as a whole #
Test Information
Equivalent
Diameter (in.)As ft^2 Y Dl H @ Cp Pbar Pq (static)
Ps
Stack Pressure
59.57 24.899 1.0030 0.84 25.72 -0.92 25.652353
Contractor Information
Contact:Dean Kitchen
Contracting Company: TETCO
Address: 391 East 620 South, American Fork, UT 84003
Phone No.: 801-492-9106
Project No.:
8710
Division of Air Quality
Instrumental Reference Methods - Gaseous Measurements
Rectangular
Method 19 - F factors for Coal, Oil, and Gas
Fd Fw Fc
dscf/MMBtu wscf/MMBtu scf/MMBtu Diluent
F factor used
O2
CO2
Anthracite 2
Bituminous 2
Lignite
Natural
Propane
Butane
10100
COAL
OIL
GAS
9780
9860
9190
8710
8710
8710
10540
10640
11950
320
10610
10200
10390
1970
1800
1910
1420
1040
1190
1250
Wet CEM
Correct For O2
CO2 Interference w/CO
Yes
Yes
Yes
$1_RM 2, 2F, 2G, 2H, 3A, 6C, 7E, 10, _ 19 - RA (B_W(Modified Feb. 27, 2018)
Division of Air Quality
NSPS Relative Accuracy Performance Specification Test - CEMS Certification
Linde Gas North America, LLC
Reformer Unit
Average Emission
Dry SO2 NOX CO
lbs./MMBtu 0.000 0.031 0.001 Average % concentration
lbs./hr.0.02 8.60 0.22 CO2 O2
ppm corrected for %O2 0.00 0.00 0.00 19.07 2.74
Run 1 Enter O2 or CO2
Dry SO2 NOX CO CO2 O2 O2
Atomic Weight 64 46 28
lbs./MMBtu (O2)6.61E-05 3.01E-02 4.71E-04 E=Cd x Fd x (20.9/(20.9-%O2d))
lbs./MMBtu (CO2)E=Cd x Fc x (100 / % CO2d)
lbs./cu.ft 6.648E-09 3.026E-06 4.738E-08
lbs./hr.0.02 8.08 0.13 18.75 2.60
ppm corrected for %O2 0.00 0.00 0.00 18.75 2.69
Run 2
Dry SO2 NOX CO CO2 O2
Atomic Weight 64 46 28
lbs./MMBtu (O2)6.85E-05 3.06E-02 1.31E-03 E=Cd x Fd x (20.9/(20.9-%O2d))
lbs./MMBtu (CO2)E=Cd x Fc x (100 / % CO2d)
lbs./cu.ft 6.814E-09 3.041E-06 1.306E-07
lbs./hr.0.02 8.55 0.37 19.27 2.80
ppm corrected for %O2 0.00 0.00 0.00 18.75 2.87 Raw Value
Run 3
Dry SO2 NOX CO CO2 O2
Atomic Weight 64 46 28
lbs./MMBtu (O2)5.19E-05 3.13E-02 5.35E-04 E=Cd x Fd x (20.9/(20.9-%O2d))
lbs./MMBtu (CO2)E=Cd x Fc x (100 / % CO2d)
lbs./cu.ft 5.152E-09 3.111E-06 5.306E-08
lbs./hr.0.02 9.17 0.16 19.21 2.83
ppm corrected for %O2 0.00 0.00 0.00 18.96 2.86 Raw Value
Run 4
Dry SO2 NOX CO CO2 O2
Atomic Weight 64 46 28
lbs./MMBtu (O2)E=Cd x Fd x (20.9/(20.9-%O2d))
lbs./MMBtu (CO2)E=Cd x Fc x (100 / % CO2d)
lbs./cu.ft
lbs./hr.
ppm corrected for %O2 Raw Value
Run 5
Dry SO2 NOX CO CO2 O2
Atomic Weight 64 46 28
lbs./MMBtu (O2)E=Cd x Fd x (20.9/(20.9-%O2d))
lbs./MMBtu (CO2)E=Cd x Fc x (100 / % CO2d)
lbs./cu.ft
lbs./hr.
ppm corrected for %O2 Raw Value
Corrected For Cal. Drift
Raw Value
Corrected For Cal. Drift
Corrected For Cal. Drift
Corrected For Cal. Drift
Corrected For Cal. Drift
O2
CO2
Clear
lbs./MMBTU
$1_RM 2, 2F, 2G, 2H, 3A, 6C, 7E, 10, _ 19 - RA (B_W(Modified Feb. 27, 2018)
Calibration Error Test
Test Date August 29, 2023 O2
CS - Cal. Span 4.99
Units %
Cylinder No. Expiration
Date Cal. Gas CV- Certified
Concentration
CDir or CS -
Measured
Concentration
Difference
ACE Eq. 7E-1
Analyzer Cal.
Error
Status
Low-level 0.00 0.01 0.01 0.20%Passed Cal.
SG9102110ALB 06/08/25 Mid-level 2.48 2.50 0.02 0.40%Passed Cal.
CC243835 11/30/29 High-level 4.99 5.05 0.06 1.20%Passed Cal.
% of Span Sec. 8.2.1 Cal Gas Verification
0 to 20% of CS - Cal. Span Low-Level 0.00%
40 to 60% of Cal. Span Mid-level 49.70%
100% of Cal. Span High-level 100.00%
Test Date August 29, 2023 CO2
CS - Cal. Span 20.23
Units %
Cylinder
No.
Expiration
Date Cal. Gas CV- Certified
Concentration
CDir or CS -
Measured
Concentration
Difference
ACE Eq. 7E-1
Analyzer Cal.
Error
Status
Low-level 0.00 0.00 0.00 0.000%Passed Cal.
CC457136 11/30/29 Mid-level 9.75 9.79 0.04 0.198%Passed Cal.
EB0051440 06/05/26 High-level 20.23 19.95 0.28 1.384%Passed Cal.
% of Span Sec. 8.2.1 Cal Gas Verification
0 to 20% of Cal. Span Low-Level 0.00%
40 to 60% of Cal. Span Mid-level 48.20%
100% of Cal. Span High-level 100.00%
Test Date August 29, 2023 SO2
CS - Cal. Span 47.50
Units ppm
Cylinder
No.
Expiration
Date Cal. Gas CV- Certified
Concentration
CDir or CS -
Measured
Concentration
Difference
ACE Eq. 7E-1
Analyzer Cal.
Error
Status
Low-level 0.00 0.20 0.20 0.421%Passed Cal.
CC738122 04/28/25 Mid-level 23.60 23.50 0.10 0.211%Passed Cal.
DT0036959 04/28/25 High-level 47.50 47.90 0.40 0.842%Passed Cal.
% of Span Sec. 8.2.1 Cal Gas Verification
0 to 20% of Cal. Span Low-Level 0.00%
40 to 60% of Cal. Span Mid-level 49.68%
100% of Cal. Span High-level 100.00%
Test Date August 29, 2023 NOx
CS - Cal. Span 47.10
Units ppm
Cylinder
No.
Expiration
Date Cal. Gas CV- Certified
Concentration
CDir or CS -
Measured
Concentration
Difference
ACE Eq. 7E-1
Analyzer Cal.
Error
Status
Low-level 0.00 0.20 0.20 0.425%Passed Cal.
EB0141000 09/14/24 Mid-level 22.30 22.50 0.20 0.425%Passed Cal.
CC121457 07/28/26 High-level 47.10 47.30 0.20 0.425%Passed Cal.
% of Span Sec. 8.2.1 Cal Gas Verification
0 to 20% of Cal. Span Low-Level 0.00%
40 to 60% of Cal. Span Mid-level 47.35%
100% of Cal. Span High-level 100.00%
Test Date August 29, 2023 CO
4.92 CS - Cal. Span 22.30
Units ppm
Cylinder
No.
Expiration
Date Cal. Gas CV- Certified
Concentration
CDir or CS -
Measured
Concentration
Difference
ACE Eq. 7E-1
Analyzer Cal.
Error
Status
Low-level 0.00 0.10 0.10 0.448%Passed Cal.
EB0141000 09/14/24 Mid-level 11.20 11.30 0.10 0.448%Passed Cal.
CC3394 07/28/25 High-level 22.30 22.50 0.20 0.897%Passed Cal.
% of Span Sec. 8.2.1 Cal Gas Verification
0 to 20% of Cal. Span Low-Level 0.00%
40 to 60% of Cal. Span Mid-level 50.22%
100% of Cal. Span High-level 100.00%
Valid Cal Gas
Valid Cal Gas
Valid Cal Gas
Valid Cal Gas
Valid Cal Gas
Valid Cal Gas
Valid Cal Gas
Valid Cal Gas
Valid Cal Gas
Valid Cal Gas
$1_RM 2, 2F, 2G, 2H, 3A, 6C, 7E, 10, _ 19 - RA (B_W(Modified Feb. 27, 2018)
Division of Air Quality Stack Test Review of
Linde Gas North America, LLC
SO2 NOX CO CO2 O2 Reformer Unit
CS Calibration Span 47.50 47.10 22.30 20.23 4.99
Units ppm ppm ppm %%Unprotected
CV - Cylinder Value:SO2 NOX CO CO2 O2
Low-Level 0.00 0.00 0.00 0.00 0.00
Mid-Level 23.60 22.30 11.20 9.75 2.48
High-Level 47.50 47.10 22.30 20.23 4.99
0 to 20% of Cal. Span 0.00%0.00%0.00%0.00%0.00%
40 to 60% of Cal. Span 49.7%47.3%50.2%48.2%49.7%
100% of Cal. Span 100.0%100.0%100.0%100.0%100.0%
Cdir - Enter Actual Up-scale Cylinder Value Used To Correct Emission Concentration.
CDir CMA 23.60 22.30 11.20 9.75 2.48
Calibration Error Test
Cs - Measured Concentration SO2 NOX CO CO2 O2
Low-Level 0.20 0.20 0.10 0.00 0.01
Mid-Level 23.50 22.50 11.30 9.79 2.50
High-Level 47.90 47.30 22.50 19.95 5.05
Enter Up-scale Analyzer Response to be used during testing.
ACE Eq. 7E-1 23.50 22.50 11.30 9.79 2.50
Low-Level 0.42%0.42%0.45%0.00%0.20%
ppmdv Difference 0.2 0.2 0.1 0 0.01
Status Passed Cal. Passed Cal. Passed Cal. Passed Cal.Passed Cal.
Mid-Level 0.21%0.42%0.45%0.20%0.40%
ppmdv Difference 0.1 0.2 0.1 0.04 0.02
Status Passed Cal. Passed Cal. Passed Cal. Passed Cal.Passed Cal.
High-Level 0.84%0.42%0.90%1.38%1.20%
ppmdv Difference 0.4 0.2 0.2 0.28 0.06
Status Passed Cal. Passed Cal. Passed Cal. Passed Cal.Passed Cal.
Pre-Test Sampling System Bias
Initial Values SO2 NOX CO CO2 O2
CO - Low-Level 0.20 0.10 0.10 0.00 0.02 System Bias.
SBi - Zero Bias 0.00%0.21%0.00%0.00%0.20%± 5% of Span
Difference 0 0.1 0 0 0.01
Pass or Failed Invalid Run Passed Cal. Passed Cal. Passed Cal. Passed Cal. Passed Cal.
CM - Up-scale Gas 23.90 22.50 11.10 9.85 2.54
SBi - Up-Scale Bias 0.84%0.00%0.90%0.30%0.80%
Difference 0.40 0.00 0.20 0.06 0.04
Pass or Failed Invalid Run Passed Cal. Passed Cal. Passed Cal. Passed Cal. Passed Cal.
Raw Test Data Time Start Stop
Test Date:8/29/2023 SO2
SO2 NOX CO CO2 O2 NOX
0.2 25.3 0.74 18.8 2.7 CO
0.4% 53.7% 3.3% 92.7% 53.9%CO2/O2
NOTE
These cells scans for the appropriate
Cir. gas after the Cm
If this scan is incorrect change the
Cdir to the correct gas value.
Failed Bias Dialog
Failed Cal Error Dialog
CO Calibration Gas
$1_RM 2, 2F, 2G, 2H, 3A, 6C, 7E, 10, _ 19 - RA (B_W(Modified Feb. 27, 2018)
Division of Air Quality Stack Test Review of
Linde Gas North America, LLC
Post-Test System Bias 7E-2 SB=(Cs - Cdir)/CS x 100
Final Values SO2 NOX CO CO2 O2
CO - Low-Level 0.10 -0.10 0.10 0.00 -0.01 System Bias.
SBi - Zero Bias 0.21% 0.64% 0.00% 0.00% 0.40%± 5% of Span
Difference 0.1 0.3 0.0 0.0 0.0
Pass or Invalid Run Passed Cal. Passed Cal. Passed Cal. Passed Cal. Passed Cal.
CM - Up-scale Gas 23.30 22.00 11.10 9.65 2.59
SBi - Up-Scale Bias 0.42%1.06%0.90%0.69%1.80%
Difference 0.2 0.5 0.2 0.1 0.1
Pass or Invalid Run Passed Cal. Passed Cal. Passed Cal. Passed Cal. Passed Cal.
Calibration Drift % of Span - D=ABS(SBf - SBi)
Low-Level Drift 0.21%0.42%0.00%0.00%0.20%Drift
Difference 0.1 0.2 0.0 0.0 0.0 3% of Span
Pass or Re-Calibrate Pass Pass Pass Pass Pass
Up-scale Gas Drift 0.42% 1.06% 0.00% 0.40% 1.00%
Difference 0.6 0.5 0.0 0.2 0.0
Pass or Re-Calibrate Pass Pass Pass Pass Pass
Reformer Unit Flow & Moisture
As ft^2 Pbar Pq (static) Ps Avg. Ts F CO2 - FCO2 O2 N2+C Md Ms
24.899 25.72 -0.92 25.65 343 18.75 2.60 78.65 31.10 28.29
Y Cp Vm cf Vlc AVG Tm F Vm std Vw std Bws S Bws 9.9811
1.0030 0.84 55.498 270.20 82 46.596 12.718 0.2144 0.9990 0.999
Load - Megawatts
Avg. √∆P's Vs
(ft./sec.)Qsw scfh wet Qa acfm Qsd dscfh
Heat Input
Btu/hr.Low Mid High
0.8903 67.25 3,397,851 3,440 2,669,275.48 Enter >X
3D Pitot #1 - Times
Date
Point No.∆P √∆P ts F tm F (in) tm F (out)
Final
Vf
Initial
Vi
1 1.50 1.225 345 75 74 559.30 371.20 188.10
2 1.25 1.118 344 75 74 565.60 520.90 44.70
3 1.20 1.095 344 77 75 728.40 708.10 20.30
4 1.05 1.025 344 78 76 958.60 941.50 17.10
5 0.86 0.927 343 81 77
6 1.10 1.049 342 80 78 2811.90 2541.70 Sum
7 0.89 0.943 343 82 79
8 0.56 0.748 343 83 79
9 0.51 0.714 343 84 80
10 0.52 0.721 343 84 81
11 1.25 1.118 343 83 81
12 0.54 0.735 344 84 82
13 0.41 0.640 343 85 83
14 0.48 0.693 343 86 83
15 0.43 0.656 343 86 84
16 1.40 1.183 343 86 84
17 0.72 0.849 344 87 84
18 0.75 0.866 344 88 85
19 0.81 0.900 344 88 85
20 0.45 0.671 343 89 86
21 1.10 1.049 342 86 85
22 0.80 0.894 342 87 85
23 0.67 0.819 342 88 86
24 0.53 0.728 342 89 86
Failed Drift Dialog
Failed Bias Dialog
$1_RM 2, 2F, 2G, 2H, 3A, 6C, 7E, 10, _ 19 - RA (B_W(Modified Feb. 27, 2018)
Division of Air Quality Stack Test Review of
Linde Gas North America, LLC
SO2 NOX CO CO2 O2 Reformer Unit
CS Calibration Span 47.50 47.10 22.30 20.23 4.99
Units ppm ppm ppm %%
CV - Cylinder Value:SO2 NOX CO CO2 O2
Low-Level 0.00 0.00 0.00 0.00 0.00
Mid-Level 23.60 22.30 11.20 9.75 2.48
High-Level 47.50 47.10 22.30 20.23 4.99
0 to 20% of Cal. Span 0.00%0.00%0.00%0.00%0.00%
40 to 60% of Cal. Span 49.7%47.3%50.2%48.2%49.7%
100% of Cal. Span 100.0%100.0%100.0%100.0%100.0%
Cdir - Enter Actual Up-scale Cylinder Value Used To Correct Emission Concentration.
CMA 23.60 22.30 11.20 9.75 2.48
Calibration Error Test
Measured Concentration SO2 NOX CO CO2 O2
Low-Level 0.20 0.20 0.10 0.00 0.01
Mid-Level 23.50 22.50 11.30 9.79 2.50
High-Level 47.90 47.30 22.50 19.95 5.05
Enter Up-scale Analyzer Response to be used during testing.
ACE Eq. 7E-1 23.50 22.50 11.30 9.79 2.50
Low-Level 0.42%0.42%0.45%0.00%0.20%
ppmdv Difference 0.2 0.2 0.1 0 0.01
Status Passed Cal. Passed Cal. Passed Cal. Passed Cal.Passed Cal.
Mid-Level 0.21%0.42%0.45%0.20%0.40%
ppmdv Difference 0.1 0.2 0.1 0.04 0.02
Status Passed Cal. Passed Cal. Passed Cal. Passed Cal.Passed Cal.
High-Level 0.84%0.42%0.90%1.38%1.20%
ppmdv Difference 0.4 0.2 0.2 0.28 0.06
Status Passed Cal. Passed Cal. Passed Cal. Passed Cal.Passed Cal.
Pre-Test Sampling System Bias
Initial Values SO2 NOX CO CO2 O2
CO - Low-Level 0.10 -0.10 0.10 0.00 -0.01 System Bias.
SBi - Zero Bias 0.21%0.64%0.00%0.00%0.40%± 5% of Span
Difference 0.1 0.3 0 0 0.02
Pass or Invalid Run Passed Cal. Passed Cal. Passed Cal. Passed Cal. Passed Cal.
CM - Up-scale Gas 23.30 22.00 11.10 9.65 2.59
SBi - Up-Scale Bias 0.42%1.06%0.90%0.69%1.80%
Difference 0.2 0.5 0.2 0.14 0.09
Pass or Invalid Run Passed Cal. Passed Cal. Passed Cal. Passed Cal. Passed Cal.
Raw Test Data Time Start Stop
Test Date:8/29/2023 SO2
SO2 NOX CO CO2 O2 NOX
0.1 25.1 1.93 19.1 2.9 CO
0.3% 53.2% 8.7% 94.3% 57.5%CO2/O2
Failed Bias Dialog
Failed Cal Error Dialog
$1_RM 2, 2F, 2G, 2H, 3A, 6C, 7E, 10, _ 19 - RA (B_W(Modified Feb. 27, 2018)
Division of Air Quality Stack Test Review of
Linde Gas North America, LLC
Post-Test System Bias 7E-2 SB=(Cs - Cdir)/CS x 100
Final Values SO2 NOX CO CO2 O2
CO - Low-Level 0.10 0.10 0.20 -0.02 -0.02 System Bias.
SBi - Zero Bias 0.21% 0.21% 0.45% 0.10% 0.60%± 5% of Span
Difference 0.1 0.1 0.1 0.0 0.0
Pass or Invalid Run Passed Cal. Passed Cal. Passed Cal. Passed Cal. Passed Cal.
CM - Up-scale Gas 23.20 21.90 11.40 9.64 2.49
SBi - Up-Scale Bias 0.63%1.27%0.45%0.74%0.20%
Difference 0.3 0.6 0.1 0.1 0.0
Pass or Invalid Run Passed Cal. Passed Cal. Passed Cal. Passed Cal. Passed Cal.
Calibration Drift % of Span - D=ABS(SBf - SBi)
Low-Level Drift 0.00%0.42%0.45%0.10%0.20%Response Spec.
Difference 0.0 0.2 0.1 0.0 0.0 3% of Span
Pass or Re-Calibrate Pass Pass Pass Pass Pass
Up-scale Gas Drift 0.21% 0.21% 0.45% 0.05% 1.60%
Difference 0.1 0.1 0.3 0.0 0.1
Pass or Re-Calibrate Pass Pass Pass Pass Pass
Reformer Unit Flow & Moisture
As ft^2 Pbar Pq (static) Ps Avg. Ts F CO2 - FCO2 O2 N2+C Md Ms
24.90 25.72 -0.92 25.65 343 19.27 2.80 77.93 31.19 28.73
Y Cp Vm cf Vlc AVG Tm F Vm std Vw std Bws S Bws 9.9677
1.0030 0.84 56.691 228.90 90 46.905 10.774 0.1868 0.9990 0.999
Load - Megawatts
Avg. √∆P's Vs Qsw scfh wet Qa acfm Qsd dscfh
Heat Input
Btu/hr.Low Mid High
0.9126 68.41 3,456,891 3,500 2,811,154.02 Enter >X
3D Pitot #1 - Times
Date
Point No.∆P √∆P ts F tm F (in) tm F (out)
Final
Vf
Initial
Vi
1 1.10 1.049 342 83 84 536.70 375.40 161.30
2 1.20 1.095 342 84 84 640.30 601.40 38.90
3 1.10 1.049 343 86 84 728.50 713.10 15.40
4 0.88 0.938 342 88 85 944.40 931.10 13.30
5 0.70 0.837 342 89 86
6 1.00 1.000 343 88 87 2849.90 2621.00 Sum
7 0.78 0.883 343 90 87
8 0.60 0.775 343 90 88
9 0.57 0.755 343 91 88
10 0.45 0.671 342 92 89
11 1.50 1.225 344 90 89
12 1.30 1.140 344 91 89
13 0.81 0.900 344 93 90
14 0.66 0.812 344 94 90
15 0.61 0.781 343 94 91
16 1.20 1.095 343 92 90
17 1.00 1.000 344 93 91
18 0.82 0.906 344 94 91
19 0.59 0.768 343 95 92
20 0.38 0.616 344 95 92
21 1.00 1.000 342 93 92
22 0.93 0.964 342 94 92
23 0.71 0.843 343 96 93
24 0.64 0.800 343 96 93
Failed Drift Dialog
Failed Bias Dialog
$1_RM 2, 2F, 2G, 2H, 3A, 6C, 7E, 10, _ 19 - RA (B_W(Modified Feb. 27, 2018)
Division of Air Quality Stack Test Review of
Linde Gas North America, LLC
SO2 NOX CO CO2 O2 Reformer Unit
CS Calibration Span 47.50 47.10 22.30 20.23 4.99
Units ppm ppm ppm %%
CV - Cylinder Value:SO2 NOX CO CO2 O2
Low-Level 0.00 0.00 0.00 0.00 0.00
Mid-Level 23.60 22.30 11.20 9.75 2.48
High-Level 47.50 47.10 22.30 20.23 4.99
0 to 20% of Cal. Span 0.00%0.00%0.00%0.00%0.00%
40 to 60% of Cal. Span 49.7%47.3%50.2%48.2%49.7%
100% of Cal. Span 100.0%100.0%100.0%100.0%100.0%
Cdir - Enter Actual Up-scale Cylinder Value Used To Correct Emission Concentration.
CMA 23.60 22.30 11.20 9.75 2.48
Calibration Error Test
Measured Concentration SO2 NOX CO CO2 O2
Low-Level 0.20 0.20 0.10 0.00 0.01
Mid-Level 23.50 22.50 11.30 9.79 2.50
High-Level 47.90 47.30 22.50 19.95 5.05
Enter Up-scale Analyzer Response to be used during testing.
ACE Eq. 7E-1 23.50 22.50 11.30 9.79 2.50
Low-Level 0.42%0.42%0.45%0.00%0.20%
ppmv Difference 0.2 0.2 0.1 0 0.01
Status Passed Cal. Passed Cal. Passed Cal. Passed Cal.Passed Cal.
Mid-Level 0.21%0.42%0.45%0.20%0.40%
ppmv Difference 0.1 0.2 0.1 0.04 0.02
Status Passed Cal. Passed Cal. Passed Cal. Passed Cal.Passed Cal.
High-Level 0.84%0.42%0.90%1.38%1.20%
ppmv Difference 0.4 0.2 0.2 0.28 0.06
Status Passed Cal. Passed Cal. Passed Cal. Passed Cal.Passed Cal.
Pre-Test Sampling System Bias
Initial Values SO2 NOX CO CO2 O2
CO - Low-Level 0.10 0.10 0.20 -0.02 -0.02 System Bias.
SBi - Zero Bias 0.21%0.21%0.45%0.10%0.60%± 5% of Span
Difference 0.1 0.1 0.1 0.02 0.03
Pass or Invalid Run Passed Cal. Passed Cal. Passed Cal. Passed Cal. Passed Cal.
CM - Up-scale Gas 23.20 21.90 11.40 9.64 2.49
SBi - Up-Scale Bias 0.63%1.27%0.45%0.74%0.20%
Difference 0.3 0.6 0.1 0.15 0.01
Pass or Invalid Run Passed Cal. Passed Cal. Passed Cal. Passed Cal. Passed Cal.
Raw Test Data Time Start Stop
Test Date:8/29/2023 SO2
SO2 NOX CO CO2 O2 NOX
0.1 25.6 0.92 19.0 2.9 CO
0.3% 54.3% 4.1% 93.7% 57.3%CO2/O2
Failed Bias Dialog
Failed Cal Error Dialog
$1_RM 2, 2F, 2G, 2H, 3A, 6C, 7E, 10, _ 19 - RA (B_W(Modified Feb. 27, 2018)
Division of Air Quality Stack Test Review of
Linde Gas North America, LLC
Post-Test System Bias 7E-2 SB=(Cs - Cdir)/CS x 100
Final Values SO2 NOX CO CO2 O2
CO - Low-Level 0.10 0.10 0.20 0.02 0.00 System Bias.
SBi - Zero Bias 0.21% 0.21% 0.45% 0.10% 0.20%± 5% of Span
Difference 0.1 0.1 0.1 0.0 0.0
Pass or Invalid Run Passed Cal. Passed Cal. Passed Cal. Passed Cal. Passed Cal.
CM - Up-scale Gas 23.30 21.90 11.10 9.61 2.51
SBi - Up-Scale Bias 0.42%1.27%0.90%0.89%0.20%
Difference 0.2 0.6 0.2 0.2 0.0
Pass or Invalid Run Passed Cal. Passed Cal. Passed Cal. Passed Cal. Passed Cal.
Calibration Drift % of Span - D=ABS(SBf - SBi)
Low-Level Drift 0.00%0.00%0.00%0.00%0.40%Response Spec.
Difference 0.0 0.0 0.0 0.0 0.0 3% of Span
Pass or Re-Calibrate Pass Pass Pass Pass Pass
Up-scale Gas Drift 0.21% 0.00% 0.45% 0.15% 0.00%
Difference 0.1 0.0 0.3 0.0 0.0
Pass or Re-Calibrate Pass Pass Pass Pass Pass
Reformer Unit Flow & Moisture
As ft^2 Pbar Pq (static) Ps Avg. Ts F CO2 - FCO2 O2 N2+C Md Ms
24.90 25.72 -0.92 25.65 343 19.21 2.83 77.96 31.19 28.71
Y Cp Vm cf Vlc AVG Tm F Vm std Vw std Bws S Bws 9.9945
1.0030 0.84 58.929 237.40 95 48.318 11.174 0.1878 0.9990 0.999
Load - Megawatts
Avg. √∆P's Vs Qsw scfh wet Qa acfm Qsd dscfh
Heat Input
Btu/hr.Low Mid High
0.9576 71.81 3,627,796 3,673 2,946,389.55 Enter >X
3D Pitot #1 - Times
Date
Point No.∆P √∆P ts F tm F (in) tm F (out)
Final
Vf
Initial
Vi
1 1.40 1.183 345 90 90 519.10 352.70 166.40
2 1.40 1.183 344 91 90 634.40 593.20 41.20
3 1.20 1.095 344 93 91 715.00 700.30 14.70
4 1.10 1.049 344 94 91 863.30 848.20 15.10
5 0.84 0.917 343 95 92
6 1.10 1.049 344 94 92 2731.80 2494.40 Sum
7 0.84 0.917 344 95 93
8 0.61 0.781 344 96 93
9 0.65 0.806 343 97 94
10 1.56 1.247 341 98 95
11 1.60 1.265 344 96 94
12 1.10 1.049 344 96 94
13 0.91 0.954 344 98 95
14 0.73 0.854 343 99 95
15 0.44 0.663 343 99 96
16 1.20 1.095 343 97 96
17 0.86 0.927 343 98 96
18 0.68 0.825 343 99 96
19 0.61 0.781 343 100 97
20 0.44 0.663 343 100 97
21 0.94 0.970 342 97 96
22 0.98 0.990 342 98 96
23 0.73 0.854 342 99 96
24 0.75 0.866 342 100 97
Failed Drift Dialog
Failed Bias Dialog
Source Information
Division of Air Quality
Compliance Demonstration
Source Information
Company Name Linde Gas North America - Reformer Unit
Company Contact:Michelle Fox
Contact Phone No.801-389-7256
Source Designation:Reformer Unit
Test & Review Dates
Test Date: 8/29/2023
Review Date: 2/1/2024 Tabs Are Shown
Observer:Unobserved
Reviewer:Paul Bushman
Particulate Emission Limits
lbs/MMBtu lbs/hr gr/dscf
1.730
Emission Rates - "Front Half"
lbs/MMBtu lbs/hr gr/dscf
#DIV/0! 0.7168 0.0018
Test Information
Equivalent Diameter (ft.)As ft^2 Y Dl H @ Cp Pbar Pq (static)Dn
4.96 24.90 1.0030 1.655 0.84 25.72 -0.92
0.2516
Contractor Information
Contracting Company: TETCO
Contact: Dean Kitchen
Phone No.: 801-492-9106
Project No.:
320
Rectangular
10100
9780
9860
9190
8710
8710
8710
10540
10640
11950
320
10610
10200
10390
1970
1800
1910
1420
1040
1190
1250
F factor usedF factors for Coal, Oil, and Gas
Anthrocite 2
Lignite
Natural
Propane
Butane
COAL
OIL
GAS
Bituminous 2
Fd Fw Fc
scf/MMBtu scf/MMBtu scf/MMBtu
O2
CO2
lbs/MMBtu
Page 1
Summary
Division of Air Quality
Reference Methods 5 - TSP
Compliance Demonstration of
Linde Gas North America - Reformer Unit
Testing Results Lab Data - grams collected
Test Date 8/29/2023 8/29/2023 8/29/2023 8/29/2023 Lab Data Probe Filter Back
Rectangular Run 1 Run 2 Run 3 Run 4 Run 1 0.0043 0.0009 0.0038
As ft^2 24.90 24.90 24.90 Run 2 0.0056 0.0004 0.0017
Pbar 25.72 25.72 25.72 Run 3 0.006 -0.0006 0.0012
Pq (static)-0.92 -0.92 -0.92 Run 4
Ps 25.65 25.65 25.65
Avg. Ts F 343.08 343.00 343.12 Front Half Emissions Summary
CO2 - FCO2 18.72 19.07 19.15 Run 1 Run 2 Run 3 Run 4 Avg.
O2 2.62 2.79 2.83 gr./dscf 0.0017 0.0020 0.0017 0.0018
N2+C 78.66 78.14 78.02 lbs/hr 0.6471 0.7844 0.7188 0.7168
Md 31.10 31.16 31.18 lbs/MMBtu #DIV/0!
Ms 28.30 28.71 28.71
Y 1.00 1.00 1.00
Cp 0.84 0.84 0.84 Total Emissions Summary w/back half condensable
Vm cf 55.50 56.69 58.93 Run 1 Run 2 Run 3 Run 4 Avg.
Vlc 270.20 228.90 237.40 gr./dscf 0.0030 0.0025 0.0021 0.0025
AVG. Tm F 82.80 90.36 95.50 lbs/hr 1.1200 1.0067 0.8785 1.0017
Vm std 46.74 47.10 48.52 lbs/MMBtu #DIV/0!
Vw std 12.72 10.77 11.17
Bws 0.21 0.19 0.19
S Bws 1.00 1.00 1.00
Avg. Sqrt Dlp 0.88 0.91 0.95
Vs 66.41 67.89 71.32 F factor used
scfm wet 55927.66 57186.48 60065.23 320
acfm 99216.73 101439.79 106562.17
Qsd dscfh 2637900.43 2792369.43 2929332.76
# Sample
Points 25.00 25.00 25.00
Dn 0.252 0.252 0.252
An 3.45E-04 3.45E-04 3.45E-04
Start Time 10:01 12:18 14:28
End Time 11:34 13:49 16:00
Total Test
time 75.00 75.00 75.00
Time @ point 3.00 3.00 3.00
O2
CO2
lbs/MMBtu
Page 2
Summary
80.00
90.00
100.00
110.00
120.00
1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47
%
I
s
o
k
i
n
e
t
i
c
Points
Run 1 PxP Isokinetic
80.00
90.00
100.00
110.00
120.00
1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47
%
I
s
o
k
i
n
e
t
i
c
Sample Points
Run 2 PxP Isokinetic
80.00
90.00
100.00
110.00
120.00
1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47
%
I
s
o
k
i
n
e
t
i
c
Sample Points
Run 3 PxP Isokinetic
80.00
90.00
100.00
110.00
120.00
1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47
Sample Points
Run 4 PxP Isokinetic
Page 3
Run 1
Linde Gas North America - Reformer Unit Flow & Moisture Test Date 8/29/2023
As ft^2 Pbar Pq (static) Ps Avg. Ts F CO2 - FCO2 O2 N2+C Md Ms
24.90 25.72 -0.92 25.65 343 18.72 2.62 78.66 31.10 28.30
Y Cp Vm cf Vlc Avg. Tm F Vm std Vw std Bws S Bws 9.9784
1.0030 0.84 55.498 270.20 82.80 46.742 12.718 0.2139 0.9990 0.999
Avg. Sqrt
Dlp Vs scfm wet acfm Qsd dscfh
# Sample
Points Dn
Total Test
time (minutes)
Time @ point
(minutes)Avg. Dlh
0.879 66.41 55,928 99,217 2.64E+06 25 0.2516 75 3.00 1.615600
TRUE
Point No.Meter (cf)dl "p"dl "h"ts F tm F (in)tm F (out)Imp. Liquid Collected
1 335.522 1.50 3.00 345 75 74 Wt. (Final)Wt. (Initial)lc
2 338.514 1.25 2.47 344 75 74 559.3 371.2 188.1
3 341.245 1.20 2.38 344 77 75 565.6 520.9 44.7
4 343.963 1.05 2.08 344 78 76 728.4 708.1 20.3
5 346.499 0.86 1.72 343 81 77 958.6 941.5 17.1
6 348.877 1.10 2.20 342 80 78 0.0
7 351.444 0.89 1.78 343 82 79
8 353.801 0.56 1.12 343 83 79 Isokinetics 102.3
9 355.729 0.51 1.02 343 84 80 Test Date 8/29/2023
10 357.542 0.52 1.04 343 84 81 Start Time 10:01 enter
11 359.386 1.25 2.53 344 83 81 End Time 11:34
12 362.074 0.54 1.08 343 84 82
13 364.001 0.41 0.82 343 85 83
14 365.684 0.48 0.87 343 86 83
15 367.471 0.43 0.87 343 86 84
16 369.172 1.40 2.82 344 86 84
17 372.067 0.72 1.45 344 87 84
18 374.264 0.75 1.51 344 88 85
19 376.449 0.71 1.43 343 88 85
20 378.605 0.45 0.91 342 89 86
21 380.360 1.10 2.22 342 86 85
22 382.917 0.80 1.82 342 87 85
23 385.335 0.67 1.36 342 88 86
24 387.407 0.53 1.07 342 89 86
25 389.267 0.45 0.82 342 90 87
26 391.020
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
Page 4
Run 2
Linde Gas North America - Reformer Unit Flow & Moisture Test Date 5/13/2009
As ft^2 Pbar Pq (static) Ps Avg. Ts F CO2 - FCO2 O2 N2+C Md Ms
24.90 25.72 -0.92 25.65 343 19.07 2.79 78.14 31.16 28.71
Y Cp Vm cf Vlc Avg. Tm F Vm std Vw std Bws S Bws 9.9677
1.0030 0.84 56.691 228.90 90 47.096 10.774 0.1862 0.9990 0.999
Avg. Sqrt
Dlp Vs scfm wet acfm Qsd dscfh
# Sample
Points Dn
Total Test
time (minutes)
Time @ point
(minutes)Avg. Dlh
0.905 67.89 57,186 101,440 2.79E+06 25 0.2516 75 3.00 1.65
TRUE
Point No.Meter (cf)dl "p"dl "h"ts F tm F (in)tm F (out)Imp. Liquid Collected
1 391.958 1.10 2.30 342.0 83.0 84.0 Wt. (Final)Wt. (Initial)lc
2 394.652 1.20 2.31 342.0 84.0 84.0 536.70 375.40 161.3
3 397.361 1.10 2.12 343.0 86.0 84.0 640.30 601.40 38.9
4 399.966 0.88 1.70 342.0 88.0 85.0 728.50 713.10 15.4
5 402.319 0.70 1.35 342.0 89.0 86.0 944.40 931.10 13.3
6 404.438 1.00 1.93 343.0 88.0 87.0 0.0
7 406.816 0.78 1.54 343.0 90.0 87.0
8 409.034 0.60 1.17 343.0 90.0 88.0 Isokinetics 97.4
9 411.015 0.57 1.11 343.0 91.0 88.0 Test Date 8/29/2023
10 412.924 0.45 0.87 342.0 92.0 89.0 Start Time 12:18
11 414.646 1.50 2.92 344.0 90.0 89.0 End Time 13:49
12 417.577 1.30 2.52 344.0 91.0 89.0
13 420.424 0.81 1.77 344.0 93.0 90.0
14 422.833 0.66 1.28 344.0 94.0 90.0
15 424.858 0.61 1.18 343.0 94.0 91.0
16 426.825 1.20 2.33 343.0 92.0 90.0
17 429.425 1.00 1.94 344.0 93.0 91.0
18 431.919 0.82 1.59 344.0 94.0 91.0
19 434.213 0.59 1.16 343.0 95.0 92.0
20 436.187 0.38 0.74 344.0 95.0 92.0
21 437.777 1.00 1.95 342.0 93.0 92.0
22 440.286 0.93 1.83 342.0 94.0 92.0
23 442.589 0.71 1.39 343.0 96.0 93.0
24 444.770 0.64 1.26 343.0 96.0 93.0
25 446.781 0.54 1.06 343.0 96.0 94.0
26 448.649
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
Page 5
Run 3
Linde Gas North America - Reformer Unit Flow & Moisture Test Date 5/13/2009
As ft^2 Pbar Pq (static) Ps Avg. Ts F CO2 - FCO2 O2 N2+C Md Ms
24.90 25.72 -0.92 25.65 343 19.15 2.83 78.02 31.18 28.71
Y Cp Vm cf Vlc Avg. Tm F Vm std Vw std Bws S Bws 9.9838
1.0030 0.84 58.929 237.40 96 48.524 11.174 0.1872 0.9990 0.999
Avg. Sqrt
Dlp Vs scfm wet acfm Qsd dscfh
# Sample
Points Dn
Total Test
time (minutes)
Time @ point
(minutes)Avg. Dlh
0.951 71.32 60,065 106,562 2.93E+06 25 0.2516 75 3.00 1.81
TRUE
Point No.Meter (cf)dl "p"dl "h"ts F tm F (in)tm F (out)Imp. Liquid Collected
1 449.640 1.40 2.69 345.0 90.0 90.0 Wt. (Final)Wt. (Initial)lc
2 452.476 1.40 2.69 344.0 91.0 90.0 519.1 352.7 166.4
3 455.337 1.20 2.30 344.0 93.0 91.0 634.4 593.2 41.2
4 458.040 1.10 2.11 344.0 94.0 91.0 715.0 700.3 14.7
5 460.713 0.84 1.63 343.0 95.0 92.0 863.3 848.2 15.1
6 462.916 1.10 2.13 344.0 94.0 92.0 0.0
7 465.434 0.84 1.63 344.0 95.0 93.0
8 467.718 0.61 1.18 344.0 96.0 93.0 Isokinetics 95.6
9 469.720 0.65 1.26 343.0 97.0 94.0 Test Date 8/29/2023
10 471.726 1.55 3.01 341.0 98.0 95.0 Start Time 14:28
11 474.639 1.60 3.11 344.0 96.0 94.0 End Time 16:00
12 477.743 1.10 2.13 344.0 96.0 94.0
13 480.345 0.91 1.76 344.0 98.0 95.0
14 482.735 0.73 1.42 343.0 99.0 95.0
15 484.889 0.44 0.86 343.0 99.0 96.0
16 486.543 1.10 2.33 343.0 97.0 96.0
17 489.052 0.86 1.67 343.0 98.0 96.0
18 491.465 0.68 1.33 343.0 99.0 96.0
19 493.546 0.61 1.19 343.0 100.0 97.0
20 495.538 0.44 0.86 343.0 100.0 97.0
21 497.270 0.94 1.83 342.0 97.0 96.0
22 499.634 0.98 1.90 342.0 97.0 96.0
23 502.082 0.73 1.42 342.0 98.0 96.0
24 504.255 0.75 1.47 342.0 99.0 97.0
25 506.424 0.71 1.39 341.0 100.0 97.0
26 508.569
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
Page 6
COMPLIANCE EMISSION TEST PROTOCOL
LINDE GAS NORTH AMERICA, LLC
REFORMER UNIT
POLLUTANTS TO BE TESTED:
PARTICULATE MATTER (PM)
CONDENSABLE PARTICULATE MATTER (CPM)
NITROGEN OXIDES (NOx)
SULFUR DIOXIDE (SO2)
CARBON MONOXIDE (CO)
by:
TETCO
391 East 620 South
American Fork, UT 84003
Phone: 801 492-9106 • Fax: 801 492-9107
Prepared for:
Linde Gas North America
685 S Chevron Way
North Salt Lake, Utah 84054
CERTIFICATION OF REPORT INrEGRITY
Technical Emissions Testing Company (TETCO) certifies that this report
represents the truth as well as can be derived from the methods employed.
Every effort was made to obtain accurate and representative data and to
comply with procedures set forth in the Federal Register.
Dean A. Kitchen
XuanN. Dang ~--Reviewer: ---------~ ---"'"------~~--------------
Date: _____ _..D,_,_7_,/i ...... 1_~~'~L-J1-----------
ii
iii
TABLE OF CONTENTS
PAGE
Introduction
Test Purpose ........................................................................................................................1
Test Location, Type of Process ...........................................................................................1
Test Dates ............................................................................................................................1
Pollutant and Testing Methods ............................................................................................1
Test Participants ..................................................................................................................2
Discussion of Errors or Irregularities ..................................................................................2
Quality Assurance ...............................................................................................................2
Summary of Results
Emission Results .................................................................................................................3
Process Data ........................................................................................................................3
Description of Collected Samples ........................................................................................3
Percent Isokinetic Sampling ...............................................................................................3
Source Operation
Process Control Device Operation ......................................................................................4
Process Representativeness .................................................................................................4
Sampling and Analytical Procedures
Sampling Port Location ......................................................................................................5
Sampling Point Location .....................................................................................................5
Sampling Train Description ................................................................................................5
Quality Assurance ...............................................................................................................6
Appendices
A: Complete Results and Sample Equations
B: Raw Field Data
C: Laboratory Data
D: Raw Production Data
E: Equipment Calibrations and Gas Certifications
F: Related Correspondence
iv
LIST OF TABLES
Table PAGE
I Emission Test Results ..........................................................................................................3
II Percent Isokinetic Sampling ............................................................................................... 3
III Complete Results (Combined) ......................................................................... Appendix A
LIST OF FIGURES
Figure
1 Facility Schematic Representation, Reformer Unit ............................... Appendix D
2 Schematic Representation of Method 5/202 Sampling Train ................ Appendix E
3 Schematic of Gas Analyzer Sampling Train .......................................... Appendix E
1
INTRODUCTION
Test Purpose
This test project was conducted to measure the particulate matter (PM), NOx, SO2, CO, and
condensable emissions from the Reformer exhaust stack. The PM, NOx, and CO emissions were
measured as directed in the facility Approval Order (DAQE-AN130910007-20), dated August 5,
2020. The SO2 emissions were measured to gather information for inventory purposes.
In addition to the PM, condensable, NOx, SO2, and CO testing on the Reformer exhaust, samples
were taken from the hydrogen purification unit purge gas to determine the gas composition, heat
content, and hydrogen sulfide content.
Facility Location and Description
Linde Gas operates a hydrogen production plant located in North Salt Lake City. The plant
consists of a single Steam Methane Reformer (SMR) and associated equipment that can provide
up to 26 MMScfd of 99.9% pure hydrogen. The plant employs steam methane reforming to
convert feedstock gas (refinery gases and/or natural gas) plus steam to pure hydrogen.
Test Dates
The test project was conducted on August 28-29, 2023. TETCO personnels traveled to the
facility and set up the testing equipment on August 28, 2023. No test runs were performed on
August 28, 2023. All testing was conducted on August 29, 2023.
Pollutants and Testing Methods
Three test runs were completed on the Reformer exhaust stack. Testing was conducted for PM,
SO2, NOx, CO, and condensable emissions according to EPA Methods 5, 6C, 7E, 6C, 10, and
202 respectfully. The Method 5 and Method 202 testing was conducted concurrently with the
NOx, SO2, and CO analyzers.
2
Test Participants
The following participants were present during the test.
Company
Linde Gas
685 South Chevron Way
North Salt Lake City, UT 84054
Personnels
Alina Pak
Michelle Fox
Test Contractor:
TETCO
391 East 620 South
American Fork, UT 84003
Dean Kitchen
Joseph Wells
Reed Kitchen
Discussion of Errors or Irregularities
There were no errors or irregularities.
Quality Assurance
Testing procedures and sample recovery techniques were in accordance with those outlined in
the Federal Register and the Quality Assurance Handbook for Air Pollution Measurement
Systems.
3
SUMMARY OF RESULTS
Emission Results
Table I presents the Emission Results for the Reformer Unit.
Table I. Emission Test Results
Pollutants Measured Emission Rate
(lb/hr)
PM
CPM
NOx
CO
SO2
0.71
0.28
8.54
0.22
0.02
Process Data
The process was operated according to standard procedures. All testing occurred while the
Reformer Unit was operating at its maximum rate.
Description of Collected Samples
There were light, tan-colored rings on the test filters. The front washes all appeared to be clear.
Percent Isokinetic Sampling
Each particulate matter test run was isokinetic within ±10% of 100% criterion specified in the
Federal Register. Isokinetic values for each EPA Method 5 test run are presented in Table II.
Table II. Percent Isokinetic
Run # Reformer Unit
1 103
2 96
3 96
4
SOURCE OPERATIONS
Process Control Devices Operation
All control devices operated normally.
Process Representativeness
The facility was operated normally. Production data is contained in Appendix F.
5
SAMPLING AND ANALYTICAL PROCEDURES
Sampling Port Location
The sample location complies with the requirements of EPA Method 1. The inside dimensions of
the rectangular stack were 54.125 inches by 66.25 inches. The equivalent diameter was
calculated at 59.577 inches for purposes of calculating upstream and downstream disturbance
distances. Five sample ports were located approximately 145 inches (2.43 diameters)
downstream and more than 33 inches (.55 diameters) upstream from the nearest flow
disturbances.
Sampling Point Location
The “Preliminary” data sheet in Appendix B shows the distance determination for each sampling
point according to EPA Method 1. Each point was marked and identified on the probe with a
wrapping of glass tape and numbered. These points were determined by measuring the distance
from the inside wall and adding the reference (port) measurement.
Sampling Train Descriptions
All sampling trains were made of inert materials (Teflon, stainless steel, and glass) to prevent
interference of the sampled gas and particulate. The stack analyzers used to conduct these tests
were constructed to meet the specifications outlined in the CFR. The temperature sensors were
K-type thermocouples. Heater, vacuum, and pitot line connections were designed to be
interchangeable with all units used by the tester. A stainless-steel probe liner was used for all
tests. Figures 2 and 3 in Appendix F are sketches of the Method 5/202 and Gas Analyzer
sampling trains. Sample boxes were prepared for testing by following the prescribed procedure
outlined in each individual method.
The NOx analyzer was set at 0-50 ppm range with a high-level calibration gas at 47.1 ppm. The
NOx analyzer was model CLA-510 Horiba Instruments, serial number 41679080031,
manufactured in 2001.
The SO2 analyzer was set at 0-50 ppm range with a high-level calibration gas at 47.5 ppm. The
SO2 analyzer was a Rosemount, model 890, serial number 890149300000, manufactured in
1997.
The CO analyzer was set at 0-25 ppm range with a high-level calibration gas of 20.23 ppm. The
CO analyzer was model VIA-510 Horiba Instruments, serial number 43223490033,
manufactured in 1995.
The hydrogen purge gas heat content and composition were determined with grab bag samples
Tedlar bags and sent for analysis using ASTM Method D1945. Hydrogen sulfide levels were
measured from the same Tedlar bags and analyzed as per ASTM Method D5504. Samples were
sent to Empact Analytical Systems (Brighton, CO) for analysis.
6
Quality Assurance
All equipment set-up, sampling procedures, sample recovery and equipment calibrations were
carried out according to the procedures specified in 40 CFR 60, Appendix A, Methods 1-5, 6C,
7E, 10, 40 CFR 60, Appendix M, Method 202, and the Quality Assurance Handbook for Air
Pollution Measurement Systems
APPENDIX
A: Complete Results and Sample Calculations
B: Raw Field Data
C: Laboratory Data
D: Raw Production Data
E: Equipment Calibrations and Gas Certifications
F: Related Correspondence
A
APPENDIX A
Complete Results and Sample Equations
Table III. Complete Results (Combined)
Nomenclature
Sampling Equations
TABLE III
PARTICULATE MATTER AND SO2 COMPLETE RESULTS
LINDE GAS, NORTH SALT LAKE CITY, UTAH
REFORMER
Symbol Description Dimensions Run #1 Run #2 Run #3
Date 8/29/23 8/29/23 8/29/23
Filter #7649 7650 7651
Begin Time Test Began 10:01 12:18 14:28
End Time Test Ended 11:34 13:49 16:00
Pbm Meter Barometric Pressure In. Hg. Abs 25.80 25.80 25.80
DH Orifice Pressure Drop In. H2O 1.624 1.653 1.812
Y Meter Calibration Y Factor dimensionless 1.003 1.003 1.003
Vm Volume Gas Sampled--Meter Conditions cf 55.498 56.691 58.929
Tm Avg Meter Temperature oF 82.8 90.4 95.5
DP Sq Root Velocity Head For Emission Rate Root In. H2O 0.8814 0.9079 0.9530
Wtwc Weight Water Collected Grams 270.2 228.9 237.4
Tt Duration of Test Minutes 75 75 75
Cp Pitot Tube Coefficient Dimensionless 0.84 0.84 0.84
Dn Nozzle Diameter Inches 0.2510 0.2530 0.2510
CO2 Volume % Carbon Dioxide Percent 18.75 19.07 19.15
O2 Volume % Oxygen Percent 2.62 2.79 2.83
N2 & CO Volume % Nitrogen and Carbon Monoxide Percent 78.63 78.13 78.02
Vmstd Volume Gas Sampled (Standard)dscf 46.906 47.256 48.692
Vw Volume Water Vapor scf 12.743 10.795 11.196
Bws (measured)Fraction H2O in Stack Gas (Measured)Fraction 0.2136 0.1860 0.1869
Bws (saturated)Fraction H2O in Stack Gas (Saturated)Fraction 1.0109 1.0109 1.0109
Bws Fraction H2O in Stack Gas **Fraction 0.2136 0.1860 0.1869
Xd Fraction of Dry Gas Fraction 0.786 0.814 0.813
Md Molecular Wt. Dry Gas lb/lbmol 31.10 31.16 31.18
Ms Molecular Wt. Stack Gas lb/lbmol 28.30 28.72 28.71
%I Percent Isokinetic Percent 102.9 96.3 96.2 AVG
Ts Avg Stack Temperature oF 343.1 343.0 343.1 343.1
As Stack Cross Sectional Area Sq. Ft.25.292 25.292 25.292
PG Stack Static Pressure In. H2O -0.92 -0.92 -0.92
Pbp Sample Port Barometric Pressure In. Hg. Abs 25.72 25.72 25.72
Ps Stack Pressure In. Hg. Abs 25.652 25.652 25.652
Qs Stack Gas Volumetric Flow Rate (Std)dscfm 4.476E+04 4.739E+04 4.968E+04 4.73E+04
Qa Stack Gas Volumetric Flow Rate (Actual)cfm 1.010E+05 1.033E+05 1.084E+05 1.04E+05
Vs Velocity of Stack Gas fpm 3.993E+03 4.083E+03 4.287E+03 4.12E+03
Mfilter Mass of Particulate on Filter milligrams -0.6 0.4 0.9
Mp Mass of Particulate in Wash milligrams 6.0 5.6 4.3
MF Mass of Front Half milligrams 5.4 6.0 5.2
Mcpm Mass of Condensable Particulate Matter (CPM)milligrams 3.8 1.7 1.2
CF Concentration of Front Half gr / dscf 0.0018 0.0020 0.0016 0.0018
Ccpm Back Half Particulate Concentration gr / dscf 0.0013 0.0006 0.0004 0.0007
CF CPM Combined Front and CPM Concentration gr / dscf 0.0030 0.0025 0.0020 0.0025
ERf Emission Rate Front Half lb/hr 0.6814 0.7956 0.7015 0.7262
Ercpm Emission Rate of CPM lb/hr 0.4795 0.2254 0.1619 0.2889
ERF CPM Combined Front and CPM Concentration lb/hr 1.1608 1.0210 0.8634 1.0151
CNOx Concentration of NOx ppmdv 25.3 25.5 26.0 25.61
CCO Concentration of CO ppmdv 0.65 1.8 0.7 1.06
CSO2 Concentration of SO2 ppmdv 0.0 0.0 0.0 0.03
ERNOx Emission Rate of NOx lb / hr 8.12 8.64 9.27 8.68
ERCO Emission Rate of CO lb / hr 0.13 0.37 0.16 0.22
ERSO2 Emission Rate of SO2 lb / hr 0.02 0.02 0.01 0.02
%I =percent isokinetic, percent
As =stack cross-sectional area (ft3)
AS∆P =see √∆P
Btu =unit heat value (British thermal unit)
Bws =fraction of water in stack gas
Ccpm =concentration of condensibles (grain/dscf)
Cf =concentration of particulate matter, front half (gr/dscf,lb/dscf, etc.)
CO2 =percent carbon dioxide in the stack gas
Cp =pitot tube coefficient (0.84)
Cgas =concentration (ppm dry basis) of sampled gas using Method 6C, 7E, or 10
=corrected for bias checks. Species symbol replaces gas .
Cgas (corr)=actual gas concentration corrected to desired percent O2
Cgas (lb/dscf)=gas concentration converted to lb/dscf
∆H =orifice pressure drop (inches H2O)
∆H@ =orifice pressure (inches H2O)
∆Hd =orifice pressure head (inches H2O) needed for impactor flow rate
Dn =nozzle diameter (inches)
∆P =stack flow pressure differential (inches H2O)
Ds =diameter of the stack (feet)
EA =percent excess air
Ercpm =emission rate of condensibles (lb/hr)
Erf =emission rate of front half particulate (lb/hr)
Ergas =emission rate of a gas (lb/hr)
ERmmBtu =emission rate per mmBtu or ton of fuel etc.
ERX =emission rate of compound which replaces x
F =F-factor ratio of the gas volume of the products of combustion to the heat content
=of the fuel.
mBtu =thousand Btu
Mcpm =mass of condensibles (milligrams)
Md =molecular weight of stack gas, dry basis (lb/lb-mol)
Mf =mass of particulate on filter (mg)
Mfp =mass of particulate matter on filter and probe (mg)
mmBtu =million Btu
MP =mass of particulate matter in probe (mg)
Ms =molecular weight of stack gas, wet basis (g/gmol)
Mwx =molecular weight of gas species (g/gmol)
N2 =percent nitrogen in the stack gas
O2 =percent oxygen in the stack gas
√∆P =average of the square roots of ∆P (may also be referred to as AS∆P)
Pbm =absolute barometric pressure at the dry gas meter (inches Hg)
Pbp =absolute barometric pressure at the sample location (inches Hg)
PG =stack static pressure (inches H2O)
Ps =absolute stack pressure (inches Hg)
Pstd =absolute pressure at standard conditions (29.92 inches Hg.)
Method 5, 202, and Gases Nomenclature
Method 5, 202, and Gases Nomenclature
θ =time of test (minutes)
Qa =stack gas volumetric flow rate (acfm)
Qs =stack gas volumetric flow rate (dscfm)
Qw =wet stack gas std. volumetric flow (ft3/min, wscfm)
R =gas constant (21.85 inches Hg*ft3/(lbmol*R))
ρp =particle density (1 g/cm3)
ρs =stack gas density (g/cm3)
Tm =meter temperature (oF)
Ts =stack temperature (oF)
Tstd =absolute temperature at standard conditions (528oR)
Tt =see θ
Vm =sample volume (ft3) at meter conditions
Vmstd =volume standard (dscf), sample volume adjusted to 68oF and 29.92 inches Hg.
Vs =velocity of stack gas (fpm)
Vw =volume water vapor (scf) at 68oF and 29.92 inches Hg.
Wtwc =weight of the condensed water collected (grams)
Xd =fraction of dry gas
Y =meter calibration Y-factor (dimensionless)
%I =Vmstd • (Ts + 460) • 1039 / (θ • Vs • Ps • Xd • Dn2)
As =(Ds2 / 4) • π
Bws =Vw / (Vmstd +Vw)
Ccpm =Mcpm • 0.01543 / Vmstd
Cf =Mfp • 0.01543 / Vmstd
Cgas (corr)=Cgas • (20.9 - desired %O2) / (20.9 - actual %O2)
Cgas (lb/dscf)=Cgas (ppm) • Conversion factor from Method 19, Table 19-1)
Deq =2 • L • W / (L + W)
Dn des =√{0.0269 • (Pbm + 0.0735) / [(Tm + 460) • Cp • Xd • √[(Ts + 460) • Ms) / (Ps • ∆P)]}
EA =(%O2 - 0.5 %CO) / [0.264 %N2 - (%O2 - 0.5 %CO)]
Ercpm =Ccpm • Qs • 0.00857
ERf =Cf • Qs • 0.00857
Ergas =Pstd • Qs • Mwgas • Cgas • 60 / (R • Tstd • 106)
Ergas =Cgas(lb/dscf) • Qs • 60
=(Either ERgas equation gives equivalent lb/hr values to 3 sig. figures)
ER(mmBtu) =Cgas(lb/dscf) • Fd • (20.9/(20.9 - %O2), Method 19 Equation 19-1
K-fact =846.72 • Dn4 • ∆H@ • Cp2 • Xd2 • Md • Ps • (Tm + 460) / [Ms • (Ts + 460) • (Pbm + ∆H / 13.6)]
Md =CO2 • 0.44 + O2 • 0.32 + N2 •0.28
Ms =(Md • Xd) + (18 • Bws)
µs =[51.05 + 0.207 • (Ts + 460) + 3.24 •10-5 • (Ts + 460)2 + 0.53147 • %O2 - 74.143 • Bws] • 10-6
Ps =Pbp + (PG / 13.6)
Qa =Vs • As
Qs =Qa • Xd • Ps • Tstd / [(Ts + 460) • Pstd]
Qw =Qs / Xd
Vmstd =Vm • Y • Tstd • (Pbm + ∆H / 13.6) / [Pstd • (Tm + 460)]
Vs =85.49 • 60 • Cp • √∆P • √ [(Ts + 460) / (Ps • Ms)]
Vw =Wtwc • 0.04715
Xd =1 - Bws
Method 5, 202, and Gases Sample Equations
B
APPENDIX B
Raw Field Data
Preliminary Velocity Traverse and Sampling Point Location Data
Method 5/202 Field Data Sheets
Gas Analyzer Field Data Sheets and Data Logger Printout
NOx Converter Efficiency Check
Gas Sample Stratification Check
C
APPENDIX C
Laboratory Data
Sample Recovery Sheet
Method 5 Laboratory Recovery Sheets
Method 202 Laboratory Recovery Sheets
Facility:Linde Date:08/29/23
Stack Identification:Reformer Run:3
Filter Number:7651 Sample Box:C
Blanks &Blanks Rinses
Rinses Acetone (CH3COCH3)0.0000 g/100ml Acetone (CH3COCH3)125 ml
Filter Final1:0.6691 g Date:08/31/23 Time:8:00
Final2:0.6692 g Date:08/31/23 Time:14:00
FinalAVG:0.6692 g
Filter Preweight:0.6683 g
CRITERIA
Net 0.0009 g Process Weight Time
Net 0.9 mg Final Pass Pass
Front Half Final1:104.2449 g Date:08/01/23 Time:8:00
Final2:104.2451 g Date:Time:
FinalAVG:104.2450 g
Initial1:104.2408 g Date:12/02/22 Time:9:00
Initial2:104.2405 g Date:12/05/22 Time:9:00
InitialAVG:104.2407 g
Gross:0.0043 g CRITERIA
Beaker Number:54 Blank:0.0000 g Process Weight Time
Net 0.0043 g Final Pass
Net 4.3 mg Initial Pass Pass
RESULTS Front Half
Filter 0.9 mg
Wash 4.3 mg
Total 5.2 mg
Comments:Criteria: 1) Weights are ± 0.5 mg of each other, or within 1% of the net weight. 2) There shall be at least 6 hrs between weighings.
Lab Technician:Mike McNamara Date:8/30/23
Lab Technician:Dean Kitchen Date:8/31/23
Facility:Linde Date:08/29/23
Stack Identification:Reformer Run:2
Filter Number:7650 Sample Box:B
Blanks &Blanks Rinses
Rinses Acetone (CH3COCH3)0.0000 g/100ml Acetone (CH3COCH3)150 ml
Filter Final1:0.6711 g Date:8/31/23 Time:8:00
Final2:0.6713 g Date:8/31/23 Time:14:00
FinalAVG:0.6712 g
Filter Preweight:0.6708 g
CRITERIA
Net 0.0004 g Process Weight Time
Net 0.4 mg Final Pass Pass
Front Half Final1:103.3879 g Date:8/1/23 Time:8:00
Final2:103.3881 g Date:Time:
FinalAVG:103.3880 g
Initial1:103.3826 g Date:12/2/22 Time:9:00
Initial2:103.3822 g Date:12/5/22 Time:9:00
InitialAVG:103.3824 g
Gross:0.0056 g CRITERIA
Beaker Number:53 Blank:0.0000 g Process Weight Time
Net 0.0056 g Final Pass
Net 5.6 mg Initial Pass Pass
RESULTS Front Half
Filter 0.4 mg
Wash 5.6 mg
Total 6.0 mg
Comments:Criteria: 1) Weights are ± 0.5 mg of each other, or within 1% of the net weight. 2) There shall be at least 6 hrs between weighings.
Lab Technician:Mike McNamara Date:8/30/23
Lab Technician:Dean Kitchen Date:8/31/23
Facility:Date:
Stack Identification:Run:1
Filter Number:7649 Sample Box:A
Blanks &Blanks Rinses
Rinses Acetone (CH3COCH3)0.0000 g/100ml Acetone (CH3COCH3)125 ml
Filter Final1:0.6325 g Date:08/31/23 Time:8:00
Final2:0.6326 g Date:08/31/23 Time:14:00
FinalAVG:0.6326 g
Filter Preweight:0.6332 g
CRITERIA
Net -0.0006 g Process Weight Time
Net -0.6 mg Final Pass Pass
Front Half Final1:100.8890 g Date:08/01/23 Time:8:00
Final2:100.8893 g Date:Time:
FinalAVG:100.8892 g
Initial1:100.8831 g Date:12/02/22 Time:9:00
Initial2:100.8832 g Date:12/05/22 9:00
InitialAVG:100.8832 g
Gross:0.0060 g CRITERIA
Beaker Number:52 Blank:0.0000 g Process Weight Time
Net 0.0060 g Final Pass
Net 6.0 mg Initial Pass Pass
RESULTS Front Half
Filter -0.6 mg
Wash 6.0 mg
Total 5.4 mg
Comments:Criteria: 1) Weights are ± 0.5 mg of each other, or within 1% of the net weight. 2) There shall be at least 6 hrs between weighings.
Lab Technician:Date:8/30/23
Lab Technician:Date:8/31/23
Mike McNamara
Dean Kitchen
Linde
Reformer
08/29/23
Fa
c
i
l
t
y
:
St
a
c
k
I
d
e
n
t
i
f
i
c
a
t
i
o
n
:
Te
s
t
D
a
t
e
(
s
)
:
Sa
m
p
l
e
D
e
s
c
r
i
p
t
i
o
n
/
I
D
#
In
o
r
g
a
n
i
c
C
P
M
Be
a
k
e
r
/
T
i
n
#
52
2
Da
t
e
Re
l
.
H
u
m
%
52
3
Da
t
e
Ti
m
e
Re
l
.
H
u
m
%
52
4
Da
t
e
Ti
m
e
Re
l
.
H
u
m
%
Fi
n
a
l
W
e
i
g
h
t
(
1
)
,
g
2.
2
3
5
2
9/
6
/
2
3
8:
0
0
<
1
2.
2
5
6
3
9/
6
/
2
3
8:
0
0
<
1
2.
2
5
3
8
9/
6
/
2
3
8:
0
0
<
1
Fi
n
a
l
W
e
i
g
h
t
(
2
)
,
g
2.
2
3
5
2
9/
6
/
2
3
14
:
0
0
<
1
2.
2
5
6
6
9/
6
/
2
3
14
:
0
0
<
1
2.
2
5
3
9
9/
6
/
2
3
14
:
0
0
<
1
Av
e
.
F
i
n
a
l
W
e
i
g
h
t
,
g
2.
2
3
5
2
2.
2
5
6
5
2.
2
5
3
9
In
i
t
i
a
l
W
e
i
g
h
t
(
1
)
,
g
2.
2
3
1
5
12
/
1
2
/
2
2
14
:
0
0
<
1
2.
2
5
5
5
12
/
1
2
/
2
2
14
:
0
0
<
1
2.
2
5
2
8
12
/
1
2
/
2
2
14
:
0
0
<
1
In
i
t
i
a
l
W
e
i
g
h
t
(
2
)
,
g
2.
2
3
1
5
12
/
1
3
/
2
2
10
:
0
0
<
1
2.
2
5
5
5
12
/
1
3
/
2
2
10
:
0
0
<
1
2.
2
5
2
7
12
/
1
3
/
2
2
10
:
0
0
<
1
Av
e
.
I
n
i
t
i
a
l
W
e
i
g
h
t
,
g
2.
2
3
1
5
2.
2
5
5
5
2.
2
5
2
8
mr:
I
n
i
t
i
a
l
I
n
o
r
g
a
n
i
c
W
t
,
m
g
3.
7
0
0.
9
5
1.
1
0
H2O
a
d
d
e
d
i
n
E
x
t
r
a
c
t
i
o
n
s
,
m
l
60
pH
pH
60
pH
pH
60
pH
pH
Re
c
o
n
s
t
i
t
u
t
e
d
H
2O
V
o
l
u
m
e
,
m
l
St
a
r
t
En
d
St
a
r
t
En
d
St
a
r
t
En
d
N:
N
o
r
m
a
l
i
t
y
o
f
N
H
4OH
Vt:
V
o
l
u
m
e
o
f
N
H
4OH
,
m
l
mc:
M
a
s
s
o
f
N
H
4 A
d
d
e
d
,
m
g
mi (
o
r
m
ib
):
F
i
n
a
l
I
n
o
r
g
a
n
i
c
W
t
,
m
g
3.
7
0
0.
9
5
1.
1
0
Or
g
a
n
i
c
C
P
M
Be
a
k
e
r
/
T
i
n
#
52
5
Da
t
e
Ti
m
e
Re
l
.
H
u
m
%
52
6
Da
t
e
Ti
m
e
Re
l
.
H
u
m
%
52
7
Da
t
e
Ti
m
e
Re
l
.
H
u
m
%
Fi
n
a
l
W
e
i
g
h
t
(
1
)
,
g
2.
2
7
0
4
9/
6
/
2
3
8:
0
0
<
1
2.
2
5
8
8
9/
6
/
2
3
8:
0
0
<
1
2.
2
5
6
7
9/
6
/
2
3
8:
0
0
<
1
Fi
n
a
l
W
e
i
g
h
t
(
2
)
,
g
2.
2
7
0
4
9/
6
/
2
3
14
:
0
0
<
1
2.
2
5
9
2
9/
6
/
2
3
14
:
0
0
<
1
2.
2
5
6
9
9/
6
/
2
3
14
:
0
0
<
1
Av
e
.
F
i
n
a
l
W
e
i
g
h
t
,
g
2.
2
7
0
4
2.
2
5
9
0
2.
2
5
6
8
In
i
t
i
a
l
W
e
i
g
h
t
(
1
)
,
g
2.
2
6
9
2
12
/
1
2
/
2
2
14
:
0
0
<
1
2.
2
5
7
0
12
/
1
2
/
2
2
14
:
0
0
<
1
2.
2
5
5
3
12
/
1
2
/
2
2
14
:
0
0
<
1
In
i
t
i
a
l
W
e
i
g
h
t
(
2
)
,
g
2.
2
6
9
1
12
/
1
3
/
2
2
10
:
0
0
<
1
2.
2
5
7
2
12
/
1
3
/
2
2
10
:
0
0
<
1
2.
2
5
5
7
12
/
1
3
/
2
2
10
:
0
0
<
1
Av
e
.
I
n
i
t
i
a
l
W
e
i
g
h
t
,
g
2.
2
6
9
2
2.
2
5
7
1
2.
2
5
5
5
mo (
o
r
m
ob
):
N
e
t
O
r
g
a
n
i
c
W
t
,
m
g
1.
2
5
1.
9
0
1.
3
0
mcp
m
:
G
r
o
s
s
C
P
M
,
m
g
5.
0
2.
8
2.
4
mcp
m
:
B
l
a
n
k
C
P
M
,
m
g
1.
2
1.
2
1.
2
mcp
m
:
N
e
t
C
P
M
,
m
g
3.
8
1.
7
1.
2
pH
M
e
t
e
r
:
O
a
k
t
o
n
p
H
T
e
s
t
r
B
N
C
,
E
l
e
c
t
r
o
d
e
M
o
d
e
l
:
3
5
8
0
1
-
0
0
pH
Da
t
e
Ti
m
e
La
b
T
e
c
h
n
i
c
i
a
n
:
Da
t
e
:
8/
3
0
/
2
3
Fi
s
h
e
r
p
H
B
u
f
f
e
r
4
.
0
0
Fi
s
h
e
r
p
H
B
u
f
f
e
r
7
.
0
0
La
b
T
e
c
h
n
i
c
i
a
n
:
Da
t
e
:
9/
6
/
2
3
10
/
2
1
/
1
5
Fo
r
m
D
a
t
e
:
Me
t
h
o
d
2
0
2
L
a
b
o
r
a
t
o
r
y
F
o
r
m
Ru
n
1
Ru
n
2
Ru
n
3
8/
2
9
/
2
3
Li
n
d
e
Re
f
o
r
m
e
r
Mi
k
e
M
c
N
a
m
a
r
a
De
a
n
K
i
t
c
h
e
n
Fa
c
i
l
t
y
:
St
a
c
k
I
d
e
n
t
i
f
i
c
a
t
i
o
n
:
Te
s
t
D
a
t
e
(
s
)
:
8/
2
9
/
2
3
Sa
m
p
l
e
D
e
s
c
r
i
p
t
i
o
n
/
I
D
#
In
o
r
g
a
n
i
c
C
P
M
Be
a
k
e
r
/
t
i
n
#
52
8
Da
t
e
Ti
m
e
Re
l
.
H
u
m
%
52
9
Da
t
e
Ti
m
e
Re
l
.
H
u
m
%
Fi
n
a
l
W
e
i
g
h
t
(
1
)
,
g
2.
2
2
8
0
9/
6
/
2
3
8:
0
0
<
1
2.
2
4
7
0
9/
6
/
2
3
8:
0
0
<
1
Fi
n
a
l
W
e
i
g
h
t
(
2
)
,
g
2.
2
2
8
0
9/
6
/
2
3
14
:
0
0
<
1
2.
2
4
6
9
9/
6
/
2
3
14
:
0
0
<
1
Av
e
.
F
i
n
a
l
W
e
i
g
h
t
,
g
2.
2
2
8
0
2.
2
4
7
0
In
i
t
i
a
l
W
e
i
g
h
t
(
1
)
,
g
2.
2
2
7
2
12
/
1
2
/
2
2
14
:
0
0
<
1
2.
2
4
5
8
12
/
1
2
/
2
2
14
:
0
0
<
1
In
i
t
i
a
l
W
e
i
g
h
t
(
2
)
,
g
2.
2
2
7
5
12
/
1
3
/
2
2
10
:
0
0
<
1
2.
2
4
6
0
12
/
1
3
/
2
2
10
:
0
0
<
1
Av
e
.
I
n
i
t
i
a
l
W
e
i
g
h
t
,
g
2.
2
2
7
4
2.
2
4
5
9
mr:
I
n
i
t
i
a
l
I
n
o
r
g
a
n
i
c
W
t
,
m
g
0.
6
5
1.
0
5
H2O
a
d
d
e
d
i
n
E
x
t
r
a
c
t
i
o
n
s
,
m
l
60
pH
pH
60
pH
pH
Re
c
o
n
s
t
i
t
u
t
e
d
H
2O
V
o
l
u
m
e
,
m
l
St
a
r
t
En
d
St
a
r
t
En
d
N:
N
o
r
m
a
l
i
t
y
o
f
N
H
4OH
Vt:
V
o
l
u
m
e
o
f
N
H
4OH
,
m
l
mc:
M
a
s
s
o
f
N
H
4 A
d
d
e
d
,
m
g
mi (
o
r
m
ib
):
F
i
n
a
l
I
n
o
r
g
a
n
i
c
W
t
,
m
g
0.
6
5
1.
0
5
Or
g
a
n
i
c
C
P
M
Be
a
k
e
r
/
t
i
n
#
53
0
Da
t
e
Ti
m
e
Re
l
.
H
u
m
%
53
1
Da
t
e
Ti
m
e
Re
l
.
H
u
m
%
Fi
n
a
l
W
e
i
g
h
t
(
1
)
,
g
2.
2
3
4
2
9/
6
/
2
3
8:
0
0
<
1
2.
2
5
7
0
9/
6
/
2
3
8:
0
0
<
1
Fi
n
a
l
W
e
i
g
h
t
(
2
)
,
g
2.
2
3
4
1
9/
6
/
2
3
14
:
0
0
<
1
2.
2
5
7
0
9/
6
/
2
3
14
:
0
0
<
1
Av
e
.
F
i
n
a
l
W
e
i
g
h
t
,
g
2.
2
3
4
2
2.
2
5
7
0
In
i
t
i
a
l
W
e
i
g
h
t
(
1
)
,
g
2.
2
3
3
6
12
/
1
2
/
2
2
14
:
0
0
<
1
2.
2
5
6
0
12
/
1
2
/
2
2
14
:
0
0
<
1
In
i
t
i
a
l
W
e
i
g
h
t
(
2
)
,
g
2.
2
3
3
7
12
/
1
3
/
2
2
10
:
0
0
<
1
2.
2
5
6
3
12
/
1
3
/
2
2
10
:
0
0
<
1
Av
e
.
I
n
i
t
i
a
l
W
e
i
g
h
t
,
g
2.
2
3
3
7
2.
2
5
6
2
mo (
o
r
m
ob
):
N
e
t
O
r
g
a
n
i
c
W
t
,
m
g
0.
5
0
0.
8
5
mcp
m
(
o
r
m
fb
):
T
o
t
a
l
C
P
M
,
m
g
1.
2
1.
9
pH
M
e
t
e
r
:
O
a
k
t
o
n
p
H
T
e
s
t
r
B
N
C
,
E
l
e
c
t
r
o
d
e
M
o
d
e
l
:
3
5
8
0
1
-
0
0
pH
Da
t
e
Ti
m
e
La
b
T
e
c
h
.
:
Da
t
e
:
8/
3
0
/
2
3
Fi
s
h
e
r
p
H
B
u
f
f
e
r
4
.
0
0
Fi
s
h
e
r
p
H
B
u
f
f
e
r
7
.
0
0
La
b
T
e
c
h
.
:
Da
t
e
:
9/
6
/
2
3
10
/
2
1
/
1
5
Fo
r
m
D
a
t
e
:
Me
t
h
o
d
2
0
2
L
a
b
o
r
a
t
o
r
y
F
o
r
m
Re
c
o
v
e
r
y
B
l
a
n
k
Pr
o
o
f
B
l
a
n
k
Li
n
d
e
Re
f
o
r
m
e
r
Mi
k
e
M
c
N
a
m
a
r
a
De
a
n
K
i
t
c
h
e
n
Fa
c
i
l
t
y
:
St
a
c
k
I
d
e
n
t
i
f
i
c
a
t
i
o
n
:
Te
s
t
D
a
t
e
(
s
)
:
Bl
a
n
k
D
e
s
c
r
i
p
t
i
o
n
/
I
D
#
Wa
t
e
r
Ac
e
t
o
n
e
He
x
a
n
e
Lo
t
#
11
1
A
2
4
21
6
5
1
1
MK
C
R
0
5
2
8
Be
a
k
e
r
/
t
i
n
#
53
2
Da
t
e
Ti
m
e
Re
l
.
H
u
m
%
53
3
Da
t
e
Ti
m
e
Re
l
.
H
u
m
%
53
4
Da
t
e
Ti
m
e
Re
l
.
H
u
m
%
Fi
n
a
l
W
e
i
g
h
t
(
1
)
,
g
2.
2
2
8
5
9/
6
/
2
3
8:
0
0
<
1
2.
2
2
3
8
9/
6
/
2
3
8:
0
0
<
1
2.
2
4
8
1
9/
6
/
2
3
8:
0
0
<
1
Fi
n
a
l
W
e
i
g
h
t
(
2
)
,
g
2.
2
2
8
4
9/
6
/
2
3
14
:
0
0
<
1
2.
2
2
3
9
9/
6
/
2
3
14
:
0
0
<
1
2.
2
4
8
0
9/
6
/
2
3
14
:
0
0
<
1
Av
e
.
F
i
n
a
l
W
e
i
g
h
t
,
g
2.
2
2
8
5
2.
2
2
3
9
2.
2
4
8
1
In
i
t
i
a
l
W
e
i
g
h
t
(
1
)
,
g
2.
2
2
8
1
12
/
1
2
/
2
2
14
:
0
0
<
1
2.
2
2
3
6
12
/
1
2
/
2
2
14
:
0
0
<
1
2.
2
4
7
8
12
/
1
2
/
2
2
14
:
0
0
<
1
In
i
t
i
a
l
W
e
i
g
h
t
(
2
)
,
g
2.
2
2
8
6
12
/
1
3
/
2
2
10
:
0
0
<
1
2.
2
2
4
0
12
/
1
3
/
2
2
10
:
0
0
<
1
2.
2
4
8
1
12
/
1
3
/
2
2
10
:
0
0
<
1
Av
e
.
I
n
i
t
i
a
l
W
e
i
g
h
t
,
g
2.
2
2
8
4
2.
2
2
3
8
2.
2
4
8
0
Bl
a
n
k
R
e
s
i
d
u
a
l
M
a
s
s
,
m
g
0.
1
0
Wa
t
e
r
0.
0
5
Ac
e
t
o
n
e
0.
1
0
He
x
a
n
e
Bl
a
n
k
M
a
s
s
,
g
21
0
16
2
14
8
Bl
a
n
k
V
o
l
u
m
e
,
m
l
21
0
20
6
22
2
Ma
x
B
l
a
n
k
R
e
s
i
d
u
l
a
l
M
a
s
s
,
m
g
0.
2
1
0.
2
1
0.
2
2
La
b
T
e
c
h
n
i
c
i
a
n
:
Da
t
e
:
8/
3
0
/
2
3
La
b
T
e
c
h
n
i
c
i
a
n
:
Da
t
e
:
9/
6
/
2
3
10
/
2
1
/
1
5
Fo
r
m
D
a
t
e
:
Me
t
h
o
d
2
0
2
F
i
e
l
d
R
e
a
g
e
n
t
B
l
a
n
k
F
o
r
m
08
/
2
9
/
2
3
Li
n
d
e
Re
f
o
r
m
e
r
Fi
s
h
e
r
A
C
S
Si
g
m
a
-
A
l
d
r
i
c
h
RI
C
C
A
R
e
a
g
e
n
t
Mi
k
e
M
c
N
a
m
a
r
a
De
a
n
K
i
t
c
h
e
n
Bl
a
n
k
D
e
s
c
r
i
p
t
i
o
n
/
I
D
#
Wa
t
e
r
Ac
e
t
o
n
e
He
x
a
n
e
Lo
t
#
11
1
1
A
2
4
21
5
5
4
1
MK
C
R
0
5
2
8
Be
a
k
e
r
/
t
i
n
#
53
5
Da
t
e
Ti
m
e
Re
l
.
H
u
m
%
53
6
Da
t
e
Ti
m
e
Re
l
.
H
u
m
%
53
7
Da
t
e
Ti
m
e
Re
l
.
H
u
m
%
Fi
n
a
l
W
e
i
g
h
t
(
1
)
,
g
2.
2
4
9
6
9/
6
/
2
3
8:
0
0
<
1
2.
2
3
1
8
9/
6
/
2
3
8:
0
0
<
1
2.
2
2
7
7
9/
6
/
2
3
8:
0
0
<
1
Fi
n
a
l
W
e
i
g
h
t
(
2
)
,
g
2.
2
4
9
3
9/
6
/
2
3
14
:
0
0
<
1
2.
2
3
1
7
9/
6
/
2
3
14
:
0
0
<
1
2.
2
2
7
8
9/
6
/
2
3
14
:
0
0
<
1
Av
e
.
F
i
n
a
l
W
e
i
g
h
t
,
g
2.
2
4
9
5
2.
2
3
1
8
2.
2
2
7
8
In
i
t
i
a
l
W
e
i
g
h
t
(
1
)
,
g
2.
2
4
9
4
12
/
1
2
/
2
2
14
:
0
0
<
1
2.
2
3
1
9
12
/
1
2
/
2
2
14
:
0
0
<
1
2.
2
2
7
8
12
/
1
2
/
2
2
14
:
0
0
<
1
In
i
t
i
a
l
W
e
i
g
h
t
(
2
)
,
g
2.
2
4
9
6
12
/
1
3
/
2
2
10
:
0
0
<
1
2.
2
3
1
7
12
/
1
3
/
2
2
10
:
0
0
<
1
2.
2
2
7
7
12
/
1
3
/
2
2
10
:
0
0
<
1
Av
e
.
I
n
i
t
i
a
l
W
e
i
g
h
t
,
g
2.
2
4
9
5
2.
2
3
1
8
2.
2
2
7
8
Bl
a
n
k
R
e
s
i
d
u
a
l
M
a
s
s
,
m
g
0.
0
0
Wa
t
e
r
0.
0
0
Ac
e
t
o
n
e
0.
0
0
He
x
a
n
e
Bl
a
n
k
M
a
s
s
,
g
20
7
15
4
13
3
Bl
a
n
k
V
o
l
u
m
e
,
m
l
20
7
19
7
19
9
Ma
x
B
l
a
n
k
R
e
s
i
d
u
l
a
l
M
a
s
s
,
m
g
0.
2
1
0.
2
0
0.
2
0
La
b
T
e
c
h
n
i
c
i
a
n
:
Da
t
e
:
8/
3
0
/
2
3
La
b
T
e
c
h
n
i
c
i
a
n
:
Da
t
e
:
9/
6
/
2
3
10
/
2
1
/
1
5
Me
t
h
o
d
2
0
2
L
a
b
o
r
a
t
o
r
y
R
e
a
g
e
n
t
B
l
a
n
k
F
o
r
m
RI
C
C
A
R
e
a
g
e
n
t
Fi
s
h
e
r
A
C
S
Si
g
m
a
-
A
l
d
r
i
c
h
Fo
r
m
D
a
t
e
:
Mi
k
e
M
c
N
a
m
a
r
a
De
a
n
K
i
t
c
h
e
n
D
APPENDIX D
Raw Production Data
Figure 1. Facility Schematic
Raw Production Data
EMPACT Flue Gas Analysis
Chain of Custody
Fa
c
i
l
i
t
y
:
St
a
c
k
I
d
e
n
t
i
f
i
c
a
t
i
o
n
:
Es
t
i
m
a
t
e
d
M
o
i
s
t
u
r
e
,
p
e
r
c
e
n
t
a:
D
i
s
t
a
n
c
e
u
p
s
t
r
e
a
m
f
r
o
m
n
e
x
t
d
i
s
t
u
r
b
a
n
c
e
,
i
n
c
h
e
s
b
:
D
i
s
t
a
n
c
e
d
o
w
n
s
t
r
e
a
m
f
r
o
m
l
a
s
t
d
i
s
t
u
r
b
a
n
c
e
,
i
n
c
h
e
s
Re
f
o
r
m
e
r
U
n
i
t
ap
p
r
o
x
.
5
5
"
14
5
"
55
.
1
2
5
"
Ty
p
e
:
Nu
m
b
e
r
o
f
P
o
r
t
s
Pr
o
c
e
s
s
Ty
p
e
:
Co
n
t
r
o
l
U
n
i
t
5ap
p
o
x
.
7
5
"
W: S
t
a
c
k
I
n
s
i
d
e
W
i
d
t
h
,
i
n
c
h
e
s
3,
9
0
0
Es
t
i
m
a
t
e
d
T
e
m
p
e
r
a
t
u
r
e
,
oF
Es
t
i
m
a
t
e
d
V
e
l
o
c
i
t
y
,
f
p
m
66
.
2
5
"
L: S
t
a
c
k
I
n
s
i
d
e
L
e
n
g
t
h
,
i
n
c
h
e
s
Fi
g
u
r
e
1
.
F
a
c
i
l
i
t
y
S
c
h
e
m
a
t
i
c
R
e
p
r
e
s
e
n
t
a
t
i
o
n
,
P
i
t
m
a
n
F
a
r
m
s
3
5
.
7
m
m
B
t
u
/
h
r
B
o
i
l
e
r
L
Li
n
d
e
G
a
s
,
N
o
r
t
h
S
a
l
t
L
a
k
e
,
U
T
14
-
1
7
%
32
5
g:
D
i
s
t
a
n
c
e
o
f
S
a
m
p
l
e
L
e
v
e
l
t
o
G
r
o
u
n
d
,
f
e
e
t
a g
b
W
E
APPENDIX E
Equipment Calibrations and Gas Certifications
Calibration of the console dry gas meter(s), pitot tubes, nozzles diameters, and
temperature sensors were carried out in accordance with the procedures outlined in
the Quality Assurance Handbook. The appropriate calibration data are presented in
the following pages. The nozzle calibrations are recorded on the first page of the
field data sheets.
Figure 2. Schematic of Method 5/202 Sampling Train
Figure 3. Schematic of Gas Analyzer Sampling Train
Sample Box Temperature Sensor Calibration
Pre-test and Post-test Dry Gas Meter Calibration Data Forms
Type-S Pitot Tube Inspection Data
Meter Box Calibration Data and Calculation Forms
Gas Calibration Certifications
Fi
g
u
r
e
2.
Sc
h
e
m
a
t
i
c
of
Me
t
h
o
d
5/
2
0
2
Sa
m
p
l
i
n
g
Tr
a
i
n
Fi
g
u
r
e
3
.
S
c
h
e
m
a
t
i
c
o
f
G
a
s
A
n
a
l
y
z
e
r
S
a
m
p
l
i
n
g
T
r
a
i
n
.
Me
s
h
Fi
l
t
e
r
St
a
c
k
W
a
l
l
Sa
m
p
l
e
P
r
o
b
e
He
a
t
e
d
S
a
m
p
l
e
L
i
n
e
Bi
a
s
V
a
l
v
e
Bi
a
s
L
i
n
e
Sa
m
p
l
e
L
i
n
e
Ca
l
i
b
r
a
t
i
o
n
Ga
s
e
s
Ca
l
i
b
r
a
t
i
o
n
Ga
s
L
i
n
e
s
An
a
l
y
z
e
r
An
a
l
y
z
e
r
An
a
l
y
z
e
r
An
a
l
y
z
e
r
Fl
o
w
m
e
t
e
r
s
By
-Pa
s
s
Fl
o
w
m
e
t
e
r
Sa
m
p
l
e
E
x
h
a
u
s
t
Va
l
v
e
Va
l
v
e
Sa
m
p
l
e
d
Ga
s
Ma
n
i
f
o
l
d
Ex
h
a
u
s
t
Da
t
a
A
q
u
i
s
i
t
i
o
n
Sy
s
t
e
m
Sa
m
p
l
e
Pu
m
p
Wa
t
e
r
Pe
r
i
s
t
a
l
i
c
Pu
m
p
Pe
l
t
i
e
r
C
o
o
l
e
r
Date:1/5/23 Calibrator:Reference:
Temperature Temperature
Source Difference
(Medium)(oF)
Water 1
Water 1
Water 0
Water 1
Water 0
Water 0
Water 0
Water 0
Water 1
Water -1
Water -1
Water 0
Water -1
Water 0
Water -1
Water 0
Water 0
Water 0
Water 0
Water 0
Water 0
Water 0
Water 0
Water 0
Water 0
Water 0
Water 1
Water -2
Water 0
Water -1
Water 0
Water 0
Water 1
Water -1
Water 1
Water 0
Water 0
Water 0
Water 1
Water -2
Water 0
Water -1
Water 0
Water -2
Water 0
Water -1
Water 0
Water -1
202
33 33
Impinger Out K 33 33
204 203
33 34
Impinger Out J
Impinger Out H
Impinger Out I
33
202
33
203
33
204
33
204
204
204
33
G
H
Oven (3)33 33
204 204
Oven (4)33
204
Oven 33 33
204 204
Oven 33 33
33
204 204
Oven (3)
A
205204
33
Oven (3)33 34
Oven (4)
Thermocouple
Location
204 205
Impinger Out F 33 33
203
204
204
204 204
204 204
33
33
Impinger Out G
204 204
Oven (3)32
204 204
33 32
204Oven (4)
204
Impinger Out D 33 34
204 203
Impinger Out E 33 34
204 204
202
33 33
204Impinger Out B
Impinger Out C 33 33
204 204
203
Impinger Out A 33 34
204
Oven (3)
Oven (4)
TETCO
Sample Box Temperature Sensor Calibration
B
C 204 203
33 32
33 33
204
33 34
Mike McNamara Omega CL3512A
Unit ID Reference
(oF)
Sensor
(oF)
Temperature
33
D
E
Oven 33 33
204 204F
Oven (4)
ME
T
H
O
D
5
D
R
Y
G
A
S
M
E
T
E
R
C
A
L
I
B
R
A
T
I
O
N
U
S
I
N
G
C
R
I
T
I
C
A
L
O
R
I
F
I
C
E
S
1)
Se
l
e
c
t
t
h
r
e
e
c
r
i
t
i
c
a
l
o
r
i
f
i
c
e
s
t
o
c
a
l
i
b
r
a
t
e
t
h
e
d
r
y
g
a
s
m
e
t
e
r
w
h
i
c
h
b
r
a
c
k
e
t
t
h
e
e
x
p
e
c
t
e
d
o
p
e
r
a
t
i
n
g
r
a
n
g
e
.
2)
Re
c
o
r
d
b
a
r
o
m
e
t
r
i
c
p
r
e
s
s
u
r
e
b
e
f
o
r
e
a
n
d
a
f
t
e
r
c
a
l
i
b
r
a
t
i
o
n
p
r
o
c
e
d
u
r
e
.
3)
Ru
n
a
t
t
e
s
t
e
d
v
a
c
u
u
m
(
f
r
o
m
O
r
i
f
i
c
e
C
a
l
i
b
r
a
t
i
o
n
R
e
p
o
r
t
)
,
f
o
r
a
p
e
r
i
o
d
o
f
t
i
m
e
ne
c
e
s
s
a
r
y
t
o
a
c
h
i
e
v
e
a
m
i
n
i
m
u
m
t
o
t
a
l
v
o
l
u
m
e
o
f
5
c
u
b
i
c
f
e
e
t
.
4)
Re
c
o
r
d
d
a
t
a
a
n
d
i
n
f
o
r
m
a
t
i
o
n
i
n
t
h
e
GR
E
E
N
c
e
l
l
s
,
Y
E
L
L
O
W
c
e
l
l
s
a
r
e
c
a
l
c
u
l
a
t
e
d
.
TE
C
H
N
I
C
I
A
N
:
IN
I
T
I
A
L
FI
N
A
L
AV
G
(
P
ba
r
)
DA
T
E
:
12
/
1
6
/
2
0
2
2
ME
T
E
R
S
E
R
I
A
L
#
:
30
0
3
1
5
BA
R
O
M
E
T
R
I
C
P
R
E
S
S
U
R
E
(
i
n
H
g
)
:
25
.
6
5
25
.
6
5
25
.
6
5
IF
Y
V
A
R
I
A
T
I
O
N
E
X
C
E
E
D
S
2
.
0
0
%
,
ME
T
E
R
P
A
R
T
#
:
Co
n
s
o
l
e
3
CR
I
T
I
C
A
L
O
R
I
F
I
C
E
S
E
T
S
E
R
I
A
L
#
:
14
5
3
S
EQ
U
I
P
M
E
N
T
I
D
#
:
OR
I
F
I
C
E
S
H
O
U
L
D
B
E
R
E
C
A
L
I
B
R
A
T
E
D
K'
TE
S
T
E
D
TE
M
P
E
R
A
T
U
R
E
S
°
F
EL
A
P
S
E
D
FA
C
T
O
R
VA
C
U
U
M
DG
M
R
E
A
D
I
N
G
S
(
F
T
3)
AM
B
I
E
N
T
DG
M
I
N
L
E
T
DG
M
O
U
T
L
E
T
DG
M
TI
M
E
(
M
I
N
)
DG
M
DH
(1
)
(2
)
(3
)
Y
OR
I
F
I
C
E
#
RU
N
#
(A
V
G
)
(i
n
H
g
)
IN
I
T
I
A
L
FI
N
A
L
NE
T
(
V
m)
IN
I
T
I
A
L
FI
N
A
L
IN
I
T
I
A
L
FI
N
A
L
AV
G
q
(i
n
H
2O)
Vm (
S
T
D
)
Vcr
(
S
T
D
)
Y
VA
R
I
A
T
I
O
N
(
%
)
DH@
1
0.
8
1
3
7
10
58
.
3
8
1
63
.
4
1
4
5.
0
3
3
71
78
81
75
76
77
.
5
4.
7
5
2.
9
0
4.
2
7
4
5
4.
3
0
3
5
1.
0
0
7
1.
6
8
8
2
0.
8
1
3
7
10
63
.
4
1
4
68
.
4
7
0
5.
0
5
6
71
80
82
75
75
78
.
0
4.
7
5
2.
9
0
4.
2
9
0
0
4.
3
0
3
5
1.
0
0
3
1.
6
8
6
3
0.
8
1
3
7
10
68
.
4
7
0
73
.
5
3
6
5.
0
6
6
71
81
83
75
76
78
.
8
4.
7
5
2.
9
0
4.
2
9
2
5
4.
3
0
3
5
1.
0
0
3
1.
6
8
4
AV
G
=
1.
0
0
4
0.
0
9
1
0.
5
3
1
7
12
41
.
2
6
7
46
.
2
8
1
5.
0
1
4
70
76
77
72
72
74
.
3
7.
2
5
1.
2
5
4.
2
6
4
1
4.
2
9
6
2
1.
0
0
8
1.
7
0
3
2
0.
5
3
1
7
12
46
.
2
8
1
53
.
0
2
8
6.
7
4
7
70
77
79
72
74
75
.
5
9.
7
5
1.
2
5
5.
7
2
4
6
5.
7
7
7
6
1.
0
0
9
1.
6
9
9
3
0.
5
3
1
7
12
53
.
0
2
8
58
.
0
5
8
5.
0
3
0
70
78
79
74
74
76
.
3
7.
2
5
1.
2
5
4.
2
6
1
8
4.
2
9
6
2
1.
0
0
8
1.
6
9
7
AV
G
=
1.
0
0
8
0.
5
0
1
0.
3
3
0
7
13
73
.
6
4
2
78
.
6
6
0
5.
0
1
8
73
79
78
76
76
77
.
3
11
.
5
0
0.
4
5
4.
2
3
4
0
4.
2
2
6
5
0.
9
9
8
1.
5
8
1
2
0.
3
3
0
7
13
78
.
6
6
0
83
.
6
8
3
5.
0
2
3
73
78
78
76
76
77
.
0
11
.
5
0
0.
4
5
4.
2
4
0
2
4.
2
2
6
5
0.
9
9
7
1.
5
8
2
3
0.
3
3
0
7
13
83
.
6
8
3
88
.
7
1
0
5.
0
2
7
73
79
78
78
76
77
.
8
11
.
5
0
0.
4
5
4.
2
3
7
6
4.
2
2
6
5
0.
9
9
7
1.
5
8
0
AV
G
=
0.
9
9
7
-0
.
5
8
AV
E
R
A
G
E
D
R
Y
G
A
S
M
E
T
E
R
C
A
L
I
B
R
A
T
I
O
N
F
A
C
T
O
R
,
Y
=
1.
0
0
3
AV
E
R
A
G
E
DH@ =
1.
6
5
5
(1
)
=
Ne
t
v
o
l
u
m
e
o
f
g
a
s
s
a
m
p
l
e
p
a
s
s
e
d
t
h
r
o
u
g
h
D
G
M
,
c
o
r
r
e
c
t
e
d
t
o
s
t
a
n
d
a
r
d
c
o
n
d
i
t
i
o
n
s
K1 =
17
.
6
4
oR/
i
n
.
H
g
(
E
n
g
l
i
s
h
)
,
0
.
3
8
5
8
oK/
m
m
H
g
(
M
e
t
r
i
c
)
Tm =
Ab
s
o
l
u
t
e
D
G
M
a
v
g
.
t
e
m
p
e
r
a
t
u
r
e
(
oR
-
E
n
g
l
i
s
h
,
o
K
-
M
e
t
r
i
c
)
DH@ =
0.
7
5
q
DH
V
m(s
t
d
)
Vcr
(s
t
d
)
V
m
(2
)
=
Vo
l
u
m
e
o
f
g
a
s
s
a
m
p
l
e
p
a
s
s
e
d
t
h
r
o
u
g
h
t
h
e
c
r
i
t
i
c
a
l
o
r
i
f
i
c
e
,
c
o
r
r
e
c
t
e
d
t
o
s
t
a
n
d
a
r
d
c
o
n
d
i
t
i
o
n
s
Tam
b
=
Ab
s
o
l
u
t
e
a
m
b
i
e
n
t
t
e
m
p
e
r
a
t
u
r
e
(
oR
-
E
n
g
l
i
s
h
,
o
K
-
M
e
t
r
i
c
)
Av
e
r
a
g
e
K
'
f
a
c
t
o
r
f
r
o
m
C
r
i
t
i
c
a
l
O
r
i
f
i
c
e
C
a
l
i
b
r
a
t
i
o
n
RE
F
E
R
E
N
C
E
IN
OU
T
(3
)
=
DG
M
c
a
l
i
b
r
a
t
i
o
n
f
a
c
t
o
r
32
33
32
62
63
63
20
4
20
5
20
5
TE
M
P
E
R
A
T
U
R
E
S
E
N
S
O
R
S
oF
20
2
3
P
r
e
-
C
a
l
i
b
r
a
t
i
o
n
Co
n
s
o
l
e
#
3
30 19 12
R
K
i
t
c
h
e
n
EN
V
I
R
O
N
M
E
N
T
A
L
S
U
P
P
L
Y
C
O
M
P
A
N
Y
US
I
N
G
T
H
E
C
R
I
T
I
C
A
L
O
R
I
F
I
C
E
S
A
S
C
A
L
I
B
R
A
T
I
O
N
S
T
A
N
D
A
R
D
S
:
Th
e
f
o
l
l
o
w
i
n
g
e
q
u
a
t
i
o
n
s
a
r
e
u
s
e
d
t
o
c
a
l
c
u
l
a
t
e
t
h
e
s
t
a
n
d
a
r
d
v
o
l
u
m
e
s
o
f
a
i
r
p
a
s
s
e
d
t
h
r
o
u
g
h
t
h
e
D
G
M
,
V
m
(s
t
d
)
,
a
n
d
t
h
e
c
r
i
t
i
c
a
l
o
r
i
f
i
c
e
,
Vcr
(s
t
d
)
,
a
n
d
t
h
e
D
G
M
c
a
l
i
b
r
a
t
i
o
n
f
a
c
t
o
r
,
Y
.
T
h
e
s
e
e
q
u
a
t
i
o
n
s
a
r
e
a
u
t
o
m
a
t
i
c
a
l
l
y
c
a
l
c
u
l
a
t
e
d
i
n
t
h
e
s
p
r
e
a
d
s
h
e
e
t
a
b
o
v
e
.
(
)2
(
)
ME
T
H
O
D
5
D
R
Y
G
A
S
M
E
T
E
R
C
A
L
I
B
R
A
T
I
O
N
U
S
I
N
G
C
R
I
T
I
C
A
L
O
R
I
F
I
C
E
S
1)
Se
l
e
c
t
t
h
r
e
e
c
r
i
t
i
c
a
l
o
r
i
f
i
c
e
s
t
o
c
a
l
i
b
r
a
t
e
t
h
e
d
r
y
g
a
s
m
e
t
e
r
w
h
i
c
h
b
r
a
c
k
e
t
t
h
e
e
x
p
e
c
t
e
d
o
p
e
r
a
t
i
n
g
r
a
n
g
e
.
2)
Re
c
o
r
d
b
a
r
o
m
e
t
r
i
c
p
r
e
s
s
u
r
e
b
e
f
o
r
e
a
n
d
a
f
t
e
r
c
a
l
i
b
r
a
t
i
o
n
p
r
o
c
e
d
u
r
e
.
3)
Ru
n
a
t
t
e
s
t
e
d
v
a
c
u
u
m
(
f
r
o
m
O
r
i
f
i
c
e
C
a
l
i
b
r
a
t
i
o
n
R
e
p
o
r
t
)
,
f
o
r
a
p
e
r
i
o
d
o
f
t
i
m
e
ne
c
e
s
s
a
r
y
t
o
a
c
h
i
e
v
e
a
m
i
n
i
m
u
m
t
o
t
a
l
v
o
l
u
m
e
o
f
5
c
u
b
i
c
f
e
e
t
.
4)
Re
c
o
r
d
d
a
t
a
a
n
d
i
n
f
o
r
m
a
t
i
o
n
i
n
t
h
e
GR
E
E
N
c
e
l
l
s
,
Y
E
L
L
O
W
c
e
l
l
s
a
r
e
c
a
l
c
u
l
a
t
e
d
.
TE
C
H
N
I
C
I
A
N
:
IN
I
T
I
A
L
FI
N
A
L
AV
G
(
P
ba
r
)
DA
T
E
:
08
/
3
1
/
2
3
ME
T
E
R
S
E
R
I
A
L
#
:
30
0
3
1
5
BA
R
O
M
E
T
R
I
C
P
R
E
S
S
U
R
E
(
i
n
H
g
)
:
25
.
3
5
25
.
3
5
25
.
3
5
IF
Y
V
A
R
I
A
T
I
O
N
E
X
C
E
E
D
S
2
.
0
0
%
,
ME
T
E
R
P
A
R
T
#
:
Co
n
s
o
l
e
3
CR
I
T
I
C
A
L
O
R
I
F
I
C
E
S
E
T
S
E
R
I
A
L
#
:
14
5
3
S
EQ
U
I
P
M
E
N
T
I
D
#
:
OR
I
F
I
C
E
S
H
O
U
L
D
B
E
R
E
C
A
L
I
B
R
A
T
E
D
K'
TE
S
T
E
D
TE
M
P
E
R
A
T
U
R
E
S
°
F
EL
A
P
S
E
D
FA
C
T
O
R
VA
C
U
U
M
DG
M
R
E
A
D
I
N
G
S
(
F
T
3)
AM
B
I
E
N
T
DG
M
I
N
L
E
T
DG
M
O
U
T
L
E
T
DG
M
TI
M
E
(
M
I
N
)
DG
M
DH
(1
)
(2
)
(3
)
Y
OR
I
F
I
C
E
#
RU
N
#
(A
V
G
)
(i
n
H
g
)
IN
I
T
I
A
L
FI
N
A
L
NE
T
(
V
m)
IN
I
T
I
A
L
FI
N
A
L
IN
I
T
I
A
L
FI
N
A
L
AV
G
q
(i
n
H
2O)
Vm (
S
T
D
)
Vcr
(
S
T
D
)
Y
VA
R
I
A
T
I
O
N
(
%
)
DH@
1
0.
6
8
0
8
11
50
9
.
4
5
1
51
4
.
4
6
7
5.
0
1
6
74
73
76
74
75
74
.
5
5.
7
5
1.
9
5
4.
2
2
2
7
4.
2
9
5
6
1.
0
1
7
1.
6
5
5
2
0.
6
8
0
8
11
51
4
.
4
6
7
51
9
.
6
7
6
5.
2
0
9
74
75
77
74
80
76
.
5
6.
0
0
1.
9
5
4.
3
6
8
8
4.
4
8
2
3
1.
0
2
6
1.
6
4
8
3
0.
6
8
0
8
11
51
9
.
6
7
6
52
4
.
8
9
8
5.
2
2
2
74
78
80
81
84
80
.
8
6.
0
0
1.
9
5
4.
3
4
5
3
4.
4
8
2
3
1.
0
3
2
1.
6
3
5
AV
G
=
1.
0
2
5
0.
0
0
1 2 3
AV
G
=
1 2 3
AV
G
=
AV
E
R
A
G
E
D
R
Y
G
A
S
M
E
T
E
R
C
A
L
I
B
R
A
T
I
O
N
F
A
C
T
O
R
,
Y
=
1.
0
2
5
AV
E
R
A
G
E
DH@ =
1.
6
4
6
(1
)
=
Ne
t
v
o
l
u
m
e
o
f
g
a
s
s
a
m
p
l
e
p
a
s
s
e
d
t
h
r
o
u
g
h
D
G
M
,
c
o
r
r
e
c
t
e
d
t
o
s
t
a
n
d
a
r
d
c
o
n
d
i
t
i
o
n
s
K1 =
17
.
6
4
oR/
i
n
.
H
g
(
E
n
g
l
i
s
h
)
,
0
.
3
8
5
8
oK/
m
m
H
g
(
M
e
t
r
i
c
)
Tm =
Ab
s
o
l
u
t
e
D
G
M
a
v
g
.
t
e
m
p
e
r
a
t
u
r
e
(
oR
-
E
n
g
l
i
s
h
,
o
K
-
M
e
t
r
i
c
)
DH@ =
0.
7
5
q
DH
V
m(s
t
d
)
Vcr
(s
t
d
)
V
m
(2
)
=
Vo
l
u
m
e
o
f
g
a
s
s
a
m
p
l
e
p
a
s
s
e
d
t
h
r
o
u
g
h
t
h
e
c
r
i
t
i
c
a
l
o
r
i
f
i
c
e
,
c
o
r
r
e
c
t
e
d
t
o
s
t
a
n
d
a
r
d
c
o
n
d
i
t
i
o
n
s
Tam
b
=
Ab
s
o
l
u
t
e
a
m
b
i
e
n
t
t
e
m
p
e
r
a
t
u
r
e
(
oR
-
E
n
g
l
i
s
h
,
o
K
-
M
e
t
r
i
c
)
K'
=
Av
e
r
a
g
e
K
'
f
a
c
t
o
r
f
r
o
m
C
r
i
t
i
c
a
l
O
r
i
f
i
c
e
C
a
l
i
b
r
a
t
i
o
n
RE
F
E
R
E
N
C
E
IN
OU
T
(3
)
=
DG
M
c
a
l
i
b
r
a
t
i
o
n
f
a
c
t
o
r
TE
M
P
E
R
A
T
U
R
E
S
E
N
S
O
R
S
oF
Po
s
t
C
a
l
i
b
r
a
t
i
o
n
Li
n
d
e
J
W
e
l
l
s
Co
n
s
o
l
e
#
3
25
EN
V
I
R
O
N
M
E
N
T
A
L
S
U
P
P
L
Y
C
O
M
P
A
N
Y
US
I
N
G
T
H
E
C
R
I
T
I
C
A
L
O
R
I
F
I
C
E
S
A
S
C
A
L
I
B
R
A
T
I
O
N
S
T
A
N
D
A
R
D
S
:
Th
e
f
o
l
l
o
w
i
n
g
e
q
u
a
t
i
o
n
s
a
r
e
u
s
e
d
t
o
c
a
l
c
u
l
a
t
e
t
h
e
s
t
a
n
d
a
r
d
v
o
l
u
m
e
s
o
f
a
i
r
p
a
s
s
e
d
t
h
r
o
u
g
h
t
h
e
D
G
M
,
V
m (s
t
d
)
,
a
n
d
t
h
e
c
r
i
t
i
c
a
l
o
r
i
f
i
c
e
,
V
cr
(s
t
d
)
,
a
n
d
t
h
e
D
G
M
c
a
l
i
b
r
a
t
i
o
n
f
a
c
t
o
r
,
Y
.
T
h
e
s
e
e
q
u
a
t
i
o
n
s
a
r
e
a
u
t
o
m
a
t
i
c
a
l
l
y
c
a
l
c
u
l
a
t
e
d
i
n
t
h
e
s
p
r
e
a
d
s
h
e
e
t
a
b
o
v
e
.
(
)2
(
)
Type S Pitot Tube Inspection Data
Date:Pitot Tube Identification:
Technician:
Dt=0.375 Is PA = PB ?
Is 1.05 • Dt PA & PB 1.50 • Dt ?
PA = 0.474
PB =0.474
a1 < 10o a1 = o
a2 < 10o a2 = o
b1 < 5o b1 = o
b2 < 5o b2 = o
Z 0.125 in.Z = in.
W W 0.03125 in.W = in.
W > 3 inches W = in.
Z > 3/4 inch Z = in.
Y ≥ 3 inches Y = in.
The pitot tube meets the specifications for a calibration factor of 0.84?Yes
Reference:
Temperature
Source Reference Sensor
(Medium)(oF)(oF)
Probe AIR 71 71
AIR 70 71
ICE WATER 33 34
BOIL WATER 204 205
SILICONE OIL
Heat Check 248
Temperature Sensor Calibration
1
1
1Stack
Omega CL3512A
Probe Yes
Yes
Continuity Check
Temperature Temperature
Difference
(oF)
0
in.
in.
Yes
Yes
0.002
4.75
1
3 1/4
1/3/2023 60 G-2
M. McNamara
in.
0.012
1
0
1
0
b2
b1
B
A
w
Dt
PA
PB
Type S Pitot Tube Inspection Data
Date:Pitot Tube Identification:
Technician:
Dt=0.375 Is PA = PB ?
Is 1.05 • Dt PA & PB 1.50 • Dt ?
PA = 0.454
PB =0.454
a1 < 10o a1 = o
a2 < 10o a2 = o
b1 < 5o b1 = o
b2 < 5o b2 = o
Z 0.125 in.Z = in.
W W 0.03125 in.W = in.
W > 3 inches W = in.
Z > 3/4 inch Z = in.
Y ≥ 3 inches Y = in.
The pitot tube meets the specifications for a calibration factor of 0.84?Yes
Reference:
Temperature
Source Reference Sensor
(Medium)(oF)(oF)
Probe AIR 69 70
AIR 70 70
ICE WATER 33 33
BOIL WATER 204 204
SILICONE OIL
Heat Check 248
Temperature Sensor Calibration
0
0
0Stack
Omega CL3512A
Probe Yes
Yes
Continuity Check
Temperature Temperature
Difference
(oF)
1
in.
in.
Yes
Yes
0.002
5
1.5
3 3/4
1/3/2023 60 G-1
M. McNamara
in.
0.012
1
1
2
2
b2
b1
B
A
w
Dt
PA
PB
TETCO
Themocouple Meter Reading Calibration
Date:1/6/2023 Calibrator:Reference:Omega CL3512A
Temperature Temperature
Source Sensor Difference
(Medium)(oF)(oF)
Water 33 1
Water 206 0
Water 32 0
Water 206 0
Water 32 0
Water 206 0
Water 32 0
Water 205 -1
Water 32 0
Water 205 -1
Water 32 0
Water 205 0
Water 32 0
Water 205 0
Water 32 -1
Water 204 -1
Water 33 31 -2
Water 205 204 -1
Water 33 31 -2
Water 205 204 -1
Water 33 33 0
Water 205 206 1
Water 33 34 1
Water 205 206 1
Water 33 34 1
Water 205 206 1
Water 33 34 1
Water 205 206 1
Water 34 1
Water 206 1
Water 33 0
Water 205 0
Water 33 33 0
Water 206 206 0
Water 33 32 -1
Water 206 205 -1
Water 33 32 -1
Water 206 206 0
Water 33 31 -2
Water 206 205 -1
Water 31 -2
Water 205 -1
Water 31 -2
Water 205 -1
Water 34 1
Water 205 0
Water 33 33 0
Water 205 205 0
Water 33 33 0
Water 205 204 -1
Water 33 34 1
Water 205 205 0
Water 33 33 0
Water 205 205 0
Water 33 0
Water 205 0
Water 35 2
Water 206 1
Temperature
32
32
205
33
M. McNamara
Thermocouple Meter
ID Reference
(oF)
Dial Position
#1
7
6
1
205
206
32
33
7
8
5
6
32
206
205
33
205
5
33
1 33
205
1
2
3
4
206
#2
33
205
#3
1
2
3
7
4
5
6
2
3
4
#4
2
3
4
5
6
7 205
33
205
32
206
32
206
32
206
33
206
TETCO
Themocouple Meter Reading Calibration
Date:1/6/2023 Calibrator:Reference:Omega CL3512A
Temperature Temperature
Source Sensor Difference
(Medium)(oF)(oF)
Water 33 0
Water 206 0
Water 33 32 -1
Water 206 205 -1
Water 33 32 -1
Water 206 204 -2
Water 33 32 -1
Water 206 205 -1
Water 33 32 -1
Water 206 205 -1
Water 33 32 -1
Water 205 206 1
Water 33 0
Water 204 -10
Water 35 2
Water 203 -2
Water 33 35 2
Water 205 205 0
Water 33 34 1
Water 205 205 0
Water 33 33 0
Water 205 204 -1
Water 33 33 0
Water 205 203 -2
Water 33 33 0
Water 205 204 -1
Water 32 -1
Water 204 -1
Water 32 -1
Water 204 -1
Water 33 0
Water 204 -1
Water 33 34 1
Water 205 206 1
Water 33 34 1
Water 205 205 0
Water 33 33 0
Water 205 205 0
Water 33 33 0
Water 205 205 0
Water 33 0
Water 205 0
Water 33 33 0
Water 205 205 0
Water 32 -1
Water 205 0
Water 32 -1
Water 205 0
Water 33 31 -2
Water 205 205 0
Water 33 31 -2
Water 205 205 0
Water 33 32 -1
Water 205 206 1
Water 33 32 -1
Water 205 206 1
Water 33 0
Water 206 1
Water 33 0
Water 205 0
Water 32 1
Water 205 0
Water 33 33 0
Thermocouple Meter
ID Dial Position
Temperature
Reference
2
6
205
33
206
205
33
M. McNamara
(oF)
7
5
4
3
2
6
205
1 33
Shop Meter
1 33
205
2
7
5
33
8 33
6
#8
205
205
#7
1 33
205
#6
1
33
8
3
4
5
33
7
4
7
3
2
1
#5
33
33
205
4
3
5
2
6
205
205
33
205
TETCO
Themocouple Meter Reading Calibration
Water 205 204 1
Water 33 32 1
Water 205 205 0
Water 33 33 0
Water 205 205 0
Water 33 34 -1
Water 205 205 0
Water 33 0
Water 205 0
Water 33 33 0
Water 205 205 0
Water 33 34 -1
Water 205 206 -1
Water 34 -1
Water 204 1
Probe Water 31 2
CONSOLE #6 Water 203 2
Oven Water 33 34 -1
Water 205 206 -1
Probe Water 31 2
#1 LINE Water 203 2
CONTROLLER Oven Water 33 32 1
Water 205 203 2
Shop Meter
2
3
4
7
8
9 33
205
5
6
33
205
33
205
205
33
F
APPENDIX F
Protocol and Related Correspondences
COMPLIANCE EMISSION TEST PROTOCOL
LINDE GAS NORTH AMERICA, LLC
REFORMER UNIT
POLLUTANTS TO BE TESTED:
PARTICULATE MATTER (PM)
CONDENSABLE PARTICULATE MATTER (CPM)
NITROGEN OXIDES (NOx)
SULFUR DIOXIDE (SO2)
CARBON MONOXIDE (CO)
Contractor:
TETCO
391 East 620 South
American Fork, UT 84003
Phone: 801 492-9106 • Fax: 801 492-9107
Introduction
Project Organization and Responsibility
The following personnel and the testing contractor are presently anticipated to be involved in the
testing program. The Utah Division of Air Quality (DAQ) and EPA may have their own
personnel to observe all phases including the process.
Company
Linde Gas
685 South Chevron Way
North Salt Lake City, UT 84054
Contacts
Alina Pak 385 243-5748
Michelle Fox 801 389-7256
Test Contractor:
TETCO
391 East 620 South
American Fork, UT 84003
Dean Kitchen 801 492-9106
Facility Location and Description
Linde Gas operates a hydrogen production plant located in North Salt Lake City. The plant
consists of a single Steam Methane Reformer (SMR) and associated equipment that can provide
up to 28.5 MMScfd of 99.9% pure hydrogen. The plant employs steam methane reforming to
convert feedstock gas (refinery gases and/or natural gas) plus steam to pure hydrogen.
Test Objective
This test project is being conducted to measure the particulate matter (PM), NOx, SO2, CO, and
condensable emissions from the Reformer exhaust stack. The PM, NOx, and CO emissions will
be measured as directed in the facility Approval Order (DAQE-AN130910007-20), dated August
5, 2020. The SO2 emissions will be measured to gather information for inventory purposes.
In addition to the PM, condensable, NOx, SO2, and CO testing on the Reformer exhaust, samples
will be taken from the hydrogen purification unit purge gas to determine the gas composition,
heat content, and hydrogen sulfide content.
Test Dates
It is planned to complete the test project August 28-29, 2023. The test crew will mobilize and set
up the testing equipment on August 28th. Testing is anticipated to begin the morning of August
29th and continue until all samplings have been completed. If necessary, a pretest meeting may
be scheduled by DAQ or Linde Gas.
Test Procedures
Test Method Identification
Three test runs will be completed on the Reformer exhaust stack. Testing will be for PM, SO2,
NOx, CO, and condensable emissions according to EPA Methods 5, 6C, 7E, 6C, 10, and 202
respectfully. The Method 5 and Method 202 testing will run concurrent with the NOx, SO2, and
CO analyzers and will provide the necessary stack flow rate measurements for calculating the
pollutant emission rates.
Specific procedures are as follows:
EPA Method 5
1. The sample location complies with the requirements of EPA Method 1. The inside
dimensions of the rectangular stack are 54.125 inches by 66.25 inches. The equivalent
diameter is calculated at 59.577 inches for purposes of calculating upstream and
downstream disturbance distances. Five sample ports are located approximately 60 feet
(12.1 diameters) downstream and 13.9 feet (2.8 diameters) upstream from the nearest
flow disturbances. The number of sample points will be 20, or 25.
2. EPA Method 2 will be used to determine the gas stream velocity. Type “S” pitot tubes
will be used with a Cp factor of 0.84. Dual inclined/vertical manometers with graduations
of 0.01 inches of water will be used. If the measured pressure differential is below 0.05
inches of water a more sensitive manometer will be used with graduation marks of 0.005
inches of water. Direction of gas flow will be checked for cyclonics prior to testing.
3. EPA Method 3A will be used to determine the gas stream dry molecular weight.
4. EPA Method 4 will be followed as part of Method 5 to determine the gas stream moisture
content.
5. Particulate matter will be measured according to EPA Method 5. Test run duration will
be at least 60 minutes.
6. The glass fiber filters that will be used meet the requirements specified in EPA Method 5.
7. Condensable emissions will be measured according to EPA Method 202 and will run
simultaneously with EPA Method 5.
8. The probe liners will be 316 grade stainless steel, borosilicate glass or quartz.
9. The barometric pressure will be measured with a barometer which is periodically checked
against a mercury barometer. The barometer will be checked prior to testing to assure an
accurate barometric pressure.
10. Calibration data is provided with this protocol. Equipment calibrations that fall past due
prior to the test dates will be recalibrated prior to being used. Any calibrations not
included with this protocol, such as new or additional equipment, will be made available
to DAQ representatives upon request.
11. Any necessary preparation and clean-up by the contractor will be performed in the
contractor's sampling trailer or a clean area on Linde Gas property.
EPA Methods 6C, 7E, and 10
1. Gaseous analyzers will be used to measure the NOx, SO2, and CO levels simultaneously
with mass flow measurements. The gas analyzer sampling train will consist of the
following: an in-stack glass fiber filter, heated stainless steel probe, heated Teflon
sampling line to water removal system, water removal system, Teflon transport lines, gas
manifold, and out of stack Teflon filter after the gas manifold but prior to analyzer. The
sampling train is built such that the sampled gas only contacts inert materials, i.e., Teflon,
stainless steel, and glass. EPA Protocol 1 gases will be used as standards with dry
nitrogen as a zero gas.
2. A data logger will record gas concentration averages on at least 60-second averages. Only
valid gas analyzer data will be used for emission calculations. Before commencement or
resuming testing (i.e., after port change) the gas analyzers will be allowed to stabilize as
per applicable test method system requirements.
3. Bias checks, calibration drift, zero drift, system response, and calibration error will
follow the specified guidelines of EPA Methods 6C, 7E, and 10.
4. A stratification check will be performed prior to the test as required by Methods 6C, 7E,
and 10.
5. It is planned to run the NOx analyzer on the 0-50 ppm range with a high-level calibration
gas of approximately 45 ppm. The NOx analyzer is model CLA-510 Horiba Instruments,
serial number 41679080031, manufactured in 2001.
A NOx converter efficiency check will be conducted each day testing occurs.
6. It is planned to run the SO2 analyzer on the 0-50 ppm range with a high-level calibration
gas of approximately 45 ppm. The SO2 analyzer is a Rosemount, model 890, serial
number 890149300000, manufactured in 1997.
7. It is planned to run the CO analyzer on the 0-25 ppm range with a high-level calibration
gas of approximately 22 ppm. The CO analyzer is model VIA-510 Horiba Instruments,
serial number 43223490033, manufactured in 1995.
Hydrogen Purge Gas
The hydrogen purge gas heat content and composition will be determined with grab bag samples
taken by canister, or Tedlar bag, and sent for analysis using ASTM Method D1945. Hydrogen
sulfide levels will be measured from the same canisters, or Tedlar bags, and analyzed as per
ASTM Method D5504. Samples will be sent to Empact Analytical Systems (Brighton, CO) for
analysis.
Additional Procedures
1. All current calibration data is submitted with this protocol. Any calibration that is not
current will be re-calibrated prior to the test dates.
2. Verbal gaseous results for NOx, CO, and SO2 will be reported to Linde Gas on site. PM
and condensable test results will be reported to Linde Gas within 10-days following
completion of the test. Hydrogen purge gas sample results will be reported to Linde Gas
within 25-days of the test project. The written reports will be submitted by TETCO to
Linde Gas within 30 days following completion of the tests.
3. Linde Gas will submit the final report to DAQ within 60-days following the completion
of the test.
Process Description
Description of Process
In a closed system inside the Steam Methane Reformer (SMR), desulfurized feed gas is mixed
with process steam which is then fed to catalyst tubes located in a downfired, downflow reformer
furnace. The catalyst tubes are filled with nickel catalyst. The reaction to the catalyst is at
equilibrium which is limited based on furnace outlet temperature and pressure. The reaction does
not produce air emissions and is endothermic. The reaction does require additional heat, supplied
by downward firing Ultra Low-NOx design burners located at the top of the furnace. The burners
provide indirect heat to the process. The burner exhaust does not directly contact the reaction
gases. These burners are the only source of SMR air emissions. The rest of the process
equipment performs two major functions. A series of heat exchangers, boilers, and a steam drum
recover SMR furnace heat to generate process steam and steam for export. At the end of the
process, a recovery unit called a Pressure Swing Adsorption Unit (PSA) uses adsorbent beds and
cyclic changes in pressure to separate SMR reaction products and provide pure export hydrogen
from the top of the beds and a waste gas from the bottom of the beds. This waste gas, also
referred to as PSA off-gas or tailgas, is circulated back to the SMR burners and provides most of
the plant fuel requirements. Additional fuel for the SMR furnace comes from local natural gas.
Refinery fuel gas from a refinery can be used as a back-up if the H2S content of that fuel is low
enough to allow proper burner operation. Since the PSA off-gas is consumed in the furnace, the
entire process generates few waste streams. During emergency events and startup/showdown, the
process gases are routed to a flare and destroyed.
Operational Data and Instrumentation
All operational and instrumentation data will be made available to state agency personnel.
Applicable production records will be included and submitted with the report.
A chart showing the amount of hydrogen produced during the test project will be included in the
test report.
Safety
Personal Protection Equipment
Minimum personal protection equipment (PPE) required at Linde Gas shall be:
Steel toed boots
Safety glasses
Hard hat
Fire retardant clothes
4-gas Monitor
Potential Hazards
Moving Equipment Yes
Hot Equipment Yes
Chemical Yes
Other None
Appendix A
Calibration Data
Any equipment or calibration gases that fall past due prior to the test date will be
recalibrated or replaced before being used. Calibration sheets of any recalibrated or
replaced items will be provided at the time of the test and will be included in the test
report.
METHOD 5 DRY GAS METER CALIBRATION USING CRITICAL ORIFICES
1) Select three critical orifices to calibrate the dry gas meter which bracket the expected operating range.
2) Record barometric pressure before and after calibration procedure.
3) Run at tested vacuum (from Orifice Calibration Report), for a period of time
necessary to achieve a minimum total volume of 5 cubic feet.
4) Record data and information in the GREEN cells, YELLOW cells are calculated.
TECHNICIAN:INITIAL FINAL AVG (Pbar)
DATE:12/16/2022 METER SERIAL #:300315 BAROMETRIC PRESSURE (in Hg):25.65 25.65 25.65 IF Y VARIATION EXCEEDS 2.00%,
METER PART #:Console 3 CRITICAL ORIFICE SET SERIAL #:1453S EQUIPMENT ID #:ORIFICE SHOULD BE RECALIBRATED
K'TESTED TEMPERATURES °F ELAPSED
FACTOR VACUUM DGM READINGS (FT3)AMBIENT DGM INLET DGM OUTLET DGM TIME (MIN)DGM DH (1)(2)(3)Y
ORIFICE #RUN #(AVG)(in Hg)INITIAL FINAL NET (Vm)INITIAL FINAL INITIAL FINAL AVG q (in H2O)Vm (STD)Vcr (STD)Y VARIATION (%)DH@
1 0.8137 10 58.381 63.414 5.033 71 78 81 75 76 77.5 4.75 2.90 4.2745 4.3035 1.007 1.688
2 0.8137 10 63.414 68.470 5.056 71 80 82 75 75 78.0 4.75 2.90 4.2900 4.3035 1.003 1.686
3 0.8137 10 68.470 73.536 5.066 71 81 83 75 76 78.8 4.75 2.90 4.2925 4.3035 1.003 1.684
AVG = 1.004 0.09
1 0.5317 12 41.267 46.281 5.014 70 76 77 72 72 74.3 7.25 1.25 4.2641 4.2962 1.008 1.703
2 0.5317 12 46.281 53.028 6.747 70 77 79 72 74 75.5 9.75 1.25 5.7246 5.7776 1.009 1.699
3 0.5317 12 53.028 58.058 5.030 70 78 79 74 74 76.3 7.25 1.25 4.2618 4.2962 1.008 1.697
AVG = 1.008 0.50
1 0.3307 13 73.642 78.660 5.018 73 79 78 76 76 77.3 11.50 0.45 4.2340 4.2265 0.998 1.581
2 0.3307 13 78.660 83.683 5.023 73 78 78 76 76 77.0 11.50 0.45 4.2402 4.2265 0.997 1.582
3 0.3307 13 83.683 88.710 5.027 73 79 78 78 76 77.8 11.50 0.45 4.2376 4.2265 0.997 1.580
AVG = 0.997 -0.58
AVERAGE DRY GAS METER CALIBRATION FACTOR, Y = 1.003
AVERAGE DH@ = 1.655
(1)=Net volume of gas sample passed through DGM, corrected to standard conditions
K1 =17.64 oR/in. Hg (English), 0.3858 oK/mm Hg (Metric)
Tm =Absolute DGM avg. temperature (oR - English, oK - Metric) DH@ = 0.75 q DH Vm(std)
Vcr(std) Vm
(2)=Volume of gas sample passed through the critical orifice, corrected to standard conditions
Tamb =Absolute ambient temperature (oR - English, oK - Metric)
Average K' factor from Critical Orifice Calibration REFERENCE IN OUT
(3)=DGM calibration factor 32 33 32
62 63 63
204 205 205
TEMPERATURE SENSORS oF
2023 Pre-Calibration
Console #3
30
19
12
R Kitchen
ENVIRONMENTAL SUPPLY COMPANY
USING THE CRITICAL ORIFICES AS CALIBRATION STANDARDS:
The following equations are used to calculate the standard volumes of air passed through the DGM, V m (std), and the critical orifice,
Vcr (std), and the DGM calibration factor, Y. These equations are automatically calculated in the spreadsheet above.
()2 ()
Type S Pitot Tube Inspection Data
Date:Pitot Tube Identification:
Technician:
Dt=0.375 Is PA = PB ?
Is 1.05 • Dt PA & PB 1.50 • Dt ?
PA = 0.454
PB =0.454
a1 < 10o a1 = o
a2 < 10o a2 = o
b1 < 5o b1 = o
b2 < 5o b2 = o
Z 0.125 in.Z = in.
W W 0.03125 in.W = in.
W > 3 inches W = in.
Z > 3/4 inch Z = in.
Y ≥ 3 inches Y = in.
The pitot tube meets the specifications for a calibration factor of 0.84?Yes
Reference:
Temperature
Source Reference Sensor
(Medium)(oF)(oF)
Probe AIR 69 70
AIR 70 70
ICE WATER 33 33
BOIL WATER 204 204
SILICONE OIL
Heat Check 248
Temperature Sensor Calibration
0
0
0Stack
Omega CL3512A
Probe Yes
Yes
Continuity Check
Temperature Temperature
Difference
(oF)
1
in.
in.
Yes
Yes
0.002
5
1.5
3 3/4
1/3/2023 60 G-1
M. McNamara
in.
0.012
1
1
2
2
b2
b1
B
A
w
Dt
PA
PB
Date:1/5/23 Calibrator:Reference:
Temperature Temperature
Source Difference
(Medium)(oF)
Water 1
Water 1
Water 0
Water 1
Water 0
Water 0
Water 0
Water 0
Water 1
Water -1
Water -1
Water 0
Water -1
Water 0
Water -1
Water 0
Water 0
Water 0
Water 0
Water 0
Water 0
Water 0
Water 0
Water 0
Water 0
Water 0
Water 1
Water -2
Water 0
Water -1
Water 0
Water 0
Water 1
Water -1
Water 1
Water 0
Water 0
Water 0
Water 1
Water -2
Water 0
Water -1
Water 0
Water -2
Water 0
Water -1
Water 0
Water -1
202
33 33
Impinger Out K 33 33
204 203
33 34
Impinger Out J
Impinger Out H
Impinger Out I
33
202
33
203
33
204
33
204
204
204
33
G
H
Oven (3)33 33
204 204
Oven (4)33
204
Oven 33 33
204 204
Oven 33 33
33
204 204
Oven (3)
A
205204
33
Oven (3)33 34
Oven (4)
Thermocouple
Location
204 205
Impinger Out F 33 33
203
204
204
204 204
204 204
33
33
Impinger Out G
204 204
Oven (3)32
204 204
33 32
204Oven (4)
204
Impinger Out D 33 34
204 203
Impinger Out E 33 34
204 204
202
33 33
204Impinger Out B
Impinger Out C 33 33
204 204
203
Impinger Out A 33 34
204
Oven (3)
Oven (4)
TETCO
Sample Box Temperature Sensor Calibration
B
C 204 203
33 32
33 33
204
33 34
Mike McNamara Omega CL3512A
Unit ID Reference
(oF)
Sensor
(oF)
Temperature
33
D
E
Oven 33 33
204 204F
Oven (4)
Balance Denver Instruments, Model A-250, SN B045284
Weights Used Denver Instruments Weight Set,
SN 98-115146
Certified Weight Measured Weight Difference
grams grams grams
0.1000 0.1000 0.0000
0.5000 0.5000 0.0000
1.0000 1.0000 0.0000
10.0000 10.0000 0.0000
50.0000 50.0000 0.0000
100.0000 100.0000 0.0000
120.0000 120.0000 0.0000
150.0000 149.9999 0.0001
Technician Michael McNamara
TETCO
Annual Balance Calibration Check
Date 1/03/23
Airgas Specialty Gases
Airgas USA, LLC
an Air Liquide company
525 North Industrial Loop Road
Tooele, UT 84074
Part Number:
CERTIFICATE OF ANALYSIS
Grade of Product: EPA Protocol
E03Nl99E15A0PK1 Reference Number:
Cylinder Number: CC495698 Cylinder Volume:
Laboratory: 124 -Tooele (SAP) -UT Cylinder Pressure:
PGVP Number: B72021 Valve Outlet:
Gas Code: CO,NO,NOX,BALN. Certification Date:
Expiration Date: Sep 15, 2024
Airgas.com
153-402210499-1
144.3 CF
2015 PSIG
660
Sep 15, 2021
Certification performed in accordance with "EPA Traceability Protocol for Assay and Certification of Gaseous Calibration Standards (May 2012)" document EPA
600/R-12/531, using the assay procedures listed. Analytical Methodology does not require correction for analytical interference. This cylinder has a total analytical
uncertainty as stated below with a confidence level of 95%. There are no significant impurities which affect the use of this calibration mixture. All concentrations are on a
mole/mole basis unless otherwise noted.
D N t U Th' C I' d b I 100 . 0 7 0 0 se Is ;yin er eow PSIQ, I.e. . meQapascals.
" -. .. '>-.,.. cccc ... --ANALITJCAI:;1IBSULT~'.: -"-"-------· ~---.::::~--~----:::-r--_--·-··--···-·· -
Component , Requested Actual Protocol Total Relative Assay •• Concentration Concentration Method Uncertainty Dates
NOX 4.500 PPM 4.668 PPM G1 +/-1.3% NIST Traceable 09/08/2021, 09/15/2021
CARBON MONOXIDE 4.500 PPM 4.385 PPM G1 +/-1.4% NIST Traceable 09/08/2021
NITRIC OXIDE 4.500 PPM 4.625 PPM G1 +/-1.2% NIST Traceable 09/08/2021, 09/15/2021
NITROGEN Balance
CALIBRATION STANDARDS
Type Lot ID Cylinder No Concentration Uncertainty Expiration Date
NTRM 12062857 CC401933 9.82 PPM CARBON MONOXIDE/NITROGEN 1.0% Feb 12, 2024
PRM 12401 APEX1324267 5.00 PPM NITRIC OXIDE/NITROGEN 0.8% Dec 23, 2022
GMIS 08012126A KAL004291 5.08 PPM NITRIC OXIDE/NITROGEN 0.9% Apr27,2024
PRM 12401 APEX1324267-NOX 5.00 PPM NOx/NITROGEN 0.8% Dec 23, 2022
GMIS 08012126A KAL004291-NOX 5.08 PPM NOx/NITROGEN 0.9% Apr27,2024
The SRM, PRM or RGM noted above is only in reference to the GMIS used in the assay and not part of the analysis.
ANALYTICAL EQUIPMENT
Instrument/Make/Model Analytical Principle Last Multipoint Calibration
Thermo 48i-TLE 1163640031 CO CO NDIR (Mason) Aug 17, 2021
Thermo 42i-LS 1123749327 NO Chemiluminescence (Mason) Aug 30, 2021
Thermo 42i-LS 1123749327 NOx Chemiluminescence (Mason) Aug 30, 2021
Triad Data Available Upon Request
Page 1 of 153-402210499-1
as.
an Air Liquide company
CERTIFICATE OF ANALYSIS
Grade of Product: EPA Protocol
Part Number: E03Nl99E15A3631 Reference Number:
Cylinder Number: EB0141000 Cylinder Volume:
Laboratory: 124 -Tooele (SAP) -UT Cylinder Pressure:
PGVP Number: 872021 Valve Outlet:
Gas Code: CO,NO,NOX,BALN Certification Date:
Expiration Date: Sep 14, 2024
Airgas Specialty Gases
Airgas l,JSA, LLC
525 North Industrial Loop Road
Tooele, UT 84074
Airgas.com
153-402211480-1
144.3 CF
2015 PSIG
660
Sep 14, 2021
Certification performed in accordance with "EPA Traceability Protocol for Assay and Certification of Gaseous Calibration Standards (May 2012)" document EPA
600/R-12/531, using the assay procedures listed. Analytical Methodology does not require correction for analytical interference. This cylinder has a total analytical
uncertainty as stated below with a confidence level of 95%. There are no significant impurities which affect the use of this calibration mixture. All concentrations are on a
mole/mole basis unless otherwise noted.
C d b 1 Do Not Use This ;vlin er elow 00 osiq, i.e. 0.7 meqaoascals.
ANALYTICAL RESULTS
···componem ,.t·--C•1wqffirsteu=~~Actua1 ·,·ProTocol . Total Relalive ------Ks~~~---~ Concentration Concentration Method Uncertainty Dates
NOX 11.00 PPM 11.15 PPM G1 +/-1.2% NIST Traceable 09/07/2021, 09/14/2021
CARBON MONOXIDE 11.00 PPM 11.20 PPM G1 +/-1.2% NIST Traceable 09/07/2021
NITRIC OXIDE 11.00 PPM 11.12 PPM G1 +/-1.3% NIST Traceable 09/07/2021, 09/14/2021
NITROGEN Balance
CALIBRATION STANDARDS
Type Lot ID Cylinder No Concentration Uncertainty Expiration Date
NTRM 12062857 CC401933 9.82 PPM CARBON MONOXIDE/NITROGEN 1.0% Feb 12, 2024
NTRM 12010210 AAL073499 10.04 PPM NITRIC OXIDE/NITROGEN 1.0% Oct 16, 2022
NTRM 12010507 KAL004854 20.00 PPM NITRIC OXIDE/NITROGEN 1.1% Feb 13, 2024
NTRM. 12010507 KAL004854-NOX 20.00 PPM NOx/NITROGEN 1.1% Feb 13, 2024
NTRM 12010210 AAL073499-NOX 10.04 PPM NOx/NITROGEN 1.0% Oct 16, 2022
ANALYTICAL EQUIPMENT
Instrument/Make/Model Analytical Principle· Last Multipoint Calibration
Thermo 48i-TLE 1163640031 CO CO NDIR (Mason) Aug 17, 2021
Thermo 42i-LS 11237 49327 NO Chemiluminescence (Mason) Aug qO, 2021
Thermo 42i-LS 1123749327 NOx Chemiluminescence (Mason) Aug 3Q, 2021
Triad Data Available Upon Request
~~ Page 1 of 153-402211480-1
.
Making our world
more productive
DocNumber: 488688
Certificaw /ssuan~e Date: 07/28/2022
Linde Order Number: 72093085
Linde Gas & Equipment Inc.
5700 S. Alameda Street
Los Angeles CA 90058
Tel: 323-585-2154
Fax: 714-542-6689
PGVP ID: F22022
Fill Date: 07/06/2022
Lot Number: 70086218703
Customer & Order Information
LGEPKG SALT LAKE CITY UT H
6880 S 2300 E Part Number: NI C022.5MN2EAS
Customer PO 'Number: 80096754
Cylinder Style & Outlet: AS CGA 660
SALT LAKE CITY UT84121-3183 I Cylinder Pressure and Volume: 2000 psig 140 ft3
Expiration Date:
Cylinder Number:
For Reference Only:
22.3 ppm
22.3 ppm
Balance
NOx 22.4ppm
Certified Concentration
07/28/2025
CC3394
Carbon monoxide·
Nitric oxide
Nitrogen
NIST Traceable
Expanded Uncertainty
± 0.1 ppm
±0.2 ppm
Certification Inf(Jrmation: Cerlification Date:07/28/2022 Term: 36 Months Expiration Date: 07/28/2025
~-
This cylinder was certified according to the 2012 EPA Traceability Protocol, Document#EPA-600/R-12/531, using Procedure G1. Uncertainty above is expressed as absolute expanded
uncertainty at a level of confidence of approximately 95% with a coverage factor k = 2. Do Not'Use this Standard if Pressure is less than 100 PSIG.
Analvtical Data: (R=Reference Standard, Z=Zero Gas, C=Gas CanciiJ~te)
1. Component: Carbon monoxide
RequesteaConcentration: 22.5 ppm
Certified Concentration:
Instrument Used:
Analytical Metl)~d:. ·
22.3 ppm
Horiba VIA-510 S/N 43627990042
NDIR
Last Multipoint Calibratioh:' 06/27/2022
Reference Standard: Type/ Cylinder#: GMIS / CC707385
Concentration/ Uncertainty: 24.51 ppm ±0.04 ppm
Expiration Date: 10/09/2027
Traceable to: SRM #/Sample# / Cylinder#: SRM 2635a / 58-E-34 / FF10666
SRM Concentration/ Uncertainty: 24.512 ppm/ ±0.029 ppm
SRM Expiration Date: 03/28/2021
First Analysis Data: ;,,c"•t'·~,,~;·· 24.5 ~:~_c: ... ,.>c-.o~~~__'.l~,: •. ;=•,S~,:2,.:~1J.ndAn~,Y-~ta: _,_ .... ~ , .... J>ate'--•. ~ .. -...
C: 22.3 Cone: 22.3 Z: O R: O C: · O Cone: 0
2.
R: 24.6 Z: 0
Z: 0 C: 22.4
UOM: ppm
Component: Nitric oxide
Requested Coqcentration: 22.5 ppm
Certified Concentration: 22.3 ppm
C: 22.4 Cone: 22.4 R: o Z: O C: o Cone: 0
R: 24.5 Cone: 22.4 Z: o C: O R: o Cone: 0
Mean Test Assay: 22.3 ppm UOM: ppm Mean Test Assay:
Reference Standard: Type/ Cylinder#: GMIS / DT0037183
Concentration I Uncertainty: 19.97 ppm ±0.20 ppm
Expiration Date: 04/1212025
Instrument Used: . , Thermo Electron 42i-LS SIN 1030645077 Traceable to: SRM #/Sample#/ Cylinder#: 2629a / 50-G-17 / FF31691
Analytical Method: Chemiluminescence
Last Multipoint Calibration: 06/28/2022
SRM Concentration I Uncertainty: 18.99 ppm /±0.19 ppm
SRM Expiration Date: 10/21/2023
ppm
First Analysis Data: Date 07/14/2022 Second Analysis Data: Date 07/28/2022
Z: 0 R: 20 C: 22.3 Cone: 22.3 Z: 0 R: 20 C: 22.3 Cone: 22.2
R: 20 Z: 0 C: 22.4 Cone: 22.4 R: 20 Z: 0 C: 22.3 Cone: 22.2
Z: 0 C: 22.2 R: 20 Cone: 22.2 Z: 0 C: 22.3 R: 20.1 Cone: 22.2
UOM: ppm Mean Test Assay: 22.3 ppm UOM: Mean Test Assay: 22.2 ppm
Analyzed By Henry Koung
Information contained herein has been prepared at your request by qualified experts within Linde Gas & Equipment Inc. While we believe that the information is accurate within the limits of the
analytical methods employed and Is complete to the extent of the specific analyses performed, we 'make no warranty or representation as to the suitability of the use of the Information for any purpose,
The information is offered with the understanding that any use of the information is at the sole discretion and risk of the user. In no event shall the liability of Linde Gas & Equipment Inc. , arising out
of the use of the information contained herein exceed the fee established for providing such information.
..
Making our world
more productive
I
DocNumber: 451254
Certificate /ssuand~ Date: 0410512022
Linde Order N,aml)er: 72001747
Linde Gas & Equipment Inc.
5700 S. Alameda Street
Los Angeles CA 90058
Tel: 3.23-585-2154
Fax: 714-542-6689
PGVP ID: F22022
Lot Number: 70086208302
LGEPKG SALT LAKE CITY UT H
6880 S 2300 E Part Number: NI CO47.5MN1EAS
I
Cylinder Style,& Outlet: AS CGA 660
SALT LAKE CITY UT 84121-3183 Customer PO Number: 80004083 Cylinder Pressure and Volume: 2000 psig 140 ft3
Certified Cof1;Centration
Expiration Date:
Cylinder Number:
For Reference,Only:
47.9 ppm
47.2 ppm
Balance
NOx47.4ppm
04/05/2025
. DT0009759
.Carbon monoxide
Nitric oxide
Nitrogen
Certification Information: Certification Date: 04/05/2022
I
I
l.-
:
NIST Traceable
Expanded Uncertainty
Term: 36 Months
±0.4 ppm
± 0.3 ppm
Expiration Date: 04/05/2025
This cylinder was certified according to the 2012 EPA Traceability Protocol, Document #EPA-1:i00IR-12/531, using Procedure G1. Uncertainty above is expressed as absolute expanded
uncertainty at a level of confidence of approximately 95% with a coverage factor k = 2. Do Not µse this Standard If Pressure Is less than 100 PSIG.
Ana(vtical Data: (R=Reference Standard, Z=Zero Gas, C=Gas Candid~te)
1. Component: ' Carbon monoxide . t'' eference Standard: Type I Cylinder#: NTRM / CC78493
Requested Concentrafion: ·47 .5 ppm Concentrafion / Uncertainty: 100.1 ppm ±0.8 ppm
Certified Concentration: 47.9 ppm •, Expirafion Date: 07/0912027
Instrument Used: Honba VIA-510 SIN 43627990042 ' raceable to: SRM #/Sample#/ Cylinder It NlRM / 190703 / CC8737
Anatyfical Method: NDIR \'· SRM Concenlration / Uncef1ainly: 100.1 ppm/ ±0.8 ppm
·--~---~, ,, LastM~l::~::~:::~:~~:=~'k' •:~~us:,,.~!:t\~~;';,,::1:912g22, '.k" ~F~-~~~~~': 2~.
Z: 0 R: 100.1 C:
2.
R: 100 Z: 0 C: 47.8 Cone: 47.8 R: O Z: O C: 0 Cone; 0
Z: 0 C: 47.9 R: 100.2 Cone: 47.9 Z: O C: o R: o Cone: o
UOM: ppm Mean Test Assay: 47.9 ppm
Component: Nitric oxide
Requested Concentration: 47 .5 ppm
Certified Concentration: 47 .2 ppm
Instrument Used: Thermo Electron 42i-LS S/N 1030645077
Anatyfical Method: Chemiluminescence
Last Multipoint Calibration: 0312512022
First Analysis Data: Date 0312912022
Z: 0 R: 47.6 C: 47.2 Cone: 47.2
R: 47.6 Z: 0 C: 47.2 Cone: 47.2
Z: 0 C: 47.1 R: 47.5 Cone: 47.1
UOM: ppm Mean Test Assay:
Analyzed By Henry Koung
UOM: ppm Mean Test Assay:
Reference Standard: Type / Cylinder ii': GMIS / ND8755
Concentration/ Uncertainty: 47 .6 ppm ±02 ppm
E,q,:raoon Dale: D3/09/2025
Traceable to: SRM #/Sample Ii' I Cylinder#: PRM / C1765710.01 I APEX 1324323
SRM Concenlralion / Uncerlanty: 50.04 ppm I =fl.20 ppm
SRM E,cpira5o,n Dale: 12JD9.l2022
Second Analysis Data: Da:le 04/05/2022
Z: 0 R: 47.6 C: 472 Cone: 47.3
R: 47.5 Z: 0 C: 47.1 Cone:: 472
Z: 0 C: 47.1 R: ",7.S Cone:: '472
UOM: ppm llleanTestAssay: ifl2 ppm
Certified By
Information contained herein has been pn,pared alyounequest byqualiliied experts within 1.n1e Gas & Equipmentlla!:. 'ffl:>1e we beiieJe that the information is accurate within the \imils<f.lh:
analytical methods employed and Is complete to the extent of 11le spedlicarayses petformed. we make no·wanani,«~tion as to the suitability of the use of the information fci:'""'J' ~
The information is offered with the understanding that any use of !he~ is al the sole discretion and risk ofle_._ ~ no event shall the liability of Linde Gas & Equipmeotih::. .""'5b;ait
of the use of the information contained herein exceed the fee eslablished -~ such irn!om,ation.
!fftiffJIPRAXAIR
Making ow-planet more productive
DocNumber: 408483
Customer & Order Information
PRAXAIR PKG SALT LAKE CITY UT H
6880 S2300 E
SALT LAKE C.ITY UT 84121-3183
Expiration Date:
Cylinder Number:
23.6 ppm
Balance
Certificate Issuance Date: 04/28/2021
Praxair Order Number: 71642108
Par/Number: NI SD23.5ME-AS
Customer PO Number: 79639576
Certified Concentration
04/28/2025
CC738122
Sulfur dioxide
Nitrogen
Praxair Distribution, Inc.
5700 S. Alameda Street
Los Angeles CA 90058
Tel: 323-585-2154
Fax: 714~542-6689
PGVP ID: F22021
Fill Date: 04/08/2021
Lot Number: 70086109803
Cylinder Style & Oullet: AS CGA 660
Cylinder Pressure and Volume: 2000 psig 140 fl3
NIST Traceable
Expanded Uncer.tainty
±0.1ppm
ProSpec EZ Cert·
Certification Information: Certification Date:04/26/2021 Term: 48 Months Expiration Date: 04/28/2025
This cylinder was certified according to the 2012 EPA Traceability Protocol, Document #EPA-600/R-121531, using Procedure G1. Uncertainty above is expressed as absolute expended
uncertainty at a level of confidence of approximately 95% with a coverage factor k = 2. Do Not Use this Standard If Pressure is less than 100 PSIG.
Anafvtical Data: (R=Reference Standard, Z=Zero Gas, C=Gas Candidate)
1. Component: Sulfur dioxide
Requested Concentration: 23.5 ppm
Certified Concentration: 23.6 ppm
Instrument Used: Ametek 921CE SIN AW-921-S321
Analytical Method: UV Spectrometry
Last Multipoint Calibration: 04/15/2021
Flrst.An.alys_ls Data: Date 04/2112021
Z: 0 R: 50.7 C: 23.4 Cone: 23.4
R: 50.7 Z: 0 C: 23,5 Cone: 23.5
Z: 0 C: 23.5 R: 50.6 Cone: 23.5
UOM: ppm Mean Test Assay: 23.5 ppm
Analyzed By Henry Koung
Reference Standard: Type/ Cylinder#: GMIS / DT0029008
Concentration / Uncertainty: 50.69 ppm ±0.29 ppm
Expiration Date: 01/27/2025
Traceable to: SRM # / Sample # / Cylinder#: SRM 1693a / 96-N-31 / FF25489
SRM Concentration (enter with units)/ 50.21 ppm/±± 0.28 ppm
SRM Expiration Date: 06127 /2023
... _,,," .. --·~-· ltecond A,:,aly~lsJ!at.a: . .. Date 04/28/2021
Z: 0 R: 50.7 C: 23.7 Cone: 23.7
R: 50.7 Z: 0 C: 23.7 Cone: 23.7
Z: 0 C: 23.7 R: 50.7 Cone:
UOM: PP".' Mean Test Assay: . ppm
Certified By
Information contained herein has been prepared at your request by qualified experts within Praxair Distribution, Inc. While we believe that the informafion is accurate within the limits of the analytical
methods employed and is complete to the extent of the specific analyses performed, we make no warranty or representation as to the suitability of the use of the information for any purpose. The
information is offered with the understanding that any use of the information is at the sole discretion and risk of the user. In no event shall the liability of Praxair Dlstribuiion, me., arising out of the use
of the information contained herein exceed the fee established for providing such information.
Making our planet more productive
DocNumber: 408482
Praxair Distribution, Inc.
· 5700 S. Alameda Street
Los Angeles CA 90058
Tel: 323-585-2154
Fax: 714-542~689
PGVP ID: F22021
Customer & Order Information
PRAXAIR PKG SALT LAKE CITY UT H
6880S 2300 E
Certificate Issuance Date: 04/28/2021
Praxair Order Number: 71642108
Fill Date: 04/08/2021
Lot Number: 70086109802
SALTLAKE CITY UT 84121-3183
Pad Number: NI SD47.5ME-AS
Customer PQ Number: 79639576
Cylinder Style & Outlet: AS CGA 660
Cylinder Pressure and Volume: 2000 psig 140 ft3
Certified CMcentration ProSpec EZ Cert
Expiration Date:
Cylinder Number:
47.5 ppm
Balance
04/28/2025
DT0036959
Sulfur dioxide
Nitrogen
Certification Information: Certification Date: 04/28/2021
NIST Traceable
Expanded Uncertainty
± 0.3 ppm
Term: 48 Months Expiration Date: 04/28/2025
This cylinder was certified according to the 2012 EPA Traceability Protocol, Document #EPA-600/R-12/531, using Procedure G1. Uncertainty above is expressed as absolute expanded
uncertainty at a level of confidence of approximately 95% with a coverage factor k = 2. Do Not Use this Standard if Pressure is less than 100 PSIG.
Ana/vtical Data: (R=Reference Standard, Z=Zero Gas, C=Gas Carldidate)
1 . Component: Sulfur dioxide
Requested Concentration: 47.5 ppm
Certified Concentration: 47.5 ppm
Instrument Used: Ametek 921CE S/N AW-921-S321
Analytical Method: UV Spectrometry
Last Multipoint Calibration: 04/15/2021
First Analysis Data: Date 04/21/2021
,::-:---'-\._._ •:z;··--0------...-"--.. ·R: ! 50.7 --~ C: :.47.i . " Cone: · 47.:~ ---
R: 50.7 Z: 0 C: 47.4 Cone: 47.4
~ 0 C: 4~4 R: 50.6 Cone: 47.4
UOM: ppm Mean Test Assay: 47.4 ppm
Analyzed By Henry Koung
Reference Standard: Type I Cylinder#: GMIS / DT0029008
Concentration / Uncertainty: 50.69 ppm ±0.29 ppm
Expiration Date: 01/27/2025
Traceable to: SRM #/Sample# /Cylinder#: SRM 1693a / 96-N-31 / FF25489
SRM Concentration (enter with unitsl / 50.21 ppm/±± 0.28 ppm
SRM Expir~tion Date: ·06/27/2023
Second Analysis Data: . Date 04/2812021
. Z: .. 0 • .. R: 50.7 . C: 47~ -· Cone:· 47.6---~
R: 50.7 Z: 0 C: 47.5 47.5
Z: 0 C: 47.7 R: 50.7 47.7
UOM: ppm 47.6 ppm
Certified By
Information contained herein has been prepared at your request by qualified experts within Praxr,jr Distribution, Inc. While we believe that the information is accurate within the limits of the analytical
methods employed and is complete to the extent of the specific analyses performed, we make no warranty or representation as to the suitability of the use of the information for any purpose. The
information is offered with the understanding that any use of the information is at the sole discretion and risk of the user. In no event shall the liability of Praxair Distribution, Inc., arising out of the use
of the information contained herein exceed the fee established for providing such information.
..
Makingour world
more produ(tive
DocNumber: 443002
Certificate Issuance Date: 1210112021
Linde Orrie( Number: 55894134
Linde Gas & Equipment Inc .
5700 S. Alameda Street
Los Angeles CA 90058
Tel: 323-585-2154
Fax; 714-542-6689
PGVP ID: F22021
Fill Date: 11/22/2021
Lot Number: 70086132607
Customer & Order Information
TETCO
391 E 620S Part Number: NI CD4.7501E-AS
Customer PO Number: 0
Cylinder Style & Outlet: AS CGA 580
AMERICAN FORK UT 84003 Cylinder Pressure and Volume: 2000 pslg 140 ft3
Certified Concentration ProSpec EZ Cert
Expiration Date:
Cylinder Number:
4.57 %
4.99 %
Balance
11/30/2029
CC243835
Carbon dioxide
Oxygen
Nitrogen
NIST Traceable
Expanded Uncertainty
± 0.02 %
± 0.03 %
Certification Information: Certification Date: 11/30/2021 Term: 96 Months Expiration Date: 11/30/2029
This cylinder was ce'rti!ied according to the.2012 EPA Traceability Protocol, Document #EPA0600IR-12/531, using Procedure G1. Uncertainty above is expressed as absolute expanded
uncertainty at a level oftonfidence of approximately 95% with a coverage factor k = 2. Do Not Use this Standard If Pressure is less than 100 PSIG. .
CO2 responses have been cbrr.ected for Oxygen IR Broadening effect. 02 responses have been corrected for CO2 interference.
Anafvtical Data: . (R=Reference Standard, Z=Zero Gas, C=Gas-Candidate)
1. Component: Carbon dioxide
·Requested Concentration:
... Certified Concentration:
Instrument Used:
A~'alytical Methpd:
4.75%
4.57%
Horiba VIA-510 S/N 20C194WK
NDIR
Last Multipoint Calibration: 11/22/2021
Reference Standard: Type/ Cylinder#: GMIS / CC243646
Concentration/ Uncertainty: 6.91 % ±0.01 %
Expiration Date: 06/07/2026
Traceable to: SRM #/Sample# / Cylinder#: SRM 1674b"/'7-H-07 / FF10631
SRM Concentration/ Uncertainty: 6.944% / ±0.013%
SRM Expiration Date: 06/17/2019
First Analysis Data: D,ite 11/30/2021 ;; Second Analysis Data: Date
Z: 0 R,:" ~h---•·"· ... C: -.::4.57.
R: 6.91 Z: 0 C: 4.58
. ·"· .Conc.:~4'57""' ""'•~·v-.. J. , ....... ,"~"""""""''""i~iZ:•·'-· o · R: •0 -·
Cone: 4.58 R: O Z: O
·C: .. ··iJ
C: 0
"Ci,,..,; ·o--·-•·-·----·-
Conc: 0
C: 4.58 R: 6.92 Cone: 4.58 Z: 0
UOM: % Mean Test Assay: 4.57 %
2. Component: Oxygen
Requested Concentration: 4.75 %
Certified Concentration: 4.99 %
Instrument Used: Siemens Oxymat SE S/N 7MB20211MOOOCA1
Analytical Method: Paramagnetic
Last Multipoint Calibration: 11/1212021
First Analysis Data: Date 11/30/2021
Z: 0 R: 9.88 C: Cone: 4.99
R: 9.88 Z: 0 C: Cone: 4.99
Z: 0 C: 5 R: Cone: 5
UOM: % 4.99 o/o
Analyzed By
Z: 0 C: 0 R: 0 Co_nc: O
UOM: % Mean Test Assay:
Reference Standard: Type / Cylinder#: NTRM / DT0010262
Concentration I Uncertainty: 9.875 % ±0.040 %
Expiration Date: 11/18/2022
Traceable to: SRM #/Sample# /Cylinder#: NTRM / 170701 / DT0010262
SRM Concentration/ Uncertainty: 9.875% / ±0.040%
SRM Expiration Date: 11/18/2022
Second Analysis Data: Date
Z: 0 R: 0 C: 0 Cone: 0
R: 0 Z: 0 C: 0 Cone: 0
Z: 0 C: 0 R: 0 Cone: 0
UOM: % Mean Test Assay:
Certified By
%
%
Information contained herein has been prepared at your request by qualified experts within Linde Gas & Equipment Inc. While we believe that the information is accurate within the limits of the
analytical methods employed and is complete to the extent of the specific analyses performed, we make no warranty or representation as to the suitability of the use of the Information for any purpose.
The information is offered with the understanding that any use of the information is at the sole discretion and rtsk of the user. In no event shall the liability of Linde Gas & Equipment Inc. , artsing out
of the use of the information contained herein exceed the fee established for providing such information.
DocNumber:
Linde Order Number: 7Hl6,9"693
Linde Gas & Equipment Inc.
5700 S. Alameda Street
Los Angeles CA 90058
Tel: 323-585.-2154
Fax: 714-542-6689
PGVP ID: F22021
Lot Number: 70086132602
LGEPKG SALT LAKE CITY UT H
6880 S 2300 E Pa~ Number. Nl(;b9.75ci1E-AS
Customer Pd Number: 79869904
Cylinder Style & Otdlet: AS CGA 590
SALT LAKE CITY UT 84121-3183 Cylinder Pressure and Volume: 2000 psig 148 ft3
Certified Concentration ProSpec EZ Cert
Expiration Dale/_>
!l Qylinder Number.t,.
9.75 %
9.77 %
Balance
Certification Information:
This cylinder wa~ \l:ertified according to the 2012 EPA Traceability Protocol,
u~certainty at.a level of confidence of approximately 95% with a cover"~ge factof
CO2 responses have been corrected for Oxygen IR Broadening cffeci. 02 re~p
Ana/vtical Data:
1. Component: Carbon dioxide
Reques,ted Concentration: 9.75 %
Certified Concentration: 9.75 % .
Instrument Used: Horiba.VIA-510 S/N 20C 194WK
Analytical Method: NDIR
Last Multipoint Calibration: 11/2712021
NIST Traceable
Expanded Uncertainty
± 0.05 %
± 0.04 %.
[!I • .00
ii.:.
Term: 96 Months Expiration Date: 11/30/2029
.·. ,'•)!.-
p -o00/R-12/531, using Procedure G1. Uncertainty above is expressed as absolute expanded
t Use this Standard if Pressure is less than 100 PSIG.
een corrected for CO2 interference.
··i/::;:1. Reference Standard: Type/ Cylintjer#: GMIS /_CC283571
·:o:\ Concentration I Uncertainty:· 14.24 % ±0.04 % ti Expiration Date: 07/15/2029
i!c ·Traceable to: SRM #/Sample# /Cylinder#: RGM / N/A / CC28033
f SRM Concentration/ Uncertainty: 19.67% / ±0.04%
SRM E,qira!ion Dale: 07/15/2021
~F-lr-st-A--na_l_y-sl_s_D_a-ta-,------------D-ate ___ 1_1_f30!2 __ "0"'2"'1--, Second Analysis Data: Date
cOrjc: 0 Z: O R: 14.24 C: 9._75 Cone: 9.75 ;;c..,_ __ -l-'->i''...;z,!i,;~·::cl,·,ci'l•.l;;P,e".;'-,·'..;\-.·\',":"';",;R1>);:::>---'-··_,0"-.:"""'.~ee·...:·-"-',:;;.·''-'•'-· '-"0-"'_...~.;;.;:.=:.....;.
-'-------~==.-.· ~~1-4t~/~~:•~nc"'';'--'9o-."'"77,.._'---~-"'\ ;= ~ ~: ~ ~: ~.
! U~M: % : :MeanTestAssay:
Cone: 0
Cone: 0
UOM: % Mean Test Assay: 9.75 %
2, Component: Oxygen
Requested Concentration: 9.75 %
Certified Concentration: 9.77 %
Instrument Used: Siemens Oxymat 6E S/N 7MB20211AA000CA1
Analytical Method: Paramagnetic
Last Multipoint Calibration: 11/12/2021
First Analysis Data: ate 11/30/2021
Z: 0 R: 9.88 C: 9.76
R: 9.88 Z: 0 C: 9.76
Z: 0 C: 9.78 R: 9.77
UOM: % 9.77 %
Analyzed By
'Reference Standard: Type/ Cylinder#: NTRM / DT0010262
Concentration/ Uncertainly: 9.875 % ±0.040 %
Expiratloo Date: 11/18/2022
Traceable to: SRM #/Sample#/ Cylinder#: NTRM / 170701 / DT0010262
SRM Concentration/ Unce<°.alnly: 9.875% I ±0.040%
SRM Expiration Date: 11/18/2022
Second Analysis Data: Date
Cone: 0
Cone: 0
Cone: O
Z: 0
R: 0
Z: 0
UOM: %
Certified By
R: 0
Z: 0
C: 0
Nelsorl'Ma
C:
C:
R:
0
0
0
Mean Test Assay: %
Information contained herein has been prepared at your request by qualified experts within Linde Gas & Equipment Inc. While we believe that the information is aco.,rate within the limits of th~
analytical methods employed and Is complete to the extent of the specific analyses performed, we make no warranty or representation as to the suitability of the use of the Information for any purpose.
The information is offered with the understanding that any use of the infoonation is at the sole discretion and risk of the user. In no event shall the liability of Linde Gas & Equipment Inc. , arising out
of the use of the information contained herein exceed the fee estabfished for providing such information.