Loading...
HomeMy WebLinkAboutDAQ-2024-0080591 DAQC-470-24 Site ID 10346 (B4) MEMORANDUM TO: STACK TEST FILE – KENNECOTT UTAH COPPPER – Smelter THROUGH: Harold Burge, Major Source Compliance Section Manager FROM: Paul Morris, Environmental Scientist DATE: May 15, 2024 SUBJECT: Sources: Filter Plant Wet Feed Conveyor Baghouse (SME001), Wet Feed Storage Building Baghouse (SME002), Wet Feed Conveyor Belt Transfer Point Baghouse (SME003), and Wet Feed Bin(s) Baghouse (SME004) Contact: Sean Daly: 801-204-2563 Location: Kennecott Utah Copper Smelter, 12000 West 2100 South, Magna, Salt Lake County, Utah Test Contractor: Alliance Technical Group, LLC FRS ID #: UT0000004903500030 Permit/AO#: Title V Operating Permit 350003004 dated September 18, 2020 Date of Last Revision: September 27, 2022, and DAQE-AN103460058-20 Subject: Review of Stack Test Protocols dated May 8, 2024 On May 13, 2024, Utah Division of Air Quality (DAQ) received a protocol for testing of the Kennecott Utah Copper Filter Plant SME001, SME002, SME003, and SME004 in Magna, Utah. Testing will be performed June 11-14, 2024, to determine compliance with Title V Operating Permit, Conditions II.B.2.a, II.B.3.a, II.B.4.a, and II.B.5.a emissions. PROTOCOL CONDITIONS: 1. RM 1 used to determine sample velocity traverses: OK 2. RM 2 used to determine stack gas velocity and volumetric flow rate: OK 3. RM 3A used to determine dry molecular weight of the gas stream: OK 4. RM 4 used to determine stack gas moisture content: OK 5. RM 5/202 used to determine used to determine TPM emissions: OK 6. RM 201A/202 used to determine PM10 emissions: OK DEVIATIONS: No deviations were noted. CONCLUSION: The protocols appear to be acceptable. RECOMMENDATION: Send attached protocol review and test date confirmation notice. 6 , 3 Rio Tinto Kennecott Utah Copper, LLC 4700 Daybreak Parkway South Jordan, Utah 84009 Mr. Bryce Bird - Director Department of Environmental Quality Division of Air Quality P.O. Box 144820 Salt Lake City, Utah 84114-4820 May o6,zoz4 Attention: Mr. Paul Morris I,TAH DEPARruENT OF ENVIRONMENTAL OUAI.ITY lrlY - o ,,!.1/ rv; r\ I l) Ll.tL4 I and DiviSiON dcl r lereJ OF AtR QUALITV Subject:Kennecott Utah Copper Refinery Title V Permit *sooogooo4 Approval Order DAQE-ANorora6oosS-zo StackTest Protocols: Hydrometallurgical Metals Recovery (REF oo6) Hydrometallurgical Silver Production (REF oo-) Gold/Silver Recovery Baghouse (REF oro) Dear Mr. Bird: As required by Title V operating permit g5ooogooo4 and Approval Order DAQE-ANro346oo5B-zo, Kennecott Utah Copper performed stack testing on the Silver Production Scrubber (REFooT), Precious Metals Recovery Scrubber (REFoo6), and Gold / Silver Recovery baghouse (REForo) March r3th - 15th zoz4.Thetesting was conducted following procedures outlined in 4o CFR 6o, AppendixA. The summary reports for each source of the testing procedures and test results are attached for submittal within 6o days of completion of the testing. Results of the testing demonstrate each source (REFoo6, REFooT, and REForo) are in compliance with the permit emission limits. Based on information and belief formed after reasonable inquiry, the statements and information contained in this document are true, accurate, and complete (R3o7-4r5-5d). Should you have any questions or need further information regarding these reports, please feel free to contact me or Sean Daly at Bot-zo4-2563. Sincerely, Dustin Morris Manager Refinery / Rail Metals Attachments (3): Testing Reports Rio Tinto Kennecott Utah Copper, LLC. 4700 Daybreak Parkway, South Jordan, Utah 84009. ,xJH",?,;'#H'S^3i, Source Test Report Rio Tinto Kennecott Hqnd DO [r ''t t.red 4700 Daybreak Parkway [li''r:l'ioN oF AIR ouALlT" South Jordan, UT 84095 Source Tested: Hydrometallurgical Precious Metals Recovery GEF006) Test Dates: March 13,2024 Proj ect No. AST- 2024-1 032-00 1 Prepared By Alliance Technical Group, LLC 3683 W 2270 S, Suite E West Valley City, UT 84120 pJ/lArEe IECIlNICAI GROL]P Source Test Report Test Program Summary Regulatory Information Permit Nos. Source Information UDAQ Approval Order DAQE-AN0103460058-20 Title V Operating Permit 3500030004 Source Name Hydrometal lurgical Precious Metals Recovery Contact Information Source ID REFOO6 Target Parameters I{zSOa, SOz, NH:, HCl, Pb Test Location Rio Tinto Kennecott 2500 South 9180 West Magna, UT 84044 Facility Contacts Jenny Esker j enny.esker@riotinto. com ($ot) s69-6494 Sean Daly sean.daly3 @riotinto. com (801)204-2s63 Test Company Alliance Technical Group, LLC 3683W 2270 S, Suite E West Valley City, UT 84120 Project Manager Charles Horton charles.horton@alliancetg.com (3s2) 663-7s68 Field Team Leader Tobias Hubbard tobias.hubbard@alliancetg.com (605) 64s-8s62 QA/QC Manager Kathleen Shonk katie.shonk@alliancetg.com (812) 4s2-478s Report Coordinator Delaine Spangler delaine. spangler@alliancetg.com Report Reviewer Sarah Perry sarah.perry@alliancetg.com Analytical Laboratory Interpoll Laboratories lnc. now Alliance Technical Group, LLC 4500 Ball Rd. NE Circle Pines, MN 55014 Gregg Holman (763)786-6020 AST-2024-1032-001 RTK - Magna, UT Page i pj/lTarpe Source Test Report Cerlfrcation StatementTECIINICAL GROUP Alliance Technical Group, LLC (Alliance) has completed the source testing as described in this report. Results apply only to the source(s) tested and operating condition(s) for the specific test date(s) and time(s) identified within this report. All results are intended to be considered in their entirety, and Alliance is not responsible for use of less than the complete test report without written consent. This report shall not be reproduced in full or in part without written approval from the customer. To the best of my knowledge and abilities, all information, facts and test data are correct. Data presented in this report has been checked for completeness and is accurate, error-free and legible. Onsite testing was conducted in accordance with approved intemal Standard Operating Procedures. Any deviations or problems are detailed in the relevant sections in the test report. This report is only considered valid once an authorized representative ofAlliance has signed in the space provided below; any other version is considered draft. This document was prepared in portable document format (.pdf) and contains pages as identified in the bottom footer of this document. 4t22t2024 Charles Horton, QSTI Alliance Technical Group, LLC Date RTK - Magna, UTAST-2024-1032-001 Page ii putErpe TECIINICAL GROUP Source Test Report Table ofContents TABLE OFCONTENTS 1.1 Source and Control System Descriptions. ............... l-1 1.3 Site-Specific Test Plan & Notification.................. ....................... l- 1 3.1 U.S. EPA Reference Test Methods I and2 - Sampling/Traverse Points and Volumetric Flow Rate........ 3-l 3.2 U.S. EPA Reference Test Method l2-Lead..... .....3-l 3.3 U.S. EPA Reference Test Method 320 - Moisture Content / Sulfur Dioxide / Ammonia / Sulfuric Acid / 3.4 Quality Assurance/Quality Control - U.S. EPA Reference Method 320 .............. .................3-2 LIST OF TABLES Table2-2: Summary of Results, Continued.... ......................2-2 APPENDICES Appendix A Sample Calculations Appendix B Field Data Appendix C Laboratory Data Appendix D Quality Assurance/Quality Control Data Appendix E Process Operating/Control System Data AST-2024- I 032-00 l RTK - Magna, UT Page iii UTAH DEPARTMENT OF ENVIRONMENTAL OTJAUTY l\/lAY _ B 2C24 DIVISION OF AIR QUALITY ffiAliatpe I t..i I (.(rliCi.lt Source Test Reporl Introduction 1.0 Introduction Alliance Technical Group, LLC (Alliance) was retained by Rio Tinto Kennecott (RTK) to conduct compliance testing at the Refinery located in Magna, Utah. Portions of the facility are subject to provisions of the Utah Department of Environmental Quality, Division of Air Quality (UDAQ) Approval Order (AO) DAQE- AN0103460058-20 and the Title V Operating Permit 3500030004. Testing was conducted to determine the emission rates of sulfuric acid (HzSO+), sulfur dioxide (SO2), ammonia (NH3), hydrogen chloride (HCl), and lead (Pb) at the exhaust of Hydrometallurgical Precious Metals Recovery (REF006). 1.1 Source and Control System Descriptions The RTK Refinery, located near the Smelter, receives anode copper produced at the Smelter and uses an electrolytic process to obtain the high purity cathode copper. The copper anodes from the smelter are submerged in tanks containing an electrolyte solution in batch operations. An electric current is applied to the tank for a l0-day period during which copper ions migrate from the anode to form a cathode of 99.99Yo pure copper. Precious metals (gold and silver) are recovered from the electrolytic refining slimes removed from the tanks in a series of hydrometallurgical operations. The Refinery copper refining process requires steam to maintain electrolyte temperatures and prevent the degradation of the electrolyte tanks as well as support the precious metals process. To supply steam, the Refinery operates a CHP unit as a primary source of steam and maintains two Refinery Boilers (Boilers #l and #2) as back up steam. Boiler #2 has recently been retrofit with an ultra-low NOx burner. Boiler #l will be decommissioned once stack testing is complete on Boiler #2. 1.2 Project Team Personnel involved in this project are identified in the following table. Table l-l: ProjectTeam 1.3 Site-Specific Test Plan & Notification Testing was conducted in accordance with the Site-Specific Test Plan (SSTP) submitted to UDAQ by RTK. 1,4 Test Program Notes As per guidance fiom the Operations Manager, Run I is based on an estimated moisture of 7%o. RTK Personnel Sean Daly Jenny Esker Alliance Personnel Tobias Hubbard Alan Barrios Dillon Brown AST-2024- l 032-00 l RTK - Magna, UT Page l-l pillhrpEr TECI]NICAL GROUP Source Test Report Summary of Results 2.0 Summary of Results Alliance conducted compliance testing at the RTK Refinery located in Magna, Utah on March 13 - 15,2024. Testing consisted of determining the emission rates of HzSOa, SOz, NH:, HCl, and Pb from the exhaust of REF006. Tables 2-1 and 2-2 provide summaries of the emission testing results with comparisons to the applicable UDAQ permit limits. Any differences between the summary results listed in the following tables and the detailed results contained in appendices are due to rounding for presentation. Table 2-l: Summary of Results 0.0000061 0.0068 0.0000061 0.0065 0.0000061 0.00s <1 0.0066 0.36 2 Concentration, grldscf Permit Limit, grldscf Percent of Limit, 7o Emission Rate, lbftr Permit Limit, lb/hr Percent of Limit, 7o 0.000006r 0.0066 Concentration, grldscf Emission Rate, lb/hr Permit Limit, lb/hr Percent of Limit, %o 0.000018 0.019 0.0000 r 8 0.020 0.000017 0.019 0.000018 0.019 1.7 I mmonia Data Concentration, ppmvd Emission Rate, lb/hr Emission Limit, lb/hr Percent of Limit 0.39 0.0084 0.70 0.016 0.71 0.015 0.60 0.013 0.14 9 Concentration, grldscf Permit Limit, grldscf Percent of Limit, 7o Emission Rate, lb/hr Permit Limit, lb/hr Percent of Limit, 7o 0.000020 0.021 0.000021 :- 0.023 0.000021 0.023 0.000021 0.003 I 0.022 0.22 10 RTK - Magna, UTAST-2024-1032-001 Page2-l TECHNICAL GROUP Source Test Report Summary of Results Table2-2: Summary of Results, Continued Emission Rate, lb/hr Emission Limit, lb/hr Percent ofLimitro/o AST-2024-1032-001 RTK-Magna, UT Page2-2 d;.'Alialrce i.t,Source Tesl Reporl Testing lt4elhodology 3.0 Testing Methodology The emission testing program was conducted in accordance with the test methods listed in Table 3-1. Method descriptions are provided below while quality assurance/quality control data is provided in Appendix D. Table 3-1: Source Testing Methodology 3.1 U.S. EPA Reference Test Methods I and 2 - Sampling/Traverse Points and Volumetric Flow Rate The sampling location and number of traverse (sampling) points were selected in accordance with U.S. EPA Reference Test Method L To determine the rninimum number of traverse points, the upstream and downstream distances were equated into equivalent diameters and compared to Figure I - I and Figure 1-2 in U.S. EPA Reference Test Method l. Full velocity traverses were conducted in accordance with U.S. EPA Reference Test Method 2 to determine the average stack gas velocity pressure, static pressure and temperature. The velocity and static pressure measurement system consisted of a pitot tube and inclined manometer. The stack gas temperature was measured with a K-type thermocouple and pyrometer. The Oz and COu concentration were assumed to be ambient for molecular weight and volumetric flow rate calculations. Stack gas velocity pressure and temperature readings were recorded during each test run. The data collected was utilized to calculate the volumetric flow rate in accordance with U.S. EPA Reference Test Method 2. 3.2 U.S. EPA Reference Test Method 12 - Lead The lead (Pb) testing was conducted in accordance with EPA Reference Method 12. The complete sampling system consisted of a stainless steel nozzle, stainless steel probe, probe, heated quartz filter, gas conditioning train, pump, and calibrated dry gas meter. The gas conditioning train consisted of four (4) chilled impingers. The first and second impingers contained 100 mL of 0.1 N HNO:, the third was initially empty and the last impinger contained 200-300 grams of silica gel. The probe liner and filter heating systems were maintained at a temperature of 120 + l4"C (248 +25oF), and the impinger temperature was maintained at 20oC (68"F) or less throughout testing. Following the completion of each test run, the sampling train was leak checked at vacuum pressure greater than or equal to the highest vacuum pressure observed during the run and the contents of the impingers were measured for moisture gain. The quartz filter was carefully removed and placed into container l. The probe and nozzle were rinsed and brushed three (3) times with 0. I N HNO: using a non-metallic brush and these rinses were placed in container 2. The front half of the filter holder was rinsed three (3) times with 0.1 N HNO: and these rinses were added to container 2. The contents of impingers 1,2,and 3 were placed in container 4. Impingers 1,2,and 3 along with the filter supporl, back half of the filter holder and all connecting glassware were triple-rinsed with 0.1 N HNO: Parameter U.S. EPA Reference Test Methods NoteslRemarks Volumetric Flow Rate I &.2 Full Velociw Traverses Lead 12 lsokinetic Sampling Moisture Content / Sulfuric Acid / Sulfur Dioxide / Ammonia / Hvdrosen Chloride 320 FTIR - Continuous Sampling AST-2024- l 032-00 I RTK - Magna, UT Page 3-l pulhrpEr lr lllllO/rl Source Test Reporl Testing Methodolog,t and these rinses were added to container 4. All containers were sealed, labeled, and liquid levels marked for transport to the identified laboratory for analysis. 3.3 U.S. EPA Reference Test Method 320 - Moisture Content / Sulfuric Acid / Sulfur Dioxide / Ammonia / Hydrogen Chloride The concentrations of moisture content, sulfuric acid, sulfur dioxide, ammonia, and hydrogen chloride were determined in accordance with U.S. EPA Reference Test Method 320. Each source gas stream was extracted at a constant rate through a heated probe, heated filter and heated sample line and analyzed with a MKS MultiGas FTIR operated by a portable computer. The computer has FTIR spectra of calibration gases stored on the hard drive. These single component calibration spectra are used to analyze the measured sample specha. The gas components to be measured were selected from the spectra library and incorporated into the analytical method. The signal amplitude, linearity, and signal to noise ratio were measured and recorded to document analyzer performance. A leak check was performed on the sample cell. The instrument path length was verified using ethylene as the Calibration Transfer Standard. Dynamic spiking was performed using a certified standard of the target compound or appropriate surrogate in nitrogen with sulfur hexafluoride blended as a tracer to calculate the dilution factor. All test spectra, interferograms, and analytical method information are recorded and stored with the calculated analy,tical results. The quality control measures are described in Section 3.4. 3.4 Quality Assurance/Quality Control - U.S. EPA Reference Method 320 EPA Protocol 1 Calibration Gases - Cylinder calibration gases used met EPA Protocol 1 (+l- 2%) standards. Copies of all calibration gas certificates can be found in the Quality Assurance/Quality Control Appendix. After providing ample time for the FTIR to reach the desired temperature and to stabilize, zero gas (nitrogen) was introduced directly to the instrument sample port. While flowing nitrogen the signal amplitude was recorded, a background spectra was taken, a linearity check was performed and recorded, the peak to peak noise and the root mean square in the spectral region of interest was measured and a screenshot was recorded. Pollowing the zero gas checks, room air was pulled through the sample chamber and the line width and resolution was verified to be at 1879 cm-1, the peak position was entered and the FWHH was recorded (screenshot). Following these checks, another background spectra was recorded and the calibration transfer standard (CTS) was introduced directly to the instrument sample port. The CTS instrument recovery was recorded and the instrument mechanical response time was measured. Next, stack gas was introduced to the FTIR through the sampling system and several scans were taken until a stable reading was achieved. The native concentration of our surrogate spiking analyte as recorded. Spike gas was introduced to the sampling system at a constant flow rate S 10% of the total sample flow rate and a corresponding dilution ratio was calculated along with a system response time. Matrix spike recovery spectra were recorded and were within the + 30o/o of the calculated value of the spike concentration that the method requires. The matrix spike recovery was conducted once at the beginning of the testing and the CTS recovery procedures were repeated following each test run. The corresponding values were recorded. AST-2024- I 032-00 I RTK - Magna, UT Page 3-2 plltfrirce TECHNICAL CNC,UI"' Location: Rio Tinto Kennecott - Magna, UT Appendix A Example Calculations Source: Hydrometallurgical Precious Metals Recovery (REF006) Project No.: AST-2024:1032 Run No.: I Parameter: Pb Meter Pressure (Pm), in. Hg AHPm = Pb+ where, ],3S Pb 25.57 = barometric pressure, in. Hg AH 4.121 : pressure differential oforifice, in H2O Pm 25.9 = in. Hg Absolute Stack Gas Pressure (Ps), in. Hg Ps = pu* !gwhere, 73,6 Pb L: barometric pressure, in. Hg Pg -0.05 : static Pressure, in. H2O Ps4:in.HB Standard Meter Volume (Vmstd), dscf 17.636xYxVmxPm Vmstd =where, Y 0.972 : meter correction factor Vr@:metervolume, cf Pm4: absolute meter pressure, in. Hg Tm 516.7 : absolute meter temperature, oR vmstd-ZF:dscf Standard Wet Volume (Vwstd), scf Vwstd:0.04776 x Vlc where, Vlc 38.7 : weight of H2O collected, g vwstd-ilIF:scf Moisture Fraction (BWSsat), dimensionless (theoretical at saturated conditions) ,oo.n-(ff5s) BWSsat = where, Ts 4: stack temperature, "F Ps ___&l!,_: absolute stack gas pressure, in. Hg BWSsat 0.034 : dimensionless Moisture Fraction (BWS), dimensionless (measured) VwstdBWS=- ,nh...f "' - (v*sta + vmsta) Vwstd 1.825 : standard wet volume, scf Vmstd -..1Q!Q[: standard meter volume, dscf BWS..;!Q[= dimensionless Moisture Fraction (BWS), dimensionless BWS = BWSmsd unless BWSsat ( BWSmsd where, BWSsat _.,]QQl!- = moisture fraction (theoretical at saturated conditions) BWSmsd 0.029 = moisture fraction (measured) BWS 0.029 Tm Ps A/t6r're TECHNICAL CNOUT' Appendix A Example Calculations Location: Source: Project No.: Run No.: Parameter: Rio Tinto Kennecott - Maqna, UT Hydrometallurgical Precious Metals Recovery (REF006) AST-2024-1032 Pb Molecular Weieht (DRY) (Md), lb/lb-mole Md= where, (0.44 x o/oCO2) + (0.32 x o/oOZ) + (0.28(100- o/oCO2 - o/oOZ)) COz 0.0 : carbon dioxide concentration,%o O, L: oxygen concentration, oZ Md_2&!_= lb/lb mol Molecular Weieht (WET) (Ms), Ibflb-mole Ms= where, Md (1 - BWS) + 18.015 (BWS) Md 28.84 : molecular weight @RY), lb/lb mol BWS -..,1!Q[: moisture fraction, dimensionless Ms 28.5 : lb/lb mol Average Velocity (Vs), ftlsec Vs = 85.49 x Cp x (AVr/z1avg x where, 1Cp 0.840 : pitot tube coefficient a Pt"-...-L199-= velocity head of stack gas' (in' H2o)r/2 Tr_;pQ-= absolute stack temperature, oR Ps@: absolute stack gas pressure, in. Hg Ms -!![= molecular weight of stack gas, lb/lb mol Vs 245 = fl/sec Average Stack Gas Flow at Stack Conditions (Qa), acfm Qa=60xVsxAs where, VtL: stack gas velocity, ft/sec As 6.83 : cross-sectional area ofstack, ft2 Qu.............1E:urrt Average Stack Gas Flow at Standard Conditions (Qs), dscfm Ps Qs = 17.636 x Qa x (1 - BWS) X : where, \ / Ts Qa___LQJ!4_: average stack gas flow at stack conditions, acfm BWS ..;!Q[: moisture fraction, dimensionless PrA: absolute stack gas pressure, in. Hg Ts _;pQ-= absolute stack temperature, oR Qs 8.247 = dscfm Al6rce TECHNICAL (]NC,UN Appendix A Example Calculations Location: Source: Project No.: Run No.: Parameter: Rio Tinto Kennecott - Magna, UT Hydrometallurgical Precious Metals Recovery (REF006) AST-2024-1032 Pb Yqa = where, Dry Gas Meter Calibration Check (Yqa), dimensionless Vm 72.3 : total meter volume, dcf Tr.;!]1!!: absolute meter temperature, "R LH@ 1.964 : orifice meter calibration coefficient, in. H2O Pb L: barometric pressure, in. Hg AH urgA: average pressure differential of orifice, in H2O Md 28.84 = molecular weight (DRY), lb/lb mol (A H)"'-}![= average squarerootpressure differential of orifice, (in. H2O)r/2 Yqa 1.0 : percent Volume of Nozzle (Vn), ft3 Y 0.972 : meter correction factor, dimensionless O 60 : run time, min. L)xxPm lrn VmIsVn --Pc (o.ooruu, xvtc * where, Tm Vn Isokinetic Sampling Rate (I), % Tt.................L= absolute stack temperature, oR Ps_-[!!-= absolute stack gas pressure, in. Hg Vlc 38.7 = volume of H2O collected, ml v* ---7J66- = meter volume, cf Pm 25.87 = absolute meter pressure, in. Hg Y 0.972 = meter correction factor, unitless 516.7 = absolute meter temperature, oR 7 5 .804 = volume of nozzle, ft3 r=( where, )xroo Vn 0x6OxAnxYs Vr-]!!}!-:nozzle volume, ft3 e 60.0 : run time, minutes An 0.00087 : areaofnozzle, ft2 YtL: average velocity, ft/sec I 98.1 : "/o NfuTECH N ICAL O ROU P Location: Rio Tinto Kennecott - Magna, UT Appendix A Example Calculations Source: Hydrometallurqical Precious Metals Recovery GEF006) Project No.: AST-202,1-1032 Run No.: 1 Parameter: Pb Lead Concentretion (Cpr), ug/dscm t,Pb - Mpn x 35.313 ,nh..el'" VmstdM*u$= lead mass, ug Vmstd ___1QQ!!- : standard meter volume, dscfcru4=ue/dscm Lead Emission Rate (ERn), lb/hr MpnxQsx60u'rPb - Vmsfdx4-548+oR where, M*4=leadmass,ug Qs_EZl!Z-= average stack gas flow at standard conditions, dscftn VmstdJgg!-= standard meter volume, dscf ERpt 0.00018 = lb/k elt6rceTECH\ICAL GROUP Location: Rio Tinto Kennecott - Magna. UT Appendix A Example Calculations wheren where, Source: Hydrometallurgical Precious Metals Recovery (REF006) Project No.: AST-2024- I 032-001 Run No. /lVlethod Run I / Method 320 Run No. I HzSOr - Outlet Concentration (Cn,so.), ppmvd Cu,so.*tr,so.--l:-,.lJil Cr,rq*A: HzSO+ - Outlet Concentration, ppmvw BWS 0.040 : moisture fraction, unitless Cu,so. 0.05 : ppmvd HrSOr - Outlet Concentration (Cmso*), ppmyw Cn,so.*: Cn,so. X (1 - BWS) Cr,ro.A: HzSO+ - Outlet Concentration, ppmvd BV/S 0.040 : moisture fraction, unitless Cr,ro.*-616-: ppmvw HrSOr - Outlet Emission Rate (ERs,ss),lb/hr ED - Cr,so. x MW x Qs x 60 i3 28.32 # EI(U,SO. - where, Cr,trA: HrSOo - Outlet Concentration, ppmvd MW 98.079 : HzSOr molecular weight, g/g-mole Qs 8,247 : stack gas volumetric flow rate at standard conditions, dscfrn ERu,so. 0.0066 : lb/hr AI6rce TECH\ICAL GROUP Location: Rio Tinto Kennecott - Magna, UT Appendix A Example Calculations Sou rce: Hydrometallurgical hecious Metals Recovery (REF006) Project No.: AST-2024- I 032-00 I Run No. /lVlethod Run 1 / Method 320 Run No. I SOz - Outlet Concentration (Cso), ppmvd crr:# where, Cto,* L: SO' - Outlet Concentration, ppmvw BWS 0.040 : moisture fraction, unitless cro,-o, : ppmvd SOz - Outlet Concentration (Cso*), ppmvw where, Cso*: C5e, x (1 - BWS) Cp@: SOz - Outlet Concentration, ppmvd BWS 0.040 = moisture fraction, unitless C"6*T=ppmvw SOz - Outlet Emission Rate (ERse),lb/hr gpro,: cso'xMWxQsx6o -#2.1?? # where, Cro,__1[[: SOz - Outlet Concentration, ppmvd MW 64.066 : SOz molecular weight, g/g-mole Qs 8,247 : stack gas volumetric flow rate at standard conditions, dscfm ERso, 0.019 : lb/hr N,frirceTECHNICAL ARQUP Location: Rio Tinto Kennecott - Magna. UT Appendix A Example Calculations Source: Hydrometallurgical Precious Metals Recovery (REF006) Project No.: AST-2024-l 032-00 1 Run No. ilVlethod Run I / Method 320 Rrn No. Ammonia - Outlet Concentration (Cxn), ppmvd CNn,:CNru* I -BWS where,C***____L: Ammonia - Outlet Concentration, ppmvw BWS 0.040 : moisture fraction, unitlessCNru-39-:ppmvd Ammonia - Outlet Concentration (Cnn*), ppmvw CNH,*: CNu. x (1 - BWS) whereo Cr",_A: Ammonia - Outlet Concentration, ppmvd BWS 0.040 : moisture fraction, unitless CNr.r,*--0;37-: ppmvw Ammonia - Outlet Emission Rate (ERxs"),lb/hr oo..-_ - CrruxlrAWxQsx6O T*2A.gZ # -r.NHr - where,Cur, 0.39 : Ammonia - Outlet Concentration, ppmvd MW lr.0-31-: NHr molecular weight, g/g-mole QsT:stackgasvolumetricflowrateatstandardconditions,dscfrnER**-0-00-87i-=lb/hr Source: Hydrometallurgical Precious Metals Recovery (REF006) Project No.: AST-2024-1032-001 Run No. /IVlethod Run 1 / Method 320 Run No. HCI - Outlet Concentration (Cnc), ppmvd \-xCt - Cuct* I -BWS where, CHcr* 0.43 : HCI - Outlet Concentration, ppmvw BWS 0.040 : moisture fraction, unitlessCHS-OJ[-: ppmvd HCI - Outlet Concentration (Cncn ), ppmvw uHClw Cg61x (l - BWS) where,cscr 0.45 = HCI - Outlet Concentration, ppmvd BWS 0.040 : moisture fraction, unitlessCHCr*--0Jif-: ppmvw rutffiirceTECHNIOAL (lROUP Location: Rio Tinto Kennecott - Magna, UT HCI - Outlet Emission Rate (ERsg), lb/hr .L t**,: where, Appendix A Example Calculations Cnct 0.45 MW 36.46 Qs, ERHcr : HCI - Outlet Concentration, ppmvd : HCI molecular weight, g/g-mole: stack gas volumetric flow rate at standard conditions, dscfin = lb/hr Appendix A Example Calculations Location Rio Tinto Kennecott - Magna, UT Source(s) Hydrometallurgical Precious Metals Recovery (BlEAq() Project No. 24-1032 Date(s) 311312024 CTS Recovery Value (CTSil, % cTSous x 1oo cTScyt Where, CTSu,s 99.24 : average of all CTS calibration gas readings, ppm CTS"yr I 0l : CTS bottle certified gas value, ppm CTSR 98.3% : CTS recovery value,%o Spike Dilution Factor (DF), % SF6rpt!9- SF6""t,rOO sF6ai, Where, SF6di, 4.87 : average of direct tracer gas value readings SF6,ut 0.00548 : average ofnative tracer gas value readings SF6.o,u"@ : average of dynamic spike tracer gas value readings DF 7.81% : spike dilution factor,Yo Calculated Spike (Spike",r"), ppm (DF x Analyte 0,,) + (Analyteno, x (1 - Df)) Where, %DF 7$1% : spike dilution factor,o/o Analyte6i, 97 .77 : average ofdirect analyte gas values, ppm Analyte,*1[]] : average of native analyte gas values, ppm Spike"u1" 7.74 : calculated spike, ppm value, ppm Spike Recovery Value (Spikep), % An_aAtuspu<e , roo SplR€6s16 Where, Spike"ur" j : calculated spike, ppm value, ppm Analyte,rp" 6.80 : average of spiked analyte gas values, ppm Spike* 87.83% :spikerecovery val:ue,oh AtlErrce TECHNICAL GROUP Emission Calculations Location Rio Tinto Kennecott - Maena, UT Source Hvdrometallurgical Precious Metals Recovery (REF006) Project No. AST-2Q!4-!Q!! Parameter Pb Run Number Runl Run2 Run3 Average Date Start Time Stop Time Run Time. min (s) 3fi3/24 l3:31 l4:45 60.0 3fi3/24 l5:56 17:07 60.0 3lt3l24 17:56 l9:01 60.0 60.0 INPUT DATA Barometric Pressure, in. Hg Meter Correction Factor Orifi ce Calibration Value Meter Volume, ft3 Meter Temperature, oF Meter Temperature, oR Meter Orifice Pressure, in. WC Volume H2O Collected, mL Nozzle Diameter, in Area of Nozzle, ft2 Lead Mass, ug (Pb) (Y) (AH (4,) (vm) (Tm) (Tm) (^H) (Vlc) (Dn) (An) (M.u) 25.57 0.972 1.964 72.300 57.0 516.7 4.121 38.7 0.400 0.0009 l0 25.57 0.972 1.964 53.380 54.8 514.5 2.296 37.7 0.342 0.0006 l0 25.57 0.972 t.964 50.040 51.3 511.0 2.192 30.2 0.342 0.0006 l0 25.57 0.972 r.964 58.573 54.4 514.0 2.869 35.5 0.36r 0.0007 l0 ISOKINETIC DATA Standard Meter Volume, ftr Standard Water Volume, ft3 Moisture Fraction Measured Moisture Fraction @ Saturation Moisture Fraction Meter Pressure, in Hg Volume at Nozzle, ft3 Isokinetic Sampling Rate, (7o) DGM Calibration Check Value, (+/- 5%) (Vmstd) (Vwstd) (BWSmsd) (BWSsat) (Bws) (Pm) (Vn) (D (Yo") 62.059 1.825 0.029 0.034 0.029 25.87 75.804 98. l 1.0 45.780 1.778 0.037 0.034 0.034 25.74 56.383 99.5 -0.1 43.197 1.424 0.032 0.035 0.032 25.73 53.013 94.0 -4.0 50.346 1.676 0.033 0.034 0.031 25.78 61.73 97.2 -1.0 EMISSION CALCULATIONS -ead Concentration, ug/dscm -ead Emission Rate, lb/hr (Cpr) (ERpt) 5.7 0.00018 7.7 0.00024 8.2 0.00025 7.2 0.00022 one or more AIl6rce TECHNICAL CIROUP Emission Calculations Location Rio Tinto Kennecott - Magna, UT Source Hydrom etallurgical Precious Metals Recovery GEF006) Project No. AST-2024-1032 Parameter Pb lun Number Runl Run2 Run3 Average )ate itart Time Stop Time Run Time. min 3lt3l24 l3:31 l4:45 60.0 3lt3l24 15:56 17:07 60.0 3lt3l24 17:56 19:01 60.0 60.0 VELOCITY HEAD. in. WC loint I loint 2 loint 3 loint 4 loint 5 loint 6 loint 7 ?oint 8 )oint 9 loint 10 loint 11 loint 12 loint 13 loint 14 loint 15 loint 16 loint 17 ?oint 18 ?oint 19 loint 20 Point 2l ?ont22 ?olrlrt23 ?oint24 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 6 6 5 5 6 6 6 7 6 6 6 6 6 6 6 6 7 6 6 6 6 6 6 6 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 6 6 7 6 6 6 6 6 5 6 6 6 6 6 6 5 6 6 6 6 6 6 6 6 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 6 6 6 5 6 6 6 6 5 6 7 6 6 6 6 6 6 6 6 6 6 6 6 5 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 6 6 6 5 6 6 6 6 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 CALCULATED DATA Square Root of AP, (in. WC)"' Pitot Tube Coefficient Barometric Pressure, in. Hg Static Pressure, in. WC Stack Pressure, in. Hg Stack Cross-sectional Area, ft' Temperafure, oF Temperature, oR Moisture Fraction Measured Moisture Fraction @ Saturation Moisture Fraction 02 Concentration,Yo CO2 Concentration,o/o Molecular Weight, lb/lb-mole (dry) Molecular Weight, lb/lb-mole (wet) VelociW. ff/sec (AP) (cp) (Pb) (Pe) (PS) (As) (Ts) (Ts) (BWSmsd) (BWSsat) (Bws) (oz) (co, (Md) (MS) (Vs) 0.40 0.84 25.6 -0.050 25.6 6.8 75.3 535.0 0.029 0.034 0.029 2t.00 0.00 28.8 28.5 24.6 0.40 0.84 25.6 -0.050 25.6 6.8 74.9 534.6 0.037 0.034 0.034 21.00 0.00 0.40 0.84 2s.6 -0.050 25.6 6.8 76.0 535.7 0.032 0.035 0.032 21.00 0.00 0.40 0.84 25.6 -0.0s0 25.6 6.8 75.4 535. l 0.033 0.034 0.031 21.00 0.00 28.8 28.5 24.6 28.8 28.5 24.6 28.8 28.5 24.6 VOLUMETRIC FLOW RATE At Stack Conditions, acfin At Standard Conditions, dscfrn (Qa) (Qs) 10,074 8,247 10,067 8,204 10,060 8,197 10,067 8,216 pult6rre TtrCIINICAL GROUP Method I Data Locxtion Rio Tinto Kennecott - Source Projst No. AST-2024-1032 D^tet O3ll2lU DuctOrientrtion: Vdicrl Dra Dcsign,-TEG- Distance from Fer Wall to Ortside of Port: 4 I .50 in nippte tcngttr: ---7.iI- in Dep6 ofDuct: 35.38 in Width of Duct: 4.00 in Cross Sectionel Aro oflruct: 6.83 ft'! Equivrl@t Dimeter: 7.19 ir No. ofT6t Ports: 2 Di.t n".A,-.'E-ft DistrnceADuctDixmeters: 10il (mustbe>0,5) DistrDceB: 10.9 ft Distrnce B Duci Dirmeten,---'ii--1.ust be > 2; MinimumNumberofTEvcrsPointsi 12 Actu.lNumb€rofTnveBePointsr 24 Numbcr of Rerdings pe. Point, -----f Mcsurcr (Initirl rnd Drrc;,---IIE- Rdicrer (Iriti.l rnd D.te): DBR LOCATTON OT TRAVER,SE POINTS Nufrba of trovfre poina on o dioMa I 1 3 4 5 6 7 E 9 l0 ll l2 2 3 4 5 6 1 8 9 to 6.7 25.0 75.0 ,1' 4.4 t4.6 29.6 70.4 85.4 95.6 3.2 10.5 19.4 32.3 67.7 80.6 89.5 :.' 2.6 8.2 14.6 22.6 34.2 65.8 77.4 85.4 91.8 97.4 2.1 6.7 I 1.8 17.7 25.0 35.6 64.4 75.0 a2.3 88.2 93.3 979 *Percent of stack diamtetlrom inside woll to trMrse laint- Travcnt Point o/o ol Dirmeter Distue from insidr ull fiom outside of I 3 4 6 7 E 9 l0 il It 2.1 t 1.8 17.7 25.O 35.6 64.4 75.0 82.3 88.2 93.3 979 1.00 2.37 4.17 6.26 8.84 t2.59 22.78 26.53 29.\ 31.20 33.00 7y8 Iil2 l0 5n6 t2 3t8 t5 l8 I l/16 28 15/16 32 tvt6 35 U4 37 5tr6 39 l/8 40 v) UDgl*t0.6lm(24h-) Stack Diagrm A = 64.125 ft. B - 10.875 ft. Depth ofDuct = 35.375 in. CrN Setionrl Area DMrtream Dl*urbancc o aa a a o a o o aa lulrErrpeTECHNIOAL QROUP Cyclonic Flow Check Location Rio Tinto Kennecott - Maqna, UT Source Hydrometallurgical Precious Metals Recovery GEF006) Project No. AST-2024-1032 Date 03113124 Sample Point Angle (AP:0) I , 3 4 5 6 7 8 9 10 11 t2 13 t4 15 t6 t7 18 t9 20 2t 22 23 24 Averase 5 llltffiirceTEOHNICAL (,ROUP Method 4 Data Location Rio Tinto Kennecott - Magna, UT Source Hydrometallurgical Precious Metals Recovery (REF006) Project No. AST-2024-1032 Parameter Pb Analysis Gravimetric Run I Date:3113124 Impinger No.I 2 3 4 Total Contents HNO3/H202 HNO3/H202 Empty Silica Initial Mass, g 739.4 723.0 639.7 963.8 306s.9 Final Mass, g 7s6.7 728.0 641.4 978.5 3104.6 Gain 17.3 5.0 1.7 14.7 38.7 Run 2 Date:3/13/24 lmpinger No.I ,,3 4 Total Contents HNO3/H202 HNO3ru02 EmpE Silica Initial Mass, g 719.8 740.6 635.9 956.7 3053.0 Final Mass, g 745.0 741.0 638.3 966.4 3090.7 Gain 25.2 0.4 2.4 9.7 37.7 Run 3 Date:3t13t24 Impinger No.I 2 3 4 Total Contents HNO3ru02 HNO3/H202 Empty Silica Initial Mass, g 747.0 736.5 644.0 952.5 3080.0 Final Mass, g 765.9 737.1 644.2 963.0 3110.2 Gain 18.9 0.6 0.2 l0.s 30.2 plltErrpe Tf C!ltllCAL GHCt-l P Isokinetic Field Data Date: 3ll3D4 Start Time: End Time: l3:31 14t45 Source: Hydrometallurgical Precious Metals Recovery (RE Rro;""tXo,,@ STACK DATA (EST)EQUIPMENT STACK DATA ([,ST)FILTERNO.STACK DATA (FINAL)MOIST. DATA Moisture: 7.0 7o est. Barometric: 25.57 in. Hg Static Press: -0.05 in. WC StackPress: 25.57 in Hg CO2t O.O Yo O2t l9,O Yo N2/CO: 81.0 % Md: 28.?6 lb,4b-mole Ms: 28-Ol lb,4b-mole Nleter Box ID: Mt3l Y: O.972 AH @ (in.WC): 1.964 Probe lD: PR-702-5 Liner Material: glrc Pitot ID: rr-1200 Ritot Cpfrypu, o-slo Js-typ" No,,l" lD,fill--fSS- Nozzle Dn (in.): 0.400 Est. Tm: 55 Est. Ts: 88 Est. AP: 0.16 in. W( Est,Dn; 0324 in. Trrset Rater 0.75 scfm 25.57 in. Hg -0.05 in. WC 2t% o%lc*"*-rr rffii Pbr Pgr 0r; CO2; 38.7 K.FACTOR 24.927 Finnl Cnrr .F.AI< aHf,'.(-Kl Pre Mid 1 Mid 2 Mid 3 Post Mid I (cf) Mid 2 (cf) Mid 3 (cf) IaakRate(cfm): 0.002 -- 0.002 Vacuum (ir IIg): 15 -- l0 Pitot Tube: Pass -- Pass llid-Point lisk Check Vol (cO: q diiAL Sample Time (minutes) Dry Gas Meter Reading (fc) Pitot Tube AP (in WC) Gas TemDeratures ("F)0rifice Press. AH (in.wC) Pump Vac (in. Hg) {q} % IS(Vs (fps) DGM Average Stack Probe Filter lmD Exit Aux Amb.Amb. Beein End 44 44 ldeel Actxrl 44 43 39 al 0.00 2.50 987.950 0 6 88 79 4.29 4.30 3 249 252 39 r 01.5 24 9t 2 250 500 991 .1 30 0.6 51 79 400 4 t0 275 256 40 105.4 24.91 3 5.00 7.50 994.21O 0 5 5 78 3.76 3.80 24t 253 40 103.7 24 10 4 '7 50 too0 997 I 50 0.5 52 76 3.78 3.80 3 )45 251 40 949 24.06 5 10.00 l 2.50 999.850 0.6 52 76 403 4 t0 3 230 256 40 95.3 24.84 6 t2.50 5.00 I 002 550 0 6 )2 '75 4.O4 4.10 235 253 4l t0t o 24.82 7 l5 00 l7 50 1005.620 0.6 53 't 404 4 t0 3 215 256 4t 94.7 24.82 8 17.50 20.00 1008410 0 7 53 75 4.29 4.40 3 245 253 41 gi6 25.59 9 20 00 22 50 l 01 1.250 0.6 53 75 404 4 t0 241 256 42 r076 24.82 IO 22.50 25.OO 1014.420 0 6 54 75 405 4.10 3 240 256 42 100.3 24.82 500 21 50 1017380 0 6 54 '75 4.O5 4.t0 3 )41 251 42 t020 24.82 t2 27.50 30.00 1020.390 0 6 56 407 4 t0 3 243 256 41 94.5 24.82 bl 30.00 32.50 r023 r90 0 6 56 75 4.07 4.10 245 258 43 108 7 24.82 2 32 50 35 00 1026.4t0 0 6 58 '75 408 420 3 241 253 43 r 08.6 24.82 3 35.00 37.50 to29.640 0 6 58 75 4.08 4.20 3 245 252 43 98.9 2482 4 750 40 00 r 032 580 0 6 51 1t 4.08 4.20 3 245 25t 42 102 3 24.80 5 40.00 42.50 1035 620 0 1 1 74 434 430 4 245 251 42 105.5 25.56 6 4) 50 45 00 r 038 850 0 6 58 '14 4.09 4.20 3 243 256 4)l062 24.80 7 45 00 41.50 I 042.01 0 0.6 58 74 409 420 3 246 253 42 108.9 24.80 8 47.50 50.00 I 045 250 0 6 58 75 4.08 4.20 3 248 253 43 104.6 24 A2 9 50 00 52 50 I 048 360 0 6 58 75 409 390 245 252 43 9',7.4 24.42 l0 52.50 55.00 105r.260 0. l6 59 75 4.09 3.90 3 245 252 43 96.9 24 A2 55 00 750 1054 150 016 61 75 4.1 I 4.20 3 )46 )51 45 r040 24.82 t2 57 50 60 00 105't 260 0. l6 61 74 4.tI 4.20 249 251 45 999 24.4O Final DGM: 1060.250 (t) F E] Dari& Run Time Vm AP Tm T!Max Vac AH %ISO BWS Yo" 60,0 mtn 72.3OO ftl 0.16 in. WC 57.0 oF 753 4 4.121 in. WC 98.r o-029 1,0 Allfripe Tf CIINICAL GHCLJ P Isokinetic Field Data Location: Rio Tinto Kennecott - Magna, UT O"i.t Start Time: 15:56 f,pd fips; 17:07 Source: Hydrometallurgical Precious Metals Proj€ci No.: AST-2024-1032 I Parameter: Pb STACK DATA (EST)EOUIPMENT STACK DATA (EST'I FILTERNO.STACK DATA (FINAL)MOIST. DATA Moisture: 5.0 % est. Barometric: 25.57 in. Hg Static Press: -0.05 in. WC Stack Press: 25.57 in. Hg COi o.o o/o O2t 19.O Yo Nr/CO: 81.0 % Md: 28.76 lb/lb-mole Ms: 28.22 lb/lb-mole Meter Box ID: M5-31 Y: O.972 AH @ (in.WC): 1.964 Probe lD: PR-702-5 Liner Material: glass Pitot lD: PT-1200 Pitot Cpfiyp", 0340 JS+yp" xr,,t" lo,llll--f55- Nozle Dn (in.): 0.342 Est. Tm: 57 Est. Ts: 75 Est. AP: 0.16 in. WC Est. Dn: 0319 in. Trrqet Rrle: O-75 scfrn CO2: O o/ol6'fiil-ffii Pb: 25.57 in. Hg Pgr -0.05 in. WC Ozr 2l o/o Vlc (ml) 37.7 K-FACTOR 14.18 Fitral Corr. -EAK CIIECKI Pre Mid I Mid 2 Mid 3 Post Mid I (cf) Mid 2 (cf) Mid 3 (cf) Irak Rate (cfm): 0.001 - 0.002 Vacuum (in Hs): 15 -- l5 Pitot Tub.: Pass -- Psss Uid-Poiot taak Che.k Vol (c0: atu Sample Time (minutes) Dry Gas Meter Reading (fc) Pitot Tube AP (in wC) (,]9s'l emnerrtures (et'l Orifice Press. AH (in.WC) Pump Vac (in. Hg) Gas Temoeratures (oF) 9/o IS(Vs (rp9 DGM Averaee Stack Prohe Filter lmn ll,xit Aux Amb.Amb. Amb.Amb. Begin f,nd Ideal Actual oo0 250 60.1 60 0.6 58 76 ) 2'7 210 3 252 251 104.4 24.75 2 2.50 5.00 62.480 0 6 54 74 226 2.30 252 2st 43 95. I 24 70 3 5.00 750 64 580 0 1 54 74 2.40 2.40 3 )56 42 984 25.46 4 '7.50 10.00 66.820 0.6 54 74 226 230 3 250 254 42 96.4 24.70 5 I 0.00 t2.50 68.950 0 6 54 75 2.25 2.30 3 250 252 42 98.3 24.73 6 12 50 l5 00 '11 t20 0.6 54 75 ))5 210 l 251 254 41 103.8 24.73 7 15.00 t7.50 73.4tO 6 54 74 2.26 2.30 3 251 254 41 92.3 24 10 8 750 20 00 15 450 0.6 54 74 2.26 210 25? 40 r086 24.70 9 20.00 22.50 '17.850 0 5 54 74 212 2.20 233 25t 40 101.0 23 92 l0 22.50 25 00 80010 0 6 54 74 2.26 2.30 235 251 40 108 6 24.70 ll 25.00 2't.50 a2.4t0 0.6 54 74 226 230 236 256 40 10s.9 24.70 t2 27 .50 30.00 a4 150 0 6 54 75 2.25 2.30 241 254 i9 997 24.73 I 30 00 32 50 86.950 0 6 55 75 226 210 l 245 253 39 93.2 24.'73 )32.50 35.00 89.01 0 0 6 55 76 2.25 2.30 245 256 39 105.9 24'75 500 37 50 9t 350 0 6 55 't6 2.25 2.30 3 245 256 40 r04 I 24.'t5 4 37.50 40.00 93.650 0 5 212 220 250 255 40 103.7 23.94 5 40.00 4) 50 95 870 0 6 55 15 2.26 2.30 3 252 251 40 105 8 24.73 6 42 50 45 00 98 210 0 6 55 '75 226 270 3 252 251 40 92.3 24.73 7 45.00 4't.50 00.250 0 6 55 75 2.26 2.30 3 250 251 40 107.2 24',73 8 47 50 50 00 02 620 0 6 55 '15 2.26 210 250 252 40 101.8 24.',]3 9 50.00 52.50 04.870 0 6 75 226 2.30 3 250 252 95.4 24',73 t0 52.50 55 00 06 980 o t6 56 76 2.26 2.30 )51 257 4 105 3 24.75 ll 55 00 57.50 09.310 0.16 56 76 226 230 3 251 254 4 99.8 24.75 t2 57.50 60.00 t.520 0.16 56 76 230 3 249 255 91.3 24.75 Final DGM:3.540 aF ,.1 D an rrl Run Time Vm AP Tm Ts Y"t AE %rso Bws Yu,Vrc 60.0 mtn 53380 ft3 0,16 in. WC 54.8 or 74.9 oF 3 2.296 in. WC 99.5 0.034 -0.1 pullfripe TTCIINICAL GHC}L'P Isokinetic Field Data agna, UT O"t", Start Timel End Time:l9:01 Source; Hydrometallurgical Precious Metals Recovery (Rf t.oj"",no',@ STACK DATA (EST)EOUIPMENT STACK DATA (ESTI FILTERNO.STACK DATA (TINAL)MOIST.DATA Moisture: 7,0 7o est. Barometric: 25.57 in. Hg Ststic Press: -0.05 in. WC Stack Press: 25,57 in. Hg CO2t LO Yo O2t l9.O Yo N2/CO: 81.0 % Md: 28.76 lb,4b-mole Ms: 28.01 lb,4b-mole llleter Bor lDr MS3l Yt 0.912au@(i,.wc)'El-- Probe ID: PR-702-5 Liner Material: glm Pitot lD: PT-1200 Pitot Cpfryp", 0340 fs+yp"No-t"tO,ffi Nozle Dn (in.'l: 0342 Est. Tm: 55 'F Est. Ts: 75 Est. AP: 0.16 in. WC Eit. Dn: 0323 in. Trrsel Rrte: 0.75 scfm Pb: 25.57 in. Hg Pg: -0.05 in. WC Ozz 21 Yo COr: 0 % Irh"-;iEi. r"rthi 30, K-FACTOR 13.642 Final Corr LEAK CEECKI Pre Mid I Mid 2 Mid 3 Post Mid I (cf) Mid 2 (cf) Mid 3 (cO Irak Ratc (cfm): 0.001 - 0.002 va.uum (in Hs): 15 - 15 Piiot Tube: Pass -- Pass tlid-Point kak Check Vol (cf): o q .aL Sample Time (minutes) Dry Gas Meter Resding (fc) Pitot Tube AP (in WC) (irs lemDeraturn ("i)Orifice Press, AH (in-WC) Pump Vac (in. Hg) 9/o ISC Vs (fps) DGM Averaee Steck Prohe filter fmn Exit Aux Anb. Amb. Anb. End Ideal Actua al 0.00 2.50 3.850 0. l6 5l 't'1 216 220 254 251 35 109.6 24.87 2 2.50 500 6 210 0 t6 53 '7'7 2.17 2.20 255 251 35 t03.2 24 A'1 3 5.00 7.50 8.440 0.16 53 11 )17 220 255 251 35 962 24.87 4 7.50 10.00 20.520 ot 53 "t'7 203 2.to 251 253 35 101.8 24.08 5 10 00 t2 50 22 650 0.16 52 '74 2.17 3 252 256 36 l0l 7 24.80 6 t2.50 15.00 24.850 0.16 52 '74 217 220 3 252 256 33 92.5 24.80 '7 500 750 26 450 016 52 '74 2.t7 2.20 3 252 253 33 97.1 24 AO 8 17.50 20.00 28.950 0.16 1 216 220 252 251 33 955 24.82 9 20.00 22.50 1.010 0 15 '75 2.O3 2.10 3 252 254 105.3 24 01 l0 22 50 25 00 33.210 0. t6 75 2.t6 2.20 252 251 ?2 991 24.82 ll 25.00 27.50 35.360 o17 '76 230 230 254 252 33 92.3 25.61 2'1 50 30 00 37 4tO 016 77 2.16 2.20 3 256 253 i)9)O 24.87 bl 30.00 32.50 39.390 0. t6 '7'1 216 220 3 256 256 31 98.9 24.87 2 32.50 5.00 41 520 0 t6 '77 2.16 2.20 256 254 3I 98.9 2487 35 00 3'7.50 43 650 0.16 50 71 )20 256 254 3l 9't 3 24.87 4 37.50 40.00 45.740 o t6 50 '76 216 220 254 25t 35 90.7 24.84 40 00 42 50 4't 690 016 50 76 2.16 2.20 3 254 251 95i 24.84 6 42.50 45.00 49 160 0.16 16 216 220 3 251 251 32 91.O 24.84 1 45.00 750 5r 850 016 52 '17 2.t6 2.20 3 252 251 32 94.6 24 87 8 47 50 50.00 53.890 0.16 11 2.16 220 252 249 34 929 24.87 9 50.00 52.50 5.890 o l6 16 216 2.20 3 251 248 34 9l.0 24 A4 l0 52 50 55 00 57 850 0. l6 76 2.t6 2.20 3 256 244 924 24.84 l1 55.00 57.50 59 850 0. l6 76 216 220 3 253 247 32 91 .0 24.84 t2 57.50 60.00 61.940 0.15 76 203 210 3 253 249 3l 93.4 24.06 Final DGM:63.890 aF po r-l Run Time Vm AP Tm Ts Y'* AH %rso Bws Y,. Vac 60.0 mtn 50.040 ft3 0.16 in. WC 513 76.O oF 3 2.192 in. WC 94,0 0.032 -4.O AlErce TECHNICAL GROI.'P Emissions Calculations Location Rio Tinto Kennecott - Magna, UT Source Hydrometallurgical Precious Metals Recovery (REF006) Project No. AST-2024-1032-001 Run Number Runl Run2 Run3 Averase Date Start Time Stop Time 3lt3l24 l5:57 l6:57 3/t4/24 17:55 l8:56 3/15t24 l9: l5 20:15 Input Data - Outlet Moisture Fraction, dimensionless Volumetric Flow Rate (Ml-4), dscfm BWS Qs 0.040 8,247 0.042 8,539 0.037 8,1 75 0.040 8,320 Calculated Data - 0utlet Ammonia - Outlet Concentration, ppmvd Ammonia - Outlet Concentration, ppmvw Ammonia - Outlet Emission Rate, lb/hr CNH, Cttl* ERmt 0.39 0.37 0.0084 0.70 0.67 0.016 0.71 0.68 0.0r5 0.60 0.57 0.013 HCI HCI HCI HCI Outlet Concentration, ppmvd Outlet Concentration, ppmvw Outlet Concentration, grldscf Outlet Emission Rate, lb/hr Cncl CHct* CHcr ER cr 0.45 0.43 0.000020 0.021 0.47 0.45 0.000021 0.023 0.49 0.47 0.47 0.45 0.000021 0.000021 0.023 0.022 HzSOr - Outlet Concentration, ppmvd HrSOo - Outlet Concentration, ppmvw ILSOr - Outlet Concentration, grldscf H,SOa - Outlet Emission Rate. lb/hr C*r,so Cs,so* Cs,so. ERr*so. 0.052 0.050 0.000006r 0.0066 0.052 0.0s2 0.052 0.050 0.050 0.0s0 0.0000061 0.000006r 0.0000061 0.0068 0.0065 0.0066 SOz - Outlet Concentration, ppmvd SOz - Outlet Concentration, ppmvw SO: - Outlet Concentration, grldscf SOz - Outlet Emission Rate, lbAr Cso, Cso* Cso, ERso, 0.23 0.22 0.000018 0.019 0.23 0.22 0.000018 0.020 0.23 0.23 0.22 0.22 0.00001 7 0.000018 0.019 0.0 t 9 Al6rceTECHNICAL GROUP Runl-FTIRData Location: Source: Project No.: AST-2024-l 032-001 D*et 3113124 Time Unit MDL Strtus Temperafure Pressure:"3 Ammonia - Outlet HCI - Outlet HrSOr - Outlet ppmw ppmvw ppmvw 0.04 0.06 0.0s Valid Valid Valid SO: - Outlet ppmvw 0.22 Valid BWS - Outlet % (wet) Valid l5:57 l5:58 l5:59 l6:00 l6:01 l6:02 l6:03 l6:04 t6:05 l6:06 l6:07 16:09 16:10 16:1 I 16:12 16:1 3 16:14 16:1 5 16:16 16:17 16:1 8 l6:19 16,'20 16:21 16..22 16:23 l6:24 l6:25 l6.26 l6:27 l6:28 16:29 16:31 l6:32 1 6:33 l6:34 l6:35 l6:36 l6:37 16:38 16:39 16:40 l6:41 l6:42 l6:43 l6:44 16:45 16:46 l6:47 16:48 16:49 l6:50 l6:51 16:53 16:54 16:55 16:56 l6:57 l9t l9t l9l l9l l9l l9l 191 191 191 l9t t9l.l 191.2 r9t.2 191.2 t9 1.2 191.2 191.1 I9l.l t9l.t t91.1 t91.1 t 9l.l 191.2 191.2 191.2 t91.2 191.1 t9l.l 191.2 t91.2 191.2 1.018 1.018 1.018 1.018 1.018 1.018 1.0t 8 1.018 1.018 1.017 1.018 1.018 1.018 1.018 1.018 1.018 1.0t9 1.018 1.018 1.018 1.018 1.018 1.018 1.018 t.018 1.018 t.018 1.018 1.018 1.019 1.019 1.019 1.018 1.0t9 1.019 1.019 r.019 1.019 1.019 1.019 1.019 1.019 1.019 1.019 1.019 1.020 1.019 1.019 1.0 l9 1.019 1.019 1.019 t.019 1.019 1.019 1.019 1.019 1.019 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.4 0.4 0.4 0.3 0.4 0.4 0.4 0.4 0.3 0.3 0.3 0.3 0.4 0.4 0.3 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.5 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.5 0.4 0.4 0.4 0.5 0.3 0.5 0.6 0.3 0.4 0.3 0.7 0.5 0.5 0.6 0.6 0.4 0.6 0.4 0.3 0.3 0.4 0.4 0.5 0.2 0.4 0.4 0.2 0.4 0.6 0.4 0.3 0.4 0.5 0.5 0.4 0.3 0.4 0.6 0.4 0.3 0.4 0.3 0.4 0.5 0.5 0.2 0.6 0.4 0.4 0.5 0.6 0.6 0.7 0.4 0.3 0.6 0.4 0.5 0.3 0.4 0.3 0.1 0.1 0.1 0.1 0.1 0.1 0.1 OJ 0.1 0.1 0.1 SJ gJ OJ 0.1 0.1 0.1 SJ SJ 0.1 0.1 0.1 0.r 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 OJ 0.1 0.1 0.t OJ SJ SJ 0.1 0.1 0.1 0.1 0.1 SJ 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 92 0.2 0.2 0.2 0.2 92 92 0.2 92 0.2 0.2 0.2 0.2 92 92 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2a 0.2 0.2 0.2 92 0.2 0.2 M M Mw 0.2 0.2 0.2 92 0.2 0.2 0.2 3.9 3.9 3.9 3.9 4.0 3.9 3.9 3.9 3.9 4.0 4.0 4.0 4.0 4.0 3.9 3.9 4.0 3.9 3.8 3.9 3.9 4.0 3.8 4.0 4.1 4.0 4.0 4.2 4.0 4.0 3.8 4.0 3.9 3.9 4.7 4.1 3.9 3.9 3.9 3.9 3.8 4.2 4.1 4.1 4.7 4.0 4.0 4.1 4.1 4.5 4.3 4.0 4.1 4.2 4.3 4.3 4.2 4.2 191.2 191.2 191.2 191.2 191.2 191.2 191.2 191.2 191.2 191.2 t91.2 191.2 191.2 191.2 191.2 191.2 191.2 t91.2 l9l.l l9l.l t91.2 191.2 t91.2 191.2 t91.2 191.2 191.2 R.o A"urrg" pultfrre TECHNICAL GROUP Location: Rio Tinto Kennecott - Mapna. UT Run2-FTIRData Source: Hvdrometallursical Precious Metals Recoverv (REF006) Project No.: AST-2024-1 032-001 Dilez 3/14124 Time Unit MDL Temperature.C Status Valid Valid Ammonia - Outlet HCI - Outlet ppmw ppmvw 0.04 0.06 Valid Valid HrSO. - Outlet SOr - Outlet BWS - Outlet ppmw ppmvw % (wet) 0.05 0.22 Valid Valid Valid Pressure atm 17:55 17:57 I 7:58 17:59 18:00 18:01 18:02 l8:03 18:04 l8:05 l8:06 l8:07 l8:08 l8:09 l8:10 18:l 1 l8:12 l8:13 l 8:14 18:15 1 8:16 18:17 l8:19 18:20 18:21 18.'22 l8:23 18,,24 18.25 l8:26 18.,27 18:28 l8:29 l8:30 l8:31 18.32 l8:33 l8:34 l8:35 l8:36 l8:37 l8:38 l8:39 l8:41 l8:42 l8:43 l8:44 l8:45 l8:46 18:47 18:48 18:49 1 8:50 l8:51 l8:52 1 8:53 l8:54 l8:55 l8:56 tgt.2 191.2 191.2 191.2 191.2 191.2 19t.2 191.2 191.2 t91.2 191.1 191.t 1.026 1.026 1.026 1.026 t.026 t.026 1.025 1.024 1.024 1.025 1.025 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 r.026 1.026 1.026 1.026 1.026 1.026 1.026 1.02s t.025 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.027 1.026 1.026 1.027 1.026 1.026 1.026 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.7 0.6 0.7 0.6 0.7 0.7 0.7 0.7 0.6 0.7 0.6 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.6 0.7 0.7 0.7 0.6 0.7 0.7 0.1 0.7 0.7 0.7 0.7 0.7 0.1 0.1 0.7 0.7 0.8 0.7 0.7 0.1 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.6 0.6 0.7 0.7 0.6 0.8 0.6 0.5 0.3 0.6 0.4 0.2 0.6 0.5 0.4 0.5 0.5 0.4 0.6 0.4 0.4 0.5 0.4 0.4 0.4 0.6 0.4 0.6 0.6 0.6 0.2 0.5 0.3 0.4 0.4 0.5 0.5 0.5 0.5 0.5 0.6 0.4 0.5 0.5 0.4 0.4 0.6 0.4 0.4 0.4 0.4 0.3 0.3 0.5 0.3 0.4 0.3 0.4 0.4 0.5 0.5 0.3 0.3 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.t OJ SJ 0.1 0.1 SJ 0.1 0.1 0.1 0.1 0.1 9.1 0.1 0.1 0.1 0.1 0.1 SJ 9,r 0.1 0.1 0.1 4.1 OJ 0.1 OJ 9._r 0.1 0.1 OJ OJ a,l 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0t 0.1 OJ 0.1 0.1 0.-L 0.1 0.t 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 92 0.2 0.2 0.2 0.2 0.2 0.2 w 0.2 M 0.2 0.2 0.2 Mw 92 0.2 0.2 0.2 0.2 n) 0.2 0.2 0.2 0.2 0.2 0.2 M 92 0.2 0.2 0.2 w M 0.2 0.2 0.2 92 0.2 0.2 wo) 0.2 0.2 0.2 0.2 0.2 0.2 n') 0.2 4.0 4.8 4.0 4.5 3.9 4.7 3.9 4.4 4.3 4.0 4.8 3.8 4.4 3.8 4.5 4.4 4.1 4.1 4.1 4.8 4.0 4.0 4.3 4.3 4.4 4.t 4.6 4.3 4.1 4.2 4.1 4.4 4.0 4.1 4.1 4.0 4.2 4.3 4.t 4.3 4.1 4.0 3.6 4.4 4.1 4.1 J.t 4.3 4.1 3.9 4.1 4.1 3.9 4.6 4.0 3.8 4.0 4.1 r9l 191 l9t l9l l9l l9l.l l9l.l l9l.l l9l.l 191.2 t91.2 l9t.l 191.1 r91.1 l9l.l 191.2 l9t.l t91.2 191.2 l9l.l l9t.l r9l l9l l9t l9l l9l l9l t91.2 t91.2 191.2 t91.2 t91.2 l9l 191 191 l9l 191 191 t91.2 r91.2 191.2 t91.2 191.2 191.2 191.2 l9l.l l9l.l ,dltfuTECHNICAL GROUP Run3-FTIRData Location: Rio Tinto Kennecott - Mapna, UT Source: Hydrometallureical Precious Metals Recovery (REF006) Project No.: AST-2024-1032-001 Date:3115/24 ppmvw 0.22 Valid ppmvw 0.0s Valid ppmvw 0.06 Valid ppmw 0.04 Valid Pressure atm Valid Time Unit MDL Status Temperrture 'c Valid Ammonia - Outlet HCI - Outlet HrSOr - Outlet SOr - Outlet BWS - Outlet % (wet) Valid l9:15 l9:16 19:17 l9:18 l9:19 19:20 19:21 19:22 19:24 19:25 l9:26 19:27 l9:28 19:29 l9:30 l9:31 19:32 l9:33 19:34 l9:35 19:36 19:31 19:38 19:39 19:40 19:41 19:42 19:43 19:44 19:46 19:47 l9:48 19:.49 l9:50 l9:5 I 19:52 l9:53 l9:54 l9:55 l9:56 19:57 l9:58 l9:59 20:00 20:01 20:02 20:03 20:04 20:05 20:06 20:08 20:09 20:10 20:11 20:12 20:13 20:14 20:15 191.5 191.5 191.5 l9l.5 191.5 191.4 191.5 191.5 191.5 l9l.5 lgt.7 191.6 191.6 191.7 191.5 191.5 191.5 191.6 191.5 191.5 t91.4 191.5 191.5 t91.5 191.5 191.5 191.4 191.3 191.4 191.3 191.3 191.4 191.5 191.3 191.3 191.4 191.3 19r.3 191.5 191.5 191.5 191.5 19t.6 191.5 191.5 l9l.5 191.5 191.5 191.5 19t.5 191.5 191.5 19 1.5 t91.5 191.5 191.6 19t.5 191.4 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.029 1.029 t.029 1.029 1.029 1.029 1.029 1.029 1.029 1.029 1.029 1.029 1.029 1.029 1.030 1.029 1.029 t.029 1.029 1.029 1.029 1.029 1.029 1.029 1.029 t.029 1.029 1.029 1.029 1.029 1.029 1.029 1.030 1.029 1.029 1.029 r.029 1.029 1.029 1.029 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.5 0.6 0.5 0.6 0.6 0.6 0.6 0.1 0.6 0.7 0.6 0.7 0.7 0.7 0.8 0.8 0.7 0.7 0.7 0.7 0.7 0.6 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.8 0.7 0.7 0.8 0.8 0.8 0.9 0.8 0.9 0.7 0;t 0;t 0.6 0.6 0.7 0.6 0.6 0.6 0.4 0.4 0.4 0.5 0.3 0.3 0.4 0.3 0.4 0.6 0.6 0.5 0.5 0.5 0.5 0.5 0.4 0.5 0.4 0.3 0.4 0.4 0.4 0.5 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.4 0.6 0.4 0.4 0.5 0.6 0.5 0.5 0.5 0.2 0.5 0.4 0.3 0.2 0.3 0.3 0.2 0.5 0.5 0.5 0.7 0.7 0.6 0.7 0.5 0.5 0l 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 OJ OJ 0.1 OJ SJ 0.1 0.1 0.1 0,1 0,1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0,-L 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.t O,I 0,1 0.1 OT 0.1 OJ OJ 0.1 0.1 0.1 SI 0.1 OJ 0.1 0.1 SJ 0.1 0.1 0.1 M 92 0.2 0.2 0.2 0.2 92 0.2 0.2 0.2 0.2 92 0.2 0.2 92 0.2 0.2 0.2 0.2 92 92 92 0.2 0.2 0.2 92 92ww M 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 M 0.2 0.2 0.2 0.2 92 92M 0.2 0.2 92 0.2 92 0.2 3.8 3.5 4.0 3.t 4.0 4.0 3.6 4.0 3.6 4.0 3.6 3.8 3.5 3.9 3.5 3.7 3.7 3.5 3.7 3.8 3.6 3.4 3.8 3.7 3.6 4.1 5.t 3.8 3.8 3.5 3.6 3.8 3.6 3.3 3.7 J-l 3.4 3.8 4.2 3.4 3.4 3.7 3.5 3.5 3.7 3.6 3.6 3.6 3.4 3.6 3.6 3.7 3.6 3.6 3.3 : 3.7191.5 Parameter Run Avemp Pressure Ammonia - Outlet HCI - Outlet SOr - t.029 0.7 0.5 H$O.-Outlet 0.2 Allionce Source Testing, LLC Anolyticol Lob Services 4500 Boll Rd NE Circle Pines, MN 550.l4 (7 63) 786-6020 vwvw.stocktest.com Anolyticol Loborotory Report Rto EPA Methods l2 Project No. AST-2O24-1032 Version No. LT 201 Certificotion Stotement Allionce Source Testing, LLC (AST) hos completed the onolysis os described in this report. Results opply only to the source(s) tested ond operoting condition(s) for the specific test dote(s) ond time(s) identified within this reporl. All results ore intended to be considered in their entirety, ond AST is not responsible for use of less thon the complete test report without written consent. This report sholl not be reproduced in full or in port without written opprovol from the customer. To the best of my knowledge ond obilities, oll informotion, focts ond test doto ore correct. Doto presented in this report hos been checked for completeness ond is occurote, enor-free ond legible. Any deviotions or problems ore detoiled in the relevont sections on the test report. This document wos prepored in portoble document formot (.pdf) ond contoins poges os identified in the bottom footer of this document. Volidotion Sionoture The onolyticol doto ond oll QC contoined within this report wos reviewed ond volidoted by the following individuol. Digitally signed by Gregg Holman G reg g H o I m a n r,#iti1q1i:,,1i5ffit"*H'man E=GressH'man@s'iack'ls'lmm Gregg Holmon MSP Loborolory Monoger Dote Oigitally signed by Hailoe Bonds I I r I Ff I DN: CN=Hailee Bonds, E=hailee.bonds@allianceanalyticalservices.@m H a I I e e tr O n O S b""r,!s,r#srrt!,i;r$l""""#'*' Foxit PDF Editor Version: '11.2.6 Hoilee Bonds Assistont Loborotory Monoger Dote Proiect Norrolive Anolyticol Methods: Method l2 - Determinotion of lnorgonic Leod Emissions From Stolionory Sources RL ICP Metols: The Minimum Reporting Limii (RL) is specified below per the onolyte ot the instrument. lf the meosured concenlroiion for o froction is less lhon ihe RL, lhe <RL wos used in ensuing colculotions. Anolyte Units (uo/mL) Leod 0.050 Blonk Correclion: No blonk correct wos perform Custody: The somples were received by Bloke Messer on 3/25/24 ol AAS, Circle Pines, Minnesolo. The somples were received in good condition with proper Choin-of-Cuslody documentotion. No opporent contoiner problems were noted upon receipt. Prior to onolysis, the somples were kept secure with occess limited to oulhorized personnel of AAS. Lobeling: Acceptoble Approvol by: Gregg Holmon - Loborotory Monoger Equipmeni: Perkin Elmer 8300 Optimo ICP (lCPOl ), SN: 7851 401226 QC Notes: The somples met ihe minimum criterio estoblished by the relevonl method. Reporting Notes: None xl4xo- /6o- (J INrloG,N(noFIIst (\oN*th-v(J(o ,J l J4(oP0, ,1(uUxl!-o(! Jo- it 1 Iat l t^o.9uoul 6oo ,;g(DtrEoO gJvtoG,E(l JtooOJ&. &s ddo=EF d o o o O o0 E tr o =v ME. = : : occ( 5 o o o o !o>u €d .= A o o o o oo oo oo ci l c. t qc. . l qC{ qa\ .l ^&)E; 0a cv rqo o(nqo otr lqo oro oro 'O ^ €J il c:b <> (qo ornqo o1Aqo o(aqo o(qo o6od .fqF- c. l ca sC\ F- C. l co $c{ tr rNca \fNr-a- tm sal t' -eco odoo.o $o. l tr - a. l co $a- l F- (\ . l a. t $c. l t' - c. l co sc. l F- (\ ca sc\ t l' -o. l c. t & an J4(cE :t h 8s ts ] o F* c/ ] dr t- -oI toIoI oooI roI c. loI o\oI \o t c. taI {oI ,Ytrc, pao(l ) A=o\o ?r d tr r .f F- :. : Q 'r . t E oo il -c Q. E 6 3. E > g; E A gE () E ? a< < rhzii E I Fr r a_ o ri lr ,o 0 ri x '5 r) 6 L EE F ,o o n Af r VA a?G 6 fr l I- - rr u- h z: 6) Fl h l F]?G ' -o otJ - IJ ) ilvqF\C) rhEt:Eo t _r a _ t =a = F4 N F= l- 8EE *> i' c,i € EE E .9 E E b 63 i 5 'loI 6' cr , (E (L oEtr tne{ c6 $ c.9GgErl !oEooo I c.9G=E.oEo.c . IfocE0,d co; ahofqotoa6 ll t l ocoEEoO otJ JJ I \ (\ (1 v n l $ '" f t 'v t o P- ( 0 H/ s -z r y r Hr o Hl g - a l u v [o - t O .r a u u - z r y l sl e u r e u o c ' o N le l o f I" \ l^ l .t , 1 oouJgoc'6coooL0) -oEz o(l , (ozooEo- lC l - ( E r g N H -. t c H ro s + t lc H - c o ^ HO E N JJ O N H IO N H * eu o N :e ?u 'E t ol;r - llE-go.EoU) .: st' r\Nt qi , \: i f $i \ c. , .9 \ \El t E' J U)o(gC] .9 c *z 6lo: c iqG!AF r\S FN }. :. - A1 N $ cE.EuccccE(t (t zt(oooLr tx& $lzDtI (oooTLUIu (f )zfta (oooTLuJt -sd\ iN q(r : !,Eo2!coEot(,ooCLB(, tsc, --zll lLozI 5coo=O)Etroobo(Eooo (- , JIql .. t8l E]ol r- l a)<tacoEEooEcoE! oz[!Fo:fatr g. TUIFotr TU) fttr '; l U o , < ) r i ;i - F ( \ l l f ) X- @ o c o .= E F ( O N ( R+ 6 d dd s P P !v tu r . ) 6 0 l - .Y d l (o @ 't a 5o z UE ii i (u 0 > ., = cl o -: . : X J f * pe f fi Et r tr , g* o o- i az-JoUJGo (o l ol5l vl (\ i l ol ctzoEozo0) 'p ' (L qtL ,Iolql (/ ) lalol lz t () l (5 l al CJol LI8l oI LIo- l al :: '6EtU s0q( _d{\RJN$v.{VliiFEoo0) to:,oE, otrooHE>1 IJ OOE ul G i( ,qx ll . . Eot r i<o u,ooLEE oeIEoo aLI JIEuJaJOFJz oLoc(L I I\ g II( Location Source(s) Project No. Date(s) Rio Tinto Kennecott - Magna, UT Hydrometallurgical Precious Metals Recovery (REF( 24-1032 Ethylene Cylinder ID Concentration (ppmv) Instrument Outlet 3^3/2024 Greatest Deviation from average 0.80% Agreement with Assumed Pathlength 98.26% within 5% no correction required :TS 1 :TS 3 )ate Time File CTS 7 CTS 9 Temoerature (( Date Time File Temperature (( Pressure Ethylene 3113124 I 5:07:10 24-I032 RTK FTIF t91.2 3/13/24 I 5:08:13 24.I 032 RTK FTIF 191 2 3113124 l5:09:15 24-1032 RTK FTIF 191.2 :TS 4 )ate Time File CTS 10 Temperature (( Date Time File Temperature (( Pressure Ethylene 3113124 l7:30:48 24-I 032 RTK FTIF t9l.l 3^3t24 17 :31 5l 24.1032 RTK FTIF t9l I 3fi3t24 17:32:54 24.I 032 RTK FTIF t9l.l crs 5 Date Time File CTS 11 TemDerature (( Date Time File Temperature (( Pressure Ethylene 3il3/24 l9:08:16 I4-I032 RTK FTIF t91.2 3n3t24 19:09:20 !4-I032 RTK FTIF t91 .7 3/13/24 l9 10:22 I4.IO32 RTK FTIF t92.0 CTS 6 Date Time File CTS 12 Temoerature (( Date Time File Temperature (( Pressure Ethylene 3/t3/24 20:30:13 I4.IO32 RTK FTIF t91.4 3lt3l24 20.31 16 24.1032 RTK FTIF 191.5 3t13124 Z0:32:19 Z4-I032 RTK FTIT l9l.4 Location Rio Tinto Kennecott - Magna, UT Source Hydrometallurgical Precious Metals Recovery REF006) Project No. 24-1032 Date 311312024 Spike Cylinder lD Spike Gas concentration Tracer Cylinder lD Tracer Gas concentration Instrument lD Outlet Direct Spike Values cc518166 Component 104.8 Hydrogen Chloride ccs18166 Component 5.015 sF6 RENTAL - Notes Spiked values Dilution Factor 7.8% Calculated Spike 7.74 Spike Recovery 87.83% Date Time File ture 03/13/24 L2:36:03 24-LO32 RTK FTIR 19r.7 03113/24 12:37:06 24-1032 RTK FTIR 791,.L 03113/24 L2:38:09 24-1032 RTK FTIR 19L.L 03lt3l24 72:39:tZ 24-TO32 RTK FTIR 191.1 03/13124 L3:22:14 24-TO32 RTK FTIF L91-.1 03/L3124 13:23:17 24-1032 RTK FTIF L91,.1, 03113124 L3:25:23 24-1032 RTK FTIF L91,.7 03/L3124 1,3:26:26 24-1032 RTK FTIF 191.1 Date Time File T C 03/73124 t4:12:33 24-L032 RTK FTIF 191.1 03/13124 L4:13:36 24-LO32 RTK FTIF 191,.1, 03/1-3124 t4:14:39 24-LO32 RTK FTIF 191,.1 03/73124 L4:!5:41 24-T032 RTK FTIF 19L.1 03/13124 1,4:1,6:44 24-L032 RTK FTIF L91,.2 03/13124 1"4:17:48 24-].032 RTK FTIF 191,.2 03lL3l24 14:1"8:50 24-T032 RTK FTIF L91,.2 Location Rio Tinto Kennecott - Magna, UT Source Hydrometallurgical Precious Metals Recovery (REF006 Project No. 24-1032 Date 3/t3/2024 Spike Cylinder lD Spike Gas concentration Tracer Cylinder lD Tracer Gas concentration lnstrument lD Outlet Direct Spike Values SG9170578BAL Component s0.39 so2 Component 0.00 SF6 RENTAL - Notes Spiked values Dilution Factor 22.4% Calculated Spike 10.04 Spike Recovery 43.30% *The _ cylinder did not contain a typical SF6 tracer gas. lnstead Date Time File J,C 03113124 12:45:34 24-IO32 RTK FTIR 791.1 )3/13/24 L2:46:36 24-LO32 RTK FTIR 79L.1 03/13/24 !2:47:39 24-LO32 RTK FTIR 19L.7 03/13124 12:.48:42 24-TO32 RTK FTIR 79t.1 03113/24 13:05:28 24-LO32 RTK FTIR 191.1 03113/24 13:06:31 24.LO32 RTK FTIR 797.L )3113/24 13:07:34 24-LO32 RTK FTIR tgL.t )3/13/24 13:08:37 24.7032 RTK FTIR tgt.t Date Time File Temperature (C )3/L3124 13:L9:06 24-1032 RTK FTIR L91.2 )31].3124 1-3:20:09 24-1032 RTK FTIR 191.1 )3113/24 73:ZL:tt 24-1032 RTK FTIR 19L.L )3/13/24 13:22:1,4 24-7032 RTK FTIR 191.1_ )3/13124 13:23:!7 24-IO32 RTK FTIR 79L,L 031L3124 13:25:23 24-LO32 RTK FTIR 191..1 03/L3124 13:26:26 24-TO32 RTK FTIR L91,.1 Location Rio Tinto Kennecott - Maqna. UT ProjectNo. 24-1032 Instrument RENTAL - Notes Summary of Spikes Sourc€Hvdrometallursical Precious Metals Recoverv (REF006)Hvdrometallursical Precious Metals Recoverv (REF006) Dat(rh3/24 3/L3124 Timr t4tL2 13:19 AnalW(Hydroeen Chloride so2 Direcl 97.t7 50.77 Nativ(0,L7 -L.70 Soike(6.80 4.3s Dilution 7.8%22.4% Recoven s8%43% Resul PASS FAIL Location Rio Tinto Kennecott - Magna, UT Source(s) Hydrometallurgical Precious Metals Recovery (REF006) ProjectNo. 24-1032 Health Check Parameter Single Beam (Pre-Test) Instrument ID RENTAL - Notes EYsFT-lRs.itwlE vro.7 FL l,ldt Toob H.b m rrb r:h rrir rdm rm tr & ah & dm rh # lfu dm dm dm .rh Location Source(s) Project No. Health Check Parameter Instrument ID Date Rio Tinto(muemtt- Maenq UT Hytfuometaflurgioal Prooious Mot& nsq$My (REF006) 24-1032 Sin*leBeam Oo$t-Te$t) ifwtrrr-mlarvm uo.r F.. Uer Io* H.b * rrb rlin rdn rtin rfo fi zh ah'ah rin rh & !h sdm & & {h srdl-I-l *fr-l [C[E B;ENTAL.Nofies Location Source(s) Project No. Health Check Parameter Instrument ID Date Rio Tinio Kennecofi - Llagpq, UT Hydrometallurgical Prccious Mdak Assovery (RBF006) 24-1032 BENTAL-Notes 3n3t2024 L*ln rrrrrf"l mq**"| mFerer*-l f*i.mrs*J lffi lffi t.#affi"f Pl=-. Location Source(s) Project No. Instrument ID Date RENTAL - Notes Rio Tinto Kennecott - Magna, UT Hydrometallurgical Precious Metals Recovery (REF006) 24-1032 Health Check Parameter Peak Analysis 3n3/2024 H Moue Peak tUldth r u t...r...rrlGM O'iirdtc 3p0(Ba6l rcqracdt.xFEq l- t@l c&/ecd ts Frrq I isi&-26r, l, - s.lrrr".Fp{.rr q*s4* :l E Em [--*rr.nl:l t-:!-"Ft -.lm;ts.*"lt..Ritt tlfqI L.aqftlttp-l Location Sourcc(s) Project No. Health Check Parameter Signal to Noise Ratio Instrurnent lD Date ;i MxS Cltt ti9a.l-ro-Noi* An.ba6 RENTAL - Notes 3fi3/2024 Bun SNR 16l lrX.r. ,{F"l Pars 3 Range.1ffi110cml Fonge.2100.2il cm-1 florqe - 2$0'3m cm''l Pass tl B.rE - lm0.l lm cm.lB.n!.. 21@'22m cm'1 Bor4e - 2900-ffi cm.1 Pas 5 R*loe. 1ffi'I1ffi cm-l R*pc.2100'22tr cm.'l Bargr . 2$0-3ffi cm.'l Me& B?.ulli Rdrge.1mO-llm nl Rrpc.21@22tr cm-lBry-2$l.mcm-l Rio Tinto Kennecott - Magna, UT Hydrornetallurgical Precious Metals Recovery (REF006) 24-1032 SNR Sltw Se Bcao.t - rln: r, Bclun (Fg>Cclp Fl.lR <F2>I p,*p-g.rs, I lXJlioi I BMS |toise-O 1 193562 (0 5!8284 nAUl. SNF.838 BMS Norsc-00812232 l0 352749ftAUI SNR.1231 BMS Norc-0 14495?2 {0 62953SmAUl. SNR.690 BMS Norra.0'l O57972 {0 159,156 d*tJl. SNF.945 BMS ilosc.o 0906662 t0 393773 rAtJ). SNR-I1O3 BMS Nosc.0 l399?? (0 607536 fiAIJI SNR-715 BMS NoRc.O 1125872 l0 188973 nAUl. SNR.€88 RMS Ndr..O0g95r22 l0 g732mAUl. SNR.IllT RMS Nos*0.1 397532 {0 606977 rAtll. SNF.7I6 Bi'{S No6o-0. 1 09O4iZ {0.173565 nAU l. SNF.920 FMS Nois.'0.086$82 {0 373789 r*tll. SNB,I 16.1 RMS Noisc.O 1 3$092 l0 60631 I ftArrL 5Nn-71 7 Location Source(s) Project No. Health Check Parameter Instrument ID Date Rio Tinto Kennecott - Magna, UT Hydrometallurgical Precious Metals Recovery (REF00( 24-1032 Analysis Validation Utility RENTAL - Notes 3n3/2024 Analysis Validation Report Sa m ple Filename: D :\Docu ments\2024\24-1032 RIO Tinto\24-1032 RTK FTI R_000126. LAB Filename for noise: D:\Documents\202a\24-1032 Rlo Tinto\24-1032 RTK FTIR_000014.1AB lnterferences Filenames: C:\OLT\Analysis Validation Utility\Support spectra\1min 191C LN2\lnterferents I C:\OLT\Analysis Validation Utility\Support spectra\1min 191C LN2\lnterferents H20 10pct CO2 10 pct 1m C:\OLT\Analysis Validation Utility\Support spectra\1min 191C LN2\lnterferents H20 10pct CO2 10 pct 1m C:\OLT\Analysis Validation Utility\Support spectra\1min 191C LN2\lnterferents H20 10pct CO2 10 pct 1m C:\OLT\Analysis Validation Utility\Support spectra\1min 191C LN2\lnterferents H20 10pct CO2 10 pct 1m C:\OLT\Analysis Validation Utility\Support spectra\1min 191C LN2\lnterferents H20 10pct CO2 10 pct 1rn C:\OLT\Analysis Validation Utility\Support spectra\1min 191C LN2\lnterferents H20 10pct CO2 10 pct 1m C:\OLT\Analysis Validation Utility\Support spectra\1min 191C LN2\lnterferents H20 10pct CO2 10 pct 1m Recipe path: C:\OLT\RECIPES\Coal EGU Testing R3 - Copy DO NOT USE.MGRCP - MODIFIED Gas calibration Name Conc NO (350,3000) 191C -0.33 NO2 (1s0) 191,C (r_OF2) 0.7 NO2 (2000) L9LC (2OF2) -0.s4 N2O (100,200,300) 191C 0.24 NH3 (3oo) 1e1C (1OF2) 0.06 NH3 (3000) 191C (2OF2) 1.0s co (soo) 1e1c (1oF2) L.73 co% (1) 19LC (2OF2l 0 H2O% (4O) tstc 2.8 co2% (40) LgLC 0.1 cH4 (2so) 1e1C (1OF2) 2.23 cH4 (3000) 191CQO\4 2.8s FORMALDEHYDE (70) 191C 0.46 PROPYLENE (200,1000) 191 -0.05 ETHYLENE (L00,3000) 191C -0.05 ACETYLENE (1000) 191C -O.2s PROPANE (100) 191C 8.31 ETHANE (s00) 191C 2.81. ACETALDEHYDE (r.000) 191r -O.t4 HCL PPM (1,00) 191C 4.09 HCN (L00) 191C O.t7 HBR (1oo) 180C 0.43 so2 (1ooo) 191c -0.99 so3 (1so) 1e1c -0.63 cos (100) 1s0c 0.03 H2SO4 (s0) 1s0C -o.os sF6 (10) 1s1C 0.38 MEOH (10)191C 0 MDC3 2. 0. MDC1 MAU FMU*R OCU 0.84 t.L4 2.95 2.95 0.12 0.13 0.19 0.19 5.45 6.94 30.14 30.14 0.15 0.L8 0.25 0.25 o.22 0.37 0.58 0.58 2.39 4.5 10.8 10.8 0.81 1.74 2.83 2.83 0000 o.o2 0.04 0.25 0.25 0.04 0.06 0.08 0.08 1.42 3.76 5.01 5.01 2.4 3.95 L2.01 t2.Ot 1.15 1.38 1.61 1.61 o.79 0.93 L.45 1.45 0.28 0.48 0.8 0.8 1.88 2.27 3.62 3.62 o.73 0.87 4.63 4.63 1.18 L.32 6.75 6.75 2.t 2.29 3.24 3.24 0.86 1.58 1.81 1.81 1.9 3.25 6.16 6.16 3.85 7.82 8.63 8.63 0.32 0.62 4.37 4.37 0.72 0.13 0.34 0.34 0.05 0.06 0.13 0.13 0.08 0.09 0.13 0.13 0.01 0.01 0.01 0.01 0.26 0.3 0.38 0.38 23.6 o.2 0 5.7 1.3 0.1 0 1 7. t.34 L.24 2 0 3.01 3 6.O4 0. 4.2 2.2 0.3 0 0.L2 0.01 MDC2 0. 0. 0. 0.3 Location Rio Tinto Kennecott - Magna, UT Source(s) Hydrometallurgical Precious Metals Reoovary (REF006) ProjectNo. 24-1032 specha (cTS) 24-.032 RTK rTR_000020"LAB 3fi?,t2024 Time I2:20I20PM EYrnrn-nsoRrwc uo.r fb I'l*r Ioob Hrh m rrin rim rfo rfo rfo h *o ath ain & fi & 3fo dm rir & oim rnfT*l dfrl [-.{lT'}-l l,ocation Rio Tinto Kennecou - Marmq UT Source(s) Hydrometallurgical Precious Metals Recwery (RBF006) ProjectNo. 24-1032 Spectra (Analyte Direct) 24-1032 RTK FTIR*000035.LA8 3n3t2024 Time 12:36:03 PM .E Yrrrff-nsot'rm vloz Fa. ltdl look H+ aio rrin raim rdn rrin rfo ah zh zfl adr ldp fi e lh eir dE.& {fo 'dfo sun-lrr-r--l kI-M Location Rio Tinto Kennecott - Magna" UT Source(s) Hydrometallurgical Precious Metals Recovery (REF006) ProjectNo. 24-1032 Spectra (Native) 24-1032 RTK FTIR_000076.LA8 Date 311312024 Time l:19:06 PM :f vin. FT-lRscftw.rc v'10.7 Fa! Hr$ T@b Hcb tt2CD Cm rm 3{tr g' 3&D {m t2m Location Source(s) Project No. Spectra (Spike) Date Time Rio Tinto Kennecott - Magna, UT Hydrometallursical Precious Metals Recoverv GEF006) 24-1032 24-1032 RTK FTIR OOOI2T.LAB 3n3/2024 2:12:33PM ljl vin.FTIRSoftw.r. vlo.7 Flc Math Tods Hcb & PJT,AffibdBbe Accreditation #62754 Red Ball Technical Gas Service 555 Craig Kennedy Way Shreveport, lA 71107 800-551 -81 50 PGVP Vendor lD # Gl2023 CERTIFIED GAS CERTIFICATE OF ANALYSIS Cylinder Number: Product lD Number: Cylinder Pressure: coA # Customer PO. NO.: Customer: :80073902 2443E 19OO PSIG =80073902.20230730-O Certification Date: Expiration Date: MFG Facility: Lot Number: Tracking Number: Previous Certification Dates: 18t07 t2023 )810612025 =_8OO73902.20230730 )44266022 SMART-CERT Do Not Use This Cvlinder Below 100 Gertified Concentration(s) Ethylene Concentration I01 PPM r 2% N|ST FTIR Balance Analytical Measurement Data Available Online. cc722751 07t2812024 PS N2 c2H4 102 PP|VI MKS 2031DJG2EKVS13T o17146467 This is to certify the gases referenced have been calibrated/tested, and verified to meet the deflned specifications. This calibration/test was performed using Gases or Scales that are traceable through National lnstitute of Standards and Technology (NIST) to the lnternational System of Units (Sl). The basis of compliance stated is a comparison of the measurement parameters to the specified or required calibration/testing process. The expanded uncertainties use a coverage factor of k=2 to approximate the 95% confidence level of the measurement, unless otheMise noted. This calibration certiflcate applies only to the item described and shall not be reproduced other than in full, without written approval from Red Ball Technical Gas Services. lf not included, the uncertainty of calibrations are available upon request and were taken into account when determining pass or fail. ,hnuru th,L,/au Aaron Varelas Analytical Chemist Assay Laboratory: Red Ball TGS Version 02-G. Revised on 2017-07-02 Airgas. an Air Liquide company Airgas Specialty Gases Airgas USA LLC 614r Easton Road Plumsteadville, PA 18949 Airgas.com Part Number: Cylinder Number: Laboratory: Analysis Date: Lot Number: x03Nt99C1540246 ccs18166 124 - Plumsteadville - PA Mar 23,2022 160402396615-1 CERTIFICATE OFANALYSH Grade of Product: CERTIFIED STANDARD-SPEC Reference Number: Cylinder Volume: Cylinder Pressure: Valve Outlet: 1 60-40239661 5-1 144.0 CF 2015 PS|G 330 Expiration Date: Mar 23,2024 Product composition verified by direct comparison to calibration standards traceable to N.I.S.T. weights and/or N.I.S.T. Gas Mixture reference materials. Component ANALYTICAL RESULTS Req Gonc Actual Concentration (Mole %) Analytica! Uncertainty SULFUR HEXAFLUORIDE HYDROGEN CHLORIDE NITROGEN 5.000 PPM 100.0 PPM Balance 5.015 PPM 104.8 PPM +l- 5% +l-2o/o Sionature on file Approved for Release Page 1 of 1 Airgas. an Air Uquide company Airgas Specialty Gases Airgas USA LLC 525 North Industrial loop Road Tooele, W 84oT4 Airgas.com Part Number: Cylinder Number: Laboratory: PGVP Number: Gas Code: Reference Number: Cylinder Volume: Cylinder Pressure: Valve Outlet: Certification Date: 1 53-402560600-1 144.0 CF 2015 PS|G 660 Oct 18,2022 Expiration Date: Oct 18, 2030 CBRTIFICATE OF ANALYSIS Grade of Product: EPA PROTOCOL STANDARI) E02Nt99E1540350 SGg170578BAL 124 -Tooele (SAP) - UT 872022 SO2,BALN Certiflcation performed in accordance with "EPA Tracaability Protocol for Assay and Certification of Gaseous Calibration Standards (May 2012)" document EPA 600/R-1 2/531 , using the assay procedures listed. Analytical Methodology does not require correction for analytical interference. This cylinder has a total analytical uncertainty as stated below with a confidence level of 95%. There are no significant impurities which affect the use of this calibration mixture. All concentrations are on a mole/mole basis unless otheMise noted. The results relate only to the items tested. The report shall not be reproduced except in full without approval of the laboratory. Do Not Use This below l00 psiq, l.e. 0. Component ANAL)TUCAL RESI.]LTS Actual Protocol Total RelativeRequested Concentration Assay DatesGoncentrationMethod Unceftainty SULFUR DIOXIDE 50.00 PPM 50.39 PPM G1 +l- 0.9% NIST Traceable 1011112022, '1011812022 NITROGEN Balance CALIBRATI ON STAI\IDARDS Type Lot ID Cylinder No Concentration Uncertainty Expiration Date NTRM 16010207 KALOO3179 97.69 PPM SULFUR DIOXIDE/NITROGEN 0.8%Nov 01, 2027 lnstrumenUMake/Model ANALYTICAL EQUIPMENT Analytical Principle Last Multipoint Calibration Nicolet iS50 AUP2110269 SO2 LSO2 od't2,2022FTIR Triad Data Available Upon Request Sianafrrre on fila Approved for Release Page 1 of 1 Alrfu TECHNICAL GROUP Loution Rio Tinto Kennecott - Magns' fIT QA/QC Data Source Eydrometallursiel Prrcious Metals Reovery (REF006) Project No. AST-202+1032 Parameter Pb Date Nozzle ID Nou le Dismeter (in.) #t #2 #3 Dn (Average) Difference Criteria Msterial 3/t2t24 7lt2l24 400-5 342-5 0.400 0.342 0.400 o342 0.400 o.342 0.400 0.342 0.000 0 0i0O < 0.004 in. SS ss Date Pitot ID Evidence of damepe? Lviderce oI mis-alienment? Calibratior or D-^-i- -a-ird 3n2124 PT-1200 no no no Drte Probe or Reference Itrdicated Differ€nce Criteris Probe Length 3lt2/24 PR-702-5 800 85.0 0.9/o * 1.5 % (absolute)5 Field Balane Chck Date tBl12D4 Balmce ID 5A2881@7 Certified Weight ID SLC-TKG.3 Certified Weight Expiration sl-c-rKG-3 Certilied Weieht (g)lmo.o Memued Weight (g)999.8 Weight Difference (g)o-2 Date Berometric Prssure Evidence of Reading Verified LatrDrauon or nonoir i.Mnirst?W€ther Strtiotr Ir€tion 3/12124 Weather Station NA NA NA SLC Airpon Date Meter Bor ID Positive Prssure Lsk Check 3/12124 M5-31 Pass R€agent l$6 field Prep oerform ed Field Iat Date By 0.1 N HNO3 3/L212024 DEN DGM Calibration-Orifi ces Document D 620.004 Revision 23.0 Effective Date 1/25/23 lssuing Department Tech Services Paq(1of1 Equipment Detail - Dry Gas Meter Console lD. w5-31 tveter S/N: 19772846 Critical Orifice 5/N: 1330 Calibration Detail nitial Barometric Pressure, in. Hg (Pb) :inal Barometrlc Pressure, in. Hg (Pbr) \veraqe Barometric Pressure, in. Hg (Pb) 25.48 25.48 25.48 Critifcal Orifice lD (Y) K' Factor, ft3.R'2 / in. wc'min (K ) Vacuum Pressure, in. Hg (V, lnitial DGM Volume, ft3 (Vm) Final DGM Volume, ft3 (Vm, Total DGM Vo[rme. ft3 (Vm) 1330-31 0.8429 13.0 804.200 821.062 16.862 1330-31 1330-25 0.6728 15.0 836.100 845.037 8.937 1330-25 1330-19 0.5186 t5.u 857.800 864.837 1 037 r330-19 0.8429 0.673 0 519 13.0 821.062 832.308 11.246 150 845.037 853.963 8926 15.0 864.837 871.833 6.996 Ambient Temperature, 'F (Ta) lnitial DGM Temperature, 'F (Tm) Final DGM Temperature, 'F (Tmr) Averaoe DGM Temperature, 'F (Tm) 1E 14 74 74 76 74 75 75 77 75 75 75 77 75 76 76 77 7A 76 76 77 76 76 76 Elapsed Time (O) Meter Orifice Pressure, in. WC (AH) Standard Meter volume, ft3 (Vmstd) Standard Critical orifice Volume, ft3 (Vcr) Ny'eter Correction Factor (Y) Tolerance Orifice Calibration Value (AH @) Tolerance Orifice Cal Check 15.00 3.50 14.3444 13.9321 0.971 0.001 1.941 0.023 .i0.00 3.50 9.5580 9.2794 0.971 0.001 1.943 0.021 10.00 2.20 7.5603 7.3999 0s79 0.007 1.912 0.052 10.00 2.20 7.5439 7.3999 0.981 0.009 1.910 0 054 10.00 140 5.9282 5.7039 0962 0.010 2.039 0.075 10 00 140 5.8937 5.7039 0.968 0.004 2.039 0.075 0.90 1.54 1.52 \,4eter Correction Factor (Y)0.972 )rifice Calibration Value (AH @)1s64 )ositive Pressure Leak Check Yes Equipment Detail - Thermocouple Sensor Reference Calibrator Make: OMEGA Reference Calibrator Model: CL23A Reference Calibrator 5/N: T-197207 Calibration Detail Reference Temp Display Temp.Accuracv Difference OC oR oF oR oF 0 68 100 460 528 560 0 66 98 460 526 558 0.0 0.4 0.4 0 2 2 223 248 1A) 683 708 733 223 249 274 683 109 724 00 -0.1 -0.1 0 1 1 300 400 500 600 700 800 900 1,000 1,100 1,200 760 860 960 1,060 1,160 \264 1,160 1,460 1,560 1,660 300 399 498 600 101 801 901 1,002 1,102 1,202 760 859 958 1,060 1,161 1,261 1,361 1,462 1,562 1,662 0.( 0.1 0.2 0.( -0. -0. -0. -0 -0. -0. 0 1 2 0 1 1 1 2 2 2 Personnel Stacey Cunningham Calibration By Calibration Date Reviewed By RYAN LYONS 6/20/2023 .oobob6LoPL.ncd0)#.o(not Ptr , 1 il z o. D o& O( t s d@bo l ot s = ir D ^,H9 -c d 9Plb o dC9( ! bo ' d *t r Oc d >a cg ir d ^t i to o) iQ r !oc6 P ro , E -b o o- c o->a ' oo AL -oA. c (n > ^9uv #- Y 6F .9 4 ro P .: oo' E =oLE q. =hF g i_ : v o ^0 0 &o 4!. 4 >e E p" U P o- d 1i 6 .2 != E o eC oEs I .: n 9 i: > () o -g o. 9 ; stNoNr' i rl-co!(o bo-F(t (uFo(J l- .( ( lE.EoU!-oEoE.U>Zd. o6AE <E a' E o :< :zFo6^PT -' ; o - b< I =o l E 90 . o Jd t s E: z Et -59 '= 6 o 'F o .9 od 6 U) - - E 3s 5ZFo6^+[ 'a - <3 NI :oo dFv.F + zz z z z z z z x z z z z z z ff = f f l l = i = f f l f f l t t t E E E uE Y j t E E Et r E I f. - t - $ _ N (f , ^ , (o o (o ro ( o N, ^ 6 lr , (f ) I. - : ^ $ @ :l tr , O) o $ @ C ! = O rr ) st (O )- { N - .' ^ O O) r O O) O ) :' 6 I . - o tr ) Y ro o : l o \t o t - (. , O = 60 ( o < ' : X r o = N l r ) $ c { - o X ro N c ! t x ' i @ o ) ^ (. , ro - (o s (o Y N ; c ! N \' : N (r ) *i (f ) co (a - o @ ' - c" i U t . i d J : <" i <" i ,2 c. i <" i < " i <. i c " i c. i ,X @r ( o @ : t o < o : t o ( o < o < o @ r o : @ (r ) r @ F F @ (O (f , s - @ (f ) l' - r (O S @ tO (r ) I' - S C! O @ X (O (f ) O, (O O6 ( a e O l t f ) F - O ) r N ) ' ( @ $ O r r r , @ F - O N (O (v ) (O O) (O (o X( O @ l ' - l - t' - O $ l' - O (, r N $ o l- X tr , s N (f ) (r ) O ( o N O ) l - \ t o N s i = t r ) r r \ t $ $ F l. - st O $ (O N O o . ) \. o' , $ o' ) $ '. q oq \ q 6i N c. i r- - I oj c. j <o o @( f ) t - N t - O O r r N = N ( . ) ( f ) \ t N@ @ O ) O ) e zz z z z z z z z z z z z z z fl f , l l l l l f l f f : f f : f tt t t t t g . t t t t x . E t r t r oGggoMP<s > r\ '; o 95 < ol zOF o(Y r _oF. E g "S g NE i\ 'o OF :zF zz z z z z z z z z z z z z z :) f f l f l l f l f f f r l l c. t t t t t E t t t t t t t t (f , o) , ^ rf (f ) o) o ) N F - N r @ (9 o) li i @ r ). ( O) O ) O ) (O l' - (O tO l o 1r , $ N - @ - :. i r O O N 6l $ 1r ) c\ l tt (O (v ) @ co - H o ) $ $ o \ t N s o c o l r ) F t o N \t :l sf r r lr ) l r ) \i N I. - (O ( O (r ) e O N i^ tO S rf ) - N F - (O tO N O @ (O (' ) @ -: @ N (O N c . ) - - cO r (O @ N ci c i e ei o i o o oi d oi ci c i oi d oi (o ( f ) : N c \ l ( f ) ( f ) N N N ( . ) ( . ) N ( \ c { -=ol J -o [ . . .o3ooioo. ' O: ' of : , t o- ' , . Ut .: : oo=ofo'6q)n+ F S l' - tf ) @ tf , $ $ N if (O ^O ) l' - (r ) l- (O c{ (o @ c \ l O O lr ) F = O) , ^ O) f. - O S O O sl (f ) O) N (f ) O ;- O Xi O - - (, ) () tr ) N Or r r cO - ii o) ); N (O O tf ) C\ O ) l ' - (O r{ ) (V ) @ $ }X c/ ) X (O o) (o o \t - (o @ !f s (o o x r' - s N@ - O r @ @ O ) @ @ N - O ) r r ) ( O ++ r r i d d + + s + s + S + h r r i f. . - F- r . - r. - F= N N N l . - l . - l . - : ^ l l . - . . I. - N( \ I N N C ! C ! C { N N N N \ T N N * (t ) O) lf ) N C! - tf , s \f O) (f ) N F - -) l $ @ s l r ( O l X @ ( o ( O N o N O ) :^ y, . a \t ' o ) o o ) rr ) Y o ) ro o) @ l( , N (f ) !{ ) X o - ( f ) @ O ; l N o ( o 1 . - l r ) @ l r ) "' } x o @ s l r ) ( f ) x < N $ N \ t t N N .' ^ >< N (Y ) (, \l - @ X l- (O (O N rt - (o :l Y i r ) ( o r r c o = N - N O - $ ( f , \. i- - (f ) o ro N rr r ' . N c ! rr ) @ (o o) o) o, : q q (\ i _ o) o , j oq cj q _j n c; v' o i ) o i ) s - @ ' -C D F O ) r O ) r sf rr ) o t- (o o) o ) * o) , ^ N !t @ - (o O 6 \ t @ (f ) (O N -- O) :x (f ) O) O, - @ (o o) N N O l . - r Li Ct i) ( - o @ X V N O * 6 O - (f ) = O : l F- \r ' (o . v , < c. ) (o c{ ro c! r o) d ) x N x ' i (f ) ro $ x @ c! N l r , N O @ @ x @ l ; @ O ' t r ) ) ; O ) tr ) o @ o ) N c { @ ) X o : i $ o - ; < N r( r ) N s f ( O F O ) X N ) - O @ @ X ( O o o o , o ) o ) o 6 ) vl - vi o) o o ) vi o dc j N N N d r _ f - o d r - N d N N @ oo)FEcuJ oo o o o o o o o o o o o o o c9 c 9 9 9 9 9 9 S ? 9 9 C C C r (O - (O - (O - (O s (O - (O - (O F C? e S i Y? g? I I r : r . q! q ! g? g ? S (a ( o ( a ( o (o (o \t s s $ !t $ s s $ rf . t S \ i S $ $ $ $ t S S S $ S c\ r c! c { N N c ! c\ t N N N N N C! C { C{ tt t t t t t t t -L g (E ( I , C ' ( , ( E ( ! ( U ( 5 ( E ( I , ( l , c ' C , ( , ( \ , >= > = = = = = = = > > = = > tt t r r i l l t t t t t (o (9 d) (r ) ( o Co (o (. ) c) (f ) co o (f ) ( f ) (. ) ct-oo-oI.ioo+oUtNEah6q I: N ' o JN(r - s( ' ) O' FofOY tr ( s .g = (ooolJ - uJEo.o llooo(gopoo3llooLoo =bobn lioPtr .n(nPo!E(€C' Ptr .- ] il 7 o. p o& O( H =o (d o bo = ^!9d :i D al a -c ( g ,! PLb o EC 6 cn d 9< t Fo o t+ " tr Oa n >oa0 ) 9L H](d E ro 0) io r EFH0 ) dP ro s -b o 0) - q o) - }R() o -oFl r - q c6 > >5 p. Qxv #- Y d- .o a .i oo' E o= =o+Ltr t r a. l>f i 3 x3 8 IE h" &6 4 ZE E AU .o o- cd AP tl E o ed oEs I .Y l ' 9 i: > ii 6 a tr H a \J l r F +NoNrnrl.C()L(E ooC.1 , tt 1 (uo()c .( ( , o.EoU3-oCon(JFE. oAr 'E o ! il j <E , t g P: ' :zFo6^ ' : r P[ - - - i -' E o - or b< Si i l E8 5- E' Et - 59 '= o . 9' h 9 ,, ' (l ) d o l A -- Jt a - , Hs " :zFLoG^ { i m- .i < 3: F. c -- o. ( L ) , l rl F r- :zt- zz z z z z z z z z z z z z z ff , l l l : l f f f f f l f f l tr E U E E t E G t t t E d . E t r O) $ @ N r - O) l . - F - lr r t r , C{ tO l. - N F O) 6 (f ) (O d) F' r t C\ l rr , - S @ C\ | O) 6 ( O | r ) ( v ) N O @ l ' - r O t l a O O e @ l . - (O (, F @ - tO O (, O )x t- (O O, ri r . - c ' ) - rO @ N lr ) O) C\ l (O X (O O, n- rO o) (f ) O () @ l * tr , c. , c\ l O Y O, F S q o q \ q q C' : ol \ lr ) (f ) ( f ) tr , F (o rj cr i c . i c. i - o o r - <l rr j + to - ci d (o (o (o @ (o (o (, ro r o to lr ) ' r, (o s rl F zz z z z z z z z z z z z z z fl l f : f l f l f , f , l f f l f tt r E & E E E i t r t r E d t d . t O) I' - \ t C ! - I' - lo $ C! - O) N (O st (o rI ) ii i (y ) C{ : (D @ 6 (' ) @ 6 l } ' - C\ l l' - st (O O) N tr , X O c . ) O) O O s - C! c{ \t O l . - tl ) N X i F - $ O) t . - !. r @ tO Cr l e O tO - l. - : J @ \t (r ) N - O @ l ' - (o S @ $ - r. - ^\ , O t - F c' ) I . - r, N O @ rr ) C, @ (f ) l. - ' ' : N F r (O 6l @ $ O tr , (O - - a1 i o. i r: c" j + .r 1r i c' i 6i ci ni - cj (o ( o ( o @ : (o ( o ( o (o ( o ( o @ (o (o (o o6L .i j oPE i) b r- 'o o ), j 95 < o: z (J F oE- _oHp g ; t v bo ^ .j < =r , x E. , Eg , SZF zz z z z z z z z z z z z z z ff f f l l f , f = : ) f f , f f l Ee . d E t r t t r t d g . t t t t r x . @ _ (r ) N N $ rI ) \i (\ l N rO r O e t- Ol N l X @ N $ rr , @ 6 l (o t' . - S o F - o , N lo :< (. , r N F O 6 t (O rr , l r ) N F (O rr ) () :i O N @ (< ) - (O F (O (O @ O ) (O c\ l o -\ f. - O @ O @ ol t - F S t- () l. - O) \t L - CD @ rO (O r. ) O, 6l (O ( O O @ (o O -, l rf , s o ) @ @ o , r c\ l (Y ) l- - @ N - dS + . + + r r i @ N o i d d d d o i o N :: c\ t c \ r c \ I 6 r N C ! C\ l (f ) ( f ) N C\ l N (r ) - l, - . O -l l !: -o [ -. - . -o aL =oab0)O rj i O .- j O Ia j t O !i . l .9 n go=o=O r- . '6 r' , o) (i l rE r - , a: i O) - ^ rf ) l r ) CD sf S O ) O ) * (O ( O s C' ) o 6 : / : 6 ) - (o r 04 ! r G) : l (f ) sl s @ c{ lr , }l (f ) (o o o r r o F* :1 (o s o o N c \ l : l $ O 1O l' - O - - : (O O) O ) N N O -r O (. ) - F- rJ ) (A c| X C\ l - C- , 1 l. - OO l : O s O r @ $ $ N X S ( O ( v ) ( , o o ) sl N |r ) N s (, (, !+ "i O o) r @ 6+ P d d d r i d d d S d + d + N t . - ' ^ l t - N t - N t - F - (o :* l l . - l . - N N N N TI N N N N (\ N N *T N N C\ l N d) $ c { (D ^ @ |r ) 0) . ^ (O rO @ ^, O) (O ro 6 ) $ N Y l (o \t (o X s O F :l tr ) (v ) o @ sf o) l x (o o N : (f ) o) F - ; @ N rO (r ) F (O :' (r l dl rf ) :- r F- @ X O c. ) cr r o r @ l : ro $ (f ) . : (f ) @ $ x (f ) l. - (' ) t- o) o : l (o 6 (o x o) co F- - o) o) c! 6 $ r Y @ rO t- : O ) $ N ) . ^ O) t ro - 6 c ! } i i F - 6 !+ ' . (O ( O ( O - O) (O r: N F r l r F F Y O r O l O - O) - F .^ - o. ) @ rf ) @ - (O - C{ (D O) (o l' - (o sJ ! - - u- , @ o $ Y r , ) X o (D (o N t - (f ) L- r : (o |r , s d) = (r , x N F @ ro @ (o NH E 5 5 E U b E 5 8 3 8 9 3 Y' l x (\ r t- (o @ - @ x |r ) 0) (o @ o) (o HH 3 8 5 3 d E X E R 8 E R S Y Y o ) o ) o o ) ql o' ' l o o o o o o 6 @ il N dj r - r- od r- d d d d d c; c) o o o o o o o o o o o o o o oo o o o o o o o o o o o o o Nc . i N 6 i N 6 i N e . i r - c . i N 6 i I- e . i t - ll ) o o _ _ N N ( r ) ( o s s r a ) t r r o o ,i i . i i . i i . i i r i d .. i (' d .: d ri dr ; d. ; d . ; N N oc)FEcul ss $ < . t t $ < " s s $ s s $ $ s f N N C{ C { C ! C ! N (\ l C\ t N N N N (\ 6l tt t t t L' L L L ' g T L o( E ( l , ( I , ( E C , ( l ' C , ( u ( s ( I ' G , C , C , ( t , tt t r r l l l l l l l l (o ( o co (o (f , ( f ) ( r ) ( o ( f , ( f , ( o (o ( f ) ( f ) ( 0 t. Nctlto-oIc. ioal ,+ooNI6ex 'oJNo- s! ., ) g, FofOE E( E e= cL .. tr oO( E oo L6' .c t ltC'oaoo(,otr=o. stNoNdi rl -gL) (o ooeoLAP(noooooliaot- obob6LoL3P(, ) !dot Pil 7AD o& Or F cd o bo = of t 2z -, -c ( € bs 6c 9( g bo ' d q. t r od>q i0 ) 9Lsc d ^! ro o iaEt r s 6. ) (g P Lo , q -b o () - C o) - >- o (. ) (. ) II . t r Ec6>>5 'd .4 . o- F -l l (B d .d P q' E ;! J 7-o=a. 2 t4 ( ) 0) = ts H o0 ) 0) t r &o >E H o. ) 6i -bx tr ( 6 Eb i ai o A9OE boC*) .h(uFqJ (JC.gEEo(JLocAJd.U\ZFd. o6AE <g q' b o H< 5eFoG^ !u - bo - b< I 'E o ) tr 90 0J rd l - Es z tr -59 g' ; o g (l ) d , c u) - - f r- - h0 =< >zF!O^ PI 'f o - <P F\ I: oo dF rzF tt i * * t * l + + i * * + * o- o- o- o - o. o o- o- o- o- cL o o- o - o oo o o o o o o o o o o o o o ,, Paa a @ a u ) a a a a a @ @ a a +t i i + + i t i * * * * + + t- \ f , (r ) ( , ) N (O C{ } . - (O s e $ rO @ r (\ o ) o N r o ) ( r r o s N N ( f ) @ o ) r O lr ) i' - s $ @ - (O @ (O (' ) - rr ) I' - O o c ! o ) N |r ) c\ , 1 r @ (o $ (r ) tr ) (, (o @ o) o @ l ' - (O r, $ e{ F O o) e { tr ) @ - O O l ' - O (f ) (g Or C ! 1r ) @ (O ( A N - - O O e N N C! (\ (r ) ( r ) C. ) O) C ! tr , @ - q q . . c! c? a q q \ cq r \ o{ \ a? or N (o r( , $ (r ) C{ F O O ) O ) @ @ N f ' - N N t - t - t- - I . - t- t- N @ (c ) (. ) (o ( o (( ) 6 . ^ @ N N (O lr , t' . - (O - Ol $ r (O S 6: f r o o L r ) o l r ) r o ( o r o F ( f ) o F @ o, l X _ $ . o o. ) _ r1 . ) g' r @ t1 - ) N _ @ (O @ l' l ' - (o t{ ) $ st (f ) N O) @ (r , O (O (f ) <- L l @ @ @ @ 6 @ O t - r r ) ( r , r @ ( O @ :l ro N 6) (o d) o s lr , o lr ) o s o) (f ) ' . o o o ) o ) o ) o ) s N F o) @ (o $ + I 13 i d c" j 6. . . j - d d - 6i 6. . i c" j +, r j (o : @ (o ( o ( o ( o ( o (o ( o ( o (o ( o (o @ zz z z z z z z z z z z z z z f: l : f l f f f , l f : f l = f l l tx . t t t d t t t r t r u x t t t o6L .{ n o SE a F. - 'o o g5 < ol z () F ot-E9 n. E C "S P NC i: o) OF 5Zt- zz z z z z z z z z z z z z z f= : l t f f f = f f l f f f l tr E X E t t r t E t t t t r E t t (f ) - @ N (O $ @ N (O - rt f @ r e tO o, (o @ o (f ) o, 6l @ o) - (o o) N o) @ N r \i O rr ) O) tt r ) O lf , I <O - (f ) O) rf , Nr r ) N @ ( O @ $ O ( r ; ( O C { N r r $ rr , (O O @ r( ) <r i - @ X C) - l' - N F- @r r ) C ! - 6 ) @ N @ $ : x 6 l - O ) @ ( o nq c \ c ? c \ a - : ' 1 |r ) 6 r @ r o N t- N r- d 19 1 9 rr rl ro X + + o' j c. j c. i N N C { c! C \ N N N C \ :: N e. I N C { N BiIo- t o-o_ofoao)oootra(uoof, .9ooI -o- N( J s f , N - l r ) ( O ^N * ( O l ' - r @ 6 r - 6 r. O - C\ I \t X i S : l N (o \t @ rf ) $ tO @ O , O (O N l' o) )X - o) F - O) (o ro F (f ) - O ri t N - l' - X $ (r ) O) l - O) F - O O (O S tr ) l O X N : lr ) O rr , (O t- ( ' ) s t O r t f ) $ Y @ ) , ^ ( r t ( ) ( O $ (6 $ O N N \t t- -j \. rO . : N N S (c ) i- \ l s f \ f , $ $ S F ' - - \ $ - ! $ s i $ r t (o N N l . - l . - l . - l . - 6l i- l l. - l- l l. - N N r. - C! N N C { C ! N N NN N N C) (r ) O) N l ' - (o r @ f ) t ' - si N l ' - $ O) F- d) @ N @ t - @ ro @ o o o s o) l. - N O r (. , ( f ) N o. ) f. - (O s N N l . - O @ O) (O O @ $ tt tO (O N (O @ t ' - lr ) @ S ro N o N o N (r ) ( o (o s (o $ (o (f ) ro N o ' ) (f ) t O (f ) N 0o O (. , \t s N F - @ |r , $ ta ) N O (f ) - (O N O N (f ) r N tr l $ (v ) - rf rO N (O O) O ) c . ) N C { @ () O S 9 c i oC q \ c i c i q oq ci - n ci ci O) O l r O) O) O ) - - Ol 6 - - @ r s $ t4 ) @ N l ' - C { * @ O ) t ' - l ' - O) (O c. ) N Fr o N u ) N @ : L N O N ( 9 ( 9 _ O ) O ) s <r ) st - $ $ x r+ (O f' - rf ) O O l - sf (o F- c { s f (o ( o )< ro (o (o @ s o) ro t. f ) s $ (o (f ) N N x. ' . i ro o \i lr ) @ o ) o ) o) N (O c! C. ) r l r ) ). ' : O t l t - O O ) (O - r ro F- st r 6I O ) x |r ) r r ) o tr ) t ( ) l. - (o l' - F- o ) c ! t (A s X O r O O ) (. ) O O) @ o) o ) o o o o Y o o o o ) o o o ) o ) NN C , d d d @ d d d F - d d N I - oo o o o oo aoFioCLU oo o o o o o o o o o oo o o o o o o o o o dJ ( b ; 6 J 6 ; d i J 6 sN N c . ) ( f ) s t \ l r r ) | r ) O O <j d d d d d d d d i t b c i o i o i \l s $ t i t S S v v s i . s r * { - s S a t * < t C{ C { N N N N N N N C{ N N C ! C ! C! rl l l l l .i L L L . 6( E C , ( I I ( , ( ! ( I , ( s ( , ( u ( E ( , ( ! ( E ( , rt t t l l l l l (o (. ) (o ( o ( o ( o (f ) (o (. ) (o ( o ( ' ) (' ) ( ' ) (o @- ( O r Y? I9 : . N@ 6 @ (v ) trt-oo.oIc. ioo+oo(\ t Iflahor c LN 'o:No- (! 6 g, FofOY tr . ! g= q. . tr 6 ) o( E oo Lolt lloU'o(Eopool!!ooLooa)ot=o- sfNoNCN rl -CoL(o .ob0bi LoP!Cd P0) !ddetr , 1 dz AD a&O+ r c0 o bo = ^!v( d2a -t 4H9 .c dbr 0 dc9. 9 bo ' d q- t r od >O59 E= (d i n ^L ro ( ) iP i H0 ) (g P ro E -b o OE 6J - E- a oc ) Eg d>>5 .d . o . () - : PId- .d # .r oo' E a= =oo= o. thF 3 <0 ) o ao o Ig E il 6 E >v E AU Pd !t o ec oE! I .v t I H^ a x. 5 '= F0 ) , - boC(hoFo(Jc.go-EoUt-(uc(JG.U>ZFd. o6. 'A b I <E q' b o :< !zFoO^ PU -' u o - b< P 'E C h C 90 . 0 , 3r . Et59 '= 6 . -E .E " s Od 6 (D '. : '* E o Y< :zFoG^ ![ '; o - <P F\ Coo dF !zF *r * * + * * i + * + i r * r o o. o- o - o. o . o o o- o - o - o - o- o- o oo o o o o o o o o o o o o o @@ @ o @ @ a @ @ @ @ a a @ a ** { * * l. ) ( O O ) N ( O ( O @ - r -F C ! 6 d ) s l (O r N rf ) )^ O ) Y ' N i ' : rO lr ) (f ) u) o c ! $ o. ) r o) -s / (o i; rJ ) Yx l. - - o) (o r + ro (o ( o 6 c o = F- } x (o :' ro lr ) \t o) N r( ) @ F t N l ' o) Xi - L- (f ) o) |r ) Cf ) (r ) ( \ r s s o o ) : : o ) ) ; lr ) i; o N ro (O O, c { tr , @ - (f ) :{ O H - H N l ' - N <' O , (, O ro r (O ' - i r "Y (O ' : r @ (O 33 3 3 3 3 3 3 3 3 S 3 8 6 6 si - l. - $ N - @ (o (r ) - O) N ro C{ ^, \f 6 (O O s l : x r lO d) d ) (O O $ @ L- lr ) N @ - ( . ) : { @ O C { r a ) N O C { s t = (r , S tr ) F' - @ Y O N (' ) t tr , r' - @ O) l* r o ) F- ro (f ) :^ o @ (o \t N o @ (o x $ o ) lr ) - F- :i O) \i O (o e{ @ (r ) o) >( @ (o () $ N .. o) @ t- rt ) \t c! r o) .. i dd d d d l P + + + + + + + c ' i , : (o (o ( o @ (o = (o ( o ( o ( o (o ( o ( o ( o = zz z z z z z z z z z z z z z fl l l f l : f l = l f : ) : l f l dt t r t t t g . t E E i . t t t E I6L .t oSE b F- 'E o gE < o: z OF o0i - oSN. E G "S s R, 5 OF :zF zz z z z z z z z z z z z z z :t : f t l f l f f f l l l f f , f T. T . T , E, T. E, E E E d E. T. E E E - N (O ( O ^ - - tr , (O ^, ^ $ lr ) r( ) O, (o d) N o Y (o (. ) N o ) ) ' l Y ro N o ) @ Or ( O N @ X - @ $ O : ' } . ' O ) ( o N o o o o o ) Y l o ) @ @ @ = .: @ (o ( o ro o lr ) o $ : l $ o ) $ o ) , x Y st o) !t o) O @ t' - tf ) Y N O O) l' - X . X c. ) r O @ F- t r ) O F - \. r @ $ s - 1 -1 C! O) (o N c. i c . i c . i - : - d o ci o o ' oi d d d NN C { N : : N N N N ' ' B bo -o u -o=oaz"oooo-Eo - a,g(I )o:fo'oodt tO . ^ r sN ^ , ( r ) F c O O ) ( O @ r t r ) ro }] e (O O) lr , X C. t - t- @ t - (o t- S (\ :a F. - o) c { N X (r ) $ O @ @ F - o @ r l ^ s r to N s l ) I r (Y ) c. ) t ' - O ) (r ) (O C{ 6) : l 6 l O (O - Y t - $ $ r (O sf N - o v' l o) . ; - co \" 1 st (o @ $ $ (o (o (O ds + i l d + s + + + + + + + + F- l : N N N N l ^ l F - N N r . - F - l . - F - r. - N\ \ N N N \ \ N N N N N N N N S( o $ ( o @ l ' - O ) ( f ) $ @ N o ) r t O ) r tf ) N O @ - - Ol O l l ' - N $ O rO O) I. - N o o @ N @ t - t / ) O @ $ $ N S F @ st @ (o st o $ (o o) rr ) l r ) (f ) o ro o (f ) N O) (r ) O (O O, (o @ $ O l ' - (O O @ r u) () ( O u) f. - r O l t - - @ @ l . - (A @ F- () (A ( 9 r $ $ C! (O lo (r ) $ - (O $ F- tr ) lr ) (v ) O) C \ lt - - N - C. , l c\ , 1 N @ $ d - -j c j c? 6i - - cj .q c. i c . i 6i - - O) - - e - O t N N < @ N N (O ^ f' - @ O) (o rO C! (O F- (r ) e (O F- c | (. ) x l . - O F - or ) (O N ol ) F- (r ) c. ) O $ $ (o X t' - l ' - @ s t( ) S $ s r o (o o) (o o) o, x s rt N |r ) \t $ (f , o) r r o t+ l. - o @ }) { N (f ) $ o) o (o N @ (O \t (O lr ) @ - Y o) $ (O tr ) (O O) (O o) N o ( o o o N i : N ( o N c \ l @ ( f ) @ N O ) C { C\ r N (r ) O x N N O ) O ) (O @ (f ) o) o ) o o o o o vl o) o ) o ) o ) o ) o) o) N N d ; d i d i d i d i I- N N I - N . - N t - aC)FEcLr . I oo o o o o o o o o o o o o o oo o o o o o o o o o o o o o rb d i. t o, b cj rb ci i. i cj , i . i cj rb cj , b :. i { q! C? q? S S Y? Y ? I I r . : . q! q! o) o ) o) o ) o ) o ) o ) o ) o) o o o o o o C! N N N N N $S $ $ S $ $ S r l f $ $ $ \ i $ t t N N N C\ l N N N N C! C\ I C\ N C! N N l 1, . : _ , r _ J - J J 1 , . : - I J J J. J, . : - (u ( u ( ! ( E ( u ( u ( , C , ( E ( ! ( , ( , ( E ( I , O >> = = > = > = = = = = > > = cA cl c6 cA cb "6 c6 c5 c6 cA "i ai cA ci cA $NoNa, ioL(E= c)c=tr.c l o-oIc, ioat ,+oat t t\ t !ooFJo(Eoootr .go. tro (oool!ul tro-o lloothGoBa)Lo!ll(,oboo(. )ot UTAH DEPARTMENT OF EIWIRONMENTAL OUAUTY MAY _ B 2024 DIVISION OF AIR QUALITV 't 'u fis :i'ox" mr.ffi'**-'"" F.-gi. t,iF-Allfare il {:iil',tt[;i\, I i:li{)l]r} Source Test Report Rio Tinto Kennecott 4700 Daybreak Parkway South Jordan, UT 84095 t,TAH DEPARTMET.IT OF ENVIRONIIENTAL OUAUTY t l ( \1r!: ! - \r:t, i i I I j oltgg*do?"i,ti%tlf#, Source Tested: Hydrometallurgical Silver Production Exhaust Stack (REF007) Test Date: March 14,2024 Proj ect No. 45T-2024-1032-002 Prepared By Alliance Technical Group, LLC 3683 W 2270 S, Suite E West Valley City, UT 84120 pd/lErrpe T E C iI N IC A L G R O U P Source Test Report Test Program Summary Resulatorv Information Permit Nos. Source Information UDAQ Approval Order DAQE-AN0 103460058-20 Title V Operating Permit 3500030004 Source Nqme Hydrometallurgical Silver Production Exhaust Stack Contact Information Source ID REFOOT Target Parameters HzSOt NII: Test Location Rio Tinto Kennecott 2500 South 9180 West Magna, UT 84044 Jenny Esker j enny.esker@riotinto.com (801) s69-6494 Sean Daly sean. daly3 @riotinto. com (801)204-2s63 Test Company Alliance Technical Group, LLC 3683 W 2270 S, Suite E West Valley City, UT 84120 hoject Manager Charles Horton charles.horton@alliancetg.com (3s2) 663-7s68 Field Team Leader Tobias Hubbard tobias.hubbard@alliancetg.com (60s) 64s-8s62 QA/QC Manager Kathleen Shonk katie.shonk@alliancetg.com (812) 4s2-478s Report Coordinator Delaine Spangler delaine.spangler@alliancetg.com AST-2024-t032-002 RTK-Magna, UT Page i pd/lffirrrce Source Test Reporl C e r t i fi cat i on State me n tTECI]NICAL GROUP Alliance Technical Group, LLC (Alliance) has completed the source testing as described in this report. Results apply only to the source(s) tested and operating condition(s) for the specific test date(s) and time(s) identified within this report. All results are intended to be considered in their entirety, and Alliance is not responsible for use of less than the complete test report without written consent. This report shall not be reproduced in full or in part without written approval from the customer. To the best of my knowledge and abilities, all information, facts and test data are correct. Data presented in this report has been checked for completeness and is accurate, error-free and legible. Onsite testing was conducted in accordance with approved internal Standard Operating Procedures. Any deviations or problems are detailed in the relevant sections in the test report. This report is only considered valid once an authorized representative ofAlliance has signed in the space provided below; any other version is considered draft. This document was prepared in portable document format (.pdf) and contains pages as identified in the bottom footer of this document. tu kh5 Charles Horton, QSTI Alliance Technical Group, LLC 4t15t2024 Date RTK-Magn4 UTAST-2024-1032-002 Page ii L PH Source Test Report Table ofContents TABLE OF CONTENTS 1.1 Source and Control System Descriptions. ............... 1-l 1.3 Site-Specific Test Plan & Notification.................. ....................... l-l 3.1 U.S. EPA Reference Test Methods I and2- Sampling/Traverse Points and Volumetric Flow Rate ........3-l 3.2 U.S. EPA Reference Test Method 320 - Moisture Content / Sulfur Dioxide / Ammonia ..... 3-l 3.3 Quality Assurance/Quality Control - U.S. EPA Reference Method 320 .............. ................. 3-l LIST OF TABLES APPENDICES Appendix A Sample Calculations Appendix B Field Data Appendix C Quality Assurance/Quality Control Data Appendix D Process Operating/Control System Data RTK - Magna" UTAST-2024-1032-002 Page iii I,TAH DEPARTMENT OF E}WIRONMENTAL OUALITV trAY - B 2C24 DIVISION OF AIR QUALITY All6nGEr It cill{t.AL ::, tl () jt'-Source Test Report Introduction 1.0 Introduction Alliance Technical Group, LLC (Alliance) was retained by No Tinto Kennecott (RTK) to conduct compliance testing at the Refinery located in Magna, Utah. Portions of the facility are subject to provisions of the Utah Department of Environmental Quality, Division of Air Quality (UDAQ Approval Order (AO) DAQE- AN0103460058-20 and the Title V Operating Permit 3500030004. Testing was conducted to determine the emission rates of sulfuric acid (HzSOa) and ammonia (NH:) at the exhaust of Hydrometallurgical Silver Production Exhaust Stack (REF007). 1.1 Source and Control System Descriptions The RTK Refinery, located near the Smelter, receives anode copper produced at the Smelter and uses an electrolytic process to obtain the high purity cathode copper. The copper anodes from the smelter are submerged in tanks containing an electrolyte solution in batch operations. An electric current is applied to the tank for a 10-day period during which copper ions migrate from the anode to form a cathode of 99.99Yo pure copper. Precious metals (gold and silver) are recovered from the electrolytic refining slimes removed from the tanks in a series of hydrometallurgical operations. The Refinery copper refining process requires steam to maintain electrolyte temperatures and prevent the degradation of the electrolyte tanks as well as support the precious metals process. To supply steam, the Refinery operates a CHP unit as a primary source of steam and maintains two Refinery Boilers (Boilers #l and #2) as back up steam. Boiler #2 has recently been retrofit with an ultra-low NOx burner. Boiler #l will be decommissioned once stack testing is complete on Boiler #2. 1.2 Project Team Personnel involved in this project are identified in the following table. Table 1-1: Project Team 1.3 Site-Specific Test Plan & Notification Testing was conducted in accordance with the Site-Specific Test Plan (SSTP) submitted to UDAQ by RTK. RTK Personnel Sean Daly Alliance Personnel Tobias Hubbard Alan Barrios Dillon Brown AST-2024-t032-002 RTK - Magna, UT Page l-l TECHNICAL GROUP Source Test Report Sumnary of Results 2.0 Summary of Results Alliance conducted compliance testing at the RTK Refinery located in Magna, Utah on March 14,2024. Testing consisted of determining the emission rates of HzSO+ and NHr from the exhaust of Hydrometallurgical Silver Production Exhaust Stack (REF007). Table 2-l provides a summary of the emission testing results with comparisons to the applicable permit limits. Any difference between the summary results listed in the following table and the detailed results contained in appendices is due to rounding for presentation. Table 2-1: Summary of Results ' Concentration, ppmvd Emission Rate, lb/lr Emission Limit, lb/hr Percent of Limit 0.77 0.0064 0.56 0.0046 0.45 0.0037 0.59 0.0049 0.14 4 Emission Rate, lb/hr Emission Limit, lb/hr Percent of Limitro/o Concentration, grain/dscf Emission Limit, grain/dscf Permit ofLimit,Yo 0.0047 0.00018 0.0024 0.000091 0.0033 0.00013 0.0035 0.22 2 0.00013 0.009 1.5 RTK-Magn4 UTAST-2024-1032-002 Page2-l AIialrce Source Test Report Tesling Methodology- 3.0 Testing Methodology The emission testing program descriptions are provided below was conducted in accordance with the test methods listed in Table 3-1. Method while quality assurance/quality control data is provided in Appendix D. Table 3-l: Source Testing Methodology Parameter U.S. EPA Reference Test Methods Notes/Remarks Volumetric Flow Rate 1&2 Full Velocity Traverses Moisture Content / Sulfuric Acid / Ammonia 320 FTIR - Continuous Sampling 3.1 U.S. EPA Reference Test Methods I and 2 - Sampling/Traverse Points and Volumetric Flow Rate The sampling location and number of traverse (sampling) points were selected in accordance with U.S. EPA Reference Test Method l. To determine the minimum number of traverse points, the upstream and downstream distances were equated into equivalent diameters and compared to Figure I -2 in U.S. EPA Reference Test Method I . Full velocity traverses were conducted in accordance with U.S. EPA Reference Test Method 2 to determine the average stack gas velocity pressure, static pressure and temperature. The velocity and static pressure measurement system consisted of a pitot tube and inclined manometer. The stack gas temperature was measured with a K-type thermocouple and pyrometer. The Oz and COz concentration were assumed to be ambient for molecular weight and volumetric flow rate calculations. Stack gas velocity pressure and ternperature readings were recorded during each test run. The data collected was utilized to calculate the volurnetric flow rate in accordance with U.S. EPA Reference Test Method 2. 3.2 U.S. EPA Reference Test Method 320 - Moisture Content / Sulfur Dioxide / Ammonia The concentrations of moisture content, sulfur dioxide, and ammonia were determined in accordance with U.S. EPA Reference Test Method 320. Each source gas stream was extracted at a constant rate through a heated probe, heated filter and heated sample line and analyzed with a MKS MultiGas FTIR operated by a potable computer. The computer has FTIR spectra of calibration gases stored on the hard drive. These single component calibration spectra are used to analyze the measured sample spectra. The gas components to be measured were selected from the spectra library and incorporated into the analytical method. The signal amplitude, lineariry, and signal to noise ratio were measured and recorded to document analyzer perfonnance. A leak check was performed on the sample cell. The instrument path length was verified using ethylene as the Calibration Transfer Standard. Dynamic spiking was performed using a ceftified standard of the target compound or appropriate surrogate in nihogen with sulfur hexafluoride blended as a tracer to calculate the dilution factor. All test spectra, interferograms, and analytical method information are recorded and stored with the calculated analytical results. The quality control measures are described in Section 3.3. 3.3 Quality Assurance/Quality Control - U.S. EPA Reference Method 320 EPA Protocol I Calibration Gases - Cylinder calibration gases used met EPA Protocol 1 (+l- 2%) standards. Copies of all calibration gas certificates can be found in the Quality Assurance/Quality Control Appendix. AST-2024-1032-002 RTK - Magna, UT Page 3-l pill6rpe IECIINICAL GROt]P Source Tesl Report Testins Methodolop After providing ample time for the FTIR to reach the desired temperature and to stabilize, zero gas (nihogen) was introduced directly to the instrument sample port. While flowing nitrogen the signal amplitude was recorded, a background spectrum was taken, a linearity check was performed and recorded, the peak to peak noise and the root mean square in the spectral region of interest was measured and a screenshot was recorded. Following the zero gas checks, room air was pulled through the sample chamber and the line width and resolution was verified to be at 1879 cm-l, the peak position was entered and the FWHH was recorded (screenshot). Following these checks, another background spectra was recorded and the calibration transfer standard (CTS) was introduced directly to the inshument sample port. The CTS instrument recovery was recorded and the instrument mechanical response time was measured. Next, stack gas was introduced to the FTIR through the sampling system and several scans were taken until a stable reading was achieved. The native concenffation of our surrogate spiking analyte as recorded. Spike gas was introduced to the sampling system at a constant flow rate < l0o/o of the total sample flow rate and a corresponding dilution ratio was calculated along with a system response time. Matrix spike recovery spectra were recorded and were within the + 30Yo of the calculated value of the spike concentration that the method requires. The matrix spike recovery was conducted once at the beginning of the testing and the CTS recovery procedures were repeated following each test run. The corresponding values were recorded. AST-2024-1032-002 RTK -Magna, UT Page3-2 AliblrcEr I ! lil'll Rio Tinto Kennecott -UT Hvdrometallursical Silver AST-2024 Appendix A Example CalculationsI ir i. i Location Source Project No. Run No. Parameter(s) VFR Absolute Stack Gas Pressure (Ps), in. Hg ps = pb+rPg where, L3'6 Pb 25.76 : barometric pressure, in. Hg Pg 0.25 : static pressure, in. H2OpsTI-:in. Hg Moisture Fraction (BWSsat), dimensionless (theoretical at saturated conditions) 106.37 (ffi) . BWSsat =wnere, Ts 73.4 : stack temperature, oF Ps 25.8 : absolute stack gas pressure, in. Hg BWSsat 0.032 = dimensionless Moisture Fraction (BWS), dimensionless BWS = BWSmsd unless BWSsat ( BWSmsd where, BWSsat 0.032 : moisture fraction (theoretical at saturated conditions) BWSmsd 2J00 : moisture fraction (measured) BWSg Molecular Weight (DRY) (Md), lbflb-mole Md = (0.44 x o/o CO2) + (0,32 x o/o 02) + (0.28 (100 - where, CO2 0.1 : carbon dioxide concentration,%o 02 20.9 : oxygen concentration, 7o Md 28.85 : lb/lb mol Molecular Weight (WET) (Ms), lb/lb-mole Ms = Md (1 - BWS) + 18.015 (BWS) where, Md 28.85 : molecular weight @RY), lb/lb mol BwS-i.0-3r-:moisturef raction,dimensionless us-78.il= lb/lb mol Average Velocity (\'s), ftlsec -..-- vs = 85.49 x Cp x (Lvttzlavg x I=+wnere. -lPsxMsCp 0.99 : pitot tube coefficient \ A Pr/2 1328 = average pre/post test velocity head ofstack gas, (in. H2O)r/2 f. -T3Td- = average pre/post test absolute stack temperature, oR ps -TI-: absolute stack gas pressure, in. Hg l,Is---ffi: molecular weight of stack gas, lb/lb mol vsE:tusec Ps o/o CO2 - o/o O2)) AI6rrce CAL GROUP Rio Tinto Kcnnecott - Appendix A Example Calculations TECHN} Locetion Source Project No. Run No. Paramctcr(s) Average Stack Gas Flow rt Steck Conditions (Qa), acfm Qa=60xVsxAs where, V, :2lL = stack gas velocity, ff/sec As 0.66 = cross-sectional areaofsack, d Qu]].@=..ftn Average Stack Gas Flow et Stenderd Conditions (Qs), dscfm Qsd= l7.636xQax(l -BWS)x Ps Ts where, Qa 3,790 = average staek gas flow at stack conditions, acfinBWS 0.032 : moisture ftaction, dimensionlessps'....EE-= absolute stack gas pressurg in. Hg rs -...B6-= average pre/post test absolute stack tempcrature, oR Qs 3,129 ={scftn N,ffiipe T f (l tll\i l.,l n L (: U i) l" jP Location: Rio Tinto Kennecott - Magna, UT Source: Hydrometallurgical Silver (REF007) Project No.: AST-2024- 1032-002 Run No. /lVlethodRun I / Method 320 Rrr Nr. Target 34 Ammonia - Outlet Concentration (Cxn"), ppmvd vNHr CNH,* I -BWS where, CNH,* 0.76 : Ammonia - Outlet Concentration, ppmvw B wS -61) l- : moishre fr action, unitless CNH,-F:ppmvd Appendix A Example Calculations Ammonia - Outlet Concentration (CnnJ, ppmvw where, CNH,*: ClrH. x (l - BWS) CNIL 0.77 : Ammonia - Outlet Concentration, ppmvd BwS -b-0--: moisture fraction, unitless Cyr.*--0F:ppmvw Ammonia - Outlet Emission Rate (ERnr"),lb/hr oo - C*r, x trrtW x Qs x O0 S 28.32 * -..t,tttr _ where,CNr, 0.77 = Ammonia - Outlet Concentration, ppmvd MW 17.0n-: NH: molecular weight, g/g-mole qsE=stackgasvo1umetricflowrateatstandardconditions,dscfrn ERNH,TS;I-: tb/hr pulf,ipE) 1 L at ll i.i If. j/". i- {, n.,) ll i' Location: Rio Tinto Kennecott - Magna, UT Source: Hydrometallursical Silver (REF007) Project No.: A3T-2024-1032-002 Run No. /lVlethodRun I / Method 320 Run No. I HrSOn - Outlet Concentration (Cu,so.), ppmvd vH,so. CH,so.* I -BWS where, CH,so.* 0. 10 : HzSO+ - Outlet Concentration, ppmvw BWS 0.021 : moishre fraction, unitless CH,so.-lT0-: ppmvd Appendix A Example Calculations HzSOr - Outlet Concentration (Cr,so.*), ppmvw where, Cuso.*: Cn,so. x (l - BWS) Cnso. 0.10 : HzSOa - Outlet Concentration, ppmvd BwSTdT : moisture fraction, unitlessCH"so.*-:T0-: ppmYw HzSOr - Outlet Concentration (Cs,so), grains/dscf L F Cu,so.XMWx28.32 7F x1.543248-0Y# LH,so. - where, 24.04 L I - mole Cr,ro.A: HzSOa - Outlet Concentration, ppmvd MW 98.079 : HzSOa molecular weight, g/g-mole CH,so. TT0T8- : grains/dscf HzSOr - Outlet Emission Rate (ERH,5q.), Ib/hr ED - Croo. x MW x Qs x 60 T5 28.32 # EI1^g,SO. - where, Cr,roA: HzSOa - Outlet Concentration, ppmvd MW 98.079 : HzSOe molecular weight, g/g-mole Qs :,1Zq : stack gas volumetric flow rate at standard conditions, dscfm ERn,so. 0.0047 : lb/hr Appendix A Example Calculations Location Rio Tinto Kennecott - Maqna. UT Source(s) REF007 Project No. 24-1032-002 Date(s) 3/1412024 CTS Recovery Value (CTSJ, % ::':"n-* too Ll J6y1 Where, CTSu"s 98.68 = average of all CTS calibration gas readings, ppm CTS"yr l0l : CTS bottle certified gas value, ppm CTSR 97.7% : CTS recovery value,%o Spike Dilution Factor (DF), % SF6s.pilas - SF6nil_______j!!)!____ u 4 AA sF67i, Where, SF6di. 4.84 : average of direct tracer gas value readings SF6,,"t 0.02 : average of native tracer gas value readings SF6.pik" 0.382619 : average of dlmamic spike tracer gas value readings DF 7.49% = spike dilution factor,o/o Calculated Spike (Spike""r"), ppm (DF x Analytedi,) + (Analyteno, x (1- Df)) Where, %DF 7.49% : spike dilution factor,oh Analyte6, 99.74 : average of direct analyte gas values, ppm Analyte nur 0.49 : average of native analye gas values, ppm Spike"r" 7 .93 : calculated spike, ppm value, ppm Spike Recovery Value (Spikes), % AYl!._tespixe * rOO JplK€6ab Where, Spike"r1" 7.93 = calculated spike, ppm value, ppm Analyte.pp"j = average ofspiked analyte gas values, ppm Spikep 75.48% : spike recovery vahe,o/o pul6rpe TF:CllNt(rAt ()R()l,P Emissions Calculations Location Rio Tinto Kennecott - Magna, UT Source Hydrometallurgical Silver (REF007) Project No. AST-202 4-1032-002 Run Number Run I Run2 Run3 Average Date Start Time Ston Time 3lt4l24 l2:10 l3: l0 3n4124 3/14124 13:45 15:06 14:45 16:06 Input Data - Outlet Moisture Fraction, dimensionless Volumetric Flow Rate (Ml-4), dscfm BWS Qs 0.021 3,129 0.022 3,123 0.023 0.022 3,086 3,113 Calculated Data - Outlet Ammonia - Outlet Concentration, ppmvd Ammonia - Outlet Concentration, ppmwv Ammonia - Outlet Emission Rate. lb/hr CNu. CNn* ERrvs, 0.77 0.76 0.0064 0.s6 0.55 0.0046 0.4s 0.59 0.44 0.58 0.0037 0.0049 HzSO+ - Outlet Concentration, ppmvd HrSOo - Outlet Concentration, ppmvw HzSOa - Outlet Concentration, grains/dscf HzSOa - Outlet Emission Rate, lb/hr C*r.so Cn so"- Cs,so. ERmo 0.099 0.051 0.070 0.073 0.097 0.050 0.069 0.072 0.00018 0.000091 0.00013 0.00013 0.0047 0.0024 0.0033 0.0035 an6rtre TE(IIINI(]N L. GROTIP Ircation: Rio Tinto Kennecott - Masna- UT Runl-FTIRData Source: Hydrometallurgical Silver (REF007) Drnimt Nn . AqT-?n?d-ln?)-nn, Date;3114124 Time Unit MDL Status Temperature Pressure 'C atm Ammonia - Outlet ErSOr- Outlet ppmvw ppmvw 0.04 0.05 Valid Valid BWS - Outlet % (wet) Valid l2: l0 12:ll l2:12 l2:13 l2:14 l2:15 l2:16 l2'.17 l2: l8 12:19 l2:20 l2:21 l2:22 l2.24 12:25 l2.26 l2:27 12:28 12'.29 l2,,30 l2,,31 l2:32 l2:33 l2:34 l2:35 l2:36 l2:37 l2:38 12:39 l2:40 l2:41 l2.42 l2:43 l2:44 l2.46 l247 l2:48 l2:49 l2:50 l2:51 l2:52 l2.53 l2:54 l2:55 l2:56 l2:57 l2:58 12:59 l3:00 13:01 13:02 13:03 13:04 l3:05 l3:06 l3:08 l3:09 l3: l0 19t.0 190.9 190.9 191.0 191.0 191.0 191.0 191.0 190.9 190.9 190.9 190.9 190.9 190.9 190.9 190.9 l9l.l l9l.l l9l.l t9l.l t9l.l l9l.l l9l.l l9l.l l9l.l 191.0 191.0 191.0 191. I 191. I l9l. I l9l. I l9l. l l9l.l l9l.l 191.1 l9l.l 191.0 191. l l9l.l l9l.l l9l.I l9l.l 191.0 191.0 191.0 191.0 l9 1.0 l9 1.0 l9l.0 191.0 191.0 191.0 191.0 l9l.l 191.0 l9l.l l9l.l 0.993 0.993 0.993 0.994 0.996 0.995 0.995 0.99s 0.995 0.996 0.995 0.995 0.995 0.995 0.995 0.995 0.995 0.995 0.995 0.995 0.995 0.995 0.995 0.995 0.99s 0.995 0.99s 0.99s 0.995 0.995 0.995 0.995 0.99s 0.99s 0.995 0.99s 0.995 0.99s 0.995 0.99s 0.995 0.995 0.995 0.995 0.995 0.994 0.995 0.995 0.995 0.994 o.994 0.995 0.995 0.99s 0.995 0.99s 0.995 0.99s 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.8 0.8 0.8 0.8 0.9 0.8 0.8 0.8 0.9 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.7 0.8 0.8 0.8 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.6 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.1 0.1 0.1 0.2 0.1 0.1 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.t 0.1 0.1 0.1 0.t 0.1 0.t 0.1 0.t 0.1 0.1 0.1 0.1 0.1 0.1 0.t 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.1 2.t 2.r 2.1 2.1 2.1 2.1 2.t 2.1 2.1 2.1 2.1 2.1 2.t 2.1 2.1 2.t 2.1)) 11 2.2)) ')) 2.2 2.2 2.2 1) 1' 2.2 2.2 )') 2.2 2.2,),) 2.2 a1 2.2 2.2 1a 2.2,) 1))) plla6r1rce -T t: () lt t! i()AI". (] R() Ll P Loc{tion: Rio Tinto Kennecott - Masna, [.IT Source: Hydrometallurgical Silver (REF007) Project No.: AST-2024-l 032-002 Run2-FTIRData Time Unit MDI, Stetus Tempersture Pressure:Y Valid Valid Ammonia - Outlet HrSOr - Outlet ppmvw ppmvs 0.04 0.0s Valid Valid BWS - Outlet % (wet) Valid 13:45 13:46 l3:47 l3:48 l3:49 l3:50 l3:51 t3'.s2 l3:53 l3:54 l3:55 l3:56 l3:.57 l3:58 l3:59 l4:00 l4:01 l4:02 l4:03 l4:04 l4:06 l4:07 l4:08 l4:09 l4: l0 l4:l 1 l4:12 14: l3 l4:14 l4:1 5 l4:16 t4'.17 l4:1 8 l4: l9 l4:20 l4:21 l4:22 l4:23 l4:24 l4:25 l4:26 l4:28 l4:29 l4:30 l4,,31 l4.32 l4:33 l4:34 l4:35 l4:36 l4:37 l4:38 l439 l4:40 l4:41 l4:42 l4:43 l4:44 l4:45 191.0 191.0 l9l. I 191.0 190.9 190.8 190.7 190.7 190.8 191.0 t9l. l l9l. I l9l. I l9l. I l9l. I l9l.l 191.0 191.0 191.0 191.0 191.0 r91.0 191.0 190.9 190.9 190.9 191.0 191.0 190.9 191.0 l9t. I t9l. I l9l. I 191.1 191.0 19r.0 191.0 191.0 191.0 191.0 191.0 190.9 191.0 191.0 l9 1.0 l9 t.0 191.0 t91.0 191.0 19 1.0 191.0 191.0 191.0 191.0 l9l.t 191.0 191.0 l9l. I 191. I 0.994 0.994 0.994 0.994 0.994 0.994 0.994 0.994 0.994 0.994 0.994 0.994 0.994 0.994 0.994 0.994 0.994 0.994 0.994 0.994 0.994 0.993 0.994 0.994 0.994 0.992 0.992 0.994 0.994 0.994 0.994 0.993 0.993 0.993 0.993 0.993 0.993 0.993 0.993 0.993 0.993 0.993 0.993 0.993 0.993 0.993 0.993 0.993 0.993 0.993 0.993 0.993 0.993 0.993 0.993 0.994 0.993 0.993 0.993 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.5 0.6 0.6 0.5 0.6 0.6 0.6 0.6 0.6 0.6 0.5 0.5 0.5 0.6 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.6 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.t 0.1 0.1 0.t 0.1 0.t 0.t 0.1 0.1 0.1 0.t 0.1 0.1 0.t 0.1 0.1 0.1 0.1 0.1 0.1 OJ 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 11 2.2 2.2 ')) 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 aa 2.2 2.2 2.2)) 2.2 2.2 a1 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 )1 put6r'rre TEClllNlcAl- arn()f,P Locetion: Rio Tinto Kennecott - Masna. UT Run3-FTIRData Source:ical Silver Project No,: AST D^te,3ll4l24 Pressure atm Time Unit MDL Status Temperature'c Valid Valid Ammonia - Outlet ppmvw 0.M Valid HrSOr - Outlet BWS - Outlel ppmvw % (wet) 0.0s Valid Valid l5:06 l5:07 15:08 l5:09 l5:l I l5:12 l5: l3 l 5:14 l5: l5 l5: l6 l5:17 l5: l8 l 5:19 l5:20 l5:21 l5:22 l5:23 l5:24 l5,,25 l5:.26 l5.,27 l5:28 l5:.29 l5:30 l532 l5:33 l5:34 l5:35 l5:36 15.37 l5:38 15:39 l5:40 l5:41 l5:42 l5:43 l5:44 l5:45 l5:46 l5:47 l5:48 1s"49 l5:50 I 5:51 l5:52 l5:54 l5:55 l5:56 l5:57 l5:58 l5:59 l6:00 l6:01 l6:.02 l6:03 16:04 l6:05 l6:06 l9l. I 191.0 191.0 l9 1.0 191.0 l9 1.0 191.0 l9 1.0 l9 1.0 191.0 191.0 l9l.l 191.0 l9l.0 191.0 191.0 l9l.l 191.0 191.0 l9l.l l9 1.0 191.0 191.0 191.0 191.0 l9 1.0 191.0 191.0 191.0 191.0 191.0 191.0 191.0 191.0 t 91.0 191.0 191.0 191.0 191.0 191.0 191.0 191.0 l9 1.0 191.0 191.0 191.0 191.0 191.0 191.0 191.0 191.0 191.0 191.0 191.0 191.0 191.0 191.0 191.0 0.995 0.995 0.995 0.99s 0.99s 0.99s 0.995 0.995 0.995 0.995 0.995 0.995 0.995 0.995 0.995 0.995 0.99s 0.994 0.994 0.993 0.993 0.993 0.993 0.993 0.993 0.993 0.993 0.993 o.994 0.995 0.996 0.996 0.996 0.996 0.995 0.996 0.996 0.996 0.996 0.995 0.99s 0.997 0.997 0.997 0.997 0.997 0.99? 0.997 0.997 0.997 0.997 0.997 0.998 0.997 0.998 0.998 0.997 0.997 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.5 0.5 0.4 0.5 0.5 0.5 0.4 0.4 0.5 0.4 0.4 0.4 0.5 0.s 0.4 0.4 0.5 0.4 0.4 0.4 0.5 0.4 0.4 0.4 0.4 0.5 0.5 o.4 0.4 0.5 0.4 0.4 0.5 0.4 0.4 0.4 0.4 0.4 0.5 0.4 0.4 0.4 0.1 0.1 0.t 0.1 0.1 0.1 0.t 0.t 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.t 0.1 0.t 0.1 0.1 0.1 0.t 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.t 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.t 0.1 0.1 1n 11 1n 2.2 2.2)) 1) 2.2 2.2 2.2 2.2)) aa 2.2 2.2 2.2 1a 1a 2.2 2.2 )1 aa 1) 'r) 2.2 2.2 ', 1 aa )) 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.4 2.4 2.4 2.4 2.4 2.4 2.4 )< put6npe TECt111 11:At CR()tJP Lo..tion Rio Tinto Kcnnsott - Magna, UT Method I Data Sourc. Hydromel.lluryical Silver (REm07) Prcject No. A5T-2024-1032-002 Drie Olll4l2,4 DuctOticrtrtior! Vertical Drct Design,---E[ii- Distance from Far Wdl to Outdde ofPort: 16.00 in Nipplc togtt : ----316- in Depth ofllucfi I 1.00 in cross section.l Arca of ouct: ----i.Zi- g' No. ofTest Ports: 2 Number otReeding! p." Point, ----l- Dilllne A: 4.0 ft Dilmcc A Duct Dim"t",r, ----17-(must be > 0.s) Distance B: 2_5 ft Diltarce B Duct Dlm.t"^, --Il--(mwt b. > 2) MinimM Number of Tmvese Poln8: 16 A.tual Number ofTm""." Poirt , -----JZ-- Mdurcr (lnitid and Date): ALB Revlwer (Initid and D.t )l TCH Tlavcrse Point o/o ol Dhmeter Distuce from wall outide of I 2 3 1 6 7 8 9 l0 ll t2 3.2 10.5 19.4 32.3 61.7 80.6 89.5 ,:t 0.50 t. l6 2.13 3.55 1.45 8.87 9.85 'ojo 5|2 6 t/E 7tn I 9lt6 t2 7lt6 13 7/8 t4 118 t5 tD StrcL Diagrm A= 4ft. B= 2sft DepthofDuct= ll in. Cross S€ctional Area LOCATION OF TRAVERSE POINTS Nililrbcr oJfrdw& pohb on o dieEt r I 3 1 5 6 7 8 9 l0 ll l, 2 31567A910lt12 14.6 85.4 6.7 25.0 75.0 nr_, 4.4 14.6 29.6 70.4 85.4 ,t_u 3.2 t0.5 t9.4 32.3 67.7 80.6 E9.5 '1' : 2.6 8.2 14.6 34.2 65.8 77.4 85.4 91.8 nr_o 2.t 6.7 t t.8 17.1 25.0 35.6 64.4 75.0 82.3 8E.2 93.3 97.9 ?Hl,u:'.T oaaaaooo Alhlrce Cyclonic Flow CheckTECHNICAL GROUP Location Rio Tinto Kennecott - Megna, UT Source Hydrometellurgical Silver (REF007) Project No. AST-202 +1032-002 Dgte 3ll4l24 Sample Point Angle (AP=0) I 2 3 4 5 6 7 8 9 l0 11 12 l3 t4 15 t6 Averase 0 0 0 5 5 t0 5 5 0 0 5 5 5 5 l0 5 4.1 Alhlpe Location Rio Tinto Kennecott - Masna. UT Method 2D*a Source Hvdrometallurgical Silver (REF007) Project No. AST-2024-1032-002 Run No. Date Status Start Time Stop Time Leak Check I 3n4t24 VALID 12:10 l3:10 Pass 2 3fi4124 VALID I 3:45 l445 Pass 3 3il4t24 VALID l5:06 l6:06 Pass A Traverse Point AP (in. wC) Ts cF) AP (in. WC) Ts fr) AP (in. WC) Ts cF) AI ) J 4 5 6 7 8 BI ,, 3 4 5 6 7 8 0.96 1.00 l.l0 1.20 2.80 3.00 3. l0 2.70 0.95 r.00 1.30 r.60 2.10 240 220 2to 72 73 73 l5 t5 73 73 73 ts 74 74 74 74 74 74 74 1.00 l .10 1.30 140 2.00 210 240 2.40 0.96 1.00 1.20 1.60 2.60 2.80 2.90 2.70 76 76 76 76 76 76 76 76 '76 76 76 76 76 76 76 /t) 0.98 1.00 ll0 1.30 200 2.30 2.50 2.20 0.94 t. l0 t.20 1.50 2.60 2.80 2.90 240 76 76 76 76 /o 76 76 t6 to '16 76 76 /o 76 /o 76 Square Root of AP, (in. WC)r/2 Average AP, in. WC Pitot Tube Coefficient Barometric Pressure, in. Hg Static Pressure, in. WC Stack Pressure, in. Hg Average Temperature, oF Average Temperature, oR Measured Moisture Fraction Moisture Fraction @ Saturation Moisture Fraction 02 Concentration, To CO2 Concentration, T" Iolecular Weight, lb/lb-mole (dry) lolecular Weight, Ib/lb-mole (wet) Velocity, ft/sec VFR at stack conditions, acfrn VFR at standard conditions, scfh VFR at standard conditions, scfin FR at standard conditions, dscfm (AP)"' (AP) (cp) (Pb) (Pg) (Ps) (rs) (rs) (BWSmsd) (BWSsat) (Bws) (02) (co2) (Md) (Ms) (vs) (Qa) (Qsw) (Qsw) (Qsd) 1.328 1.84 0.990 25.76 0.25 25.78 73.4 533.0 2 100 0.032 0.032 20.9 0.1 28.85 28.51 95.7 3,790 193,929 3,232 3.129 t.332 1.84 0.990 25 76 020 25.77 76.0 535.7 2.200 0.035 0 035 20.9 0.1 28.85 28.48 96.3 3,8r3 194,1 l5 3,23s 3.123 1.3 l6 1.80 0 990 25.76 0.23 25.78 76.0 535.7 2200 0.035 0.035 20.9 0.1 28.85 28.48 95. I 3,767 t9t,'796 3,t97 3"086 t.325 1.83 0.990 25.76 0.23 25.78 7 5.1 534.8 2.167 0 034 0.034 20.9 0. I 28.8s 28.49 95.7 3,790 l 93,280 3,221 3.1 l3 Location Rio Tinto Kenne@tt - Source{s) REF007 ProjectNo. A5T-2024-1032-002 Date(s) 3/14/2024 Ethylene Cylinder ID Concentration (ppmv) Instrumelt Outlet lr5 7 :TS 8 :TS 10 :TS 11 :rs 12 AVERAGE 98.68 \,4AX 99.05 Ieviation o.37 \,lllN 98.49 ,eviation 0.19 Greatest Deviation from average 0.37% Agreemeht with Assumed Pathlentth 97.70"4 within 5% no correction required cls 7 Time File Temperature lC Pressure Ethvlene Date Time File Temperature (C Pressure Date Time File Temperature (C Pressure Ethvlene CTS 11 Date Time File CTS 12 Date Time File lO:21:3'7 24-I032 RTK FTIR 24-1032 RTK FTIR 24-1032 RTK FTIR 24-I032 RTK FTIR 24.I032 RTK FTIR 24-1032 RTK FTIR 24-1032 RTK FTI 24.1032 RTK FTIR l4:59r31 24-1032 RTK FTIR l6:19:23 Location Rio Tinto Kennecott - Magna, UT Source REF007 ProjectNo. AST-2024-1032-002 Date 311412024 Spike Cylinder lD Spike Gas concentration Tracer Cylinder lD Tracer Gas concentration lnstrument lD Outlet Direct Spike Values cc518156 Component 104.8 Hydrogen Chloride 0 Component 5.015 sF6 RENTAL - Notes Date Time File Temperature (C) Pressure Spike (ppm) Tracer )3174/24 10:35:14 24-7032 RTK FTIR 190.8 1.003 98.86 4.844 )3114/24 L0:36:17 24-7432 RTK FTIR 190.8 1.003 99.15 4.843 x3174/24 t0:37:2O 24-1032 RTK FTIR 190.9 1.003 99.37 4.843 )31L4124 10:38:23 24-7032 RTK FTIR 190.9 1.003 99.84 4.839 )3174/24 10:39:25 24-T032 RTK FTIR 190.8 1.003 100.28 4.844 )31L4124 10:40:28 24-7032 RTK FTIR 190.9 1.004 L00.24 4.837 )31L4/24 10:41:31 24-T032 RTK FTIR 190.9 1.004 700.44 4.839 Average 99.74 4.841 Date Time File Temperature (C) Pressure Spike (ppm) Tracer )3/t4124 24-1032 RTK F-1.4ss6888s4 191.0 0.958 0.96 0.020 )31t4124 24-1032 RTK F').456416644 191.1 0.9s6 0.43 0.020 )3/L4/24 24-1032 RTK F').457144248 191.1 0.955 0.38 0.020 )3/L4124 24-1032 RTK F').457875868 !91.1 0.95s 0.35 0.020 )31L4/24 24-LO32RTKF').45940647 190.9 0.995 0.40 0.020 )31L4/24 24-1032 RTK F-1.460134155 191.0 0.996 0.44 0.020 Average O.49 0.020 Native Values Spiked values Dilution Factor 7.5% Calculated Spike 7.93 Spike Recovery 7s.48% File Temperature (C) Pressure Spike (ppm) Tracer (ppm)Date Time sure ppm J3/14/24 L7:27:72 24.T032 RTK FTIR 191.0 0.993 5.92 o.?77 )3/14/24 tt:2L:20 24-7032 RTK FTIR 191.0 0.993 s.92 0.376 )3114124 L7:21:27 24.T032 RTK FTIR 191.0 0.993 6.03 0.390 )3/14/24 11:21:35 24-7032 RTK FTIR 191.0 0.992 6.01 0.377 )3174124 t7:.2L:43 24-T032 RTK FTIR 191.0 0.993 s.96 0.384 03114/24 !7:2L:57 24-1032 RTK FTIR 191.0 0.993 6.08 0.391 03lL4l24 77'.21:59 24-L032 RTK FTIR 191.1 0.993 5.98 0.384 Average 5.98 0.383 Location ProjectNo. Instrument AST-2024-1 032-002 Rio Tinto Kennecott - Magna, UT RENTAL - Notes Summary of Spikes Source REFOOT Date 3lL4l24 Time 1"1:21 Analyte Hvdrosen Chloride Direct 99.74 Native 0.49 Spiked s.98 Dilution 7.5% Recovery 75% Result PASS Location Souro{s) ProjectNo. Health Check Paxameter Instrument ID Date Rio Tinto Kmnecott . Ivlggnq, UT REr007 I AST-20?4-1032{0? SirulcBeenlCIre-Twt) lf vitr.Ff-nsofti.c vloT Fl lldr lo* H+ -trx rfo rfo r& rfo & dm & rfo & & & S th tfo * & .fo 3Hr-i-l{m-l |-{i:lml REI.ITAL.Notos Location Source(s) ProjectNo. Health Check Parameter Instrument ID Date Rio Tioto Keoneeot - !v[agsa, Uf AST.20?,I-1032.002 Sinda B€an eost-fs0 ifvtbFr-ns.am vro.? Fb Udr Io* H* -tr & & & rfo rb rfo rfu ah & ah & & & rb # S r*l {h rlin'+fo Brtr-i-l rr-i-t [Fut] Location Source(s) Project No. Instrument ID Date AST-2024-1032-002 Rio Tinto Kennecofi - Matpa UT Health Check Parameter Detector Linearity RENTAL-Notes tqqftr.nrt?l Tp,...9ir!'rfil Iq!q.4tr!, I fnitrlnrqq .}lt"rer!F"-{ttl t .Ftlr--,r"--= l Di.r-e Location Rio Tinto Kennecott- Magta, UT Source(s) REF007 ProjectNo. A5T-2024-1032-002 Health Check Parameter Peak Analysis Instrument ID RENTAL -Notes 3/14t2024 tMsmPeaf Wrd0r,- - *ax* *.iffi ittu lelt OdsidLa Froq I !5rS2589, Ascdrdrr&Ih.f 3m6L] ccr.aa lw r,.q I ranz.gl i crhreca Ls frcq i 15I926a3, f 'r,.Jrtt!ffirF.ciqirtr{.-,] El 5rc [-pi,*n--ll t -t #..Flr*l lltrm,il"affi] trai*P*dral t .a'qr1,1rp-l Location Source(s) Project No. Rio Tinto Kennecott - Magna, UT REFOOT AST-2024- l 032-002 Health Check Parameter Signal to Noise Ratio Instrurnent ID Date RENTAL - Notes 3il4t2024 Iu" MKS oLl Sigml-to-iloi* aDf}.rd SNB S.l,+ i R0SNB Iert Slw Rlpo.t c*r" riin .ie,I arr e*'a <rs,Fl.hrn <Fg) .lA'.i im t] .l.lY "J Ol : Pass 3 Frnge " lffi.l 1 F m.l. FMS Nci*"0 I 193552 (0 5l SAa n*U) SNF'S38 Bw4e . 21@.220 cml. BMS Noiie.0 @1223? l0 3527a9 nAUl. SNB.l23l Bor4e . 2S3@ cm.l - RMS Nd.c,0 I 419!2r; l0 629539 n*Ul. SNR "690 Pd$ ,l Bu'g.. 1ffi.l1@ cm.I. 8MS ilcise.01057972 (0159166 nAU]. SllS'945 Rar4e. 21 6.226 "*l - FIMS Nqsc.0 ffi662 l0 R3773 iAUl. SNFd I 03 Ranse. 2!0.3@ col. BMS No:c"0 I 39$22 t0 607536 ntAlJJ. SNR"71 5 'Pars 5 '8erE . 10m.1 1 m cfr l. BHS Ndrc'o I I 25872. l0 188973 nAUl. SllB"888 R6rEG' 2l m.22m.sl. RMS Ndro.O E$122 I0 3€8732 nSU[ SNR.l I 1 7 Rre, 29@.300 m.l. BMS Nose.0 I 397532 l0 66577 nAUl. SNB.7l 6, Mea Rcsr,ls Barge' 1 ffi .1 1 (tr m.l - RMS tlose,0 I 0IX5Z l0 173555 nAul. SllB'920 Bvrse . 21 0 28 ml. RMS Uose0 086S92 l0 373789 n*U) SNR.I 1 61 Bvrge. 2S 3ffi cTL BMS tl<ise.0'l 3S9Z l0 66311 rAU| 9N8.717 Location Source(s) Project No. Health Check Parameter Instrument ID Date Rio Tinto Kennecott - Magna, UT REFOOT AST-2024- l 032-002 Analysis Validation Utility RENTAL - Notes 311412024 Analysis Validation Report Sample Filename: D:\Documents\2024\24-1032 RIO Tinto\24-1032 RTK FTIR 007 000669.1A8 Filename for noise: D:\Documents\2024\24-1032 RIO Tinto\24-1032 RTK FTIR 007_000490.1A8 lnterferences Filenames: C:\OLT\Analysis Validation Utility\Support spectra\1min 191C LN2\lnterferents H C:\OLT\Analysis Validation Utility\Support spectrafmin 191C LN2\lnterferents H20 10pct CO2 10 pct 1mi C:\OLT\Analysis Validation Utility\Support spectra\1min 191C LN2\lnterferents H20 10pct CO2 10 pct 1mi C:\OLT\Analysis Validation Utility\Support spectra\1min 191C LN2\lnterferents H20 10pct CO2 10 pct 1mi C:\OLT\Analysis Validation Utility\Support spectra\1min 191C LN2\lnterferents H2O 10pct CO2 10 pct 1mi C:\OLT\Analysis Validation Utility\Support spectra\1min 191C LN2\lnterferents H20 10pct CO2 10 pct 1mi C:\OLT\Analysis Validation Utility\Support spectrafmin 191C LN2\lnterferents H20 10pct CO2 10 pct 1mi C:\OLT\Analysis Validation Utility\Support spectra\lmin 191C LN2\lnterferents H20 10pct CO2 10 pct 1mi Recipe path: C:\OLT\RECIPES\Coal EGU Testing R3 - Copy DO NOT USE.MGRCP - MODIFIED Gas calibration Name Conc NO (3s0,3000) 191C 0.13 NO2 (1s0) 191C (1OF2) 0.1 NO2 (2000) 191C (2OF2) 0.76 N2O (100,200,300) 1,91C 0.23 NH3 (300) 191C (1OF2) 0.4 NH3 (3000)791Cl2OF2l 0.47 co (s00) 191c (1oF2) 7.4s co%ltl7s7c(2oF2) o H2O% l4O\ tgtc 1.99 coz% (4ol79tc 0.08 cH4 (2so) 191C (1OF2) 2.t9 cH4 (3000) 1e1c (2oF2) 2.63 FORMALDEHYDE (70) 191C -0.05 PROPYLENE (200,1000) 1911 0.05 ETHYLENE (100,3000) 191C -0.1 ACETYLENE (1000) 191C -0.08 PROPANE (100) 191C 0.s8 ETHANE (500) 191C -0.04 ACETALDEHYDE (1000) 191( -0.02 HCL PPM (100) 1,9r.C 5.81 HCN (L00) 191C -0.11 HBR (100) 180C -0.1 so2 (1000) 191c -0.08 so3 (1s0) 191C -7.1_4 cos (100) 1s0c 0 H2SO4 (s0) 1s0C 0.02 sF6 (10) 1e1C 0.38 MEOH (10) 1e1C 0.03 MDC3 7.42 0.15 3.49 0.1 0.3 3.96 0.s8 0.05 0.05 o.7 5.88 o.44 1.11 o.37 t.o2 o.46 o.73 0.95 0.38 1.19 7.97 0.61 o.2 0.07 0.L2 0.03 0.35 DC]. MAU FMU*R OCU 0.34 0.47 1.94 1.94 0.04 0.04 0.15 0.15 7.25 1.6 4.44 4.44 0.05 0.06 0.11 0.11 0.21. 0.36 0.52 0.52 2.08 3.92 7.46 7.46 0.29 0.63 7.24 7.24 0000 o.o2 0.03 0.1 0.1 0.02 0.03 0.o7 0.o7 0.35 0.93 1.86 1.86 1.99 3.27 9.68 9.68 0.26 0.32 0.s3 0.s3 0.74 0.87 1.3 1.3 0.28 0.48 0.6s 0.65 o.47 0.49 7.22 7.22 0.15 0.18 0.54 0.54 0.26 0.29 0.82 0.82 0.54 0.58 7.04 1.04 0.2 0.36 0.68 0.68 0.47 0.7L 2.O3 2.03 7 2.04 3.99 3.99 0.24 0.46 1.77 t.L7 0.03 0.03 0.22 0.22 0.02 0.03 0.1 0.1 0.07 0.08 0.13 0.13 0.01 0.01 0.01 0.01 0.26 0.29 0.4L 0.41 [,ocation Source(s) ProjectNo. Spectra (CTS) Date Time AST-2024-1032-002 Rio Tinto Kennecott - Magnq UT 24-tO32 RrK FTrR 007 00049s.LA8 yt4na24 l0:21:37 AM il vurFr+nsatwm vtoz F.! il$ T.oL H+ -trx aio rfo r:h rfo rfo rfo h & 2dr & & fr & rfu rh dm {rh rfo shrr-l rffi [(tTl>"] &r@ RrK FrF O7_rIItl![t-aB o*Iin Location Source(s) ProjectNo. Spectra (Analyte Direct) Date Time Rio Tinto Kennecot - Mama, UT AST-2024-1032-002 24-1032 RTK FIIR 007 000508.LAB 3fi4D024 l0;35:14 AM IfYrrff-nSAtmn wOz Flc ll.tr Ioob H+ -trx fi rfo rfo rfo rfo rfo fr & e{b ah & & & ilh & * {fo .fo sral-Tl dl--i_| fi.(l:ii-l 2+rBA hrK FIn qrr-qlEfuS Location Source(s) Project No. Spectra (Native) Date Time AST-2024-t032-002 Rio Tinto Kennecott - Magn4 UT 3/t4/2024 E Vi.t. Fr-lRSoftw.E Y10.7 Far i{.tr To* H+ trll BrEilrcar*e'r-e i stot[-i--l rf-rl i ai]i-_l-l Location Rio Tinto Kennecott - Magna UT Source(s) REF007 ProjectNo. A3T-2024-1032-002 Spectra(Spike) 24-1032 RTKFTIR00T_000662.LAB Date 3/1412024 Time ll:21:l2AM Hvin.Ff-nsoftw.,. v10.7 Flo Mllh Tooh H+ ttttttttllttttttm lm r2m r1m 16m lm m m 2{fl} 2fir, 2gn xm ?(E 3aq} ffit 3frxr 1m0 12B ffiiffiiircffiHr- sr*-ri st tl- t l urr-l I ii l,_:t_l -t\.r r','i-i \'- - -' ;-K &**PJS** Accreditation #62754 Red Ball Technical Gas Service 555 Craig Kennedy Way Shreveport, LA 71107 800-551 -81 50 PGVP Vendor lD # G12023 CERTIFIED GAS CERTIFICATE OF ANALYSIS Cylinder Number: Product lD Number: Cylinder Pressure: coA # Customer PO. NO.: Customer: 80073902 124838 1900 PStG =80073902.20230730-0 Certification Date. Expiration Date: MFG Facility: Lot Number: Tracking Number: Previous Certification Dates: cato/t2023 cat06t2025 - snreveoon - LA 80073902.20230730 c84266022 SMART-CERT This mixture is certified in Mole % to be within t2% This mixture was manufactured bv scale: weiqhts traceable to N.l.S.T. Certificate #8221266926-02. Do Not Use This Cvlinder Below 100 cc722751 07t28/2024 PS N2 Analytical lnstrumentation Princ ry IUKSFTIR MKS 2031DJG2EKVS13T o17146467 This is to certify the gases referenced have been calibrated/tested, and verified to meet the defined specifications. This calibration/test was performed using Gases or Scales that are traceable through National lnstitute of Standards and Technology (NIST) to the lnternational System of Units (Sl). The basis of compliance stated is a comparison of the measurement parameters to the specifled or required calibration/testing process. The expanded uncertainties use a coverage factor of k=2 to approximate the 95% confidence level of the measurement, unless otherwise noted. This calibration certificate applies only to the item described and shall not be reproduced other than in full, without written approval from Red Ball Technical Gas Services. lf not included, the uncertainty of calibrations are available upon request and were taken into account when determining pass or fail. ,hrrttL lhrrhu Aaron Varelas Analytical Chemist Assay Laboratory: Red Ball TGS Version 02-G, Revised on 20'17-07-02 AiIgas. an Air Liquide company Part Number: Cylinder Number: Laboratory: Analysis Date: Lot Number: Airgas Specialty Gases Airgas USA LLC 614r Easton Road Plumsteadville, PA 18949 Airgas.com 160-40239661 5-1 144.0 CF 2015 PS|G 330 CERTIFICATE OF AI\ALYSIS Grade of Product: CERTIFIED STAMARD-SPEC x03N199C15A0246 ccs18166 124 - Plumsteadville - PA Mar23,2022 160402396615-1 Expiration Date: Reference Number: Cylinder Volume: Cylinder Pressure: Valve Outlet: Mar 23,2024 Product composition verified by direct comparison to calibration standards traceable to N.LS.T. weights andlor N.I.S.T. Gas Mixture reference materials. Gomponent ANAL]MICAL RESULTS Req Conc ActualConcentration (Mole %) Analytical Uncertainty SULFUR HEXAFLUORIDE HYDROGEN CHLORIDE NITROGEN 5.000 PPM 100.0 PPM Balance 5.015 PPM 104.8 PPM +l- 5o/o +l-2o/o Sionature on file Approved for Release Page I of 1 AiIgas. an Air Liquide company Airgas Specialty Gases Airgas USA LLC 525 North Industrial Loop Road Tooele, W 84074 Airgas.com Part Number: Cylinder Number: Laboratory: PGVP Number: Gas Code: Reference Number: Cylinder Volume: Cylinder Pressure: Valve Outlet: Certification Date: 1 53-402560600-1 144.0 CF 2015 PSIG 660 Oct 18,2022 Expiration Date: Oct 18, 2030 CERTIFICATE OF ANALYSIS Grade of Product: EPA PROTOCOL STANDARD E02N199E1540350 SGg170578BAL 124 -Tooele (SAP)- UT 872022 SO2,BALN Certiflcation performed in accordance with "EPA Traceability Protocol for Assay and Certification of Gaseous Calibration Standards (May 2012)" document EPA 600/R-'l 2/531 , using the assay procedures listed. Analytical Methodology does not require correction for analytical interference. This cylinder has a total analytical uncertainty as stated below with a confidence level of 95%. There are no significant impurities which affect the use of this calibration mixture. All concentrations are on a mole/mole basis unless otheMise noted. The results relate only to the items tested. The report shall not be reproduced except in full without approval of the laboratory. Do Not Ljse This below 100 osio. i.e. 0.7 ANALYTICAL RESULTS Actual Protocol Total Relative SULFUR DIOXIDE 50.00 PPM 50.39 PPM G1 +l-0.9o/o NIST Traceable 1011112022, 1011812022 NITROGEN Balance Lot ID Cvlinder No Concentration NTRM 16010207 KALOO3179 97,69 PPM SULFUR DIOXIDE/NITROGEN O,8O/O Nov01,2027 ANALYTICAL EQUIPMENT Nicolet iS50 AUP2'| 10269 SO2 LSO2 FTIR Od12,2022 Triad Data Available Upon Request Sianatrrra an fila Approved for Release Page 'l of 1 Alhlrce QA Data Location Rio Tinto Kennecott - Magna. UT Source Hvdrometallursical Silver (REF007) Project No. AST-2024-1032-002 Parameter(s) VFR Date Pitot ID Evidence of damase? Evidence of mis-alisnment? Calibration or Reoair reouired? 3t14124 standard no no no Date Barometric Evidence of Reading Verified Calibration or Danoir raarirorl,Weather Station Location 3/14t24 Weather Station NA NA NA SLC Airport q@o!booor' . (nooboq.voU!0)o66oAo(0 -odC) (! .d q?oppLOad ll 6Lo ,. o oa9Eos)aoboo4- Ea t' \ '; ' { o; j ^6ri -o 14 d da qa-O(n o l: , a qiOF ooFroCIJ JooF13ctl l o( O * $ N - n O N ( O O ) @ S @n X O F - 6 N O N t - N ( O Ni i @r , x i N m O N O O t - \ t 6 ) O -= 6r ) x @ r ) N @ ( ) C { @ r ) ( . , O ) NO x < \ t O ( O - t - ( O 6 $ ( f ) ( o x = @ S Y< o F (O C ! F- (r ) 6 $ r) F - E E r n . Y N ( O c r , (O (O O ( . ) F rr O S g' 6i ; P d o , @ co r- . - d ri d <i oo = o @ @ @ @ @ @ @ @ @ Sb e B b r R N " e g E e B ss - \ $ s : s s : t \ i ) l s t + *B E E = E E S s E s t E 83 E 5 5 c E E c 5 5 c E ;- - - - . - - . . ; - ; i. . . oO O O O O O O o O o O O ' 99 9 9 9 9 9 9 9 9 9 9 9 // : Or ( O r ( O r @ - ( f , - ( o F ( O . or r N N o o s t s 6 l r ) o o . rb i, i lb id tb i' i i , i lb i' t lb l b dd (b i. : - r sv s v s v s v v s v v v ' NN C ! N C ! C ! N C . I N N N N N r J. rl - J - l , : - J - J - J J J - J - J - J. . 6( 5 ( ! ( 5 ( ! ( 5 ( 5 G ( E ( E G O ( E , >= = = > > > = = > = = = ++ + + + + + + + + + + + tr .goEEdoo(\ l I.E x 'oJNo- (! < a'of , OY E6g= o. . . EOOG oo olt .c to(t ,o266o ooFoc[!a4)FEcul @N ( O ^ $ F - r 6 o i ) ( q t s - \ t o( o N X i l r ) r @ s f O F - ( f ) o @ N ;i r) F F- :. 1 O !t O r) - (O C { @ (' ) F =, : O O O :. 6 d ) F - N N r (O O 6 sN o Y F - @ $ ( r r o @ F - 6 I= NO t : L O O N @ O ) O O r N cE @o N \ . ( o @ o N s F - o r r d J S g 'j Ai c i fl oi ^i cj d r " j t " i c . j . f s oo o = o o o ) o r o ) 6 r o ) o r o , 6) (r ) (O O) (O ( O C' (r ' (O C' ' (O (O O) oO o o F - T N N N ( f ) ( O ( O 'i o c ) o o o o o o o o o o o l: : : - o (O ( O O F - S r @ |r ) N O) (O ^ ^t O \ f s < ' $ ( O ( a ( v ) C { N N r - * rN O S O @ t - - @ o l r o l r C { ( f ) - : @ @ 6 @ @ @ @ @ @ o r o r o ) o ) . oo o o o o o o o o o o o oo o o o o o o o o o o o -- - - - - ; ; ; ; ; ; ; . oo o o o o o o o o o o o :. , OO O O O O O O O O O O O 6 c i i' i ci ri ' i ci tb ct rb ci ii o ii $O 6 O O - - N C \ l O O \ t l ' '. <o a i r i + + + + + $ + + + + a. -- . ss Y v Y v v s v v s v s C! N N N N C ! N N N N O I N N : GO O O ( t r O O O O ( E O ( E ( E s$ $ $ s $ t s $ t s s r t NcE,EcoEE+ooNISx 'oJNo- (l + it ?8E Ef t , g= EL .. EO ocoo 6oEollI aoFI'cUJ r* O 6 O O S C T J N ^ O r @ I . - N) ! o N o - o n N l a a O N t N ii o ) x l t s (o lr ) l r ) $ (f ) N ;r o o -= . oX n @ F S N O O : < O N $ NY N $ N o r $ ( o : J o ( o o != $1 1 o N - o O O r @ : - l N ( O ( ) G tr N' . O O O N - sl @' - ! (O O $ A g' + I tr ; ri ( c i d r- N N 9d o, o ; @: @ @ @ @ 6 @ c o : @ @ @ (O o o ( O o o ( O O r ( O ( O O r o @ oo $ S $ r O ( ) r r ( o ( O ( O F - N -: o o o o o ) o ) o , o ) o , o , o , o ) o) ti : o n N o o o o F - $ e @ ( ) N 1: O O O O O O O O @ O F F - F - .' o \r () n (o F @ o) o - c{ (o r t :. O 6 O O O O O (O t' - t ' - F F F- :1 o o o o o o o o o o o o o - qq q q q c c q c c q c g oo o o o o o o o o o o o oo o o o o o o o o o o o ci ri . t o dd ci rb o rb o ii ci 6 ci -r N N ( O ( o t : t o r ) O O r ^i N N N N o. i oi o i ci 6i ri r i r i s$ \ t $ $ $ $ $ s s t s \ t NN N N N N N N N N N N N (E ( ! ( 5 ( E ( E C , ( ! ( ! ( ! ( ! ( s 6 ( 6 .t r t s s s $ $ $ $ $ $ s i t (Lt, tr t.gcoEt{ooNI.E x 'oJNo_groIot s EG .9 = -E L . . =6 ) ocoo o.c l ltoat to=o6.cE' l=(!oEo!, I E6 I,TAH DEPARTMENT OF ET.IVIRONMENTAL OUAUTY [,{AY - B 2i]?4 DiVISION OF AIB QUALITY ''''61;f $'l lna.a;rr r"f {,.t, .AIlffhre | ' ' r'. : i ,,', i { , j i i Source Test Report Rio Tinto Kennecott 4700 Daybreak Parkway South Jordan, UT 84095 Source Tested: Gold/Silver Recovery Baghouse (REFO10) Test Date: March 15,2024 Proj ect No. AST- 2024-1 03 2-003 UTAH DEPABTMENT OF EWIRONMENTAL OUAIJTY t,4;,Y -l _ i Hcrod i) e. t. ,VLr eA DIVISION OF AIR OUALTTV Prepared By Alliance Technical Group, LLC 3683 W 2270 S, Suite E West Valley City, UT 84120 TECIINICAL GROLJP Source Test Report Tesl Program Summary Regulatory Information Permit Nos. Source Information UDAQ Approval Order DAQE-AN0103460058-20 Title V Operating Permit 3500030004 Source Name Gold/Silver Recovery Baghouse Contact Information Source ID REFOIO Target Parameter PMIO Test Location Test Company Analytical Laboratory Rio Tinto Kennecott Alliance Technical Group, LLC Alliance Technical Group, LLC 2500 Souttr 9180 West 3683 W 2270 S, Suite E 5530 Marshall Street Magna, UT 84044 West Valley City, UT 84120 Arvada, CO 80002 Eric Grosjean Jenny Esker Project Manager eric.grosjean@alliancetg.com jenny.esker@riotinto.com Charles Horton (303)420-5949 (801) 569-6494 charles.horton@alliancetg.com (3s2) 663-7s68 Sean Daly sean.daly3@riotinto.com Field Team Leader (801)204-2563 Tobias Hubbard tobias.hubbard@alliancetg.com (60s) 645-8562 QA/QC Manager Kathleen Shonk katie. shonk@alliancetg.com (8r2) 4s2-478s Report Coordinator Delaine Spangler delaine.spangler@alliancetg.com Report Reviewer Sarah Perry sarah.perry@alliancetg.com RTK-Magna, UTAST-2024-1032-003 Page i T Source Tesl Reporl C er tilic ation S tate me nt Alliance Technical Group, LLC (A[iance) has completed the source testing as described in this report. Results apply only to the source(s) tested and operating condition(s) for the specific test date(s) and time(s) identified within this report. All results are intended to be considered in their entirety, and Alliance is not responsible for use of less than the complete test report without written consent. This report shall not be reproduced in full or in part without written approval from the customer. To the best of my knowledge and abilities, all information, facts and test data are correct. Data presented in this report has been checked for completeness and is accurate, error-free and legible. Onsite testing was conducted in accordance with approved internal Standard Operating Procedures. Any deviations or problems are detailed in the relevant sections in the test report. This report is only considered valid once an authorized representative ofAlliance has signed in the space provided below; any other version is considered draft. This document was prepared in portable document format (.pdf) and contains pages as identified in the bottom footer of this document. 4t24t24 Charles Horton, QSTI Alliance Technical Group, LLC Date RTK- Magna, UTAST-2024-1032-003 Page ii pilt6lpe TECIlNICAL GROUP Source Tesl Report Table ofConlents TABLE OFCONTENTS l.l Source and Control System Descriptions ................ l-1 1.3 Site-Specific Test Plan & Notification.................. ....................... l- I 3.1 U.S. EPA Reference Test Methods I and2 - Sampling/Traverse Points and Volumetric Flow Rate........3-l 3.2 U.S. EPA Reference Test Method 4 * Moisture Content........ ..... 3-l 3.3 U.S. EPA Reference Test Methods 5 and202 - Total Particulate Matter.......... .................... 3-l LIST OF TABLES APPEIIDICES Appendix A Sample Calculations Appendix B Field Data Appendix C Laboratory Data Appendix D Quality Assurance/Quality Control Data Appendix E Facility Process Data AST-2024-1032-003 RTK - Magna, UT Page iii [lT',1t r!r.int MAY _ B 2A?.4 i.;i.,.iii,t,irl UF AIR QUALITY #-AIAtEe I i aliii.Jl(l.r:L a;tl{)Lri'Source Tesl Report Inh'oduction 1.0 Introduction Alliance Technical Group, LLC (Alliance) was retained by Rio Tinto Kennecott (RTK) to conduct compliance testing at the Refinery located in Magna, Utah. Portions of the facility are subject to provisions of the Utah Department of Environmental Quality, Division of Air Quality (UDAQ) Approval Order (AO) DAQE- AN0103460058-20 and the Title V Operating Permit 3500030004. Testing was conducted to determine the emission rate of particulate matter less than l0 microns (PMl0) at the exhaust of Gold/Silver Recovery Baghouse (REF0l0). Front half PM measurements were considered PMl0 emissions for demonstration with compliance limits. l.l Source and Control System Descriptions The RTK Refinery, located near the Smelter, receives anode copper produced at the Smelter and uses an electrolytic process to obtain the high purity cathode copper. The copper anodes from the smelter are submerged in tanks containing an electrolyte solution in batch operations. An electric current is applied to the tank for a l0-day period during which copper ions migrate from the anode to form a cathode of 99.99o/o pure copper. Precious metals (gold and silver) are recovered from the electrolytic refining slimes removed from the tanks in a series of hydrometallurgical operations. The Refinery copper refining process requires steam to maintain electrolyte temperatures and prevent the degradation of the electrolyte tanks as well as support the precious metals process. To supply steam, the Refinery operates a CHP unit as a primary source of steam and maintains two Refinery Boilers (Boilers #l and #2) as back up steam. Boiler #2 has recently been retrofit with an ultra-low NOx burner. Boiler #l will be decommissioned once stack testing is complete on Boiler #2. 1.2 Project Team Personnel involved in this project are identified in the following table. Table l-1: Project Team 1.3 Site-Specific Test Plan & Notification Testing was conducted in accordance with the Site-Specific Test Plan (SSTP) submitted to UDAQ by RTK. RTK Personnel Sean Daly Jenny Esker Alliance Personnel Tobias Hubbard Alan Barrios Dillon Brown AST-2024- I 032-003 RTK - Magna, UT Page 1-1 CHNICAL GROUP Source Test Reprt Sunmary of Results 2.0 Summary of Results Alliance conducted compliance testing at the RTK Refinery located in Magn4 Utah on March 15,2024. Testing consisted of determining the emission rate of PMI0 at the exhaust of Gold/Silver Recovery Baghouse (REF0I0). Front half PM measurements were considered PMl0 emissions for demonstration with compliance limits. Table 2-l provides a summary of the emission testing results with comparisons to the applicable UDAQ permit limits. Any diflerence between the summary results listed in the following table and the detailed results contained in appendices is due to rounding for presentation. Table 2-1: Summary of Results ble Particulate Matter Data 1 Concentation, grain/dscf Pennit Limit, grain/dscf Percent of Limit, 7o Emission Rate, lb/hr Permit Limit,lb/hr Percent ofLimit,o/o 0.00095 0.018 0.0008r 0.015 0.0024 0.043 0.0014 0.010 t4 0.02s 0.43 6 All filterable PM collected is considered PMl0 for compliance demonstration. RTK- Magna, UTAST-2024-1032-003 Page2-l {' dr:Alialpe Source 7'esl Report Testing Methodolog; 3.0 Testing Methodology The emission testing program was conducted in accordance with the test methods listed in Table 3-1. Method descriptions are provided below while quality assurance/quality control data is provided in Appendix D. Table 3-1: Source Testing Methodology 3.I U.S. EPA Reference Test Methods I and 2 - Sampling/Traverse Points and Volumetric Flow Rate The sampling location and number of traverse (sampling) points were selected in accordance with U.S. EPA Reference Test Method l. To determine the minimum number of traverse points, the upstream and downstream distances were equated into equivalent diameters and compared to Figure I - I in U.S. EPA Reference Test Method I . Full velocity traverses were conducted in accordance with U.S. EPA Reference Test Method 2 to determine the average stack gas velocity pressure, static pressure and temperature. The velocity and static pressure measurement system consisted of a pitot tube and inclined manometer. The stack gas temperature was measured with a K-type thermocouple and pyrometer. The Oz and COz concentration were assumed to be ambient for molecular weight and volumetric flow rate calculations. Stack gas velocity pressure and temperature readings were recorded during each test run. The data collected was utilized to calculate the volurnetric flow rate in accordance with U.S. EPA Reference Test Method 2. 3.2 U.S. EPA Reference Test Method 4 - Moisture Content The stack gas moisture content was determined in accordance with U.S. EPA Reference Test Method 4. The gas conditioning train consisted of a series of chilled impingers. Prior to testing, each impinger was filled with a known quantity of water or silica gel. Each impinger was analyzed gravimetrically before and after each test run on the same analytical balance to determine the amount of moisture condensed. 3.3 U.S. EPA Reference Test Methods 5 and 202 -Total Particulate Matter The total particulate matter (filterable and condensable PM) testing was conducted in accordance with U.S. EPA Reference Test Methods 5 and202. The complete sampling system consisted of a stainless steel nozzle, glass-lined probe, pre-weighed quartz filter, coil condenser, un-weighed Teflon filter, gas conditioning train, pump and calibrated dry gas meter. The gas conditioning train consisted of a coiled condenser and four (4) chilled impingers. The first and second impingers were initially empty, the third contained 100 mL of de-ionized water and the last impinger contained 200-300 grams of silica gel. The un-weighed 90 mm Teflon filter was placed between the second and third impingers. The probe liner heating system was maintained at a temperature of 248+25"F, and the impinger temperature was maintained at 68'F or less throughout testing. The temperature of the Teflon filter was maintained greater than 65oF but less than or equal to 85oF. Parameter U.S. EPA Reference Test Methods Notes/Remarks Volumetric Flow Rate I 8.2 Full Velocity Traverses Moisture Content 4 Graviretric Analysis Total Particulate Matter 5/202 Isokinetic Sampling AST-2024- I 032-003 RTK - Magna, U1'Page 3-l FAlilatpE) .t i t'.1 lat A I (r, ll () i I l:l Source Test Reporl Tesline Methodolosv Following the completion of each test run, the sampling train was leak checked at a vacuum pressure greater than or equal to the highest vacuum pressure observed during the run. Condensate was collected in the first dry impinger, therefore the front-half of the sample train (the nozzle, probe, and heated pre-weighed filter) was removed in order to purge the back-half of the sample train (coil condenser, first and second impingers and CPM filter). A glass bubbler was inserted into the first impinger. If needed, de-ionized ultra-filtered (DIUF) water was added to the first impinger to raise the water level above the bubbler, then the coil condenser was replaced. Zero nitrogen was connected to the condenser, and a 60-minute purge at 14 liters per minute was conducted. After the completion of the nitrogen purge the impinger contents were measured for moisture gain. The pre-weighed quartz filter was carefully removed and placed in container l. The probe, nozzle and front half of the filter holder were rinsed three (3) times with acetone to remove any adhering particulate matter and these rinses were recovered in contain er 2. All containers were sealed, labeled, and liquid levels marked for transport to the identified laboratory for filterable particulate matter analysis. The contents of impingers I and2 were recovered in container CPM Cont. #1. The back half of the filterable PM filter holder, the coil condenser, impingers I and 2 and all connecting glassware were rinsed with DIUF water and then rinsed with acetone, followed by hexane. The water rinses were added to container CPM Cont. #1 while the solvent rinses were recovered in container CPM Cont. #2. The Teflon filter was removed from the filter holder and placed in container CPM Cont. #3. The front half of the condensable PM filter holder was rinsed with DIUF water and then with acetone, followed by hexane. The water rinse was added to container CPM Cont. # I while the solvent rinses were added to container CPM Cont. #2. All containers were sealed, labeled and liquid levels marked for transport to the identified laboratory for condensable particulate matter analysis. RTK - Magna, UTAST-2024- l 032-003 Page 3-2 A161re TECHNICN L GROUP Appendix A Example Calculations Location: Source: Project No.: Run No.: Parameter: AST-2024-1032 Rio Tinto Kennecott - Masna. UT Gold/Silver Recovery BH (REF010) PMlO Meter Pressure (Pm), in, Hg AHPm = Pbf: where, L3r6 Pb L= barometric pressure, in. Hg AH 2.288 = pressure differential of orifice, in H2O PtE=inug Absolute Stack Gas Pressure (Ps), in. Hg Ps = pu*,!8, where, 13,6 Pb 25.78 = barometric pressure, in. Hg PgA= static pressure, in. H2O Ps 25.81 = in. Hg Standard Meter Volume (Vmstd), dscf 17.636xYxVmxPm Tm Y _W= meter correction factor Vm 53.304 = meter volume, cf Pm____L= absolute meter pressure, in. Hg Tm 502.5 = absolute meter temperature, oR vmrtd----7J1-= drcf Standard Wet Volume (Vwstd), scf Vmstd where, BWS where, x VlcVwstd = 0.04776 where, Vlc 5.0 Vwstd 0.24 = weight olH2O collected, g = scf Moisture Fraction (BWSsat), dimensionless (theoretical at saturated conditions) fiffi?_GffiBWSsat = where,Ps Ts@= stack temperature, oF Pr__-2!q]-= absolute stack gas pressure, in. Hg BWSsat 0.050 = dimensionless Moisture Fraction (BWS), dimensionless (measured) Vwstd (Vwstd * Vmstd) Vwstd-][fu= standard wet volume, scf Vmstd 47.180 = standard meter volume, dscf Bws -6-. oo5o- = d imens ionless Moisture Fraction (BWS), dimensionless BWS = BWSmsd unless BWSsat < BWSmsd where, BWSsat_..,10.Q50 = moisture fraction (theoretical at saturated conditions) RWSmsd 0 005 = moisture fraction (measured) Bws-6.6b50 plltfrre TECHNICN L GROUP Appendix A Example Calculations Location: Source: Project No.: Run No.: Parameter: AST-2024-1032 Rio Tinto Kennecott - Magna" UT Gold/Silver Recovery BH (R"EF010) PMlO Molecular Weight (DRY) (Md), lb/lb-mole Md = (0.44 x o/oCO2) + (0.32 x o/oOZ) + (0.28(100- o/oCO2 - o/oOZ)) where, COrA= carbon dioxide concentration, o/o O, nS = oxygen concentration,%o Md....j2-=lb/lbmol Molecular Weight (WET) (Ms), lb/lb-mole Ms= where, Average Velocity (Vs), ftlsec Md (1 - BwS) + 18.01s (BWS) Md 28.85 = molecular weight (DRY), lb/lb mol BWS.;!Q[= moisture fraction, dimensionless Ms 28.8 = lb/lb mol Vs = 85.49 x Cp x (Lyrlz'tavg x where, 1Cp_9!19_= pitot tube coeffrcient Lptt2 0.921 = velocity head of stack gas, (in. H:O)t/2 rr E= absolute stack temperature, oR Ps_-]!!.!-= absolute stack gas pressure, in. Hg M.____lL= molecular weight of stack gas, lb/lb mol Vs 56.7 = ff/sec Average Stack Gas Flow at Stack Conditions (Qa), acfm Qa=60xVsxAs where, Vs &= stack gas velocity, ft/sec As 0.79 = cross-sectional area ofstack, ft2 Qu--w-=u"f^ Average Stack Gas Flow at Standard Conditions (Qs), dscfm Ps Qs = 17.636 x Qa x (1 - BWS) t T;where, Qa 2,673 = average stack gas flow at stack conditions, acim BWS _9.1QQ_ = moisture fraction, dimensionless Ps_-!!!.!-= absolute stack gas pressure, in. Hg T" L= absolute stack temperature, oR Qs-!2lz!_:dscfm AnErre TECHNICN L GROUP Appendix A Example Calculations Location: Source: Project No.: Run No.: Parameter: AST-2024-1032 Rio Tinto Kennecott - Magna, UT Gold/Silver Recovery BH (REF010) PMlO Dry Gas Meter Calibration Check (Yqa), dimensionless Y- x 100 Y 0.972 = meter conection factor, dimensionless O 60 = run time, min. V, _jLlg!-= total meter volume, dcf Tm ..;p!-= absolute meter temperature, "R LH@ | 964 = orifice meter calibration coefficient, in. H2O Pb 25.78 = barometric pressure, in. Hg AH augA= average pressure differential of orifice, in I{2O Md 28.85 = molecular weight (DRY), Ib/lb mol (A H)t"--_].,[]-= average squareroot pressure differential of orifice, (in. [I2o)t/2 Yqa__-!!-=percent Volume of Nozzte (Vn), ft3 om ***) Ts/Vn = E; [0.002669 xVlc t where, Yqa = where, Isokinetic Sampling Rate (I), 7o ex60xAnxl/s where, TsJ4L= absolute stack temperature, 'R Ps -!!!]-= absolute stack gas pressure, in. Hg Vlc 5.0 = volume of H2O collected, ml v.E= meter volume, cf P.-]![= absolute meter pressure, in. Hg Y 0.972 = meter correction factor, unitless Tm 502.5 = absolute metertemperature, \ Vn 56.955 = volume of nozzle, ft3 XYxPm ,m Vm ) Vn )*rool= 60.0 Vn e An Vs I 56.955 = nozzle volume, ft3 0.00028 = run time, minutes = area of nozzle, ft2: average velocity, fl/sec = o/o 56.72 101.0 Filterable PM Concentration (C.), grain/dscf ^ Mn x 0.0154 a --vs - Vmstd where, Mn..-.A=filterable PM mass' mgy.r16 47.180 = standard meter volume, dscf C,;!Q[=grain/dscf AppendixA Example Calculetions TECHNICN L GROUP Locetion: Rio Tlnto Kennccott- Maqna, UT Source: Gold/Silver Recoverv BH mEF010) Project No.:AST-2024-1032 Run No.: I Parameter: PMIO f'iltenblc PM Emisston Rrtc (PMR), lb/hr C.xQsx60 7.0E + 03 C,_..,1}1@_= filtemble PM concentration, grain/dscf Qs 2.214 =average stackgas flowat standard corditions, dscftr PMR 0.018 =lb/hr PMR = where, AIErrce TECHNICAL GROLJP Emission Calculations Location Rio Tinto Kennecott - Maena. UT Source Gold/Silver Recovery BH REF010) Project No. AST-2024-1032 Parameter PMl0 lun Number Runl Run2 Run3 Averase )ate Itart Time itop Time lun Time, min 3lt5l24 9:12 l0: l5 60.0 3lt5l24 l0:25 I l:31 60.0 3lt5l24 ll:47 l2:54 60.0(0)60.0 INPUT DATA Barometric Pressure. in. Hg Meter Correction Factor Orifi ce Calibration Value Meter Volume, ft3 Meter Temperature, "F Meter Temperature, oR Meter Orifice Pressure, in. WC Volume H2O Collected, mL Nozzle Diameter, in Area ofNozzle, ft2 Filterable PM Mass. me (Pb) (Y) (^H @) (vm) (Tm) (Tm) (AH) (Vlc) (Dn) (An) (Mn) 25.78 0.972 1.964 53.304 42.9 502.5 2.288 5.0 0.225 0.0003 2.9 25.78 0.972 1.964 51.77 4 42.9 502.5 2.2t3 5.0 0.225 0.0003 2.4 25.78 0.972 1.964 50.778 4s.6 505.3 2.075 2.8 0.225 0.0003 6.9 25.78 0.972 1.964 51.952 43.8 503.5 2.192 4.3 0.225 0.0003 4.1 ISOKINETIC DATA Standard Meter Volume, ft' Standard Water Volume, ft3 Moisture Fraction Measured Moisture Fraction (@ Saturation Moisture Fraction Meter Pressure, in Hg Volume at Nozzle, ft3 Isokinetic Sampling Rate, (%) DGM Calibration Check Value, (+/- 5%) (Vmstd) (Vwstd) (BWSmsd) (BWSsat) (Bws) (Pm) (vn) (r) (Y.J 47.2 0.24 0.0050 0.0s0 0.0050 25.9 57.0 101.0 1.9 4s.8 0.24 0.0051 0.062 0.0051 25.9 56.0 100.0 0.61 44.7 0.r3 0.0029 0.067 0.0029 25.9 54.8 100.9 1.6 45.9 0.20 0.0043 0.060 0.0043 25.9 55.9 100.6 1.4 EMISSION CALCULATIONS Filterable PM Concentration, grain/dscf Filterable PM Emission Rate. lb/hr (CJ (PMR) 0.00095 0.018 0.00081 0.015 0.0024 0.043 0.0014 0.025 Al6rrce TECHNICAL CTROUP Emission Calculations Location Rio Tinto Kennecott - Magna, UT Source Gold/Silver Recovery BH (REF010) Project No. 4lI4Q24:!01? Parameter PM10 lun Number Runl Run2 Run3 Average Date Start Time Stop Time Run Time. min 3lts/24 9:12 l0:15 60.0 3ltsl24 l0:25 I 1:31 60.0 3ltsl24 1l:47 12:54 60.0 60.0 VELOCITY HEAD, in. WC Point I Point 2 Point 3 Point 4 Point 5 Point 6 Point 7 Point 8 0.66 0.85 1.10 0.95 0.61 0.88 0.97 0.82 0.59 0.91 0.98 0.88 0.63 0.82 0.99 0.87 0.55 0.82 0.94 0.84 0.61 0.78 0.87 0.82 0.60 0.86 l.0l 0.89 0.62 0.83 0.94 0.84 CALCULATED DATA Square Root of AP, (in. WC)"' Pitot Tube Coefficient Barometric Pressure, in. Hg Static Pressure, in. WC Stack Pressure, in. Hg Stack Cross-sectional Area, ftz Temperafure, oF Temperature, oR Moisture Fraction Measured Moisture Fraction @ Saturation Moisture Fraction 02 Concentration,%o CO2 Concentration, o/o Molecular Weight, lb/lb-mole (dry) Molecular Weight, lb/lb-mole (wet) Velocitv. fl/sec (^P) (cp) (Pb) (Pe) (Ps) (As) (Ts) (rs) (BWSmsd) (BWSsat) (Bws) (o, (Coz) (Md) (MS) (Vs) 0.92 0.84 25.8 0.35 25.8 0.79 87.0 546.7 0.0050 0.050 0.00s0 20.90 0.10 28.9 28.8 56.7 0.91 0.84 25.8 0.35 25.8 0.79 94.3 553.9 0.0051 0.062 0.0051 20.90 0.10 0.88 0.84 2s.8 0.35 25.8 0.79 96.8 556.4 0.0029 0.067 0.0029 20.90 0.10 0.90 0.84 2s.8 0.35 25.8 0.79 92.7 552.3 0.0043 0.060 0.0043 20.90 0.10 28.9 28.8 55.9 28.9 28.8 54.6 28.9 28.8 s6.4 VOLUMETRIC FLOW RATE A,t Stack Conditions, acfrn {t Standard Conditions, dscfm 2,635 2,162 2,673 2,214 (Qa) (Qs) 2,658 2,172 2,574 2,099 AIErceTEOHNICAL OfiOI,IP Locrtion Rio Tinto Kennecott - Mignt, UT Method I Data Source Gold/Silver Reovcry BH (REFOI0) Proj.ci No. AST-202+1032 Drte 03/15/24 Ductorientrtion: Ve.ti€l or"t oolgo,--Effi- Distucc from Fir Wrll to Outside of Po"r: ---iiJd- in Nipple Logth: 6.50 in Depth ofDuct 12.00 in Cross Scctiooal Arcr ofDuct: 0.?9 ft' No. ofTBt Ports: 2 Di.mc" A, -I3-ftDisrmce A Du.a Dirrrcte*, ----3-1.ut b" 2 0.5; Didme B: 30.0 ft Distrn.e B Duct Dirm.tes: 30.0 (must bc>2) Minimum Nmbcr of Trrvece Points: 8 Actu.l NMbcr otTmv"^" Poina.r----l- Nmbcr of Rcrditrgs pc. Poin , -T- Mesurer (Initial and D.tc)r ALB Revievcr (Initirl md D.tc): TCH LOCATION OT TRAVERSE POINTS Numbd o! tNefre polnls on a diamder I 3 4 5 6 7 t 9 l0 ll 12 3 4 6 1 I 9 l0 lt t2 14.6 t5.4 6.7 25.0 75.0 ,r_, 4.4 14.6 29.6 70.4 85.4 ,:u 3.2 I0.5 t9.4 32.3 67.7 t0.6 89.5 ,:t 2.6 8.2 14.6 22.6 34.2 65.t 77.4 t5.4 91.8 2.1 6.7 ll.8 17.7 25.0 35.6 64.4 75.0 E2.3 88.2 93.3 s7s lPercenl of stdck didfreler lrcn i6ide sall lo trMrse poinl Travcre Point '/. ol Dimetcr I)istme from outsid€ ofwell I 3 4 5 6 1 8 9 l0 1l t2 6.7 25.0 75.0 ,1' 0.t0 3.00 9.00 ,rjo 7 slt6 9il2 t5 U2 l7 r ln6 : sdM>o.6i fr(24h.) 98 Dfu' OX bO6l m (12 - 2a h Stack Diagm A=35ft B=30ft. Depth ofDuc't = 12 in. Crqs Srtioal As Downstream Dlsturbancc Up$ream olsturbance rul6rrceTECHNICAL QFTOUP Cyclonic Flow Check Location Rio Tinto Kennecott - Magna, UT Source Gold/Silver Recovery BH (REF0I 0) Project No. AST-!024-!Q]! Date 03115124 Sample Point Angle (AP:0) Averase l0 5 0 0 l0 l0 5 0 5 N.ffineeTE$HNICAL QBOUP Method 4Data Location Rio Tinto Kennecott - Magna, UT Source Gold/Silver Recovery BH (REF01 0) Project No. AST-2024-1032 Parameter PMl0 Analysis Gravimetric Run I Date:3ltsl24 Impinger No.I 2 3 4 Total Contents EmpB Empty H20 Silica Initial Mass, g 493.2 637.2 724.0 990.0 2844.4 Final Mass, g 492.6 637.3 718.t I00t.4 2849.4 Gain -0.6 0.1 -5.9 n.4 5.0 Run 2 Date:3lts/24 Impinger No,I ,,3 4 Total Contents Empty Empty H2o/ Silica Initial Mass, g 464.2 641.4 708.2 962.2 2776.0 Final Mass, g 464.2 641.4 703;7 971.7 2781.0 Gain 0.0 0.0 -4.5 9.5 5.0 Run 3 Date:3/15/24 Impinger No,I 2 3 4 Total Contents Empty Empty H2o/ Silica Initial Mass, g 493.3 637.3 718.1 1001.4 2850.1 Final Mass, g 492.7 636.9 7l 1.5 l0l1.8 2852.9 Gain -0.6 -0.4 -6.6 10.4 2.8 plllfrrrce Tt:CIINICAL GFiCI.J 3 Isokinetic Field Data rgna, UT O"t", Stsrt Time: 9:12 End Time: 10:15 Source: Gold/Silver BII Project No.; AST-2024-1032 Parameter:PMlO o 6L Sample Time (minutes) Dry Gas Meter Reading (fc) Pitot Tube AP (in WC) Gas I'emDeratures ("1')0rifice Press, AH (in.wC) Pump Vac (in. Hg) Gas'I'emperatures ("I % rso Vs (rps) DGM Averr Stack Probe Filter ImD Exit Aux Amb.Amb.Amb, Amb.Amb. Besin End 45 45 Ideal Acturl 45 45 45 45 A1 0.00 7.50 I 53.845 0.66 44 84 l,'79 1.80 3 260 2'70 45 69 r00.3 50.17 ?50 500 59 690 085 43 85 224 210 4 264 212 4 69 104 3 57 04 3 l5 00 22 50 66.550 l.l0 42 87 2.94 2.90 5 264 251 49 69 to2 4 64.95 4 22.50 30.00 74.1 80 0.95 43 88 254 2.50 5 266 252 57 69 t0l.4 60.41 B1 30 00 t7 50 81 2t3 061 42 87 164 160 4 265 260 52 69 100 I 48.36 2 37.50 45.00 86.790 0.88 43 88 2.36 2.40 5 264 253 55 69 99.7 58.14 45 00 52 50 gi 450 o97 88 260 260 5 264 56 69 toog 61.04 4 52.50 60 00 200 520 082 43 88 220 220 5 264 254 56 69 102 7 56.13 Finrl DGM: 2O'l 149 (aFrlDori Run Time Vm AP Tm Ts Max Vac AE %ISO BWS Yo" 60.0 mtn 53304 ft'0.86 in. WC 42-9 oF a7.o oF 5 2.288 in. WC l0l-o 0-005 1.9 STACKDATA Est. Tmr 47 Est. Ts: 80 Est, AP: O.82 in. WC Est. Dn: 0.212 in. Meter Box ID: M5-31 AH @ (in.WC): 1.964 Pitot ID: AirDatr Piiot I Pitot Cp/Typer 0.840 Nozzle Dn (in.): 0.225 Moisture: l5 o/o est. Barometric: 25.60 in. Hg Static Press: 035 in. WC Stack Press: 25,63 in. Hg COrt O,l oh Oi 2O.9 Yo N2lCOt 79.O Yo Md: 28.85 lb/lb-mole Ms: 28.69 lb,4b-mole Check Pt. lnitial Final Mid I (cf) Mid 2 (c0t ak Rere (cfm): 0.004 - 0,m,0 Vacuum (in Hs): 15 - 8 PitotTub€: Pass -- Pass Alffirpe Tf CIINTCAL GHOI.J F lsokinetic Field Data Location: Rio Tinto Kennecott - Magna, UT Ort", Start Time; End Time: 10:25 I l:31 Source: Gold/Silver Recovery BH (REF0l0) AST-202,1-1032 STACK DATA (EST)EOUIPMENT STACK DATA (EST)FILTERNO.STACK DATA (FINAL)MOIST. DATA Moisturer l5 Yo est. Barometric: 25.60 in. Hg Static Press: 035 in. WC Stack Press: 25,63 in. Hg COrt O.l Yo O22 20.9 o/o NzlCOt 79.O Yo Md: 28.85 lb/lb-mole Ms: 28.69 lbnb-mole Meter Box ID; M5-3l Y: O-972 AH @ (in.WC): 1.964 Probe ID: PR703-l Lir". Mrt"ri"l, !iii- Pitot lDr AirData Pitot I ritot Cpffype: O-aaO fs-typexo,,t"lo'!{f$ Nozle Dn (in.): 0,225 Est. TDr 43 Est. Ts: 87 Est. AP: 0.86 in. WC Est, Dn: O.2ll in. Tarset Rate: 0.75 scfm Corr',,,4. I Check Pt- lnitirl in. Hg in. WC Pb: 25.78 Pg: 035 Oz: 2o.9 5.0 K-FACTOR 2.64 Final Corr. ,EAK CHECKI Pre Mid I Mid 2 Mid 3 Post Mid I (cf) Mid 2 (cf) Mid 3 (cf) Irak Ratc (.fm): 0,002 -- 0.000 Vacuum (in Hs): l5 - t0 Pitot Tubc: Pass -- Pass llid-Point If,rk Check Vol (cf): Q d.i6C" Sample Time (minutes) Dry Gas Meter Reading (fc) Pitot Tube AP (in WC) Gas l€mDeratur$ l"l I Orifice Press. AH (in.WC) Pump Vac (in. Hg) Gas Temoeratures (otr % tso Vs (rp9 DGM Averase Stsck Probe Filter ImD Exit Aux Amb, Besin End Ideal Actual 0.00 750 20'7.405 0.59 4'\9)I 5'7 60 264 25R 39 69 l0t .9 47 7A 2 7.s0 l5 00 2129']O 0.9r 43 93 2.41 2.40 5 264 260 39 69 992 59.40 3 I 5.00 22.50 2 I 9.680 0.98 43 94 2.59 2.60 7 263 247 45 69 102.3 61.69 4 22 50 l0 00 226 450 088 42 95 232 230 6 266 25't 50 69 lol 9 58.51 B1 30.00 37.50 233.60t 0.63 43 94 1.67 1.70 5 266 247 46 70 103.7 49.46 37 50 45 00 219 440 082 41 9J t7 220 5 264 256 49 69 l0t 4 56.48 3 45.00 52.50 245.940 0.99 43 95 2.62 2.60 6 265 261 52 69 93.2 62.06 4 52.50 60.00 252.500 0.87 43 96 2.30 2.30 6 266 251 53 69 101.3 5423 Final DGM 259.t't9 aF F(, r-l Run Time Vm AP Tm Ts Y"' aH %rso Bws Yn"Vac 60,0 mtn 51.774 ft3 0.83 in. WC 42.9 oF 94.3 oF 7 2.213 in. WC 100.0 0,005 0.6 puafripe TTCIIT.IICAL GHCLJ P Isokinetic Field Data agna, UT nrt", $tailfips; 11:47 End Time: 12154 Source: Gold/Silver BH Project No,: AST-2024-1032 Parameter: PM10 STACK DATA (EST)EOUTPMENT STACK DATA (EST)FILTER NO. STACK DATA (FINAL)MOIST.DATA Moisture: 1.0 oZ est. Barometric: 25.60 in. Hg Static Press: 035 in. WC Stack Press: 25.63 in. Hg CO2r O.l o Ozt 2O.9 Yo Nr/CO: 79.0 % Md: 28,85 lb,4b-mole Ms: 28.74 lb/lb-mole Meter Box ID: M5-31 Y:0,972 _ au 61in.wc;:'iEi- Probe ID: PR703-l Lin". Mrt"rirl, !iII- Pitot ID: AirData Pitot I ritot Cpffyp", OBaO fs-typ" Noot" lo'EEf--fS- Nozle Dn (in.): 0,225 E!t, Tm: 43 Est. Ts: 94 Est. AP: 0.83 in WC Est. Do: 0.212 in. Taroet Rate: 0.75 scfm Pb: 25.78 in. Hg Pg: 035 in. WC Or, __ 2!_% CO2: 0.1 %lffi;ffii Vlc (ml) 2.8 K-FACTOR 2.672 Final Corr. LEAK CIIECK! Pre Mid 1 Mid 2 Mid 3 Post Mid I (c$ Mid 2 (cf) Mid 3 {cfl kak Rrte (cfm): 0.006 -- 0.000 Vacuum (in Hs): t5 - l0 Pitot Tube: Pass -- Pass vlid-Point Iiak Check Vol (cf): o dii AL Sample Time (minute) Dry Gas Meter Reading (ft3) Pitot Tube AP (in WC) (lrs aol'l Orifice Press, AH /in- WCI Pump Vac (in. Hg) (;rs l emoeretur6 l"l % ISC Ys (fps) DGM Aver8se Stack Probe Filter Imo Exit Aur Besin End Ideal {ctua A1 0.00 7.50 2s9.692 0.55 43 95 1.4',7 150 258 )60 4A 'to t03 I 46.22 't 50 500 265 r 80 082 44 96 2t9 2.20 5 264 256 46 70 99.8 56.48 3 15.00 22.50 271.612 0.94 45 96 2.51 2.50 5 264 256 5l 71 99.6 60 4't 4 22.50 30.00 274 490 084 4 91 220 5 266 257 5'7 7l to29 57.22 BI t0 00 37 50 245 209 061 46 98 1.63 L60 4 2@ 254 53 70 t02.3 48.80 2 3',7.50 45.00 290.920 0.78 4'l 97 209 210 265 254 56 70 r007 55.14 3 500 52 50 297 285 087 47 9'7 233 230 5 265 252 59 7l 98.6 58.23 4 52.50 60.00 303.862 082 48 98 2.20 2.20 5 266 256 60 70 101.9 56 58 Finaf DGM: 3lO.47O aF)a r.1& Run Time Vm AP Tm Ts Y" AH %Iso Bws Yr" Vac 60.0 mrn 50,778 ft3 0.78 in. WC 45-6 oF 96.8 or 5 2.075 in.WC 100.9 0.003 t.6 Allionce Technicol Group, LLC Anolyticol Services 5530 Morsholl St. Arvodo, CO 80002 (720) 457-e504 www.ollioncetg.com Anolyticol Loborotory Report Rio Tinto Kennecott 2500 South 9180 Wesl Mogno, UI 84044 Project No. AST-2024-1 032 1 of22 Certificotion Stotement Allionce Source Testing, LLC (AST) hos completed the onolysis os described in lhis report. Results opply only to the source(s) tested ond operoting condition(s) for ihe specific test dote(s) ond time(s) identified wilhin this report. All results ore intended to be considered in their enlirely, ond AST is not responsible for use of less thon the complete test report without written consent. This report sholl not be reproduced ln full or in port without written opprovol from the customer. To the best of my knowledge ond obiliiies, oll informotion, focts ond test doto ore correct. Doto presented in this report hos been checked for completeness ond is occurote, enor-free ond legible. Any deviotions or problems ore deloiled in the relevont sections on the test report. This document wos prepored in portoble document formot (.pdf) ond contoins poges os identified in the bottom footer of lhis document. Volidotion Signoture The onolyticoldoto ond oll QC contoined within this report wos reviewed ond volidoted by the following individuol. DciClyriod by Jam.. &ud&n James Davidsomtffi Jomes Dovidson Quolity Assuronce Associote Dole 2of 22 Proiect Norrotive Anolyticol Method(s): Method 5 - Determinotion of Porticulote Motter Emissions From Stoiionory Sources Melhod 202 - Dry lmpinger Melhod for Determining Condensoble Porliculote Motler Emissions From Stotionory Sources Filleroble The filier(s) were either oven dried ond/or desiccoted per lhe meihod until o finol weight wos obtoined. The liquid froctions were exirocted if required, evoporoted ond cooled until o finolweight wos obtoined. These froclions were summed together to provide lhe iolol Porticulote Motter collected. Condensoble The filter(s) were extrocied per the melhod. The orgonic extroct wos odded io the orgonic rinse, ond the inorgonic extrocl wos odded lo ihe inorgonic rinse. The inorgonic froction wos extrocted with solvent per the method. Exlrocls were combined with the orgonic rinse. The orgonic ond inorgonic froclions were evoporoled ond desiccoted untilo finolweight wos obtoined. MDL The Minimum Detection Level (MDL) is 0.5 mg per froction. lf the meosured result for o froction is less thon the MDL,lhe MDL wos used in ensuing colculoiions. Blonk Conection lf blonk correction is performed, only blonk volues returned higher ihon the MDL ore used. lf o blonk returns o volue less lhon the MDL, no correction is included. Method 202 Recovery Blonk corrections ore opplied by frociion (inorgonic subtrocted from inorgonic; orgonic subirocted from orgonic). Custody: The somples were received by Joke Schmitl on 3/26/2024 in Arvodo, CO. The somples were received in good condition with proper Choin-of-Custody documentotion. No opporent contoiner problems were noted upon receipt. Prior to onolysis, lhe somples were kepl secure with occess limited io outhorized personnel of AST. Number of Somples: 25 (4 on Hold) Lobeling: Acceptoble Anolyst: Eric Grosjeon - Loborotory Monoger Ryon Gillett-Loborotory Anolyst ll Corson Williomson-Loborotory Anolysl I Equipment: Mettler Toledo Bolonce ML- 104, SN 82l 7893065. This scole wos used for onolyticol determinotions of filters ond rinse vessels. DenverlnstrumentsBolonceTB-5201,SN lT904l89.Thisscolewosusedtomeosurethe totol moss of rinse collected for blonk correction. Anolysis wos performed on the some bolonce os the ossocioted tore. Quincy Lob lnc oven, 30CG, SN G3-012673. Lob Reogents: Acetone Lot Number:232060 Hexone Lot Number: 224540 QC Notes:The somples met lhe minimum criterio estoblished by the relevonl method. Reporting Notes: none 3of22 Cllent --:-Alhlrcg crtY'Stote TEcHNrcaL GFoUP ProjeclNo, Melhod Rio Tlnlo Kennecotl \loqno, UT 84044 ASi-2024-r 032 EPA Method 5 tronl Hof R[er Lob lD D4t 363 D4t 368 D4 I 373 tleld lt M5/202-(REF0lo)-Run I Cont. l M5/202-(REFOl0)-Run 2 Conl. I M5/202-{REF0l0)-Run 3 Cont. i tllter lI t733t - C 17329 - C t7353 - C tiller Tore Welghl, (0.5165 0.5149 0.s230 Oole - Desiccolo 3/2s/24 3125/24 3/25/24 Iime - Deslccolo l7:15 I 7:15 l7:15 Dole of welghln(3t27 t24 3t27 /24 3t27 t24 3127 /24 3t27 t24 3/27124 Tlme ol Welghln(4:56 l0:57 4:56 l0:57 4:5d l0:57 f lller welght, (0.5179 0.5177 0.5164 0.5166 0.s243 0.5245 Flller PM Mors, mg't.4 1.6 t.4 tlonl Holt Rinre Lob lt D4i 364 D4 1 369 D41374 tield lt M5/202-(REF0lO)-Run I Cont. 2 M5/202-(REFol 0)-Run 2 Cont. 2 M5/202-(REF0l0)-Run 3 Conl. 2 Eedker lt 33028 33036 33044 Beoker tore, (3.8708 3.9387 3.9289 Seoker wllh Acelone, (83.2 77.5 79.4 Acelone Mqss, (79.3 73.6 75.5 Dole - oesiccolo 3/26/24 3t26t24 3t26t24 nme - Desiccolo l2:39 12:39 12:39 Dole of Welghln(3/27 /24 3128124 3/27 /24 3128/24 3/27 /24 3l /24 Tlme ot welghln( 13:ll 505 l3:ll 5:05 '13:ll 5:05 Welght, g 3.8722 3.8726 3.9394 3.9394 3.934s 3.934A Rlnse PM Mqss, mg't.6 0.8 5.5 Blonk Corecle(No Tolol PM Moss, m(2.9 2.4 6.t *AIl froclions were onal)zed ond returned volues greoter thon the MDL of 0.5 mg. 4 of22 ctv,t P.oJ.ct fE nnlo Kenneotl \,loono, UI84044 \sr-202+r032 PA Method 5 lcCom lbnk lob l]D4t 378 R.ld lI M5 Acetone Blonk lcd&.r lt 33018 lasl(.r lora, t 3A6?f Ldk rrdlh Ac.lon., !110.76 Acafon lldrt,I t36.90 Ddh. D.dccdla 3t26124 nm.. D..&cc(tlor l2:3 Dalo of Wcgiltrl 3n7n1 3t%n1 Ilmo olWdgl{n5 l3:l I 505 WelChl, !3A619 I 3.8618 llonkilo$, mg'0.m 5 ot22 N.6 Clty, Stote TECHNICAL cRouP PtoJeclNo, ?io Tlnto Kenneco'fl \,1oqno, UT 84044 AST-2024-1032 EPA Method 202 Iellon Flller l"ob lt D4t 365 04t370 D4 1375 tleld lI M5/202-(REF0I o)-Run I Conl. 3 M5/202-{REFol 0)-Run 2 Conl. 3 M5/202-(REF0l o)-Run 3 Cont. 3 Orgonlc frocllon lob lI o41367 D41372 D4)377 tleld lI M5/202-(REF0Io)-Run I Cont. 5 M5/202-(REFol ol-Run 2 Coni. 5 M5/202-(REFol 0)-Run 3 Conl. 5 Xeoker ll 330r 7 33020 33040 Eeoker iore, e 3.8455 3.8651 3.8879 Beoker Solvenl. !r88.0 189.0 r68.9 Solvenl Moss, !181.2 I 85.1 165.0 Dole - Deslccolo 3/26124 3126/24 3/26124 Iime . Desiccolo 12:39 l2:39 12:39 Dole ot welghln(3/27124 3128124 3/27 /24 3/',nt24 3127124 3t /24 nme ol Welghin(15t24 509 15..24 5:09 | 5:24 5:09 Welghl, g 3.8492 3.8495 3.8677 3.8678 3.8909 3.8907 Orgodc P^l Moss. mg'3.9 2.7 2-9 lndgonlc Frocllon tob lt D4l 366 D4 I 371 D4t376 ;leld lt M5/202-(REF0lO)-Run I Coni. 4 M5/202-(REFol 0)-Run 2 Cont. 4 M5/202-lREF0l0l-Run 3 Cont. 4 leoker lI 31770 31772 318s2 Beoker lore, (66.4978 74.9085 71.1071 Beoker Woler, !240.4 300.9 3r0.0 Wolel Mos3, (t73.9 226.0 8.9 Dole - Deslccolo 3/26/24 3126124 3/26n4 Tlme - Deslccoio l2:39 12:.39 12:39 Dole ol Welghln(3127124 3t28t24 3t27 /24 3t28/24 3/27 t24 3/ /24 Tlme of Welghln(l3:15 5:16 l3:1 5 5:l 6 l3:15 5:16 welght, i 66.4992 66.4990 74.9098 74.9099 7r.r095 71.1097 lndgonlc Moss, mg'1.4 t.4 2.5 Blonk Correclec Yes Told PM Mos3, mf 4.6 3.5 /t.8 *All froclions were onolyzed ond returned volues greots lhon the MDL of 0.5 mg. 6 of22 nlJ6rr,#j:: lio nnio Kennecoll \,loono. LJT 84044 \sT-2024- 1 032 :PA Melhod 202 Icnon HlLr Blonk! fleld Troln Udnk Proot Bldnk Iob l[D4l38l Fleld lt M202 FI Recovery Blonk Ctrt.3 Orgonlc trocllon Blonks tleld lrqln Blonk Proor Blonk Lob lt D41383 D4t 380 fleld ll M202 FI Recovery Blonk Cont.5 M202 FI Proof Blonk Cont.5 Beoket lD 33006 330r l Beoker lore, g 3.8336 3.8204 Beoker Solvenl, g 159.2 r57.8 Solvenl Mo3s, g t55.4 t54.0 Dole - D6lccolor 3/26124 3126124 nma . Dedccolor l5:23 l2:39 Dole ot Welghlng 3/27124 3n8/24 3/27 /24 3128/24 nme ot Welghlnl 'l5i2A so9 l3:l I 5:05 Welght, !3.834l 3.8343 3-8201 3.8204 Orgonlc Mo$, mg'0.65 0.50 lnorgonlc trocllon Elonkr fleu Troln Uonk Prool Blonk Lob lI D4r382 D4t 379 fleld ll M202 FI Recovery Blonk Cmi. +M202 FI ftoof Blonk Cont. 4 Eedkcr lI 31 790 31789 Bsker lore, (73.5884 77.43c/ Beoker Woler (243.6 245.9 Woler i o33, (t 70.0 1 68.1 Dole - De3lccolo 3126124 v26n4 nme . Dellccolo 12:39 l2:39 DolG ol Welghlnt 3lnn4 3n8/24 3/28124 3/ 124 Tlme ol welghlnt 5:1 6 1l:44 5:16 I l:44 Welghl, !73.5878 73.W2 77.8298 77.8&2 lndgonlc Mos, mg 0.00 0.00 7 of22 55cc -! 9 -C @@ Eo5U.g,o.EEz I Eol?id r; l lt in .EFtCiJF o' o l 6. q Io -1 r4 FX U 2\ 3 !.gg&.Io !Io.t\tr{oa ooz'o au o t a ) V - as u r u S Z= au o l e ) V - es u r u OL = y \ d > S zfE65o ,9a,. H r €Ee9 -. -a - PE s Ei 6 '" 6 h *8 8 ,E H 6 E^OH q5 . VFb; lzcE (o b ->UIEI( Calibraton Cortf cato lD NA1 548-076-032024-ACC-USL MetlerToledo, LLG '1900 Polaris Parkway Columbus, OH43240 l.BOO.METTLER Gustomer METTTER TOTEDO ^n Accredited by the American Association llB n forLaboratorvAccreditation(MLA) [-rc c nEill rE6] cALl BRATIoN CE Rr #1 788.0 1 ISO '17025 Accredited ANSUNCSL Z54Gl Accredited Accuracy Calibration Certificate Alliance Source Testing 5530 Marshall St Company: Addrcss: City: Zp / Postal: State / Povlnce: Weighing Device 80002-31 08 Colorado Contacf:Eric Grosjean Manufadursr: Model: Serial No.: Building: Floor Room: Mettler Toledo lnsfrumentType: Asset Numben Terminal Model: Terminal Serial No.: TerminalAsset No.: Weiqhing lnstrument M1104/03 821 7893065 ,|120 g 0.0001 g N/A Procedure Calibnation Guldeline: METTLER TOLEDO Work lnstuuc,tion: ASTM E898 - 20 30260953 v1.72 This calibration certificate including procedures and uncertainty estimation also complies with EURAMET cA18 v 4.0. This calibration certificate contains measurements for As Found and As Left calibrations. The sensitivity/span of the weighing instrument was adjusted before As Left calibration with a built-in weight. ln accordance with EURAMET cg-18 (11/2015), the test loads were selected to reflect the specific use of the weighing device or to accommodate specific calibration conditions. Environmental conditions have been verified to ensure the accuracy of the calibration. This certificate is issued in accordance with the conditions of accreditation granted by A2LA, which is based on ISO/IEC 17025. AALA has assessed the measurement capability of the laboratory and its traceability to recognized national standards Start: 19.8 "C End: 19.9'C Slarl: 22.0 o/o End:22.0 o/o Start: 20.0'C End: 20.'l "C Slarl:22.0 o/o End:22.0 o/o As Found Calibration Date: As Left Galibraton Date: lssue Date: 20-MaF2024 20-Mar-2024 20-Mar-2024 RequestedNextCalibrationtlate: 31-Mar-2025 Authorlzed A2tA Slgnabry:lZ-c=."-- Chris Carson Software Ve6ion: 1.23.2,283 Report VeGion: 2.19.3 Fom Number: AF 1702111.0 O METTLER TOLEOO This is an original document and may not be partially reproduced without th€ written pemission of th€ issuing calibration laboratory. Page 1 ofS 9of22 Calibration Cerliff cate lD NA1 548-076-032024-ACC-USL METTTER TOLEDO Service Measurement Results Repeatability T6st Load: 100 g 1 100.0003 g '100.0001 g 2 100.0003 g 100.0001 g 3 100.0004 g 100.0002 g 4 100.0003 g 100.0002 g 5 100.0002 g 100.0001 g 6 100.0002 g 100.0001 g 7 100.0003 s '100.0000 g 8 100.0002 g 100.0001 g I '100.0002 g 100.0002 g 10 '100.0001 g '100.0001 g O As FoundI As Left 1 (Test Point) :Sd 4d. 3d. 2d. .r ' O id.n^.Y Iqc .' \-/ .o ,'o'oAb Siandard;Jil"; | 0.00008s I 0.00006s Eccentricity 6 The "d" in the graph represents the readability of the range/interual in which the test was performed. The results of this graph are based upon the absolute values of the differences from the mean value. Test Load:50 g Ma)dmum 0.0002s | 0.0000sDevlaton As Found As Left The "d" in the graph represents the readability of the range/interval in which the test was performed. Software Version:'1.23.2.283 Report Version: 2.1 9.3 Form Number: AF1702Lrl.0 @ METTLER TOLEDO This is an original document and may not be partially reproduced without the written permission of the issuing calibration laboratory. Page 2 of 5 1O ot 22 CalibraUon Cefficate lD NA 1 548-076-032024-ACC-USL METTTER TOTEDO Service Enor of lndication As Found N/A 0.0000 g 0.0000 g 0.0000 g 0.18 mg 2 2 N/A 20.0000 g 20.0001 g 0.0001 g 0.22m9 2 3 2og 20.0000 g 20.0001 g 0.0001 g 0.22m9 2 4 4og 20.0000 g 20.0001 g 0.0001 g 0.22m9 2 5 6og 20.0000 g 20.0001 g 0.0001 g 0.22m9 2 o 8og 20.0000 g 20.0002 g 0.0002 g O.22mg 2 N/A 60.0000 g 59.9999 g -0.0001 g 0.37 mg 2 8 N/A 100.0001 g 100.0003 g 0.0002 g 0.52 mg 2 o N/A 120.0001 g 120.0004 g 0.0003 g 0.63 mg 2 As Left 1 N/A 0.0000 g 0.0000 g 0.0000 g 0.14 mg 2 2 N/A 20.0000 g 20.0000 g 0.0000 g 0.16 mg 2 3 2og 20.0000 g 20.0000 g 0.0000 g 0.16 mg 2 4 4og 20.0000 g 20.0000 g 0.0000 g 0.16 mg 2 5 6og 20.0000 g 20.0001 g 0.0001 g 0.16 mg 2 o 8og 20.0000 g 20.0001 g 0.0001 g 0.16 mg 2 7 N/A 60.0000 g 60.0000 g 0.0000 g 0.20 mg 2 8 N/A 100.0001 g 1 00.0002 g 0.0001 g 0.25 mg 2 9 N/A 120.0001 s 120.0003 g 0.0002 s 0.29 mg 2 O AsFound t AsLefr For improved legibility of the graphics only increasing measurement points are shown and measurement points close to zero are not displayed. Calibration Polnts lgl The uncertainty stated is the expanded uncertainty at calibration obtained by multiplying the standard combined uncedainty by the coverage factor k - which can be larger than 2 according to ASTM E898 and EUMMET cg- 18. The value of the measurand lies within the assigned range of values with a probability of approximately 95%. The user is responsible for maintaining envlronmental conditions and the settings of the weighing instrument when it was calibrated. The results of this calibration certificate relate only to the calibrated item. 15r-* r a.---.-., O na E co-Go- tr o oE -0 5 *-'----- uJ L .1- - . - i L ,1 5 -l---. 120 Software Version: 1.23.2.283 Report Vereion: 2.19.3 Fom Number: AF'1702Lr1.0 O METTLER TOLEDO This is an original document and may not be partially reproduced without the written permission of ths issuing calibration laboratory. Page 3 of 5 11 of 22 Calibratlon Certfl cato lD NA1 548-076-032024-ACC-USL METTTER TOLEDO Service Test Equipment All weights used for metrological testing are traceable to national or international standards. The weights were calibrated and certified by an accredited calibration laboratory. WelghtSet 1: OIML E2 Weight Set No.: Certificate Number: Remarks 2010 Date of lssue:27-Deo2023 Calibration Due Date: 31-Oec-2024220741954-1 NiA End of Accrcdibd Secffon The information below and any attachments to this calibration certificate are not part of the accredited calibration. Software Ve6ion: 1.23.2.283 Report VeBion: 2.19.3 Fom Number; AF1702Lr1.0 @ METTLER TOLEOO Ihis is an original document and may not be partially reproduced without the written permission of thc lssuing calibration laboratory. Page 4 of 5 12 of 22 Calibraflon Cortficato lD NA1 548-076-032024-ACC-USL METTTER TOLEDO Service Measurement Uncertainty of the Weighing lnsbument ln Use Stated is the expanded uncertainty with k=2 in use. The formula shall be used for the estimation of the uncertainty under consideration of the errors of indication. The value R represents the net load indication in the unit of measure of the device. Temperature coefficient for the evaluation of the measurement uncertainty in use: Temperature range on site for the evaluation of the measurement uncertainty in use: Lineadzation of Uncertalnty Equation 2.0.10'6/K To optimize the stability of the linearization, besides of the zero load only increasing measurement points with a test load of 5% of the measurement range or larger are taken for the calculation of the linear equation. Absoluta and Relalive Measurement Uncertalnty ln Use forVadous Net lndications (Examples) 4K aQ' >E6iEo cf, .. .E c 2." 0E] a .g6Eo :) o56 50 75 Weighing Range [%] As Found 0 c001 0 001 As Left 0! 1 Reading lgl 001 r00 Software Ve6ion: 1,23.2,243 Report VeEion: 2.19.3 Fom Number: AF1702Lr1.0 O METTLER TOLEDO This is an original document and may not be partially reproducod without tho writlen permission of th€ issuing calibration laboratory. Page 5 of 5 13 ot 22 Attachment to Calibration Csr0ficate: NAI 548-076-032024-ACGUSL Manufacturer Tolerance Assessment METTTER TOTEDO Service Man ufactu rer Tolerance Assessment Assessment done without considering measurement uncertainty. The measurements from the attached calibration certificate were assessed against METTLER TOLEDO tolerances defined in SOP'Test and Measurement Procedures for METTLER TOLEDO balances, Document: 10000018502. As Found As Left { { { { { { Overall Repeatability Eccentricity Linearity Sensitivity N/A Measurement Results Repeatability Teet load: 100 g 1 100.0003 g 00.0001 g 2 100.0003 g 00.0001 g 3 100.0004 g 00.0002 g 4 100.0003 s 00.0002 g 5 100.0002 g 00.0001 g 6 100.0002 g 00.0001 g 7 100.0003 g 00.0000 g 8 100.0002 g 00.0001 g I 100.0002 g 00.0002 g 10 100.0001 g 00.0001 g Standad Devldon 0.0m08 g 0.(xxx)6 g Tolerance 0.00010 g {0.00010 g { Software Version: 1 -23.2.283 Report Version: 2.1 9.3 Fom Number: AF'1702Lr1.0 @ METTLER TOLEOO This is an original document and may not be partially reproduced without th€ written p€rmission of the lssuing calibration laboralory. Page 1 of2 14 ot 22 Attachment to Calibratlon Cerllficate: NA1 548-076-032024-ACC-USL Manufacturer Tolerance Assessment METTTER TOLEDO Service Eccentricity Test Load:50 g Maximum Deviation 0.0002 g 0.0000 g Toloranco 0.0m30g {0.qD30g { The maximum deviation is determined as the absolute value of the largest deviation from the center. Linearity - Difierential Method As Found 2 NiA 20.0000 g 20.0001 g -0.00002 g 3 20g 20.0000 s 20.0001 g -0.00004 s 4 40g 20.0000 s 20.000't g -0.00006 g 5 6os 20.0000 g 20.0001 g -0.00008 g 6 80s 20.0000 g 20.0002 g 0.00000 g 8 N/A 100.0001 g 100.0003 g N/A The As Found Sensitivity Tolerance is only valid if the device has been adjusted before the test. As Left -inearltv Devlation 0.00008 g .lnearltv Tolerance 0.0002 g { -lnEarlty Dovlatlon 0.00012 g -ln6arity Toloranc6 o.ooo2g { The values in column "Deviation" and the "Linearity Deviation" * This point was used to satisfy the sensitivity requirement. lensltlvity Devlation 0.0002 g lensltlvlty Tolerance N/A Sensltlvlty Devlatlon 0.0001 g JensitivU Tolerance o.ooosg { ate zero point offset and sensitivity error compensated. 2 N/A 20.0000 g 20.0000 g -0.00004 s 3 2og 20.0000 g 20.0000 g -0.00008 g 4 4og 20.0000 g 20.0000 g -0.000't2 g 5 6og 20.0000 s 20.0001 s -0.00006 g b 8os 20.0000 g 20.000'l g 0.00000 g 8.N/A '100.0001 g '100.0002 g N/A Software Version: 1,23.2.283 Report Version:2.19.3 Fom Number: AF1702111.0 @ METTLER TOLEDO This is an original document and may not b6 partially reproduced without lhe written permission of the issuing @libration laboratory. Page 2 of 2 15 of 22 Calibration Certifi cats lD NAI 548-078-032024-ACC-USL MefllerToledo, LLG 1900 Polaris Parkway Columbus, OH43240 1.8OO.METTLER Customer 0h IAccREDITEDI METTTER TOTEDO Accredited by the American Association for Laboratory Accreditation (A2LA) CALIBRATION CERT #1 788.01 ISO 17025 Accredited ANSYNCSL Z54Gl Accredited Accu racy Cal i bration Certifi cate Alliance Source Testing 5530 Marshall St Company: Address: Crty: Zp / Po6tal: S:tata / Provlnce: Weighing Device Contad:Eric Grosjean 80002-3 1 08 Colorado Manufacfurcr: Model: Sedal No.: Building: Floon Room: Denver T8-6201 lmfumentTyrye: Asset Number Terminal Model: Temlnal Serial No.: Termlnal Asset No.: Weiqhinq lnstrument 17904189 6200 g 0.1 g N/A Procedure Calibneton Guideline: METTLER TOLEDO Wotk lnshuc'tion: ASTM E898 - 20 30260953 v1.72 This calibration certificate including procedures and uncertainty estimation also complies with EURAMET calB v 4.0. This calibration certificate contains measurements for As Found and As Left calibrations. The sensitivity/span of the weighing instrument was adjusted before As Left calibration with a builFin weight. ln accordance with EURAMET cg-18 (11/2015), the test loads were selected to reflect the specific use of the weighing device or to accommodate specific calibration conditions. Environmental conditions have been verified to ensure the accuracy of the calibration. This certificate is issued in accordance with the conditions of accreditation granted by MLA, which is based on ISO/IEC 17025. A2LA has assessed the measurement capability of the laboratory and its traceability to recognized national standards. Start: '19.7'C End: 19.6'C Start: 23.0 % End: 23.0 % Start: 19.7 "C End: 19.7'C Start: 23.0 % End:.23.O o/o As Found Calibrafion Dab: As Lrft Calibnaton Dato: lssue Date: Requ*t€d Next Calibration Date: 20-Mar-2024 Authofted A2[A Signabry:-<r z-zlz (----\ 2O-Mar-2O24 20-Mar-2024 Chris Carson 31-Mar-2025 Software VeEion : 1.23.2.283 Report VeBion: 2. 19.3 Form Number; AF1702111.0 @ METTLER TOLEDO This is an original document and may not be partially reproduced without the written permisslon oflhe issuing calibration laboratory. Page '1 of 4 16 of 22 Calibraflon Certficab lD NA l 548-078-032024-ACC-USL METTTER TOIEDO Service Measurement Results Repeatability Test [oad:2000 g O As FoundI As Left 1 (Test Point) >6d 4d. 3d 2d. ld. o Standard 0.00s | 0.00gDevlaton Eccentricity I . 4 The "d" in the graph rspresents the readability of the range/interual in which the test was performed. The results of this graph are based upon the absolute values of the differences from the mean value. (o(.) lrl .OOjilo Tast Load:2000 g Maxlmum;,'"d I o.le | 0.1s The "d" in the graph represents the the test was performed. As Lefr readability of the range/interval in which Enor of lndication AB Found As Found ,|o.o g o.o s o.o g 0.06 g 2 2 1000.0 g 1000.0 g o.o g 0.09 g 2 3 3000.0 g 3000.1 g 0.1 g 0.12 g 2 4 4000.0 g 4000.2 g 0.2 g 0.14 g 2 5 6000.0 g 6000.2 g 0.2 g 0.19 g 2 Software Ve6ion : 1.23.2 -283 Report Version: 2,19.3 Form Number: AF17021r1.0 @ METTLER TOLEDO This is an original document and may not be partially reproduced without tho written permission of the issuing calibration laboratory. Page 2 of 4 17 of 22 Calibmtion Certifi cate lD NAI 548-078-032024-ACC-USL METTTER TOTEDO SerVice As Left 1 o.o g o.o s o.o g 0.06 g 2 2 1000.0 g 1000.0 g o.o g 0.09 g 2 3 3000.0 g 3000.0 g o.o g 0.12 g 2 4 4000.0 g 4000.1 g 0.'1 g 0.14 g 2 5 6000.0 s 6000.1 g 0.1 g 0.19 g 2 0 co'ao .9oc o o U 06 r'-- ",1 I r)2+ I (l+ I i i .o2: l l I .oa-l O AsFound a As t'eft For improved legibility of the graphics only increasing measurement points are shown and measurement points close to zero are not displayed. "o.o -1 o - -- rloo 3ooo 4ooo 6ooc Calibration Points {gl The uncertainty stated is the expanded uncertainty at calibration obtained by multiplying the standard combined uncertainty by the coverage factor k - which can be larger than 2 according to ASTM E898 and EURAMET cg-18. The value of the measurand lies within the assigned range of values with a probability of approximately 95%. The user is responsible for maintaining environmental conditions and the settings of the weighing instrument when it was calibrated. The results of this calibration certificate relate only to the calibrated item. Test Equipment All weights used for metrological testing are traceable to national or international standards. The weights were calibrated and certified by an accredited calibration laboratory. Weight Set 1: OIML Fi Weight Set No.: Certificate Number: Remarks 685 Date of lssue: Calibration Due Date: 12-Jan-2023 220U2893-1 3'l-Jan-2025 End of Acqedited Section The information below and any attachments to this calibration certificate are not part of the accredited calibration. Software Ve6ion: 1.23.2.2A3 Report Version: 2.19.3 Fom Number: AF1702111.0 O METTLER TOLEDO This is an original document and may not be parlially reproduc€d without the written permission of the issuing calibration laboratory. Page 3 of 4 18 ot 22 Calibration Certifi cate lD NA1 548-078-032024-ACC-USL METTTER TOIEDO Service Measurement Uncertainty of the Weighing lnstrument in Use Stated is the expanded uncertainty with k=2 in use. The formula shall be used for the estimation of the uncertainty under consideration of the errors of indication. The value R represents the net load indication in the unit of measure of the device. Temperature coefficient for the evaluation of the measurement uncertainty in use: Temperature range on site for the evaluation of the measurement uncertainty in use: LlneaEation of Uncertainty Equation 6.0.10.6/K 6K To optimize the stability of the linearization, besides of the zero load only increasing measurement points with a test load of 5% of the measurement range or larger are taken for the calculation of the linear equation. Absolute and Relatlve Measurcment Uncertainty in Use brVarious Net lndbaflons (Examples) 50 75 Weighing Range [%l As Found Reading [9) Li.l *';'6 r.!o c:)o .'- .g a :i o .sGEo f 56 ai. Software VeEion: 1.23.2,283 Report Vereion: 2.19.3 Fom Number: AF'1702111.0 @ METTLER TOLEDO This is an original document and may not be partially reproduced without the written permission of the issuing calibration laboratory. Page 4 of 4 19 ol 22 Attachment to Calibration Cefficate: NA1 548-078-032024-ACC-USL Cuslom Tolerance Assessment METTTER TOTEDO Service Custom Tolerance Assessment Assessment done without considering measurement uncertainty. One or more of the measurements from the attached calibration certificate were assessed against customer-defined tolerances. Overall Repeatability Eccentricity Error of lndication Measurement Resulb Repeatability As Found ./ { { { As Left ./ { { ./ Test [oad:2000 g Standard Devladon 0.00 g 0.OO S Tolsmnce 0.10 s {0.10s { Eccentricity Test Load:2@0 g Maldmum Devlaton 0.1 g 0.1 g Tolerance 0.3s {0.3g { Soltware Version: 1.23.2.283 Report Version:2.19.3 Fom Number; AF1702111.0 O METTLER TOLEOO This is an original document and may not be partially reproduced without the written pemission of the issuing calibration laboratory, Page 1 of 2 20 ol 22 Altacfi ment b Callbratlon Ceffi cate: NA1 548-078-032024-ACC-USL Custom Tolerance Assessment METTIER TOLEDO Servrce Enor of lndication As Found As L€ilT Softwar€ Vereion: 1.23.2.283 Report Ve6ion:2.19.3 Fom Number; AF1702Lrl.0 @ METTLER TOLEDO This is an original dodment and may not be partially reproduced without the writlen permission of th€ issuing @libration laboratory. Page 2 ol 2 21 of22 plnffiirc.e TECHNiCAL GROUP QA/QC Data lacaaion Rio Tinto Ketrnsott - Magna' UT Source Gold/Silver Rsovery BE (REF0l0) Projet No. AST-2024-1032 Parameter PMlo Date Nozle lD NOZZIe UEmercr (tn., #l #2 #3 Dn (Average) Difference Criteria Material 3/15/24 ss2 o.225 o 225 o 225 o225 o 000 I 0.004 in SS Date Pitot ID ljvidence of damase? trvidence of mis-alisnment? LAIOTAUOn Or Panoir rmrircd? 3/15/24 AirData Pitot I no no Date Probe or TLa,il^^^nhta !n Reference Indicsted Difference Criteria Probe Length 1/15/24 PR703-l 250 0 250.O O.tr/o r l.5 % (absolute) Field Bairnce Chek Date $fi5n4 Balmce lD:sa288rm6 Ce.tified Weight ID SLC.IKG.3 Certified Weight (g):r 000_0 Meoued Weight (g);999.8 Weight Difference (g):o-2 Date Barometric Prcsure f,viderce of Reading Verified or Westher Station lrcation 3/15/24 Weather Station NA NA NA SLC Int. Airport Dat€Meter Box ID Positive Prmsure Lesk Check 3/t5/24 M5-31 Pass Reagetrt Lot#Field Prep Field Ial Date By Dl Water 232650 No NA 3/ts12024 Fisher Hexanes 218359 No NA 3lLs/2024 Fisher Acetone 230620 No NA 3/Ls/2024 Fisher Posttst Purpe Run 1 Run 2 Run 3 Flow Rale /]nm\Flow Rate flnm) ,5 Flow Rate (lom): 15 Clock Time Temoerature Clock Tme TemDerature Clock Time Tmnemhre I 0:30 10:45 I l:0O l l:15 llr3O 69.0 69.0 69.0 69.0 69.0 l:45 2.O{) 2.t5 2:30 2.45 69.0 69.0 69.0 69.0 69.0 I 3:15 I 3:30 l3:45 l4:00 l4: l5 69.0 69.0 69.0 69.0 5SO DGM Calibration-Orifices Document lI 620.004 Revisior 23.0 Effective Date 1/25/23 lssuing Depaftment Tech Seruices Paq€lof 1 Equipment Detail - Dry Gas Meter Console lD: w5-31 Meter S/N: 19772846 Critical Orifice S/N: 1330 Calibration Detail lnitial Barometric Pressure, ln. Hg (Pb) Final Barometric Pressure, in. Hg (PbF) Average Barometric Pressure, in. Hg (Pb) 25.48 25.48 25.48 Critifcal Orifice lD (Y) K' Factor, ft3.Rr/2 / in. wc.min (K ) Vacuum Pressure, in. Hg (V, lnitial DGM Volume, ft3 (Vm) Final DGM Volume, ft3 (VmF) Total DGM Volume, ft3 (Vm) 1 330-31 0.8429 13.0 804.200 821.062 16862 1 330-31 1330-25 0.6728 15.0 836 100 845.037 8 937 1330-25 1330-19 0.5186 15.0 857.800 864.837 7.037 1 330-19 0.8429 0.673 0.519 13.0 821.062 832.308 11.246 15.0 845.037 853.963 8.926 15.0 864.837 871.833 6.996 Ambient Temperature, 'F (Ta) lnitial DGM Temperature, 'F (Tm) Final DGM Temperature, "F (Tm, Averaqe DGNy' Temperature, 'F (Tm) 75 74 74 14 76 74 75 75 77 75 75 75 77 75 76 76 77 76 76 76 77 76 76 76 Elapsed Time (O) Meter Orifice Pressure, in. WC (AH) Standard Meter volume, ftr (Vmstd) Standard Critical Orifice Volume, ft3 (Vcr) Meter Correction Factor (Y) Tolerance Orifice Calibration Value (AH @) Tolerance Orifice Cal Check 15.00 3.50 14.3444 13.9321 0.971 0.001 1.941 0 023 10.00 3.50 9.5580 9.2794 0.971 0 001 1 943 0.021 10.00 2.20 7.5603 7.3999 0.979 0.007 1.912 0.052 10.00 2.20 7.5439 7.3999 0.981 0.009 1 910 0.054 10 00 140 5.9282 5.7039 0.962 0.010 2.039 0.075 '10.00 1.40 5.8937 5.7039 0.968 0.004 2.039 0.075 0.90 1.54 152 Metercorrection Factor m 0.972 Orifice Calibration Value (AH @)1.964 Positive Pressure Leak Check Yes Equipment Detail - Thermocouple Sensor Reference Calibrator Make: OMEGA Reference Calibrator Model: CL234 Reference Calibrator S/N: I-197207 Calibration Detail Reference Temp Display Temp.Accuracy Difference r oR r oR Vo oF 0 68 100 460 528 560 0 66 98 460 526 558 0.0 0.4 0.4 0 2 2 223 248 683 708 733 223 249 274 683 709 734 0.0 -0.1 -01 0 1 1 300 400 500 600 700 800 900 1,000 1,100 1,200 760 860 960 1,060 1,160 1,260 i,360 1,460 1,560 1,660 300 399 498 600 701 801 901 1,002 1,102 1,202 760 859 958 1,060 1,161 1,261 1,361 1,462 1,562 1,662 O,C 0.1 0.2 0.c -0. -0 -0. -0. -0 -0. 0 1 2 0 1 1 1 2 2 2 Personnel Stacey Cunninqham Calibration By: Calibration Date: Reviewed By: RYAN LYONS 6/20/2023 From! Douohtv. lason (RTKC) To: Dalv. Sean 3 (RTKC) Subiect: RE: Operations for the Gold / Silver Baghouse on 3/15 Date: Thursday, April 25, 2024 4:L9:I5PM Hello Sean, Yes, I was here on 3/15. After speaking with Mike Swensen, my silver caster, we recall that we did not have enough sands for a silver cast on 3/15 so we did a "silver melt" in the south furnace to simulate as best we could a silver cast for the baghouse stack test. The actual silver cast, S32, was completed on3lt7. Thanks, Jason From: Daly, Sean 3 (RTKC) <Sean.Daly3@riotinto.com> Sent: Friday, April 19, 2024 5:32 PM To: Porter, Jeff (RTKC) <Jeff.Porter@riotinto.com>; Doughty, Jason (RTKC) <Jason.C. Doughty@ rioti nto.com> Cc: Bella rd, And rew ( RTKC) <And rew.Bellard @ riotinto.com> Subject: Operations for the Gold / Silver Baghouse on 3/15 Hello Jeff and Jason, For the stack test report, I will need a summary of the gold / silver furnace operations during the March t5th (when we were doing the stack test). Can you send me a quick email with a summary of the material that was produced that day? I need this summary for the report that will be submitted. I have included an example that we attached to the report the last time we tested the baghouse. Thanks, Sean Daly Senior Environmental Advisor Rio into Kennecott 4700 Daybreak Parkway, South Jordan, UT 84009 (Mailing) 11500 West 2100 South, Magna, UT 84044 (Refinery) T (801) 204-2563 M (801) s13-44s6 sean.dalv3 @riotinto.com _qrAH DEPARTTTTENT oFEIflRONMEMAL OUAITiY [,AY - I 2024 DMSION OF AR QUALTY