HomeMy WebLinkAboutDAQ-2024-0080591
DAQC-470-24
Site ID 10346 (B4)
MEMORANDUM
TO: STACK TEST FILE – KENNECOTT UTAH COPPPER – Smelter
THROUGH: Harold Burge, Major Source Compliance Section Manager
FROM: Paul Morris, Environmental Scientist
DATE: May 15, 2024
SUBJECT: Sources: Filter Plant Wet Feed Conveyor Baghouse (SME001), Wet Feed
Storage Building Baghouse (SME002), Wet Feed Conveyor Belt
Transfer Point Baghouse (SME003), and Wet Feed Bin(s)
Baghouse (SME004)
Contact: Sean Daly: 801-204-2563
Location: Kennecott Utah Copper Smelter, 12000 West 2100 South,
Magna, Salt Lake County, Utah
Test Contractor: Alliance Technical Group, LLC
FRS ID #: UT0000004903500030
Permit/AO#: Title V Operating Permit 350003004 dated September 18, 2020
Date of Last Revision: September 27, 2022, and
DAQE-AN103460058-20
Subject: Review of Stack Test Protocols dated May 8, 2024
On May 13, 2024, Utah Division of Air Quality (DAQ) received a protocol for testing of the Kennecott
Utah Copper Filter Plant SME001, SME002, SME003, and SME004 in Magna, Utah. Testing will be
performed June 11-14, 2024, to determine compliance with Title V Operating Permit, Conditions II.B.2.a,
II.B.3.a, II.B.4.a, and II.B.5.a emissions.
PROTOCOL CONDITIONS:
1. RM 1 used to determine sample velocity traverses: OK
2. RM 2 used to determine stack gas velocity and volumetric flow rate: OK
3. RM 3A used to determine dry molecular weight of the gas stream: OK
4. RM 4 used to determine stack gas moisture content: OK
5. RM 5/202 used to determine used to determine TPM emissions: OK
6. RM 201A/202 used to determine PM10 emissions: OK
DEVIATIONS: No deviations were noted.
CONCLUSION: The protocols appear to be acceptable.
RECOMMENDATION: Send attached protocol review and test date confirmation notice.
6 , 3
Rio Tinto Kennecott Utah Copper, LLC
4700 Daybreak Parkway
South Jordan, Utah 84009
Mr. Bryce Bird - Director
Department of Environmental Quality
Division of Air Quality
P.O. Box 144820
Salt Lake City, Utah 84114-4820
May o6,zoz4
Attention: Mr. Paul Morris
I,TAH DEPARruENT OF
ENVIRONMENTAL OUAI.ITY
lrlY - o ,,!.1/
rv; r\ I l) Ll.tL4
I and
DiviSiON
dcl r lereJ
OF AtR QUALITV
Subject:Kennecott Utah Copper Refinery
Title V Permit *sooogooo4
Approval Order DAQE-ANorora6oosS-zo
StackTest Protocols:
Hydrometallurgical Metals Recovery (REF oo6)
Hydrometallurgical Silver Production (REF oo-)
Gold/Silver Recovery Baghouse (REF oro)
Dear Mr. Bird:
As required by Title V operating permit g5ooogooo4 and Approval Order DAQE-ANro346oo5B-zo,
Kennecott Utah Copper performed stack testing on the Silver Production Scrubber (REFooT), Precious
Metals Recovery Scrubber (REFoo6), and Gold / Silver Recovery baghouse (REForo) March r3th - 15th
zoz4.Thetesting was conducted following procedures outlined in 4o CFR 6o, AppendixA. The summary
reports for each source of the testing procedures and test results are attached for submittal within 6o days
of completion of the testing. Results of the testing demonstrate each source (REFoo6, REFooT, and
REForo) are in compliance with the permit emission limits.
Based on information and belief formed after reasonable inquiry, the statements and information contained
in this document are true, accurate, and complete (R3o7-4r5-5d).
Should you have any questions or need further information regarding these reports, please feel free to
contact me or Sean Daly at Bot-zo4-2563.
Sincerely,
Dustin Morris
Manager Refinery / Rail
Metals
Attachments (3): Testing Reports
Rio Tinto Kennecott Utah Copper, LLC. 4700 Daybreak Parkway, South Jordan, Utah 84009.
,xJH",?,;'#H'S^3i,
Source Test Report
Rio Tinto Kennecott Hqnd DO [r ''t t.red
4700 Daybreak Parkway [li''r:l'ioN oF AIR ouALlT"
South Jordan, UT 84095
Source Tested: Hydrometallurgical Precious Metals
Recovery GEF006)
Test Dates: March 13,2024
Proj ect No. AST- 2024-1 032-00 1
Prepared By
Alliance Technical Group, LLC
3683 W 2270 S, Suite E
West Valley City, UT 84120
pJ/lArEe
IECIlNICAI GROL]P Source Test Report
Test Program Summary
Regulatory Information
Permit Nos.
Source Information
UDAQ Approval Order DAQE-AN0103460058-20
Title V Operating Permit 3500030004
Source Name
Hydrometal lurgical Precious
Metals Recovery
Contact Information
Source ID
REFOO6
Target Parameters
I{zSOa, SOz, NH:, HCl, Pb
Test Location
Rio Tinto Kennecott
2500 South 9180 West
Magna, UT 84044
Facility Contacts
Jenny Esker
j enny.esker@riotinto. com
($ot) s69-6494
Sean Daly
sean.daly3 @riotinto. com
(801)204-2s63
Test Company
Alliance Technical Group, LLC
3683W 2270 S, Suite E
West Valley City, UT 84120
Project Manager
Charles Horton
charles.horton@alliancetg.com
(3s2) 663-7s68
Field Team Leader
Tobias Hubbard
tobias.hubbard@alliancetg.com
(605) 64s-8s62
QA/QC Manager
Kathleen Shonk
katie.shonk@alliancetg.com
(812) 4s2-478s
Report Coordinator
Delaine Spangler
delaine. spangler@alliancetg.com
Report Reviewer
Sarah Perry
sarah.perry@alliancetg.com
Analytical Laboratory
Interpoll Laboratories lnc. now Alliance
Technical Group, LLC
4500 Ball Rd. NE
Circle Pines, MN 55014
Gregg Holman
(763)786-6020
AST-2024-1032-001 RTK - Magna, UT Page i
pj/lTarpe
Source Test Report
Cerlfrcation StatementTECIINICAL GROUP
Alliance Technical Group, LLC (Alliance) has completed the source testing as described in this report. Results
apply only to the source(s) tested and operating condition(s) for the specific test date(s) and time(s) identified within
this report. All results are intended to be considered in their entirety, and Alliance is not responsible for use of less
than the complete test report without written consent. This report shall not be reproduced in full or in part without
written approval from the customer.
To the best of my knowledge and abilities, all information, facts and test data are correct. Data presented in this
report has been checked for completeness and is accurate, error-free and legible. Onsite testing was conducted in
accordance with approved intemal Standard Operating Procedures. Any deviations or problems are detailed in the
relevant sections in the test report.
This report is only considered valid once an authorized representative ofAlliance has signed in the space provided
below; any other version is considered draft. This document was prepared in portable document format (.pdf) and
contains pages as identified in the bottom footer of this document.
4t22t2024
Charles Horton, QSTI
Alliance Technical Group, LLC
Date
RTK - Magna, UTAST-2024-1032-001 Page ii
putErpe
TECIINICAL GROUP Source Test Report
Table ofContents
TABLE OFCONTENTS
1.1 Source and Control System Descriptions. ............... l-1
1.3 Site-Specific Test Plan & Notification.................. ....................... l- 1
3.1 U.S. EPA Reference Test Methods I and2 - Sampling/Traverse Points and Volumetric Flow Rate........ 3-l
3.2 U.S. EPA Reference Test Method l2-Lead..... .....3-l
3.3 U.S. EPA Reference Test Method 320 - Moisture Content / Sulfur Dioxide / Ammonia / Sulfuric Acid /
3.4 Quality Assurance/Quality Control - U.S. EPA Reference Method 320 .............. .................3-2
LIST OF TABLES
Table2-2: Summary of Results, Continued.... ......................2-2
APPENDICES
Appendix A Sample Calculations
Appendix B Field Data
Appendix C Laboratory Data
Appendix D Quality Assurance/Quality Control Data
Appendix E Process Operating/Control System Data
AST-2024- I 032-00 l RTK - Magna, UT Page iii
UTAH DEPARTMENT OF
ENVIRONMENTAL OTJAUTY
l\/lAY _ B 2C24
DIVISION OF AIR QUALITY
ffiAliatpe
I t..i I (.(rliCi.lt Source Test Reporl
Introduction
1.0 Introduction
Alliance Technical Group, LLC (Alliance) was retained by Rio Tinto Kennecott (RTK) to conduct compliance
testing at the Refinery located in Magna, Utah. Portions of the facility are subject to provisions of the Utah
Department of Environmental Quality, Division of Air Quality (UDAQ) Approval Order (AO) DAQE-
AN0103460058-20 and the Title V Operating Permit 3500030004. Testing was conducted to determine the
emission rates of sulfuric acid (HzSO+), sulfur dioxide (SO2), ammonia (NH3), hydrogen chloride (HCl), and lead
(Pb) at the exhaust of Hydrometallurgical Precious Metals Recovery (REF006).
1.1 Source and Control System Descriptions
The RTK Refinery, located near the Smelter, receives anode copper produced at the Smelter and uses an electrolytic
process to obtain the high purity cathode copper. The copper anodes from the smelter are submerged in tanks
containing an electrolyte solution in batch operations. An electric current is applied to the tank for a l0-day period
during which copper ions migrate from the anode to form a cathode of 99.99Yo pure copper. Precious metals (gold
and silver) are recovered from the electrolytic refining slimes removed from the tanks in a series of
hydrometallurgical operations. The Refinery copper refining process requires steam to maintain electrolyte
temperatures and prevent the degradation of the electrolyte tanks as well as support the precious metals process. To
supply steam, the Refinery operates a CHP unit as a primary source of steam and maintains two Refinery Boilers
(Boilers #l and #2) as back up steam. Boiler #2 has recently been retrofit with an ultra-low NOx burner. Boiler #l
will be decommissioned once stack testing is complete on Boiler #2.
1.2 Project Team
Personnel involved in this project are identified in the following table.
Table l-l: ProjectTeam
1.3 Site-Specific Test Plan & Notification
Testing was conducted in accordance with the Site-Specific Test Plan (SSTP) submitted to UDAQ by RTK.
1,4 Test Program Notes
As per guidance fiom the Operations Manager, Run I is based on an estimated moisture of 7%o.
RTK Personnel
Sean Daly
Jenny Esker
Alliance Personnel
Tobias Hubbard
Alan Barrios
Dillon Brown
AST-2024- l 032-00 l RTK - Magna, UT Page l-l
pillhrpEr
TECI]NICAL GROUP Source Test Report
Summary of Results
2.0 Summary of Results
Alliance conducted compliance testing at the RTK Refinery located in Magna, Utah on March 13 - 15,2024.
Testing consisted of determining the emission rates of HzSOa, SOz, NH:, HCl, and Pb from the exhaust of REF006.
Tables 2-1 and 2-2 provide summaries of the emission testing results with comparisons to the applicable UDAQ
permit limits. Any differences between the summary results listed in the following tables and the detailed results
contained in appendices are due to rounding for presentation.
Table 2-l: Summary of Results
0.0000061
0.0068
0.0000061
0.0065
0.0000061
0.00s
<1
0.0066
0.36
2
Concentration, grldscf
Permit Limit, grldscf
Percent of Limit, 7o
Emission Rate, lbftr
Permit Limit, lb/hr
Percent of Limit, 7o
0.000006r
0.0066
Concentration, grldscf
Emission Rate, lb/hr
Permit Limit, lb/hr
Percent of Limit, %o
0.000018
0.019
0.0000 r 8
0.020
0.000017
0.019
0.000018
0.019
1.7
I
mmonia Data
Concentration, ppmvd
Emission Rate, lb/hr
Emission Limit, lb/hr
Percent of Limit
0.39
0.0084
0.70
0.016
0.71
0.015
0.60
0.013
0.14
9
Concentration, grldscf
Permit Limit, grldscf
Percent of Limit, 7o
Emission Rate, lb/hr
Permit Limit, lb/hr
Percent of Limit, 7o
0.000020
0.021
0.000021
:-
0.023
0.000021
0.023
0.000021
0.003
I
0.022
0.22
10
RTK - Magna, UTAST-2024-1032-001 Page2-l
TECHNICAL GROUP Source Test Report
Summary of Results
Table2-2: Summary of Results, Continued
Emission Rate, lb/hr
Emission Limit, lb/hr
Percent ofLimitro/o
AST-2024-1032-001 RTK-Magna, UT Page2-2
d;.'Alialrce
i.t,Source Tesl Reporl
Testing lt4elhodology
3.0 Testing Methodology
The emission testing program was conducted in accordance with the test methods listed in Table 3-1. Method
descriptions are provided below while quality assurance/quality control data is provided in Appendix D.
Table 3-1: Source Testing Methodology
3.1 U.S. EPA Reference Test Methods I and 2 - Sampling/Traverse Points and Volumetric Flow Rate
The sampling location and number of traverse (sampling) points were selected in accordance with U.S. EPA
Reference Test Method L To determine the rninimum number of traverse points, the upstream and downstream
distances were equated into equivalent diameters and compared to Figure I - I and Figure 1-2 in U.S. EPA Reference
Test Method l.
Full velocity traverses were conducted in accordance with U.S. EPA Reference Test Method 2 to determine the
average stack gas velocity pressure, static pressure and temperature. The velocity and static pressure measurement
system consisted of a pitot tube and inclined manometer. The stack gas temperature was measured with a K-type
thermocouple and pyrometer.
The Oz and COu concentration were assumed to be ambient for molecular weight and volumetric flow rate
calculations.
Stack gas velocity pressure and temperature readings were recorded during each test run. The data collected was
utilized to calculate the volumetric flow rate in accordance with U.S. EPA Reference Test Method 2.
3.2 U.S. EPA Reference Test Method 12 - Lead
The lead (Pb) testing was conducted in accordance with EPA Reference Method 12. The complete sampling system
consisted of a stainless steel nozzle, stainless steel probe, probe, heated quartz filter, gas conditioning train, pump,
and calibrated dry gas meter. The gas conditioning train consisted of four (4) chilled impingers. The first and
second impingers contained 100 mL of 0.1 N HNO:, the third was initially empty and the last impinger contained
200-300 grams of silica gel. The probe liner and filter heating systems were maintained at a temperature of 120 +
l4"C (248 +25oF), and the impinger temperature was maintained at 20oC (68"F) or less throughout testing.
Following the completion of each test run, the sampling train was leak checked at vacuum pressure greater than or
equal to the highest vacuum pressure observed during the run and the contents of the impingers were measured for
moisture gain. The quartz filter was carefully removed and placed into container l. The probe and nozzle were
rinsed and brushed three (3) times with 0. I N HNO: using a non-metallic brush and these rinses were placed in
container 2. The front half of the filter holder was rinsed three (3) times with 0.1 N HNO: and these rinses were
added to container 2. The contents of impingers 1,2,and 3 were placed in container 4. Impingers 1,2,and 3 along
with the filter supporl, back half of the filter holder and all connecting glassware were triple-rinsed with 0.1 N HNO:
Parameter U.S. EPA Reference
Test Methods NoteslRemarks
Volumetric Flow Rate I &.2 Full Velociw Traverses
Lead 12 lsokinetic Sampling
Moisture Content / Sulfuric Acid / Sulfur
Dioxide / Ammonia / Hvdrosen Chloride
320 FTIR - Continuous Sampling
AST-2024- l 032-00 I RTK - Magna, UT Page 3-l
pulhrpEr
lr lllllO/rl Source Test Reporl
Testing Methodolog,t
and these rinses were added to container 4. All containers were sealed, labeled, and liquid levels marked for
transport to the identified laboratory for analysis.
3.3 U.S. EPA Reference Test Method 320 - Moisture Content / Sulfuric Acid / Sulfur Dioxide / Ammonia
/ Hydrogen Chloride
The concentrations of moisture content, sulfuric acid, sulfur dioxide, ammonia, and hydrogen chloride were determined
in accordance with U.S. EPA Reference Test Method 320. Each source gas stream was extracted at a constant rate
through a heated probe, heated filter and heated sample line and analyzed with a MKS MultiGas FTIR operated by a
portable computer. The computer has FTIR spectra of calibration gases stored on the hard drive. These single component
calibration spectra are used to analyze the measured sample specha. The gas components to be measured were selected
from the spectra library and incorporated into the analytical method. The signal amplitude, linearity, and signal to noise
ratio were measured and recorded to document analyzer performance. A leak check was performed on the sample cell.
The instrument path length was verified using ethylene as the Calibration Transfer Standard. Dynamic spiking was
performed using a certified standard of the target compound or appropriate surrogate in nitrogen with sulfur hexafluoride
blended as a tracer to calculate the dilution factor. All test spectra, interferograms, and analytical method information are
recorded and stored with the calculated analy,tical results. The quality control measures are described in Section 3.4.
3.4 Quality Assurance/Quality Control - U.S. EPA Reference Method 320
EPA Protocol 1 Calibration Gases - Cylinder calibration gases used met EPA Protocol 1 (+l- 2%) standards. Copies
of all calibration gas certificates can be found in the Quality Assurance/Quality Control Appendix.
After providing ample time for the FTIR to reach the desired temperature and to stabilize, zero gas (nitrogen) was
introduced directly to the instrument sample port. While flowing nitrogen the signal amplitude was recorded, a
background spectra was taken, a linearity check was performed and recorded, the peak to peak noise and the root
mean square in the spectral region of interest was measured and a screenshot was recorded.
Pollowing the zero gas checks, room air was pulled through the sample chamber and the line width and resolution
was verified to be at 1879 cm-1, the peak position was entered and the FWHH was recorded (screenshot).
Following these checks, another background spectra was recorded and the calibration transfer standard (CTS) was
introduced directly to the instrument sample port. The CTS instrument recovery was recorded and the instrument
mechanical response time was measured.
Next, stack gas was introduced to the FTIR through the sampling system and several scans were taken until a stable
reading was achieved. The native concentration of our surrogate spiking analyte as recorded. Spike gas was
introduced to the sampling system at a constant flow rate S 10% of the total sample flow rate and a corresponding
dilution ratio was calculated along with a system response time. Matrix spike recovery spectra were recorded and
were within the + 30o/o of the calculated value of the spike concentration that the method requires.
The matrix spike recovery was conducted once at the beginning of the testing and the CTS recovery procedures
were repeated following each test run. The corresponding values were recorded.
AST-2024- I 032-00 I RTK - Magna, UT Page 3-2
plltfrirce
TECHNICAL CNC,UI"'
Location: Rio Tinto Kennecott - Magna, UT
Appendix A
Example Calculations
Source: Hydrometallurgical Precious Metals Recovery (REF006)
Project No.: AST-2024:1032
Run No.: I
Parameter: Pb
Meter Pressure (Pm), in. Hg
AHPm = Pb+
where, ],3S
Pb 25.57 = barometric pressure, in. Hg
AH 4.121 : pressure differential oforifice, in H2O
Pm 25.9 = in. Hg
Absolute Stack Gas Pressure (Ps), in. Hg
Ps = pu* !gwhere, 73,6
Pb L: barometric pressure, in. Hg
Pg -0.05 : static Pressure, in. H2O
Ps4:in.HB
Standard Meter Volume (Vmstd), dscf
17.636xYxVmxPm
Vmstd =where,
Y 0.972 : meter correction factor
Vr@:metervolume, cf
Pm4: absolute meter pressure, in. Hg
Tm 516.7 : absolute meter temperature, oR
vmstd-ZF:dscf
Standard Wet Volume (Vwstd), scf
Vwstd:0.04776 x Vlc
where,
Vlc 38.7 : weight of H2O collected, g
vwstd-ilIF:scf
Moisture Fraction (BWSsat), dimensionless (theoretical at saturated conditions)
,oo.n-(ff5s)
BWSsat =
where,
Ts 4: stack temperature, "F
Ps ___&l!,_: absolute stack gas pressure, in. Hg
BWSsat 0.034 : dimensionless
Moisture Fraction (BWS), dimensionless (measured)
VwstdBWS=-
,nh...f "' - (v*sta + vmsta)
Vwstd 1.825 : standard wet volume, scf
Vmstd
-..1Q!Q[:
standard meter volume, dscf
BWS..;!Q[= dimensionless
Moisture Fraction (BWS), dimensionless
BWS = BWSmsd unless BWSsat ( BWSmsd
where,
BWSsat _.,]QQl!- = moisture fraction (theoretical at saturated conditions)
BWSmsd 0.029 = moisture fraction (measured)
BWS 0.029
Tm
Ps
A/t6r're
TECHNICAL CNOUT'
Appendix A
Example Calculations
Location:
Source:
Project No.:
Run No.:
Parameter:
Rio Tinto Kennecott - Maqna, UT
Hydrometallurgical Precious Metals Recovery (REF006)
AST-2024-1032
Pb
Molecular Weieht (DRY) (Md), lb/lb-mole
Md=
where,
(0.44 x o/oCO2) + (0.32 x o/oOZ) + (0.28(100- o/oCO2 - o/oOZ))
COz 0.0 : carbon dioxide concentration,%o
O, L: oxygen concentration, oZ
Md_2&!_= lb/lb mol
Molecular Weieht (WET) (Ms), Ibflb-mole
Ms=
where,
Md (1 - BWS) + 18.015 (BWS)
Md 28.84 : molecular weight @RY), lb/lb mol
BWS
-..,1!Q[:
moisture fraction, dimensionless
Ms 28.5 : lb/lb mol
Average Velocity (Vs), ftlsec
Vs = 85.49 x Cp x (AVr/z1avg x
where, 1Cp 0.840 : pitot tube coefficient
a Pt"-...-L199-= velocity head of stack gas' (in' H2o)r/2
Tr_;pQ-= absolute stack temperature, oR
Ps@: absolute stack gas pressure, in. Hg
Ms
-!![=
molecular weight of stack gas, lb/lb mol
Vs 245 = fl/sec
Average Stack Gas Flow at Stack Conditions (Qa), acfm
Qa=60xVsxAs
where,
VtL: stack gas velocity, ft/sec
As 6.83 : cross-sectional area ofstack, ft2
Qu.............1E:urrt
Average Stack Gas Flow at Standard Conditions (Qs), dscfm
Ps
Qs = 17.636 x Qa x (1 - BWS) X :
where, \ / Ts
Qa___LQJ!4_: average stack gas flow at stack conditions, acfm
BWS ..;!Q[: moisture fraction, dimensionless
PrA: absolute stack gas pressure, in. Hg
Ts _;pQ-= absolute stack temperature, oR
Qs 8.247 = dscfm
Al6rce
TECHNICAL (]NC,UN
Appendix A
Example Calculations
Location:
Source:
Project No.:
Run No.:
Parameter:
Rio Tinto Kennecott - Magna, UT
Hydrometallurgical Precious Metals Recovery (REF006)
AST-2024-1032
Pb
Yqa =
where,
Dry Gas Meter Calibration Check (Yqa), dimensionless
Vm 72.3 : total meter volume, dcf
Tr.;!]1!!: absolute meter temperature, "R
LH@ 1.964 : orifice meter calibration coefficient, in. H2O
Pb L: barometric pressure, in. Hg
AH urgA: average pressure differential of orifice, in H2O
Md 28.84 = molecular weight (DRY), lb/lb mol
(A H)"'-}![= average squarerootpressure differential of orifice, (in. H2O)r/2
Yqa 1.0 : percent
Volume of Nozzle (Vn), ft3
Y 0.972 : meter correction factor, dimensionless
O 60 : run time, min.
L)xxPm
lrn
VmIsVn --Pc (o.ooruu, xvtc *
where,
Tm
Vn
Isokinetic Sampling Rate (I), %
Tt.................L= absolute stack temperature, oR
Ps_-[!!-= absolute stack gas pressure, in. Hg
Vlc 38.7 = volume of H2O collected, ml
v* ---7J66- = meter volume, cf
Pm 25.87 = absolute meter pressure, in. Hg
Y 0.972 = meter correction factor, unitless
516.7 = absolute meter temperature, oR
7 5 .804 = volume of nozzle, ft3
r=(
where,
)xroo
Vn
0x6OxAnxYs
Vr-]!!}!-:nozzle volume, ft3
e 60.0 : run time, minutes
An 0.00087 : areaofnozzle, ft2
YtL: average velocity, ft/sec
I 98.1 : "/o
NfuTECH N ICAL O ROU P
Location: Rio Tinto Kennecott - Magna, UT
Appendix A
Example Calculations
Source: Hydrometallurqical Precious Metals Recovery GEF006)
Project No.: AST-202,1-1032
Run No.: 1
Parameter: Pb
Lead Concentretion (Cpr), ug/dscm
t,Pb -
Mpn x 35.313
,nh..el'" VmstdM*u$= lead mass, ug
Vmstd ___1QQ!!- : standard meter volume, dscfcru4=ue/dscm
Lead Emission Rate (ERn), lb/hr
MpnxQsx60u'rPb - Vmsfdx4-548+oR
where,
M*4=leadmass,ug
Qs_EZl!Z-= average stack gas flow at standard conditions, dscftn
VmstdJgg!-= standard meter volume, dscf
ERpt 0.00018 = lb/k
elt6rceTECH\ICAL GROUP
Location: Rio Tinto Kennecott - Magna. UT
Appendix A
Example Calculations
wheren
where,
Source: Hydrometallurgical Precious Metals Recovery (REF006)
Project No.: AST-2024- I 032-001
Run No. /lVlethod Run I / Method 320
Run No. I
HzSOr - Outlet Concentration (Cn,so.), ppmvd
Cu,so.*tr,so.--l:-,.lJil
Cr,rq*A: HzSO+ - Outlet Concentration, ppmvw
BWS 0.040 : moisture fraction, unitless
Cu,so. 0.05 : ppmvd
HrSOr - Outlet Concentration (Cmso*), ppmyw
Cn,so.*: Cn,so. X (1 - BWS)
Cr,ro.A: HzSO+ - Outlet Concentration, ppmvd
BV/S 0.040 : moisture fraction, unitless
Cr,ro.*-616-: ppmvw
HrSOr - Outlet Emission Rate (ERs,ss),lb/hr
ED - Cr,so. x MW x Qs x 60 i3 28.32 #
EI(U,SO. -
where,
Cr,trA: HrSOo - Outlet Concentration, ppmvd
MW 98.079 : HzSOr molecular weight, g/g-mole
Qs 8,247 : stack gas volumetric flow rate at standard conditions, dscfrn
ERu,so. 0.0066 : lb/hr
AI6rce
TECH\ICAL GROUP
Location: Rio Tinto Kennecott - Magna, UT
Appendix A
Example Calculations
Sou rce: Hydrometallurgical hecious Metals Recovery (REF006)
Project No.: AST-2024- I 032-00 I
Run No. /lVlethod Run 1 / Method 320
Run No. I
SOz - Outlet Concentration (Cso), ppmvd
crr:#
where,
Cto,* L: SO' - Outlet Concentration, ppmvw
BWS 0.040 : moisture fraction, unitless
cro,-o, : ppmvd
SOz - Outlet Concentration (Cso*), ppmvw
where,
Cso*: C5e, x (1 - BWS)
Cp@: SOz - Outlet Concentration, ppmvd
BWS 0.040 = moisture fraction, unitless
C"6*T=ppmvw
SOz - Outlet Emission Rate (ERse),lb/hr
gpro,: cso'xMWxQsx6o -#2.1?? #
where,
Cro,__1[[: SOz - Outlet Concentration, ppmvd
MW 64.066 : SOz molecular weight, g/g-mole
Qs 8,247 : stack gas volumetric flow rate at standard conditions, dscfm
ERso, 0.019 : lb/hr
N,frirceTECHNICAL ARQUP
Location: Rio Tinto Kennecott - Magna. UT
Appendix A
Example Calculations
Source: Hydrometallurgical Precious Metals Recovery (REF006)
Project No.: AST-2024-l 032-00 1
Run No. ilVlethod Run I / Method 320
Rrn No.
Ammonia - Outlet Concentration (Cxn), ppmvd
CNn,:CNru*
I -BWS
where,C***____L: Ammonia - Outlet Concentration, ppmvw
BWS 0.040 : moisture fraction, unitlessCNru-39-:ppmvd
Ammonia - Outlet Concentration (Cnn*), ppmvw
CNH,*: CNu. x (1 - BWS)
whereo
Cr",_A: Ammonia - Outlet Concentration, ppmvd
BWS 0.040 : moisture fraction, unitless
CNr.r,*--0;37-: ppmvw
Ammonia - Outlet Emission Rate (ERxs"),lb/hr
oo..-_ - CrruxlrAWxQsx6O T*2A.gZ #
-r.NHr -
where,Cur, 0.39 : Ammonia - Outlet Concentration, ppmvd
MW lr.0-31-: NHr molecular weight, g/g-mole
QsT:stackgasvolumetricflowrateatstandardconditions,dscfrnER**-0-00-87i-=lb/hr
Source: Hydrometallurgical Precious Metals Recovery (REF006)
Project No.: AST-2024-1032-001
Run No. /IVlethod Run 1 / Method 320
Run No.
HCI - Outlet Concentration (Cnc), ppmvd
\-xCt -
Cuct*
I -BWS
where,
CHcr* 0.43 : HCI - Outlet Concentration, ppmvw
BWS 0.040 : moisture fraction, unitlessCHS-OJ[-: ppmvd
HCI - Outlet Concentration (Cncn ), ppmvw
uHClw Cg61x (l - BWS)
where,cscr 0.45 = HCI - Outlet Concentration, ppmvd
BWS 0.040 : moisture fraction, unitlessCHCr*--0Jif-: ppmvw
rutffiirceTECHNIOAL (lROUP
Location: Rio Tinto Kennecott - Magna, UT
HCI - Outlet Emission Rate (ERsg), lb/hr
.L
t**,:
where,
Appendix A
Example Calculations
Cnct 0.45
MW 36.46
Qs,
ERHcr
: HCI - Outlet Concentration, ppmvd
: HCI molecular weight, g/g-mole: stack gas volumetric flow rate at standard conditions, dscfin
= lb/hr
Appendix A
Example Calculations
Location Rio Tinto Kennecott - Magna, UT
Source(s) Hydrometallurgical Precious Metals Recovery (BlEAq()
Project No. 24-1032
Date(s) 311312024
CTS Recovery Value (CTSil, %
cTSous x 1oo
cTScyt
Where,
CTSu,s 99.24 : average of all CTS calibration gas readings, ppm
CTS"yr I 0l : CTS bottle certified gas value, ppm
CTSR 98.3% : CTS recovery value,%o
Spike Dilution Factor (DF), %
SF6rpt!9- SF6""t,rOO
sF6ai,
Where,
SF6di, 4.87 : average of direct tracer gas value readings
SF6,ut 0.00548 : average ofnative tracer gas value readings
SF6.o,u"@ : average of dynamic spike tracer gas value readings
DF 7.81% : spike dilution factor,Yo
Calculated Spike (Spike",r"), ppm
(DF x Analyte 0,,) + (Analyteno, x (1 - Df))
Where,
%DF 7$1% : spike dilution factor,o/o
Analyte6i, 97 .77 : average ofdirect analyte gas values, ppm
Analyte,*1[]] : average of native analyte gas values, ppm
Spike"u1" 7.74 : calculated spike, ppm value, ppm
Spike Recovery Value (Spikep), %
An_aAtuspu<e , roo
SplR€6s16
Where,
Spike"ur" j : calculated spike, ppm value, ppm
Analyte,rp" 6.80 : average of spiked analyte gas values, ppm
Spike* 87.83% :spikerecovery val:ue,oh
AtlErrce
TECHNICAL GROUP
Emission Calculations
Location Rio Tinto Kennecott - Maena, UT
Source Hvdrometallurgical Precious Metals Recovery (REF006)
Project No. AST-2Q!4-!Q!!
Parameter Pb
Run Number Runl Run2 Run3 Average
Date
Start Time
Stop Time
Run Time. min (s)
3fi3/24
l3:31
l4:45
60.0
3fi3/24
l5:56
17:07
60.0
3lt3l24
17:56
l9:01
60.0 60.0
INPUT DATA
Barometric Pressure, in. Hg
Meter Correction Factor
Orifi ce Calibration Value
Meter Volume, ft3
Meter Temperature, oF
Meter Temperature, oR
Meter Orifice Pressure, in. WC
Volume H2O Collected, mL
Nozzle Diameter, in
Area of Nozzle, ft2
Lead Mass, ug
(Pb)
(Y)
(AH (4,)
(vm)
(Tm)
(Tm)
(^H)
(Vlc)
(Dn)
(An)
(M.u)
25.57
0.972
1.964
72.300
57.0
516.7
4.121
38.7
0.400
0.0009
l0
25.57
0.972
1.964
53.380
54.8
514.5
2.296
37.7
0.342
0.0006
l0
25.57
0.972
t.964
50.040
51.3
511.0
2.192
30.2
0.342
0.0006
l0
25.57
0.972
r.964
58.573
54.4
514.0
2.869
35.5
0.36r
0.0007
l0
ISOKINETIC DATA
Standard Meter Volume, ftr
Standard Water Volume, ft3
Moisture Fraction Measured
Moisture Fraction @ Saturation
Moisture Fraction
Meter Pressure, in Hg
Volume at Nozzle, ft3
Isokinetic Sampling Rate, (7o)
DGM Calibration Check Value, (+/- 5%)
(Vmstd)
(Vwstd)
(BWSmsd)
(BWSsat)
(Bws)
(Pm)
(Vn)
(D
(Yo")
62.059
1.825
0.029
0.034
0.029
25.87
75.804
98. l
1.0
45.780
1.778
0.037
0.034
0.034
25.74
56.383
99.5
-0.1
43.197
1.424
0.032
0.035
0.032
25.73
53.013
94.0
-4.0
50.346
1.676
0.033
0.034
0.031
25.78
61.73
97.2
-1.0
EMISSION CALCULATIONS
-ead Concentration, ug/dscm
-ead Emission Rate, lb/hr
(Cpr)
(ERpt)
5.7
0.00018
7.7
0.00024
8.2
0.00025
7.2
0.00022
one or more
AIl6rce
TECHNICAL CIROUP
Emission Calculations
Location Rio Tinto Kennecott - Magna, UT
Source Hydrom etallurgical Precious Metals Recovery GEF006)
Project No. AST-2024-1032
Parameter Pb
lun Number Runl Run2 Run3 Average
)ate
itart Time
Stop Time
Run Time. min
3lt3l24
l3:31
l4:45
60.0
3lt3l24
15:56
17:07
60.0
3lt3l24
17:56
19:01
60.0 60.0
VELOCITY HEAD. in. WC
loint I
loint 2
loint 3
loint 4
loint 5
loint 6
loint 7
?oint 8
)oint 9
loint 10
loint 11
loint 12
loint 13
loint 14
loint 15
loint 16
loint 17
?oint 18
?oint 19
loint 20
Point 2l
?ont22
?olrlrt23
?oint24
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
6
6
5
5
6
6
6
7
6
6
6
6
6
6
6
6
7
6
6
6
6
6
6
6
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
6
6
7
6
6
6
6
6
5
6
6
6
6
6
6
5
6
6
6
6
6
6
6
6
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
6
6
6
5
6
6
6
6
5
6
7
6
6
6
6
6
6
6
6
6
6
6
6
5
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
6
6
6
5
6
6
6
6
5
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
CALCULATED DATA
Square Root of AP, (in. WC)"'
Pitot Tube Coefficient
Barometric Pressure, in. Hg
Static Pressure, in. WC
Stack Pressure, in. Hg
Stack Cross-sectional Area, ft'
Temperafure, oF
Temperature, oR
Moisture Fraction Measured
Moisture Fraction @ Saturation
Moisture Fraction
02 Concentration,Yo
CO2 Concentration,o/o
Molecular Weight, lb/lb-mole (dry)
Molecular Weight, lb/lb-mole (wet)
VelociW. ff/sec
(AP)
(cp)
(Pb)
(Pe)
(PS)
(As)
(Ts)
(Ts)
(BWSmsd)
(BWSsat)
(Bws)
(oz)
(co,
(Md)
(MS)
(Vs)
0.40
0.84
25.6
-0.050
25.6
6.8
75.3
535.0
0.029
0.034
0.029
2t.00
0.00
28.8
28.5
24.6
0.40
0.84
25.6
-0.050
25.6
6.8
74.9
534.6
0.037
0.034
0.034
21.00
0.00
0.40
0.84
2s.6
-0.050
25.6
6.8
76.0
535.7
0.032
0.035
0.032
21.00
0.00
0.40
0.84
25.6
-0.0s0
25.6
6.8
75.4
535. l
0.033
0.034
0.031
21.00
0.00
28.8
28.5
24.6
28.8
28.5
24.6
28.8
28.5
24.6
VOLUMETRIC FLOW RATE
At Stack Conditions, acfin
At Standard Conditions, dscfrn
(Qa)
(Qs)
10,074
8,247
10,067
8,204
10,060
8,197
10,067
8,216
pult6rre
TtrCIINICAL GROUP Method I Data
Locxtion Rio Tinto Kennecott -
Source
Projst No. AST-2024-1032
D^tet O3ll2lU
DuctOrientrtion: Vdicrl
Dra Dcsign,-TEG-
Distance from Fer Wall to Ortside of Port: 4 I .50 in
nippte tcngttr: ---7.iI- in
Dep6 ofDuct: 35.38 in
Width of Duct: 4.00 in
Cross Sectionel Aro oflruct: 6.83 ft'!
Equivrl@t Dimeter: 7.19 ir
No. ofT6t Ports: 2
Di.t n".A,-.'E-ft
DistrnceADuctDixmeters: 10il (mustbe>0,5)
DistrDceB: 10.9 ft
Distrnce B Duci Dirmeten,---'ii--1.ust be > 2;
MinimumNumberofTEvcrsPointsi 12
Actu.lNumb€rofTnveBePointsr 24
Numbcr of Rerdings pe. Point, -----f
Mcsurcr (Initirl rnd Drrc;,---IIE-
Rdicrer (Iriti.l rnd D.te): DBR
LOCATTON OT TRAVER,SE POINTS
Nufrba of trovfre poina on o dioMa
I
1
3
4
5
6
7
E
9
l0
ll
l2
2 3 4 5 6 1 8 9 to
6.7
25.0
75.0
,1'
4.4
t4.6
29.6
70.4
85.4
95.6
3.2
10.5
19.4
32.3
67.7
80.6
89.5
:.'
2.6
8.2
14.6
22.6
34.2
65.8
77.4
85.4
91.8
97.4
2.1
6.7
I 1.8
17.7
25.0
35.6
64.4
75.0
a2.3
88.2
93.3
979
*Percent of stack diamtetlrom inside woll to trMrse laint-
Travcnt
Point
o/o ol
Dirmeter
Distue
from insidr
ull
fiom
outside of
I
3
4
6
7
E
9
l0
il
It
2.1
t 1.8
17.7
25.O
35.6
64.4
75.0
82.3
88.2
93.3
979
1.00
2.37
4.17
6.26
8.84
t2.59
22.78
26.53
29.\
31.20
33.00
7y8
Iil2
l0 5n6
t2 3t8
t5
l8 I l/16
28 15/16
32 tvt6
35 U4
37 5tr6
39 l/8
40 v)
UDgl*t0.6lm(24h-)
Stack Diagrm
A = 64.125 ft.
B - 10.875 ft.
Depth ofDuct = 35.375 in.
CrN Setionrl Area DMrtream
Dl*urbancc
o
aa a a o a o o aa
lulrErrpeTECHNIOAL QROUP Cyclonic Flow Check
Location Rio Tinto Kennecott - Maqna, UT
Source Hydrometallurgical Precious Metals Recovery GEF006)
Project No. AST-2024-1032
Date 03113124
Sample Point Angle (AP:0)
I
,
3
4
5
6
7
8
9
10
11
t2
13
t4
15
t6
t7
18
t9
20
2t
22
23
24
Averase 5
llltffiirceTEOHNICAL (,ROUP
Method 4 Data
Location Rio Tinto Kennecott - Magna, UT
Source Hydrometallurgical Precious Metals Recovery (REF006)
Project No. AST-2024-1032
Parameter Pb
Analysis Gravimetric
Run I Date:3113124
Impinger No.I 2 3 4 Total
Contents HNO3/H202 HNO3/H202 Empty Silica
Initial Mass, g 739.4 723.0 639.7 963.8 306s.9
Final Mass, g 7s6.7 728.0 641.4 978.5 3104.6
Gain 17.3 5.0 1.7 14.7 38.7
Run 2 Date:3/13/24
lmpinger No.I ,,3 4 Total
Contents HNO3/H202 HNO3ru02 EmpE Silica
Initial Mass, g 719.8 740.6 635.9 956.7 3053.0
Final Mass, g 745.0 741.0 638.3 966.4 3090.7
Gain 25.2 0.4 2.4 9.7 37.7
Run 3 Date:3t13t24
Impinger No.I 2 3 4 Total
Contents HNO3ru02 HNO3/H202 Empty Silica
Initial Mass, g 747.0 736.5 644.0 952.5 3080.0
Final Mass, g 765.9 737.1 644.2 963.0 3110.2
Gain 18.9 0.6 0.2 l0.s 30.2
plltErrpe
Tf C!ltllCAL GHCt-l P Isokinetic Field Data
Date: 3ll3D4
Start Time:
End Time:
l3:31
14t45
Source: Hydrometallurgical Precious Metals Recovery (RE
Rro;""tXo,,@
STACK DATA (EST)EQUIPMENT STACK DATA ([,ST)FILTERNO.STACK DATA (FINAL)MOIST. DATA
Moisture: 7.0 7o est.
Barometric: 25.57 in. Hg
Static Press: -0.05 in. WC
StackPress: 25.57 in Hg
CO2t O.O Yo
O2t l9,O Yo
N2/CO: 81.0 %
Md: 28.?6 lb,4b-mole
Ms: 28-Ol lb,4b-mole
Nleter Box ID: Mt3l
Y: O.972
AH @ (in.WC): 1.964
Probe lD: PR-702-5
Liner Material: glrc
Pitot ID: rr-1200
Ritot Cpfrypu, o-slo Js-typ"
No,,l" lD,fill--fSS-
Nozzle Dn (in.): 0.400
Est. Tm: 55
Est. Ts: 88
Est. AP: 0.16 in. W(
Est,Dn; 0324 in.
Trrset Rater 0.75 scfm
25.57 in. Hg
-0.05 in. WC
2t%
o%lc*"*-rr rffii
Pbr
Pgr
0r;
CO2;
38.7
K.FACTOR
24.927
Finnl Cnrr
.F.AI< aHf,'.(-Kl Pre Mid 1 Mid 2 Mid 3 Post Mid I (cf)
Mid 2 (cf)
Mid 3 (cf)
IaakRate(cfm): 0.002 -- 0.002
Vacuum (ir IIg): 15 -- l0
Pitot Tube: Pass -- Pass llid-Point lisk Check Vol (cO:
q
diiAL
Sample Time
(minutes)
Dry Gas Meter
Reading
(fc)
Pitot
Tube
AP
(in WC)
Gas TemDeratures ("F)0rifice Press.
AH
(in.wC)
Pump
Vac
(in. Hg)
{q}
% IS(Vs
(fps)
DGM Average Stack Probe Filter lmD Exit Aux
Amb.Amb.
Beein End 44 44 ldeel Actxrl 44 43 39
al 0.00 2.50 987.950 0 6 88 79 4.29 4.30 3 249 252 39 r 01.5 24 9t
2 250 500 991 .1 30 0.6 51 79 400 4 t0 275 256 40 105.4 24.91
3 5.00 7.50 994.21O 0 5 5 78 3.76 3.80 24t 253 40 103.7 24 10
4 '7 50 too0 997 I 50 0.5 52 76 3.78 3.80 3 )45 251 40 949 24.06
5 10.00 l 2.50 999.850 0.6 52 76 403 4 t0 3 230 256 40 95.3 24.84
6 t2.50 5.00 I 002 550 0 6 )2 '75 4.O4 4.10 235 253 4l t0t o 24.82
7 l5 00 l7 50 1005.620 0.6 53 't 404 4 t0 3 215 256 4t 94.7 24.82
8 17.50 20.00 1008410 0 7 53 75 4.29 4.40 3 245 253 41 gi6 25.59
9 20 00 22 50 l 01 1.250 0.6 53 75 404 4 t0 241 256 42 r076 24.82
IO 22.50 25.OO 1014.420 0 6 54 75 405 4.10 3 240 256 42 100.3 24.82
500 21 50 1017380 0 6 54 '75 4.O5 4.t0 3 )41 251 42 t020 24.82
t2 27.50 30.00 1020.390 0 6 56 407 4 t0 3 243 256 41 94.5 24.82
bl 30.00 32.50 r023 r90 0 6 56 75 4.07 4.10 245 258 43 108 7 24.82
2 32 50 35 00 1026.4t0 0 6 58 '75 408 420 3 241 253 43 r 08.6 24.82
3 35.00 37.50 to29.640 0 6 58 75 4.08 4.20 3 245 252 43 98.9 2482
4 750 40 00 r 032 580 0 6 51 1t 4.08 4.20 3 245 25t 42 102 3 24.80
5 40.00 42.50 1035 620 0 1 1 74 434 430 4 245 251 42 105.5 25.56
6 4) 50 45 00 r 038 850 0 6 58 '14 4.09 4.20 3 243 256 4)l062 24.80
7 45 00 41.50 I 042.01 0 0.6 58 74 409 420 3 246 253 42 108.9 24.80
8 47.50 50.00 I 045 250 0 6 58 75 4.08 4.20 3 248 253 43 104.6 24 A2
9 50 00 52 50 I 048 360 0 6 58 75 409 390 245 252 43 9',7.4 24.42
l0 52.50 55.00 105r.260 0. l6 59 75 4.09 3.90 3 245 252 43 96.9 24 A2
55 00 750 1054 150 016 61 75 4.1 I 4.20 3 )46 )51 45 r040 24.82
t2 57 50 60 00 105't 260 0. l6 61 74 4.tI 4.20 249 251 45 999 24.4O
Final DGM: 1060.250
(t)
F
E]
Dari&
Run Time Vm AP Tm T!Max
Vac
AH %ISO BWS Yo"
60,0 mtn 72.3OO ftl 0.16 in. WC 57.0 oF 753 4 4.121 in. WC 98.r o-029 1,0
Allfripe
Tf CIINICAL GHCLJ P Isokinetic Field Data
Location: Rio Tinto Kennecott - Magna, UT
O"i.t
Start Time: 15:56
f,pd fips; 17:07
Source: Hydrometallurgical Precious Metals
Proj€ci No.: AST-2024-1032 I Parameter: Pb
STACK DATA (EST)EOUIPMENT STACK DATA (EST'I FILTERNO.STACK DATA (FINAL)MOIST. DATA
Moisture: 5.0 % est.
Barometric: 25.57 in. Hg
Static Press: -0.05 in. WC
Stack Press: 25.57 in. Hg
COi o.o o/o
O2t 19.O Yo
Nr/CO: 81.0 %
Md: 28.76 lb/lb-mole
Ms: 28.22 lb/lb-mole
Meter Box ID: M5-31
Y: O.972
AH @ (in.WC): 1.964
Probe lD: PR-702-5
Liner Material: glass
Pitot lD: PT-1200
Pitot Cpfiyp", 0340 JS+yp"
xr,,t" lo,llll--f55-
Nozle Dn (in.): 0.342
Est. Tm: 57
Est. Ts: 75
Est. AP: 0.16 in. WC
Est. Dn: 0319 in.
Trrqet Rrle: O-75 scfrn
CO2: O o/ol6'fiil-ffii
Pb: 25.57 in. Hg
Pgr -0.05 in. WC
Ozr 2l o/o
Vlc (ml)
37.7
K-FACTOR
14.18
Fitral Corr.
-EAK CIIECKI Pre Mid I Mid 2 Mid 3 Post Mid I (cf)
Mid 2 (cf)
Mid 3 (cf)
Irak Rate (cfm): 0.001 - 0.002
Vacuum (in Hs): 15 -- l5
Pitot Tub.: Pass -- Psss Uid-Poiot taak Che.k Vol (c0:
atu
Sample Time
(minutes)
Dry Gas Meter
Reading
(fc)
Pitot
Tube
AP
(in wC)
(,]9s'l emnerrtures (et'l Orifice Press.
AH
(in.WC)
Pump
Vac
(in. Hg)
Gas Temoeratures (oF)
9/o IS(Vs
(rp9
DGM Averaee Stack Prohe Filter lmn ll,xit Aux
Amb.Amb. Amb.Amb.
Begin f,nd Ideal Actual
oo0 250 60.1 60 0.6 58 76 ) 2'7 210 3 252 251 104.4 24.75
2 2.50 5.00 62.480 0 6 54 74 226 2.30 252 2st 43 95. I 24 70
3 5.00 750 64 580 0 1 54 74 2.40 2.40 3 )56 42 984 25.46
4 '7.50 10.00 66.820 0.6 54 74 226 230 3 250 254 42 96.4 24.70
5 I 0.00 t2.50 68.950 0 6 54 75 2.25 2.30 3 250 252 42 98.3 24.73
6 12 50 l5 00 '11 t20 0.6 54 75 ))5 210 l 251 254 41 103.8 24.73
7 15.00 t7.50 73.4tO 6 54 74 2.26 2.30 3 251 254 41 92.3 24 10
8 750 20 00 15 450 0.6 54 74 2.26 210 25? 40 r086 24.70
9 20.00 22.50 '17.850 0 5 54 74 212 2.20 233 25t 40 101.0 23 92
l0 22.50 25 00 80010 0 6 54 74 2.26 2.30 235 251 40 108 6 24.70
ll 25.00 2't.50 a2.4t0 0.6 54 74 226 230 236 256 40 10s.9 24.70
t2 27 .50 30.00 a4 150 0 6 54 75 2.25 2.30 241 254 i9 997 24.73
I 30 00 32 50 86.950 0 6 55 75 226 210 l 245 253 39 93.2 24.'73
)32.50 35.00 89.01 0 0 6 55 76 2.25 2.30 245 256 39 105.9 24'75
500 37 50 9t 350 0 6 55 't6 2.25 2.30 3 245 256 40 r04 I 24.'t5
4 37.50 40.00 93.650 0 5 212 220 250 255 40 103.7 23.94
5 40.00 4) 50 95 870 0 6 55 15 2.26 2.30 3 252 251 40 105 8 24.73
6 42 50 45 00 98 210 0 6 55 '75 226 270 3 252 251 40 92.3 24.73
7 45.00 4't.50 00.250 0 6 55 75 2.26 2.30 3 250 251 40 107.2 24',73
8 47 50 50 00 02 620 0 6 55 '15 2.26 210 250 252 40 101.8 24.',]3
9 50.00 52.50 04.870 0 6 75 226 2.30 3 250 252 95.4 24',73
t0 52.50 55 00 06 980 o t6 56 76 2.26 2.30 )51 257 4 105 3 24.75
ll 55 00 57.50 09.310 0.16 56 76 226 230 3 251 254 4 99.8 24.75
t2 57.50 60.00 t.520 0.16 56 76 230 3 249 255 91.3 24.75
Final DGM:3.540
aF
,.1
D
an
rrl
Run Time Vm AP Tm Ts Y"t AE %rso Bws Yu,Vrc
60.0 mtn 53380 ft3 0,16 in. WC 54.8 or 74.9 oF 3 2.296 in. WC 99.5 0.034 -0.1
pullfripe
TTCIINICAL GHC}L'P Isokinetic Field Data
agna, UT
O"t",
Start Timel
End Time:l9:01
Source; Hydrometallurgical Precious Metals Recovery (Rf
t.oj"",no',@
STACK DATA (EST)EOUIPMENT STACK DATA (ESTI FILTERNO.STACK DATA (TINAL)MOIST.DATA
Moisture: 7,0 7o est.
Barometric: 25.57 in. Hg
Ststic Press: -0.05 in. WC
Stack Press: 25,57 in. Hg
CO2t LO Yo
O2t l9.O Yo
N2/CO: 81.0 %
Md: 28.76 lb,4b-mole
Ms: 28.01 lb,4b-mole
llleter Bor lDr MS3l
Yt 0.912au@(i,.wc)'El--
Probe ID: PR-702-5
Liner Material: glm
Pitot lD: PT-1200
Pitot Cpfryp", 0340 fs+yp"No-t"tO,ffi
Nozle Dn (in.'l: 0342
Est. Tm: 55 'F
Est. Ts: 75
Est. AP: 0.16 in. WC
Eit. Dn: 0323 in.
Trrsel Rrte: 0.75 scfm
Pb: 25.57 in. Hg
Pg: -0.05 in. WC
Ozz 21 Yo
COr: 0 %
Irh"-;iEi. r"rthi
30,
K-FACTOR
13.642
Final Corr
LEAK CEECKI Pre Mid I Mid 2 Mid 3 Post Mid I (cf)
Mid 2 (cf)
Mid 3 (cO
Irak Ratc (cfm): 0.001 - 0.002
va.uum (in Hs): 15 - 15
Piiot Tube: Pass -- Pass tlid-Point kak Check Vol (cf):
o
q
.aL
Sample Time
(minutes)
Dry Gas Meter
Resding
(fc)
Pitot
Tube
AP
(in WC)
(irs lemDeraturn ("i)Orifice Press,
AH
(in-WC)
Pump
Vac
(in. Hg)
9/o ISC Vs
(fps)
DGM Averaee Steck Prohe filter fmn Exit Aux
Anb. Amb. Anb.
End Ideal Actua
al 0.00 2.50 3.850 0. l6 5l 't'1 216 220 254 251 35 109.6 24.87
2 2.50 500 6 210 0 t6 53 '7'7 2.17 2.20 255 251 35 t03.2 24 A'1
3 5.00 7.50 8.440 0.16 53 11 )17 220 255 251 35 962 24.87
4 7.50 10.00 20.520 ot 53 "t'7 203 2.to 251 253 35 101.8 24.08
5 10 00 t2 50 22 650 0.16 52 '74 2.17 3 252 256 36 l0l 7 24.80
6 t2.50 15.00 24.850 0.16 52 '74 217 220 3 252 256 33 92.5 24.80
'7 500 750 26 450 016 52 '74 2.t7 2.20 3 252 253 33 97.1 24 AO
8 17.50 20.00 28.950 0.16 1 216 220 252 251 33 955 24.82
9 20.00 22.50 1.010 0 15 '75 2.O3 2.10 3 252 254 105.3 24 01
l0 22 50 25 00 33.210 0. t6 75 2.t6 2.20 252 251 ?2 991 24.82
ll 25.00 27.50 35.360 o17 '76 230 230 254 252 33 92.3 25.61
2'1 50 30 00 37 4tO 016 77 2.16 2.20 3 256 253 i)9)O 24.87
bl 30.00 32.50 39.390 0. t6 '7'1 216 220 3 256 256 31 98.9 24.87
2 32.50 5.00 41 520 0 t6 '77 2.16 2.20 256 254 3I 98.9 2487
35 00 3'7.50 43 650 0.16 50 71 )20 256 254 3l 9't 3 24.87
4 37.50 40.00 45.740 o t6 50 '76 216 220 254 25t 35 90.7 24.84
40 00 42 50 4't 690 016 50 76 2.16 2.20 3 254 251 95i 24.84
6 42.50 45.00 49 160 0.16 16 216 220 3 251 251 32 91.O 24.84
1 45.00 750 5r 850 016 52 '17 2.t6 2.20 3 252 251 32 94.6 24 87
8 47 50 50.00 53.890 0.16 11 2.16 220 252 249 34 929 24.87
9 50.00 52.50 5.890 o l6 16 216 2.20 3 251 248 34 9l.0 24 A4
l0 52 50 55 00 57 850 0. l6 76 2.t6 2.20 3 256 244 924 24.84
l1 55.00 57.50 59 850 0. l6 76 216 220 3 253 247 32 91 .0 24.84
t2 57.50 60.00 61.940 0.15 76 203 210 3 253 249 3l 93.4 24.06
Final DGM:63.890
aF
po
r-l
Run Time Vm AP Tm Ts Y'* AH %rso Bws Y,.
Vac
60.0 mtn 50.040 ft3 0.16 in. WC 513 76.O oF 3 2.192 in. WC 94,0 0.032 -4.O
AlErce
TECHNICAL GROI.'P
Emissions Calculations
Location Rio Tinto Kennecott - Magna, UT
Source Hydrometallurgical Precious Metals Recovery (REF006)
Project No. AST-2024-1032-001
Run Number Runl Run2 Run3 Averase
Date
Start Time
Stop Time
3lt3l24
l5:57
l6:57
3/t4/24
17:55
l8:56
3/15t24
l9: l5
20:15
Input Data - Outlet
Moisture Fraction, dimensionless
Volumetric Flow Rate (Ml-4), dscfm
BWS
Qs
0.040
8,247
0.042
8,539
0.037
8,1 75
0.040
8,320
Calculated Data - 0utlet
Ammonia - Outlet Concentration, ppmvd
Ammonia - Outlet Concentration, ppmvw
Ammonia - Outlet Emission Rate, lb/hr
CNH,
Cttl*
ERmt
0.39
0.37
0.0084
0.70
0.67
0.016
0.71
0.68
0.0r5
0.60
0.57
0.013
HCI
HCI
HCI
HCI
Outlet Concentration, ppmvd
Outlet Concentration, ppmvw
Outlet Concentration, grldscf
Outlet Emission Rate, lb/hr
Cncl
CHct*
CHcr
ER cr
0.45
0.43
0.000020
0.021
0.47
0.45
0.000021
0.023
0.49 0.47
0.47 0.45
0.000021 0.000021
0.023 0.022
HzSOr - Outlet Concentration, ppmvd
HrSOo - Outlet Concentration, ppmvw
ILSOr - Outlet Concentration, grldscf
H,SOa - Outlet Emission Rate. lb/hr
C*r,so
Cs,so*
Cs,so.
ERr*so.
0.052
0.050
0.000006r
0.0066
0.052 0.0s2 0.052
0.050 0.050 0.0s0
0.0000061 0.000006r 0.0000061
0.0068 0.0065 0.0066
SOz - Outlet Concentration, ppmvd
SOz - Outlet Concentration, ppmvw
SO: - Outlet Concentration, grldscf
SOz - Outlet Emission Rate, lbAr
Cso,
Cso*
Cso,
ERso,
0.23
0.22
0.000018
0.019
0.23
0.22
0.000018
0.020
0.23 0.23
0.22 0.22
0.00001 7 0.000018
0.019 0.0 t 9
Al6rceTECHNICAL GROUP
Runl-FTIRData
Location:
Source:
Project No.: AST-2024-l 032-001
D*et 3113124
Time
Unit
MDL
Strtus
Temperafure Pressure:"3 Ammonia - Outlet HCI - Outlet HrSOr - Outlet
ppmw ppmvw ppmvw
0.04 0.06 0.0s
Valid Valid Valid
SO: - Outlet
ppmvw
0.22
Valid
BWS - Outlet
% (wet)
Valid
l5:57
l5:58
l5:59
l6:00
l6:01
l6:02
l6:03
l6:04
t6:05
l6:06
l6:07
16:09
16:10
16:1 I
16:12
16:1 3
16:14
16:1 5
16:16
16:17
16:1 8
l6:19
16,'20
16:21
16..22
16:23
l6:24
l6:25
l6.26
l6:27
l6:28
16:29
16:31
l6:32
1 6:33
l6:34
l6:35
l6:36
l6:37
16:38
16:39
16:40
l6:41
l6:42
l6:43
l6:44
16:45
16:46
l6:47
16:48
16:49
l6:50
l6:51
16:53
16:54
16:55
16:56
l6:57
l9t
l9t
l9l
l9l
l9l
l9l
191
191
191
l9t
t9l.l
191.2
r9t.2
191.2
t9 1.2
191.2
191.1
I9l.l
t9l.t
t91.1
t91.1
t 9l.l
191.2
191.2
191.2
t91.2
191.1
t9l.l
191.2
t91.2
191.2
1.018
1.018
1.018
1.018
1.018
1.018
1.0t 8
1.018
1.018
1.017
1.018
1.018
1.018
1.018
1.018
1.018
1.0t9
1.018
1.018
1.018
1.018
1.018
1.018
1.018
t.018
1.018
t.018
1.018
1.018
1.019
1.019
1.019
1.018
1.0t9
1.019
1.019
r.019
1.019
1.019
1.019
1.019
1.019
1.019
1.019
1.019
1.020
1.019
1.019
1.0 l9
1.019
1.019
1.019
t.019
1.019
1.019
1.019
1.019
1.019
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.4
0.4
0.4
0.3
0.4
0.4
0.4
0.4
0.3
0.3
0.3
0.3
0.4
0.4
0.3
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.5
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.5
0.4
0.4
0.4
0.5
0.3
0.5
0.6
0.3
0.4
0.3
0.7
0.5
0.5
0.6
0.6
0.4
0.6
0.4
0.3
0.3
0.4
0.4
0.5
0.2
0.4
0.4
0.2
0.4
0.6
0.4
0.3
0.4
0.5
0.5
0.4
0.3
0.4
0.6
0.4
0.3
0.4
0.3
0.4
0.5
0.5
0.2
0.6
0.4
0.4
0.5
0.6
0.6
0.7
0.4
0.3
0.6
0.4
0.5
0.3
0.4
0.3
0.1
0.1
0.1
0.1
0.1
0.1
0.1
OJ
0.1
0.1
0.1
SJ
gJ
OJ
0.1
0.1
0.1
SJ
SJ
0.1
0.1
0.1
0.r
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
OJ
0.1
0.1
0.t
OJ
SJ
SJ
0.1
0.1
0.1
0.1
0.1
SJ
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
92
0.2
0.2
0.2
0.2
92
92
0.2
92
0.2
0.2
0.2
0.2
92
92
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2a
0.2
0.2
0.2
92
0.2
0.2
M
M
Mw
0.2
0.2
0.2
92
0.2
0.2
0.2
3.9
3.9
3.9
3.9
4.0
3.9
3.9
3.9
3.9
4.0
4.0
4.0
4.0
4.0
3.9
3.9
4.0
3.9
3.8
3.9
3.9
4.0
3.8
4.0
4.1
4.0
4.0
4.2
4.0
4.0
3.8
4.0
3.9
3.9
4.7
4.1
3.9
3.9
3.9
3.9
3.8
4.2
4.1
4.1
4.7
4.0
4.0
4.1
4.1
4.5
4.3
4.0
4.1
4.2
4.3
4.3
4.2
4.2
191.2
191.2
191.2
191.2
191.2
191.2
191.2
191.2
191.2
191.2
t91.2
191.2
191.2
191.2
191.2
191.2
191.2
t91.2
l9l.l
l9l.l
t91.2
191.2
t91.2
191.2
t91.2
191.2
191.2
R.o A"urrg"
pultfrre
TECHNICAL GROUP
Location: Rio Tinto Kennecott - Mapna. UT
Run2-FTIRData
Source: Hvdrometallursical Precious Metals Recoverv (REF006)
Project No.: AST-2024-1 032-001
Dilez 3/14124
Time
Unit
MDL
Temperature.C
Status Valid Valid
Ammonia - Outlet HCI - Outlet
ppmw ppmvw
0.04 0.06
Valid Valid
HrSO. - Outlet SOr - Outlet BWS - Outlet
ppmw ppmvw % (wet)
0.05 0.22
Valid Valid Valid
Pressure
atm
17:55
17:57
I 7:58
17:59
18:00
18:01
18:02
l8:03
18:04
l8:05
l8:06
l8:07
l8:08
l8:09
l8:10
18:l 1
l8:12
l8:13
l 8:14
18:15
1 8:16
18:17
l8:19
18:20
18:21
18.'22
l8:23
18,,24
18.25
l8:26
18.,27
18:28
l8:29
l8:30
l8:31
18.32
l8:33
l8:34
l8:35
l8:36
l8:37
l8:38
l8:39
l8:41
l8:42
l8:43
l8:44
l8:45
l8:46
18:47
18:48
18:49
1 8:50
l8:51
l8:52
1 8:53
l8:54
l8:55
l8:56
tgt.2
191.2
191.2
191.2
191.2
191.2
19t.2
191.2
191.2
t91.2
191.1
191.t
1.026
1.026
1.026
1.026
t.026
t.026
1.025
1.024
1.024
1.025
1.025
1.026
1.026
1.026
1.026
1.026
1.026
1.026
1.026
1.026
1.026
1.026
1.026
r.026
1.026
1.026
1.026
1.026
1.026
1.026
1.02s
t.025
1.026
1.026
1.026
1.026
1.026
1.026
1.026
1.026
1.026
1.026
1.026
1.026
1.026
1.026
1.026
1.026
1.026
1.026
1.026
1.026
1.027
1.026
1.026
1.027
1.026
1.026
1.026
0.6
0.6
0.6
0.6
0.6
0.6
0.6
0.6
0.7
0.6
0.7
0.6
0.7
0.7
0.7
0.7
0.6
0.7
0.6
0.7
0.7
0.7
0.7
0.7
0.7
0.7
0.6
0.7
0.7
0.7
0.6
0.7
0.7
0.1
0.7
0.7
0.7
0.7
0.7
0.1
0.1
0.7
0.7
0.8
0.7
0.7
0.1
0.7
0.7
0.7
0.7
0.7
0.7
0.7
0.7
0.6
0.6
0.7
0.7
0.6
0.8
0.6
0.5
0.3
0.6
0.4
0.2
0.6
0.5
0.4
0.5
0.5
0.4
0.6
0.4
0.4
0.5
0.4
0.4
0.4
0.6
0.4
0.6
0.6
0.6
0.2
0.5
0.3
0.4
0.4
0.5
0.5
0.5
0.5
0.5
0.6
0.4
0.5
0.5
0.4
0.4
0.6
0.4
0.4
0.4
0.4
0.3
0.3
0.5
0.3
0.4
0.3
0.4
0.4
0.5
0.5
0.3
0.3
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.t
OJ
SJ
0.1
0.1
SJ
0.1
0.1
0.1
0.1
0.1
9.1
0.1
0.1
0.1
0.1
0.1
SJ
9,r
0.1
0.1
0.1
4.1
OJ
0.1
OJ
9._r
0.1
0.1
OJ
OJ
a,l
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0t
0.1
OJ
0.1
0.1
0.-L
0.1
0.t
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
92
0.2
0.2
0.2
0.2
0.2
0.2
w
0.2
M
0.2
0.2
0.2
Mw
92
0.2
0.2
0.2
0.2
n)
0.2
0.2
0.2
0.2
0.2
0.2
M
92
0.2
0.2
0.2
w
M
0.2
0.2
0.2
92
0.2
0.2
wo)
0.2
0.2
0.2
0.2
0.2
0.2
n')
0.2
4.0
4.8
4.0
4.5
3.9
4.7
3.9
4.4
4.3
4.0
4.8
3.8
4.4
3.8
4.5
4.4
4.1
4.1
4.1
4.8
4.0
4.0
4.3
4.3
4.4
4.t
4.6
4.3
4.1
4.2
4.1
4.4
4.0
4.1
4.1
4.0
4.2
4.3
4.t
4.3
4.1
4.0
3.6
4.4
4.1
4.1
J.t
4.3
4.1
3.9
4.1
4.1
3.9
4.6
4.0
3.8
4.0
4.1
r9l
191
l9t
l9l
l9l
l9l.l
l9l.l
l9l.l
l9l.l
191.2
t91.2
l9t.l
191.1
r91.1
l9l.l
191.2
l9t.l
t91.2
191.2
l9l.l
l9t.l
r9l
l9l
l9t
l9l
l9l
l9l
t91.2
t91.2
191.2
t91.2
t91.2
l9l
191
191
l9l
191
191
t91.2
r91.2
191.2
t91.2
191.2
191.2
191.2
l9l.l
l9l.l
,dltfuTECHNICAL GROUP
Run3-FTIRData
Location: Rio Tinto Kennecott - Mapna, UT
Source: Hydrometallureical Precious Metals Recovery (REF006)
Project No.: AST-2024-1032-001
Date:3115/24
ppmvw
0.22
Valid
ppmvw
0.0s
Valid
ppmvw
0.06
Valid
ppmw
0.04
Valid
Pressure
atm
Valid
Time
Unit
MDL
Status
Temperrture
'c
Valid
Ammonia - Outlet HCI - Outlet HrSOr - Outlet SOr - Outlet BWS - Outlet
% (wet)
Valid
l9:15
l9:16
19:17
l9:18
l9:19
19:20
19:21
19:22
19:24
19:25
l9:26
19:27
l9:28
19:29
l9:30
l9:31
19:32
l9:33
19:34
l9:35
19:36
19:31
19:38
19:39
19:40
19:41
19:42
19:43
19:44
19:46
19:47
l9:48
19:.49
l9:50
l9:5 I
19:52
l9:53
l9:54
l9:55
l9:56
19:57
l9:58
l9:59
20:00
20:01
20:02
20:03
20:04
20:05
20:06
20:08
20:09
20:10
20:11
20:12
20:13
20:14
20:15
191.5
191.5
191.5
l9l.5
191.5
191.4
191.5
191.5
191.5
l9l.5
lgt.7
191.6
191.6
191.7
191.5
191.5
191.5
191.6
191.5
191.5
t91.4
191.5
191.5
t91.5
191.5
191.5
191.4
191.3
191.4
191.3
191.3
191.4
191.5
191.3
191.3
191.4
191.3
19r.3
191.5
191.5
191.5
191.5
19t.6
191.5
191.5
l9l.5
191.5
191.5
191.5
19t.5
191.5
191.5
19 1.5
t91.5
191.5
191.6
19t.5
191.4
1.030
1.030
1.030
1.030
1.030
1.030
1.030
1.030
1.030
1.030
1.030
1.030
1.030
1.030
1.030
1.030
1.030
1.030
1.029
1.029
t.029
1.029
1.029
1.029
1.029
1.029
1.029
1.029
1.029
1.029
1.029
1.029
1.030
1.029
1.029
t.029
1.029
1.029
1.029
1.029
1.029
1.029
1.029
t.029
1.029
1.029
1.029
1.029
1.029
1.029
1.030
1.029
1.029
1.029
r.029
1.029
1.029
1.029
0.6
0.6
0.6
0.6
0.6
0.6
0.6
0.5
0.6
0.5
0.6
0.6
0.6
0.6
0.1
0.6
0.7
0.6
0.7
0.7
0.7
0.8
0.8
0.7
0.7
0.7
0.7
0.7
0.6
0.7
0.7
0.7
0.7
0.7
0.7
0.7
0.7
0.7
0.7
0.7
0.8
0.7
0.7
0.8
0.8
0.8
0.9
0.8
0.9
0.7
0;t
0;t
0.6
0.6
0.7
0.6
0.6
0.6
0.4
0.4
0.4
0.5
0.3
0.3
0.4
0.3
0.4
0.6
0.6
0.5
0.5
0.5
0.5
0.5
0.4
0.5
0.4
0.3
0.4
0.4
0.4
0.5
0.6
0.6
0.6
0.6
0.6
0.6
0.6
0.6
0.4
0.6
0.4
0.4
0.5
0.6
0.5
0.5
0.5
0.2
0.5
0.4
0.3
0.2
0.3
0.3
0.2
0.5
0.5
0.5
0.7
0.7
0.6
0.7
0.5
0.5
0l
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
OJ
OJ
0.1
OJ
SJ
0.1
0.1
0.1
0,1
0,1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0,-L
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.t
O,I
0,1
0.1
OT
0.1
OJ
OJ
0.1
0.1
0.1
SI
0.1
OJ
0.1
0.1
SJ
0.1
0.1
0.1
M
92
0.2
0.2
0.2
0.2
92
0.2
0.2
0.2
0.2
92
0.2
0.2
92
0.2
0.2
0.2
0.2
92
92
92
0.2
0.2
0.2
92
92ww
M
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
M
0.2
0.2
0.2
0.2
92
92M
0.2
0.2
92
0.2
92
0.2
3.8
3.5
4.0
3.t
4.0
4.0
3.6
4.0
3.6
4.0
3.6
3.8
3.5
3.9
3.5
3.7
3.7
3.5
3.7
3.8
3.6
3.4
3.8
3.7
3.6
4.1
5.t
3.8
3.8
3.5
3.6
3.8
3.6
3.3
3.7
J-l
3.4
3.8
4.2
3.4
3.4
3.7
3.5
3.5
3.7
3.6
3.6
3.6
3.4
3.6
3.6
3.7
3.6
3.6
3.3
:
3.7191.5
Parameter
Run Avemp
Pressure Ammonia - Outlet HCI - Outlet SOr -
t.029 0.7 0.5
H$O.-Outlet
0.2
Allionce Source Testing, LLC
Anolyticol Lob Services
4500 Boll Rd NE
Circle Pines, MN 550.l4
(7 63) 786-6020
vwvw.stocktest.com
Anolyticol Loborotory Report
Rto
EPA Methods l2
Project No. AST-2O24-1032
Version No. LT 201
Certificotion Stotement
Allionce Source Testing, LLC (AST) hos completed the onolysis os described in this report.
Results opply only to the source(s) tested ond operoting condition(s) for the specific test
dote(s) ond time(s) identified within this reporl. All results ore intended to be considered in
their entirety, ond AST is not responsible for use of less thon the complete test report without
written consent. This report sholl not be reproduced in full or in port without written opprovol
from the customer.
To the best of my knowledge ond obilities, oll informotion, focts ond test doto ore correct.
Doto presented in this report hos been checked for completeness ond is occurote, enor-free
ond legible. Any deviotions or problems ore detoiled in the relevont sections on the test
report.
This document wos prepored in portoble document formot (.pdf) ond contoins poges os
identified in the bottom footer of this document.
Volidotion Sionoture
The onolyticol doto ond oll QC contoined within this report wos reviewed ond volidoted by
the following individuol.
Digitally signed by Gregg Holman
G reg g H o I m a n r,#iti1q1i:,,1i5ffit"*H'man
E=GressH'man@s'iack'ls'lmm
Gregg Holmon
MSP Loborolory Monoger
Dote
Oigitally signed by Hailoe Bonds
I I r I Ff I DN: CN=Hailee Bonds, E=hailee.bonds@allianceanalyticalservices.@m
H a I I e e tr O n O S b""r,!s,r#srrt!,i;r$l""""#'*'
Foxit PDF Editor Version: '11.2.6
Hoilee Bonds
Assistont Loborotory Monoger
Dote
Proiect Norrolive
Anolyticol Methods: Method l2 - Determinotion of lnorgonic Leod Emissions From Stolionory Sources
RL ICP Metols: The Minimum Reporting Limii (RL) is specified below per the onolyte ot the instrument. lf the meosured
concenlroiion for o froction is less lhon ihe RL, lhe <RL wos used in ensuing colculotions.
Anolyte Units (uo/mL)
Leod 0.050
Blonk Correclion: No blonk correct wos perform
Custody: The somples were received by Bloke Messer on 3/25/24 ol AAS, Circle Pines, Minnesolo. The somples were
received in good condition with proper Choin-of-Cuslody documentotion. No opporent contoiner
problems were noted upon receipt. Prior to onolysis, the somples were kept secure with occess limited to
oulhorized personnel of AAS.
Lobeling: Acceptoble
Approvol by: Gregg Holmon - Loborotory Monoger
Equipmeni: Perkin Elmer 8300 Optimo ICP (lCPOl ), SN: 7851 401226
QC Notes: The somples met ihe minimum criterio estoblished by the relevonl method.
Reporting Notes: None
xl4xo-
/6o-
(J
INrloG,N(noFIIst
(\oN*th-v(J(o
,J
l
J4(oP0,
,1(uUxl!-o(!
Jo-
it
1
Iat
l
t^o.9uoul
6oo
,;g(DtrEoO
gJvtoG,E(l
JtooOJ&.
&s
ddo=EF
d
o
o
o
O
o0
E
tr
o
=v
ME.
=
:
:
occ(
5
o
o
o
o
!o>u
€d
.=
A
o
o
o
o
oo
oo
oo
ci
l
c.
t
qc.
.
l
qC{
qa\
.l
^&)E;
0a
cv
rqo
o(nqo
otr
lqo
oro
oro
'O
^
€J
il
c:b
<>
(qo
ornqo
o1Aqo
o(aqo
o(qo
o6od
.fqF-
c.
l
ca
sC\
F-
C.
l
co
$c{
tr
rNca
\fNr-a-
tm
sal
t'
-eco
odoo.o
$o.
l
tr
-
a.
l
co
$a-
l
F-
(\
.
l
a.
t
$c.
l
t'
-
c.
l
co
sc.
l
F-
(\
ca
sc\
t
l'
-o.
l
c.
t
&
an
J4(cE
:t
h
8s
ts
]
o
F*
c/
]
dr
t-
-oI
toIoI
oooI
roI
c.
loI
o\oI
\o
t
c.
taI
{oI
,Ytrc,
pao(l
)
A=o\o
?r
d
tr
r
.f
F-
:.
:
Q
'r
.
t
E
oo
il
-c
Q.
E
6
3.
E
>
g;
E
A
gE
()
E
?
a<
<
rhzii
E
I
Fr
r
a_
o
ri
lr
,o
0
ri
x
'5
r)
6
L
EE
F
,o
o
n
Af
r
VA
a?G
6
fr
l
I-
-
rr
u-
h
z:
6)
Fl
h
l
F]?G
'
-o
otJ
-
IJ
)
ilvqF\C)
rhEt:Eo
t
_r
a
_
t
=a
=
F4
N
F=
l-
8EE
*>
i'
c,i
€
EE
E
.9
E
E
b
63
i
5
'loI
6'
cr
,
(E
(L
oEtr
tne{
c6
$
c.9GgErl
!oEooo
I
c.9G=E.oEo.c
.
IfocE0,d
co;
ahofqotoa6
ll
t
l
ocoEEoO
otJ
JJ
I
\
(\
(1
v
n
l
$
'"
f
t
'v
t
o
P-
(
0
H/
s
-z
r
y
r
Hr
o
Hl
g
-
a
l
u
v
[o
-
t
O
.r
a
u
u
-
z
r
y
l
sl
e
u
r
e
u
o
c
'
o
N
le
l
o
f
I"
\
l^
l
.t
,
1
oouJgoc'6coooL0)
-oEz
o(l
,
(ozooEo-
lC
l
-
(
E
r
g
N
H
-.
t
c
H
ro
s
+
t
lc
H
-
c
o
^
HO
E
N
JJ
O
N
H
IO
N
H
*
eu
o
N
:e
?u
'E
t
ol;r
-
llE-go.EoU)
.:
st'
r\Nt
qi
,
\:
i
f
$i
\
c.
,
.9
\
\El
t
E'
J
U)o(gC]
.9
c
*z
6lo:
c
iqG!AF
r\S
FN
}.
:.
-
A1
N
$
cE.EuccccE(t
(t
zt(oooLr
tx&
$lzDtI
(oooTLUIu
(f
)zfta
(oooTLuJt
-sd\
iN
q(r
:
!,Eo2!coEot(,ooCLB(,
tsc,
--zll
lLozI
5coo=O)Etroobo(Eooo
(-
,
JIql
..
t8l
E]ol
r-
l
a)<tacoEEooEcoE!
oz[!Fo:fatr
g.
TUIFotr
TU)
fttr
';
l
U
o
,
<
)
r
i
;i
-
F
(
\
l
l
f
)
X-
@
o
c
o
.=
E
F
(
O
N
(
R+
6
d
dd
s
P
P
!v
tu
r
.
)
6
0
l
-
.Y
d
l
(o
@
't
a
5o
z
UE
ii
i
(u
0
>
.,
=
cl
o
-:
.
:
X
J
f
*
pe
f
fi
Et
r
tr
,
g*
o
o-
i
az-JoUJGo
(o
l
ol5l
vl
(\
i
l
ol
ctzoEozo0)
'p
'
(L
qtL
,Iolql
(/
)
lalol
lz
t
()
l
(5
l
al
CJol
LI8l
oI
LIo-
l
al
::
'6EtU
s0q(
_d{\RJN$v.{VliiFEoo0)
to:,oE,
otrooHE>1
IJ
OOE
ul
G
i(
,qx
ll
.
.
Eot
r
i<o
u,ooLEE
oeIEoo
aLI
JIEuJaJOFJz
oLoc(L
I
I\
g
II(
Location
Source(s)
Project No.
Date(s)
Rio Tinto Kennecott - Magna, UT
Hydrometallurgical Precious Metals Recovery (REF(
24-1032
Ethylene Cylinder ID
Concentration (ppmv)
Instrument Outlet
3^3/2024
Greatest Deviation from average
0.80%
Agreement with Assumed Pathlength
98.26%
within 5% no correction required
:TS 1
:TS 3
)ate Time File
CTS 7
CTS 9
Temoerature (( Date Time File Temperature (( Pressure Ethylene
3113124 I 5:07:10 24-I032 RTK FTIF t91.2
3/13/24 I 5:08:13 24.I 032 RTK FTIF 191 2
3113124 l5:09:15 24-1032 RTK FTIF 191.2
:TS 4
)ate Time File
CTS 10
Temperature (( Date Time File Temperature (( Pressure Ethylene
3113124 l7:30:48 24-I 032 RTK FTIF t9l.l
3^3t24 17 :31 5l 24.1032 RTK FTIF t9l I
3fi3t24 17:32:54 24.I 032 RTK FTIF t9l.l
crs 5
Date Time File
CTS 11
TemDerature (( Date Time File Temperature (( Pressure Ethylene
3il3/24 l9:08:16 I4-I032 RTK FTIF t91.2
3n3t24 19:09:20 !4-I032 RTK FTIF t91 .7
3/13/24 l9 10:22 I4.IO32 RTK FTIF t92.0
CTS 6
Date Time File
CTS 12
Temoerature (( Date Time File Temperature (( Pressure Ethylene
3/t3/24 20:30:13 I4.IO32 RTK FTIF t91.4
3lt3l24 20.31 16 24.1032 RTK FTIF 191.5
3t13124 Z0:32:19 Z4-I032 RTK FTIT l9l.4
Location Rio Tinto Kennecott - Magna, UT
Source Hydrometallurgical Precious Metals Recovery REF006)
Project No. 24-1032
Date 311312024
Spike Cylinder lD
Spike Gas concentration
Tracer Cylinder lD
Tracer Gas concentration
Instrument lD Outlet
Direct Spike Values
cc518166 Component
104.8 Hydrogen Chloride
ccs18166 Component
5.015 sF6
RENTAL - Notes
Spiked values
Dilution Factor
7.8%
Calculated Spike
7.74
Spike Recovery
87.83%
Date Time File ture
03/13/24 L2:36:03 24-LO32 RTK FTIR 19r.7
03113/24 12:37:06 24-1032 RTK FTIR 791,.L
03113/24 L2:38:09 24-1032 RTK FTIR 19L.L
03lt3l24 72:39:tZ 24-TO32 RTK FTIR 191.1
03/13124 L3:22:14 24-TO32 RTK FTIF L91-.1
03/L3124 13:23:17 24-1032 RTK FTIF L91,.1,
03113124 L3:25:23 24-1032 RTK FTIF L91,.7
03/L3124 1,3:26:26 24-1032 RTK FTIF 191.1
Date Time File T C
03/73124 t4:12:33 24-L032 RTK FTIF 191.1
03/13124 L4:13:36 24-LO32 RTK FTIF 191,.1,
03/1-3124 t4:14:39 24-LO32 RTK FTIF 191,.1
03/73124 L4:!5:41 24-T032 RTK FTIF 19L.1
03/13124 1,4:1,6:44 24-L032 RTK FTIF L91,.2
03/13124 1"4:17:48 24-].032 RTK FTIF 191,.2
03lL3l24 14:1"8:50 24-T032 RTK FTIF L91,.2
Location Rio Tinto Kennecott - Magna, UT
Source Hydrometallurgical Precious Metals Recovery (REF006
Project No. 24-1032
Date 3/t3/2024
Spike Cylinder lD
Spike Gas concentration
Tracer Cylinder lD
Tracer Gas concentration
lnstrument lD Outlet
Direct Spike Values
SG9170578BAL Component
s0.39 so2
Component
0.00 SF6
RENTAL - Notes
Spiked values
Dilution Factor
22.4%
Calculated Spike
10.04
Spike Recovery
43.30%
*The _ cylinder did not contain a typical SF6 tracer gas. lnstead
Date Time File J,C
03113124 12:45:34 24-IO32 RTK FTIR 791.1
)3/13/24 L2:46:36 24-LO32 RTK FTIR 79L.1
03/13/24 !2:47:39 24-LO32 RTK FTIR 19L.7
03/13124 12:.48:42 24-TO32 RTK FTIR 79t.1
03113/24 13:05:28 24-LO32 RTK FTIR 191.1
03113/24 13:06:31 24.LO32 RTK FTIR 797.L
)3113/24 13:07:34 24-LO32 RTK FTIR tgL.t
)3/13/24 13:08:37 24.7032 RTK FTIR tgt.t
Date Time File Temperature (C
)3/L3124 13:L9:06 24-1032 RTK FTIR L91.2
)31].3124 1-3:20:09 24-1032 RTK FTIR 191.1
)3113/24 73:ZL:tt 24-1032 RTK FTIR 19L.L
)3/13/24 13:22:1,4 24-7032 RTK FTIR 191.1_
)3/13124 13:23:!7 24-IO32 RTK FTIR 79L,L
031L3124 13:25:23 24-LO32 RTK FTIR 191..1
03/L3124 13:26:26 24-TO32 RTK FTIR L91,.1
Location Rio Tinto Kennecott - Maqna. UT
ProjectNo. 24-1032
Instrument RENTAL - Notes
Summary of Spikes
Sourc€Hvdrometallursical Precious Metals Recoverv (REF006)Hvdrometallursical Precious Metals Recoverv (REF006)
Dat(rh3/24 3/L3124
Timr t4tL2 13:19
AnalW(Hydroeen Chloride so2
Direcl 97.t7 50.77
Nativ(0,L7 -L.70
Soike(6.80 4.3s
Dilution 7.8%22.4%
Recoven s8%43%
Resul PASS FAIL
Location Rio Tinto Kennecott - Magna, UT
Source(s) Hydrometallurgical Precious Metals Recovery (REF006)
ProjectNo. 24-1032
Health Check Parameter Single Beam (Pre-Test)
Instrument ID RENTAL - Notes
EYsFT-lRs.itwlE vro.7
FL l,ldt Toob H.b
m rrb r:h rrir rdm rm tr & ah & dm rh # lfu dm dm dm .rh
Location
Source(s)
Project No.
Health Check Parameter
Instrument ID
Date
Rio Tinto(muemtt- Maenq UT
Hytfuometaflurgioal Prooious Mot& nsq$My (REF006)
24-1032
Sin*leBeam Oo$t-Te$t)
ifwtrrr-mlarvm uo.r
F.. Uer Io* H.b
* rrb rlin rdn rtin rfo fi zh ah'ah rin rh & !h sdm & & {h
srdl-I-l *fr-l [C[E
B;ENTAL.Nofies
Location
Source(s)
Project No.
Health Check Parameter
Instrument ID
Date
Rio Tinio Kennecofi - Llagpq, UT
Hydrometallurgical Prccious Mdak Assovery (RBF006)
24-1032
BENTAL-Notes
3n3t2024
L*ln rrrrrf"l mq**"| mFerer*-l f*i.mrs*J lffi lffi t.#affi"f
Pl=-.
Location
Source(s)
Project No.
Instrument ID
Date
RENTAL - Notes
Rio Tinto Kennecott - Magna, UT
Hydrometallurgical Precious Metals Recovery (REF006)
24-1032
Health Check Parameter Peak Analysis
3n3/2024
H Moue Peak tUldth r u
t...r...rrlGM
O'iirdtc
3p0(Ba6l
rcqracdt.xFEq l- t@l
c&/ecd ts Frrq I isi&-26r,
l, - s.lrrr".Fp{.rr q*s4* :l
E Em [--*rr.nl:l t-:!-"Ft -.lm;ts.*"lt..Ritt tlfqI L.aqftlttp-l
Location
Sourcc(s)
Project No.
Health Check Parameter Signal to Noise Ratio
Instrurnent lD
Date
;i MxS Cltt ti9a.l-ro-Noi* An.ba6
RENTAL - Notes
3fi3/2024
Bun SNR 16l
lrX.r.
,{F"l
Pars 3
Range.1ffi110cml
Fonge.2100.2il cm-1
florqe - 2$0'3m cm''l
Pass tl
B.rE - lm0.l lm cm.lB.n!.. 21@'22m cm'1
Bor4e - 2900-ffi cm.1
Pas 5
R*loe. 1ffi'I1ffi cm-l
R*pc.2100'22tr cm.'l
Bargr . 2$0-3ffi cm.'l
Me& B?.ulli
Rdrge.1mO-llm nl
Rrpc.21@22tr cm-lBry-2$l.mcm-l
Rio Tinto Kennecott - Magna, UT
Hydrornetallurgical Precious Metals Recovery (REF006)
24-1032
SNR Sltw Se Bcao.t
- rln: r,
Bclun (Fg>Cclp Fl.lR <F2>I p,*p-g.rs, I
lXJlioi I
BMS |toise-O 1 193562 (0 5!8284 nAUl. SNF.838
BMS Norsc-00812232 l0 352749ftAUI SNR.1231
BMS Norc-0 14495?2 {0 62953SmAUl. SNR.690
BMS Norra.0'l O57972 {0 159,156 d*tJl. SNF.945
BMS ilosc.o 0906662 t0 393773 rAtJ). SNR-I1O3
BMS Nosc.0 l399?? (0 607536 fiAIJI SNR-715
BMS NoRc.O 1125872 l0 188973 nAUl. SNR.€88
RMS Ndr..O0g95r22 l0 g732mAUl. SNR.IllT
RMS Nos*0.1 397532 {0 606977 rAtll. SNF.7I6
Bi'{S No6o-0. 1 09O4iZ {0.173565 nAU l. SNF.920
FMS Nois.'0.086$82 {0 373789 r*tll. SNB,I 16.1
RMS Noisc.O 1 3$092 l0 60631 I ftArrL 5Nn-71 7
Location
Source(s)
Project No.
Health Check Parameter
Instrument ID
Date
Rio Tinto Kennecott - Magna, UT
Hydrometallurgical Precious Metals Recovery (REF00(
24-1032
Analysis Validation Utility
RENTAL - Notes
3n3/2024
Analysis Validation Report
Sa m ple Filename: D :\Docu ments\2024\24-1032 RIO Tinto\24-1032 RTK FTI R_000126. LAB
Filename for noise: D:\Documents\202a\24-1032 Rlo Tinto\24-1032 RTK FTIR_000014.1AB
lnterferences Filenames: C:\OLT\Analysis Validation Utility\Support spectra\1min 191C LN2\lnterferents I
C:\OLT\Analysis Validation Utility\Support spectra\1min 191C LN2\lnterferents H20 10pct CO2 10 pct 1m
C:\OLT\Analysis Validation Utility\Support spectra\1min 191C LN2\lnterferents H20 10pct CO2 10 pct 1m
C:\OLT\Analysis Validation Utility\Support spectra\1min 191C LN2\lnterferents H20 10pct CO2 10 pct 1m
C:\OLT\Analysis Validation Utility\Support spectra\1min 191C LN2\lnterferents H20 10pct CO2 10 pct 1m
C:\OLT\Analysis Validation Utility\Support spectra\1min 191C LN2\lnterferents H20 10pct CO2 10 pct 1rn
C:\OLT\Analysis Validation Utility\Support spectra\1min 191C LN2\lnterferents H20 10pct CO2 10 pct 1m
C:\OLT\Analysis Validation Utility\Support spectra\1min 191C LN2\lnterferents H20 10pct CO2 10 pct 1m
Recipe path: C:\OLT\RECIPES\Coal EGU Testing R3 - Copy DO NOT USE.MGRCP - MODIFIED
Gas calibration Name Conc
NO (350,3000) 191C -0.33
NO2 (1s0) 191,C (r_OF2) 0.7
NO2 (2000) L9LC (2OF2) -0.s4
N2O (100,200,300) 191C 0.24
NH3 (3oo) 1e1C (1OF2) 0.06
NH3 (3000) 191C (2OF2) 1.0s
co (soo) 1e1c (1oF2) L.73
co% (1) 19LC (2OF2l 0
H2O% (4O) tstc 2.8
co2% (40) LgLC 0.1
cH4 (2so) 1e1C (1OF2) 2.23
cH4 (3000) 191CQO\4 2.8s
FORMALDEHYDE (70) 191C 0.46
PROPYLENE (200,1000) 191 -0.05
ETHYLENE (L00,3000) 191C -0.05
ACETYLENE (1000) 191C -O.2s
PROPANE (100) 191C 8.31
ETHANE (s00) 191C 2.81.
ACETALDEHYDE (r.000) 191r -O.t4
HCL PPM (1,00) 191C 4.09
HCN (L00) 191C O.t7
HBR (1oo) 180C 0.43
so2 (1ooo) 191c -0.99
so3 (1so) 1e1c -0.63
cos (100) 1s0c 0.03
H2SO4 (s0) 1s0C -o.os
sF6 (10) 1s1C 0.38
MEOH (10)191C 0
MDC3
2.
0.
MDC1 MAU FMU*R OCU
0.84 t.L4 2.95 2.95
0.12 0.13 0.19 0.19
5.45 6.94 30.14 30.14
0.15 0.L8 0.25 0.25
o.22 0.37 0.58 0.58
2.39 4.5 10.8 10.8
0.81 1.74 2.83 2.83
0000
o.o2 0.04 0.25 0.25
0.04 0.06 0.08 0.08
1.42 3.76 5.01 5.01
2.4 3.95 L2.01 t2.Ot
1.15 1.38 1.61 1.61
o.79 0.93 L.45 1.45
0.28 0.48 0.8 0.8
1.88 2.27 3.62 3.62
o.73 0.87 4.63 4.63
1.18 L.32 6.75 6.75
2.t 2.29 3.24 3.24
0.86 1.58 1.81 1.81
1.9 3.25 6.16 6.16
3.85 7.82 8.63 8.63
0.32 0.62 4.37 4.37
0.72 0.13 0.34 0.34
0.05 0.06 0.13 0.13
0.08 0.09 0.13 0.13
0.01 0.01 0.01 0.01
0.26 0.3 0.38 0.38
23.6
o.2
0
5.7
1.3
0.1
0
1
7.
t.34
L.24
2
0
3.01
3
6.O4
0.
4.2
2.2
0.3
0
0.L2
0.01
MDC2
0.
0.
0.
0.3
Location Rio Tinto Kennecott - Magna, UT
Source(s) Hydrometallurgical Precious Metals Reoovary (REF006)
ProjectNo. 24-1032
specha (cTS) 24-.032 RTK rTR_000020"LAB
3fi?,t2024
Time I2:20I20PM
EYrnrn-nsoRrwc uo.r
fb I'l*r Ioob Hrh
m rrin rim rfo rfo rfo h *o ath ain & fi & 3fo dm rir & oim
rnfT*l dfrl [-.{lT'}-l
l,ocation Rio Tinto Kennecou - Marmq UT
Source(s) Hydrometallurgical Precious Metals Recwery (RBF006)
ProjectNo. 24-1032
Spectra (Analyte Direct) 24-1032 RTK FTIR*000035.LA8
3n3t2024
Time 12:36:03 PM
.E Yrrrff-nsot'rm vloz
Fa. ltdl look H+
aio rrin raim rdn rrin rfo ah zh zfl adr ldp fi e lh eir dE.& {fo 'dfo
sun-lrr-r--l kI-M
Location Rio Tinto Kennecott - Magna" UT
Source(s) Hydrometallurgical Precious Metals Recovery (REF006)
ProjectNo. 24-1032
Spectra (Native) 24-1032 RTK FTIR_000076.LA8
Date 311312024
Time l:19:06 PM
:f vin. FT-lRscftw.rc v'10.7
Fa! Hr$ T@b Hcb
tt2CD Cm rm 3{tr g' 3&D {m t2m
Location
Source(s)
Project No.
Spectra (Spike)
Date
Time
Rio Tinto Kennecott - Magna, UT
Hydrometallursical Precious Metals Recoverv GEF006)
24-1032
24-1032 RTK FTIR OOOI2T.LAB
3n3/2024
2:12:33PM
ljl vin.FTIRSoftw.r. vlo.7
Flc Math Tods Hcb
&
PJT,AffibdBbe
Accreditation #62754
Red Ball Technical Gas Service
555 Craig Kennedy Way
Shreveport, lA 71107
800-551 -81 50
PGVP Vendor lD # Gl2023
CERTIFIED GAS CERTIFICATE OF ANALYSIS
Cylinder Number:
Product lD Number:
Cylinder Pressure:
coA #
Customer PO. NO.:
Customer:
:80073902
2443E
19OO PSIG
=80073902.20230730-O
Certification Date:
Expiration Date:
MFG Facility:
Lot Number:
Tracking Number:
Previous Certification Dates:
18t07 t2023
)810612025
=_8OO73902.20230730
)44266022
SMART-CERT
Do Not Use This Cvlinder Below 100
Gertified Concentration(s)
Ethylene
Concentration
I01 PPM r 2% N|ST FTIR
Balance
Analytical Measurement Data Available Online.
cc722751 07t2812024 PS N2 c2H4 102 PP|VI
MKS 2031DJG2EKVS13T o17146467
This is to certify the gases referenced have been calibrated/tested, and verified to meet the deflned specifications. This
calibration/test was performed using Gases or Scales that are traceable through National lnstitute of Standards and
Technology (NIST) to the lnternational System of Units (Sl). The basis of compliance stated is a comparison of the
measurement parameters to the specified or required calibration/testing process. The expanded uncertainties use a
coverage factor of k=2 to approximate the 95% confidence level of the measurement, unless otheMise noted. This
calibration certiflcate applies only to the item described and shall not be reproduced other than in full, without written approval
from Red Ball Technical Gas Services. lf not included, the uncertainty of calibrations are available upon request and were
taken into account when determining pass or fail.
,hnuru th,L,/au
Aaron Varelas
Analytical Chemist
Assay Laboratory: Red Ball TGS
Version 02-G. Revised on 2017-07-02
Airgas.
an Air Liquide company
Airgas Specialty Gases
Airgas USA LLC
614r Easton Road
Plumsteadville, PA 18949
Airgas.com
Part Number:
Cylinder Number:
Laboratory:
Analysis Date:
Lot Number:
x03Nt99C1540246
ccs18166
124 - Plumsteadville - PA
Mar 23,2022
160402396615-1
CERTIFICATE OFANALYSH
Grade of Product: CERTIFIED STANDARD-SPEC
Reference Number:
Cylinder Volume:
Cylinder Pressure:
Valve Outlet:
1 60-40239661 5-1
144.0 CF
2015 PS|G
330
Expiration Date: Mar 23,2024
Product composition verified by direct comparison to calibration standards traceable to N.I.S.T. weights and/or N.I.S.T.
Gas Mixture reference materials.
Component
ANALYTICAL RESULTS
Req Gonc Actual Concentration
(Mole %)
Analytica!
Uncertainty
SULFUR HEXAFLUORIDE
HYDROGEN CHLORIDE
NITROGEN
5.000 PPM
100.0 PPM
Balance
5.015 PPM
104.8 PPM
+l- 5%
+l-2o/o
Sionature on file
Approved for Release Page 1 of 1
Airgas.
an Air Uquide company
Airgas Specialty Gases
Airgas USA LLC
525 North Industrial loop Road
Tooele, W 84oT4
Airgas.com
Part Number:
Cylinder Number:
Laboratory:
PGVP Number:
Gas Code:
Reference Number:
Cylinder Volume:
Cylinder Pressure:
Valve Outlet:
Certification Date:
1 53-402560600-1
144.0 CF
2015 PS|G
660
Oct 18,2022
Expiration Date: Oct 18, 2030
CBRTIFICATE OF ANALYSIS
Grade of Product: EPA PROTOCOL STANDARI)
E02Nt99E1540350
SGg170578BAL
124 -Tooele (SAP) - UT
872022
SO2,BALN
Certiflcation performed in accordance with "EPA Tracaability Protocol for Assay and Certification of Gaseous Calibration Standards (May 2012)" document EPA
600/R-1 2/531 , using the assay procedures listed. Analytical Methodology does not require correction for analytical interference. This cylinder has a total analytical
uncertainty as stated below with a confidence level of 95%. There are no significant impurities which affect the use of this calibration mixture. All concentrations are on a
mole/mole basis unless otheMise noted. The results relate only to the items tested. The report shall not be reproduced except in full without approval of the laboratory. Do
Not Use This below l00 psiq, l.e. 0.
Component
ANAL)TUCAL RESI.]LTS
Actual Protocol Total RelativeRequested
Concentration
Assay
DatesGoncentrationMethod Unceftainty
SULFUR DIOXIDE 50.00 PPM 50.39 PPM G1 +l- 0.9% NIST Traceable 1011112022, '1011812022
NITROGEN Balance
CALIBRATI ON STAI\IDARDS
Type Lot ID Cylinder No Concentration Uncertainty Expiration Date
NTRM 16010207 KALOO3179 97.69 PPM SULFUR DIOXIDE/NITROGEN 0.8%Nov 01, 2027
lnstrumenUMake/Model
ANALYTICAL EQUIPMENT
Analytical Principle Last Multipoint Calibration
Nicolet iS50 AUP2110269 SO2 LSO2 od't2,2022FTIR
Triad Data Available Upon Request
Sianafrrre on fila
Approved for Release Page 1 of 1
Alrfu
TECHNICAL GROUP
Loution Rio Tinto Kennecott - Magns' fIT
QA/QC Data
Source Eydrometallursiel Prrcious Metals Reovery (REF006)
Project No. AST-202+1032
Parameter Pb
Date Nozzle ID
Nou le Dismeter (in.)
#t #2 #3 Dn (Average) Difference Criteria Msterial
3/t2t24
7lt2l24
400-5
342-5
0.400
0.342
0.400
o342
0.400
o.342
0.400
0.342
0.000
0 0i0O
< 0.004 in.
SS
ss
Date Pitot ID Evidence of
damepe?
Lviderce oI
mis-alienment?
Calibratior or
D-^-i- -a-ird
3n2124 PT-1200 no no no
Drte Probe or Reference Itrdicated Differ€nce Criteris Probe Length
3lt2/24 PR-702-5 800 85.0 0.9/o * 1.5 % (absolute)5
Field Balane Chck
Date tBl12D4
Balmce ID 5A2881@7
Certified Weight ID SLC-TKG.3
Certified Weight Expiration sl-c-rKG-3
Certilied Weieht (g)lmo.o
Memued Weight (g)999.8
Weight Difference (g)o-2
Date
Berometric
Prssure
Evidence of Reading Verified LatrDrauon or
nonoir i.Mnirst?W€ther Strtiotr Ir€tion
3/12124 Weather Station NA NA NA SLC Airpon
Date Meter Bor ID Positive Prssure Lsk Check
3/12124 M5-31 Pass
R€agent l$6 field Prep
oerform ed
Field Iat Date By
0.1 N HNO3 3/L212024 DEN
DGM Calibration-Orifi ces
Document D 620.004
Revision 23.0
Effective Date 1/25/23
lssuing Department Tech Services Paq(1of1
Equipment Detail - Dry Gas Meter
Console lD. w5-31
tveter S/N: 19772846
Critical Orifice 5/N: 1330
Calibration Detail
nitial Barometric Pressure, in. Hg (Pb)
:inal Barometrlc Pressure, in. Hg (Pbr)
\veraqe Barometric Pressure, in. Hg (Pb)
25.48
25.48
25.48
Critifcal Orifice lD (Y)
K' Factor, ft3.R'2 / in. wc'min (K )
Vacuum Pressure, in. Hg (V,
lnitial DGM Volume, ft3 (Vm)
Final DGM Volume, ft3 (Vm,
Total DGM Vo[rme. ft3 (Vm)
1330-31
0.8429
13.0
804.200
821.062
16.862
1330-31 1330-25
0.6728
15.0
836.100
845.037
8.937
1330-25 1330-19
0.5186
t5.u
857.800
864.837
1 037
r330-19
0.8429 0.673 0 519
13.0
821.062
832.308
11.246
150
845.037
853.963
8926
15.0
864.837
871.833
6.996
Ambient Temperature, 'F (Ta)
lnitial DGM Temperature, 'F (Tm)
Final DGM Temperature, 'F (Tmr)
Averaoe DGM Temperature, 'F (Tm)
1E
14
74
74
76
74
75
75
77
75
75
75
77
75
76
76
77
7A
76
76
77
76
76
76
Elapsed Time (O)
Meter Orifice Pressure, in. WC (AH)
Standard Meter volume, ft3 (Vmstd)
Standard Critical orifice Volume, ft3 (Vcr)
Ny'eter Correction Factor (Y)
Tolerance
Orifice Calibration Value (AH @)
Tolerance
Orifice Cal Check
15.00
3.50
14.3444
13.9321
0.971
0.001
1.941
0.023
.i0.00
3.50
9.5580
9.2794
0.971
0.001
1.943
0.021
10.00
2.20
7.5603
7.3999
0s79
0.007
1.912
0.052
10.00
2.20
7.5439
7.3999
0.981
0.009
1.910
0 054
10.00
140
5.9282
5.7039
0962
0.010
2.039
0.075
10 00
140
5.8937
5.7039
0.968
0.004
2.039
0.075
0.90 1.54 1.52
\,4eter Correction Factor (Y)0.972
)rifice Calibration Value (AH @)1s64
)ositive Pressure Leak Check Yes
Equipment Detail - Thermocouple Sensor
Reference Calibrator Make: OMEGA
Reference Calibrator Model: CL23A
Reference Calibrator 5/N: T-197207
Calibration Detail
Reference Temp Display Temp.Accuracv Difference
OC oR oF oR oF
0
68
100
460
528
560
0
66
98
460
526
558
0.0
0.4
0.4
0
2
2
223
248
1A)
683
708
733
223
249
274
683
109
724
00
-0.1
-0.1
0
1
1
300
400
500
600
700
800
900
1,000
1,100
1,200
760
860
960
1,060
1,160
\264
1,160
1,460
1,560
1,660
300
399
498
600
101
801
901
1,002
1,102
1,202
760
859
958
1,060
1,161
1,261
1,361
1,462
1,562
1,662
0.(
0.1
0.2
0.(
-0.
-0.
-0.
-0
-0.
-0.
0
1
2
0
1
1
1
2
2
2
Personnel
Stacey Cunningham
Calibration By
Calibration Date
Reviewed By
RYAN LYONS
6/20/2023
.oobob6LoPL.ncd0)#.o(not
Ptr
,
1
il
z
o.
D
o&
O(
t
s
d@bo
l
ot
s
=
ir
D
^,H9
-c
d
9Plb
o
dC9(
!
bo
'
d
*t
r
Oc
d
>a
cg
ir
d
^t
i
to
o)
iQ
r
!oc6
P
ro
,
E
-b
o
o-
c
o->a
'
oo
AL
-oA.
c
(n
>
^9uv
#-
Y
6F
.9
4
ro
P
.:
oo'
E
=oLE
q.
=hF
g
i_
:
v
o
^0
0
&o
4!.
4
>e
E
p"
U
P
o-
d
1i
6
.2
!=
E
o
eC
oEs
I
.:
n
9
i:
>
()
o
-g
o.
9
;
stNoNr'
i
rl-co!(o
bo-F(t
(uFo(J
l-
.(
(
lE.EoU!-oEoE.U>Zd.
o6AE
<E
a'
E
o
:<
:zFo6^PT
-'
;
o
-
b<
I
=o
l
E
90
.
o
Jd
t
s
E:
z
Et
-59
'=
6
o
'F
o
.9
od
6
U)
-
-
E
3s
5ZFo6^+[
'a
-
<3
NI
:oo
dFv.F
+
zz
z
z
z
z
z
z
x
z
z
z
z
z
z
ff
=
f
f
l
l
=
i
=
f
f
l
f
f
l
t
t
t
E
E
E
uE
Y
j
t
E
E
Et
r
E
I
f.
-
t
-
$
_
N
(f
,
^
,
(o
o
(o
ro
(
o
N,
^
6
lr
,
(f
)
I.
-
:
^
$
@
:l
tr
,
O)
o
$
@
C
!
=
O
rr
)
st
(O
)-
{
N
-
.'
^
O
O)
r
O
O)
O
)
:'
6
I
.
-
o
tr
)
Y
ro
o
:
l
o
\t
o
t
-
(.
,
O
=
60
(
o
<
'
:
X
r
o
=
N
l
r
)
$
c
{
-
o
X
ro
N
c
!
t
x
'
i
@
o
)
^
(.
,
ro
-
(o
s
(o
Y
N
;
c
!
N
\'
:
N
(r
)
*i
(f
)
co
(a
-
o
@
'
-
c"
i
U
t
.
i
d
J
:
<"
i
<"
i
,2
c.
i
<"
i
<
"
i
<.
i
c
"
i
c.
i
,X
@r
(
o
@
:
t
o
<
o
:
t
o
(
o
<
o
<
o
@
r
o
:
@
(r
)
r
@
F
F
@
(O
(f
,
s
-
@
(f
)
l'
-
r
(O
S
@
tO
(r
)
I'
-
S
C!
O
@
X
(O
(f
)
O,
(O
O6
(
a
e
O
l
t
f
)
F
-
O
)
r
N
)
'
(
@
$
O
r
r
r
,
@
F
-
O
N
(O
(v
)
(O
O)
(O
(o
X(
O
@
l
'
-
l
-
t'
-
O
$
l'
-
O
(,
r
N
$
o
l-
X
tr
,
s
N
(f
)
(r
)
O
(
o
N
O
)
l
-
\
t
o
N
s
i
=
t
r
)
r
r
\
t
$
$
F
l.
-
st
O
$
(O
N
O
o
.
)
\.
o'
,
$
o'
)
$
'.
q
oq
\
q
6i
N
c.
i
r-
-
I
oj
c.
j
<o
o
@(
f
)
t
-
N
t
-
O
O
r
r
N
=
N
(
.
)
(
f
)
\
t
N@
@
O
)
O
)
e
zz
z
z
z
z
z
z
z
z
z
z
z
z
z
fl
f
,
l
l
l
l
l
f
l
f
f
:
f
f
:
f
tt
t
t
t
t
g
.
t
t
t
t
x
.
E
t
r
t
r
oGggoMP<s
>
r\
';
o
95
<
ol
zOF
o(Y
r
_oF.
E
g
"S
g
NE
i\
'o
OF
:zF
zz
z
z
z
z
z
z
z
z
z
z
z
z
z
:)
f
f
l
f
l
l
f
l
f
f
f
r
l
l
c.
t
t
t
t
t
E
t
t
t
t
t
t
t
t
(f
,
o)
,
^
rf
(f
)
o)
o
)
N
F
-
N
r
@
(9
o)
li
i
@
r
).
(
O)
O
)
O
)
(O
l'
-
(O
tO
l
o
1r
,
$
N
-
@
-
:.
i
r
O
O
N
6l
$
1r
)
c\
l
tt
(O
(v
)
@
co
-
H
o
)
$
$
o
\
t
N
s
o
c
o
l
r
)
F
t
o
N
\t
:l
sf
r
r
lr
)
l
r
)
\i
N
I.
-
(O
(
O
(r
)
e
O
N
i^
tO
S
rf
)
-
N
F
-
(O
tO
N
O
@
(O
('
)
@
-:
@
N
(O
N
c
.
)
-
-
cO
r
(O
@
N
ci
c
i
e
ei
o
i
o
o
oi
d
oi
ci
c
i
oi
d
oi
(o
(
f
)
:
N
c
\
l
(
f
)
(
f
)
N
N
N
(
.
)
(
.
)
N
(
\
c
{
-=ol
J
-o
[
.
.
.o3ooioo.
'
O:
'
of
:
,
t
o-
'
,
.
Ut
.:
:
oo=ofo'6q)n+
F
S
l'
-
tf
)
@
tf
,
$
$
N
if
(O
^O
)
l'
-
(r
)
l-
(O
c{
(o
@
c
\
l
O
O
lr
)
F
=
O)
,
^
O)
f.
-
O
S
O
O
sl
(f
)
O)
N
(f
)
O
;-
O
Xi
O
-
-
(,
)
()
tr
)
N
Or
r
r
cO
-
ii
o)
);
N
(O
O
tf
)
C\
O
)
l
'
-
(O
r{
)
(V
)
@
$
}X
c/
)
X
(O
o)
(o
o
\t
-
(o
@
!f
s
(o
o
x
r'
-
s
N@
-
O
r
@
@
O
)
@
@
N
-
O
)
r
r
)
(
O
++
r
r
i
d
d
+
+
s
+
s
+
S
+
h
r
r
i
f.
.
-
F-
r
.
-
r.
-
F=
N
N
N
l
.
-
l
.
-
l
.
-
:
^
l
l
.
-
.
.
I.
-
N(
\
I
N
N
C
!
C
!
C
{
N
N
N
N
\
T
N
N
*
(t
)
O)
lf
)
N
C!
-
tf
,
s
\f
O)
(f
)
N
F
-
-)
l
$
@
s
l
r
(
O
l
X
@
(
o
(
O
N
o
N
O
)
:^
y,
.
a
\t
'
o
)
o
o
)
rr
)
Y
o
)
ro
o)
@
l(
,
N
(f
)
!{
)
X
o
-
(
f
)
@
O
;
l
N
o
(
o
1
.
-
l
r
)
@
l
r
)
"'
}
x
o
@
s
l
r
)
(
f
)
x
<
N
$
N
\
t
t
N
N
.'
^
><
N
(Y
)
(,
\l
-
@
X
l-
(O
(O
N
rt
-
(o
:l
Y
i
r
)
(
o
r
r
c
o
=
N
-
N
O
-
$
(
f
,
\.
i-
-
(f
)
o
ro
N
rr
r
'
.
N
c
!
rr
)
@
(o
o)
o)
o,
:
q
q
(\
i
_
o)
o
,
j
oq
cj
q
_j
n
c;
v'
o
i
)
o
i
)
s
-
@
'
-C
D
F
O
)
r
O
)
r
sf
rr
)
o
t-
(o
o)
o
)
*
o)
,
^
N
!t
@
-
(o
O
6
\
t
@
(f
)
(O
N
--
O)
:x
(f
)
O)
O,
-
@
(o
o)
N
N
O
l
.
-
r
Li
Ct
i)
(
-
o
@
X
V
N
O
*
6
O
-
(f
)
=
O
:
l
F-
\r
'
(o
.
v
,
<
c.
)
(o
c{
ro
c!
r
o)
d
)
x
N
x
'
i
(f
)
ro
$
x
@
c!
N
l
r
,
N
O
@
@
x
@
l
;
@
O
'
t
r
)
)
;
O
)
tr
)
o
@
o
)
N
c
{
@
)
X
o
:
i
$
o
-
;
<
N
r(
r
)
N
s
f
(
O
F
O
)
X
N
)
-
O
@
@
X
(
O
o
o
o
,
o
)
o
)
o
6
)
vl
-
vi
o)
o
o
)
vi
o
dc
j
N
N
N
d
r
_
f
-
o
d
r
-
N
d
N
N
@
oo)FEcuJ
oo
o
o
o
o
o
o
o
o
o
o
o
o
o
c9
c
9
9
9
9
9
9
S
?
9
9
C
C
C
r
(O
-
(O
-
(O
-
(O
s
(O
-
(O
-
(O
F
C?
e
S
i
Y?
g?
I
I
r
:
r
.
q!
q
!
g?
g
?
S
(a
(
o
(
a
(
o
(o
(o
\t
s
s
$
!t
$
s
s
$
rf
.
t
S
\
i
S
$
$
$
$
t
S
S
S
$
S
c\
r
c!
c
{
N
N
c
!
c\
t
N
N
N
N
N
C!
C
{
C{
tt
t
t
t
t
t
t
t
-L
g
(E
(
I
,
C
'
(
,
(
E
(
!
(
U
(
5
(
E
(
I
,
(
l
,
c
'
C
,
(
,
(
\
,
>=
>
=
=
=
=
=
=
=
>
>
=
=
>
tt
t
r
r
i
l
l
t
t
t
t
t
(o
(9
d)
(r
)
(
o
Co
(o
(.
)
c)
(f
)
co
o
(f
)
(
f
)
(.
)
ct-oo-oI.ioo+oUtNEah6q
I:
N
'
o
JN(r
-
s(
'
)
O'
FofOY
tr
(
s
.g
=
(ooolJ
-
uJEo.o
llooo(gopoo3llooLoo
=bobn
lioPtr
.n(nPo!E(€C'
Ptr
.-
]
il
7
o.
p
o&
O(
H
=o
(d
o
bo
=
^!9d
:i
D
al
a
-c
(
g
,!
PLb
o
EC
6
cn
d
9<
t
Fo
o
t+
"
tr
Oa
n
>oa0
)
9L
H](d
E
ro
0)
io
r
EFH0
)
dP
ro
s
-b
o
0)
-
q
o)
-
}R()
o
-oFl
r
-
q
c6
>
>5
p.
Qxv
#-
Y
d-
.o
a
.i
oo'
E
o=
=o+Ltr
t
r
a.
l>f
i
3
x3
8
IE
h"
&6
4
ZE
E
AU
.o
o-
cd
AP
tl
E
o
ed
oEs
I
.Y
l
'
9
i:
>
ii
6
a
tr
H
a
\J
l
r
F
+NoNrnrl.C()L(E
ooC.1
,
tt
1
(uo()c
.(
(
,
o.EoU3-oCon(JFE.
oAr
'E
o
!
il
j
<E
,
t
g
P:
'
:zFo6^
'
:
r
P[
-
-
-
i
-'
E
o
-
or
b<
Si
i
l
E8
5-
E'
Et
-
59
'=
o
.
9'
h
9
,,
'
(l
)
d
o
l
A
--
Jt
a
-
,
Hs
"
:zFLoG^
{
i
m-
.i
<
3:
F.
c
--
o.
(
L
)
,
l
rl
F
r-
:zt-
zz
z
z
z
z
z
z
z
z
z
z
z
z
z
ff
,
l
l
l
:
l
f
f
f
f
f
l
f
f
l
tr
E
U
E
E
t
E
G
t
t
t
E
d
.
E
t
r
O)
$
@
N
r
-
O)
l
.
-
F
-
lr
r
t
r
,
C{
tO
l.
-
N
F
O)
6
(f
)
(O
d)
F'
r
t
C\
l
rr
,
-
S
@
C\
|
O)
6
(
O
|
r
)
(
v
)
N
O
@
l
'
-
r
O
t
l
a
O
O
e
@
l
.
-
(O
(,
F
@
-
tO
O
(,
O
)x
t-
(O
O,
ri
r
.
-
c
'
)
-
rO
@
N
lr
)
O)
C\
l
(O
X
(O
O,
n-
rO
o)
(f
)
O
()
@
l
*
tr
,
c.
,
c\
l
O
Y
O,
F
S
q
o
q
\
q
q
C'
:
ol
\
lr
)
(f
)
(
f
)
tr
,
F
(o
rj
cr
i
c
.
i
c.
i
-
o
o
r
-
<l
rr
j
+
to
-
ci
d
(o
(o
(o
@
(o
(o
(,
ro
r
o
to
lr
)
'
r,
(o
s
rl
F
zz
z
z
z
z
z
z
z
z
z
z
z
z
z
fl
l
f
:
f
l
f
l
f
,
f
,
l
f
f
l
f
tt
r
E
&
E
E
E
i
t
r
t
r
E
d
t
d
.
t
O)
I'
-
\
t
C
!
-
I'
-
lo
$
C!
-
O)
N
(O
st
(o
rI
)
ii
i
(y
)
C{
:
(D
@
6
('
)
@
6
l
}
'
-
C\
l
l'
-
st
(O
O)
N
tr
,
X
O
c
.
)
O)
O
O
s
-
C!
c{
\t
O
l
.
-
tl
)
N
X
i
F
-
$
O)
t
.
-
!.
r
@
tO
Cr
l
e
O
tO
-
l.
-
:
J
@
\t
(r
)
N
-
O
@
l
'
-
(o
S
@
$
-
r.
-
^\
,
O
t
-
F
c'
)
I
.
-
r,
N
O
@
rr
)
C,
@
(f
)
l.
-
'
'
:
N
F
r
(O
6l
@
$
O
tr
,
(O
-
-
a1
i
o.
i
r:
c"
j
+
.r
1r
i
c'
i
6i
ci
ni
-
cj
(o
(
o
(
o
@
:
(o
(
o
(
o
(o
(
o
(
o
@
(o
(o
(o
o6L
.i
j
oPE
i)
b
r-
'o
o
),
j
95
<
o:
z
(J
F
oE-
_oHp
g
;
t
v
bo
^
.j
<
=r
,
x
E.
,
Eg
,
SZF
zz
z
z
z
z
z
z
z
z
z
z
z
z
z
ff
f
f
l
l
f
,
f
=
:
)
f
f
,
f
f
l
Ee
.
d
E
t
r
t
t
r
t
d
g
.
t
t
t
t
r
x
.
@
_
(r
)
N
N
$
rI
)
\i
(\
l
N
rO
r
O
e
t-
Ol
N
l
X
@
N
$
rr
,
@
6
l
(o
t'
.
-
S
o
F
-
o
,
N
lo
:<
(.
,
r
N
F
O
6
t
(O
rr
,
l
r
)
N
F
(O
rr
)
()
:i
O
N
@
(<
)
-
(O
F
(O
(O
@
O
)
(O
c\
l
o
-\
f.
-
O
@
O
@
ol
t
-
F
S
t-
()
l.
-
O)
\t
L
-
CD
@
rO
(O
r.
)
O,
6l
(O
(
O
O
@
(o
O
-,
l
rf
,
s
o
)
@
@
o
,
r
c\
l
(Y
)
l-
-
@
N
-
dS
+
.
+
+
r
r
i
@
N
o
i
d
d
d
d
o
i
o
N
::
c\
t
c
\
r
c
\
I
6
r
N
C
!
C\
l
(f
)
(
f
)
N
C\
l
N
(r
)
-
l,
-
.
O
-l
l
!:
-o
[
-.
-
.
-o
aL
=oab0)O
rj
i
O
.-
j
O
Ia
j
t
O
!i
.
l
.9
n
go=o=O
r-
.
'6
r'
,
o)
(i
l
rE
r
-
,
a:
i
O)
-
^
rf
)
l
r
)
CD
sf
S
O
)
O
)
*
(O
(
O
s
C'
)
o
6
:
/
:
6
)
-
(o
r
04
!
r
G)
:
l
(f
)
sl
s
@
c{
lr
,
}l
(f
)
(o
o
o
r
r
o
F*
:1
(o
s
o
o
N
c
\
l
:
l
$
O
1O
l'
-
O
-
-
:
(O
O)
O
)
N
N
O
-r
O
(.
)
-
F-
rJ
)
(A
c|
X
C\
l
-
C-
,
1
l.
-
OO
l
:
O
s
O
r
@
$
$
N
X
S
(
O
(
v
)
(
,
o
o
)
sl
N
|r
)
N
s
(,
(,
!+
"i
O
o)
r
@
6+
P
d
d
d
r
i
d
d
d
S
d
+
d
+
N
t
.
-
'
^
l
t
-
N
t
-
N
t
-
F
-
(o
:*
l
l
.
-
l
.
-
N
N
N
N
TI
N
N
N
N
(\
N
N
*T
N
N
C\
l
N
d)
$
c
{
(D
^
@
|r
)
0)
.
^
(O
rO
@
^,
O)
(O
ro
6
)
$
N
Y
l
(o
\t
(o
X
s
O
F
:l
tr
)
(v
)
o
@
sf
o)
l
x
(o
o
N
:
(f
)
o)
F
-
;
@
N
rO
(r
)
F
(O
:'
(r
l
dl
rf
)
:-
r
F-
@
X
O
c.
)
cr
r
o
r
@
l
:
ro
$
(f
)
.
:
(f
)
@
$
x
(f
)
l.
-
('
)
t-
o)
o
:
l
(o
6
(o
x
o)
co
F-
-
o)
o)
c!
6
$
r
Y
@
rO
t-
:
O
)
$
N
)
.
^
O)
t
ro
-
6
c
!
}
i
i
F
-
6
!+
'
.
(O
(
O
(
O
-
O)
(O
r:
N
F
r
l
r
F
F
Y
O
r
O
l
O
-
O)
-
F
.^
-
o.
)
@
rf
)
@
-
(O
-
C{
(D
O)
(o
l'
-
(o
sJ
!
-
-
u-
,
@
o
$
Y
r
,
)
X
o
(D
(o
N
t
-
(f
)
L-
r
:
(o
|r
,
s
d)
=
(r
,
x
N
F
@
ro
@
(o
NH
E
5
5
E
U
b
E
5
8
3
8
9
3
Y'
l
x
(\
r
t-
(o
@
-
@
x
|r
)
0)
(o
@
o)
(o
HH
3
8
5
3
d
E
X
E
R
8
E
R
S
Y
Y
o
)
o
)
o
o
)
ql
o'
'
l
o
o
o
o
o
o
6
@
il
N
dj
r
-
r-
od
r-
d
d
d
d
d
c;
c)
o
o
o
o
o
o
o
o
o
o
o
o
o
o
oo
o
o
o
o
o
o
o
o
o
o
o
o
o
Nc
.
i
N
6
i
N
6
i
N
e
.
i
r
-
c
.
i
N
6
i
I-
e
.
i
t
-
ll
)
o
o
_
_
N
N
(
r
)
(
o
s
s
r
a
)
t
r
r
o
o
,i
i
.
i
i
.
i
i
.
i
i
r
i
d
..
i
('
d
.:
d
ri
dr
;
d.
;
d
.
;
N
N
oc)FEcul
ss
$
<
.
t
t
$
<
"
s
s
$
s
s
$
$
s
f
N
N
C{
C
{
C
!
C
!
N
(\
l
C\
t
N
N
N
N
(\
6l
tt
t
t
t
L'
L
L
L
'
g
T
L
o(
E
(
l
,
(
I
,
(
E
C
,
(
l
'
C
,
(
u
(
s
(
I
'
G
,
C
,
C
,
(
t
,
tt
t
r
r
l
l
l
l
l
l
l
l
(o
(
o
co
(o
(f
,
(
f
)
(
r
)
(
o
(
f
,
(
f
,
(
o
(o
(
f
)
(
f
)
(
0
t.
Nctlto-oIc.
ioal
,+ooNI6ex
'oJNo-
s!
.,
)
g,
FofOE
E(
E
e=
cL
..
tr
oO(
E
oo
L6'
.c
t
ltC'oaoo(,otr=o.
stNoNdi
rl
-gL)
(o
ooeoLAP(noooooliaot-
obob6LoL3P(,
)
!dot
Pil
7AD
o&
Or
F
cd
o
bo
=
of
t
2z
-,
-c
(
€
bs
6c
9(
g
bo
'
d
q.
t
r
od>q
i0
)
9Lsc
d
^!
ro
o
iaEt
r
s
6.
)
(g
P
Lo
,
q
-b
o
()
-
C
o)
-
>-
o
(.
)
(.
)
II
.
t
r
Ec6>>5
'd
.4
.
o-
F
-l
l
(B
d
.d
P
q'
E
;!
J
7-o=a.
2
t4
(
)
0)
=
ts
H
o0
)
0)
t
r
&o
>E
H
o.
)
6i
-bx
tr
(
6
Eb
i
ai
o
A9OE
boC*)
.h(uFqJ
(JC.gEEo(JLocAJd.U\ZFd.
o6AE
<g
q'
b
o
H<
5eFoG^
!u
-
bo
-
b<
I
'E
o
)
tr
90
0J
rd
l
-
Es
z
tr
-59
g'
;
o
g
(l
)
d
,
c
u)
-
-
f
r-
-
h0
=<
>zF!O^
PI
'f
o
-
<P
F\
I:
oo
dF
rzF
tt
i
*
*
t
*
l
+
+
i
*
*
+
*
o-
o-
o-
o
-
o.
o
o-
o-
o-
o-
cL
o
o-
o
-
o
oo
o
o
o
o
o
o
o
o
o
o
o
o
o
,,
Paa
a
@
a
u
)
a
a
a
a
a
@
@
a
a
+t
i
i
+
+
i
t
i
*
*
*
*
+
+
t-
\
f
,
(r
)
(
,
)
N
(O
C{
}
.
-
(O
s
e
$
rO
@
r
(\
o
)
o
N
r
o
)
(
r
r
o
s
N
N
(
f
)
@
o
)
r
O
lr
)
i'
-
s
$
@
-
(O
@
(O
('
)
-
rr
)
I'
-
O
o
c
!
o
)
N
|r
)
c\
,
1
r
@
(o
$
(r
)
tr
)
(,
(o
@
o)
o
@
l
'
-
(O
r,
$
e{
F
O
o)
e
{
tr
)
@
-
O
O
l
'
-
O
(f
)
(g
Or
C
!
1r
)
@
(O
(
A
N
-
-
O
O
e
N
N
C!
(\
(r
)
(
r
)
C.
)
O)
C
!
tr
,
@
-
q
q
.
.
c!
c?
a
q
q
\
cq
r
\
o{
\
a?
or
N
(o
r(
,
$
(r
)
C{
F
O
O
)
O
)
@
@
N
f
'
-
N
N
t
-
t
-
t-
-
I
.
-
t-
t-
N
@
(c
)
(.
)
(o
(
o
((
)
6
.
^
@
N
N
(O
lr
,
t'
.
-
(O
-
Ol
$
r
(O
S
6:
f
r
o
o
L
r
)
o
l
r
)
r
o
(
o
r
o
F
(
f
)
o
F
@
o,
l
X
_
$
.
o
o.
)
_
r1
.
)
g'
r
@
t1
-
)
N
_
@
(O
@
l'
l
'
-
(o
t{
)
$
st
(f
)
N
O)
@
(r
,
O
(O
(f
)
<-
L
l
@
@
@
@
6
@
O
t
-
r
r
)
(
r
,
r
@
(
O
@
:l
ro
N
6)
(o
d)
o
s
lr
,
o
lr
)
o
s
o)
(f
)
'
.
o
o
o
)
o
)
o
)
o
)
s
N
F
o)
@
(o
$
+
I
13
i
d
c"
j
6.
.
.
j
-
d
d
-
6i
6.
.
i
c"
j
+,
r
j
(o
:
@
(o
(
o
(
o
(
o
(
o
(o
(
o
(
o
(o
(
o
(o
@
zz
z
z
z
z
z
z
z
z
z
z
z
z
z
f:
l
:
f
l
f
f
f
,
l
f
:
f
l
=
f
l
l
tx
.
t
t
t
d
t
t
t
r
t
r
u
x
t
t
t
o6L
.{
n
o
SE
a
F.
-
'o
o
g5
<
ol
z
()
F
ot-E9
n.
E
C
"S
P
NC
i:
o)
OF
5Zt-
zz
z
z
z
z
z
z
z
z
z
z
z
z
z
f=
:
l
t
f
f
f
=
f
f
l
f
f
f
l
tr
E
X
E
t
t
r
t
E
t
t
t
t
r
E
t
t
(f
)
-
@
N
(O
$
@
N
(O
-
rt
f
@
r
e
tO
o,
(o
@
o
(f
)
o,
6l
@
o)
-
(o
o)
N
o)
@
N
r
\i
O
rr
)
O)
tt
r
)
O
lf
,
I
<O
-
(f
)
O)
rf
,
Nr
r
)
N
@
(
O
@
$
O
(
r
;
(
O
C
{
N
r
r
$
rr
,
(O
O
@
r(
)
<r
i
-
@
X
C)
-
l'
-
N
F-
@r
r
)
C
!
-
6
)
@
N
@
$
:
x
6
l
-
O
)
@
(
o
nq
c
\
c
?
c
\
a
-
:
'
1
|r
)
6
r
@
r
o
N
t-
N
r-
d
19
1
9
rr
rl
ro
X
+
+
o'
j
c.
j
c.
i
N
N
C
{
c!
C
\
N
N
N
C
\
::
N
e.
I
N
C
{
N
BiIo-
t
o-o_ofoao)oootra(uoof,
.9ooI
-o-
N(
J
s
f
,
N
-
l
r
)
(
O
^N
*
(
O
l
'
-
r
@
6
r
-
6
r.
O
-
C\
I
\t
X
i
S
:
l
N
(o
\t
@
rf
)
$
tO
@
O
,
O
(O
N
l'
o)
)X
-
o)
F
-
O)
(o
ro
F
(f
)
-
O
ri
t
N
-
l'
-
X
$
(r
)
O)
l
-
O)
F
-
O
O
(O
S
tr
)
l
O
X
N
:
lr
)
O
rr
,
(O
t-
(
'
)
s
t
O
r
t
f
)
$
Y
@
)
,
^
(
r
t
(
)
(
O
$
(6
$
O
N
N
\t
t-
-j
\.
rO
.
:
N
N
S
(c
)
i-
\
l
s
f
\
f
,
$
$
S
F
'
-
-
\
$
-
!
$
s
i
$
r
t
(o
N
N
l
.
-
l
.
-
l
.
-
l
.
-
6l
i-
l
l.
-
l-
l
l.
-
N
N
r.
-
C!
N
N
C
{
C
!
N
N
NN
N
N
C)
(r
)
O)
N
l
'
-
(o
r
@
f
)
t
'
-
si
N
l
'
-
$
O)
F-
d)
@
N
@
t
-
@
ro
@
o
o
o
s
o)
l.
-
N
O
r
(.
,
(
f
)
N
o.
)
f.
-
(O
s
N
N
l
.
-
O
@
O)
(O
O
@
$
tt
tO
(O
N
(O
@
t
'
-
lr
)
@
S
ro
N
o
N
o
N
(r
)
(
o
(o
s
(o
$
(o
(f
)
ro
N
o
'
)
(f
)
t
O
(f
)
N
0o
O
(.
,
\t
s
N
F
-
@
|r
,
$
ta
)
N
O
(f
)
-
(O
N
O
N
(f
)
r
N
tr
l
$
(v
)
-
rf
rO
N
(O
O)
O
)
c
.
)
N
C
{
@
()
O
S
9
c
i
oC
q
\
c
i
c
i
q
oq
ci
-
n
ci
ci
O)
O
l
r
O)
O)
O
)
-
-
Ol
6
-
-
@
r
s
$
t4
)
@
N
l
'
-
C
{
*
@
O
)
t
'
-
l
'
-
O)
(O
c.
)
N
Fr
o
N
u
)
N
@
:
L
N
O
N
(
9
(
9
_
O
)
O
)
s
<r
)
st
-
$
$
x
r+
(O
f'
-
rf
)
O
O
l
-
sf
(o
F-
c
{
s
f
(o
(
o
)<
ro
(o
(o
@
s
o)
ro
t.
f
)
s
$
(o
(f
)
N
N
x.
'
.
i
ro
o
\i
lr
)
@
o
)
o
)
o)
N
(O
c!
C.
)
r
l
r
)
).
'
:
O
t
l
t
-
O
O
)
(O
-
r
ro
F-
st
r
6I
O
)
x
|r
)
r
r
)
o
tr
)
t
(
)
l.
-
(o
l'
-
F-
o
)
c
!
t
(A
s
X
O
r
O
O
)
(.
)
O
O)
@
o)
o
)
o
o
o
o
Y
o
o
o
o
)
o
o
o
)
o
)
NN
C
,
d
d
d
@
d
d
d
F
-
d
d
N
I
-
oo
o
o
o
oo
aoFioCLU
oo
o
o
o
o
o
o
o
o
o
oo
o
o
o
o
o
o
o
o
o
dJ
(
b
;
6
J
6
;
d
i
J
6
sN
N
c
.
)
(
f
)
s
t
\
l
r
r
)
|
r
)
O
O
<j
d
d
d
d
d
d
d
d
i
t
b
c
i
o
i
o
i
\l
s
$
t
i
t
S
S
v
v
s
i
.
s
r
*
{
-
s
S
a
t
*
<
t
C{
C
{
N
N
N
N
N
N
N
C{
N
N
C
!
C
!
C!
rl
l
l
l
l
.i
L
L
L
.
6(
E
C
,
(
I
I
(
,
(
!
(
I
,
(
s
(
,
(
u
(
E
(
,
(
!
(
E
(
,
rt
t
t
l
l
l
l
l
(o
(.
)
(o
(
o
(
o
(
o
(f
)
(o
(.
)
(o
(
o
(
'
)
('
)
(
'
)
(o
@-
(
O
r
Y?
I9
:
.
N@
6
@
(v
)
trt-oo.oIc.
ioo+oo(\
t
Iflahor
c
LN
'o:No-
(!
6
g,
FofOY
tr
.
!
g=
q.
.
tr
6
)
o(
E
oo
Lolt
lloU'o(Eopool!!ooLooa)ot=o-
sfNoNCN
rl
-CoL(o
.ob0bi
LoP!Cd
P0)
!ddetr
,
1
dz
AD
a&O+
r
c0
o
bo
=
^!v(
d2a
-t
4H9
.c
dbr
0
dc9.
9
bo
'
d
q-
t
r
od
>O59
E=
(d
i
n
^L
ro
(
)
iP
i
H0
)
(g
P
ro
E
-b
o
OE
6J
-
E-
a
oc
)
Eg
d>>5
.d
.
o
.
()
-
:
PId-
.d
#
.r
oo'
E
a=
=oo=
o.
thF
3
<0
)
o
ao
o
Ig
E
il
6
E
>v
E
AU
Pd
!t
o
ec
oE!
I
.v
t
I
H^
a
x.
5
'=
F0
)
,
-
boC(hoFo(Jc.go-EoUt-(uc(JG.U>ZFd.
o6.
'A
b
I
<E
q'
b
o
:<
!zFoO^
PU
-'
u
o
-
b<
P
'E
C
h
C
90
.
0
,
3r
.
Et59
'=
6
.
-E
.E
"
s
Od
6
(D
'.
:
'*
E
o
Y<
:zFoG^
![
';
o
-
<P
F\
Coo
dF
!zF
*r
*
*
+
*
*
i
+
*
+
i
r
*
r
o
o.
o-
o
-
o.
o
.
o
o
o-
o
-
o
-
o
-
o-
o-
o
oo
o
o
o
o
o
o
o
o
o
o
o
o
o
@@
@
o
@
@
a
@
@
@
@
a
a
@
a
**
{
*
*
l.
)
(
O
O
)
N
(
O
(
O
@
-
r
-F
C
!
6
d
)
s
l
(O
r
N
rf
)
)^
O
)
Y
'
N
i
'
:
rO
lr
)
(f
)
u)
o
c
!
$
o.
)
r
o)
-s
/
(o
i;
rJ
)
Yx
l.
-
-
o)
(o
r
+
ro
(o
(
o
6
c
o
=
F-
}
x
(o
:'
ro
lr
)
\t
o)
N
r(
)
@
F
t
N
l
'
o)
Xi
-
L-
(f
)
o)
|r
)
Cf
)
(r
)
(
\
r
s
s
o
o
)
:
:
o
)
)
;
lr
)
i;
o
N
ro
(O
O,
c
{
tr
,
@
-
(f
)
:{
O
H
-
H
N
l
'
-
N
<'
O
,
(,
O
ro
r
(O
'
-
i
r
"Y
(O
'
:
r
@
(O
33
3
3
3
3
3
3
3
3
S
3
8
6
6
si
-
l.
-
$
N
-
@
(o
(r
)
-
O)
N
ro
C{
^,
\f
6
(O
O
s
l
:
x
r
lO
d)
d
)
(O
O
$
@
L-
lr
)
N
@
-
(
.
)
:
{
@
O
C
{
r
a
)
N
O
C
{
s
t
=
(r
,
S
tr
)
F'
-
@
Y
O
N
('
)
t
tr
,
r'
-
@
O)
l*
r
o
)
F-
ro
(f
)
:^
o
@
(o
\t
N
o
@
(o
x
$
o
)
lr
)
-
F-
:i
O)
\i
O
(o
e{
@
(r
)
o)
>(
@
(o
()
$
N
..
o)
@
t-
rt
)
\t
c!
r
o)
..
i
dd
d
d
d
l
P
+
+
+
+
+
+
+
c
'
i
,
:
(o
(o
(
o
@
(o
=
(o
(
o
(
o
(
o
(o
(
o
(
o
(
o
=
zz
z
z
z
z
z
z
z
z
z
z
z
z
z
fl
l
l
f
l
:
f
l
=
l
f
:
)
:
l
f
l
dt
t
r
t
t
t
g
.
t
E
E
i
.
t
t
t
E
I6L
.t
oSE
b
F-
'E
o
gE
<
o:
z
OF
o0i
-
oSN.
E
G
"S
s
R,
5
OF
:zF
zz
z
z
z
z
z
z
z
z
z
z
z
z
z
:t
:
f
t
l
f
l
f
f
f
l
l
l
f
f
,
f
T.
T
.
T
,
E,
T.
E,
E
E
E
d
E.
T.
E
E
E
-
N
(O
(
O
^
-
-
tr
,
(O
^,
^
$
lr
)
r(
)
O,
(o
d)
N
o
Y
(o
(.
)
N
o
)
)
'
l
Y
ro
N
o
)
@
Or
(
O
N
@
X
-
@
$
O
:
'
}
.
'
O
)
(
o
N
o
o
o
o
o
)
Y
l
o
)
@
@
@
=
.:
@
(o
(
o
ro
o
lr
)
o
$
:
l
$
o
)
$
o
)
,
x
Y
st
o)
!t
o)
O
@
t'
-
tf
)
Y
N
O
O)
l'
-
X
.
X
c.
)
r
O
@
F-
t
r
)
O
F
-
\.
r
@
$
s
-
1
-1
C!
O)
(o
N
c.
i
c
.
i
c
.
i
-
:
-
d
o
ci
o
o
'
oi
d
d
d
NN
C
{
N
:
:
N
N
N
N
'
'
B
bo
-o
u
-o=oaz"oooo-Eo
-
a,g(I
)o:fo'oodt
tO
.
^
r
sN
^
,
(
r
)
F
c
O
O
)
(
O
@
r
t
r
)
ro
}]
e
(O
O)
lr
,
X
C.
t
-
t-
@
t
-
(o
t-
S
(\
:a
F.
-
o)
c
{
N
X
(r
)
$
O
@
@
F
-
o
@
r
l
^
s
r
to
N
s
l
)
I
r
(Y
)
c.
)
t
'
-
O
)
(r
)
(O
C{
6)
:
l
6
l
O
(O
-
Y
t
-
$
$
r
(O
sf
N
-
o
v'
l
o)
.
;
-
co
\"
1
st
(o
@
$
$
(o
(o
(O
ds
+
i
l
d
+
s
+
+
+
+
+
+
+
+
F-
l
:
N
N
N
N
l
^
l
F
-
N
N
r
.
-
F
-
l
.
-
F
-
r.
-
N\
\
N
N
N
\
\
N
N
N
N
N
N
N
N
S(
o
$
(
o
@
l
'
-
O
)
(
f
)
$
@
N
o
)
r
t
O
)
r
tf
)
N
O
@
-
-
Ol
O
l
l
'
-
N
$
O
rO
O)
I.
-
N
o
o
@
N
@
t
-
t
/
)
O
@
$
$
N
S
F
@
st
@
(o
st
o
$
(o
o)
rr
)
l
r
)
(f
)
o
ro
o
(f
)
N
O)
(r
)
O
(O
O,
(o
@
$
O
l
'
-
(O
O
@
r
u)
()
(
O
u)
f.
-
r
O
l
t
-
-
@
@
l
.
-
(A
@
F-
()
(A
(
9
r
$
$
C!
(O
lo
(r
)
$
-
(O
$
F-
tr
)
lr
)
(v
)
O)
C
\
lt
-
-
N
-
C.
,
l
c\
,
1
N
@
$
d
-
-j
c
j
c?
6i
-
-
cj
.q
c.
i
c
.
i
6i
-
-
O)
-
-
e
-
O
t
N
N
<
@
N
N
(O
^
f'
-
@
O)
(o
rO
C!
(O
F-
(r
)
e
(O
F-
c
|
(.
)
x
l
.
-
O
F
-
or
)
(O
N
ol
)
F-
(r
)
c.
)
O
$
$
(o
X
t'
-
l
'
-
@
s
t(
)
S
$
s
r
o
(o
o)
(o
o)
o,
x
s
rt
N
|r
)
\t
$
(f
,
o)
r
r
o
t+
l.
-
o
@
})
{
N
(f
)
$
o)
o
(o
N
@
(O
\t
(O
lr
)
@
-
Y
o)
$
(O
tr
)
(O
O)
(O
o)
N
o
(
o
o
o
N
i
:
N
(
o
N
c
\
l
@
(
f
)
@
N
O
)
C
{
C\
r
N
(r
)
O
x
N
N
O
)
O
)
(O
@
(f
)
o)
o
)
o
o
o
o
o
vl
o)
o
)
o
)
o
)
o
)
o)
o)
N
N
d
;
d
i
d
i
d
i
d
i
I-
N
N
I
-
N
.
-
N
t
-
aC)FEcLr
.
I
oo
o
o
o
o
o
o
o
o
o
o
o
o
o
oo
o
o
o
o
o
o
o
o
o
o
o
o
o
rb
d
i.
t
o,
b
cj
rb
ci
i.
i
cj
,
i
.
i
cj
rb
cj
,
b
:.
i
{
q!
C?
q?
S
S
Y?
Y
?
I
I
r
.
:
.
q!
q!
o)
o
)
o)
o
)
o
)
o
)
o
)
o
)
o)
o
o
o
o
o
o
C!
N
N
N
N
N
$S
$
$
S
$
$
S
r
l
f
$
$
$
\
i
$
t
t
N
N
N
C\
l
N
N
N
N
C!
C\
I
C\
N
C!
N
N
l
1,
.
:
_
,
r
_
J
-
J
J
1
,
.
:
-
I
J
J
J.
J,
.
:
-
(u
(
u
(
!
(
E
(
u
(
u
(
,
C
,
(
E
(
!
(
,
(
,
(
E
(
I
,
O
>>
=
=
>
=
>
=
=
=
=
=
>
>
=
cA
cl
c6
cA
cb
"6
c6
c5
c6
cA
"i
ai
cA
ci
cA
$NoNa,
ioL(E=
c)c=tr.c
l
o-oIc,
ioat
,+oat
t
t\
t
!ooFJo(Eoootr
.go.
tro
(oool!ul
tro-o
lloothGoBa)Lo!ll(,oboo(.
)ot
UTAH DEPARTMENT OF
EIWIRONMENTAL OUAUTY
MAY _ B 2024
DIVISION OF AIR QUALITV
't 'u fis :i'ox"
mr.ffi'**-'""
F.-gi. t,iF-Allfare
il {:iil',tt[;i\, I i:li{)l]r}
Source Test Report
Rio Tinto Kennecott
4700 Daybreak Parkway
South Jordan, UT 84095
t,TAH DEPARTMET.IT OF
ENVIRONIIENTAL OUAUTY
t l ( \1r!: !
- \r:t, i i I I j
oltgg*do?"i,ti%tlf#,
Source Tested: Hydrometallurgical Silver Production
Exhaust Stack (REF007)
Test Date: March 14,2024
Proj ect No. 45T-2024-1032-002
Prepared By
Alliance Technical Group, LLC
3683 W 2270 S, Suite E
West Valley City, UT 84120
pd/lErrpe
T E C iI N IC A L G R O U P Source Test Report
Test Program Summary
Resulatorv Information
Permit Nos.
Source Information
UDAQ Approval Order DAQE-AN0 103460058-20
Title V Operating Permit 3500030004
Source Nqme
Hydrometallurgical Silver
Production Exhaust Stack
Contact Information
Source ID
REFOOT
Target Parameters
HzSOt NII:
Test Location
Rio Tinto Kennecott
2500 South 9180 West
Magna, UT 84044
Jenny Esker
j enny.esker@riotinto.com
(801) s69-6494
Sean Daly
sean. daly3 @riotinto. com
(801)204-2s63
Test Company
Alliance Technical Group, LLC
3683 W 2270 S, Suite E
West Valley City, UT 84120
hoject Manager
Charles Horton
charles.horton@alliancetg.com
(3s2) 663-7s68
Field Team Leader
Tobias Hubbard
tobias.hubbard@alliancetg.com
(60s) 64s-8s62
QA/QC Manager
Kathleen Shonk
katie.shonk@alliancetg.com
(812) 4s2-478s
Report Coordinator
Delaine Spangler
delaine.spangler@alliancetg.com
AST-2024-t032-002 RTK-Magna, UT Page i
pd/lffirrrce
Source Test Reporl
C e r t i fi cat i on State me n tTECI]NICAL GROUP
Alliance Technical Group, LLC (Alliance) has completed the source testing as described in this report. Results
apply only to the source(s) tested and operating condition(s) for the specific test date(s) and time(s) identified within
this report. All results are intended to be considered in their entirety, and Alliance is not responsible for use of less
than the complete test report without written consent. This report shall not be reproduced in full or in part without
written approval from the customer.
To the best of my knowledge and abilities, all information, facts and test data are correct. Data presented in this
report has been checked for completeness and is accurate, error-free and legible. Onsite testing was conducted in
accordance with approved internal Standard Operating Procedures. Any deviations or problems are detailed in the
relevant sections in the test report.
This report is only considered valid once an authorized representative ofAlliance has signed in the space provided
below; any other version is considered draft. This document was prepared in portable document format (.pdf) and
contains pages as identified in the bottom footer of this document.
tu kh5
Charles Horton, QSTI
Alliance Technical Group, LLC
4t15t2024
Date
RTK-Magn4 UTAST-2024-1032-002 Page ii
L PH
Source Test Report
Table ofContents
TABLE OF CONTENTS
1.1 Source and Control System Descriptions. ............... 1-l
1.3 Site-Specific Test Plan & Notification.................. ....................... l-l
3.1 U.S. EPA Reference Test Methods I and2- Sampling/Traverse Points and Volumetric Flow Rate ........3-l
3.2 U.S. EPA Reference Test Method 320 - Moisture Content / Sulfur Dioxide / Ammonia ..... 3-l
3.3 Quality Assurance/Quality Control - U.S. EPA Reference Method 320 .............. ................. 3-l
LIST OF TABLES
APPENDICES
Appendix A Sample Calculations
Appendix B Field Data
Appendix C Quality Assurance/Quality Control Data
Appendix D Process Operating/Control System Data
RTK - Magna" UTAST-2024-1032-002 Page iii
I,TAH DEPARTMENT OF
E}WIRONMENTAL OUALITV
trAY - B 2C24
DIVISION OF AIR QUALITY
All6nGEr
It cill{t.AL ::, tl () jt'-Source Test Report
Introduction
1.0 Introduction
Alliance Technical Group, LLC (Alliance) was retained by No Tinto Kennecott (RTK) to conduct compliance
testing at the Refinery located in Magna, Utah. Portions of the facility are subject to provisions of the Utah
Department of Environmental Quality, Division of Air Quality (UDAQ Approval Order (AO) DAQE-
AN0103460058-20 and the Title V Operating Permit 3500030004. Testing was conducted to determine the
emission rates of sulfuric acid (HzSOa) and ammonia (NH:) at the exhaust of Hydrometallurgical Silver Production
Exhaust Stack (REF007).
1.1 Source and Control System Descriptions
The RTK Refinery, located near the Smelter, receives anode copper produced at the Smelter and uses an electrolytic
process to obtain the high purity cathode copper. The copper anodes from the smelter are submerged in tanks
containing an electrolyte solution in batch operations. An electric current is applied to the tank for a 10-day period
during which copper ions migrate from the anode to form a cathode of 99.99Yo pure copper. Precious metals (gold
and silver) are recovered from the electrolytic refining slimes removed from the tanks in a series of
hydrometallurgical operations. The Refinery copper refining process requires steam to maintain electrolyte
temperatures and prevent the degradation of the electrolyte tanks as well as support the precious metals process. To
supply steam, the Refinery operates a CHP unit as a primary source of steam and maintains two Refinery Boilers
(Boilers #l and #2) as back up steam. Boiler #2 has recently been retrofit with an ultra-low NOx burner. Boiler #l
will be decommissioned once stack testing is complete on Boiler #2.
1.2 Project Team
Personnel involved in this project are identified in the following table.
Table 1-1: Project Team
1.3 Site-Specific Test Plan & Notification
Testing was conducted in accordance with the Site-Specific Test Plan (SSTP) submitted to UDAQ by RTK.
RTK Personnel Sean Daly
Alliance Personnel
Tobias Hubbard
Alan Barrios
Dillon Brown
AST-2024-t032-002 RTK - Magna, UT Page l-l
TECHNICAL GROUP Source Test Report
Sumnary of Results
2.0 Summary of Results
Alliance conducted compliance testing at the RTK Refinery located in Magna, Utah on March 14,2024. Testing
consisted of determining the emission rates of HzSO+ and NHr from the exhaust of Hydrometallurgical Silver
Production Exhaust Stack (REF007).
Table 2-l provides a summary of the emission testing results with comparisons to the applicable permit limits. Any
difference between the summary results listed in the following table and the detailed results contained in appendices
is due to rounding for presentation.
Table 2-1: Summary of Results
' Concentration, ppmvd
Emission Rate, lb/lr
Emission Limit, lb/hr
Percent of Limit
0.77
0.0064
0.56
0.0046
0.45
0.0037
0.59
0.0049
0.14
4
Emission Rate, lb/hr
Emission Limit, lb/hr
Percent of Limitro/o
Concentration, grain/dscf
Emission Limit, grain/dscf
Permit ofLimit,Yo
0.0047
0.00018
0.0024
0.000091
0.0033
0.00013
0.0035
0.22
2
0.00013
0.009
1.5
RTK-Magn4 UTAST-2024-1032-002 Page2-l
AIialrce
Source Test Report
Tesling Methodology-
3.0 Testing Methodology
The emission testing program
descriptions are provided below
was conducted in accordance with the test methods listed in Table 3-1. Method
while quality assurance/quality control data is provided in Appendix D.
Table 3-l: Source Testing Methodology
Parameter U.S. EPA Reference
Test Methods Notes/Remarks
Volumetric Flow Rate 1&2 Full Velocity Traverses
Moisture Content / Sulfuric Acid / Ammonia 320 FTIR - Continuous Sampling
3.1 U.S. EPA Reference Test Methods I and 2 - Sampling/Traverse Points and Volumetric Flow Rate
The sampling location and number of traverse (sampling) points were selected in accordance with U.S. EPA
Reference Test Method l. To determine the minimum number of traverse points, the upstream and downstream
distances were equated into equivalent diameters and compared to Figure I -2 in U.S. EPA Reference Test Method I .
Full velocity traverses were conducted in accordance with U.S. EPA Reference Test Method 2 to determine the
average stack gas velocity pressure, static pressure and temperature. The velocity and static pressure measurement
system consisted of a pitot tube and inclined manometer. The stack gas temperature was measured with a K-type
thermocouple and pyrometer.
The Oz and COz concentration were assumed to be ambient for molecular weight and volumetric flow rate
calculations.
Stack gas velocity pressure and ternperature readings were recorded during each test run. The data collected was
utilized to calculate the volurnetric flow rate in accordance with U.S. EPA Reference Test Method 2.
3.2 U.S. EPA Reference Test Method 320 - Moisture Content / Sulfur Dioxide / Ammonia
The concentrations of moisture content, sulfur dioxide, and ammonia were determined in accordance with U.S. EPA
Reference Test Method 320. Each source gas stream was extracted at a constant rate through a heated probe, heated filter
and heated sample line and analyzed with a MKS MultiGas FTIR operated by a potable computer. The computer has
FTIR spectra of calibration gases stored on the hard drive. These single component calibration spectra are used to
analyze the measured sample spectra. The gas components to be measured were selected from the spectra library and
incorporated into the analytical method. The signal amplitude, lineariry, and signal to noise ratio were measured and
recorded to document analyzer perfonnance. A leak check was performed on the sample cell. The instrument path length
was verified using ethylene as the Calibration Transfer Standard. Dynamic spiking was performed using a ceftified
standard of the target compound or appropriate surrogate in nihogen with sulfur hexafluoride blended as a tracer to
calculate the dilution factor. All test spectra, interferograms, and analytical method information are recorded and stored
with the calculated analytical results. The quality control measures are described in Section 3.3.
3.3 Quality Assurance/Quality Control - U.S. EPA Reference Method 320
EPA Protocol I Calibration Gases - Cylinder calibration gases used met EPA Protocol 1 (+l- 2%) standards. Copies
of all calibration gas certificates can be found in the Quality Assurance/Quality Control Appendix.
AST-2024-1032-002 RTK - Magna, UT Page 3-l
pill6rpe
IECIINICAL GROt]P Source Tesl Report
Testins Methodolop
After providing ample time for the FTIR to reach the desired temperature and to stabilize, zero gas (nihogen) was
introduced directly to the instrument sample port. While flowing nitrogen the signal amplitude was recorded, a
background spectrum was taken, a linearity check was performed and recorded, the peak to peak noise and the root
mean square in the spectral region of interest was measured and a screenshot was recorded.
Following the zero gas checks, room air was pulled through the sample chamber and the line width and resolution
was verified to be at 1879 cm-l, the peak position was entered and the FWHH was recorded (screenshot).
Following these checks, another background spectra was recorded and the calibration transfer standard (CTS) was
introduced directly to the inshument sample port. The CTS instrument recovery was recorded and the instrument
mechanical response time was measured.
Next, stack gas was introduced to the FTIR through the sampling system and several scans were taken until a stable
reading was achieved. The native concenffation of our surrogate spiking analyte as recorded. Spike gas was
introduced to the sampling system at a constant flow rate < l0o/o of the total sample flow rate and a corresponding
dilution ratio was calculated along with a system response time. Matrix spike recovery spectra were recorded and
were within the + 30Yo of the calculated value of the spike concentration that the method requires.
The matrix spike recovery was conducted once at the beginning of the testing and the CTS recovery procedures
were repeated following each test run. The corresponding values were recorded.
AST-2024-1032-002 RTK -Magna, UT Page3-2
AliblrcEr
I ! lil'll
Rio Tinto Kennecott -UT
Hvdrometallursical Silver
AST-2024
Appendix A
Example CalculationsI ir i. i
Location
Source
Project No.
Run No.
Parameter(s) VFR
Absolute Stack Gas Pressure (Ps), in. Hg
ps = pb+rPg
where, L3'6
Pb 25.76 : barometric pressure, in. Hg
Pg 0.25 : static pressure, in. H2OpsTI-:in. Hg
Moisture Fraction (BWSsat), dimensionless (theoretical at saturated conditions)
106.37 (ffi)
. BWSsat =wnere,
Ts 73.4 : stack temperature, oF
Ps 25.8 : absolute stack gas pressure, in. Hg
BWSsat 0.032 = dimensionless
Moisture Fraction (BWS), dimensionless
BWS = BWSmsd unless BWSsat ( BWSmsd
where,
BWSsat 0.032 : moisture fraction (theoretical at saturated conditions)
BWSmsd 2J00 : moisture fraction (measured)
BWSg
Molecular Weight (DRY) (Md), lbflb-mole
Md = (0.44 x o/o CO2) + (0,32 x o/o 02) + (0.28 (100 -
where,
CO2 0.1 : carbon dioxide concentration,%o
02 20.9 : oxygen concentration, 7o
Md 28.85 : lb/lb mol
Molecular Weight (WET) (Ms), lb/lb-mole
Ms = Md (1 - BWS) + 18.015 (BWS)
where,
Md 28.85 : molecular weight @RY), lb/lb mol
BwS-i.0-3r-:moisturef raction,dimensionless
us-78.il= lb/lb mol
Average Velocity (\'s), ftlsec
-..-- vs = 85.49 x Cp x (Lvttzlavg x I=+wnere. -lPsxMsCp 0.99 : pitot tube coefficient \
A Pr/2 1328 = average pre/post test velocity head ofstack gas, (in. H2O)r/2
f. -T3Td- = average pre/post test absolute stack temperature, oR
ps -TI-: absolute stack gas pressure, in. Hg
l,Is---ffi: molecular weight of stack gas, lb/lb mol
vsE:tusec
Ps
o/o CO2 - o/o O2))
AI6rrce
CAL GROUP
Rio Tinto Kcnnecott -
Appendix A
Example Calculations
TECHN}
Locetion
Source
Project No.
Run No.
Paramctcr(s)
Average Stack Gas Flow rt Steck Conditions (Qa), acfm
Qa=60xVsxAs
where,
V, :2lL = stack gas velocity, ff/sec
As 0.66 = cross-sectional areaofsack, d
Qu]].@=..ftn
Average Stack Gas Flow et Stenderd Conditions (Qs), dscfm
Qsd= l7.636xQax(l -BWS)x Ps
Ts
where,
Qa 3,790 = average staek gas flow at stack conditions, acfinBWS 0.032 : moisture ftaction, dimensionlessps'....EE-= absolute stack gas pressurg in. Hg
rs -...B6-=
average pre/post test absolute stack tempcrature, oR
Qs 3,129 ={scftn
N,ffiipe
T f (l tll\i l.,l n L (: U i) l" jP
Location: Rio Tinto Kennecott - Magna, UT
Source: Hydrometallurgical Silver (REF007)
Project No.: AST-2024- 1032-002
Run No. /lVlethodRun I / Method 320
Rrr Nr.
Target 34
Ammonia - Outlet Concentration (Cxn"), ppmvd
vNHr
CNH,*
I -BWS
where,
CNH,* 0.76 : Ammonia - Outlet Concentration, ppmvw
B wS
-61)
l- : moishre fr action, unitless
CNH,-F:ppmvd
Appendix A
Example Calculations
Ammonia - Outlet Concentration (CnnJ, ppmvw
where,
CNH,*: ClrH. x (l - BWS)
CNIL 0.77 : Ammonia - Outlet Concentration, ppmvd
BwS
-b-0--:
moisture fraction, unitless
Cyr.*--0F:ppmvw
Ammonia - Outlet Emission Rate (ERnr"),lb/hr
oo - C*r, x trrtW x Qs x O0 S 28.32 *
-..t,tttr _
where,CNr, 0.77 = Ammonia - Outlet Concentration, ppmvd
MW 17.0n-: NH: molecular weight, g/g-mole
qsE=stackgasvo1umetricflowrateatstandardconditions,dscfrn
ERNH,TS;I-: tb/hr
pulf,ipE)
1 L at ll i.i If. j/". i- {, n.,) ll i'
Location: Rio Tinto Kennecott - Magna, UT
Source: Hydrometallursical Silver (REF007)
Project No.: A3T-2024-1032-002
Run No. /lVlethodRun I / Method 320
Run No. I
HrSOn - Outlet Concentration (Cu,so.), ppmvd
vH,so.
CH,so.*
I -BWS
where,
CH,so.* 0. 10 : HzSO+ - Outlet Concentration, ppmvw
BWS 0.021 : moishre fraction, unitless
CH,so.-lT0-: ppmvd
Appendix A
Example Calculations
HzSOr - Outlet Concentration (Cr,so.*), ppmvw
where,
Cuso.*: Cn,so. x (l - BWS)
Cnso. 0.10 : HzSOa - Outlet Concentration, ppmvd
BwSTdT : moisture fraction, unitlessCH"so.*-:T0-: ppmYw
HzSOr - Outlet Concentration (Cs,so), grains/dscf
L
F Cu,so.XMWx28.32 7F x1.543248-0Y#
LH,so. -
where,
24.04 L
I - mole
Cr,ro.A: HzSOa - Outlet Concentration, ppmvd
MW 98.079 : HzSOa molecular weight, g/g-mole
CH,so. TT0T8- : grains/dscf
HzSOr - Outlet Emission Rate (ERH,5q.), Ib/hr
ED - Croo. x MW x Qs x 60 T5 28.32 #
EI1^g,SO. -
where,
Cr,roA: HzSOa - Outlet Concentration, ppmvd
MW 98.079 : HzSOe molecular weight, g/g-mole
Qs :,1Zq : stack gas volumetric flow rate at standard conditions, dscfm
ERn,so. 0.0047 : lb/hr
Appendix A
Example Calculations
Location Rio Tinto Kennecott - Maqna. UT
Source(s) REF007
Project No. 24-1032-002
Date(s) 3/1412024
CTS Recovery Value (CTSJ, %
::':"n-* too
Ll J6y1
Where,
CTSu"s 98.68 = average of all CTS calibration gas readings, ppm
CTS"yr l0l : CTS bottle certified gas value, ppm
CTSR 97.7% : CTS recovery value,%o
Spike Dilution Factor (DF), %
SF6s.pilas - SF6nil_______j!!)!____ u 4 AA
sF67i,
Where,
SF6di. 4.84 : average of direct tracer gas value readings
SF6,,"t 0.02 : average of native tracer gas value readings
SF6.pik" 0.382619 : average of dlmamic spike tracer gas value readings
DF 7.49% = spike dilution factor,o/o
Calculated Spike (Spike""r"), ppm
(DF x Analytedi,) + (Analyteno, x (1- Df))
Where,
%DF 7.49% : spike dilution factor,oh
Analyte6, 99.74 : average of direct analyte gas values, ppm
Analyte nur 0.49 : average of native analye gas values, ppm
Spike"r" 7 .93 : calculated spike, ppm value, ppm
Spike Recovery Value (Spikes), %
AYl!._tespixe * rOO
JplK€6ab
Where,
Spike"r1" 7.93 = calculated spike, ppm value, ppm
Analyte.pp"j = average ofspiked analyte gas values, ppm
Spikep 75.48% : spike recovery vahe,o/o
pul6rpe
TF:CllNt(rAt ()R()l,P
Emissions Calculations
Location Rio Tinto Kennecott - Magna, UT
Source Hydrometallurgical Silver (REF007)
Project No. AST-202 4-1032-002
Run Number Run I Run2 Run3 Average
Date
Start Time
Ston Time
3lt4l24
l2:10
l3: l0
3n4124 3/14124
13:45 15:06
14:45 16:06
Input Data - Outlet
Moisture Fraction, dimensionless
Volumetric Flow Rate (Ml-4), dscfm
BWS
Qs
0.021
3,129
0.022
3,123
0.023 0.022
3,086 3,113
Calculated Data - Outlet
Ammonia - Outlet Concentration, ppmvd
Ammonia - Outlet Concentration, ppmwv
Ammonia - Outlet Emission Rate. lb/hr
CNu.
CNn*
ERrvs,
0.77
0.76
0.0064
0.s6
0.55
0.0046
0.4s 0.59
0.44 0.58
0.0037 0.0049
HzSO+ - Outlet Concentration, ppmvd
HrSOo - Outlet Concentration, ppmvw
HzSOa - Outlet Concentration, grains/dscf
HzSOa - Outlet Emission Rate, lb/hr
C*r.so
Cn so"-
Cs,so.
ERmo
0.099 0.051 0.070 0.073
0.097 0.050 0.069 0.072
0.00018 0.000091 0.00013 0.00013
0.0047 0.0024 0.0033 0.0035
an6rtre
TE(IIINI(]N L. GROTIP
Ircation: Rio Tinto Kennecott - Masna- UT
Runl-FTIRData
Source: Hydrometallurgical Silver (REF007)
Drnimt Nn . AqT-?n?d-ln?)-nn,
Date;3114124
Time
Unit
MDL
Status
Temperature Pressure
'C atm
Ammonia - Outlet ErSOr- Outlet
ppmvw ppmvw
0.04 0.05
Valid Valid
BWS - Outlet
% (wet)
Valid
l2: l0
12:ll
l2:12
l2:13
l2:14
l2:15
l2:16
l2'.17
l2: l8
12:19
l2:20
l2:21
l2:22
l2.24
12:25
l2.26
l2:27
12:28
12'.29
l2,,30
l2,,31
l2:32
l2:33
l2:34
l2:35
l2:36
l2:37
l2:38
12:39
l2:40
l2:41
l2.42
l2:43
l2:44
l2.46
l247
l2:48
l2:49
l2:50
l2:51
l2:52
l2.53
l2:54
l2:55
l2:56
l2:57
l2:58
12:59
l3:00
13:01
13:02
13:03
13:04
l3:05
l3:06
l3:08
l3:09
l3: l0
19t.0
190.9
190.9
191.0
191.0
191.0
191.0
191.0
190.9
190.9
190.9
190.9
190.9
190.9
190.9
190.9
l9l.l
l9l.l
l9l.l
t9l.l
t9l.l
l9l.l
l9l.l
l9l.l
l9l.l
191.0
191.0
191.0
191. I
191. I
l9l. I
l9l. I
l9l. l
l9l.l
l9l.l
191.1
l9l.l
191.0
191. l
l9l.l
l9l.l
l9l.I
l9l.l
191.0
191.0
191.0
191.0
l9 1.0
l9 1.0
l9l.0
191.0
191.0
191.0
191.0
l9l.l
191.0
l9l.l
l9l.l
0.993
0.993
0.993
0.994
0.996
0.995
0.995
0.99s
0.995
0.996
0.995
0.995
0.995
0.995
0.995
0.995
0.995
0.995
0.995
0.995
0.995
0.995
0.995
0.995
0.99s
0.995
0.99s
0.99s
0.995
0.995
0.995
0.995
0.99s
0.99s
0.995
0.99s
0.995
0.99s
0.995
0.99s
0.995
0.995
0.995
0.995
0.995
0.994
0.995
0.995
0.995
0.994
o.994
0.995
0.995
0.99s
0.995
0.99s
0.995
0.99s
0.7
0.7
0.7
0.7
0.7
0.7
0.7
0.7
0.8
0.8
0.8
0.8
0.9
0.8
0.8
0.8
0.9
0.8
0.8
0.8
0.8
0.8
0.8
0.8
0.8
0.8
0.8
0.8
0.8
0.8
0.8
0.8
0.8
0.8
0.8
0.8
0.7
0.8
0.8
0.8
0.7
0.7
0.7
0.7
0.7
0.7
0.7
0.7
0.6
0.7
0.7
0.7
0.7
0.7
0.7
0.7
0.7
0.7
0.1
0.1
0.1
0.2
0.1
0.1
0.2
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.t
0.1
0.1
0.1
0.t
0.1
0.t
0.1
0.t
0.1
0.1
0.1
0.1
0.1
0.1
0.t
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.1
2.t
2.r
2.1
2.1
2.1
2.1
2.t
2.1
2.1
2.1
2.1
2.1
2.t
2.1
2.1
2.t
2.1))
11
2.2))
'))
2.2
2.2
2.2
1)
1'
2.2
2.2
)')
2.2
2.2,),)
2.2
a1
2.2
2.2
1a
2.2,)
1)))
plla6r1rce
-T t: () lt t! i()AI". (] R() Ll P
Loc{tion: Rio Tinto Kennecott - Masna, [.IT
Source: Hydrometallurgical Silver (REF007)
Project No.: AST-2024-l 032-002
Run2-FTIRData
Time
Unit
MDI,
Stetus
Tempersture Pressure:Y
Valid Valid
Ammonia - Outlet HrSOr - Outlet
ppmvw ppmvs
0.04 0.0s
Valid Valid
BWS - Outlet
% (wet)
Valid
13:45
13:46
l3:47
l3:48
l3:49
l3:50
l3:51
t3'.s2
l3:53
l3:54
l3:55
l3:56
l3:.57
l3:58
l3:59
l4:00
l4:01
l4:02
l4:03
l4:04
l4:06
l4:07
l4:08
l4:09
l4: l0
l4:l 1
l4:12
14: l3
l4:14
l4:1 5
l4:16
t4'.17
l4:1 8
l4: l9
l4:20
l4:21
l4:22
l4:23
l4:24
l4:25
l4:26
l4:28
l4:29
l4:30
l4,,31
l4.32
l4:33
l4:34
l4:35
l4:36
l4:37
l4:38
l439
l4:40
l4:41
l4:42
l4:43
l4:44
l4:45
191.0
191.0
l9l. I
191.0
190.9
190.8
190.7
190.7
190.8
191.0
t9l. l
l9l. I
l9l. I
l9l. I
l9l. I
l9l.l
191.0
191.0
191.0
191.0
191.0
r91.0
191.0
190.9
190.9
190.9
191.0
191.0
190.9
191.0
l9t. I
t9l. I
l9l. I
191.1
191.0
19r.0
191.0
191.0
191.0
191.0
191.0
190.9
191.0
191.0
l9 1.0
l9 t.0
191.0
t91.0
191.0
19 1.0
191.0
191.0
191.0
191.0
l9l.t
191.0
191.0
l9l. I
191. I
0.994
0.994
0.994
0.994
0.994
0.994
0.994
0.994
0.994
0.994
0.994
0.994
0.994
0.994
0.994
0.994
0.994
0.994
0.994
0.994
0.994
0.993
0.994
0.994
0.994
0.992
0.992
0.994
0.994
0.994
0.994
0.993
0.993
0.993
0.993
0.993
0.993
0.993
0.993
0.993
0.993
0.993
0.993
0.993
0.993
0.993
0.993
0.993
0.993
0.993
0.993
0.993
0.993
0.993
0.993
0.994
0.993
0.993
0.993
0.6
0.6
0.6
0.6
0.6
0.6
0.6
0.6
0.6
0.6
0.6
0.6
0.6
0.6
0.6
0.6
0.6
0.6
0.6
0.6
0.6
0.5
0.6
0.6
0.5
0.6
0.6
0.6
0.6
0.6
0.6
0.5
0.5
0.5
0.6
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.6
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.t
0.1
0.1
0.t
0.1
0.t
0.t
0.1
0.1
0.1
0.t
0.1
0.1
0.t
0.1
0.1
0.1
0.1
0.1
0.1
OJ
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
2.2
2.2
2.2
2.2
2.2
2.2
2.2
2.2
2.2
11
2.2
2.2
'))
2.2
2.2
2.2
2.2
2.2
2.2
2.2
2.2
2.2
2.2
2.2
2.2
2.2
2.2
2.2
2.2
2.2
2.2
aa
2.2
2.2
2.2))
2.2
2.2
a1
2.2
2.2
2.2
2.2
2.2
2.2
2.2
2.2
2.2
2.2
2.2
2.2
2.2
2.2
2.2
2.2
2.2
2.2
2.2
)1
put6r'rre
TEClllNlcAl- arn()f,P
Locetion: Rio Tinto Kennecott - Masna. UT
Run3-FTIRData
Source:ical Silver
Project No,: AST
D^te,3ll4l24
Pressure
atm
Time
Unit
MDL
Status
Temperature'c
Valid Valid
Ammonia - Outlet
ppmvw
0.M
Valid
HrSOr - Outlet BWS - Outlel
ppmvw % (wet)
0.0s
Valid Valid
l5:06
l5:07
15:08
l5:09
l5:l I
l5:12
l5: l3
l 5:14
l5: l5
l5: l6
l5:17
l5: l8
l 5:19
l5:20
l5:21
l5:22
l5:23
l5:24
l5,,25
l5:.26
l5.,27
l5:28
l5:.29
l5:30
l532
l5:33
l5:34
l5:35
l5:36
15.37
l5:38
15:39
l5:40
l5:41
l5:42
l5:43
l5:44
l5:45
l5:46
l5:47
l5:48
1s"49
l5:50
I 5:51
l5:52
l5:54
l5:55
l5:56
l5:57
l5:58
l5:59
l6:00
l6:01
l6:.02
l6:03
16:04
l6:05
l6:06
l9l. I
191.0
191.0
l9 1.0
191.0
l9 1.0
191.0
l9 1.0
l9 1.0
191.0
191.0
l9l.l
191.0
l9l.0
191.0
191.0
l9l.l
191.0
191.0
l9l.l
l9 1.0
191.0
191.0
191.0
191.0
l9 1.0
191.0
191.0
191.0
191.0
191.0
191.0
191.0
191.0
t 91.0
191.0
191.0
191.0
191.0
191.0
191.0
191.0
l9 1.0
191.0
191.0
191.0
191.0
191.0
191.0
191.0
191.0
191.0
191.0
191.0
191.0
191.0
191.0
191.0
0.995
0.995
0.995
0.99s
0.99s
0.99s
0.995
0.995
0.995
0.995
0.995
0.995
0.995
0.995
0.995
0.995
0.99s
0.994
0.994
0.993
0.993
0.993
0.993
0.993
0.993
0.993
0.993
0.993
o.994
0.995
0.996
0.996
0.996
0.996
0.995
0.996
0.996
0.996
0.996
0.995
0.99s
0.997
0.997
0.997
0.997
0.997
0.99?
0.997
0.997
0.997
0.997
0.997
0.998
0.997
0.998
0.998
0.997
0.997
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.5
0.5
0.4
0.5
0.5
0.5
0.4
0.4
0.5
0.4
0.4
0.4
0.5
0.s
0.4
0.4
0.5
0.4
0.4
0.4
0.5
0.4
0.4
0.4
0.4
0.5
0.5
o.4
0.4
0.5
0.4
0.4
0.5
0.4
0.4
0.4
0.4
0.4
0.5
0.4
0.4
0.4
0.1
0.1
0.t
0.1
0.1
0.1
0.t
0.t
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.t
0.1
0.t
0.1
0.1
0.1
0.t
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.t
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.t
0.1
0.1
1n
11
1n
2.2
2.2))
1)
2.2
2.2
2.2
2.2))
aa
2.2
2.2
2.2
1a
1a
2.2
2.2
)1
aa
1)
'r)
2.2
2.2
', 1
aa
))
2.3
2.3
2.3
2.3
2.3
2.3
2.3
2.3
2.3
2.3
2.3
2.3
2.3
2.3
2.3
2.3
2.3
2.3
2.3
2.3
2.3
2.4
2.4
2.4
2.4
2.4
2.4
2.4
)<
put6npe
TECt111 11:At CR()tJP
Lo..tion Rio Tinto Kcnnsott - Magna, UT
Method I Data
Sourc. Hydromel.lluryical Silver (REm07)
Prcject No. A5T-2024-1032-002
Drie Olll4l2,4
DuctOticrtrtior! Vertical
Drct Design,---E[ii-
Distance from Far Wdl to Outdde ofPort: 16.00 in
Nipplc togtt :
----316- in
Depth ofllucfi I 1.00 in
cross section.l Arca of ouct: ----i.Zi- g'
No. ofTest Ports: 2
Number otReeding! p." Point, ----l-
Dilllne A: 4.0 ft
Dilmcc A Duct Dim"t",r, ----17-(must be > 0.s)
Distance B: 2_5 ft
Diltarce B Duct Dlm.t"^, --Il--(mwt b. > 2)
MinimM Number of Tmvese Poln8: 16
A.tual Number ofTm""." Poirt ,
-----JZ--
Mdurcr (lnitid and Date): ALB
Revlwer (Initid and D.t )l TCH
Tlavcrse
Point
o/o ol
Dhmeter
Distuce from
wall outide of
I
2
3
1
6
7
8
9
l0
ll
t2
3.2
10.5
19.4
32.3
61.7
80.6
89.5
,:t
0.50
t. l6
2.13
3.55
1.45
8.87
9.85
'ojo
5|2
6 t/E
7tn
I 9lt6
t2 7lt6
13 7/8
t4 118
t5 tD
StrcL Diagrm
A= 4ft.
B= 2sft
DepthofDuct= ll in.
Cross S€ctional Area
LOCATION OF TRAVERSE POINTS
Nililrbcr oJfrdw& pohb on o dieEt r
I
3
1
5
6
7
8
9
l0
ll
l,
2 31567A910lt12
14.6
85.4
6.7
25.0
75.0
nr_,
4.4
14.6
29.6
70.4
85.4
,t_u
3.2
t0.5
t9.4
32.3
67.7
80.6
E9.5
'1'
:
2.6
8.2
14.6
34.2
65.8
77.4
85.4
91.8
nr_o
2.t
6.7
t t.8
17.1
25.0
35.6
64.4
75.0
82.3
8E.2
93.3
97.9
?Hl,u:'.T
oaaaaooo
Alhlrce Cyclonic Flow CheckTECHNICAL GROUP
Location Rio Tinto Kennecott - Megna, UT
Source Hydrometellurgical Silver (REF007)
Project No. AST-202 +1032-002
Dgte 3ll4l24
Sample Point Angle (AP=0)
I
2
3
4
5
6
7
8
9
l0
11
12
l3
t4
15
t6
Averase
0
0
0
5
5
t0
5
5
0
0
5
5
5
5
l0
5
4.1
Alhlpe
Location Rio Tinto Kennecott - Masna. UT
Method 2D*a
Source Hvdrometallurgical Silver (REF007)
Project No. AST-2024-1032-002
Run No.
Date
Status
Start Time
Stop Time
Leak Check
I
3n4t24
VALID
12:10
l3:10
Pass
2
3fi4124
VALID
I 3:45
l445
Pass
3
3il4t24
VALID
l5:06
l6:06
Pass
A
Traverse Point AP
(in. wC)
Ts
cF)
AP
(in. WC)
Ts
fr)
AP
(in. WC)
Ts
cF)
AI
)
J
4
5
6
7
8
BI
,,
3
4
5
6
7
8
0.96
1.00
l.l0
1.20
2.80
3.00
3. l0
2.70
0.95
r.00
1.30
r.60
2.10
240
220
2to
72
73
73
l5
t5
73
73
73
ts
74
74
74
74
74
74
74
1.00
l .10
1.30
140
2.00
210
240
2.40
0.96
1.00
1.20
1.60
2.60
2.80
2.90
2.70
76
76
76
76
76
76
76
76
'76
76
76
76
76
76
76
/t)
0.98
1.00
ll0
1.30
200
2.30
2.50
2.20
0.94
t. l0
t.20
1.50
2.60
2.80
2.90
240
76
76
76
76
/o
76
76
t6
to
'16
76
76
/o
76
/o
76
Square Root of AP, (in. WC)r/2
Average AP, in. WC
Pitot Tube Coefficient
Barometric Pressure, in. Hg
Static Pressure, in. WC
Stack Pressure, in. Hg
Average Temperature, oF
Average Temperature, oR
Measured Moisture Fraction
Moisture Fraction @ Saturation
Moisture Fraction
02 Concentration, To
CO2 Concentration, T"
Iolecular Weight, lb/lb-mole (dry)
lolecular Weight, Ib/lb-mole (wet)
Velocity, ft/sec
VFR at stack conditions, acfrn
VFR at standard conditions, scfh
VFR at standard conditions, scfin
FR at standard conditions, dscfm
(AP)"'
(AP)
(cp)
(Pb)
(Pg)
(Ps)
(rs)
(rs)
(BWSmsd)
(BWSsat)
(Bws)
(02)
(co2)
(Md)
(Ms)
(vs)
(Qa)
(Qsw)
(Qsw)
(Qsd)
1.328
1.84
0.990
25.76
0.25
25.78
73.4
533.0
2 100
0.032
0.032
20.9
0.1
28.85
28.51
95.7
3,790
193,929
3,232
3.129
t.332
1.84
0.990
25 76
020
25.77
76.0
535.7
2.200
0.035
0 035
20.9
0.1
28.85
28.48
96.3
3,8r3
194,1 l5
3,23s
3.123
1.3 l6
1.80
0 990
25.76
0.23
25.78
76.0
535.7
2200
0.035
0.035
20.9
0.1
28.85
28.48
95. I
3,767
t9t,'796
3,t97
3"086
t.325
1.83
0.990
25.76
0.23
25.78
7 5.1
534.8
2.167
0 034
0.034
20.9
0. I
28.8s
28.49
95.7
3,790
l 93,280
3,221
3.1 l3
Location Rio Tinto Kenne@tt -
Source{s) REF007
ProjectNo. A5T-2024-1032-002
Date(s) 3/14/2024
Ethylene Cylinder ID
Concentration (ppmv)
Instrumelt Outlet
lr5 7
:TS 8
:TS 10
:TS 11
:rs 12
AVERAGE 98.68
\,4AX 99.05
Ieviation o.37
\,lllN 98.49
,eviation 0.19
Greatest Deviation from average
0.37%
Agreemeht with Assumed Pathlentth
97.70"4
within 5% no correction required
cls 7
Time File Temperature lC Pressure Ethvlene Date Time File Temperature (C Pressure
Date Time File Temperature (C Pressure Ethvlene
CTS 11
Date Time File
CTS 12
Date Time File
lO:21:3'7 24-I032 RTK FTIR
24-1032 RTK FTIR
24-1032 RTK FTIR
24-I032 RTK FTIR
24.I032 RTK FTIR
24-1032 RTK FTIR
24-1032 RTK FTI
24.1032 RTK FTIR
l4:59r31
24-1032 RTK FTIR
l6:19:23
Location Rio Tinto Kennecott - Magna, UT
Source REF007
ProjectNo. AST-2024-1032-002
Date 311412024
Spike Cylinder lD
Spike Gas concentration
Tracer Cylinder lD
Tracer Gas concentration
lnstrument lD Outlet
Direct Spike Values
cc518156 Component
104.8 Hydrogen Chloride
0 Component
5.015 sF6
RENTAL - Notes
Date Time File Temperature (C) Pressure Spike (ppm) Tracer
)3174/24 10:35:14 24-7032 RTK FTIR 190.8 1.003 98.86 4.844
)3114/24 L0:36:17 24-7432 RTK FTIR 190.8 1.003 99.15 4.843
x3174/24 t0:37:2O 24-1032 RTK FTIR 190.9 1.003 99.37 4.843
)31L4124 10:38:23 24-7032 RTK FTIR 190.9 1.003 99.84 4.839
)3174/24 10:39:25 24-T032 RTK FTIR 190.8 1.003 100.28 4.844
)31L4124 10:40:28 24-7032 RTK FTIR 190.9 1.004 L00.24 4.837
)31L4/24 10:41:31 24-T032 RTK FTIR 190.9 1.004 700.44 4.839
Average 99.74 4.841
Date Time File Temperature (C) Pressure Spike (ppm) Tracer
)3/t4124 24-1032 RTK F-1.4ss6888s4 191.0 0.958 0.96 0.020
)31t4124 24-1032 RTK F').456416644 191.1 0.9s6 0.43 0.020
)3/L4/24 24-1032 RTK F').457144248 191.1 0.955 0.38 0.020
)3/L4124 24-1032 RTK F').457875868 !91.1 0.95s 0.35 0.020
)31L4/24 24-LO32RTKF').45940647 190.9 0.995 0.40 0.020
)31L4/24 24-1032 RTK F-1.460134155 191.0 0.996 0.44 0.020
Average O.49 0.020
Native Values
Spiked values
Dilution Factor
7.5%
Calculated Spike
7.93
Spike Recovery
7s.48%
File Temperature (C) Pressure Spike (ppm) Tracer (ppm)Date Time sure ppm
J3/14/24 L7:27:72 24.T032 RTK FTIR 191.0 0.993 5.92 o.?77
)3/14/24 tt:2L:20 24-7032 RTK FTIR 191.0 0.993 s.92 0.376
)3114124 L7:21:27 24.T032 RTK FTIR 191.0 0.993 6.03 0.390
)3/14/24 11:21:35 24-7032 RTK FTIR 191.0 0.992 6.01 0.377
)3174124 t7:.2L:43 24-T032 RTK FTIR 191.0 0.993 s.96 0.384
03114/24 !7:2L:57 24-1032 RTK FTIR 191.0 0.993 6.08 0.391
03lL4l24 77'.21:59 24-L032 RTK FTIR 191.1 0.993 5.98 0.384
Average 5.98 0.383
Location
ProjectNo.
Instrument
AST-2024-1 032-002
Rio Tinto Kennecott - Magna, UT
RENTAL - Notes
Summary of Spikes
Source REFOOT
Date 3lL4l24
Time 1"1:21
Analyte Hvdrosen Chloride
Direct 99.74
Native 0.49
Spiked s.98
Dilution 7.5%
Recovery 75%
Result PASS
Location
Souro{s)
ProjectNo.
Health Check Paxameter
Instrument ID
Date
Rio Tinto Kmnecott . Ivlggnq, UT
REr007 I
AST-20?4-1032{0?
SirulcBeenlCIre-Twt)
lf vitr.Ff-nsofti.c vloT
Fl lldr lo* H+
-trx
rfo rfo r& rfo & dm & rfo & & & S th tfo * & .fo
3Hr-i-l{m-l |-{i:lml
REI.ITAL.Notos
Location
Source(s)
ProjectNo.
Health Check Parameter
Instrument ID
Date
Rio Tioto Keoneeot - !v[agsa, Uf
AST.20?,I-1032.002
Sinda B€an eost-fs0
ifvtbFr-ns.am vro.?
Fb Udr Io* H*
-tr
& & & rfo rb rfo rfu ah & ah & & & rb # S r*l {h rlin'+fo
Brtr-i-l rr-i-t [Fut]
Location
Source(s)
Project No.
Instrument ID
Date
AST-2024-1032-002
Rio Tinto Kennecofi - Matpa UT
Health Check Parameter Detector Linearity
RENTAL-Notes
tqqftr.nrt?l Tp,...9ir!'rfil Iq!q.4tr!, I fnitrlnrqq
.}lt"rer!F"-{ttl
t .Ftlr--,r"--= l
Di.r-e
Location Rio Tinto Kennecott- Magta, UT
Source(s) REF007
ProjectNo. A5T-2024-1032-002
Health Check Parameter Peak Analysis
Instrument ID RENTAL -Notes
3/14t2024
tMsmPeaf Wrd0r,- - *ax* *.iffi ittu lelt
OdsidLa Froq I !5rS2589,
Ascdrdrr&Ih.f 3m6L]
ccr.aa lw r,.q I ranz.gl i
crhreca Ls frcq i 15I926a3,
f 'r,.Jrtt!ffirF.ciqirtr{.-,]
El 5rc [-pi,*n--ll t -t #..Flr*l lltrm,il"affi] trai*P*dral t .a'qr1,1rp-l
Location
Source(s)
Project No.
Rio Tinto Kennecott - Magna, UT
REFOOT
AST-2024- l 032-002
Health Check Parameter Signal to Noise Ratio
Instrurnent ID
Date
RENTAL - Notes
3il4t2024
Iu" MKS oLl Sigml-to-iloi* aDf}.rd
SNB S.l,+ i R0SNB Iert Slw Rlpo.t c*r" riin .ie,I arr e*'a <rs,Fl.hrn <Fg)
.lA'.i im t]
.l.lY "J Ol
:
Pass 3
Frnge " lffi.l 1 F m.l. FMS Nci*"0 I 193552 (0 5l SAa n*U) SNF'S38
Bw4e . 21@.220 cml. BMS Noiie.0 @1223? l0 3527a9 nAUl. SNB.l23l
Bor4e . 2S3@ cm.l - RMS Nd.c,0 I 419!2r; l0 629539 n*Ul. SNR "690
Pd$ ,l
Bu'g.. 1ffi.l1@ cm.I. 8MS ilcise.01057972 (0159166 nAU]. SllS'945
Rar4e. 21 6.226 "*l - FIMS Nqsc.0 ffi662 l0 R3773 iAUl. SNFd I 03
Ranse. 2!0.3@ col. BMS No:c"0 I 39$22 t0 607536 ntAlJJ. SNR"71 5
'Pars 5
'8erE . 10m.1 1 m cfr l. BHS Ndrc'o I I 25872. l0 188973 nAUl. SllB"888
R6rEG' 2l m.22m.sl. RMS Ndro.O E$122 I0 3€8732 nSU[ SNR.l I 1 7
Rre, 29@.300 m.l. BMS Nose.0 I 397532 l0 66577 nAUl. SNB.7l 6,
Mea Rcsr,ls
Barge' 1 ffi .1 1 (tr m.l - RMS tlose,0 I 0IX5Z l0 173555 nAul. SllB'920
Bvrse . 21 0 28 ml. RMS Uose0 086S92 l0 373789 n*U) SNR.I 1 61
Bvrge. 2S 3ffi cTL BMS tl<ise.0'l 3S9Z l0 66311 rAU| 9N8.717
Location
Source(s)
Project No.
Health Check Parameter
Instrument ID
Date
Rio Tinto Kennecott - Magna, UT
REFOOT
AST-2024- l 032-002
Analysis Validation Utility
RENTAL - Notes
311412024
Analysis Validation Report
Sample Filename: D:\Documents\2024\24-1032 RIO Tinto\24-1032 RTK FTIR 007 000669.1A8
Filename for noise: D:\Documents\2024\24-1032 RIO Tinto\24-1032 RTK FTIR 007_000490.1A8
lnterferences Filenames: C:\OLT\Analysis Validation Utility\Support spectra\1min 191C LN2\lnterferents H
C:\OLT\Analysis Validation Utility\Support spectrafmin 191C LN2\lnterferents H20 10pct CO2 10 pct 1mi
C:\OLT\Analysis Validation Utility\Support spectra\1min 191C LN2\lnterferents H20 10pct CO2 10 pct 1mi
C:\OLT\Analysis Validation Utility\Support spectra\1min 191C LN2\lnterferents H20 10pct CO2 10 pct 1mi
C:\OLT\Analysis Validation Utility\Support spectra\1min 191C LN2\lnterferents H2O 10pct CO2 10 pct 1mi
C:\OLT\Analysis Validation Utility\Support spectra\1min 191C LN2\lnterferents H20 10pct CO2 10 pct 1mi
C:\OLT\Analysis Validation Utility\Support spectrafmin 191C LN2\lnterferents H20 10pct CO2 10 pct 1mi
C:\OLT\Analysis Validation Utility\Support spectra\lmin 191C LN2\lnterferents H20 10pct CO2 10 pct 1mi
Recipe path: C:\OLT\RECIPES\Coal EGU Testing R3 - Copy DO NOT USE.MGRCP - MODIFIED
Gas calibration Name Conc
NO (3s0,3000) 191C 0.13
NO2 (1s0) 191C (1OF2) 0.1
NO2 (2000) 191C (2OF2) 0.76
N2O (100,200,300) 1,91C 0.23
NH3 (300) 191C (1OF2) 0.4
NH3 (3000)791Cl2OF2l 0.47
co (s00) 191c (1oF2) 7.4s
co%ltl7s7c(2oF2) o
H2O% l4O\ tgtc 1.99
coz% (4ol79tc 0.08
cH4 (2so) 191C (1OF2) 2.t9
cH4 (3000) 1e1c (2oF2) 2.63
FORMALDEHYDE (70) 191C -0.05
PROPYLENE (200,1000) 1911 0.05
ETHYLENE (100,3000) 191C -0.1
ACETYLENE (1000) 191C -0.08
PROPANE (100) 191C 0.s8
ETHANE (500) 191C -0.04
ACETALDEHYDE (1000) 191( -0.02
HCL PPM (100) 1,9r.C 5.81
HCN (L00) 191C -0.11
HBR (100) 180C -0.1
so2 (1000) 191c -0.08
so3 (1s0) 191C -7.1_4
cos (100) 1s0c 0
H2SO4 (s0) 1s0C 0.02
sF6 (10) 1e1C 0.38
MEOH (10) 1e1C 0.03
MDC3
7.42
0.15
3.49
0.1
0.3
3.96
0.s8
0.05
0.05
o.7
5.88
o.44
1.11
o.37
t.o2
o.46
o.73
0.95
0.38
1.19
7.97
0.61
o.2
0.07
0.L2
0.03
0.35
DC]. MAU FMU*R OCU
0.34 0.47 1.94 1.94
0.04 0.04 0.15 0.15
7.25 1.6 4.44 4.44
0.05 0.06 0.11 0.11
0.21. 0.36 0.52 0.52
2.08 3.92 7.46 7.46
0.29 0.63 7.24 7.24
0000
o.o2 0.03 0.1 0.1
0.02 0.03 0.o7 0.o7
0.35 0.93 1.86 1.86
1.99 3.27 9.68 9.68
0.26 0.32 0.s3 0.s3
0.74 0.87 1.3 1.3
0.28 0.48 0.6s 0.65
o.47 0.49 7.22 7.22
0.15 0.18 0.54 0.54
0.26 0.29 0.82 0.82
0.54 0.58 7.04 1.04
0.2 0.36 0.68 0.68
0.47 0.7L 2.O3 2.03
7 2.04 3.99 3.99
0.24 0.46 1.77 t.L7
0.03 0.03 0.22 0.22
0.02 0.03 0.1 0.1
0.07 0.08 0.13 0.13
0.01 0.01 0.01 0.01
0.26 0.29 0.4L 0.41
[,ocation
Source(s)
ProjectNo.
Spectra (CTS)
Date
Time
AST-2024-1032-002
Rio Tinto Kennecott - Magnq UT
24-tO32 RrK FTrR 007 00049s.LA8
yt4na24
l0:21:37 AM
il vurFr+nsatwm vtoz
F.! il$ T.oL H+
-trx
aio rfo r:h rfo rfo rfo h & 2dr & & fr & rfu rh dm {rh rfo
shrr-l rffi [(tTl>"]
&r@ RrK FrF O7_rIItl![t-aB o*Iin
Location
Source(s)
ProjectNo.
Spectra (Analyte Direct)
Date
Time
Rio Tinto Kennecot - Mama, UT
AST-2024-1032-002
24-1032 RTK FIIR 007 000508.LAB
3fi4D024
l0;35:14 AM
IfYrrff-nSAtmn wOz
Flc ll.tr Ioob H+
-trx
fi rfo rfo rfo rfo rfo fr & e{b ah & & & ilh & * {fo .fo
sral-Tl dl--i_| fi.(l:ii-l
2+rBA hrK FIn qrr-qlEfuS
Location
Source(s)
Project No.
Spectra (Native)
Date
Time
AST-2024-t032-002
Rio Tinto Kennecott - Magn4 UT
3/t4/2024
E Vi.t. Fr-lRSoftw.E Y10.7
Far i{.tr To* H+
trll
BrEilrcar*e'r-e i
stot[-i--l rf-rl i ai]i-_l-l
Location Rio Tinto Kennecott - Magna UT
Source(s) REF007
ProjectNo. A3T-2024-1032-002
Spectra(Spike) 24-1032 RTKFTIR00T_000662.LAB
Date 3/1412024
Time ll:21:l2AM
Hvin.Ff-nsoftw.,. v10.7
Flo Mllh Tooh H+
ttttttttllttttttm lm r2m r1m 16m lm m m 2{fl} 2fir, 2gn xm ?(E 3aq} ffit 3frxr 1m0 12B
ffiiffiiircffiHr- sr*-ri
st tl- t l urr-l I ii l,_:t_l
-t\.r r','i-i \'- - -' ;-K &**PJS**
Accreditation #62754
Red Ball Technical Gas Service
555 Craig Kennedy Way
Shreveport, LA 71107
800-551 -81 50
PGVP Vendor lD # G12023
CERTIFIED GAS CERTIFICATE OF ANALYSIS
Cylinder Number:
Product lD Number:
Cylinder Pressure:
coA #
Customer PO. NO.:
Customer:
80073902
124838
1900 PStG
=80073902.20230730-0
Certification Date.
Expiration Date:
MFG Facility:
Lot Number:
Tracking Number:
Previous Certification Dates:
cato/t2023
cat06t2025
- snreveoon - LA
80073902.20230730
c84266022
SMART-CERT
This mixture is certified in Mole % to be within t2%
This mixture was manufactured bv scale: weiqhts traceable to N.l.S.T. Certificate #8221266926-02.
Do Not Use This Cvlinder Below 100
cc722751 07t28/2024 PS N2
Analytical lnstrumentation
Princ ry
IUKSFTIR MKS 2031DJG2EKVS13T o17146467
This is to certify the gases referenced have been calibrated/tested, and verified to meet the defined specifications. This
calibration/test was performed using Gases or Scales that are traceable through National lnstitute of Standards and
Technology (NIST) to the lnternational System of Units (Sl). The basis of compliance stated is a comparison of the
measurement parameters to the specifled or required calibration/testing process. The expanded uncertainties use a
coverage factor of k=2 to approximate the 95% confidence level of the measurement, unless otherwise noted. This
calibration certificate applies only to the item described and shall not be reproduced other than in full, without written approval
from Red Ball Technical Gas Services. lf not included, the uncertainty of calibrations are available upon request and were
taken into account when determining pass or fail.
,hrrttL lhrrhu
Aaron Varelas
Analytical Chemist
Assay Laboratory: Red Ball TGS
Version 02-G, Revised on 20'17-07-02
AiIgas.
an Air Liquide company
Part Number:
Cylinder Number:
Laboratory:
Analysis Date:
Lot Number:
Airgas Specialty Gases
Airgas USA LLC
614r Easton Road
Plumsteadville, PA 18949
Airgas.com
160-40239661 5-1
144.0 CF
2015 PS|G
330
CERTIFICATE OF AI\ALYSIS
Grade of Product: CERTIFIED STAMARD-SPEC
x03N199C15A0246
ccs18166
124 - Plumsteadville - PA
Mar23,2022
160402396615-1
Expiration Date:
Reference Number:
Cylinder Volume:
Cylinder Pressure:
Valve Outlet:
Mar 23,2024
Product composition verified by direct comparison to calibration standards traceable to N.LS.T. weights andlor N.I.S.T.
Gas Mixture reference materials.
Gomponent
ANAL]MICAL RESULTS
Req Conc ActualConcentration
(Mole %)
Analytical
Uncertainty
SULFUR HEXAFLUORIDE
HYDROGEN CHLORIDE
NITROGEN
5.000 PPM
100.0 PPM
Balance
5.015 PPM
104.8 PPM
+l- 5o/o
+l-2o/o
Sionature on file
Approved for Release Page I of 1
AiIgas.
an Air Liquide company
Airgas Specialty Gases
Airgas USA LLC
525 North Industrial Loop Road
Tooele, W 84074
Airgas.com
Part Number:
Cylinder Number:
Laboratory:
PGVP Number:
Gas Code:
Reference Number:
Cylinder Volume:
Cylinder Pressure:
Valve Outlet:
Certification Date:
1 53-402560600-1
144.0 CF
2015 PSIG
660
Oct 18,2022
Expiration Date: Oct 18, 2030
CERTIFICATE OF ANALYSIS
Grade of Product: EPA PROTOCOL STANDARD
E02N199E1540350
SGg170578BAL
124 -Tooele (SAP)- UT
872022
SO2,BALN
Certiflcation performed in accordance with "EPA Traceability Protocol for Assay and Certification of Gaseous Calibration Standards (May 2012)" document EPA
600/R-'l 2/531 , using the assay procedures listed. Analytical Methodology does not require correction for analytical interference. This cylinder has a total analytical
uncertainty as stated below with a confidence level of 95%. There are no significant impurities which affect the use of this calibration mixture. All concentrations are on a
mole/mole basis unless otheMise noted. The results relate only to the items tested. The report shall not be reproduced except in full without approval of the laboratory. Do
Not Ljse This below 100 osio. i.e. 0.7
ANALYTICAL RESULTS
Actual Protocol Total Relative
SULFUR DIOXIDE 50.00 PPM 50.39 PPM G1 +l-0.9o/o NIST Traceable 1011112022, 1011812022
NITROGEN Balance
Lot ID Cvlinder No Concentration
NTRM 16010207 KALOO3179 97,69 PPM SULFUR DIOXIDE/NITROGEN O,8O/O Nov01,2027
ANALYTICAL EQUIPMENT
Nicolet iS50 AUP2'| 10269 SO2 LSO2 FTIR Od12,2022
Triad Data Available Upon Request
Sianatrrra an fila
Approved for Release Page 'l of 1
Alhlrce QA Data
Location Rio Tinto Kennecott - Magna. UT
Source Hvdrometallursical Silver (REF007)
Project No. AST-2024-1032-002
Parameter(s) VFR
Date Pitot ID Evidence of
damase?
Evidence of
mis-alisnment?
Calibration or
Reoair reouired?
3t14124 standard no no no
Date Barometric Evidence of Reading Verified Calibration or
Danoir raarirorl,Weather Station Location
3/14t24 Weather Station NA NA NA SLC Airport
q@o!booor'
.
(nooboq.voU!0)o66oAo(0
-odC)
(!
.d
q?oppLOad
ll
6Lo
,.
o
oa9Eos)aoboo4-
Ea
t'
\
';
'
{
o;
j
^6ri
-o
14
d
da
qa-O(n
o
l:
,
a
qiOF
ooFroCIJ
JooF13ctl
l
o(
O
*
$
N
-
n
O
N
(
O
O
)
@
S
@n
X
O
F
-
6
N
O
N
t
-
N
(
O
Ni
i
@r
,
x
i
N
m
O
N
O
O
t
-
\
t
6
)
O
-=
6r
)
x
@
r
)
N
@
(
)
C
{
@
r
)
(
.
,
O
)
NO
x
<
\
t
O
(
O
-
t
-
(
O
6
$
(
f
)
(
o
x
=
@
S
Y<
o
F
(O
C
!
F-
(r
)
6
$
r)
F
-
E
E
r
n
.
Y
N
(
O
c
r
,
(O
(O
O
(
.
)
F
rr
O
S
g'
6i
;
P
d
o
,
@
co
r-
.
-
d
ri
d
<i
oo
=
o
@
@
@
@
@
@
@
@
@
Sb
e
B
b
r
R
N
"
e
g
E
e
B
ss
-
\
$
s
:
s
s
:
t
\
i
)
l
s
t
+
*B
E
E
=
E
E
S
s
E
s
t
E
83
E
5
5
c
E
E
c
5
5
c
E
;-
-
-
-
.
-
-
.
.
;
-
;
i.
.
.
oO
O
O
O
O
O
O
o
O
o
O
O
'
99
9
9
9
9
9
9
9
9
9
9
9
//
:
Or
(
O
r
(
O
r
@
-
(
f
,
-
(
o
F
(
O
.
or
r
N
N
o
o
s
t
s
6
l
r
)
o
o
.
rb
i,
i
lb
id
tb
i'
i
i
,
i
lb
i'
t
lb
l
b
dd
(b
i.
:
-
r
sv
s
v
s
v
s
v
v
s
v
v
v
'
NN
C
!
N
C
!
C
!
N
C
.
I
N
N
N
N
N
r
J.
rl
-
J
-
l
,
:
-
J
-
J
-
J
J
J
-
J
-
J
-
J.
.
6(
5
(
!
(
5
(
!
(
5
(
5
G
(
E
(
E
G
O
(
E
,
>=
=
=
>
>
>
=
=
>
=
=
=
++
+
+
+
+
+
+
+
+
+
+
+
tr
.goEEdoo(\
l
I.E
x
'oJNo-
(!
<
a'of
,
OY
E6g=
o.
.
.
EOOG
oo
olt
.c
to(t
,o266o
ooFoc[!a4)FEcul
@N
(
O
^
$
F
-
r
6
o
i
)
(
q
t
s
-
\
t
o(
o
N
X
i
l
r
)
r
@
s
f
O
F
-
(
f
)
o
@
N
;i
r)
F
F-
:.
1
O
!t
O
r)
-
(O
C
{
@
('
)
F
=,
:
O
O
O
:.
6
d
)
F
-
N
N
r
(O
O
6
sN
o
Y
F
-
@
$
(
r
r
o
@
F
-
6
I=
NO
t
:
L
O
O
N
@
O
)
O
O
r
N
cE
@o
N
\
.
(
o
@
o
N
s
F
-
o
r
r
d
J
S
g
'j
Ai
c
i
fl
oi
^i
cj
d
r
"
j
t
"
i
c
.
j
.
f
s
oo
o
=
o
o
o
)
o
r
o
)
6
r
o
)
o
r
o
,
6)
(r
)
(O
O)
(O
(
O
C'
(r
'
(O
C'
'
(O
(O
O)
oO
o
o
F
-
T
N
N
N
(
f
)
(
O
(
O
'i
o
c
)
o
o
o
o
o
o
o
o
o
o
o
l:
:
:
-
o
(O
(
O
O
F
-
S
r
@
|r
)
N
O)
(O
^
^t
O
\
f
s
<
'
$
(
O
(
a
(
v
)
C
{
N
N
r
-
*
rN
O
S
O
@
t
-
-
@
o
l
r
o
l
r
C
{
(
f
)
-
:
@
@
6
@
@
@
@
@
@
o
r
o
r
o
)
o
)
.
oo
o
o
o
o
o
o
o
o
o
o
o
oo
o
o
o
o
o
o
o
o
o
o
o
--
-
-
-
-
;
;
;
;
;
;
;
.
oo
o
o
o
o
o
o
o
o
o
o
o
:.
,
OO
O
O
O
O
O
O
O
O
O
O
O
6
c
i
i'
i
ci
ri
'
i
ci
tb
ct
rb
ci
ii
o
ii
$O
6
O
O
-
-
N
C
\
l
O
O
\
t
l
'
'.
<o
a
i
r
i
+
+
+
+
+
$
+
+
+
+
a.
--
.
ss
Y
v
Y
v
v
s
v
v
s
v
s
C!
N
N
N
N
C
!
N
N
N
N
O
I
N
N
:
GO
O
O
(
t
r
O
O
O
O
(
E
O
(
E
(
E
s$
$
$
s
$
t
s
$
t
s
s
r
t
NcE,EcoEE+ooNISx
'oJNo-
(l
+
it
?8E
Ef
t
,
g=
EL
..
EO
ocoo
6oEollI
aoFI'cUJ
r*
O
6
O
O
S
C
T
J
N
^
O
r
@
I
.
-
N)
!
o
N
o
-
o
n
N
l
a
a
O
N
t
N
ii
o
)
x
l
t
s
(o
lr
)
l
r
)
$
(f
)
N
;r
o
o
-=
.
oX
n
@
F
S
N
O
O
:
<
O
N
$
NY
N
$
N
o
r
$
(
o
:
J
o
(
o
o
!=
$1
1
o
N
-
o
O
O
r
@
:
-
l
N
(
O
(
)
G
tr
N'
.
O
O
O
N
-
sl
@'
-
!
(O
O
$
A
g'
+
I
tr
;
ri
(
c
i
d
r-
N
N
9d
o,
o
;
@:
@
@
@
@
6
@
c
o
:
@
@
@
(O
o
o
(
O
o
o
(
O
O
r
(
O
(
O
O
r
o
@
oo
$
S
$
r
O
(
)
r
r
(
o
(
O
(
O
F
-
N
-:
o
o
o
o
o
)
o
)
o
,
o
)
o
,
o
,
o
,
o
)
o)
ti
:
o
n
N
o
o
o
o
F
-
$
e
@
(
)
N
1:
O
O
O
O
O
O
O
O
@
O
F
F
-
F
-
.'
o
\r
()
n
(o
F
@
o)
o
-
c{
(o
r
t
:.
O
6
O
O
O
O
O
(O
t'
-
t
'
-
F
F
F-
:1
o
o
o
o
o
o
o
o
o
o
o
o
o
-
qq
q
q
q
c
c
q
c
c
q
c
g
oo
o
o
o
o
o
o
o
o
o
o
o
oo
o
o
o
o
o
o
o
o
o
o
o
ci
ri
.
t
o
dd
ci
rb
o
rb
o
ii
ci
6
ci
-r
N
N
(
O
(
o
t
:
t
o
r
)
O
O
r
^i
N
N
N
N
o.
i
oi
o
i
ci
6i
ri
r
i
r
i
s$
\
t
$
$
$
$
$
s
s
t
s
\
t
NN
N
N
N
N
N
N
N
N
N
N
N
(E
(
!
(
5
(
E
(
E
C
,
(
!
(
!
(
!
(
!
(
s
6
(
6
.t
r
t
s
s
s
$
$
$
$
$
$
s
i
t
(Lt,
tr
t.gcoEt{ooNI.E
x
'oJNo_groIot
s
EG
.9
=
-E
L
.
.
=6
)
ocoo
o.c
l
ltoat
to=o6.cE'
l=(!oEo!,
I
E6
I,TAH DEPARTMENT OF
ET.IVIRONMENTAL OUAUTY
[,{AY - B 2i]?4
DiVISION OF AIB QUALITY
''''61;f $'l lna.a;rr r"f
{,.t, .AIlffhre
| ' ' r'. : i ,,', i { , j i
i
Source Test Report
Rio Tinto Kennecott
4700 Daybreak Parkway
South Jordan, UT 84095
Source Tested: Gold/Silver Recovery Baghouse
(REFO10)
Test Date: March 15,2024
Proj ect No. AST- 2024-1 03 2-003
UTAH DEPABTMENT OF
EWIRONMENTAL OUAIJTY
t,4;,Y -l _ i
Hcrod i) e. t. ,VLr eA
DIVISION OF AIR OUALTTV
Prepared By
Alliance Technical Group, LLC
3683 W 2270 S, Suite E
West Valley City, UT 84120
TECIINICAL GROLJP Source Test Report
Tesl Program Summary
Regulatory Information
Permit Nos.
Source Information
UDAQ Approval Order DAQE-AN0103460058-20
Title V Operating Permit 3500030004
Source Name
Gold/Silver Recovery Baghouse
Contact Information
Source ID
REFOIO
Target Parameter
PMIO
Test Location Test Company Analytical Laboratory
Rio Tinto Kennecott Alliance Technical Group, LLC Alliance Technical Group, LLC
2500 Souttr 9180 West 3683 W 2270 S, Suite E 5530 Marshall Street
Magna, UT 84044 West Valley City, UT 84120 Arvada, CO 80002
Eric Grosjean
Jenny Esker Project Manager eric.grosjean@alliancetg.com
jenny.esker@riotinto.com Charles Horton (303)420-5949
(801) 569-6494 charles.horton@alliancetg.com
(3s2) 663-7s68
Sean Daly
sean.daly3@riotinto.com Field Team Leader
(801)204-2563 Tobias Hubbard
tobias.hubbard@alliancetg.com
(60s) 645-8562
QA/QC Manager
Kathleen Shonk
katie. shonk@alliancetg.com
(8r2) 4s2-478s
Report Coordinator
Delaine Spangler
delaine.spangler@alliancetg.com
Report Reviewer
Sarah Perry
sarah.perry@alliancetg.com
RTK-Magna, UTAST-2024-1032-003 Page i
T
Source Tesl Reporl
C er tilic ation S tate me nt
Alliance Technical Group, LLC (A[iance) has completed the source testing as described in this report. Results
apply only to the source(s) tested and operating condition(s) for the specific test date(s) and time(s) identified within
this report. All results are intended to be considered in their entirety, and Alliance is not responsible for use of less
than the complete test report without written consent. This report shall not be reproduced in full or in part without
written approval from the customer.
To the best of my knowledge and abilities, all information, facts and test data are correct. Data presented in this
report has been checked for completeness and is accurate, error-free and legible. Onsite testing was conducted in
accordance with approved internal Standard Operating Procedures. Any deviations or problems are detailed in the
relevant sections in the test report.
This report is only considered valid once an authorized representative ofAlliance has signed in the space provided
below; any other version is considered draft. This document was prepared in portable document format (.pdf) and
contains pages as identified in the bottom footer of this document.
4t24t24
Charles Horton, QSTI
Alliance Technical Group, LLC
Date
RTK- Magna, UTAST-2024-1032-003 Page ii
pilt6lpe
TECIlNICAL GROUP Source Tesl Report
Table ofConlents
TABLE OFCONTENTS
l.l Source and Control System Descriptions ................ l-1
1.3 Site-Specific Test Plan & Notification.................. ....................... l- I
3.1 U.S. EPA Reference Test Methods I and2 - Sampling/Traverse Points and Volumetric Flow Rate........3-l
3.2 U.S. EPA Reference Test Method 4 * Moisture Content........ ..... 3-l
3.3 U.S. EPA Reference Test Methods 5 and202 - Total Particulate Matter.......... .................... 3-l
LIST OF TABLES
APPEIIDICES
Appendix A Sample Calculations
Appendix B Field Data
Appendix C Laboratory Data
Appendix D Quality Assurance/Quality Control Data
Appendix E Facility Process Data
AST-2024-1032-003 RTK - Magna, UT Page iii
[lT',1t r!r.int
MAY _ B 2A?.4
i.;i.,.iii,t,irl UF AIR QUALITY
#-AIAtEe
I i aliii.Jl(l.r:L a;tl{)Lri'Source Tesl Report
Inh'oduction
1.0 Introduction
Alliance Technical Group, LLC (Alliance) was retained by Rio Tinto Kennecott (RTK) to conduct compliance
testing at the Refinery located in Magna, Utah. Portions of the facility are subject to provisions of the Utah
Department of Environmental Quality, Division of Air Quality (UDAQ) Approval Order (AO) DAQE-
AN0103460058-20 and the Title V Operating Permit 3500030004. Testing was conducted to determine the
emission rate of particulate matter less than l0 microns (PMl0) at the exhaust of Gold/Silver Recovery Baghouse
(REF0l0). Front half PM measurements were considered PMl0 emissions for demonstration with compliance
limits.
l.l Source and Control System Descriptions
The RTK Refinery, located near the Smelter, receives anode copper produced at the Smelter and uses an electrolytic
process to obtain the high purity cathode copper. The copper anodes from the smelter are submerged in tanks
containing an electrolyte solution in batch operations. An electric current is applied to the tank for a l0-day period
during which copper ions migrate from the anode to form a cathode of 99.99o/o pure copper. Precious metals (gold
and silver) are recovered from the electrolytic refining slimes removed from the tanks in a series of
hydrometallurgical operations. The Refinery copper refining process requires steam to maintain electrolyte
temperatures and prevent the degradation of the electrolyte tanks as well as support the precious metals process. To
supply steam, the Refinery operates a CHP unit as a primary source of steam and maintains two Refinery Boilers
(Boilers #l and #2) as back up steam. Boiler #2 has recently been retrofit with an ultra-low NOx burner. Boiler #l
will be decommissioned once stack testing is complete on Boiler #2.
1.2 Project Team
Personnel involved in this project are identified in the following table.
Table l-1: Project Team
1.3 Site-Specific Test Plan & Notification
Testing was conducted in accordance with the Site-Specific Test Plan (SSTP) submitted to UDAQ by RTK.
RTK Personnel
Sean Daly
Jenny Esker
Alliance Personnel
Tobias Hubbard
Alan Barrios
Dillon Brown
AST-2024- I 032-003 RTK - Magna, UT Page 1-1
CHNICAL GROUP Source Test Reprt
Sunmary of Results
2.0 Summary of Results
Alliance conducted compliance testing at the RTK Refinery located in Magn4 Utah on March 15,2024. Testing
consisted of determining the emission rate of PMI0 at the exhaust of Gold/Silver Recovery Baghouse (REF0I0).
Front half PM measurements were considered PMl0 emissions for demonstration with compliance limits.
Table 2-l provides a summary of the emission testing results with comparisons to the applicable UDAQ permit
limits. Any diflerence between the summary results listed in the following table and the detailed results contained in
appendices is due to rounding for presentation.
Table 2-1: Summary of Results
ble Particulate Matter Data 1
Concentation, grain/dscf
Pennit Limit, grain/dscf
Percent of Limit, 7o
Emission Rate, lb/hr
Permit Limit,lb/hr
Percent ofLimit,o/o
0.00095
0.018
0.0008r
0.015
0.0024
0.043
0.0014
0.010
t4
0.02s
0.43
6
All filterable PM collected is considered PMl0 for compliance demonstration.
RTK- Magna, UTAST-2024-1032-003 Page2-l
{'
dr:Alialpe
Source 7'esl Report
Testing Methodolog;
3.0 Testing Methodology
The emission testing program was conducted in accordance with the test methods listed in Table 3-1. Method
descriptions are provided below while quality assurance/quality control data is provided in Appendix D.
Table 3-1: Source Testing Methodology
3.I U.S. EPA Reference Test Methods I and 2 - Sampling/Traverse Points and Volumetric Flow Rate
The sampling location and number of traverse (sampling) points were selected in accordance with U.S. EPA
Reference Test Method l. To determine the minimum number of traverse points, the upstream and downstream
distances were equated into equivalent diameters and compared to Figure I - I in U.S. EPA Reference Test Method I .
Full velocity traverses were conducted in accordance with U.S. EPA Reference Test Method 2 to determine the
average stack gas velocity pressure, static pressure and temperature. The velocity and static pressure measurement
system consisted of a pitot tube and inclined manometer. The stack gas temperature was measured with a K-type
thermocouple and pyrometer.
The Oz and COz concentration were assumed to be ambient for molecular weight and volumetric flow rate
calculations.
Stack gas velocity pressure and temperature readings were recorded during each test run. The data collected was
utilized to calculate the volurnetric flow rate in accordance with U.S. EPA Reference Test Method 2.
3.2 U.S. EPA Reference Test Method 4 - Moisture Content
The stack gas moisture content was determined in accordance with U.S. EPA Reference Test Method 4. The gas
conditioning train consisted of a series of chilled impingers. Prior to testing, each impinger was filled with a known
quantity of water or silica gel. Each impinger was analyzed gravimetrically before and after each test run on the
same analytical balance to determine the amount of moisture condensed.
3.3 U.S. EPA Reference Test Methods 5 and 202 -Total Particulate Matter
The total particulate matter (filterable and condensable PM) testing was conducted in accordance with U.S. EPA
Reference Test Methods 5 and202. The complete sampling system consisted of a stainless steel nozzle, glass-lined
probe, pre-weighed quartz filter, coil condenser, un-weighed Teflon filter, gas conditioning train, pump and
calibrated dry gas meter. The gas conditioning train consisted of a coiled condenser and four (4) chilled impingers.
The first and second impingers were initially empty, the third contained 100 mL of de-ionized water and the last
impinger contained 200-300 grams of silica gel. The un-weighed 90 mm Teflon filter was placed between the
second and third impingers. The probe liner heating system was maintained at a temperature of 248+25"F, and the
impinger temperature was maintained at 68'F or less throughout testing. The temperature of the Teflon filter was
maintained greater than 65oF but less than or equal to 85oF.
Parameter U.S. EPA Reference
Test Methods Notes/Remarks
Volumetric Flow Rate I 8.2 Full Velocity Traverses
Moisture Content 4 Graviretric Analysis
Total Particulate Matter 5/202 Isokinetic Sampling
AST-2024- I 032-003 RTK - Magna, U1'Page 3-l
FAlilatpE)
.t i t'.1 lat A I (r, ll () i I l:l Source Test Reporl
Tesline Methodolosv
Following the completion of each test run, the sampling train was leak checked at a vacuum pressure greater than or
equal to the highest vacuum pressure observed during the run. Condensate was collected in the first dry impinger,
therefore the front-half of the sample train (the nozzle, probe, and heated pre-weighed filter) was removed in order
to purge the back-half of the sample train (coil condenser, first and second impingers and CPM filter). A glass
bubbler was inserted into the first impinger. If needed, de-ionized ultra-filtered (DIUF) water was added to the first
impinger to raise the water level above the bubbler, then the coil condenser was replaced. Zero nitrogen was
connected to the condenser, and a 60-minute purge at 14 liters per minute was conducted. After the completion of
the nitrogen purge the impinger contents were measured for moisture gain.
The pre-weighed quartz filter was carefully removed and placed in container l. The probe, nozzle and front half of
the filter holder were rinsed three (3) times with acetone to remove any adhering particulate matter and these rinses
were recovered in contain er 2. All containers were sealed, labeled, and liquid levels marked for transport to the
identified laboratory for filterable particulate matter analysis.
The contents of impingers I and2 were recovered in container CPM Cont. #1. The back half of the filterable PM
filter holder, the coil condenser, impingers I and 2 and all connecting glassware were rinsed with DIUF water and
then rinsed with acetone, followed by hexane. The water rinses were added to container CPM Cont. #1 while the
solvent rinses were recovered in container CPM Cont. #2. The Teflon filter was removed from the filter holder and
placed in container CPM Cont. #3. The front half of the condensable PM filter holder was rinsed with DIUF water
and then with acetone, followed by hexane. The water rinse was added to container CPM Cont. # I while the solvent
rinses were added to container CPM Cont. #2. All containers were sealed, labeled and liquid levels marked for
transport to the identified laboratory for condensable particulate matter analysis.
RTK - Magna, UTAST-2024- l 032-003 Page 3-2
A161re
TECHNICN L GROUP
Appendix A
Example Calculations
Location:
Source:
Project No.:
Run No.:
Parameter:
AST-2024-1032
Rio Tinto Kennecott - Masna. UT
Gold/Silver Recovery BH (REF010)
PMlO
Meter Pressure (Pm), in, Hg
AHPm = Pbf:
where, L3r6
Pb L= barometric pressure, in. Hg
AH 2.288 = pressure differential of orifice, in H2O
PtE=inug
Absolute Stack Gas Pressure (Ps), in. Hg
Ps = pu*,!8,
where, 13,6
Pb 25.78 = barometric pressure, in. Hg
PgA= static pressure, in. H2O
Ps 25.81 = in. Hg
Standard Meter Volume (Vmstd), dscf
17.636xYxVmxPm
Tm
Y _W= meter correction factor
Vm 53.304 = meter volume, cf
Pm____L= absolute meter pressure, in. Hg
Tm 502.5 = absolute meter temperature, oR
vmrtd----7J1-= drcf
Standard Wet Volume (Vwstd), scf
Vmstd
where,
BWS
where,
x VlcVwstd = 0.04776
where,
Vlc 5.0
Vwstd 0.24
= weight olH2O collected, g
= scf
Moisture Fraction (BWSsat), dimensionless (theoretical at saturated conditions)
fiffi?_GffiBWSsat =
where,Ps
Ts@= stack temperature, oF
Pr__-2!q]-= absolute stack gas pressure, in. Hg
BWSsat 0.050 = dimensionless
Moisture Fraction (BWS), dimensionless (measured)
Vwstd
(Vwstd * Vmstd)
Vwstd-][fu= standard wet volume, scf
Vmstd 47.180 = standard meter volume, dscf
Bws
-6-.
oo5o- = d imens ionless
Moisture Fraction (BWS), dimensionless
BWS = BWSmsd unless BWSsat < BWSmsd
where,
BWSsat_..,10.Q50 = moisture fraction (theoretical at saturated conditions)
RWSmsd 0 005 = moisture fraction (measured)
Bws-6.6b50
plltfrre
TECHNICN L GROUP
Appendix A
Example Calculations
Location:
Source:
Project No.:
Run No.:
Parameter:
AST-2024-1032
Rio Tinto Kennecott - Magna" UT
Gold/Silver Recovery BH (R"EF010)
PMlO
Molecular Weight (DRY) (Md), lb/lb-mole
Md = (0.44 x o/oCO2) + (0.32 x o/oOZ) + (0.28(100- o/oCO2 - o/oOZ))
where,
COrA= carbon dioxide concentration, o/o
O, nS = oxygen concentration,%o
Md....j2-=lb/lbmol
Molecular Weight (WET) (Ms), lb/lb-mole
Ms=
where,
Average Velocity (Vs), ftlsec
Md (1 - BwS) + 18.01s (BWS)
Md 28.85 = molecular weight (DRY), lb/lb mol
BWS.;!Q[= moisture fraction, dimensionless
Ms 28.8 = lb/lb mol
Vs = 85.49 x Cp x (Lyrlz'tavg x
where, 1Cp_9!19_= pitot tube coeffrcient
Lptt2 0.921 = velocity head of stack gas, (in. H:O)t/2
rr E= absolute stack temperature, oR
Ps_-]!!.!-= absolute stack gas pressure, in. Hg
M.____lL= molecular weight of stack gas, lb/lb mol
Vs 56.7 = ff/sec
Average Stack Gas Flow at Stack Conditions (Qa), acfm
Qa=60xVsxAs
where,
Vs &= stack gas velocity, ft/sec
As 0.79 = cross-sectional area ofstack, ft2
Qu--w-=u"f^
Average Stack Gas Flow at Standard Conditions (Qs), dscfm
Ps
Qs = 17.636 x Qa x (1 - BWS) t T;where,
Qa 2,673 = average stack gas flow at stack conditions, acim
BWS _9.1QQ_ = moisture fraction, dimensionless
Ps_-!!!.!-= absolute stack gas pressure, in. Hg
T" L= absolute stack temperature, oR
Qs-!2lz!_:dscfm
AnErre
TECHNICN L GROUP
Appendix A
Example Calculations
Location:
Source:
Project No.:
Run No.:
Parameter:
AST-2024-1032
Rio Tinto Kennecott - Magna, UT
Gold/Silver Recovery BH (REF010)
PMlO
Dry Gas Meter Calibration Check (Yqa), dimensionless
Y-
x 100
Y 0.972 = meter conection factor, dimensionless
O 60 = run time, min.
V, _jLlg!-= total meter volume, dcf
Tm ..;p!-= absolute meter temperature, "R
LH@ | 964 = orifice meter calibration coefficient, in. H2O
Pb 25.78 = barometric pressure, in. Hg
AH augA= average pressure differential of orifice, in I{2O
Md 28.85 = molecular weight (DRY), Ib/lb mol
(A H)t"--_].,[]-= average squareroot pressure differential of orifice, (in. [I2o)t/2
Yqa__-!!-=percent
Volume of Nozzte (Vn), ft3
om ***)
Ts/Vn = E; [0.002669 xVlc t
where,
Yqa =
where,
Isokinetic Sampling Rate (I), 7o
ex60xAnxl/s
where,
TsJ4L= absolute stack temperature, 'R
Ps
-!!!]-=
absolute stack gas pressure, in. Hg
Vlc 5.0 = volume of H2O collected, ml
v.E= meter volume, cf
P.-]![= absolute meter pressure, in. Hg
Y 0.972 = meter correction factor, unitless
Tm 502.5 = absolute metertemperature, \
Vn 56.955 = volume of nozzle, ft3
XYxPm
,m
Vm
)
Vn
)*rool=
60.0
Vn
e
An
Vs
I
56.955 = nozzle volume, ft3
0.00028
= run time, minutes
= area of nozzle, ft2: average velocity, fl/sec
= o/o
56.72
101.0
Filterable PM Concentration (C.), grain/dscf
^ Mn x 0.0154
a
--vs - Vmstd
where,
Mn..-.A=filterable PM mass' mgy.r16 47.180 = standard meter volume, dscf
C,;!Q[=grain/dscf
AppendixA
Example Calculetions
TECHNICN L GROUP
Locetion: Rio Tlnto Kennccott- Maqna, UT
Source: Gold/Silver Recoverv BH mEF010)
Project No.:AST-2024-1032
Run No.: I
Parameter: PMIO
f'iltenblc PM Emisston Rrtc (PMR), lb/hr
C.xQsx60
7.0E + 03
C,_..,1}1@_= filtemble PM concentration, grain/dscf
Qs 2.214 =average stackgas flowat standard corditions, dscftr
PMR 0.018 =lb/hr
PMR =
where,
AIErrce
TECHNICAL GROLJP
Emission Calculations
Location Rio Tinto Kennecott - Maena. UT
Source Gold/Silver Recovery BH REF010)
Project No. AST-2024-1032
Parameter PMl0
lun Number Runl Run2 Run3 Averase
)ate
Itart Time
itop Time
lun Time, min
3lt5l24
9:12
l0: l5
60.0
3lt5l24
l0:25
I l:31
60.0
3lt5l24
ll:47
l2:54
60.0(0)60.0
INPUT DATA
Barometric Pressure. in. Hg
Meter Correction Factor
Orifi ce Calibration Value
Meter Volume, ft3
Meter Temperature, "F
Meter Temperature, oR
Meter Orifice Pressure, in. WC
Volume H2O Collected, mL
Nozzle Diameter, in
Area ofNozzle, ft2
Filterable PM Mass. me
(Pb)
(Y)
(^H @)
(vm)
(Tm)
(Tm)
(AH)
(Vlc)
(Dn)
(An)
(Mn)
25.78
0.972
1.964
53.304
42.9
502.5
2.288
5.0
0.225
0.0003
2.9
25.78
0.972
1.964
51.77 4
42.9
502.5
2.2t3
5.0
0.225
0.0003
2.4
25.78
0.972
1.964
50.778
4s.6
505.3
2.075
2.8
0.225
0.0003
6.9
25.78
0.972
1.964
51.952
43.8
503.5
2.192
4.3
0.225
0.0003
4.1
ISOKINETIC DATA
Standard Meter Volume, ft'
Standard Water Volume, ft3
Moisture Fraction Measured
Moisture Fraction (@ Saturation
Moisture Fraction
Meter Pressure, in Hg
Volume at Nozzle, ft3
Isokinetic Sampling Rate, (%)
DGM Calibration Check Value, (+/- 5%)
(Vmstd)
(Vwstd)
(BWSmsd)
(BWSsat)
(Bws)
(Pm)
(vn)
(r)
(Y.J
47.2
0.24
0.0050
0.0s0
0.0050
25.9
57.0
101.0
1.9
4s.8
0.24
0.0051
0.062
0.0051
25.9
56.0
100.0
0.61
44.7
0.r3
0.0029
0.067
0.0029
25.9
54.8
100.9
1.6
45.9
0.20
0.0043
0.060
0.0043
25.9
55.9
100.6
1.4
EMISSION CALCULATIONS
Filterable PM Concentration, grain/dscf
Filterable PM Emission Rate. lb/hr
(CJ
(PMR)
0.00095
0.018
0.00081
0.015
0.0024
0.043
0.0014
0.025
Al6rrce
TECHNICAL CTROUP
Emission Calculations
Location Rio Tinto Kennecott - Magna, UT
Source Gold/Silver Recovery BH (REF010)
Project No. 4lI4Q24:!01?
Parameter PM10
lun Number Runl Run2 Run3 Average
Date
Start Time
Stop Time
Run Time. min
3lts/24
9:12
l0:15
60.0
3ltsl24
l0:25
I 1:31
60.0
3ltsl24
1l:47
12:54
60.0 60.0
VELOCITY HEAD, in. WC
Point I
Point 2
Point 3
Point 4
Point 5
Point 6
Point 7
Point 8
0.66
0.85
1.10
0.95
0.61
0.88
0.97
0.82
0.59
0.91
0.98
0.88
0.63
0.82
0.99
0.87
0.55
0.82
0.94
0.84
0.61
0.78
0.87
0.82
0.60
0.86
l.0l
0.89
0.62
0.83
0.94
0.84
CALCULATED DATA
Square Root of AP, (in. WC)"'
Pitot Tube Coefficient
Barometric Pressure, in. Hg
Static Pressure, in. WC
Stack Pressure, in. Hg
Stack Cross-sectional Area, ftz
Temperafure, oF
Temperature, oR
Moisture Fraction Measured
Moisture Fraction @ Saturation
Moisture Fraction
02 Concentration,%o
CO2 Concentration, o/o
Molecular Weight, lb/lb-mole (dry)
Molecular Weight, lb/lb-mole (wet)
Velocitv. fl/sec
(^P)
(cp)
(Pb)
(Pe)
(Ps)
(As)
(Ts)
(rs)
(BWSmsd)
(BWSsat)
(Bws)
(o,
(Coz)
(Md)
(MS)
(Vs)
0.92
0.84
25.8
0.35
25.8
0.79
87.0
546.7
0.0050
0.050
0.00s0
20.90
0.10
28.9
28.8
56.7
0.91
0.84
25.8
0.35
25.8
0.79
94.3
553.9
0.0051
0.062
0.0051
20.90
0.10
0.88
0.84
2s.8
0.35
25.8
0.79
96.8
556.4
0.0029
0.067
0.0029
20.90
0.10
0.90
0.84
2s.8
0.35
25.8
0.79
92.7
552.3
0.0043
0.060
0.0043
20.90
0.10
28.9
28.8
55.9
28.9
28.8
54.6
28.9
28.8
s6.4
VOLUMETRIC FLOW RATE
A,t Stack Conditions, acfrn
{t Standard Conditions, dscfm
2,635
2,162
2,673
2,214
(Qa)
(Qs)
2,658
2,172
2,574
2,099
AIErceTEOHNICAL OfiOI,IP
Locrtion Rio Tinto Kennecott - Mignt, UT
Method I Data
Source Gold/Silver Reovcry BH (REFOI0)
Proj.ci No. AST-202+1032
Drte 03/15/24
Ductorientrtion: Ve.ti€l
or"t oolgo,--Effi-
Distucc from Fir Wrll to Outside of Po"r: ---iiJd- in
Nipple Logth: 6.50 in
Depth ofDuct 12.00 in
Cross Scctiooal Arcr ofDuct: 0.?9 ft'
No. ofTBt Ports: 2
Di.mc" A, -I3-ftDisrmce A Du.a Dirrrcte*, ----3-1.ut b" 2 0.5;
Didme B: 30.0 ft
Distrn.e B Duct Dirm.tes: 30.0 (must bc>2)
Minimum Nmbcr of Trrvece Points: 8
Actu.l NMbcr otTmv"^" Poina.r----l-
Nmbcr of Rcrditrgs pc. Poin ,
-T-
Mesurer (Initial and D.tc)r ALB
Revievcr (Initirl md D.tc): TCH
LOCATION OT TRAVERSE POINTS
Numbd o! tNefre polnls on a diamder
I
3
4
5
6
7
t
9
l0
ll
12
3 4 6 1 I 9 l0 lt t2
14.6
t5.4
6.7
25.0
75.0
,r_,
4.4
14.6
29.6
70.4
85.4
,:u
3.2
I0.5
t9.4
32.3
67.7
t0.6
89.5
,:t
2.6
8.2
14.6
22.6
34.2
65.t
77.4
t5.4
91.8
2.1
6.7
ll.8
17.7
25.0
35.6
64.4
75.0
E2.3
88.2
93.3
s7s
lPercenl of stdck didfreler lrcn i6ide sall lo trMrse poinl
Travcre
Point
'/. ol
Dimetcr
I)istme from
outsid€ ofwell
I
3
4
5
6
1
8
9
l0
1l
t2
6.7
25.0
75.0
,1'
0.t0
3.00
9.00
,rjo
7 slt6
9il2
t5 U2
l7 r ln6
:
sdM>o.6i fr(24h.)
98 Dfu' OX bO6l m (12 - 2a h
Stack Diagm
A=35ft
B=30ft.
Depth ofDuc't = 12 in.
Crqs Srtioal As
Downstream
Dlsturbancc
Up$ream
olsturbance
rul6rrceTECHNICAL QFTOUP
Cyclonic Flow Check
Location Rio Tinto Kennecott - Magna, UT
Source Gold/Silver Recovery BH (REF0I 0)
Project No. AST-!024-!Q]!
Date 03115124
Sample Point Angle (AP:0)
Averase
l0
5
0
0
l0
l0
5
0
5
N.ffineeTE$HNICAL QBOUP
Method 4Data
Location Rio Tinto Kennecott - Magna, UT
Source Gold/Silver Recovery BH (REF01 0)
Project No. AST-2024-1032
Parameter PMl0
Analysis Gravimetric
Run I Date:3ltsl24
Impinger No.I 2 3 4 Total
Contents EmpB Empty H20 Silica
Initial Mass, g 493.2 637.2 724.0 990.0 2844.4
Final Mass, g 492.6 637.3 718.t I00t.4 2849.4
Gain -0.6 0.1 -5.9 n.4 5.0
Run 2 Date:3lts/24
Impinger No,I ,,3 4 Total
Contents Empty Empty H2o/ Silica
Initial Mass, g 464.2 641.4 708.2 962.2 2776.0
Final Mass, g 464.2 641.4 703;7 971.7 2781.0
Gain 0.0 0.0 -4.5 9.5 5.0
Run 3 Date:3/15/24
Impinger No,I 2 3 4 Total
Contents Empty Empty H2o/ Silica
Initial Mass, g 493.3 637.3 718.1 1001.4 2850.1
Final Mass, g 492.7 636.9 7l 1.5 l0l1.8 2852.9
Gain -0.6 -0.4 -6.6 10.4 2.8
plllfrrrce
Tt:CIINICAL GFiCI.J 3 Isokinetic Field Data
rgna, UT
O"t",
Stsrt Time: 9:12
End Time: 10:15
Source: Gold/Silver BII
Project No.; AST-2024-1032 Parameter:PMlO
o
6L
Sample Time
(minutes)
Dry Gas Meter
Reading
(fc)
Pitot
Tube
AP
(in WC)
Gas I'emDeratures ("1')0rifice Press,
AH
(in.wC)
Pump
Vac
(in. Hg)
Gas'I'emperatures ("I
% rso Vs
(rps)
DGM Averr Stack Probe Filter ImD Exit Aux
Amb.Amb.Amb, Amb.Amb.
Besin End 45 45 Ideal Acturl 45 45 45 45
A1 0.00 7.50 I 53.845 0.66 44 84 l,'79 1.80 3 260 2'70 45 69 r00.3 50.17
?50 500 59 690 085 43 85 224 210 4 264 212 4 69 104 3 57 04
3 l5 00 22 50 66.550 l.l0 42 87 2.94 2.90 5 264 251 49 69 to2 4 64.95
4 22.50 30.00 74.1 80 0.95 43 88 254 2.50 5 266 252 57 69 t0l.4 60.41
B1 30 00 t7 50 81 2t3 061 42 87 164 160 4 265 260 52 69 100 I 48.36
2 37.50 45.00 86.790 0.88 43 88 2.36 2.40 5 264 253 55 69 99.7 58.14
45 00 52 50 gi 450 o97 88 260 260 5 264 56 69 toog 61.04
4 52.50 60 00 200 520 082 43 88 220 220 5 264 254 56 69 102 7 56.13
Finrl DGM: 2O'l 149
(aFrlDori
Run Time Vm AP Tm Ts Max
Vac AE %ISO BWS Yo"
60.0 mtn 53304 ft'0.86 in. WC 42-9 oF a7.o oF 5 2.288 in. WC l0l-o 0-005 1.9
STACKDATA
Est. Tmr 47
Est. Ts: 80
Est, AP: O.82 in. WC
Est. Dn: 0.212 in.
Meter Box ID: M5-31
AH @ (in.WC): 1.964
Pitot ID: AirDatr Piiot I
Pitot Cp/Typer 0.840
Nozzle Dn (in.): 0.225
Moisture: l5 o/o est.
Barometric: 25.60 in. Hg
Static Press: 035 in. WC
Stack Press: 25,63 in. Hg
COrt O,l oh
Oi 2O.9 Yo
N2lCOt 79.O Yo
Md: 28.85 lb/lb-mole
Ms: 28.69 lb,4b-mole
Check Pt. lnitial Final
Mid I (cf)
Mid 2 (c0t ak Rere (cfm): 0.004 - 0,m,0
Vacuum (in Hs): 15 - 8
PitotTub€: Pass -- Pass
Alffirpe
Tf CIINTCAL GHOI.J F lsokinetic Field Data
Location: Rio Tinto Kennecott - Magna, UT
Ort",
Start Time;
End Time:
10:25
I l:31
Source: Gold/Silver Recovery BH (REF0l0)
AST-202,1-1032
STACK DATA (EST)EOUIPMENT STACK DATA (EST)FILTERNO.STACK DATA (FINAL)MOIST. DATA
Moisturer l5 Yo est.
Barometric: 25.60 in. Hg
Static Press: 035 in. WC
Stack Press: 25,63 in. Hg
COrt O.l Yo
O22 20.9 o/o
NzlCOt 79.O Yo
Md: 28.85 lb/lb-mole
Ms: 28.69 lbnb-mole
Meter Box ID; M5-3l
Y: O-972
AH @ (in.WC): 1.964
Probe ID: PR703-l
Lir". Mrt"ri"l, !iii-
Pitot lDr AirData Pitot I
ritot Cpffype: O-aaO fs-typexo,,t"lo'!{f$
Nozle Dn (in.): 0,225
Est. TDr 43
Est. Ts: 87
Est. AP: 0.86 in. WC
Est, Dn: O.2ll in.
Tarset Rate: 0.75 scfm
Corr',,,4.
I Check Pt- lnitirl
in. Hg
in. WC
Pb: 25.78
Pg: 035
Oz: 2o.9
5.0
K-FACTOR
2.64
Final Corr.
,EAK CHECKI Pre Mid I Mid 2 Mid 3 Post Mid I (cf)
Mid 2 (cf)
Mid 3 (cf)
Irak Ratc (.fm): 0,002 -- 0.000
Vacuum (in Hs): l5 - t0
Pitot Tubc: Pass -- Pass llid-Point If,rk Check Vol (cf):
Q
d.i6C"
Sample Time
(minutes)
Dry Gas Meter
Reading
(fc)
Pitot
Tube
AP
(in WC)
Gas l€mDeratur$ l"l I Orifice Press.
AH
(in.WC)
Pump
Vac
(in. Hg)
Gas Temoeratures (otr
% tso Vs
(rp9
DGM Averase Stsck Probe Filter ImD Exit Aux
Amb,
Besin End Ideal Actual
0.00 750 20'7.405 0.59 4'\9)I 5'7 60 264 25R 39 69 l0t .9 47 7A
2 7.s0 l5 00 2129']O 0.9r 43 93 2.41 2.40 5 264 260 39 69 992 59.40
3 I 5.00 22.50 2 I 9.680 0.98 43 94 2.59 2.60 7 263 247 45 69 102.3 61.69
4 22 50 l0 00 226 450 088 42 95 232 230 6 266 25't 50 69 lol 9 58.51
B1 30.00 37.50 233.60t 0.63 43 94 1.67 1.70 5 266 247 46 70 103.7 49.46
37 50 45 00 219 440 082 41 9J t7 220 5 264 256 49 69 l0t 4 56.48
3 45.00 52.50 245.940 0.99 43 95 2.62 2.60 6 265 261 52 69 93.2 62.06
4 52.50 60.00 252.500 0.87 43 96 2.30 2.30 6 266 251 53 69 101.3 5423
Final DGM 259.t't9
aF
F(,
r-l
Run Time Vm AP Tm Ts Y"' aH %rso Bws Yn"Vac
60,0 mtn 51.774 ft3 0.83 in. WC 42.9 oF 94.3 oF 7 2.213 in. WC 100.0 0,005 0.6
puafripe
TTCIIT.IICAL GHCLJ P Isokinetic Field Data
agna, UT
nrt",
$tailfips; 11:47
End Time: 12154
Source: Gold/Silver BH
Project No,: AST-2024-1032 Parameter: PM10
STACK DATA (EST)EOUTPMENT STACK DATA (EST)FILTER NO. STACK DATA (FINAL)MOIST.DATA
Moisture: 1.0 oZ est.
Barometric: 25.60 in. Hg
Static Press: 035 in. WC
Stack Press: 25.63 in. Hg
CO2r O.l o
Ozt 2O.9 Yo
Nr/CO: 79.0 %
Md: 28,85 lb,4b-mole
Ms: 28.74 lb/lb-mole
Meter Box ID: M5-31
Y:0,972 _
au 61in.wc;:'iEi-
Probe ID: PR703-l
Lin". Mrt"rirl, !iII-
Pitot ID: AirData Pitot I
ritot Cpffyp", OBaO fs-typ"
Noot" lo'EEf--fS-
Nozle Dn (in.): 0,225
E!t, Tm: 43
Est. Ts: 94
Est. AP: 0.83 in WC
Est. Do: 0.212 in.
Taroet Rate: 0.75 scfm
Pb: 25.78 in. Hg
Pg: 035 in. WC
Or, __ 2!_%
CO2: 0.1 %lffi;ffii
Vlc (ml)
2.8
K-FACTOR
2.672
Final Corr.
LEAK CIIECK! Pre Mid 1 Mid 2 Mid 3 Post Mid I (c$
Mid 2 (cf)
Mid 3 {cfl
kak Rrte (cfm): 0.006 -- 0.000
Vacuum (in Hs): t5 - l0
Pitot Tube: Pass -- Pass vlid-Point Iiak Check Vol (cf):
o
dii
AL
Sample Time
(minute)
Dry Gas Meter
Reading
(ft3)
Pitot
Tube
AP
(in WC)
(lrs aol'l Orifice Press,
AH
/in- WCI
Pump
Vac
(in. Hg)
(;rs l emoeretur6 l"l
% ISC Ys
(fps)
DGM Aver8se Stack Probe Filter Imo Exit Aur
Besin End Ideal {ctua
A1 0.00 7.50 2s9.692 0.55 43 95 1.4',7 150 258 )60 4A 'to t03 I 46.22
't 50 500 265 r 80 082 44 96 2t9 2.20 5 264 256 46 70 99.8 56.48
3 15.00 22.50 271.612 0.94 45 96 2.51 2.50 5 264 256 5l 71 99.6 60 4't
4 22.50 30.00 274 490 084 4 91 220 5 266 257 5'7 7l to29 57.22
BI t0 00 37 50 245 209 061 46 98 1.63 L60 4 2@ 254 53 70 t02.3 48.80
2 3',7.50 45.00 290.920 0.78 4'l 97 209 210 265 254 56 70 r007 55.14
3 500 52 50 297 285 087 47 9'7 233 230 5 265 252 59 7l 98.6 58.23
4 52.50 60.00 303.862 082 48 98 2.20 2.20 5 266 256 60 70 101.9 56 58
Finaf DGM: 3lO.47O
aF)a
r.1&
Run Time Vm AP Tm Ts Y" AH %Iso Bws Yr"
Vac
60.0 mrn 50,778 ft3 0.78 in. WC 45-6 oF 96.8 or 5 2.075 in.WC 100.9 0.003 t.6
Allionce Technicol Group, LLC
Anolyticol Services
5530 Morsholl St.
Arvodo, CO 80002
(720) 457-e504
www.ollioncetg.com
Anolyticol Loborotory Report
Rio Tinto Kennecott
2500 South 9180 Wesl
Mogno, UI 84044
Project No. AST-2024-1 032
1 of22
Certificotion Stotement
Allionce Source Testing, LLC (AST) hos completed the onolysis os described in lhis report. Results
opply only to the source(s) tested ond operoting condition(s) for ihe specific test dote(s) ond
time(s) identified wilhin this report. All results ore intended to be considered in their enlirely,
ond AST is not responsible for use of less thon the complete test report without written consent.
This report sholl not be reproduced ln full or in port without written opprovol from the customer.
To the best of my knowledge ond obiliiies, oll informotion, focts ond test doto ore correct.
Doto presented in this report hos been checked for completeness ond is occurote, enor-free
ond legible. Any deviotions or problems ore deloiled in the relevont sections on the test report.
This document wos prepored in portoble document formot (.pdf) ond contoins poges os
identified in the bottom footer of lhis document.
Volidotion Signoture
The onolyticoldoto ond oll QC contoined within this report wos reviewed ond volidoted by the
following individuol.
DciClyriod by Jam.. &ud&n
James Davidsomtffi
Jomes Dovidson
Quolity Assuronce Associote
Dole
2of 22
Proiect Norrotive
Anolyticol Method(s): Method 5 - Determinotion of Porticulote Motter Emissions From Stoiionory Sources
Melhod 202 - Dry lmpinger Melhod for Determining Condensoble Porliculote Motler
Emissions From Stotionory Sources
Filleroble The filier(s) were either oven dried ond/or desiccoted per lhe meihod until o finol
weight wos obtoined. The liquid froctions were exirocted if required, evoporoted ond
cooled until o finolweight wos obtoined. These froclions were summed together to
provide lhe iolol Porticulote Motter collected.
Condensoble The filter(s) were extrocied per the melhod. The orgonic extroct wos odded io the
orgonic rinse, ond the inorgonic extrocl wos odded lo ihe inorgonic rinse. The
inorgonic froction wos extrocted with solvent per the method. Exlrocls were
combined with the orgonic rinse. The orgonic ond inorgonic froclions were
evoporoled ond desiccoted untilo finolweight wos obtoined.
MDL The Minimum Detection Level (MDL) is 0.5 mg per froction. lf the meosured result for o
froction is less thon the MDL,lhe MDL wos used in ensuing colculoiions.
Blonk Conection lf blonk correction is performed, only blonk volues returned higher ihon the MDL ore
used. lf o blonk returns o volue less lhon the MDL, no correction is included. Method
202 Recovery Blonk corrections ore opplied by frociion (inorgonic subtrocted from
inorgonic; orgonic subirocted from orgonic).
Custody: The somples were received by Joke Schmitl on 3/26/2024 in Arvodo, CO. The somples
were received in good condition with proper Choin-of-Custody documentotion. No
opporent contoiner problems were noted upon receipt. Prior to onolysis, lhe somples
were kepl secure with occess limited io outhorized personnel of AST.
Number of Somples: 25 (4 on Hold)
Lobeling: Acceptoble
Anolyst: Eric Grosjeon - Loborotory Monoger
Ryon Gillett-Loborotory Anolyst ll
Corson Williomson-Loborotory Anolysl I
Equipment: Mettler Toledo Bolonce ML- 104, SN 82l 7893065. This scole wos used for onolyticol
determinotions of filters ond rinse vessels.
DenverlnstrumentsBolonceTB-5201,SN lT904l89.Thisscolewosusedtomeosurethe
totol moss of rinse collected for blonk correction.
Anolysis wos performed on the some bolonce os the ossocioted tore.
Quincy Lob lnc oven, 30CG, SN G3-012673.
Lob Reogents: Acetone Lot Number:232060
Hexone Lot Number: 224540
QC Notes:The somples met lhe minimum criterio estoblished by the relevonl method.
Reporting Notes: none
3of22
Cllent
--:-Alhlrcg crtY'Stote
TEcHNrcaL GFoUP ProjeclNo,
Melhod
Rio Tlnlo Kennecotl
\loqno, UT 84044
ASi-2024-r 032
EPA Method 5
tronl Hof R[er
Lob lD D4t 363 D4t 368 D4 I 373
tleld lt M5/202-(REF0lo)-Run I Cont. l M5/202-(REFOl0)-Run 2 Conl. I M5/202-{REF0l0)-Run 3 Cont. i
tllter lI t733t - C 17329 - C t7353 - C
tiller Tore Welghl, (0.5165 0.5149 0.s230
Oole - Desiccolo 3/2s/24 3125/24 3/25/24
Iime - Deslccolo l7:15 I 7:15 l7:15
Dole of welghln(3t27 t24 3t27 /24 3t27 t24 3127 /24 3t27 t24 3/27124
Tlme ol Welghln(4:56 l0:57 4:56 l0:57 4:5d l0:57
f lller welght, (0.5179 0.5177 0.5164 0.5166 0.s243 0.5245
Flller PM Mors, mg't.4 1.6 t.4
tlonl Holt Rinre
Lob lt D4i 364 D4 1 369 D41374
tield lt M5/202-(REF0lO)-Run I Cont. 2 M5/202-(REFol 0)-Run 2 Cont. 2 M5/202-(REF0l0)-Run 3 Conl. 2
Eedker lt 33028 33036 33044
Beoker tore, (3.8708 3.9387 3.9289
Seoker wllh Acelone, (83.2 77.5 79.4
Acelone Mqss, (79.3 73.6 75.5
Dole - oesiccolo 3/26/24 3t26t24 3t26t24
nme - Desiccolo l2:39 12:39 12:39
Dole of Welghln(3/27 /24 3128124 3/27 /24 3128/24 3/27 /24 3l /24
Tlme ot welghln( 13:ll 505 l3:ll 5:05 '13:ll 5:05
Welght, g 3.8722 3.8726 3.9394 3.9394 3.934s 3.934A
Rlnse PM Mqss, mg't.6 0.8 5.5
Blonk Corecle(No
Tolol PM Moss, m(2.9 2.4 6.t
*AIl froclions were onal)zed ond returned volues greoter thon the MDL of 0.5 mg.
4 of22
ctv,t
P.oJ.ct
fE nnlo Kenneotl
\,loono, UI84044
\sr-202+r032
PA Method 5
lcCom lbnk
lob l]D4t 378
R.ld lI M5 Acetone Blonk
lcd&.r lt 33018
lasl(.r lora, t 3A6?f
Ldk rrdlh Ac.lon., !110.76
Acafon lldrt,I t36.90
Ddh. D.dccdla 3t26124
nm.. D..&cc(tlor l2:3
Dalo of Wcgiltrl 3n7n1 3t%n1
Ilmo olWdgl{n5 l3:l I 505
WelChl, !3A619 I 3.8618
llonkilo$, mg'0.m
5 ot22
N.6 Clty, Stote
TECHNICAL cRouP PtoJeclNo,
?io Tlnto Kenneco'fl
\,1oqno, UT 84044
AST-2024-1032
EPA Method 202
Iellon Flller
l"ob lt D4t 365 04t370 D4 1375
tleld lI M5/202-(REF0I o)-Run I Conl. 3 M5/202-{REFol 0)-Run 2 Conl. 3 M5/202-(REF0l o)-Run 3 Cont. 3
Orgonlc frocllon
lob lI o41367 D41372 D4)377
tleld lI M5/202-(REF0Io)-Run I Cont. 5 M5/202-(REFol ol-Run 2 Coni. 5 M5/202-(REFol 0)-Run 3 Conl. 5
Xeoker ll 330r 7 33020 33040
Eeoker iore, e 3.8455 3.8651 3.8879
Beoker Solvenl. !r88.0 189.0 r68.9
Solvenl Moss, !181.2 I 85.1 165.0
Dole - Deslccolo 3/26124 3126/24 3/26124
Iime . Desiccolo 12:39 l2:39 12:39
Dole ot welghln(3/27124 3128124 3/27 /24 3/',nt24 3127124 3t /24
nme ol Welghin(15t24 509 15..24 5:09 | 5:24 5:09
Welghl, g 3.8492 3.8495 3.8677 3.8678 3.8909 3.8907
Orgodc P^l Moss. mg'3.9 2.7 2-9
lndgonlc Frocllon
tob lt D4l 366 D4 I 371 D4t376
;leld lt M5/202-(REF0lO)-Run I Coni. 4 M5/202-(REFol 0)-Run 2 Cont. 4 M5/202-lREF0l0l-Run 3 Cont. 4
leoker lI 31770 31772 318s2
Beoker lore, (66.4978 74.9085 71.1071
Beoker Woler, !240.4 300.9 3r0.0
Wolel Mos3, (t73.9 226.0 8.9
Dole - Deslccolo 3/26/24 3126124 3/26n4
Tlme - Deslccoio l2:39 12:.39 12:39
Dole ol Welghln(3127124 3t28t24 3t27 /24 3t28/24 3/27 t24 3/ /24
Tlme of Welghln(l3:15 5:16 l3:1 5 5:l 6 l3:15 5:16
welght, i 66.4992 66.4990 74.9098 74.9099 7r.r095 71.1097
lndgonlc Moss, mg'1.4 t.4 2.5
Blonk Correclec Yes
Told PM Mos3, mf 4.6 3.5 /t.8
*All froclions were onolyzed ond returned volues greots lhon the MDL of 0.5 mg.
6 of22
nlJ6rr,#j::
lio nnio Kennecoll
\,loono. LJT 84044
\sT-2024- 1 032
:PA Melhod 202
Icnon HlLr Blonk!
fleld Troln Udnk Proot Bldnk
Iob l[D4l38l
Fleld lt M202 FI Recovery Blonk Ctrt.3
Orgonlc trocllon Blonks
tleld lrqln Blonk Proor Blonk
Lob lt D41383 D4t 380
fleld ll M202 FI Recovery Blonk Cont.5 M202 FI Proof Blonk Cont.5
Beoket lD 33006 330r l
Beoker lore, g 3.8336 3.8204
Beoker Solvenl, g 159.2 r57.8
Solvenl Mo3s, g t55.4 t54.0
Dole - D6lccolor 3/26124 3126124
nma . Dedccolor l5:23 l2:39
Dole ot Welghlng 3/27124 3n8/24 3/27 /24 3128/24
nme ot Welghlnl 'l5i2A so9 l3:l I 5:05
Welght, !3.834l 3.8343 3-8201 3.8204
Orgonlc Mo$, mg'0.65 0.50
lnorgonlc trocllon Elonkr
fleu Troln Uonk Prool Blonk
Lob lI D4r382 D4t 379
fleld ll M202 FI Recovery Blonk Cmi. +M202 FI ftoof Blonk Cont. 4
Eedkcr lI 31 790 31789
Bsker lore, (73.5884 77.43c/
Beoker Woler (243.6 245.9
Woler i o33, (t 70.0 1 68.1
Dole - De3lccolo 3126124 v26n4
nme . Dellccolo 12:39 l2:39
DolG ol Welghlnt 3lnn4 3n8/24 3/28124 3/ 124
Tlme ol welghlnt 5:1 6 1l:44 5:16 I l:44
Welghl, !73.5878 73.W2 77.8298 77.8&2
lndgonlc Mos, mg 0.00 0.00
7 of22
55cc
-!
9
-C
@@
Eo5U.g,o.EEz
I
Eol?id
r;
l
lt
in
.EFtCiJF
o'
o
l
6.
q
Io
-1
r4
FX
U
2\
3
!.gg&.Io
!Io.t\tr{oa
ooz'o
au
o
t
a
)
V
-
as
u
r
u
S
Z=
au
o
l
e
)
V
-
es
u
r
u
OL
=
y
\
d
>
S
zfE65o
,9a,.
H
r
€Ee9
-.
-a
-
PE
s
Ei
6
'"
6
h
*8
8
,E
H
6
E^OH
q5
.
VFb;
lzcE
(o
b
->UIEI(
Calibraton Cortf cato lD
NA1 548-076-032024-ACC-USL
MetlerToledo, LLG
'1900 Polaris Parkway
Columbus, OH43240
l.BOO.METTLER
Gustomer
METTTER TOTEDO
^n Accredited by the American Association
llB n forLaboratorvAccreditation(MLA)
[-rc c nEill rE6] cALl BRATIoN CE Rr #1 788.0 1
ISO '17025 Accredited
ANSUNCSL Z54Gl Accredited
Accuracy Calibration Certificate
Alliance Source Testing
5530 Marshall St
Company:
Addrcss:
City:
Zp / Postal:
State / Povlnce:
Weighing Device
80002-31 08
Colorado
Contacf:Eric Grosjean
Manufadursr:
Model:
Serial No.:
Building:
Floor
Room:
Mettler Toledo lnsfrumentType:
Asset Numben
Terminal Model:
Terminal Serial No.:
TerminalAsset No.:
Weiqhing lnstrument
M1104/03
821 7893065
,|120 g 0.0001 g
N/A
Procedure
Calibnation Guldeline:
METTLER TOLEDO Work lnstuuc,tion:
ASTM E898 - 20
30260953 v1.72
This calibration certificate including procedures and uncertainty estimation also complies with EURAMET cA18 v 4.0.
This calibration certificate contains measurements for As Found and As Left calibrations.
The sensitivity/span of the weighing instrument was adjusted before As Left calibration with a built-in weight.
ln accordance with EURAMET cg-18 (11/2015), the test loads were selected to reflect the specific use of the weighing device or to
accommodate specific calibration conditions.
Environmental conditions have been
verified to ensure the accuracy of the
calibration.
This certificate is issued in accordance with the conditions of accreditation granted by A2LA, which is based on ISO/IEC 17025. AALA
has assessed the measurement capability of the laboratory and its traceability to recognized national standards
Start: 19.8 "C End: 19.9'C Slarl: 22.0 o/o End:22.0 o/o
Start: 20.0'C End: 20.'l "C Slarl:22.0 o/o End:22.0 o/o
As Found Calibration Date:
As Left Galibraton Date:
lssue Date:
20-MaF2024
20-Mar-2024
20-Mar-2024
RequestedNextCalibrationtlate: 31-Mar-2025
Authorlzed A2tA Slgnabry:lZ-c=."--
Chris Carson
Software Ve6ion: 1.23.2,283
Report VeGion: 2.19.3
Fom Number: AF 1702111.0
O METTLER TOLEOO
This is an original document and may not be partially reproduced without th€
written pemission of th€ issuing calibration laboratory.
Page 1 ofS
9of22
Calibration Cerliff cate lD
NA1 548-076-032024-ACC-USL METTTER TOLEDO Service
Measurement Results
Repeatability
T6st Load: 100 g
1 100.0003 g '100.0001 g
2 100.0003 g 100.0001 g
3 100.0004 g 100.0002 g
4 100.0003 g 100.0002 g
5 100.0002 g 100.0001 g
6 100.0002 g 100.0001 g
7 100.0003 s '100.0000 g
8 100.0002 g 100.0001 g
I '100.0002 g 100.0002 g
10 '100.0001 g '100.0001 g
O As FoundI As Left 1 (Test Point)
:Sd
4d.
3d.
2d. .r '
O id.n^.Y Iqc .' \-/
.o ,'o'oAb
Siandard;Jil"; | 0.00008s I 0.00006s
Eccentricity
6
The "d" in the graph represents the readability of the range/interual in which the
test was performed.
The results of this graph are based upon the absolute values of the differences
from the mean value.
Test Load:50 g
Ma)dmum 0.0002s | 0.0000sDevlaton As Found As Left
The "d" in the graph represents the readability of the range/interval in which
the test was performed.
Software Version:'1.23.2.283
Report Version: 2.1 9.3
Form Number: AF1702Lrl.0
@ METTLER TOLEDO
This is an original document and may not be partially reproduced without the
written permission of the issuing calibration laboratory.
Page 2 of 5
1O ot 22
CalibraUon Cefficate lD
NA 1 548-076-032024-ACC-USL METTTER TOTEDO Service
Enor of lndication
As Found
N/A 0.0000 g 0.0000 g 0.0000 g 0.18 mg 2
2 N/A 20.0000 g 20.0001 g 0.0001 g 0.22m9 2
3 2og 20.0000 g 20.0001 g 0.0001 g 0.22m9 2
4 4og 20.0000 g 20.0001 g 0.0001 g 0.22m9 2
5 6og 20.0000 g 20.0001 g 0.0001 g 0.22m9 2
o 8og 20.0000 g 20.0002 g 0.0002 g O.22mg 2
N/A 60.0000 g 59.9999 g -0.0001 g 0.37 mg 2
8 N/A 100.0001 g 100.0003 g 0.0002 g 0.52 mg 2
o N/A 120.0001 g 120.0004 g 0.0003 g 0.63 mg 2
As Left
1 N/A 0.0000 g 0.0000 g 0.0000 g 0.14 mg 2
2 N/A 20.0000 g 20.0000 g 0.0000 g 0.16 mg 2
3 2og 20.0000 g 20.0000 g 0.0000 g 0.16 mg 2
4 4og 20.0000 g 20.0000 g 0.0000 g 0.16 mg 2
5 6og 20.0000 g 20.0001 g 0.0001 g 0.16 mg 2
o 8og 20.0000 g 20.0001 g 0.0001 g 0.16 mg 2
7 N/A 60.0000 g 60.0000 g 0.0000 g 0.20 mg 2
8 N/A 100.0001 g 1 00.0002 g 0.0001 g 0.25 mg 2
9 N/A 120.0001 s 120.0003 g 0.0002 s 0.29 mg 2
O AsFound
t AsLefr
For improved legibility of the graphics
only increasing measurement points
are shown and measurement points
close to zero are not displayed.
Calibration Polnts lgl
The uncertainty stated is the expanded uncertainty at calibration obtained by multiplying the standard combined uncedainty by the
coverage factor k - which can be larger than 2 according to ASTM E898 and EUMMET cg- 18. The value of the measurand lies within the
assigned range of values with a probability of approximately 95%.
The user is responsible for maintaining envlronmental conditions and the settings of the weighing instrument when it was calibrated.
The results of this calibration certificate relate only to the calibrated item.
15r-*
r a.---.-.,
O na
E
co-Go-
tr
o
oE -0 5 *-'-----
uJ
L
.1- - . -
i
L
,1 5 -l---.
120
Software Version: 1.23.2.283
Report Vereion: 2.19.3
Fom Number: AF'1702Lr1.0
O METTLER TOLEDO
This is an original document and may not be partially reproduced without the
written permission of ths issuing calibration laboratory.
Page 3 of 5
11 of 22
Calibratlon Certfl cato lD
NA1 548-076-032024-ACC-USL METTTER TOLEDO Service
Test Equipment
All weights used for metrological testing are traceable to national or international standards. The weights were calibrated and certified by
an accredited calibration laboratory.
WelghtSet 1: OIML E2
Weight Set No.:
Certificate Number:
Remarks
2010 Date of lssue:27-Deo2023
Calibration Due Date: 31-Oec-2024220741954-1
NiA
End of Accrcdibd Secffon
The information below and any attachments to this calibration certificate are not part of the accredited calibration.
Software Ve6ion: 1.23.2.283
Report VeBion: 2.19.3
Fom Number; AF1702Lr1.0
@ METTLER TOLEOO
Ihis is an original document and may not be partially reproduced without the
written permission of thc lssuing calibration laboratory.
Page 4 of 5
12 of 22
Calibraflon Cortficato lD
NA1 548-076-032024-ACC-USL METTTER TOLEDO Service
Measurement Uncertainty of the Weighing lnsbument ln Use
Stated is the expanded uncertainty with k=2 in use. The formula shall be used for the estimation of the uncertainty under consideration of
the errors of indication. The value R represents the net load indication in the unit of measure of the device.
Temperature coefficient for the evaluation of the measurement uncertainty in use:
Temperature range on site for the evaluation of the measurement uncertainty in use:
Lineadzation of Uncertalnty Equation
2.0.10'6/K
To optimize the stability of the linearization, besides of the zero load only increasing measurement points with a test load of 5% of the
measurement range or larger are taken for the calculation of the linear equation.
Absoluta and Relalive Measurement Uncertalnty ln Use forVadous Net lndications (Examples)
4K
aQ'
>E6iEo
cf, ..
.E
c 2."
0E]
a
.g6Eo
:)
o56
50 75
Weighing Range [%]
As Found
0 c001 0 001
As Left
0! 1
Reading lgl
001 r00
Software Ve6ion: 1,23.2,243
Report VeEion: 2.19.3
Fom Number: AF1702Lr1.0
O METTLER TOLEDO
This is an original document and may not be partially reproducod without tho
writlen permission of th€ issuing calibration laboratory.
Page 5 of 5
13 ot 22
Attachment to Calibration Csr0ficate:
NAI 548-076-032024-ACGUSL
Manufacturer Tolerance Assessment
METTTER TOTEDO Service
Man ufactu rer Tolerance Assessment
Assessment done without considering measurement uncertainty.
The measurements from the attached calibration certificate were assessed against METTLER TOLEDO tolerances defined in SOP'Test and
Measurement Procedures for METTLER TOLEDO balances, Document: 10000018502.
As Found As Left
{
{
{
{
{
{
Overall
Repeatability
Eccentricity
Linearity
Sensitivity N/A
Measurement Results
Repeatability
Teet load: 100 g
1 100.0003 g 00.0001 g
2 100.0003 g 00.0001 g
3 100.0004 g 00.0002 g
4 100.0003 s 00.0002 g
5 100.0002 g 00.0001 g
6 100.0002 g 00.0001 g
7 100.0003 g 00.0000 g
8 100.0002 g 00.0001 g
I 100.0002 g 00.0002 g
10 100.0001 g 00.0001 g
Standad
Devldon 0.0m08 g 0.(xxx)6 g
Tolerance 0.00010 g {0.00010 g {
Software Version: 1 -23.2.283
Report Version: 2.1 9.3
Fom Number: AF'1702Lr1.0
@ METTLER TOLEOO
This is an original document and may not be partially reproduced without th€
written p€rmission of the lssuing calibration laboralory.
Page 1 of2
14 ot 22
Attachment to Calibratlon Cerllficate:
NA1 548-076-032024-ACC-USL
Manufacturer Tolerance Assessment
METTTER TOLEDO Service
Eccentricity
Test Load:50 g
Maximum
Deviation 0.0002 g 0.0000 g
Toloranco 0.0m30g {0.qD30g {
The maximum deviation is determined as the absolute value of the largest deviation from the center.
Linearity - Difierential Method
As Found
2 NiA 20.0000 g 20.0001 g -0.00002 g
3 20g 20.0000 s 20.0001 g -0.00004 s
4 40g 20.0000 s 20.000't g -0.00006 g
5 6os 20.0000 g 20.0001 g -0.00008 g
6 80s 20.0000 g 20.0002 g 0.00000 g
8 N/A 100.0001 g 100.0003 g N/A
The As Found Sensitivity Tolerance is only valid if the device has been adjusted before the test.
As Left
-inearltv Devlation 0.00008 g
.lnearltv Tolerance 0.0002 g {
-lnEarlty Dovlatlon 0.00012 g
-ln6arity Toloranc6 o.ooo2g {
The values in column "Deviation" and the "Linearity Deviation"
* This point was used to satisfy the sensitivity requirement.
lensltlvity Devlation 0.0002 g
lensltlvlty Tolerance N/A
Sensltlvlty Devlatlon 0.0001 g
JensitivU Tolerance o.ooosg {
ate zero point offset and sensitivity error compensated.
2 N/A 20.0000 g 20.0000 g -0.00004 s
3 2og 20.0000 g 20.0000 g -0.00008 g
4 4og 20.0000 g 20.0000 g -0.000't2 g
5 6og 20.0000 s 20.0001 s -0.00006 g
b 8os 20.0000 g 20.000'l g 0.00000 g
8.N/A '100.0001 g '100.0002 g N/A
Software Version: 1,23.2.283
Report Version:2.19.3
Fom Number: AF1702111.0
@ METTLER TOLEDO
This is an original document and may not b6 partially reproduced without lhe
written permission of the issuing @libration laboratory.
Page 2 of 2
15 of 22
Calibration Certifi cats lD
NAI 548-078-032024-ACC-USL
MefllerToledo, LLG
1900 Polaris Parkway
Columbus, OH43240
1.8OO.METTLER
Customer
0h
IAccREDITEDI
METTTER TOTEDO
Accredited by the American Association
for Laboratory Accreditation (A2LA)
CALIBRATION CERT #1 788.01
ISO 17025 Accredited
ANSYNCSL Z54Gl Accredited
Accu racy Cal i bration Certifi cate
Alliance Source Testing
5530 Marshall St
Company:
Address:
Crty:
Zp / Po6tal:
S:tata / Provlnce:
Weighing Device
Contad:Eric Grosjean
80002-3 1 08
Colorado
Manufacfurcr:
Model:
Sedal No.:
Building:
Floon
Room:
Denver
T8-6201
lmfumentTyrye:
Asset Number
Terminal Model:
Temlnal Serial No.:
Termlnal Asset No.:
Weiqhinq lnstrument
17904189
6200 g 0.1 g
N/A
Procedure
Calibneton Guideline:
METTLER TOLEDO Wotk lnshuc'tion:
ASTM E898 - 20
30260953 v1.72
This calibration certificate including procedures and uncertainty estimation also complies with EURAMET calB v 4.0.
This calibration certificate contains measurements for As Found and As Left calibrations.
The sensitivity/span of the weighing instrument was adjusted before As Left calibration with a builFin weight.
ln accordance with EURAMET cg-18 (11/2015), the test loads were selected to reflect the specific use of the weighing device or to
accommodate specific calibration conditions.
Environmental conditions have been
verified to ensure the accuracy of the
calibration.
This certificate is issued in accordance with the conditions of accreditation granted by MLA, which is based on ISO/IEC 17025. A2LA
has assessed the measurement capability of the laboratory and its traceability to recognized national standards.
Start: '19.7'C End: 19.6'C Start: 23.0 % End: 23.0 %
Start: 19.7 "C End: 19.7'C Start: 23.0 % End:.23.O o/o
As Found Calibrafion Dab:
As Lrft Calibnaton Dato:
lssue Date:
Requ*t€d Next Calibration Date:
20-Mar-2024 Authofted A2[A Signabry:-<r z-zlz (----\
2O-Mar-2O24
20-Mar-2024 Chris Carson
31-Mar-2025
Software VeEion : 1.23.2.283
Report VeBion: 2. 19.3
Form Number; AF1702111.0
@ METTLER TOLEDO
This is an original document and may not be partially reproduced without the
written permisslon oflhe issuing calibration laboratory.
Page '1 of 4
16 of 22
Calibraflon Certficab lD
NA l 548-078-032024-ACC-USL METTTER TOIEDO Service
Measurement Results
Repeatability
Test [oad:2000 g
O As FoundI As Left 1 (Test Point)
>6d
4d.
3d
2d.
ld.
o
Standard 0.00s | 0.00gDevlaton
Eccentricity
I
.
4
The "d" in the graph rspresents the readability of the range/interual in which the
test was performed.
The results of this graph are based upon the absolute values of the differences
from the mean value.
(o(.)
lrl
.OOjilo
Tast Load:2000 g
Maxlmum;,'"d I o.le | 0.1s
The "d" in the graph represents the
the test was performed.
As Lefr
readability of the range/interval in which
Enor of lndication
AB Found
As Found
,|o.o g o.o s o.o g 0.06 g 2
2 1000.0 g 1000.0 g o.o g 0.09 g 2
3 3000.0 g 3000.1 g 0.1 g 0.12 g 2
4 4000.0 g 4000.2 g 0.2 g 0.14 g 2
5 6000.0 g 6000.2 g 0.2 g 0.19 g 2
Software Ve6ion : 1.23.2 -283
Report Version: 2,19.3
Form Number: AF17021r1.0
@ METTLER TOLEDO
This is an original document and may not be partially reproduced without tho
written permission of the issuing calibration laboratory.
Page 2 of 4
17 of 22
Calibmtion Certifi cate lD
NAI 548-078-032024-ACC-USL METTTER TOTEDO SerVice
As Left
1 o.o g o.o s o.o g 0.06 g 2
2 1000.0 g 1000.0 g o.o g 0.09 g 2
3 3000.0 g 3000.0 g o.o g 0.12 g 2
4 4000.0 g 4000.1 g 0.'1 g 0.14 g 2
5 6000.0 s 6000.1 g 0.1 g 0.19 g 2
0
co'ao
.9oc
o
o
U
06 r'--
",1 I
r)2+
I
(l+
I
i
i
.o2:
l
l
I
.oa-l
O AsFound
a As t'eft
For improved legibility of the graphics
only increasing measurement points
are shown and measurement points
close to zero are not displayed.
"o.o -1 o - -- rloo 3ooo 4ooo 6ooc
Calibration Points {gl
The uncertainty stated is the expanded uncertainty at calibration obtained by multiplying the standard combined uncertainty by the
coverage factor k - which can be larger than 2 according to ASTM E898 and EURAMET cg-18. The value of the measurand lies within the
assigned range of values with a probability of approximately 95%.
The user is responsible for maintaining environmental conditions and the settings of the weighing instrument when it was calibrated.
The results of this calibration certificate relate only to the calibrated item.
Test Equipment
All weights used for metrological testing are traceable to national or international standards. The weights were calibrated and certified by
an accredited calibration laboratory.
Weight Set 1: OIML Fi
Weight Set No.:
Certificate Number:
Remarks
685 Date of lssue:
Calibration Due Date:
12-Jan-2023
220U2893-1 3'l-Jan-2025
End of Acqedited Section
The information below and any attachments to this calibration certificate are not part of the accredited calibration.
Software Ve6ion: 1.23.2.2A3
Report Version: 2.19.3
Fom Number: AF1702111.0
O METTLER TOLEDO
This is an original document and may not be parlially reproduc€d without the
written permission of the issuing calibration laboratory.
Page 3 of 4
18 ot 22
Calibration Certifi cate lD
NA1 548-078-032024-ACC-USL METTTER TOIEDO Service
Measurement Uncertainty of the Weighing lnstrument in Use
Stated is the expanded uncertainty with k=2 in use. The formula shall be used for the estimation of the uncertainty under consideration of
the errors of indication. The value R represents the net load indication in the unit of measure of the device.
Temperature coefficient for the evaluation of the measurement uncertainty in use:
Temperature range on site for the evaluation of the measurement uncertainty in use:
LlneaEation of Uncertainty Equation
6.0.10.6/K
6K
To optimize the stability of the linearization, besides of the zero load only increasing measurement points with a test load of 5% of the
measurement range or larger are taken for the calculation of the linear equation.
Absolute and Relatlve Measurcment Uncertainty in Use brVarious Net lndbaflons (Examples)
50 75
Weighing Range [%l
As Found
Reading [9)
Li.l
*';'6 r.!o
c:)o .'-
.g
a :i
o
.sGEo
f
56
ai.
Software VeEion: 1.23.2,283
Report Vereion: 2.19.3
Fom Number: AF'1702111.0
@ METTLER TOLEDO
This is an original document and may not be partially reproduced without the
written permission of the issuing calibration laboratory.
Page 4 of 4
19 ol 22
Attachment to Calibration Cefficate:
NA1 548-078-032024-ACC-USL
Cuslom Tolerance Assessment
METTTER TOTEDO Service
Custom Tolerance Assessment
Assessment done without considering measurement uncertainty.
One or more of the measurements from the attached calibration certificate were assessed against customer-defined tolerances.
Overall
Repeatability
Eccentricity
Error of lndication
Measurement Resulb
Repeatability
As Found
./
{
{
{
As Left
./
{
{
./
Test [oad:2000 g
Standard
Devladon 0.00 g 0.OO S
Tolsmnce 0.10 s {0.10s {
Eccentricity
Test Load:2@0 g
Maldmum
Devlaton 0.1 g 0.1 g
Tolerance 0.3s {0.3g {
Soltware Version: 1.23.2.283
Report Version:2.19.3
Fom Number; AF1702111.0
O METTLER TOLEOO
This is an original document and may not be partially reproduced without the
written pemission of the issuing calibration laboratory,
Page 1 of 2
20 ol 22
Altacfi ment b Callbratlon Ceffi cate:
NA1 548-078-032024-ACC-USL
Custom Tolerance Assessment
METTIER TOLEDO Servrce
Enor of lndication
As Found
As L€ilT
Softwar€ Vereion: 1.23.2.283
Report Ve6ion:2.19.3
Fom Number; AF1702Lrl.0
@ METTLER TOLEDO
This is an original dodment and may not be partially reproduced without the
writlen permission of th€ issuing @libration laboratory.
Page 2 ol 2
21 of22
plnffiirc.e
TECHNiCAL GROUP QA/QC Data
lacaaion Rio Tinto Ketrnsott - Magna' UT
Source Gold/Silver Rsovery BE (REF0l0)
Projet No. AST-2024-1032
Parameter PMlo
Date Nozle lD
NOZZIe UEmercr (tn.,
#l #2 #3 Dn (Average) Difference Criteria Material
3/15/24 ss2 o.225 o 225 o 225 o225 o 000 I 0.004 in SS
Date Pitot ID ljvidence of
damase?
trvidence of
mis-alisnment?
LAIOTAUOn Or
Panoir rmrircd?
3/15/24 AirData Pitot I no no
Date Probe or
TLa,il^^^nhta !n
Reference Indicsted Difference Criteria Probe Length
1/15/24 PR703-l 250 0 250.O O.tr/o r l.5 % (absolute)
Field Bairnce Chek
Date $fi5n4
Balmce lD:sa288rm6
Ce.tified Weight ID SLC.IKG.3
Certified Weight (g):r 000_0
Meoued Weight (g);999.8
Weight Difference (g):o-2
Date Barometric
Prcsure
f,viderce of Reading Verified or Westher Station lrcation
3/15/24 Weather Station NA NA NA SLC Int. Airport
Dat€Meter Box ID Positive Prmsure Lesk Check
3/t5/24 M5-31 Pass
Reagetrt Lot#Field Prep Field Ial Date By
Dl Water 232650 No NA 3/ts12024 Fisher
Hexanes 218359 No NA 3lLs/2024 Fisher
Acetone 230620 No NA 3/Ls/2024 Fisher
Posttst Purpe
Run 1 Run 2 Run 3
Flow Rale /]nm\Flow Rate flnm) ,5 Flow Rate (lom): 15
Clock Time Temoerature Clock Tme TemDerature Clock Time Tmnemhre
I 0:30
10:45
I l:0O
l l:15
llr3O
69.0
69.0
69.0
69.0
69.0
l:45
2.O{)
2.t5
2:30
2.45
69.0
69.0
69.0
69.0
69.0
I 3:15
I 3:30
l3:45
l4:00
l4: l5
69.0
69.0
69.0
69.0
5SO
DGM Calibration-Orifices
Document lI 620.004
Revisior 23.0
Effective Date 1/25/23
lssuing Depaftment Tech Seruices Paq€lof 1
Equipment Detail - Dry Gas Meter
Console lD: w5-31
Meter S/N: 19772846
Critical Orifice S/N: 1330
Calibration Detail
lnitial Barometric Pressure, ln. Hg (Pb)
Final Barometric Pressure, in. Hg (PbF)
Average Barometric Pressure, in. Hg (Pb)
25.48
25.48
25.48
Critifcal Orifice lD (Y)
K' Factor, ft3.Rr/2 / in. wc.min (K )
Vacuum Pressure, in. Hg (V,
lnitial DGM Volume, ft3 (Vm)
Final DGM Volume, ft3 (VmF)
Total DGM Volume, ft3 (Vm)
1 330-31
0.8429
13.0
804.200
821.062
16862
1 330-31 1330-25
0.6728
15.0
836 100
845.037
8 937
1330-25 1330-19
0.5186
15.0
857.800
864.837
7.037
1 330-19
0.8429 0.673 0.519
13.0
821.062
832.308
11.246
15.0
845.037
853.963
8.926
15.0
864.837
871.833
6.996
Ambient Temperature, 'F (Ta)
lnitial DGM Temperature, 'F (Tm)
Final DGM Temperature, "F (Tm,
Averaqe DGNy' Temperature, 'F (Tm)
75
74
74
14
76
74
75
75
77
75
75
75
77
75
76
76
77
76
76
76
77
76
76
76
Elapsed Time (O)
Meter Orifice Pressure, in. WC (AH)
Standard Meter volume, ftr (Vmstd)
Standard Critical Orifice Volume, ft3 (Vcr)
Meter Correction Factor (Y)
Tolerance
Orifice Calibration Value (AH @)
Tolerance
Orifice Cal Check
15.00
3.50
14.3444
13.9321
0.971
0.001
1.941
0 023
10.00
3.50
9.5580
9.2794
0.971
0 001
1 943
0.021
10.00
2.20
7.5603
7.3999
0.979
0.007
1.912
0.052
10.00
2.20
7.5439
7.3999
0.981
0.009
1 910
0.054
10 00
140
5.9282
5.7039
0.962
0.010
2.039
0.075
'10.00
1.40
5.8937
5.7039
0.968
0.004
2.039
0.075
0.90 1.54 152
Metercorrection Factor m 0.972
Orifice Calibration Value (AH @)1.964
Positive Pressure Leak Check Yes
Equipment Detail - Thermocouple Sensor
Reference Calibrator Make: OMEGA
Reference Calibrator Model: CL234
Reference Calibrator S/N: I-197207
Calibration Detail
Reference Temp Display Temp.Accuracy Difference
r oR r oR Vo oF
0
68
100
460
528
560
0
66
98
460
526
558
0.0
0.4
0.4
0
2
2
223
248
683
708
733
223
249
274
683
709
734
0.0
-0.1
-01
0
1
1
300
400
500
600
700
800
900
1,000
1,100
1,200
760
860
960
1,060
1,160
1,260
i,360
1,460
1,560
1,660
300
399
498
600
701
801
901
1,002
1,102
1,202
760
859
958
1,060
1,161
1,261
1,361
1,462
1,562
1,662
O,C
0.1
0.2
0.c
-0.
-0
-0.
-0.
-0
-0.
0
1
2
0
1
1
1
2
2
2
Personnel
Stacey Cunninqham
Calibration By:
Calibration Date:
Reviewed By:
RYAN LYONS
6/20/2023
From! Douohtv. lason (RTKC)
To: Dalv. Sean 3 (RTKC)
Subiect: RE: Operations for the Gold / Silver Baghouse on 3/15
Date: Thursday, April 25, 2024 4:L9:I5PM
Hello Sean,
Yes, I was here on 3/15. After speaking with Mike Swensen, my silver caster, we recall that we did
not have enough sands for a silver cast on 3/15 so we did a "silver melt" in the south furnace to
simulate as best we could a silver cast for the baghouse stack test. The actual silver cast, S32, was
completed on3lt7.
Thanks,
Jason
From: Daly, Sean 3 (RTKC) <Sean.Daly3@riotinto.com>
Sent: Friday, April 19, 2024 5:32 PM
To: Porter, Jeff (RTKC) <Jeff.Porter@riotinto.com>; Doughty, Jason (RTKC)
<Jason.C. Doughty@ rioti nto.com>
Cc: Bella rd, And rew ( RTKC) <And rew.Bellard @ riotinto.com>
Subject: Operations for the Gold / Silver Baghouse on 3/15
Hello Jeff and Jason,
For the stack test report, I will need a summary of the gold / silver furnace operations during the
March t5th (when we were doing the stack test). Can you send me a quick email with a summary of
the material that was produced that day? I need this summary for the report that will be submitted. I
have included an example that we attached to the report the last time we tested the baghouse.
Thanks,
Sean Daly
Senior Environmental Advisor
Rio into Kennecott
4700 Daybreak Parkway, South Jordan, UT 84009 (Mailing)
11500 West 2100 South, Magna, UT 84044 (Refinery)
T (801) 204-2563
M (801) s13-44s6
sean.dalv3 @riotinto.com
_qrAH DEPARTTTTENT oFEIflRONMEMAL OUAITiY
[,AY - I 2024
DMSION OF AR QUALTY