Loading...
HomeMy WebLinkAboutDAQ-2024-0052171 DAQC-206-24 Site ID 10346 (B4) MEMORANDUM TO: STACK TEST FILE – KENNECOTT UTAH COPPER – Refinery Boiler #2 THROUGH: Harold Burge, Major Source Compliance Section Manager FROM: Paul Morris, Environmental Scientist DATE: March 1, 2024 SUBJECT: Source: Refinery Boiler #2 (REF003) Contact: Sean Daly: 801-204-2563 Location: Kennecott Smelter Facility, Magna, Salt Lake County, UT Test Contractor: Alliance Technical Group. FRS ID #: UT0000004903500030 Permit/AO#: Title V Operating Permit 3500030004, last revised September 27, 2022 Action Code: TR Subject: Review of Stack Test Reports dated February 7, 2024 On February 12, 2024, DAQ received a test report for the Kennecott Utah Copper Refinery Boiler #2. Testing was performed on December 15, 2024, to demonstrate compliance with the emission limits found in Permit Conditions II.B.35.d and II.B.35.e. The DAQ-calculated test results are: Source Test Date RM/Pollutant DAQ Result Test Result Limit Boiler #2 12/15/2023 RM 7/NOx 0.7 lb/hr 0.7 lb/hr 1.5 lb/hr 8 ppm* 8 ppm* 9 ppm* RM 10/CO 0.02 lb/hr 0.02 lb/hr 3.00 lb/hr *@ 3% O2 DEVIATIONS: None reported. CONCLUSION: The stack emissions test report appears to be acceptable. RECOMMENDATION: Kennecott Utah Copper appears to be in compliance with the applicable conditions of the Title V operating permit at the time of this test. HPV: No violations occurred. ATTACHMENT: Stack test report dated February 7, 2024, DAQ spreadsheets 6 , 3 7'-. o -.1fi.5tr+o Rio Tinto Kennecott 47oo Daybreak Parkway South Jordan, Utah 84oo9 T 8or-S6g-Zg8g F 8or-569-6688 Jerome Dozol General Manager Metals February o7,2o24 Mr. Bryce Bird, Director Department of Environmental Quality Division of Air Quality PO Box t4492o Salt Lake City, Utah B4rr4-49zo Attn: Mr. Paul Morris ffi FEB 12 ?qz! i'i.^,r'rri li' l' Y< (etl --;#'o$r * nm guAln1v Subject: Stack Test Report - Kennecott Utah Copper Smelter Refinery Tankhouse Boiler (REFoog) Title V Operating Permit No. gsooo3ooo4 Dear Mr. Bird, As required by Title V operating permit 35ooo3ooo4 and Approval Order DAQE- ANro346oo58-zo, Kennecott Utah Copper performed stack testing of the Refinery Boiler (REFoog) on December 15, 2024. The testing was conducted following procedures outlined in 4o CFR 6o, Appendix A. The summary report with test results is attached for submittal within 6o days of completion of the testing. Results of the testing demonstrate that the units are in compliance with the permit emission limits. Based on information and belief formed after reasonable inquiry, the statements and information contained in this document are true, accurate, and complete (Rgoz-+ts-sd). Should you have any questions or need further information regarding these reports, please feel free to contact me or Sean Daly at 801-204-2562. Sincerelv.- ;; heAJl € [o*.4<u Jerome Dozol General Manager, Metals 7F.o }..1 -.5;+o (This page intentionalla W blank) Alllare UTAH DEPAHTN{ENT OF Source Test Report ENViR.NT'4ENrAL ouALrrY Rio Tinto Kennecott 4700 Daybreak Parkway South Jordan, UT 84095 tllVISlON OF AIR QUALITY Source Tested: Refinery Boiler #2 REF003 Test Date: December 15, 2023 Proj ect No. AST-2023 -3338-003 Prepared By Alliance Technical Group, LLC 3683 W 2270 S, Suite E West Valley City, UT 84120 pJ/lArEe TECI]NICAL GROUP Source Tesl Report Test Program Summary Resulatorv Information Permit Nos. Source Information DAQE-ANo1034600s8-20 Source Name Boiler #2 Contact Information Source Nqme REFOO3 Source Nome NOx, CO Test Location Rio Tinto Kennecott 2500 South 9180 West Magna, UT 84044 Jenny Esker j enny. esker@iotinto.com (801) s69-6494 Sean Daly sean.daly3 @iotinto.com (801)204-2s63 Test Company Alliance Technical Group, LLC 3683 W 2270 S, Suite E West Valley City, UT 84120 Project Manager Charles Horton charles.horton@alliancetg.com (3s2) 663-7s68 Field Team Leader Tobias Hubbard tobias.hubbard@alliancetg.com QA/QC Manager Kathleen Shonk katie. shonk@alliancetg. com (8t2) 4s2-4',t8s Report Coordinator Ryan Adam ryan.adam@alliancetg.com (469) 918-0s4s AST-2023-3338-003 RTK - Magna, UT Page i Cl.l NlCirt (-;llCr,f)Source Test Report Cer!i/ication Statenent Alliance Technical Group, LLC (Alliance) has completed the source testing as described in this report. Results apply only to the source(s) tested and operating condition(s) for the specific test date(s) and time(s) identified within this report. All results are intended to be considered in their entirety, and Alliance is not responsible for use of less than the complete test report without written consent. This report shall not be reproduced in full or in part without written approval from the customer. To the best of my knowledge and abilities, all information, facts and test data are correct. Data presented in this report has been checked for completeness and is accurate, error-free and legible. Onsite testing was conducted in accordance with approved internal Standard Operating Procedures. Any deviations or problems are detailed in the relevant sections in the test report. This report is only considered valid once an authorized representative of Alliance has signed in the space provided below; any other version is considered draft. This document was prepared in portable document format (.pdf) and contains pages as identified in the bottom footer of this document. {..,.,, / -2/712024 ilr' I ,: lt Charles Horton, Operations Manager Alliance Technical Group, LLC Date AST-2023-3338-003 RTK - Magna, UT Page ii N t P Source Test Report Tabb ofContents TABLE OF CONTENTS Ll Source and Control System Descriptions. ............ l-l 1.3 Site Specific Test Plan & Notification.................. .................... l-l 3.1 U.S. EPA Reference Test Methods I and 2 - Sampling/Traverse Points and Volumetric Flow Rate..... 3-l 3.2 U.S. EPA Reference Test Method 3A - Oxygen/Carbon Dioxide........ ......... 3-l 3.3 U.S. EPA Reference Test Method 4 - Moisture Content........ ....................... 3-l 3-4 U.S. EPA Reference Test Method 7E - Nitrogen Oxides...... ........................ 3-2 3.5 U.S. EPA Reference Test Method l0 - Carbon Monoxide.... ........................3-2 3.6 U.S. EPA Reference Test Method 205 - Gas Dilution System Certification. .....................3-2 3.7 Quality Assurance/Quality Control - U.S. EPA Reference Test Methods 3,A. and 7E................. ............3-2 LIST OF TABLES APPENDICES Appendix A Sample Calculations Appendix B Field Data Appendix C Quality Assurance/Quality Control Data Appendix D Process Operating/Control System Data AST-2023-3338-003 RTK - Magna, UT Page iii (i ii () LJ t) Source Test Report Introduction 1.0 Introduction Alliance Technical Group, LLC (Alliance) was retained by Rio Tinto Kennecott (RTK) to conduct compliance testing at the Refinery located in Magna, Utah. The facility operates under the Utah Department of Environmental Quality, Division of Air Quality (UDAQ) Approval Order (AO) DAQE-AN103460057-20. Testing was conducted to determine the emission rates of nitrogen oxides (NOx) and carbon monoxide (CO) from the exhaust of the Refinery Boiler #2. 1.1 Source and Control System Descriptions The RTK Refinery, located near the Smelter, receives anode copper produced at the Smelter and uses an electrolytic process to obtain the high purity cathode copper. The copper anodes from the smelter are submerged in tanks containing an electrolyte solution in batch operations. An electric current is applied to the tank for a l0-day period during which copper ions migrate from the anode to form a cathode of 99.99% pure copper. Precious metals (gold and silver) are recovered from the electrolytic refining slimes rernoved from the tanks in a series of hydrometallurgical operations. The Refinery copper refining process requires steam to maintain electrolyte temperatures and prevent the degradation of the electrolyte tanks as well as support the precious metals process. To supply steam, the Refinery operates a CHP unit as a primary source of steam and maintains two Refinery Boilers (Boilers #l and #2) as back up steam. Boiler #2 has recently been retrofit with an ultra-low NOx burner and is the subject of this test program. Boiler #l will be decommissioned once stack testing is complete on Boiler #2. 1.2 Project Team Personnel involved in this project are identified in the following table. Table l-l: Project Team 1.3 Site Specific Test Plan & Notification Testing was conducted in accordance with the Site-Specific Test Plan (SSTP) subrnitted to UDAQ by RTK. RTK Personnel Sean Daly AST Personnel Tobias Hubbard Cael Krahn Ryan Lyons AST-2023-3338-003 RTK - Magna, UT Page l-l pur6rrce I'FC}.-INICAI- GROUP Source Test Report Summary olResults 2.0 Summary of Results Alliance conducted compliance testing at the RTK Refinery in Magna, Utah on December 15, 2023. Testing consisted of determining the emission rates of NOx and CO from the exhaust of the Refinery Boiler #2 Table 2-l provides a summary of the emission testing results with comparisons to the applicable UDAQ permit limits. Any difference between the summary results listed in the following table and the detailed results contained in appendices is due to rounding for presentation. Table 2-l: Summary of Results arbon Monoxide Data Emission Rate, lb/hr Emission Limit,lb/hr Percent of Limit, 7o Concentration, ppmvd @ 3% Oz Emission Limit, ppmvd @3%Oz Percent of Limit, 7o Emission Rate, lb/hr Emission Limit, lb/hr Percent of Limit, 7o 8.1 0.76 7.9 0.72 7.8 0.71 7.9 9.0 88 0.73 1.5 49 AST-2023-3338-003 RTK - Magna, UT Page 2-l 4.r.Aliatpe Source Test Report T'e st irrp \le thodolos, 3.0 Testing Methodology The emission testing program was conducted in accordance with the test methods listed in Table 3-1. Method descriptions are provided below while quality assurance/quality control data is provided in Appendix C. Table 3-l : Source Testing Methodology 3.1 U.S. EPA Reference Test Methods I and 2 - Sampling/Traverse Points and Volumetric Flow Rate The sampling location and nuntber of traverse (sampling) points were selected in accordance with U.S. EPA Reference Test Method l. To determine the rninimum nunrber of traverse points, the upstreaur and downstream distances were equated into equivalent dianreters and conrpared to Figure l-2 in U.S. EPA Reference Test Method l. Full velocity traverses were conducted in accordance with U.S. EPA Reference Test Method 2 to determine the average stack gas velocity pressure, static pressure and tenrperature. The velociry and static pressure measurement system consisted of a pitot tube and inclined manometer. The stack gas temperature was measured with a K-type thermocouple and pyrometer. Stack gas velocity pressure and temperature readings were recorded during each test run. The data collected was utilized to calculate the volumetric flow rate in accordance with U.S. EPA Reference Test Method 2. 3.2 U.S. EPA Reference Test Method 3A' - Oxygen/Carbon Dioxide The oxygen (Ou) and carbon dioxide (CO:) testing was conducted in accordance with U.S. EPA Reference Test Method 3,A. Data was collected online and repotted in one-minute averages. The sampling system consisted of a stainless-steel probe, Teflon santple line(s), gas conditioning system and the identified gas analyzer. The gas conditioning system was a non-contact condenser used to remove moisture frorn the stack gas. If an unheated Teflon sanrple line was used, then a portable non-contact condenser was placed in the system directly after the probe. Otherwise, a heated Teflon sanrple line was used. The quality control nleasures are described in Section 3.7. 3.3 U.S. EPA Reference Test Method 4 - Moisture Content The stack gas moisture content was deternrined in accordance with U.S. EPA Reference Test Method 4. The gas conditioning train consisted of a series of chilled inrpingers. Prior to testing, each impinger was filled with a known quantity of water or silica gel. Each impinger was analyzed gravirnetrically before and after each test run on the sarrte balance to determine the amount of moisture condensed. Parameter U.S. EPA Reference Test Methods Notes/Remarks Volumetric Flow Rate t&2 Full Velocity Traverses Oxygen / Carbon Dioxide 3A lnstrumental Analysis Moisture Content 4 Gravimetric Analysis Nitrogen Oxides 7E Instrumental Analysis Carbon Monoxide l0 Instrumental Analysis Gas Dilution System Certification 205 AST-2023-3338-003 RTK - Magua, UT Page 3-l Alialpe (l f { (} ill:Sotn'ce Test Report Testittg L[efhodology 3.4 U.S. EPA Reference Test Method 7E - Nitrogen Oxides The nitrogen oxides (NOx) testing was conducted in accordance with U.S. EPA Reference Test Method 7F,. Data was collected online and reported in one-minute averages. The sampling system consisted of a stainless-steel probe, Teflon sample line(s), gas conditioning system and the identified gas analyzer. The gas conditioning system was a non-contact condenser used to remove moisture from the stack gas. If an unheated Teflon sample line was used, then a portable non-contact condenser was placed in the system directly after the probe. Otherwise, a heated Teflon sample line was used. The quality control measures are described in Section 3.7. 3.5 U.S. EPA Reference Test Method l0 - Carbon Monoxide The carbon monoxide (CO) testing was conducted in accordance with U.S. EPA Reference Test Method 10. Data was collected online and reported in one-minute averages. The sampling system consisted of a stainless-steel probe, Teflon sample line(s), gas conditioning system, and the identified gas analyzer. The gas conditioning system was a non-contact condenser used to remove moisture from the gas. If an unheated Teflon sample line was used, then a portable non-contact condenser was placed in the system directly after the probe. Otherwise, a heated Teflon sample line was used. The quality control measures are described in Section 3.7. 3.6 U.S. EPA Reference Test Method 205 - Gas Dilution System Certification A calibration gas dilution system field check was conducted in accordance with U.S. EPA Reference Method 205. Multiple dilution rates and total gas flow rates were utilized to force the dilution system to perform two dilutions on each mass flow controller. The diluted calibration gases were sent directly to the analyzer, and the analyzer response recorded in an electronic field data sheet. The analyzer response agreed withtn 2oh of the actual diluted gas concentration. A second Protocol I calibration gas, with a cylinder concentration within 10% of one of the gas divider settings described above, was introduced directly to the analyzer, and the analyzer response recorded in an electronic field data sheet. The cylinder concentration and the analyzer response agreed within 2%o. These steps were repeated three (3) times. Copies of the Method 205 data can be found in the Quality Assurance/Quality Control Appendix. 3.7 Quality Assurance/Quality Control - U.S. EPA Reference Test Methods 3A and 7E Cylinder calibration gases used met EPA Protocol 1 (+l- 2%) standards. Copies of all calibration gas certificates can be found in the Quality Assurance/Quality Control Appendix. Low Level gas was introduced directly to the analyzer. After adjusting the analyzer to the Low-Level gas concentration and once the analyzer reading was stable, the analyzer value was recorded. This process was repeated for the High-Level gas. For the Calibration Eror Test, Low, Mid, and High-Level calibration gases were sequentially introduced directly to the analyzer. All values were within 2.0 percent of the Calibration Span or 0.5 ppmv absolute difference. High or Mid-Level gas (whichever was closer to the stack gas concentration) was introduced at the probe and the tinte required for the analyzer reading to reach 95 percent or 0.5 ppm (whichever was less restrictive) of the gas concentration was recorded. The analyzer reading was observed until it reached a stable value, and this value was recorded. Next, Low Level gas was introduced at the probe and the time required for the analyzer reading to decrease to a value within 5.0 percent or 0.5 ppm (whichever was less restrictive) was recorded. If the Low-Level gas was zero gas, the response was 0.5 ppm or 5.0 percent of the upscale gas concentration (whichever was less restrictive). The analyzer reading was observed until it reached a stable value and this value was recorded. The AST-2023-333 8-003 RTK - Magna, UT Page 3-2 Almlpe lr-aiit.ttoAl GfiOr.! ['Source Test Reporl Testing Methodologt measurement system response time and initial system bias were determined from these data. The System Bias was within 5.0 percent of the Calibration Span or 0.5 ppmv absolute difference. High or Mid-Level gas (whichever was closer to the stack gas concentration) was introduced at the probe. After the analyzer response was stable, the value was recorded. Next, Low Level gas was introduced at the probe, and the analyzer value recorded once it reached a stable response. The System Bias was within 5.0 percent of the Calibration Span or 0.5 ppmv absolute difference or the data was invalidated and the Calibration Error Test and Systern Bias were repeated. Drift between pre- and post-run System Bias was within 3% of the Calibration Span or 0.5 ppmv absolute difference. If the drift exceeded 3oh or 0.5 ppmv, the Calibration Error Test and Systen Bias were repeated. To determine the number of sampling points, a gas stratification check was conducted prior to initiating testing. The pollutant concentrations were measured at three traverse points. Each traverse point was sampled for a minimum of twice the system response time. The pollutant concentration at each traverse point did not differ more than 5%o or 0.5 ppm (whichever was less restrictive) of the average pollutant concentration. Copies of stratification check data can be found in the Quality Assurance/Quality Control Appendix. An NOz - NO converter check was performed on the analyzer at the completion of testing. An approximately 50 ppm nitrogen dioxide cylinder gas was introduced directly to the NOx analyzer and the instrument response was recorded in an electronic data sheet. The instrument response was within +/- l0 percent of the cylinder concentration. A Data Acquisition System with battery backup was used to record the instrument response in one (l) minute averages. The data was continuously stored as a *.CSV file in Excel format on the hard drive of a computer. At the completion of testing, the data was also saved to the AST server. All data was reviewed by the Field Team Leader before leaving the facility. Once ariving at AST's office, all written and electronic data was relinquished to the repoft coordinator and then a final review was performed by the Project Manager. RTK - Magna, UTAST-2023-3338-003 Page 3-3 plllfirrrcE! :LC lll',1 !(.ln L (:l Fl () l.J [r Location: Rio Tinto Kennecott - South Jordan, UT Source: Boiler #2 Project No.: AST-2023-3338 Run No. /MethodRun I / Method 34 COr - Outlet Concentration (Cgs,), o/o dry cco,: (cou.-co)* ( #h) where, Cob, co Crrre CM Cco, 10.9 Oz - Outlet Concentration (Co), o/o dry 9.4 : average analyzer value during test,o/odry: average ofpretest & posttest zero responses,o/o dry: actual concentration of calibration gas, %o dry: average ofpretest & posttest calibration responses, o/o dry = COz Concentration, oZ dry 0.1 I l.l 9.2 where, co,: (cou.-co)* ( #h-) Corr.{ : average analyzer value during test, o/o dry Co 0.1 : average ofpretest & posttest zero responses,o/o dry CMA ll.0 : actual concentration ofcalibration gas,o/odry CM 11.0 : average ofpretest & posttest calibration responses, 7o dry Co, 4.9 = Oz Concentration,o/o dry pul6rrpE) -:- [ i] 1l i\.,i I O,r'. L, () n () (l [. Location: Rio Tinto Kennecott - South Jordan, UT Source: Boiler #2 Project No.: AST-2023-3338 Run No. /MethodRun 1 / Method l0 CO - Outlet Concentration (Cco), ppmvd cco: (co6.-c6)x /.9"^ .\\ rcM q)/ where, Cob, -0. I : average analyzer value during test, ppmvd Co -0.3 : average ofpretest & posttest zero responses, ppmvd CMA 25.2 : actual concentration of calibration gas, ppmvd CM 25.6 : average of pretest & posttest calibration responses, ppmvd Cco 0.2 : CO Concentration, ppmvd CO - Outlet Emission Rate (ER6,6), lb/hr where, Fh C6exMWxQsx 60T x25.32 hanao - s" Cco 0.2 : CO - Outlet Concentration, ppmvd MW 28.01 = CO molecular weight, g/g-mole Qs 14,505 : stack gas volumetric flow rate at standard conditions, dscfin ERco 0.01 : lb/hr pd/l6rrEE) I [:!] l".l N I ()A l- (.) F] () t.l t) Location: Rio Tinto Kennecott - South Jordan, UT Source: Boiler #2 Project No.: AST-2023-3338 Run No. /lVlethod Run I / Method 7E NOx - Outlet Concentration (Cns), ppmvd where, CNo,: (Co6.-c6)x (dk") Cou, ___ 73 : average analyzer value during test, ppmvd Co 0.2 : average of pretest & posttest zero responses, ppmvd CMA 25.0 : actual concentration of calibration gas, ppmvd CM 24.6 : average of pretest & posttest calibration responses, ppmvd CNo* 7.3 : NOx Concentration, ppmvd NOx - Outlet Concentration (Cp6*6), ppmvd @ 3oh Oz CNo*":: CNo*X ffi where, C*o*[_: NOx - Outlet Concentration, ppmvd Co, 4.9 : oxygen concentration, 7o C116*6 8. I : ppmvd @3ohOz NOx - Outlet Emission Rate (ERNS*),lb/hr En*": where, CNo" 7.3 : NOx - Outlet Concentration, ppmvd MW 46.0055 : NOx molecular weight, g/g-mole Qs 14,505 : stack gas volumetric flow rate at standard conditions, dscfin ERNo* 0.76 : lb/hr AfiErrEErTr al il Nl l CA r_ c] R (") r, r) Location Rio Tinto Kennecott - South Jordan, UT Example Calculations Source Boiler #2 Proiect No. 202$.3338 Run No. I Parameter(s) VFR Meter Pressure (Pm), in. Hg AHpm = pb+ffi where, Pb 25.50 = baometric pressure, in. Hg AH_-|1|\= pressure difi'erential of orifice, in HlO Pm 25.60 :in. Hg Absolut€ Stack G.s Pressure (Ps), in. Hg Psps = pb+# wherq Pb 25.50 : buometric pressure, in. Hg Pg __ -ojl _ = ttatic pressure, in. I{2O Ps 25.47 = in. Hg Standrrd Met€r Volume (Vmstd), dscf l7.636xVmxPmxY where, Y ___92!2_ = .eter correction factor V^L= metervolume,cf P*___ 25j9*= absolute meter pressure, in. Hg T.fryl-= absolute n€tertempemture, oR Vmstd 37.657 = dscf Statrdrrd Wet Volume (Vwstd), scf where, Vstd: 0.04716 x Vlc Vl"____.14il _= weight of H2O collected, g Vmtd 6.758 = scf Moisture Fraction (BWSsat), dimensionlss (theoretical at saturated conditions) ' ^^ t 2'827 \ 10o.r / -\Ts+365-, B\ /Ssat = - wherc, Ps Ts 29?.4 : stack temperature, oF Ps-f!l= absolute stack gas prssure, in. Hg BWSsat 1.000 = dimensionless I\loisture Fraction (BWS), dimensionless VwstdDIA'C _ - - (Vwstd * Vmstd) where, VNtd 6.758 = standard wet volume, scf Vmstd 37.657 = standard meter volume, dscf BWS__ 0.152 _-dimensionless Moisture Fraction (BWS), dimensionless BWS = BWSmsd unless BWSsat < BWSmsd where, BWSsat 1.000 = moisture fraction (theoretical at saturated conditions) BWSnrsd 0J 52 = moisture fraction (me6ured)BwsA Molecular Weight (DRY) (Md), lbnLmole Md = (0.44 x o/oco2) + (0.32 x o/oo2) + (0.28 (t00- o/sco2 - o/oo2)) where, COrL- cabon dioxide concentration, 9/o O. __jl:L = oxygen concentration, Yo Md 29.67 = lb/lb mol Tm AI6rrce If(.1,NIO.rt OR.)Uir, Location Rio Tinto Kennecott - South Jordatr, UT Source Boiler #2 Project No. 202!3338 Run No. I Parameter(s) VFR Molecular Weight (WET) (Ms), lbilb-mole Ms = Md (1 - BWS) + 18.01s (BWs) where, Md 29.67 - molecular weight (DRY), lb/lb mol BWS 0.152 = moisture fraction, dimensionles Ms 27.90 = lb4b mol Average Velocity (Vs), ftlsec Vs = 85.49 x Cp x (Apl/z)avg x wherq Cp 0.84 = pitot tube coefficient A P''---7-= average pre/post test velocity head of stack ga, (in. H2o)r2 rt ]][- "rerage pre/post test absolute stack temperature, "R P" __2!_= ubsolute stack 96 pr6sure, in. Hg MtA: moleculu weight of stack gas, lb/lb mol Vs 52y' = 0/sec Average Stack Gas Flow st Stack Conditions (Qa), acfm Qa = 60x Vs x As where, V, ___j2.1_ = stack go velocity, fl/sec A" 917 = cross-sectional arq ofstack, ft2 Qa 28,832 = acfm Average Stack Gas Flow at Standard Conditions (Qs), dscfm Qsd = 17.636 x Qa x (l - BWS) x where, Qa 28,812 = average stack 96 flow at stack conditions, acfm BWS-..]LLL= moisture fraction, dimensionles P" ___2!_= ubsolute stack gas pressure, in. Hg Ts 75'7.l = average pre/post test absolute stack temperature, 'RQ"E=at"r* Dry Gas Meter Calibration Check (Yqa), percent uhere, Y 0.982 = mete. corection factor, dimensiotless o----?6-= -n time, min. V-___l2J::_= total meter volme, dcf T-_jry!-= absolute meter temperature, oR LIl@ 1.763 = o.ifice met€r calibration coefticient, in. H1O Pb___ 2119_= baometric prssure, in. Hg AH avS_!!\= average pressure ditlerential of ori6ce, in H2O Md 29.61 = molecula weight (DRY), lb,4b mol (A r0'' -L 1s3- = average square root prssure diff€rential of ori6ce, (in. H2o)rr2 Yqa 03 = percent Example Calculations Ps Ts x 100 Emissions Calculations Location Rio Tinto Kennecott - South Jordan, UT Source Boiler #2 Project No. AST-2023-3338 Run Number Runl Run2 Run3 Averase Date Start Time Stoo Time 12n5t23 t2^st23 12il5t23 8:50 10:02 I l: 13 9:50 ll:02 12:13 Input Data - Outlet Moisture Fraction, dimensionless Volumetric Flo'rv Rate (Ml-4), dscfm BWS Qs 0.152 14,505 0.151 14,407 0.155 0.153 14,256 14,389 Calculated Data - Outlet Oz Concentration, % dry co, 4.87 4.96 5.03 4.95 COu Concentration. %o dry C".,, 9.23 9.17 9.14 9'18 CO Concentration, ppmvd CO Emission Rate, lb/hr Cco ERco 0.24 0.0r 0.25 0.02 0.24 0.02 0.24 0.02 NOx Concentration, ppmvd NOx Concentlation, ppmvd @ 3 % O, NOx Emission Rate. lb/hr CNo* CNo*": ER*^- 7.27 8.1 I 0.76 7.00 7.87 0.72 6.92 7.81 0.7r 7.06 7.93 0.73 tr:AlralrcE) -:r 1.,: li i..l i.-,,'1 i :'l l-i i-: i.l fr Method I Data Source Boiler #2 Projcct No. 2023-3338 Drrc 12115/23 DoctOrientttion: Vcdical Dr.t D..ign, ---tiiii- Dis(ance from t'ar wall to outrid" of Pon,----ii]i-i,' 1----t- I a:'rat til&a" 6 ,snrcrrrkf,4 5}*s o. M15 ,,]illlttll l.,j ,l ")l I I €1..xiltpt" t rgttt, ----!36- Deprh ofDuct: 41.00 Crojs Sectional Area ofDuct: 9, No. ofTest Pods: 2 Nuillbcr ofReadings per Poitrt; I Distancc A: 63 Dirtancr A Duct Diamet€rs: l3 Di$tilce B: 20.0 Dijtancc B Duat Dimea€rsi 5.9 Mitrimunr Numbcr of Tr*".r" Poin*r -----'ii- A(tual Numbcr of T ra\ "rr" Pointr, ----Ji-- Mcesurcr (lnitirl end Date): _!j!pf)j!]_ Rcyic$cr (lnitirl turd Date): _f![pf]j!]- tn hr rC ft (must be > 0,5) ft (must bc > 2) f,t sru ,] il l(x:li4{Er i- . ti;i:-iii 1 ,"" 1 i ","."" "-".,.t..._,.., Trrvcr$e Point Y. of Dirtrtrc€from Diameler $all otrbide of I J { 6 7 8 9 l0 lt l2 3.2 10.5 19.4 32.3 67.7 806 89.5 968 1.31 4.3t '1.95 t3.24 27.76 13.05 36 7t) 39.69 6 t3A6 9 13t6 t3 7/16 t8 3/4 33 |4 38 9/16 42 3/t6 45 316 LOCATION OF TRA!'ERSI POINTS Nunber oJraverv poittts on a diaude? I 2 3 1 5 6 7 8 9 l0 I 3 I 5 6 1 8 9 l0 II t2 14.6 85.4 6.7 25.0 75.0 4.4 14.6 29.6 10.4 85.4,:, 3.2 10.5 t9.4 323 67.7 8fJ.6 89.5 96.8 2.6 t4.6 D,6 34.2 65.8 774 85.4 9 t.8 91 4 2.t 6.7 il.8 t'7.7 250 35.6 64.4 7j.0 82.3 88.2 93.3 979 *Pcrccnt ofstrck diantetetfotn inside \all to treerse point Stack Diagram A = 6.3 ft. B=20n Depth olDuct = 41 in. ('ross Setional Area Downstream Dlsturbance aaaaaaaa upstream Disturbance plllffiircEr Cyclonic FIow Check Location Rio Tinto Kennecott - South Jordan Source Boiler #2 Project No. 2023-3338 Dfie l2ll5l23 Sample Point Angle (AP:0) I 2 3 4 5 6 7 8 9 IO ll l2 l3 t4 l5 l6 Averase 3.8 AlhlrcEr Method 2Data l-ocation Rio Tinto Kennecott - South Jordan. UT Source Boiler #2 Proiect No. 2023-3338 Run No Dat( Statu! Start Timr Stop Timt Leak Checl I t2ltst23 VALID 8:50 9:50 Pass 2 t2il5t23 VALID 10.02 I l:02 Pass 3 t2/15/23 VALID I l:13 l2:13 Pass A Traverce Point AP (in. wC) Ts cF) AP (in. wC) Ts cF) AP (in. wC) Ts cF) AI 2 J 4 5 6 7 8 BI ) 3 4 5 6 7 8 0.36 0.39 0.46 0.58 0.65 0.67 0.59 0.58 0.30 0.36 0.48 0.56 0.60 0.58 0.51 0.43 282 28s 289 290 291 293 294 296 294 299 302 305 308 310 3l I 310 0.33 0.41 0.51 0.55 0. s8 0.54 0.50 0.43 0.31 0.46 0.54 0.62 0.62 0.63 0.s8 047 2 3 3 J 3 3l 3( 3( 3 3 3 3 3 )8 )6 l0 II t4 t2 t0 tl )2 )5 )6 I 4 3 2 0.35 0.40 0.55 0.5s 0.55 0.52 0.47 0.40 0.30 0.42 0.57 0.6s 0.64 0.64 0.57 0.47 3( J J J 3 3 J J J 3 3'. J fl 3l 3l J] I 2 6 7 8 7 7 5 9 t0 8 5 7 6 6 Square Root of AP, (in. WC)1/2 Average AP, in. WC Pitot Tube Coefficient Barometric Pressure, in. Hg Static Pressure, in. WC Stack Pressurt, in. Hg Average Temperatune, oP Average Temperature, oR Measured Moisturrc Fraction Moisture Fraction @ Saturation Moisture Fraction 02 Concentration, 7o CO2 Concentration, 7o Molecular Weight, lb/lb-mole (dry) Molecular Weight, lb/lb-mole (wet) Velocity, ftlsec VFR at stack conditions, acfm VFR at strndard conditions, sclh VFR at standard conditions, scfm VFR at standard conditions. dscfm (AP)"' (^P) (cp) (Pb) (Ps) (Ps) (Ts) (rs) (BWSmsd) (BWSsat) (Bws) (o2) (co2) (Md) (Ms) (vs) (Qa) (Qsw) (Qsw) (Osdl 0.707 0.51 0.840 2s.s0 -0.35 2s.47 297.4 757.1 0.152 L000 0.r52 4.9 9.2 29.67 27.90 s2.4 28,832 1,026,509 1 7,1 08 14 505 0.707 0.51 0.840 25.50 -0.45 25.47 309. I 768.8 0.151 1.000 0. l5l 5.0 9.2 29.67 27.90 52.8 29,0s9 I ,01 8,60 r t6,977 14.407 0.705 0.s0 0.840 25.50 -0.40 25.47 315.3 77 5.0 0.155 L000 0.155 5.0 9.t 29.66 27.85 52.9 29,124 I,012,82s I 6,880 14.2s6 0.707 050 0.840 25.50 -0.40 25.47 307.3 767.0 0.153 1.000 0.153 50 9.2 29.67 27.88 s2.7 29,00s 1,019,3r r 16,989 14.389 Method 4 Data Locetion Source Proj€ct No. Parameter(s) VFR Consoh ljnits / ['lethod Run No. D{te Status Sta[ Tim€ End Tinre Run Time, min (0) Nl€ter ID I 12t15t23 VALID ti:50 9:50 60 M5-14 2 t).il5t23 VALID l0:02 I l:02 60 Mi-td 3 t2/15t23 VALID I lil3 l2:13 60 M5-[ l\I€aer Correction Frctor (Y) Orifice Calibretion Velue (AH @) lllil Vecuum, in. Hg Post Lerk Ch€ck. ft3/min {rt mar vrc.l 0.982 1.763 4 .00t rd 4' 0.982 L763 4 000,4 4' 0 9E2 t.163 4 ont (; t" U€ter Volume, ft3 0 5 t0 t5 20 30 35 40 45 v) 60 Iotel Mer€r Volume. ft.3 669.098 672.620 676.165 679.695 683.200 686.875 690.415 693.925 697.535 701.100 701.625 708.1 85 7l 1.853 42.755 712.569 716.325 720.0,i0 723.7 t5 721.400 73t.ll0 73.r.78-i 738.495 712.295 7.16.065 7.19.81i 7_i3.555 7 57 .223 4.r.654 151.536 761.325 764.985 768.630 '772.420 776.200 779.955 783.810 787 .61 5 79t.425 79-5.025 798 56i 801.099 lemperrture, oF 0 5 l0 l5 20 30 35 40 45 50 55 60 \verrge T€mperature, "F (Tm) \!€rxge Tempereture, oR (Tn) finimum Tempeuturg oF ilatimnm Temnerrhre- oF lUet€r 39 3q 39 40 40 42 41 4i 47 4E 53 55 44 503 38 55 Probe Filter Vacuum 4 4 4 4 4 4 4 4 4 4 I 4 4 4 4 4 Imp. Erit 36 35 34 35 35 35 36 36 37 36 37 38 38 36 31 38 l\Ieter 59 60 62 63 63 64 65 65 65 66 66 61 61 64 524 59 67 Probe Filter Vacuum 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 Imp. Erit 62 63 ,i8 i2 it 5t 5t 52 53 5i 56 ii 5t 63 Nleter 67 68 69 70 72 72 72 73 73 74 74 71 7i 72 i3t 67 75 Probe Filter Vacuum 4 4 4 4 4 4 4 4 4 4 4 4 I 1 I .t lmp. Exit 47 48 47 48 48 49 50 -i0 -;2 _il -i2 -i.{ -i0 11 -i.+ iaromenic Pressure, in. Hg l{eter Orifice Pressure , in. \vC lleter Pressure, in. Hg (Pb) (^H) (Pm) 25.50 1.400 25.60 11 651 2_5.50 1.400 2i.60 t7 8t0 2i.50 1.400 25.60 36 347 dnalysis Type Impinger 1, Pr€/Post Test, g ImpinBer 2, Pre/Post Test, g Impinger.l, Pre/Post Test, g Impinger 4, Prc/Post Test, g l'olume Water Collected, mL (\'lc) Standard Water Volume, ft3 (VNstd) Nloisture Frsction Mersured (BWS) Gas luoleculer Weight, lbnb-mole (dry) (lltd) DG[{ arlibretion Check Vrlu€ lYox} G H20 H20 Empt-v 711.4 740.8 635.8 843.9 't12.6 636.4 132.5 1.8 0.6 t4 H20 H20 Empt) 721.2 742.6 636.4 857.2 743.9 637.0 133.0 1.3 0.6 H20 H20 Empty 727.2 '743.9 637.0 860.9 74i.1 637.1 133.7 1.2 0.1 143.3 6.758 0.152 29.67 0.3 l.{3.0 6.144 0.15 t 29.67 2.6 I4I.9 6.692 0.15_i 27.8,i -3.8 AIfrLTEE)Method I Data Location R;o Tinto K€nnecott - South Jordan, UT Source Boiler #2 Project No. AST-2023-3338 Date: l2l15/23 DuctOrientrtion: Vcni€l D,.r D".ign,--tliili- Distrnce trom Far \ all to Out.id" of Porr,---f,ii-d-in Nippl. L.ngtr', ---116-in Depth ofDuct: 41.00 in Cross Sectional Aree of Ou.r,---i-ii-1, No. of T".t Pon., -l-Number ofRerdings per Point: I u,.t-." A,---li-f, Distance A Duc. Dirnr.,"r.,-=l_I-1.ust lre > 0.5.) Di.tanc. B,---ldi-ft Distance B Duct Dirmeters: 59 (must be2 2) luininrufl Number ofTreverse Points: l6 Actu.t Numb€r of Tran"r." Poirt,, ----l- l\t€asurer (lnitisl and Dr,.), lf,llllllJ Reviewer (Initial and Drt";' ifilllZf Travercr Point '/" ol Distsnce Distence fronr ontside o(Dianet€r wall I 3 4 5 6 1 8 9 10 ll t2 16.7 i0.0*l' 6.85 20.50 3.t.li 12.35 26.00 39.65 LOCATION OF TRAVERSE POINTS Nunher oftra'erse pifrts oD o dittretq I 2 3 4 6 7 8 9 l0 lt t2 2 -1 5 6 1 8 9 l0 ll t2 14.6 16.7 8-i.4 50.0 _ *l' 61 25.0 7i.0 ,,_, 4.4 146 296 70.4 8i.4 'lu 32 10.5 19.4 32.i 61.7 80.6 89.-i n:' 2.6 t4.6 22.6 34.2 65.8 77.4 85.4 91.8 2.t 61 I 1.8 17.7 25.0 3 5.6 644 7i.0 82.3 93.3 97.9 *I'erceilt ofstdck didnetet Jroil inside Eall ,o trflerse poit- ax6ler uurrer,s tor Roclangubr sracrs o. Oucrs Stack Diagram A=6.3ft. B=20ft. DcpthofDuct=41 in. (lross Sectional Arc, Downstream Disturbance Upstream Disturbance AIffirce It': [)l-i l,] ICn L. (;Frlf)i.JP Runl-RMData Iaetion: Rio Tinto Kquecott - South Jordm UT Source: Boiler #2 Project No.: l!8423-3338 Date; I2ll5l23 Time Unit Or - Outlet COr - Outlet CO - Outleto/odry Yodry ppmvd Valid Vatid Valid Uncorrsted Run Average (Co5) Cal Gas Concentration (CM{) Pretest System Zero Response Posttst System Zero Response Average Zero Response (Co) Pr€test System Cal Rsponse Postt6t System Cal Response Average Cal Reponse (Cq) Corrected Run 9.43 10.90 0.07 0.1o 0.09 I t.08 I t.l5 tt.t2 9 9.37 9.38 9.39 9.41 9.38 9.31 9.35 9.3'1 9.39 9.40 9.38 9.38 9.36 9.38 9.4t 9.38 9.35 9.42 9.39 9.41 9.40 9.42 9.40 9.47 9.44 9.48 9.46 9.44 9.43 9.43 9.46 9.47 9.44 944 9.44 9.44 9.45 9.46 9.44 9.43 9.43 9.46 9.47 9.45 9.44 9.43 9.47 9.48 9.41 9.49 9.45 9.44 9.46 9.47 9.41 9.46 9.45 9.46 9.45 9.46 -0.09 25.t9 -0.26 -0.41 -0.34 25.'74 25.49 25.62 24 NOx - Outlet ppmvd Valid 7.32 24.95 0. l0 0.35 0.23 24.38 24.80 24.59 '1.27 '7 09 7.| '7.20 1.27 '1.29 7.31 1.27 7.33 1.36 7.36 1.37 7.40 7.24 7.34 7.48 7.30 7 .t6 7.32 7.26 7.33 7.32 7.31 1.26 7.37 '7.30 1.36 7.33 1.33 1.33 7.29 '1.36 7.38 7.34 7.34 '1.34 7.3',1 7.38 '7.36 7.32 7.30 7.35 7.38 7.33 7.34 7.28 't.33 7.38 1.35 '1.39 7.31 1.2A 7.33 7.34 7.36 7.33 7.33 7.35 't.32 7.35 8:50 8:51 8:52 8:53 8;54 8:55 8:56 8:57 8:58 8:59 9:00 9:01 9:O2 9:03 9:04 9:05 9:06 9:0'1 9:08 9:09 9:10 9;l I 9:12 9r l3 9:14 9: I5 9:16 9.t1 9:18 9:19 9:20 9:21 9.22 9:23 9:24 9:25 9:26 9:27 9.28 9:29 9:30 9:31 9:32 9:33 9.34 9:35 9:36 9:37 9:38 9:39 9:40 9:41 9:42 9:43 9:44 9:45 9.46 9:4'1 9:48 9:49 4.99 4.97 4.96 4.91 4.95 5.00 5.01 5.00 4.96 4.93 4.97 4.98 5.01 4.98 4.93 4.98 5.06 4.9t 4.96 4.95 4.96 4.93 4.98 4.88 4.89 4.85 4.81 4.91 4.93 493 4.87 4.85 4.88 4.89 4.91 4.92 4.88 4.88 4.90 4.92 4.92 4.88 4.85 4.89 4.9t 4.92 4.87 4.84 4.86 4.86 4.89 4.92 4.88 4.86 4.85 4.87 4.90 488 4.88 4.89 -0.o2 0.0 -0.05 -0.03 -0.04 -0.05 -0.06 -0.04 -0.06 -0.06 -0.05 -0.05 -0.06 -0.07 -0.06 -0 08 -0.07 -0.07 -0.08 -0.07 -0.07 -0.07 -0.09 -0.08 -0. l0 -0.09 -0.08 -0.08 -0.09 -0.09 -0.09 -0.09 -0.09 -0. l0 -0.1 1 -0. l0 -0.09 -0.n -0. l0 -0. l0 -0. l3 -0.t2 -0.ll -0. l3 -0.1 I -0.12 -0.13 -0. t3 -0.t2 -0. l3 -0.13 -0.t4 -0.1 4 -0.t3 -0.1 3 -0. l4 -0.13 -0. l4 -0.t4 -0.t3 4.92 10.98 0.08 0.1 I 0. l0 10.94 I l.0l 10.98 #AlialpE) I | (l li i.i rr'lA[ [i Fr)rJf Run2-RMData Lostion: Rio Tinto Kemecott - South Jorda, UT Sourcs Borler #2 Prcject No.: AST-2023-3338 Draet 12115123 Time Unit Status 0r - Outle( Y. dry Valid COr - Outlet CO - Outlet NOx - Outlet %dry ppmvd ppmvd Valid Valid Vdid Uncorrsted Run Average (Cob) Cal Gas Concentration (Cur) Pret€st Syst€m Zero Response PosttBt System Zero Reponse Average ro Response (Co) Pretest Systm Cal Rsponse Postt6t System Cal Response Average Cal Raponse (Cy) 10.02 l0:03 l0:04 l0:05 l0:06 l0:07 l0:08 l0:09 l0:10 l0:l I 10.t2 10:13 1 0:14 l0:15 1 0:16 l0:t7 l0:18 l0:19 l0:20 lO:21 lO:22 l0:23 lO:24 l0:25 lO:26 l0:2'l l0:28 lO:29 l0:30 l0:31 lO:32 l0:33 l0:34 l0:35 l0:36 l0:37 l0:38 l0:39 l0:40 l0:41 lO:42 l0:43 l0:44 l0:45 l0:46 lO:47 l0:48 l0:49 l0:50 l0:51 l0:52 l0:53 l0:54 l0:55 l0:56 l0:57 l0:58 l0:59 I l:00 I l:01 5.06 r0.98 0.1 I 0.16 0.14 I l.0l l 1.03 I 1.02 496 9.39 r0.90 0.10 0.10 0. l0 I 1.15 ll.13 I l.l4 911 9.44 9.45 9.47 9.45 9.38 9.38 9.36 9.39 9.39 9.41 9.40 9.31 9.36 9.38 9.39 9.39 9.39 9.35 9.38 9.40 9.39 9.37 9.35 9.36 9.38 9.37 9.36 9.36 9.36 9.37 9.37 9.35 9.40 9.37 9.31 9.41 9.40 9.39 9.38 9.37 9.31 9.4t 9.4t 9.39 9.38 9.40 9.41 9.40 9.38 9.36 9.35 9.39 9.40 9.38 9.31 9.35 9.39 9.4t 9.41 9.40 -o.20 25.t9 -0.41 -0.52 -o.47 25.49 25.16 25.33 o25 7.16 24.95 0.35 0.33 0.34 24.80 24.45 24.63 700 4.88 4.91 4.88 4.90 5.03 5.05 5.10 5.05 5.06 5.01 5.01 5.06 5.08 5.07 5.O2 5.03 5.04 5.10 5.06 5.02 5.O4 5.07 5.10 5. t0 5.06 5.O't 5.09 5.09 5.09 5.09 5.08 5.13 5.O2 5.06 5.09 5.03 5.03 5.05 5.06 5.10 5.08 5.07 5.01 5.05 5.09 5.07 5.03 5.06 5.10 5.13 5.l5 5.09 5.07 5.08 5.l l 5.t2 5. l0 5.04 5.03 5.04 -0. l3 -0. l5 -0. l5 -0. t5 -0. l5 -0.1 6 -0.16 -0.1 7 -0.t7 -0.1 6 -0.1 7 -0.17 -0.1 8 -0.1 7 -0 19 -0.19 -0.18 -0. l9 -0.19 -0. l9 -0.20 -0.1 9 -o.20 -0.20 -0. l9 -0. l9 -0. t8 -0. l9 -o.20 -0.21 -0.20 -0.21 -0.21 -o.20 -o.21 -o.21 -0.2t -0.22 -0.21 -o.22 -o.22 -0.22 -0.23 -0.23 -0.23 -0.23 -0.24 -0.23 -0.23 -0.24 -0.24 -o.24 -0.25 -0.25 -0.25 -o.26 -0.25 -0.26 -0.25 -0.27 1.20 '1.14 '7.t6 7.\t 7.06 7.05 '1.02 7.0r 7.tI 7.17 7.15 7.14 7.t3 't.12 7.22 7.23 7.23 7.t2 7. t5 1.21 7.22 '7.16 7 .14 '1.t4 '1.23 1.20 '1.22 7.20 7.23 7.21 7.22 7.13 '1.23 7.19 '7.t6 7.25 7.21 7.20 1.t5 7.20 7.18 7.18 '1 .t7 7.t2 7.t4 7.t6 / to 7.t7 7. t0 '7.t4 1.15 7.18 '7.15 7.08 7.03 1.O7 7.t5 7.16 '7.t2 pln6rrce I L. C tl i.J tC A L Run3-RMData (; fi ,i) l.J P Location: Rio Tinto Ksnecott - South Jordm, UT Source: Boiler #2 Project No.: AST-2023-3338 Daaet 12/15123 Time Unit Status 0r - Outlet o/o dry Valid 5.14 10.98 0.16 0.17 0.1 7 I 1.03 I 1.06 I 1.05 508 -o.32 25.19 -o.52 -o.62 -0.57 25.16 24.94 25.05 -o.21 -0.28 -0.28 -0.28 -0.28 -0.28 -o.28 -0.29 -o.29 -0.29 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.31 -0.31 -0.33 -0.31 -o.32 -0.31 -0.32 -0.31 -o.32 -0.31 -0.32 -0.32 -0.33 -0.33 -0.31 -0.33 -o.32 -0.33 -o.32 -0.33 -o.34 -o.34 -0.34 -0.35 -0.35 -0.34 -0.34 -0.34 -0.34 -0.35 -0.35 -0.35 -0.34 -0.36 -0.35 -0.36 -0.36 -0.35 -0.36 -o.34 -0.37 -0.35 -0.37 -0 :16 6.91 24.95 0.33 0.33 0.33 24.45 24.08 24.27 6.98 6.94 6.95 6.93 6.94 6.93 6.9t 6.90 6.94 6.91 6.94 6.96 6.91 6.90 6.96 6.93 6.97 6.92 6.89 6.93 6.95 6.98 6.98 6.96 6.99 6.99 6.96 6.94 6.87 6.97 6.98 6.99 6.98 6.91 6.96 7.01 1.01 '7.04 6.97 6.97 7.00 7.07 7.02 1.O2 6.94 1.O2 7.03 7.O2 6.98 6.96 7.0t 6.98 7.05 7.01 7.01 ?.00 6.96 7.06 1.02 104 Cor - 0utlet CO - Outlet NOx - Outleto/"dry ppmvd ppmvd Vatid Valid Va.lid Uncorrsted Run Average (Cob) Cal Gas Concentration (Cs1) Pretest System Zero Response PosttBt System Z€ro Rsponse Average Zero R€sponse (Co) Pretst System C8l Rspons€ Posttst System Cal Response Average Cal Reponse (Cy) I l:13 I l:14 I l:15 I 1:16 ll:17 I t:18 I l:19 1l:20 ll:21 ll:22 I l:23 ll:24 ll:25 1t.26 ll:27 I l:28 il.29 I l:30 ll:31 I l:32 ll:33 ll:34 ll:35 I l:36 I l:37 I l:38 I l:39 I l:40 I l:41 ll:42 I l:43 I l:44 I l:45 I l:46 ll:41 llr48 1l:49 I l:50 I l:51 I l:52 I l:53 I 1:54 I l:55 I 1:56 I l:57 I l:58 I l:59 l2:OO l2:Ol l2:O2 l2:03 l2:O4 12.o5 12.06 l2:O1 I2:08 t2.o9 l2:10 12:ll 1,2 12 ll t2 t3 l3 t1 5.20 t7 t7 t7 t8 5.20 5.21 5.t1 5. r9 5.21 5.21 5.20 5.17 5.15 5. l4 5.17 5.2t 5.15 5.18 5.21 5.2t 5.24 5.1 7 5.15 5.18 5.2t 5.19 5.17 5.13 5.12 5.12 5.15 5. r5 5.10 5.07 5.08 5.1 I 5. t4 5.10 5.08 5.08 5.1 I 5.13 5.08 5.07 5.05 5.07 5.1 I 5.1 I 5.t2 5.09 5.08 508 9.36 10.90 0.10 0.07 0.09 I t.l3 I l.14 ILt4 4 9.38 9.36 9.36 9.36 9.35 9.33 9.31 9.32 9.34 9.33 9.34 9.33 9.32 9.31 9.34 9.32 9.32 9.31 9.32 9.35 9.35 9.35 9.34 9.32 9.35 9.33 9.32 9.32 9.30 9.35 9.35 9.33 9.33 9.33 9.35 9.38 9.38 9.38 9.36 9.38 9.40 9.40 9.39 9.37 9.36 9.39 9.39 9.39 9.37 9.37 9.40 9.40 9.41 9.40 9.38 9.31 9.36 9.39 9.38 939 AIiarrcE! Location Rio Tinto Kennecott - South Jordan. UT QA Data Source Boiler #2 Proiect No. 2023-3338 Parameter(s) VFR Date Pitot ID Evidence of damage? Evidence of mis-alignment? Calibration or Repair reouired? t2n5t23 P6-96 no no no Date Probe or Thermocounle ID Reference Temo. (oF) Indicated Temn. (oF)Difference Criteria t2ilst23 P6-96 I 00.0 99.0 0.2%+ 1.5 % (absolute) Field Balance Check Date 12trst23 Balance II):sA2881026 Certified weight ID SLC-TKG-3 Certified Weight (g):r000.0 Measured Weight (g)999.7 Weight Difference (g)0.3 Date Barometric Pressurr Evidence of damage?Reading Verified Calibration or Reoair reouired?Weather Station Location t2lt5l23 Weather Station NA NA NA SALT LAKE CITY AIRPORT Date Meter Bor II)Positive Pressure Leak Check r2tr5t23 M5-14 Pass €:'-Aliatrce DGM Calibration-Orifices Document I 620.AA4 Revlsion 230 Effective Dat€1/25/2) lssulnq Depafiment Tech 5ervices Paq€lofl Equipment Detail - Dry Gas Meter Console lD. M5-14 N,4eter S/N. 8219521 Critical Orifice S/N: 1330 Calibration Detail lnltial Barometric Pressure, in. Hg (pbr) Final Barometric Pressure, in. Hg (PbF) Average Barometric Pressure, in. Hg (Pb) 25.49 25.45 25 47 Critifcal Orifice lD ry) K', Factor, ft: R'/2 / in. Wc.min (K') Vacuum Pressure, in. Hg (VP) lnitial DGM Volume, ftr (Vmr) Final DGM Volume, ftr (Vm, Total DGM Volume, ftr (Vm) 1330-31 0.8429 14.0 76.900 87.935 11.03 5 1330-31 1330 25 0 6728 150 105.900 114.669 8.769 1330-25 1 330-19 0.5186 17.0 139.505 149.849 10.344 1330 19 0.8429 0.673 0 51q 14.0 87 935 98978 11 043 15.0 114.669 123.421 8752 fia 149.849 156.704 6.85 5 Ambient Temperature, "F (Ta) lnitial DGM Temperature, 'F (Im) Final DGM Temperature, "F (TmF) Averaqe DGNy' Temperature,'F ( Tm) 72 67 67 67 72 67 68 68 73 69 69 69 73 69 70 70 71 66 67 67 71 67 68 6B Elapsed Time (O) Meter Orifice Pressure, in. WC (AH) Standard Meter volume, ftr (Vmstd) Standard Critical Orifice Volume, ft3 (Vcr) N,4eter Correction Factor (Y) T olera rce Orifice Ca ibration Value (AH @) Tolerance Or.f ce Car Chec< 10.00 3.20 9 5003 9 3106 0 980 0.002 1.788 0 025 10 00 320 9.4982 9.3106 0.980 0.002 1 786 0 023 10.00 2.00 7 4951 1.4247 0 991 0.008 1.144 0.018 10 00 200 7.4735 7.4247 0.993 0 011 1.743 0.020 15.00 1.20 8 8629 8 6007 0 970 0.012 1.759 0 003 10.00 1.20 5.8623 5.7338 0.978 0.004 1.756 0.007 1.20 1.83 1.79 Meter Correction Factor ff)0.982 )rifice Calibration Value (AH @)1.763 Positive Pressure Leak Check Yes Equipment Detail - Thermocouple Sensor Reference Calibrator Make: OMEGA Reference Calibrator Model: CL23A Reference Calibrator S/N. T-197207 Calibration Detail Reference Temp Display Temp Accuracv Difference I oR oF oR /o oF 0 68 100 460 528 560 -1 66 98 459 526 558 0.2 0.4 0.4 1 2 2 223 248 aa) 683 708 733 221 246 271 681 706 731 UJ 0.3 0.3 2 2 2 300 400 500 600 700 800 900 1,000 1,'100 1,200 760 860 960 1,060 1,160 1,260 1,360 1,460 1,560 1,660 298 397 496 597 tr99 799 899 1,000 1,100 1,200 758 857 956 1,051 1,159 1,259 1,359 1,460 1,560 1,660 0.3 0.3 0.4 0.3 0.1 0.1 0.1 0.0 0.0 0.0 2 4 ) 1 1 1 0 0 0 Personnel Stacey Cunningham Calibratlon By Calibration Date Reviewed By RYAN LYONS 6/21/2023 AdHTEE! Location Rio Tinto Kennecott - South Jordan. UT QA Data Source Boiler #2 Project No. AST-2023-3338 Parameter Oz - Outlet COz - Outlet CO - Outlet NOx - Outlet Make Model S/N Ooeratins Ranse servomex 4900 100269 25 seryomex 4900 100269 100 thermo 48i 208845 100 thenno 42i 132195897 t 100 Cylinder ID Zero Low Mid Hish NA NA RR03686 RR03384 NA NA RR03686 RR03384 NA NA EB0097304 EB0097304 NA NA 8B0097304 EB0097304 Cylinder Certifed Values Zero Low Mid Hish NA NA r0.98 24.0 NA NA 10.9 23.7 NA NA s0.39 50.39 NA NA 49.91 49.91 Cylinder Expiration Date Zero Low Mid Hish NA NA 9lt913t 10119129 NA NA 9l1913t t0lt9l29 NA NA t0120130 10120130 NA NA 10120130 10120130 fvne of Samnle Line Heated Samole Line Calibration Data Source: Boiler #2 Project No.: AST-2023-3338 Date: l2ll5l23 Parameter Oz - Outlet CO, - Outlet CO - Outlet NOx - Outlet Exnected Averase Concentration 10.00 5.00 r0.00 10.00 Span Between Low High Desired Span 10.00 50.00 24.00 5.00 25.00 23.70 10.00 50.00 50.39 10.00 50.00 49.91 Low Range Gas Low Hish NA NA NA NA NA NA NA NA Mid Range Gas Low Hish 9.60 14.40 9.48 t4.22 20.16 30.23 19.96 29.9s High Range Gas Low Hish NA NA NA NA NA NA NA NA Actual Concentration (7o or ppm) Zero Low Mid Hish 0.00 NA 10.98 24.00 0.00 NA 10.90 23.10 0.00 NA 2s.19 50.39 0.00 NA 24.9s 49.91 Upscale Calibration Gas (Cva)Mid Mid Mid Mid Instrument Response (7. or ppm) Zero Low Mid Hish 0.00 NA 1 1.03 24.02 0.04 NA 11.20 23.74 -0.02 NA 25.70 50.56 -0.06 NA 25.01 49.93 Performance (7o of Span or Cal. Gas Conc.) Zero Low Mid Hish 0.00 NA 0.21 0.08 0.17 NA 1.27 0.17 0.04 NA l.0l 0.34 0.12 NA 0.24 0.04 Status Zero Low Mid Hish PASS NA PASS PASS PASS NA PASS PASS PASS NA PASS PASS PASS NA PASS PASS AliangE!Bias/Drift Determinations Location: fuo Tinto Kemecott - South Jordan. UT Source: Boiler #2 Project No.: AST-2023-3338 Parameter Oz - Outlet COr - Outlet CO - Outlet NOx - Outlet Run 1 Date l2ll5l23 Span Value Initial Instrument Zero Cal Response Initial Instrument Upscale Cal Response Pretest System Zero Response Posttest System Zero Response Pretest System Upscale Response Posttest System Upscale Response 24.00 0.00 I 1.03 0.08 0.l l 10.94 1 1.01 23.'70 0.04 l 1.20 0.07 0.10 I 1.08 I l.l5 50.39 -0.02 25.'70 -0.26 -0.41 25.74 25.49 49.91 -0.06 25.0'.1 0. l0 0.35 24.38 24.80 Bias (%) Pretest Zero Posttest Zero Pretest Span Posttest Soan 0.33 0.46 -0.37 -0.08 0. l3 0.25 -0.51 -0.21 -0.48 -0.77 0.08 -0.42 0.32 0.82 - 1.38 -0.54 Drift(%) Zero Mid 0. r3 0.29 0. l3 0.30 -0.30 -0.50 0.50 0.84 Run 2 Date l2ll5l23 Span Value lnstrument Zero Cal Response lnstmment Upscale Cal Response Pretest Systenl Zero Response Posttest Systern Zero Response Pretest System Upscale Response Posttest System Upscale Response 24.00 0.00 I 1.03 0.1 I 0. l6 11.01 I 1.03 23.70 0.04 I 1.20 0. r0 0. l0 I l.l5 ll.l3 50.39 -0.02 25.70 -0.41 -0.s2 25.49 25.16 49.9t -0.06 25.07 0.35 0.33 24.80 24.4s Bias (%) Pretest Zero Posttest Zero Pretest Span Posttest Soan 0.46 0.67 -0.08 0.00 0.25 0.25 -0.21 -0.30 -0.77 -0.99 -0.42 -t.07 0.82 0.78 -0.54 -1.24 Drift(%) Zero Mid 0.21 0.08 0.00 -0.08 -0.22 -0.65 -0.04 -0.70 Run 3 Date l2ll5l23 Span Value Instrurnent Zero Cal Response Instrument Upscale Cal Response Pretest System Zero Response Posttest Systern Zero Response Pretest System Upscale Response Posttest Svstem Upscale Response 24.00 0.00 I 1.03 0. r6 0.r7 r 1.03 I1.06 23.70 0.04 11.20 0. l0 0.07 I l.13 I l l4 50.39 -0.02 25.70 -0.52 -0.62 25.t6 24.94 49.91 -0.06 25.07 0.33 0.33 24,45 24.08 Bias (7o) Pretest Zero Posttest Zero Pretest Span Posttest Span 0.67 0.7 | 0.00 0. l3 0.25 0. l3 -0.30 -0.25 -0.99 -1.19 - 1.07 -1.51 0.78 0.78 -t.24 -1.98 Drift (7.) Zero Mid 0.04 0. l3 -0.r3 0.04 -0.20 -0.44 0.00 -0.74 Airgas an Air Liquide company Airgas Specialty Gases Airgas USA LLC 525 North Industrial l,oop Road Tooele, W 84o74 Airgas.com Part Number: E03N199E15A01D0 Cylinder Number: E80097304Laboratory: 124 -Tooele (SAP) - UT PGVP Number: 872022 Gas Code: CO,NO,NOX,BALN CERTIFICATE OF ANALYSIS Grade of Product: EPA PROTOCOL STANDARI) Reference Number: 153-402560601-'1 Cylinder Volume: 144.0 CF Cylinder Pressure: 2015 PSIG Valve Outlet: 660 CertificationDate: Oct20,2022 Expiration Date: Oct 20, 2030 Certification performed in accordance with "EPA Traceability Protocol for Assay and Certification of Gaseous Calibration Standards (May 2012)" document EPA 600/R-1 2/531 , using the assay procedures listed. Analytical Methodology does not require correction for analytical interference. This cylinder has a total analytical uncertainty as stated below with a confidence level of g5%. There are no significant impurities which affect the use of this calibration mixture. All concenlrations are on a mole/mole basis unless otherwise noted. The results relate only to the items tested. The report shall not be reproduced except in full without approval of the laboratory. Do Not Use This Cylinder below 100 psig, i.e.0.7 megapascals. AI\IALYTICAL REST]LTS Actual Protocol Total RelativeComponentRequested Concentration Assay DatesConcentrationMethod Unceftainty NOX 50.00 PPM 49.91 PPM G1 +l- 'l .4% NIST Traceable 10/10 12022, 1012012022 CARBON MONOXIDE 50.00 PPM 50.39 PPM G1 +l- 0.8% NIST Traceable 1 0l'1012022 NITRIC OXIDE 50.00 PPM 49.85 PPM G1 +l- '1.4% NIST Traceable 1011012022, 1012012022 NITROGEN Balance CALIBRATION STANDARDS Type Lot ID Cylinder No Concentration Uncertainty Expiration Date Aug 31,2024 Feb 20,2020 Sep 21,2025 Feb 02,2022 Sep 24,2O25 Feb 01,2023 Apr 30,2024 CC5OO959 5.074 PPM NITROGEN DIOXIDE/NITROGEN 2.1% EBOl3OO55 4.81 PPM NITROGEN DIOXIDE/NITROGEN 2.Oo/o The SRM, NTRM, PRM, or RGM noted above is only in reference to the GMIS used in the assav and not part of the analvsis. NTRM '12011221 PRM 't2386 NTRM 210607-24 PRM 't239s NTRM 21060713 GMIS 401648675102 GMIS 1534002020104 KALOO4127 49.24 PPM CARBON MONOXIDE/NITROGEN 0.6% D685025 9.91 PPM NITROGEN DIOXIDE/AIR cc708080 48.41 ppM NtTRtC OXTDE/NITROGEN D887660 9.91 PPM NITROGEN DIOXIDE/AIR CC7O8O49 48.41 PPM NITRIC OXIDE/NITROGEN 2.OYo 't.2% 2.Oo/o 1.2o/o lnstrumenUMake/Model ANALYTICAL EQUIPMENT Analytical Principle Last Multipoint Calibration Nicolet iS50 AUP2110269 CO LCO Nicolet iS50 AUP2110269 NO LNO Nicolet iS50 AUP2 1 10269 NO2 impurity FTIR FTIR FTIR NO2 impurity od05,2022 od 13,2022 Ocl 12,2022 Triad Data Available Upon Request Sionature on file Approved for Release Page 1 of 1 -.i-\::j2-r--ryffiz4l.4i\:r.l k*H*f,'--" Accreditation #62754 Red Ball Technical Gas Service 555 Craig Kennedy Way Shreveport, LA 71107 80o-ssl -81 50 PGVP Vendor lD #G12023 EPA PROTOCOL GAS GERTIFIGATE OF ANALYSIS Cylinder Number: Product lD Number: Cylinder Pressure: coA # Customer PO. NO.: Customer: E80033140 124731 1900 PS|G =800331 40.20230824-0 Certification Date: Expiration Date: MFG Facility: Lot Number: Tracking Number: Previous Gertification Dates: )9t't5t2023 )9t'14t2026 - Shreveport - LA E800331 40.20230824 J56/6U01 1 calibration standard has been certified per the PA-600/R-1 2/531, procedure G1. Certifi ed Concentration(s) Concentration Uncertainty Analytical Principle Assayed On Nitrogen Dioxide 50.0 PPM t0.5 PPM FTIR 09 I 0 1 I 2023, 09 I I 5 I 2023 Balance Analytical Measurement Data Available Online. E80057301 E80057301.20201020 05t04t2026 GM|S AtR NO2 96.4 PPM 1.02A C2190301.02 Analvtical lnstrumentation Princ ry MKS MKS NO2 NO2 FTIR FTIR MKS 2O31DJG2EKVSl3T MKS 2O31DJG2EKVS13T 017146467 017146467 08t31t2023 0911512023 SMART-CERT This is to certify the gases referenced have been calibrated/tested, and verified to meet the defined specifications. This calibration/test was performed using Gases or Scales that are traceable through National lnstltute of Standards and Technology (NIST) to the lnternational System of Units (Sl). The basis of compliance stated is a comparison of the measurement parameters to the specified or required calibration/testing process. The expanded uncertainties use a coverage factor of k=2 to approximate the 95% confidence level of the measurement, unless otheMise noted. This calibration certificate applies only to the item described and shall not be reproduced other than in full, without written approval from Red Ball Technical Gas Services. lf not included, the uncertainty of calibrations are available upon request and were taken into accounl when determining pass or fail. p**u* /J-a1,, Jasmine Godfrey Analytical Chemist Assay Laboratory: Red Ball TGS Version 02-J, Revised on 20'l 8-09-1 7 r:*iz:j':remr.,,-:-7'/'.;-\.'!2.,'n '..s k*HS** Accreditation #62754 Red Ball Technical Gas Service 555 Craig Kennedy Way Shreveport, LA 7'l'107 800-s51-8150 PGVP Vendor lo # G12o21 EPA PROTOGOL GAS CERTIFICATE OF ANALYSIS Cylinder Number: Product lD Number: Cylinder Pressure: coA # Customer PO. NO.: Customer: 1R03384 127907 t900 PStG 1R03384.2021 1012-0 Certification Date: Expiration Date: MFG Facility: Lot Number: Tracking Number: Previous Certification Dates : tQt21t2Q21 lot'19t2029 - Shreveport - LA iKUJJd4.ZUZ I IU I t03923781 been per 2 Protocol, Document EPA-600/R-'1 2/531. G2. Concentration Uncertainty Analytical Principle Assayed On r0.18 % L0.13 % 10t21t2021 1012012021 Reference Standard(s) SMART.CERT This is to certify the gases referenced have been calibrated/tested, and verified to meet the defined specifications. This calibration/test was performed using Gases or Scales that are traceable through National lnstitute of Standards and Technology (NIST) to the lnlernational System of Units (Sl). The basis of compliance stated is a comparison of the measurement parameters to the specified or required calibration/testing process. The expanded uncertainties use a coverage factor of k=2 lo approximate the 95% confidence level of lhe measurement, unless otheMise noted. This calibration certificate applies only to the item described and shall not be reproduced other than in full, without written approval from Red Ball Technical Gas Services. lf not included, the uncertainty of calibrations are available upon request and were taken into account when determining pass or fail. Brittany Johnson Analytical Chemist Assay Laboratory: Red Ball TGS Version 02-J, Revised on 201 8-09-1 7 PJT.A(:.|lffidlsg Accreditation #62754 Red Ball Technical Gas Service 555 Craig Kennedy Way Shreveport, LA 71'107 800-551 -81 50 PGVP Vendor lD # G12023 EPA PROTOCOL GAS CERTIFICATE OF ANALYSIS Cylinder Number: Product lD Number: Cylinder Pressure: coA # Customer PO. NO.: Customer: tR03686 25371 9OO PSIG 1R03686.2023083 1-0 Certification Date: Expiration Date: MFG Facility: Lot Number: Tracking Number: Previous Certification Dates : )9t21t2023 )911912U31 - Shreveoort - LA RR03686.20230831 r u /553544 has per the r -1 G1. Concentration Uncertainty Analytical Principle Assayed On 10.9 Yo 10.98 % 10.11 o/o 10.03 % cc737012.20230228 EB0022021.20180323 1162980025 09t1Bt2023 017146467 09t21t2023 SMART-CERT This is to certify the gases referenced have been calibrated/tested, and verified to meel lhe defined specifications. This calibration/test was performed using Gases or Scales that are traceable through National lnstilute of Standards and Technology (NIST) to the lnlernational System of Units (Sl). The basis of compliance stated is a comparison of the measurement parameters to the specified or required calibration/testing process. The expanded uncertainties use a coverage factor of k=2 to approximate the 95% confidence level of the measurement, unless otheMise noted. This calibration certificate applies only to the item described and shall not be reproduced other than in full, without written approval from Red Ball Technical Gas Services. lf not included, the uncertainty of calibrations are available upon request and were taken into account when determining pass or fail. fi**. AaU Jasmine Godfrey Analytical Chemist Assay Laboratory: Red Ball TGS Version 02-J, Revised on 20'18-09-17 FAltatpEr-i I il il i.: i {..; A L. (.:; [] (i t.J il Location: fuo Tinto Kennecott - South Jordan, UT Response Times Source: Boiler #2 Project No.: AST-2023-3338 se seconds Parameter Oz - Outlet CO, - Outlet CO - Outlet NOx - Outlet Zero Low Mid Averase 30 NA 30 30 NA 30 30 NA 30 30 NA 30 30.0 30.0 30.0 30.0 pulffiirce I I a,) ]l r'.i I (l /\ l, (l R () l..l I- Location: Rio Tinto Kennecott - South Jordan, UT Source: Boiler #2 Proiect No.: AST-2023-3338 Date: l2ll5/2023 Traverse Point Time o2 (Yol Cor (o/"\ CO (nnm) NOx (nnm) A-l 2 -1 8:47 8:48 8:49 4.68 4.64 4.88 4.7 9.53 9.54 9.38 9.5 -0.02 -0.03 -0.03 0.0 7. l8 7.15 7.02 7.1Averase Criteria Met Sinsle Point Single Point Sinele Point Single Point !#E'*' AIlaTEE> 1 []_ (l: [-, i...] lil A i- () F:i a-) Li il Location: Rio Tinto Kennecott - South Jordan, UT Project No.: 2023-3338 NO2 Converter Check - Outlet Analyzer Make thermo Analyzer Model 42i Serial Number 1.3228+09 :ililHl'.iHii' EBoo3x4o cvlinder concentration. DDm # Pre-Test Date Time Pre-Test Concentration, ppm Pre-Test Efficiencv. 7o Post-Test Date l2ll5l23 Time 12:31 Post-Test Concentration, ppm 45.42 Post-Test Efficiency. 7o 9l *Required Efficiency is > 90 %. Alffirpe f i, {j I i l.! ! {-) A L t-) fl r.) 1.,) 1:: Location: fuo Tinto Ke[recott - South Jordil, UT Source: Boiler#2 Date l2ll4/23 Alalyzer Make: Analyzer Model: Analyzer SN: Environics ID: Component/Balmce Gas: Cylinder Gas ID (Dilution); to0269 o2ll'12 Cylilder Gas Colcentration (Dilution), %: 24 Cyliuder Gas ID (Mid-Level): Cylinder Gas Concentration (Mid-Level), %: 10.98 @ Tlpm @ Tlprn injections be conducted Target Msss Flow Target Dilution Target Flow Rate Terget Concentration Actual Concentration Injection I Analyzer Concentretion lnjection 2 Analyzer Concentratiotr Injection 3 Analyzer Concentration Average Analyzer Concentration lo/,,\ Difference (v"l Average Error (+2%\ t0L/5L 80.0 5.0 19.2 19.2 19.3 19.4 r9.3 19.34 014 o 70/" t0t./5t.500 50 20 1)O t)')0. l5 t.3yo I0t./IL 20.0 4.0 4.8 4.8 4.8 4.8 4.8 4.'76 -0.04 -o 90/" l0l7lt.t00 40 ?4 4 2.4 2.40 0.00 0.oyo allASTEnvironicsUDitshave2-l0LMassFlowControllers. Fortheseuritsthe9Oo/"(il'llomand80o/"r'2Tlorniniectionswill Average Analyzer Concentration lo/,,\ Injection I Error (+z%\ lnjection 2 Error (+zo/o\ Injection 3 Error ( +. z "/,\ 19.34 -o.to/"o.ty6 o.oo/" 12. l5 0.OYo o.oyo 0.0% 476 o 10/"o to/"-o to/" 2.40 0.0%0.ovo 0.00/o Gas Calibrstion Direct to Calibration Gas Concentration (o/^\ Injection I Analyzer Concentration lo/^\ Injection 2 Analyzer Concentration lo/^\ Injection 3 Analyzer Concentration to/^\ Average Analyzer Concentration Difference Average Error ( * 2./.\ t0 98 l05 007 0.60/o Mass Flow Controller Calibration Document lD 620.009 Revisior 22.0 Effective Dak 12/16/22 lssuing Departmenl Iech Seruices Pao(lofl Dilution System Make: Dilution System Model: Dilution System S/N: Calibration Equipment Make: Calibration Equipment Model: Calibration Equipment S4,l: Flow Cell 5/N: Flow Cell S/N: Calibration Gas: Barometric Pressure, mmHg: Ambient Temperature, "F: E nvironics 4040 8027 Alicat Scientific M.1OSI.PDl5IMM D/5M, 121208/127206 127208 127206 Nitrogen 25.76 66 [/ 1SIPM D/SiV Mass Flow Controller lD Size, ccm: Make: Model: S/N: '10,000 Environics EFC 202 0455242007 10,000 Environics EFC 202 0455242008 #3 1,000 Environics EFC 202 0455238004 Set Flow True Flow Difference cclmin cclmin Set Flow True Flow Difference cclmin cclmin Set Flow True Flow Difference cdmin cclmin 107o 207o 30% 407o 50v" 60?" 707o 807o 907o 1007. 500 508 1.670 1,000 1,024 2.470 2,000 2,057 2.870 3,000 3,079 2.6y" 4,000 4,104 2.6yo 5,000 5,113 2.3v" 6,000 6,129 2.1y" 7,000 7,136 1.970 8,000 8,145 1.8% 9,000 9,162 1.8yo 10,000 10,193 1.9y" 500 504 o.Byo 1,000 1,020 2.070 2,000 2,048 24% 3,000 3,073 2.470 4,000 4,094 2 4% 5,000 5,107 2.170 6,000 6,120 2.070 7,000 7,134 1.9ya 8,000 8,152 1.970 9,000 9,171 1.9y" 10,000 10,189 1.970 50 50 0.670 100 101 0.7vo 200 203 1.670 300 305 1.870 400 407 1.670 500 547 1.4yo 600 609 1.50/0 700 711 1.6?" 800 813 1.770 900 917 1.970 1,000 1,022 2.2yo Nole: The mass flow controller's calibration values are used by the dilution system's operating software to improve accuracy. These calibrations are not necessarily indicative of the systems overall performance. Performance is verified by conducting a Method 205 prior to each field use. Calibration Performed By: RIL Date: 3/31/2023 E=.Ex6 E_ E G! = gE e 06 ;e !r o <+ 6r o. i . oo Es F $ =E EGag6 (/ ) E ofo) E ooo( I oN ( o q? 9 : : Or r N NO O ba a rO ON< < rN N oN o bO r ct ci ;j N( 0 ( o ]> N N rr ) r ONs \ rN N oCF =# e* -o-EEO c- 9r - .s d -N o ! E EE cc c 6 >e Q f f, f , > :1 9 tE t < 6u ) !cLl lEoa fr \x o om F (I ) O -o!l N fi i - .!GoGEOJoo o$ F ' - F - F - \ t $ - O r @ N N t O ON c O O T N C O S - O S @ < t t O @@ l - ( ) O T O F ( O C { @ r C O - E ^ q3 s + + s E E q € f i f r q * = \t N T O O O O - N O r @ @ g ; (o r o o $ o N @ N o $ o V = L u o, o\ t r $ F( \ ( o o F (o N o X= + NF o o o oc . ' l N N N o - Y> . ' N t' - l ' . - F - NN N F - t = N N o- i I Eq or o oo o o o o o o o o o o o 99 9 9 9 C 9 9 9 9 9 9 9 o@ o @ o @ o @ o @ o @ o :: :. 9! 9! C? C? f : Yl Yl 9 I :. -- N N N (f ) o o o ( t o o o o o o d ) o NN N N N N N N N N N N N 66 6 6 6 d d 6 6 6 6 6 6 oo o o o o o o o o o o o oo o o o o o o o o o o o 60 r ) 0 r ) 0 ( ) 0 r ) 0 r ) 0 0 (t )NoNktol,Eooo(f ooodxozooFJoGo6'oc.EoEo -a q; R O \t a O l. - 6 0t $ >l c, fi r' ' ;P,Go6Eooo a;E)o (o N @ ( f , o r ( r ) ( ) @ t - t - O r , - NO @ O O 6 $ O @ N r € r : ^ -O - \ t @ O ( c l \ t r O N O $ ,Y = -N o o \ i o @ @ o F - o \ t r E i, \' . o ? a ? q q q q r i \ A q \ =: s O nV O O O @ | o r ) N N r F - N tt + ! ; -r @ r l ' - S 6 < ' S O O @ N 0@ F $- N O @ ( ) N N O ( O ( ) N ( O -- O i r (O N O N ( a \ t $ \ t N O O N N I t- NN t ' - F - N N N NI . - I . * r E( L ;( I ) oaD oo o o o o o o o o o o o <) o o o o o o o o o o o o .i r- G i NG i F- n i NA i N. i .- A i 99 : : : : | l q ! c ? q ? : I S Y l Y l 9 OO O O O O O O O O O O T oo m o o o c r ( D o o € ) ( r ) ( r ) C{ C { C { N N N C { N N N N N N 66 6 6 6 6 6 d d 6 6 6 d rD r D r D o o o o o o o o o c ) oo o o o o o o o o o o o 6| r ) r O r O 6 6 6 0 0 0 6 0 6 oNoNrt(, !Eoooo ooodxozooFIo(,U'o(,c.goEo GETan 6 q: R O Fm F ro o 9E fi t s :ooG .. !ooE) = Gi o=<x r) F - n o - r ) @ F - @ ( O ( r ) N ( O OF - - @ O T r ) S O T r ) 6 O ) ( o @ E (' ) ( O r ) € ) @ $ 6 N r O ) t O $ ( O 6 o@ o ( , r r o r o r o ) @ s c { o 'E o S- j c ! @ $ \ t r o < t @ S o o 9 5 -o + + d 6 i o i - o d o < o @ r - :' - : ; -N O @ $ N O $ O n t @ n Pc : @o o o o o o $ o @ o o e Y> . ' NN O O C ! O O O O N N N O E3 [ N Ft s N r r r r r t s N N E- | :( L iB m o oo o o o o o o o o o o o oo o o o o o o o o o o o ci r b c i 6 o t i c i t o L b o r b o Y? Y ? 9 9 : : : | ! q ! q ? c ? A l Y ? @@ o r o r o r o r o o o o o o o oo o o o o o o o o o o o oo o o o o o o o o o o o NN N N N N N N N N N N N oo o o o o o o o o o o o or u r D o o o o o o o o o o oo o o o o o o o o o o o r) ( ) n r ) t o r ) t o ( ) ( ) r r r ) r ) r ) (Y )Nost6oltEooooi,o6 uoooUxozooFJoGooo.gd boC{=thoF(u(Jc,( oE-EoULoco&. (J :ZFG, t,TAH DEPABTMENT OF ENVIRONMENTAL OI'IAI.JTY FEB 1 2 2024 DIVISION OF AIR QUALTTY Boiler 2 Nox CO 2024 Reference Methods 2, 3A, 6C, 7E, 10, & 19 Source Information Company Name University of Utah Company Contact:Jenny Esker Contact Phone No.(801) 569-6494 Stack Designation:Boiler #2 Test & Review Dates Test Date:12/15/2023 & Review Date: 3/1/2024 Observer:Unobserved Reviewer:Paul Morris Emission Limits Emission Rates SO2 NOX CO SO2 NOX CO lbs./MMBtu lbs./hr. 1.5 3.0 0.730 0.016 ppm 9.0 7.927 Percent %O2 Correction as a whole #3.00 Test Information Heat Input Stack I.D. inches As ft^2 Y Dl H @ Cp Pbar Pq (static) fuel flow rate (Btu/hr.) Heat Input (Btu/hr.) 41.00 9.168 0.9820 1.4 0.84 25.50 -0.4 Contractor Information Contact: Charles Horton Contracting Company: Alliance Technical Group, LLC Address: 3683 W 2270 S, Suite E West Valley City, UT 84120 Phone No.: (464) 352-7568 Project No.: Round Division of Air Quality Instrumental Reference Methods - Gaseous Measurements Method 19 - F factors for Coal, Oil, and Gas Fd Fw Fc scf/MMBtu scf/MMBtu scf/MMBtu Diluent F factor used O2 CO2 Anthrocite 2 Bituminous 2 Lignite Natural Propane Butane 10100 COAL OIL GAS 9780 9860 9190 8710 8710 8710 10540 10640 11950 320 10610 10200 10390 1970 1800 1910 1420 1040 1190 1250 Wet CEM Correct For O2 CO2 Interference w/CO Yes Yes Yes Boiler 2 Nox CO 2024 Division of Air Quality NSPS Relative Accuracy Performance Specification Test - CEMS Certification University of Utah Boiler #2 Average Emission Dry SO2 NOX CO lbs./MMbtu Average % concentration lbs./hr.0.73 0.02 CO2 O2 ppm corrected for %O2 7.93 0.00 9.19 4.95 Run 1 Enter O2 or CO2 Dry SO2 NOX CO CO2 O2 O2 Atomic Weight 64 46 28 lbs./MMBtu (O2)E=Cd x Fd x (20.9/(20.9-%O2d)) lbs./MMBtu (CO2)E=Cd x Fc x (100 / % CO2d) lbs./cu.ft 8.678E-07 1.729E-08 lbs./hr.0.76 0.02 9.24 4.87 ppm corrected for %O2 8.11 0.00 9.43 4.92 Run 2 Dry SO2 NOX CO CO2 O2 Atomic Weight 64 46 28 lbs./MMBtu (O2)E=Cd x Fd x (20.9/(20.9-%O2d)) lbs./MMBtu (CO2)E=Cd x Fc x (100 / % CO2d) lbs./cu.ft 8.370E-07 1.882E-08 lbs./hr.0.72 0.02 9.17 4.97 ppm corrected for %O2 7.87 0.00 9.43 5.06 Raw Value Run 3 Dry SO2 NOX CO CO2 O2 Atomic Weight 64 46 28 lbs./MMBtu (O2)E=Cd x Fd x (20.9/(20.9-%O2d)) lbs./MMBtu (CO2)E=Cd x Fc x (100 / % CO2d) lbs./cu.ft 8.268E-07 1.787E-08 lbs./hr.0.71 0.02 9.15 5.02 ppm corrected for %O2 7.80 0.000 9.36 5.14 Raw Value Run 4 Dry SO2 NOX CO CO2 O2 Atomic Weight 64 46 28 lbs./MMBtu (O2)E=Cd x Fd x (20.9/(20.9-%O2d)) lbs./MMBtu (CO2)E=Cd x Fc x (100 / % CO2d) lbs./cu.ft lbs./hr. ppm corrected for %O2 Raw Value Run 5 Dry SO2 NOX CO CO2 O2 Atomic Weight 64 46 28 lbs./MMBtu (O2)E=Cd x Fd x (20.9/(20.9-%O2d)) lbs./MMBtu (CO2)E=Cd x Fc x (100 / % CO2d) lbs./cu.ft lbs./hr. ppm corrected for %O2 Raw Value C For Cal Drift Raw Value C For Cal Drift C For Cal Drift C For Cal Drift C For Cal Drift O2 CO2 Clear lbs./MMBTU Boiler 2 Nox CO 2024 Calibration Error Test Test Date December 15, 2023 O2 CS - Cal. Span 24.00 Units % Cylinder No. Expiration Date Cal. Gas CV- Certified Concentration CDir or CS - Measured Concentration Difference ACE Eq. 7E-1 Analyzer Cal. Error Status Low-level 0.00 0.00 0.00 0.00% Passed Cal. RR03686 09/19/31 Mid-level 10.98 11.03 0.05 0.21% Passed Cal. RR03384 10/19/29 High-level 24.00 24.02 0.02 0.08% Passed Cal. % of Span Sec. 8.2.1 Cal Gas Verification 0 to 20% of CS - Cal. Span Low-Level 0.00% 40 to 60% of Cal. Span Mid-level 45.75% 100% of Cal. Span High-level 100.00% Test Date December 15, 2023 CO2 CS - Cal. Span 23.70 Units % Cylinder No. Expiration Date Cal. Gas CV- Certified Concentration CDir or CS - Measured Concentration Difference ACE Eq. 7E-1 Analyzer Cal. Error Status Low-level 0.00 0.04 0.04 0.169% Passed Cal. RR03686 09/19/31 Mid-level 10.90 11.20 0.30 1.266% Passed Cal. RR03384 10/19/29 High-level 23.70 23.74 0.04 0.169% Passed Cal. % of Span Sec. 8.2.1 Cal Gas Verification 0 to 20% of Cal. Span Low-Level 0.00% 40 to 60% of Cal. Span Mid-level 45.99% 100% of Cal. Span High-level 100.00% Test Date SO2 CS - Cal. Span Units ppm Cylinder No. Expiration Date Cal. Gas CV- Certified Concentration CDir or CS - Measured Concentration Difference ACE Eq. 7E-1 Analyzer Cal. Error Status Low-level Mid-level High-level % of Span Sec. 8.2.1 Cal Gas Verification 0 to 20% of Cal. Span Low-Level 40 to 60% of Cal. Span Mid-level 100% of Cal. Span High-level Test Date December 15, 2023 NOx CS - Cal. Span 49.91 Units ppm Cylinder No. Expiration Date Cal. Gas CV- Certified Concentration CDir or CS - Measured Concentration Difference ACE Eq. 7E-1 Analyzer Cal. Error Status Low-level 0.00 -0.06 0.06 0.120% Passed Cal. EB0097304 10/20/30 Mid-level 24.95 25.07 0.12 0.240% Passed Cal. High-level 49.91 49.93 0.02 0.040% Passed Cal. % of Span Sec. 8.2.1 Cal Gas Verification 0 to 20% of Cal. Span Low-Level 0.00% 40 to 60% of Cal. Span Mid-level 49.99% 100% of Cal. Span High-level 100.00% Test Date December 15, 2023 CO 3 CS - Cal. Span 50.39 Units ppm Cylinder No. Expiration Date Cal. Gas CV- Certified Concentration CDir or CS - Measured Concentration Difference ACE Eq. 7E-1 Analyzer Cal. Error Status Low-level 0.00 -0.02 0.02 0.040% Passed Cal. EB0097304 10/20/30 Mid-level 25.19 25.70 0.51 1.012% Passed Cal. High-level 50.39 50.56 0.17 0.337% Passed Cal. % of Span Sec. 8.2.1 Cal Gas Verification 0 to 20% of Cal. Span Low-Level 0.00% 40 to 60% of Cal. Span Mid-level 49.99% 100% of Cal. Span High-level 100.00% Valid Cal Gas Valid Cal Gas Valid Cal Gas Valid Cal Gas Valid Cal Gas Valid Cal Gas Boiler 2 Nox CO 2024 Division of Air Quality Stack Test Review of University of Utah SO2 NOX CO CO2 O2 Boiler #2 CS Calibration Span 49.91 50.39 23.70 24.00 Units ppm ppm ppm % % Unprotected CV - Cylinder Value: SO2 NOX CO CO2 O2 Low-Level 0.00 0.00 0.00 0.00 Mid-Level 24.95 25.19 10.90 10.98 High-Level 49.91 50.39 23.70 24.00 0 to 20% of Cal. Span 0.00% 0.00% 0.00% 0.00% 40 to 60% of Cal. Span 50.0% 50.0% 46.0% 45.8% 100% of Cal. Span 100.0% 100.0% 100.0% 100.0% Cdir - Enter Actual Up-scale Cylinder Value Used To Correct Emission Concentration. CDir CMA 24.95 25.19 10.90 10.98 Calibration Error Test Cs - Measured Concentration SO2 NOX CO CO2 O2 Low-Level -0.06 -0.02 0.04 0.00 Mid-Level 25.07 25.70 11.20 11.03 High-Level 49.93 50.56 23.74 24.02 Enter Up-scale Analyzer Response to be used during testing. ACE Eq. 7E-1 25.07 25.70 11.20 11.03 Low-Level 0.12% 0.04% 0.17% 0.00% ppmdv Difference 0.06 0.02 0.04 0 Status Passed Cal. Passed Cal. Passed Cal.Passed Cal. Mid-Level 0.24% 1.01% 1.27% 0.21% ppmdv Difference 0.12 0.51 0.3 0.05 Status Passed Cal. Passed Cal. Passed Cal.Passed Cal. High-Level 0.04% 0.34% 0.17% 0.08% ppmdv Difference 0.02 0.17 0.04 0.02 Status Passed Cal. Passed Cal. Passed Cal.Passed Cal. Pre-Test Sampling System Bias Initial Values SO2 NOX CO CO2 O2 CO - Low-Level 0.10 -0.26 0.07 0.08 System Bias. SBi - Zero Bias TRUE 0.32% 0.48% 0.13% 0.33%± 5% of Span Difference TRUE 0.16 0.24 0.03 0.08 Pass or Failed Invalid Run Passed Cal. Passed Cal. Passed Cal. Passed Cal. CM - Up-scale Gas 24.38 25.74 11.08 10.94 SBi - Up-Scale Bias TRUE 1.38% 0.08% 0.51% 0.37% Difference TRUE 0.69 0.04 0.12 0.09 Pass or Failed Invalid Run Passed Cal. Passed Cal. Passed Cal. Passed Cal. Raw Test Data Time Start Stop Test Date:12/15/2023 SO2 SO2 NOX CO CO2 O2 NOX 7.3 -0.09 9.4 4.9 CO 0.0% 14.7% 0.2% 39.8% 20.5% CO2/O2 Post-Test System Bias 7E-2 SB=(Cs - Cdir)/CS x 100 Final Values SO2 NOX CO CO2 O2 CO - Low-Level 0.35 -0.41 0.10 0.11 System Bias. SBi - Zero Bias TRUE 0.82% 0.77% 0.25% 0.46%± 5% of Span Difference TRUE 0.4 0.4 0.1 0.1 Pass or Invalid Run Passed Cal. Passed Cal. Passed Cal. Passed Cal. CM - Up-scale Gas 24.80 25.49 11.15 11.01 SBi - Up-Scale Bias TRUE 0.54% 0.42% 0.21% 0.08% Difference TRUE 0.3 0.2 0.0 0.0 Pass or Invalid Run Passed Cal. Passed Cal. Passed Cal. Passed Cal. Calibration Drift % of Span - D=ABS(SBf - SBi) Low-Level Drift TRUE 0.50% 0.30% 0.13% 0.13% Drift Difference TRUE 0.3 0.2 0.0 0.0 3% of Span Pass or Re-Calibrate Pass Pass Pass Pass Up-scale Gas Drift TRUE 0.84% 0.34% 0.30% 0.29% Difference TRUE 0.4 0.3 0.1 0.1 Pass or Re-Calibrate Pass Pass Pass Pass Boiler #2 Flow & Moisture As ft^2 Pbar Pq (static) Ps Avg Ts F CO2 - FCO2 O2 N2+C Md Ms 9.168 25.50 -0.40 25.47 297 9.24 4.87 85.90 29.67 27.90 Y Cp Vm cf Vlc AVG Tm F Vm std Vw std Bws S Bws 5.2263 0.9820 0.84 42.755 143.30 40 37.772 6.745 0.1515 0.9990 0.999 Load - Megawatts Avg. √∆P's Vs (ft/sec.)Qsw scfh wet Qa acfm Qsd dscfh Heat Input Btu/hr Low Mid High 0.7072 52.430 1,026,887 28,841 871,295.15 Enert > #1 - Times Date Point No.∆P √∆P ts F tm F (in) tm F (out) Final Vf Initial Vi 1 0.36 0.600 282 38 36 844 711 132.5 2 0.39 0.624 285 39 35 743 741 1.8 3 0.46 0.678 289 39 34 636 636 0.6 4 0.58 0.762 290 39 35 955 947 8.4 5 0.65 0.806 291 40 35 6 0.67 0.819 293 40 35 7 0.59 0.768 294 42 36 8 0.58 0.762 296 44 36 9 0.30 0.548 294 45 37 10 0.36 0.600 299 47 36 11 0.48 0.693 302 48 37 12 0.56 0.748 305 53 38 13 0.60 0.775 308 55 38 14 0.58 0.762 310 15 0.51 0.714 311 16 0.43 0.656 310 17 18 19 20 21 22 23 24 Failed Bias Dialog Failed Drift Dialog Failed Cal Error Dialog CO Calibration Gas Failed Bias Dialog Boiler 2 Nox CO 2024 Division of Air Quality Stack Test Review of University of Utah SO2 NOX CO CO2 O2 Boiler #2 CS Calibration Span 49.91 50.39 23.70 24.00 Units ppm ppm ppm % % CV - Cylinder Value:SO2 NOX CO CO2 O2 Low-Level 0.00 0.00 0.00 0.00 Mid-Level 24.95 25.19 10.90 10.98 High-Level 49.91 50.39 23.70 24.00 0 to 20% of Cal. Span 0.00% 0.00% 0.00% 0.00% 40 to 60% of Cal. Span 50.0% 50.0% 46.0% 45.8% 100% of Cal. Span 100.0% 100.0% 100.0% 100.0% Cdir - Enter Actual Up-scale Cylinder Value Used To Correct Emission Concentration. CMA 24.95 25.19 10.90 10.98 Calibration Error Test Measured Concentration SO2 NOX CO CO2 O2 Low-Level -0.06 -0.02 0.04 0.00 Mid-Level 25.07 25.70 11.20 11.03 High-Level 49.93 50.56 23.74 24.02 Enter Up-scale Analyzer Response to be used during testing. ACE Eq. 7E-1 25.07 25.70 11.20 11.03 Low-Level 0.12% 0.04% 0.17% 0.00% ppmdv Difference 0.06 0.02 0.04 0 Status Passed Cal. Passed Cal. Passed Cal.Passed Cal. Mid-Level 0.24% 1.01% 1.27% 0.21% ppmdv Difference 0.12 0.51 0.3 0.05 Status Passed Cal. Passed Cal. Passed Cal.Passed Cal. High-Level 0.04% 0.34% 0.17% 0.08% ppmdv Difference 0.02 0.17 0.04 0.02 Status Passed Cal. Passed Cal. Passed Cal.Passed Cal. Pre-Test Sampling System Bias Initial Values SO2 NOX CO CO2 O2 CO - Low-Level 0.35 -0.41 0.10 0.11 System Bias. SBi - Zero Bias TRUE 0.82% 0.77% 0.25% 0.46%± 5% of Span Difference TRUE 0.41 0.39 0.06 0.11 Pass or Invalid Run Passed Cal. Passed Cal. Passed Cal. Passed Cal. CM - Up-scale Gas 24.80 25.49 11.15 11.01 SBi - Up-Scale Bias TRUE 0.54% 0.42% 0.21% 0.08% Difference TRUE 0.27 0.21 0.05 0.02 Pass or Invalid Run Passed Cal. Passed Cal. Passed Cal. Passed Cal. Raw Test Data Time Start Stop Test Date:12/15/2023 SO2 SO2 NOX CO CO2 O2 NOX 7.2 -0.20 9.4 5.1 CO 0.0% 14.3% 0.4% 39.6% 21.1% CO2/O2 Post-Test System Bias 7E-2 SB=(Cs - Cdir)/CS x 100 Final Values SO2 NOX CO CO2 O2 CO - Low-Level 0.33 -0.52 0.10 0.16 System Bias. SBi - Zero Bias TRUE 0.78% 0.99% 0.25% 0.67%± 5% of Span Difference TRUE 0.4 0.5 0.1 0.2 Pass or Invalid Run Passed Cal. Passed Cal. Passed Cal. Passed Cal. CM - Up-scale Gas 24.45 25.16 11.13 11.03 SBi - Up-Scale Bias TRUE 1.24% 1.07% 0.30% 0.00% Difference TRUE 0.6 0.5 0.1 0.0 Pass or Invalid Run Passed Cal. Passed Cal. Passed Cal. Passed Cal. Calibration Drift % of Span - D=ABS(SBf - SBi) Low-Level Drift TRUE 0.04% 0.22% 0.00% 0.21% Response Spec. Difference TRUE 0.0 0.1 0.0 0.1 3% of Span Pass or Re-Calibrate Pass Pass Pass Pass Up-scale Gas Drift TRUE 0.70% 0.65% 0.08% 0.08% Difference TRUE 0.4 0.3 0.0 0.0 Pass or Re-Calibrate Pass Pass Pass Pass Boiler #2 Flow & Moisture As ft^2 Pbar Pq (static) Ps Avg Ts F CO2 - FCO2 O2 N2+C Md Ms 9.17 25.50 -0.40 25.47 309 9.17 4.97 85.86 29.67 27.91 Y Cp Vm cf Vlc AVG Tm F Vm std Vw std Bws S Bws 6.2292 0.9820 0.84 44.654 143.00 60 37.960 6.731 0.1506 0.9990 0.999 Load - Megawatts Avg. √∆P's Vs Qsw scfh wet Qa acfm Qsd dscfh Heat Input Btu/hr Low Mid High 0.7073 52.83 1,018,997 29,061 865,524.06 Enert > #1 - Times Date Point No.∆P √∆P ts F tm F (in) tm F (out) Final Vf Initial Vi 1 0.33 0.574 298 59 62 857 724 133 2 0.41 0.640 306 60 63 744 743 1.3 3 0.51 0.714 310 62 60 637 636 0.6 4 0.55 0.742 311 63 58 963 955 8.1 5 0.58 0.762 314 63 54 6 0.54 0.735 312 64 52 7 0.50 0.707 310 65 51 8 0.43 0.656 311 65 51 9 0.31 0.557 302 65 51 10 0.46 0.678 305 66 52 11 0.54 0.735 306 66 53 12 0.62 0.787 311 67 55 13 0.62 0.787 314 67 56 14 0.63 0.794 313 15 0.58 0.762 311 16 0.47 0.686 312 17 18 19 20 21 22 23 24 Failed Bias Dialog Failed Drift Dialog Failed Cal Error Dialog Failed Bias Dialog Boiler 2 Nox CO 2024 Division of Air Quality Stack Test Review of University of Utah SO2 NOX CO CO2 O2 Boiler #2 CS Calibration Span 49.91 50.39 23.70 24.00 Units ppm ppm ppm % % CV - Cylinder Value:SO2 NOX CO CO2 O2 Low-Level 0.00 0.00 0.00 0.00 Mid-Level 24.95 25.19 10.90 10.98 High-Level 49.91 50.39 23.70 24.00 0 to 20% of Cal. Span 0.00% 0.00% 0.00% 0.00% 40 to 60% of Cal. Span 50.0% 50.0% 46.0% 45.8% 100% of Cal. Span 100.0% 100.0% 100.0% 100.0% Cdir - Enter Actual Up-scale Cylinder Value Used To Correct Emission Concentration. CMA 24.95 25.19 10.90 10.98 Calibration Error Test Measured Concentration SO2 NOX CO CO2 O2 Low-Level -0.06 -0.02 0.04 0.00 Mid-Level 25.07 25.70 11.20 11.03 High-Level 49.93 50.56 23.74 24.02 Enter Up-scale Analyzer Response to be used during testing. ACE Eq. 7E-1 25.07 25.70 11.20 11.03 Low-Level 0.12% 0.04% 0.17% 0.00% ppmv Difference 0.06 0.02 0.04 0 Status Passed Cal. Passed Cal. Passed Cal.Passed Cal. Mid-Level 0.24% 1.01% 1.27% 0.21% ppmv Difference 0.12 0.51 0.3 0.05 Status Passed Cal. Passed Cal. Passed Cal.Passed Cal. High-Level 0.04% 0.34% 0.17% 0.08% ppmv Difference 0.02 0.17 0.04 0.02 Status Passed Cal. Passed Cal. Passed Cal.Passed Cal. Pre-Test Sampling System Bias Initial Values SO2 NOX CO CO2 O2 CO - Low-Level 0.33 -0.52 0.10 0.16 System Bias. SBi - Zero Bias TRUE 0.78% 0.99% 0.25% 0.67%± 5% of Span Difference TRUE 0.39 0.5 0.06 0.16 Pass or Invalid Run Passed Cal. Passed Cal. Passed Cal. Passed Cal. CM - Up-scale Gas 24.45 25.16 11.13 11.03 SBi - Up-Scale Bias TRUE 1.24% 1.07% 0.30% 0.00% Difference TRUE 0.62 0.54 0.07 0 Pass or Invalid Run Passed Cal. Passed Cal. Passed Cal. Passed Cal. Raw Test Data Time Start Stop Test Date:12/15/2023 SO2 SO2 NOX CO CO2 O2 NOX 7.0 -0.32 9.4 5.1 CO 0.0% 14.0% 0.6% 39.5% 21.4% CO2/O2 Post-Test System Bias 7E-2 SB=(Cs - Cdir)/CS x 100 Final Values SO2 NOX CO CO2 O2 CO - Low-Level 0.33 -0.62 0.07 0.17 System Bias. SBi - Zero Bias TRUE 0.78% 1.19% 0.13% 0.71%± 5% of Span Difference TRUE 0.4 0.6 0.0 0.2 Pass or Invalid Run Passed Cal. Passed Cal. Passed Cal. Passed Cal. CM - Up-scale Gas 24.08 24.94 11.14 11.06 SBi - Up-Scale Bias TRUE 1.98% 1.51% 0.25% 0.13% Difference TRUE 1.0 0.8 0.1 0.0 Pass or Invalid Run Passed Cal. Passed Cal. Passed Cal. Passed Cal. Calibration Drift % of Span - D=ABS(SBf - SBi) Low-Level Drift TRUE 0.00% 0.20% 0.13% 0.04% Response Spec. Difference TRUE 0.0 0.1 0.0 0.0 3% of Span Pass or Re-Calibrate Pass Pass Pass Pass Up-scale Gas Drift TRUE 0.74% 0.44% 0.04% 0.13% Difference TRUE 0.4 0.2 0.0 0.0 Pass or Re-Calibrate Pass Pass Pass Pass Boiler #2 Flow & Moisture As ft^2 Pbar Pq (static) Ps Avg Ts F CO2 - FCO2 O2 N2+C Md Ms 9.17 25.50 -0.40 25.47 315 9.15 5.02 85.83 29.66 27.88 Y Cp Vm cf Vlc AVG Tm F Vm std Vw std Bws S Bws 6.8198 0.9820 0.84 43.563 141.90 61 36.956 6.679 0.1531 0.9990 0.999 Load - Megawatts Avg. √∆P's Vs Qsw scfh wet Qa acfm Qsd dscfh Heat Input Btu/hr Low Mid High 0.7054 52.94 1,012,970 29,121 857,914.95 Enert > #1 - Times Date Point No.∆P √∆P ts F tm F (in) tm F (out) Final Vf Initial Vi 1 0.35 0.592 301 67 47 861 727 133.7 2 0.40 0.632 312 68 48 745 744 1.2 3 0.55 0.742 316 69 47 637 637 0.1 4 0.55 0.742 317 70 48 970 963 6.9 5 0.55 0.742 318 72 48 6 0.52 0.721 317 72 49 7 0.47 0.686 317 72 49 8 0.40 0.632 315 73 50 9 0.30 0.548 311 73 50 10 0.42 0.648 319 74 52 11 0.57 0.755 320 74 51 12 0.65 0.806 318 74 52 13 0.64 0.800 315 75 54 14 0.64 0.800 317 15 0.57 0.755 316 16 0.47 0.686 316 17 18 19 20 21 22 23 24 Failed Bias Dialog Failed Cal Error Dialog Failed Drift Dialog Failed Bias Dialog